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a b s t r a c t

We consider a 2+1 dimensional wave equation appearing in the context of polarized
waves for the nonlinear Maxwell equations. The equation is quasilinear in the time
derivatives and involves two material functions V and Γ . We prove the existence
of traveling waves which are periodic in the direction of propagation and localized
in the direction orthogonal to the propagation direction. Depending on the nature
of the nonlinearity coefficient Γ we distinguish between two cases: (a) Γ ∈ L∞

being regular and (b) Γ = γδ0 being a multiple of the delta potential at zero. For
both cases we use bifurcation theory to prove the existence of nontrivial small-
amplitude solutions. One can regard our results as a persistence result which shows
that guided modes known for linear wave-guide geometries survive in the presence
of a nonlinear constitutive law. Our main theorems are derived under a set of
conditions on the linear wave operator. They are subsidized by explicit examples
for the coefficients V in front of the (linear) second time derivative for which our
results hold.
©2022 The Authors. Published by Elsevier Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Of concern is the following 2+1 dimensional quasilinear wave equation

− ∆u+ ∂2
t

(
V (λ, y)u+ Γ (y)u3) = 0, (1.1)

hich appears in the context of polarized waves for the nonlinear Maxwell equations. Here, u = u(t, x, y) is
he unknown depending on time t ∈ R+ and the two spatial variables x, y. We assume u to be periodic in
-direction and localized in y-direction. In what follows, we denote by T the one dimensional flat 2π-periodic
orus, so that (x, y) ∈ T × R. The potentials V (λ, ·) and Γ depend only on y and incorporate material
roperties. Here, λ ∈ R is a parameter. The function Γ might be a bounded function (referred to as regular
) or a multiple of a delta potential at y = 0 (referred to as distributional Γ ).
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To motivate our interest in (1.1), let us explain how it appears in the context of electromagnetics. Recall
that the Maxwell equations in the absence of charges and currents are given by

∇ · D = 0, ∇ × E = − ∂tB, D =ε0E + P(E),
∇ · B = 0, ∇ × H = ∂tD, B =µ0H.

he modeling of the underlying material is done by making assumptions on the form of the polarization
eld P. Here, we assume that P depends instantaneously on the electric field E as follows

P(E) = ε0χ1(x)E + ε0χ3(x)|E|2E

ith x = (x, y, z) ∈ R3, cf. [1, Chapter 2.3]. For simplicity we take χ1, χ3 as given scalar functions instead
f the more general matrix/tensor structure of these quantities. The values ε0, µ0 are constant such that
2 = (ε0µ0)−1 and c is the speed of light in vacuum. By direct calculations from Maxwell’s equations one
btains the second-order quasilinear wave-type equation for the electric field

0 = ∇ × ∇ × E + ∂2
t

(
V (x)E + Γ (x)|E|2E

)
, (1.2)

here V (x) = µ0ε0 (1 + χ1(x)) and Γ (x) = µ0ε0χ3(x). The magnetic induction B can be retrieved from
∇ × E = −∂tB by time-integration and it will satisfy ∇ · B = 0 provided it does so at time t = 0. By
assumption the magnetic field is given by H = 1

µ0
B and it satisfies ∇ × H = ∂tD. It remains to check

hat the displacement field D satisfies the Gauss law ∇ · D = 0 in the absence of external charges. This
ollows directly from the constitutive equation D = ε0(1 + χ1(x))E + ε0χ3(x)|E|2E and the assumption of
he polarized form of the electric field

E(x, t) = (0, 0, u(t, x, y))T .

f we assume additionally that V (x) = V (y) and Γ (x) = Γ (y) then the quasilinear vectorial wave-type
q. (1.2) turns into the scalar Eq. (1.1) for u = u(t, x, y).
We study the existence of traveling wave solutions of (1.1) propagating in x-direction for certain classes

of potentials V . More precisely, we consider potentials of the form

V (λ, y) = λV0(y) + V1(y), λ ∈ R,

where V0 ∈ L∞(R) and V1 is a distribution (e.g a δ-potential). If

u(t, x, y) = Φ(x− t, y) (1.3)

is a traveling wave solution of (1.1), propagating in x-direction with wave speed v = 1, then Φ : T×R → R
satisfies

− Φyy − (1 − λV0(y) − V1(y))Φxx + Γ (y)(Φ3)xx = 0. (1.4)

The parameter λ ∈ R will serve as a bifurcation parameter. One might ask why we introduced λ as a
bifurcation parameter in the form V (λ, y) = λV0(y) + V1(y) and not in the more intuitive form V (λ, y) =
λ(V0(y) + V1(y)) – the latter giving

√
λ the meaning of the propagation speed of the traveling wave. The

reason lies in the distributional character of V1. The choice of the underlying function spaces for our analysis
llows to formulate a (suitably defined, cf. Lemma 4.3) bounded inverse of L̃λ, which is a slightly modified
ersion of the wave operator Lλ = −∂2

y − (1 − λV0(y) − V1(y))∂2
x. Extending the multiplication with λ also

o the distributional part V1 causes difficulties when differentiating wit respect to λ, cf. Remark 4.5.
Throughout the paper, a function u is called a traveling wave solution of (1.1) if u takes the form (1.3)

nd Φ is a solution of (1.4), which is periodic in its first and localized in its second component.
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We investigate the existence of nontrivial solutions Φλ of (1.4) corresponding to the parameter λ under
ertain assumptions on the potential V ; thereby providing the existence a nontrivial traveling wave solution
λ of (1.1). We apply bifurcation theory for the parameter λ to find nontrivial solutions of (1.4). Our aim

s to analyze the existence of nontrivial solutions in a way as general as possible, finding key properties
f associate linear operators, which guarantee the existence of solutions via bifurcation theory. Eventually,
e provide examples of specific potentials V for which these properties can be verified. In particular, the

ollowing cases are under consideration:

(P1) V is a δ−potential on a constant background, that is V is a distribution of the form

V (λ, y) = λ+ αδ0(y).

(P2) V is a δ−potential on a step background, that is V is a distribution of the form

V (λ, y) = λ1|y|≥b + β1|y|<b + αδ0(y).

Concerning the nonlinear potential Γ we distinguish between regular Γ , that is Γ ∈ L∞(R), and
distributional Γ , that is Γ = γδ0. The main results for regular Γ are shown in Section 2.1 and for
distributional Γ in Section 2.2.

Let us also comment on related work. Problem (1.1) has been considered in [17] where spatially localized
traveling wave solutions of the 1+1-dimensional quasi-linear Maxwell model were investigated. The authors
assume that V (y) is a periodic arrangement of delta potentials. Using a multiple scale ansatz in fast and slow
time, the field profile is expanded into infinitely many modes which are quasiperiodic in time (time-periodic
both in the fast and slow time variables). Using local bifurcation methods the authors solve a related system
which is homotopically linked to the Maxwell problem written as an infinite coupled system. It is not clear if
the local bifurcation connects the related system and the Maxwell problem but numerical results support the
existence of spatially localized traveling waves. In [7,9] another approximation (including error-estimates)
of a version of (1.1) with periodic coefficients by finitely many coupled modes near band edges has been
performed both analytically and numerically.

In the studies of the nonlinear Maxwell-system (1.2), often monochromatic waves E(x) = U(x)eiωt +
c.c. are considered. Since a typical cubic nonlinearity generates higher harmonics, they either need to
be neglected (leading to an error), or the constitutive equation for D is replaced by a time-averaged
nonlinearity D = ε0(1 + χ1(x))E + ε0χ3(x) 1

T

∫ T

0 |E|2 dtE, cf. [2,8,14,16,19–21] and particularly the two
survey papers [3,15].

In contrast to the previously cited works, our approach is genuinely polychromatic and does not rely on
time-averaged material laws. In our solution ansatz we allow for harmonics of arbitrary order and we treat
(1.1) without any approximation. Recently in [12] a similar approach was taken and spatially localized, time-
periodic solutions of (1.1) were obtained via variational methods. The result of the present paper and [12] are
complementary in the following sense: (a) in [12] only distributional Γ is considered whereas in the present
paper we also allow for regular Γ ∈ L∞; (b) in the case of distributional Γ , [12] only treats V ∈ L∞ whereas
in the present paper we always have a delta potential contributing to V . Variational methods as in [12]
have the advantage of producing solutions which may be far away from the trivial solution whereas local
bifurcation methods as in the present paper produce solutions in the vicinity of zero. On the other hand, the
local bifurcation method leads to more precise information about the actual shape of the bifurcating branch
of solutions.

Outline of the paper. We close the introduction with a brief outline of the paper. In Section 2, we collect
our main results. In Theorem 2.3 and Theorem 2.10 we provide a set of conditions on the linear wave operator
guaranteeing the existence of nontrivial traveling wave solutions of (1.1) for regular and distributional Γ ,

respectively. Subsequentially, we present in Corollaries 2.5, 2.6, 2.13 and 2.14 particular examples in the
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form of (P1) and (P2) for regular and distributional Γ . In Section 3 we fix some notation. The remaining
Section 4–7 are devoted to the proofs of our main results. To be more precise, in Section 4 we prove the
existence result in Theorem 2.3 for regular Γ followed by the proofs of Corollaries 2.5 and 2.6 in Section 5,
which provide specific examples. Similarly, we prove in Section 6 the existence result in Theorem 2.10 for
distributional Γ and finalize our studies in Section 7 with the proofs of Corollaries 2.13 and 2.14 on specific
examples in the case of distributional Γ . In the appendix we collect auxiliary results.

2. Main results

We are looking for solutions of (1.4) of the form

Φ(x, y;λ) =
∑
k∈N

ϕk(y;λ) sin(kx). (2.1)

Our analysis is going to be divided into two parts separating the case when Γ is regular in the sense
that Γ ∈ L∞(R) and the case when Γ is distributional and takes the extreme form of a δ-potential. This is
essentially due to the fact that in the former case we are concerned with a nonlinear equation on the domain
T×R, while in case of Γ being a δ-potential the problem can be viewed as a linear equation on T×R \ {0}
– which can be solved separately – equipped with a nonlinear boundary condition at x = 0 induced by the
delta potential.

2.1. Main result for regular Γ

Let us start with the definition of a weak solution of (1.4) in the case when Γ ∈ L∞(R).

Definition 2.1 (Weak Solution in the Case of Regular Γ ).
We say that Φ ∈ H2(T;L2(R)) ∩H1(T;H1(R)) is a weak solution of (1.4) if and only if∫

T

∫
R
ΦyΨy − (1 − λV0(y))ΦxxΨ dy dx−

∫
T
⟨V1(·)Φx(x, ·),Ψx(x, ·)⟩ dx+

∫
T

∫
R
(Φ3)xxΨ dy dx = 0

for any Ψ ∈ H1(T;H1(R)). Here, ⟨·, ·⟩ is the dual pairing between H−1(R) and H1(R).

Remark 2.2.

(a) We consider V1 as a bounded linear operator from H1(R) into H−1(R). When V1 = δ0 this means that
for f, g ∈ H1(R) we have ⟨V1f, g⟩ = f(0)g(0), i.e., since f ∈ C(R) it multiplies δ0 and generates f(0)δ0
as a distribution acting on g.

b) Clearly Φxx ∈ L2(T×R). We shall see in Section 4 (cf. (4.8), (4.9) in Lemma 4.4) that also Φ ∈ L∞(T×R)
and Φx ∈ L4(T × R) so that (Φ3)xx = 3Φ2Φxx + 6ΦΦ2

x ∈ L2(T × R).

If Γ ∈ L∞(R), the ansatz in (2.1) allows us to reduce the problem of finding nontrivial solutions of (1.4)
to studying spectral properties of the family of linear wave operators

Lk
λ := − d2

dy2 + k2(1 − λV0(y) − V1(y)) for k ∈ N.

e prove the following theorem:

heorem 2.3 (Existence of Traveling Waves for Regular Γ ). Assume that Γ ∈ L∞(R), the potential V is
iven by
V (λ, y) = λV0(y) + V1(y)
4
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(L0) V0 ∈ L∞(R) and V1 : H1(R) → H−1(R) is bounded;
(L1) for every fixed k ∈ N and λ ∈ R the operator Lk

λ : D(Lk
λ) ⊂ L2(R) → L2(R) is self-adjoint;

(L2) there exist a wavenumber k∗ ∈ N, a value λ∗ ∈ R, and an open interval Iλ∗ ⊂ R containing λ∗ such that
zero is an isolated simple eigenvalue of Lk∗

λ∗ and 0 ∈ ρ(Lk
λ) for any (k, λ) ∈ N×Iλ∗ with (k, λ) ̸= (k∗, λ∗);

(L3) if Lk
λϕ = f for some f ∈ L2(R), then

∥ϕ∥L2(R) ≲
1
k2 ∥f∥L2(R) and ∥ϕ′∥L2(R) ≲

1
k

∥f∥L2(R)

uniformly for λ ∈ Iλ∗ and k ∈ N sufficiently large.

If in addition V0 satisfies the transversality condition

⟨V0ϕ
∗, ϕ∗⟩L2(R) ̸= 0, (2.2)

where ϕ∗ spans the one-dimensional kernel of Lk∗
λ∗ , then there exists ε0 > 0 and a smooth curve through

0, λ∗),
{(Φ(ε), λ(ε)) | |ε| < ε0} ⊂ (H2(T;L2(R)) ∩H1(T;H1(R))) × Iλ∗ ,

of nontrivial solutions of (1.4) with

Φ(0) = 0, DεΦ(0)(x, y) = ϕ∗(y) sin(k∗x),

λ(0) = λ∗, λ̇(0) = 0, λ̈(0) = −3
2

∫
R Γ (y)(ϕ∗)4(y) dy∫
R V0(y)(ϕ∗)2(y) dy

.

emark 2.4. The transversality condition (2.2) is trivially satisfied if V0 ≥ 0, ̸≡ 0 or V0 ≤ 0, ̸≡ 0.

In Section 4 we prove Theorem 2.3. There are two main requirements on Lk
λ providing the existence of

ontrivial solutions via bifurcation theory: The first is that there exists a value λ∗ ∈ R of the bifurcation
arameter such that Lk

λ∗ has a one-dimensional kernel if and only if k = k∗ for some wave number k∗ ∈ N
see (L2)); this is a necessary bifurcation condition. Secondly, we demand that for any k ̸= k∗ the self-adjoint

operator Lk
λ has a spectral gap (−ck2, ck2) around zero, which ensures the decay properties of ϕk(·;λ) (see

(L3)). Eventually, after we have established Theorem 2.3, we turn to the specific case, when Γ ∈ L∞(R) is
regular, V are potentials of the form as in (P1) and (P2) and formulate tangible assumptions on the triple
(k∗, λ∗, α) (see (2.3) and (2.4)), which guarantee that conditions (L0) − (L3) of Theorem 2.3 are satisfied;
thereby proving the existence of nontrivial traveling wave solutions of (1.1). In particular, we prove the
following corollaries.

Corollary 2.5 (Case P1, Regular Γ ). Let Γ ∈ L∞(R) and V (λ, y) = λ+ αδ0(y). If k∗ ∈ N and λ∗ < 1 are
given and α > 0 is determined from

α = 2
√

1 − λ∗

k∗
, (2.3)

hen the assumptions in Theorem 2.3 are satisfied with

ϕ∗(y) =
√
k∗
√

1 − λ∗e
−k∗

√
1−λ∗|y|

nd

Φ(0) = 0, DεΦ(0)(x, y) = ϕ∗(y) sin(k∗x),

λ(0) = λ∗, λ̇(0) = 0, λ̈(0) = −3
k2

∗(1 − λ∗)
∫

Γ (y)e−4k∗
√

1−λ∗|y| dy.
2 R
5
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Corollary 2.6 (Case P2, Regular Γ ). Let Γ ∈ L∞(R) and V (λ, y) = λ1|y|≥b + β1|y|<b +αδ0(y). If k∗ ∈ N,
b > 0 and β, λ∗ < 1 are given and α > 0 is determined from

α = 2
√

1 − β

k∗ ·
√

1 − β sinh(k∗
√

1 − βb) +
√

1 − λ∗ cosh(k∗
√

1 − βb)√
1 − β cosh(k∗

√
1 − βb) +

√
1 − λ∗ sinh(k∗

√
1 − βb)

, (2.4)

then the assumptions in Theorem 2.3 are satisfied.

Remark 2.7. Details on the construction of ϕ∗ in Corollary 2.6 can be taken from Section 5.2.

2.2. Main result for distributional Γ

Again, we start with the definition of a weak solution of (1.4), but now in the case when Γ is given by a
δ-potential. We assume that the function V1 = W + αδ0 splits into a regular part W and the distributional
part αδ0 so that V = λV0 +W + αδ0, where V0,W ∈ L∞(R) and Γ = γδ0.

Definition 2.8 (Weak Solution in the Case of Distributional Γ ). We say that Φ ∈ H2(T;L2(R)) ∩
H1(T;H1(R)) ∩ C(R;H2(T)) is a weak solution of (1.4) if and only if∫

T

∫
R
ΦyΨy − (1 − λV0(y) −W (y))ΦxxΨ dy dx+

∫
T

(
αΦxx(x, 0) + γ(Φ3)xx(x, 0)

)
Ψ(x, 0) dx = 0

for any Ψ ∈ H1(T;H1(R)).

Remark 2.9. Clearly Φxx(·, 0) ∈ L2(T) and Φ(·, 0),Φx(·, 0) ∈ L∞(T) so that (Φ3(·, 0))xx =
3Φ(·, 0)2Φ(·, 0)xx + 6Φ(·, 0)Φ(·, 0)2

x ∈ L2(T). Moreover, Ψ ∈ H1(T;H1(R)) ⊂ H1(T×R) has an L2-trace at
y = 0.

Note that (1.4) can be written as a linear partial differential equation on T × R \ {0} equipped with a
nonlinear boundary condition on T:{

−Φyy − (1 − λV0 −W )Φxx = 0, (x, y) ∈ T × R \ {0},
Φy(x, 0+) − Φy(x, 0−) = ∂2

x

(
αΦ + γΦ3) (x, 0), x ∈ T.

(2.5)

As before let
Lλ

k := − d2

dy2 + k2(1 − λV0(y) −W (y) − αδ0(y))

e a family of linear wave operators and set

Lλ
0,k := − d2

dy2 + k2(1 − λV0(y) −W (y))

o be the regular part of Lλ
k . We prove the following theorem:

heorem 2.10 (Existence of Traveling Wave for Distributional Γ ). Assume that Γ = γδ0, the potential V
s given by

V (λ, y) = λV0(y) +W (y) + αδ0(y),

nd

(L̃0) V0,W ∈ L∞(R) are even;
(L̃1) there exists an interval I ⊂ R such that for every fixed k ∈ N and λ ∈ I the operator Lk

0,λ : H2(R) ⊂
L2(R) → L2(R) satisfies 0 ∈ ρ(Lk );
0,λ

6
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(L̃2) there exist a wavenumber k∗ ∈ N, a value λ∗ ∈ R, and an open interval Iλ∗ ⊂ I ⊂ R containing λ∗
such that zero is an isolated simple eigenvalue of Lk∗

λ∗ and 0 ∈ ρ(Lk
λ) for any (k, λ) ∈ N × Iλ∗ with

(k, λ) ̸= (k∗, λ∗);
(L̃3) there exist C > 0 such that ∥ϕk(·;λ)∥L2(0,∞) ≤ C uniformly for λ ∈ Iλ∗ , k ∈ N, and where

ϕk ∈ H2(0,∞) satisfies1

Lλ
0,kϕk(y;λ) = 0 on (0,∞) with ϕk(0;λ) = 1.

If in addition V0 satisfies the transversality condition

⟨V0ϕ
∗, ϕ∗⟩L2(R) ̸= 0, (2.6)

where ϕ∗ spans the one-dimensional kernel of Lk∗
λ∗ , then there exists ε0 > 0 and a smooth curve through (0, λ∗)

{(Φ(ε), λ(ε)) | |ε| < ε0} ⊂ (H2(T;L2(R)) ∩H1(T;H1(R)) ∩ {Φ(·, 0) ∈ H2(T)}) × Iλ∗

of nontrivial solutions of (1.4) with

Φ(0) = 0, DεΦ(0)(x, y) = ϕ∗(y) sin(k∗x),

λ(0) = λ∗, λ̇(0) = 0, λ̈(0) = − 3γ
4
∫
R V0(y)(ϕ∗)2(y) dy

.

emark 2.11. The transversality condition (2.6) is trivially satisfied if V0 ≥ 0, ̸≡ 0 or V0 ≤ 0, ̸≡ 0.

emark 2.12. We can formulate (L̃2) entirely in terms of the ansatz-functions ϕk(·;λ) defined in (L̃3). To
his end notice that σess(Lk

0,λ) = σess(Lk
λ), cf. Lemma A.5. Since 0 ̸∈ σ(Lk

0,λ) by assumption (L̃1) it is clear
hat 0 ∈ σ(Lk

λ) is characterized by zero being an eigenvalue of Lk
λ. This, however, in combination with the

venness of V0,W , means that ϕk(|y|;λ) is up to scalar multiples the unique candidate for the eigenfunction
nd has to satisfy

2ϕ′
k(0+;λ) + k2α = 0.

ere 2ϕ′
k(0+;λ) is the jump of the first derivative of the even function ϕk(|y|;λ) at y = 0. Based on this

haracterization of zero belonging to the spectrum of Lλ
k we can replace (L̃2) by

(L̄2) there exists a wavenumber k∗ ∈ N, λ∗ > 0, and an open interval Iλ∗ ⊂ R+ containing λ∗ such that

2ϕ′
k(0+;λ) + k2α = 0

if and only if (k, λ) = (k∗, λ∗) for any k ∈ N and λ ∈ Iλ∗ .

In Section 6 we prove Theorem 2.10. Claiming periodicity in one spatial direction and evenness in the
transverse direction we make a Fourier ansatz of the form

Φ(x, y;λ) =
∑
k∈N

ak(λ)ϕk(|y|;λ) sin(kx), (2.7)

where ϕk are the decaying functions from assumption (L̃3). In particular, the ansatz (2.7) solves the linear
differential equation in (2.5) and thus reduces the problem of finding nontrivial solutions of (1.4) to the
following family of algebraic equations

2ak(λ)ϕ′
k(0+;λ) = −k2

(
αak(λ) − 1

4γ
(
a(λ) ∗ a(λ) ∗ a(λ)

)
k

)
for all k ∈ N. (2.8)

1 The existence and the properties of the functions ϕ are detailed in Remark 6.1.
k

7
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In the spirit of Section 4, we show that if conditions (L̃0)−(L̃3) are satisfied, then the nonlinear Eq. (2.8)
has a non-trivial solution (ak(λ))k∈Z with ak(λ) = −a−k(λ) and the decay property

(k2ak(λ))k ∈ l2(R);

thereby providing a solution of (1.4) in the form of (2.7). Here, l2(R) denotes the space of l2–summable
sequences in RZ. Condition (L̃1) guarantees the existence of the family of even ansatz-functions (ϕk)k∈N
with ϕk(0;λ) = 1. Condition (L̃2) assures that there exists k∗ ∈ N, λ∗ ∈ R and an interval Iλ∗ ⊂ R
including λ∗ such that the linearization of (2.8), given by the multiplication operator

Ak
λ := 2ϕ′

k(0+;λ) + k2α,

has a one-dimensional kernel if (k, λ) = (k∗, λ∗), that is Ak∗
λ∗ = 0; and Ak

λ ̸= 0 for all (k, λ) ∈ N × Iλ∗

with (k, λ) ̸= (k∗, λ∗). This is a necessary bifurcation condition. After we have proved Theorem 2.10, we
investigate the specific cases, when V is a potential of the form as in (P1) and (P2). The former being a
δ-potential on a constant background, while the latter is a δ-potential on the background of a step function.
In both cases the δ-potential part in V is essential, guaranteeing sufficient decay properties of the sequence
(ak(λ))k∈N. In particular, we prove the following corollaries:

Corollary 2.13 (Case P1, Distributional Γ ). Assume that Γ = γδ0 and V (λ, y) = λ + αδ0(y). If k∗ ∈ N
and λ∗ < 1 are given and α > 0 is determined from

α = 2
√

1 − λ∗

k∗
hen the assumptions in Theorem 2.10 are satisfied with

ϕ∗(y) = e−k∗
√

1−λ∗|y|

nd

Φ(0) = 0, DεΦ(0)(x, y) = e−k∗
√

1−λ∗|y| sin(k∗x),
λ(0) = λ∗, λ̇(0) = 0, λ̈(0) = −γk∗

√
1 − λ∗.

Moreover, the solutions Φ(ε) take the form

Φ(ε)(x, y) =
∑
k∈N

ak(ε)e−k
√

1−λ|y| sin(kx).

orollary 2.14 (Case P2, Distributional Γ ). Let Γ ∈ L∞(R) and V (λ, y) = λ1|y|≥b + β1|y|<b + αδ0(y).
Suppose furthermore that k∗ ∈ N and λ∗ < 1 are given. If

• (Case β > 1) b, α > 0 are determined from

b = π√
β − 1

, α = 2
√

1 − λ∗

k∗

• (Case β < 1) b > 0 is given and α > 0 is determined from

α = 2
√

1 − β

k∗ ·
√

1 − β sinh(k∗
√

1 − βb) +
√

1 − λ∗ cosh(k∗
√

1 − βb)√
1 − β cosh(k∗

√
1 − βb) +

√
1 − λ∗ sinh(k∗

√
1 − βb)

• (Case β = 1) b > 0 is given and α > 0 is determined from

α = 2
√

1 − λ∗

k∗(1 +
√

1 − λ∗k∗b)
hen in all three cases the assumptions in Theorem 2.10 are satisfied.

Remark 2.15. Details on the construction of ϕ∗ in Corollary 2.14, the functions ϕk and the form of the
solutions Φ(ε)(x, y) =

∑
a (ε)ϕ (y;λ) sin(kx) can be taken from Section 7.2.
k∈N k k

8
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3. Notation

If f and g are elements in an ordered Banach space with f, g ≥ 0, we write f ≲ g (f ≳ g) if there exists a
onstant c > 0 such that f ≤ cg (f ≥ cg). Moreover, the notation f ≂ g is used whenever f ≲ g and f ≳ g.
e write c = c(p1, p2, . . .) > 0 if we want to emphasize that the constant c > 0 depends on the parameters

1, p2, . . .. In Section 6 we are looking for solutions of an infinite dimensional system of nonlinear algebraic
quation. We consider solutions in the sequence spaces related to

l2(R) :=
{
a = (ak)k∈Z | ak ∈ R for all k ∈ Z and ∥a∥2

l2(R) :=
∑
k∈Z

|ak|2 < ∞

}
.

Eventually, for any r ∈ R we set

hr(R) :=
{
a ∈ l2(R) |

(
(1 + |k|)rak

)
k∈Z ∈ l2(R)

}
.

nd equip the space hr(R) with the norm

∥a∥2
hr(R) :=

∑
k∈Z

(1 + |k|)2r|ak|2.

e also consider the subspaces

l2♯ (R) := {a ∈ l2(R) : a−k = −ak for k ∈ Z},
hr

♯ (R) := hr(R) ∩ l2♯ (R).

hroughout the paper we use the notation ⟨·, ·⟩H to denote the dual pairing in the Hilbert space H. If
, g ∈ L2(U) are real-valued functions, where U ⊂ Rn is a domain in Rn, n ∈ N, then

⟨f, g⟩L2(U) :=
∫

U

f(z)g(z) dz

nd if a, b ∈ l2(R) then
⟨a, b⟩l2(R) :=

∑
k∈Z

akbk.

If L : D(L) ⊂ H → H is a linear operator with domain D(L), we denote by

ρ(L) := {λ ∈ C | λ− L : D(L) → H has a bounded inverse}

he resolvent set of L. The spectrum of L is given by C \ ρ(L). If L is self-adjoint, then σ(L) ⊂ R and the
pectrum of L can be decomposed as a disjoint union

σ(L) = σess(L) ∪ σd(L),

here σd is the discrete spectrum of L consisting of isolated eigenvalues of σ(L) of finite multiplicity and
ess(L) = σ(L) \ σd(L) is the essential spectrum.

. Existence of traveling waves for bounded potentials Γ

This section is devoted to the proof of Theorem 2.3. Subsequently, we affirm in Section 5 that the condi-
ions are fulfilled for special cases where V takes the form in (P1) or (P2), thereby proving Corollaries 2.5
nd 2.6. In the following we restrict ourself to solutions Φ of (1.4) having the form

Φ(x, y;λ) =
∑

ϕk(y;λ) sin(kx),

k∈N

9
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where the y-dependent Fourier coefficients ϕ := (ϕk)k∈N are decaying at infinity (suitable function spaces
re formulated later). Then, Φ is a solution of

− Φyy − (1 − λV0(y) − V1(y))Φxx + Γ (y)(Φ3)xx = 0 (4.1)

f and only if

−ϕ′′
k + k2(1 − λV0(y) − V1(y))ϕk + 1

4k
2Γ (y) (ϕ ∗ ϕ ∗ ϕ)k = 0 for all k ∈ N.

ote that − 1
4 (ϕ ∗ ϕ ∗ ϕ) is the kth Fourier coefficient of Φ3, cf. Lemma A.1. The Fourier ansatz with respect

to x decomposes the operator
Lλ := −∂2

y − (1 − λV0(y) − V1(y))∂2
x (4.2)

into the sequence of Schrödinger operators

Lk
λ := − d2

dy2 + k2(1 − λV0(y) − V1(y)).

ecall that we are working under the assumptions (L0)–(L3) from Theorem 2.3.

emark 4.1.

(i) Notice that a necessary condition for (L3) to hold is that the operator Lk
λ satisfies the spectral gap

property
(−ck2, ck2) ⊂ ρ(Lk

λ) for some constant c > 0

uniformly in λ ∈ Iλ∗ and k ∈ N sufficiently large.
ii) The domain of Lk

λ is a subset of H1(R), which is the domain of the quadratic form of Lk
λ. As a vector

space, it does not depend on λ. However, the graph norm on D(Lk
λ) is λ-dependent and the embedding

D(Lk
λ) ⊂ H1(R) is locally uniformly bounded with respect to λ.

The next lemma extends property (L3) to all values of k ∈ N by adding a projection to Lk
λ for k = k∗.

or this purpose let kerLk∗
λ∗ = span{ϕ∗} with ∥ϕ∗∥L2(R) = 1. Denote by P k∗ the projection mapping

P k∗ϕ := ⟨ϕ, ϕ∗⟩L2(R)ϕ
∗ for any ϕ ∈ L2(R)

nd define by L̃k
λ : D(Lk

λ) ⊂ L2(R) → L2(R) for k ∈ N and λ ∈ Iλ∗ the family of operators

L̃k
λ =

{
Lk∗

λ + P k∗ if k = k∗,

Lk
λ if k ̸= k∗.

(4.3)

emma 4.2. Let L̃k
λϕ = g for some g ∈ L2(R). Then, by possibly shrinking the interval Iλ∗ , we have that

∥ϕ∥L2(R) ≲
1
k2 ∥g∥L2(R) and ∥ϕ′∥L2(R) ≲

1
k

∥g∥L2(R) (4.4)

or all k ∈ N uniformly in λ ∈ Iλ∗ .

roof. By Theorem VIII.25 in [18] it follows that the map λ ↦→ Lk
λ is norm-resolvent continuous, that

s λ ↦→ (Lk
λ − i)−1 ∈ L(L2(R)) is continuous with respect to the operator norm. Let us verify that also

L̃k∗
λ is norm-resolvent convergent to L̃k∗

λ∗ as λ → λ∗. Note that Id +P k∗(Lk∗
λ∗ − i)−1 : L2(R) → L2(R)

s a compact perturbation of the identity, injective and hence bijective. Then, for λ close to λ∗, also
d +P k∗(Lk∗

λ − i)−1 : L2(R) → L2(R) is bijective. Note that we have the identity(
Lk∗ − i + P k∗

)−1
=
((

Id +P k∗(Lk∗ − i)−1
)

(Lk∗ − i)
)−1

.
λ λ λ

10
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From this we see that
(L̃k∗

λ − i)−1 = (Lk∗
λ − i)−1

(
Id +P k∗(Lk∗

λ − i)−1
)−1

.

Using the assumption that Lk∗
λ converges to Lk∗

λ∗ in the norm resolvent sense, this implies the claim.
Next we show that 0 ∈ ρ(L̃k∗

λ∗). Since adding a (compact) projection operator only changes the discrete
spectrum, we may assume by (L2) for contradiction that 0 is an eigenvalue of L̃k∗

λ∗ , that is Lk∗
λ∗ϕ+P k∗ϕ = 0.

Testing with ϕ∗, which spans the kernel of Lk∗
λ∗ , we get ⟨ϕ, ϕ∗⟩L2(R) = 0 and hence P k∗ϕ = 0. Thus, ϕ also

belongs to the kernel of Lk∗
λ∗ , which contradicts ⟨ϕ, ϕ∗⟩L2(R) = 0 and the simplicity of the 0-eigenvalue of

Lk∗
λ∗ .
Finally, by (L3) we know that there exists k0 ∈ N (we assume w.l.o.g. k0 ≥ k∗) such that (4.4) holds for
> k0 ≥ k∗. This implies that

inf
k>k0

inf
|λ−λ∗|<δ

dist(0, σ(L̃k
λ)) > 0. (4.5)

ow we want to extend this inequality to the remaining values of k ∈ {1, . . . , k0} by possibly diminishing
. Thus, let k ∈ N with 1 ≤ k ≤ k0 and assume for contradiction the existence of a sequence λn → λ∗ as
→ ∞ such that there exists µn ∈ σ(L̃k

λn
) with limn→∞ µn = 0. By norm-resolvent convergence this implies

∈ σ(L̃k
λ∗), which is impossible for k ̸= k∗ by (L2) and also impossible for k = k∗ as stated above. This

ontradiction establishes (4.5) for all k ∈ N. Finally, (4.5) shows that the map λ ↦→ ∥(L̃k
λ)−1∥L2(R)→L2(R) is

ounded for λ ∈ (λ∗ − δ, λ∗ + δ) uniformly for k ∈ N. The same holds for λ ↦→ ∥(L̃k
λ)−1∥L2(R)→D(Lk

λ
), and

ue to (ii) in Remark 4.1, also for λ ↦→ ∥(L̃k
λ)−1∥L2(R)→H1(R). This establishes (4.4) for all k ∈ N. □

Now, we introduce suitable function spaces and use Lemma 4.2 to reformulate the nonlinear problem (4.1)
n a setting, which makes the local bifurcation theorem due to Crandall–Rabinowitz [5] applicable. Set

X :=
{
Φ ∈ H2(T;L2(R)) ∩H1(T;H1(R)) | Φ(x, y) =

∑
k∈N

ϕk(y) sin(kx)
}

nd

Y :=
{
Φ ∈ L2(T;L2(R)) | Φ(x, y) =

∑
k∈N

ϕk(y) sin(kx)
}
.

oreover, we set
L̃λ := Lλ + P ∗,

here P ∗ denotes the L2-orthogonal projection onto kerLλ∗ = span{Φ∗} with Φ∗(x, y) = 1√
π
ϕ∗(y) sin(k∗x).

Recall, that the operator Lλ is defined in (4.2). As an immediate consequence of (L0)–(L3), we obtain the
ollowing lemma.

emma 4.3. Assume that (L0)–(L3) holds true and let λ ∈ Iλ∗ . There exists a bounded linear map
L̃−1

λ : Y → X with the following property: if f ∈ Y is given and the function Φ ∈ X solves

Φ = L̃−1
λ (f + P ∗Φ) (4.6)

then Φ solves
LλΦ = f

in the weak sense, that is∫
T

∫
R
ΦyΨy − (1 − λV0(y))ΦxxΨ dy dx−

∫
T
⟨V1(·)Φx(x, ·),Ψx(x, ·)⟩ dx =

∫
T

∫
R
fΨ dy dx
for any Ψ ∈ X.
11
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Proof. Let λ ∈ Iλ∗ . For g ∈ Y the definition of Φ := L̃−1
λ g is given by

Φ(x, y) =
∑
k∈N

ϕk(y) sin(kx) with ϕk = (L̃k
λ)−1gk.

Then Lemma 4.2 implies that Φ ∈ X and that L̃−1
λ : Y → X is bounded. Now suppose that Φ ∈ X solves

(4.6). Then ϕk = (L̃k
λ)−1(fk + P k∗ϕk) so that ϕk ∈ D(L̃k

λ) = D(Lk
λ) for all k ∈ N. In particular, we know

that
Lk

λϕk = fk for all k ∈ N

and thus for K0 ∈ N and ψ1, . . . , ψK0 ∈ H1(R) we have

K0∑
k=1

(∫
R
ϕ′

kψ
′
k + k2(1 − λV0(y)) dy − ⟨V1ϕk, ψk⟩

)
=

K0∑
k=1

∫
R
fkψk dy.

Taking the limit K0 → ∞ in the previous equation will lead to∫
T

∫
R
ΦyΨy − (1 − λV0(y))ΦxxΨ dy dx−

∫
T
⟨V1(·)Φx(x, ·),Ψx(x, ·)⟩ dx =

∫
T

∫
R
fΨ dy dx

for any Ψ ∈ X due to the following estimates:∫
T

∫
R

|ΦyΨy| dy dx ≤
∑
k∈N

∥ϕ′
k∥L2(R)∥ψ′

k∥L2(R) ≤ ∥Φ∥L2(T;H1(R))∥Ψ∥L2(T;H1(R)),∫
T

∫
R

|V0(y)ΦxxΨ | dy dx ≤
∑
k∈N

∥V0∥L∞(R)k
2∥ϕk∥L2(R)∥ψk∥L2(R)

≤ ∥V0∥L∞(R)∥Φ∥H2(T,;2(R))∥Ψ∥L2(T;L2(R)),∫
T

|⟨V1(·)Φx(x, ·),Ψx(x, ·)⟩| dx ≤
∑
k∈N

∥V1∥H1→H−1∥kϕk∥H1(R)∥kψk∥H1(R)

≤ ∥V1∥H1→H−1∥Φ∥H1(T;H1(R))∥Ψ∥H1(T;H1(R)),∫
T

∫
R

|fΨ | dy dx ≤
∑
k∈N

∥fk∥L2(R)∥ψk∥L2(R) ≤ ∥f∥L2(T;L2(R))∥Ψ∥L2(T;L2(R)). □

Equipped with the above lemma, we use the invertibility of L̃λ to reformulate (4.1) as

F (Φ, λ) = 0, (4.7)

where F : X × Iλ∗ → X is given by

F (Φ, λ) = Φ + L̃−1
λ

(
Γ (y)(Φ3)xx − P ∗Φ

)
.

We want to apply bifurcation theory to Eq. (4.7). Clearly, F (0, λ) = 0 for any λ ∈ Iλ∗ and the line
{(0, λ) | λ ∈ Iλ∗} constitutes the line of trivial solutions from which we aim to bifurcate at λ = λ∗. The
following lemma collects the necessary properties of the map F .

Lemma 4.4. The map F : X × Iλ∗ → X is a C∞-map. Moreover the following holds:

(i) The linearization of F about Φ = 0, given by

DΦF (0, λ) = Id −L̃−1
λ P ∗ : X → X

is a Fredholm operator of index zero. In particular DΦF (0, λ∗) = Id −P ∗. The kernel of DΦF (0, λ) is
∗
trivial for λ ∈ Iλ∗ \ {λ∗} and it is given by span{Φ } if λ = λ∗.

12
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ii) The mixed second derivative of F about Φ = 0 is given by

D2
Φ,λF (0, λ) = L̃−1

λ V0∂
2
xL̃

−1
λ P ∗ : X → X.

Proof. Let us first verify the mapping properties of F by checking that (Φ3)xx ∈ Y for Φ ∈ X. First note
that Φ ∈ X implies

∥Φ∥∞ = sup
x∈R,y∈T

⏐⏐⏐∑
k∈N

ϕk(y) sin(kx)
⏐⏐⏐ ≤

∑
k∈N

∥ϕk∥L∞(R) ≤
∑
k∈N

∥ϕk∥H1(R)

≤
(∑

k∈N

1
k2

) 1
2
(∑

k∈N
k2∥ϕk∥2

H1(R)

) 1
2
≲ ∥Φ∥H1(T,H1(R))

(4.8)

nd, using | cos(kx)| ≤ 1,(∫
T

∫
R

|Φx|4 dy dx
)1/4

≤
∑
k∈N

∥kϕk∥L4(T×R) = 4√2π
∑
k∈N

|k|∥ϕk∥L4(R) ≲
∑
k∈N

|k|∥ϕ′
k∥

1
4
L2(R)∥ϕk∥

3
4
L2(R),

y the Gagliardo–Nirenberg inequality, cf. [10]. Using a triple Hölder inequality we obtain that(∫
T

∫
R

|Φx|4 dy dx
) 1

4 ≤ C
(∑

k∈N
k2∥ϕ′

k∥2
L2(R)

) 1
8
(∑

k∈N
k4∥ϕk∥2

L2

) 3
8
(∑

k∈N
k−3/2

) 1
2

≲ ∥Φ∥
1
4
H1(T;H1(R))∥Φ∥

3
4
H2(T;L2(R)).

(4.9)

ence, for Φ ∈ X we have (Φ3)xx = 3Φ2Φxx + 6ΦΦ2
x ∈ L2(T;L2(R)) ⊂ Y and thus the mapping properties

f F are proved.
The differentiability properties of F with respect to Φ also follow in a similar way from Φ ∈ L∞(T × R)

nd Φx ∈ L4(T × R). This can be seen as follows: the (formal) first/second derivatives of F with respect to
are linear/bilinear operators and contain terms of the form abcxx or abxcx where a, b, c ∈ X. Based on

he estimates ∫
T

∫
R

|abxcx|2 dy dx ≤ ∥a∥2
∞∥bx∥2

L4(T×R)∥cx∥2
L4(T×R),∫

T

∫
R

|abcxx|2 dy dx ≤ ∥a∥2
∞∥b∥2

∞∥cxx∥2
L2(T×R)

e find in view of (4.8) and (4.9) that the first/second derivatives of F with respect to Φ exist, are bounded
inear/bilinear operators from X to Y , and depend continuously on Φ and λ. Due to the cubic nature of the
onlinearity, derivatives of F of order higher than two with respect to Φ are independent of Φ.

The differentiability properties of F with respect to λ follow from
d

dλ
L̃−1

λ = −L̃−1
λ

d

dλ
L̃λL̃

−1
λ = −L̃−1

λ V0∂
2
xL̃

−1
λ (4.10)

and due to L̃−1
λ : Y → X and V0∂

2
x : X → Y , we see that the resulting operator on the right-hand side of

(4.10) is indeed a bounded linear map from Y → X. Moreover, (4.10) explains the formula for D2
Φ,λF (0, λ)

n (ii).
Finally, the formula in (i) shows that DΦF (0, λ) is a compact perturbation of the identity, and hence

redholm of index zero. Let us compute the kernel of DΦF (0, λ). If Ψ ∈ X satisfies DΦF (0, λ)Ψ = 0
hen according to Lemma 4.3 we have that Ψ is a weak solution of LλΨ = 0. Then, for λ ̸= λ∗ we
ave ψk = 0 for all k ∈ N and hence Ψ = 0. For λ = λ∗ we have ψk = 0 for all k ∈ N \ {k∗} and
k∗ ∈ span{ϕ∗} so that Ψ ∈ span{Φ∗} as claimed. Notice finally that DΦF (0, λ∗) = Id −L̃−1

λ∗ P
∗ = Id −P ∗

ince rangeP ∗ = span{Φ∗} is the eigenspace of L̃λ∗ corresponding to the eigenvalue 1. This finishes the

roof. □

13
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Remark 4.5. Let us briefly describe the difficulty that arises when one considers the bifurcation problem
or V (λ, y) = λV (y) with V = V0 + V1, i.e., when multiplication with the bifurcation parameter is extended
o the distributional potential V1. In this case one already obtains a problem in verifying the C1-property
f the map F . Formally one finds

DλF (Φ, λ) = −L̃−1
λ V ∂2

xL̃
−1
λ (Γ (y)(Φ3)xx − P ∗Φ).

As above, we would expect to have L̃−1
λ V ∂2

xL̃
−1
λ : Y → X as a bounded linear map. But this is not the case,

as a calculation in the case where V0(y) ≡ 1 and V1(y) = αδ0(y) shows. Namely, let A = L̃−1
λ : Y → X and

B = V ∂2
x. Then B : X → H−1(T;H−1(R)) and C = L̃−1

λ : range(B) → H3/2(T;L2(R)) ∩H1/2(T;H1(R)) ̸⊂
X, i.e., we are missing a half-derivative in the regularity gain.

The advantage of formulating the problem (4.1) as F (Φ, λ) = 0 relies on the fact that its linearization
about Φ = 0 is of the form identity plus compact operator, which provides the Fredholm property for free.
Applying the Crandall–Rabinowitz theorem (cf. e.g. [5] or [11, Theorem I.5.1]), we prove that assumption
(L0)–(L3) on the family of Schrödinger operators Lk

λ are sufficient to guarantee the existence of nontrivial
small-amplitude solutions of (4.1) provided a certain transversality condition is satisfied, which we can
formulate in terms of the potential V0, see (2.2).

Proof of Theorem 2.3. Recall from Lemma 4.4 that DΦF (0, λ∗) = Id −P ∗ : X → X. More-
over, DΦF (0, λ∗) is a Fredholm operator of index zero with a one-dimensional kernel spanned by Φ∗.
Correspondingly, we can split the underlying space as follows:

X = span{Φ∗} ⊕ span{Φ∗}⊥
L2 = ker(DΦF (0, λ∗)) ⊕ range(DΦF (0, λ∗)).

Hence, according to the Crandall–Rabinowitz theorem, the existence of a local bifurcation branch of
nontrivial solutions of (1.4) follows provided that the transversality condition

D2
ΦλF (0, λ∗)Φ∗ /∈ rangeDΦF (0, λ∗) = span{Φ∗}⊥

L2

s satisfied. In view of L̃−1
λ∗ Φ

∗ = Φ∗ and the symmetry of L̃−1
λ∗ (which follows from the self-adjointness of

k
λ∗ , L̃

k
λ∗) the transversality condition holds since

⟨D2
ΦλF (0, λ∗)Φ∗,Φ∗⟩L2(T×R) = ⟨L̃−1

λ∗ V0Φ
∗
xx,Φ

∗⟩L2(T×R) = ⟨V0Φ
∗
xx,Φ

∗⟩L2(T×R) = −πk2⟨V0ϕ
∗
x, ϕ

∗
x⟩L2(R) ̸= 0

ue to assumption (2.2) of the theorem. This finishes the proof of Theorem 2.3.

Now, we are going to state the bifurcation formulas with the help of the Lyapunov–Schmidt reduction
cf. [11, Theorem I.2.3]). The Lyapunov–Schmidt reduction theorem in our context reads as follows:

heorem 4.6 (Lyapunov–Schmidt Reduction, [11], Theorem I.2.3). Let F : X × I → X be a C∞-map
and X = N ⊕ N⊥

L2 with N = span{Φ∗} = kerDΦF (0, λ∗) and λ∗ ∈ I. There exists a neighborhood
O × I ′ ⊂ {(Φ, λ) ∈ X × R+} of the bifurcation point (0, λ∗) such that the problem

F (Φ, λ) = 0 for (Φ, λ) ∈ O × I ′

is equivalent to the finite-dimensional problem

η(εΦ∗, λ) := P ∗F (εΦ∗ + ψ(εΦ∗, λ), λ) = 0 (4.11)

14
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for functions η ∈ C∞(ON × I ′;N), ψ ∈ C∞(ON × I ′;N⊥
L2 ) where ON ⊂ N is an open neighborhood of the

zero element in N . One has that

η(0, λ∗) = ψ(0, λ∗) = DΦψ(0, λ∗) = 0

and solving (4.11) provides a solution
Φ = εΦ∗ + ψ(εΦ∗, λ)

of the infinite-dimensional problem F (Φ, λ) = 0.

We have the following Fréchet derivatives:

DΦF (Φ, λ)Φ∗ = Φ∗ + L̃−1
λ

(
Γ (y)3(Φ2Φ∗)xx − P ∗Φ∗) ,

D2
ΦΦF (Φ, λ)[Φ∗,Φ∗] = L̃−1

λ

(
Γ (y)6Φ(Φ∗)2)

xx
,

D3
ΦΦΦF (Φ, λ)[Φ∗,Φ∗,Φ∗] = L̃−1

λ

(
Γ (y)6(Φ∗)3)

xx
.

According to [11, Section I.6], we have that

λ̇(0) = −1
2

⟨D2
ΦΦF (0, λ∗)[Φ∗,Φ∗],Φ∗⟩L2(T×R)

⟨D2
ΦλF (0, λ∗)Φ∗,Φ∗⟩L2(T×R)

.

n view of F being cubic in Φ it is clear that λ̇(0) = 0. In this case the second derivative is given by

λ̈(0) = −1
3

⟨D3
ΦΦΦη(0, λ∗)[Φ∗,Φ∗,Φ∗],Φ∗⟩L2(T×R)

⟨D2
ΦλF (0, λ∗)Φ∗,Φ∗⟩L2(T×R)

. (4.12)

roposition 4.7. Let {(Φ(ε), λ(ε)) | |ε| < ε0} ⊂ X×Iλ∗ be the local bifurcation curve found in Theorem 2.3
orresponding to the bifurcation point (0, λ∗). Then

λ̇(0) = 0 and λ̈(0) = −3π
2

∫
R Γ (y)(ϕ∗)4(y) dy∫
R V0(y)(ϕ∗)2(y) dy

.

roof. As already mentioned, the cubic nonlinearity of F implies already that λ̇(0) = 0. We are left to
ompute the second derivative of λ at the origin. According to the formula in (4.12) we need to compute
he third derivative of η with respect to Φ evaluated at (0, λ∗). As for instance in [11, Eq. (I.6.5)] we obtain
hat

D3
ΦΦΦη(0, λ∗)[Φ∗,Φ∗,Φ∗] = P ∗D3

ΦΦΦF (0, λ∗)[Φ∗,Φ∗,Φ∗] + 3P ∗D2
ΦΦF (0, λ∗)[Φ∗, D2

ΦΦψ(0, λ∗)[Φ∗,Φ∗]].

gain, since F is cubic in Φ, we have that D2
ΦΦF (0, λ∗) = 0, whence

λ̈(0) = −1
3

⟨P ∗D3
ΦΦΦF (0, λ∗)[Φ∗,Φ∗,Φ∗],Φ∗⟩L2(T×R)

⟨D2
ΦλF (0, λ∗)Φ∗,Φ∗⟩L2(T×R)

= −1
3

⟨D3
ΦΦΦF (0, λ∗)[Φ∗,Φ∗,Φ∗],Φ∗⟩L2(T×R)

⟨D2
ΦλF (0, λ∗)Φ∗,Φ∗⟩L2(T×R)

.

e have that

⟨D3
ΦΦΦF (0, λ∗)[Φ∗,Φ∗,Φ∗],Φ∗⟩L2(T×R) = ⟨L̃−1

λ∗

(
Γ (y)6(Φ∗)3)

xx
,Φ∗⟩L2(T×R).

Using the symmetry of L̃λ∗ together with L̃−1
λ∗ Φ

∗ = Φ∗, we obtain that

⟨D3
ΦΦΦF (0, λ∗)[Φ∗,Φ∗,Φ∗],Φ∗⟩L2(T×R) = 6⟨Γ (y)

(
(Φ∗)3)

xx
,Φ∗⟩L2(T×R) = −9

πk2
∗

∫
Γ (y)(ϕ∗)4(y) dy
2 R

15
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and we know already that the denominator in λ̈(0) is given by

⟨D2
ΦλF (0, λ∗)Φ∗,Φ∗⟩L2(T×R) = ⟨V0(y)Φ∗

xx,Φ
∗⟩L2(T×R) = −πk2

∗

∫
R
V0(y)(ϕ∗)2(y) dy.

Summarizing, we conclude that

λ̈(0) = −3
2

∫
R Γ (y)(ϕ∗)4(y) dy∫
R V0(y)(ϕ∗)2(y) dy

. □

. Examples for regular Γ

In what follows, we consider specific examples of potentials V and prove Corollaries 2.5 and 2.6, which
tate the existence of traveling waves of (1.4) in the specific case when the potentials are given as in
P1), (P2), respectively. Both Corollaries 2.5 and 2.6 are immediate consequences of Theorem 2.3 and
roposition 4.7, provided conditions (L0) − (L3) are satisfied.
Recall that V (λ, y) = λV0(y) + V1(y) where in case (P1) we have V0(y) = 1, V1(y) = αδ0(y) and in

case (P2) we have V0(y) = 1|y|≥b, V1(y) = β1|y|<b + αδ0(y). The transversality condition (2.2) is trivially
atisfied, since in both cases V0 ≥ 0 and ̸≡ 0. It is also clear that (L0) holds true. The beginning of this

section will be valid both for (P1) and (P2) since at the general level we may consider (P1) as a special case
of (P2) with β = λ. In the subsequent subsections the considerations will split according to the two cases.

Let us consider the operator

Lk
λ := − d2

dy2 + k2(1 − λ1|y|≥b − β1|y|<b − αδ0(y))

with λ, β < 1. According to [4] the operator Lk
λ : D(Lk

λ) ⊂ L2(R) → L2(R) is self-adjoint on the domain

D(Lk
λ) = {ϕ ∈ H1(R) | ϕ ∈ H2(−∞, 0) ∩H2(0,∞), ϕ′(0+) − ϕ′(0−) = −k2αϕ(0)};

hereby (L1) is fulfilled. Moreover, σess(Lk) = [k2(1−λ),∞) according to Lemma A.5. Next we consider the
oint spectrum of Lk, i.e., the eigenvalue problem of finding ϕ ∈ D(Lk

λ) with Lk
λϕ = k2µϕ where µ̃ = k2µ is

he actual eigenvalue. Setting λ̃ = λ+ µ and β̃ = β + µ the eigenvalue problem then reduces to{
−ϕ′′ + k2(1 − λ̃1|y|≥b − β̃1|y|<b)ϕ = 0, y ∈ (−∞, 0) ∪ (0,∞),

ϕ′(0+) − ϕ′(0−) + k2αϕ(0) = 0.
(5.1)

or reasons that will become obvious in the subsequent discussion we suppose µ to be so small that λ̃, β̃ < 1.
n Lemma A.6 in the Appendix we show that this problem is solvable (with a one-dimensional eigenspace)
f and only if

kα

2
√

1 − β̃
=
√

1 − β̃ sinh(k
√

1 − β̃b) +
√

1 − λ̃ cosh(k
√

1 − β̃b)√
1 − β̃ cosh(k

√
1 − β̃b) +

√
1 − λ̃ sinh(k

√
1 − β̃b)

. (5.2)

ow we will split the discussion into subsections according to the cases (P1) and (P2), verifying (L2) and
L3) separately.

.1. (P1) V a δ-potential on a constant background

Here we take V0 = 1 and V1 = αδ0 and V (λ, y) = λ + αδ0(y) with α > 0 and λ < 1. In the
ubsequent results of Lemma 5.1, Lemma 5.2 we verify that the family of linear operators Lk

λ satisfies also
he assumptions (L2) and (L3) in Theorem 2.3. Since (P1) is a special case of (P2) with λ = β we see that
he eigenvalue condition (5.2) becomes

kα

2
√

1 − λ̃
= 1. (5.3)

his leads to the following lemma.

16
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Lemma 5.1. Let us fix a wavenumber k∗ ∈ N and let λ∗ < 1. We determine α > 0 such that

α = 2
√

1 − λ∗

k∗
. (5.4)

hen there exists an open interval Iλ∗ ⊂ R containing λ∗ such that

dim kerLk∗
λ∗ = 1,

and kerLk
λ = {0} for any (k, λ) ∈ N × Iλ∗ with (k, λ) ̸= (k∗, λ∗).

roof. Since we are considering the zero-eigenvalue of Lk
λ we have µ = 0 and λ̃ = λ. Together with our

choice of α the eigenvalue condition (5.3) becomes

k

k∗
=

√
1 − λ√
1 − λ∗

.

Recall that k ∈ N is integer valued. Therefore, choosing a sufficiently small interval Iλ∗ ⊂ (−∞, 1) that
contains λ∗ the eigenvalue condition is satisfied for λ ∈ Iλ∗ and k ∈ N if and only if λ = λ∗ and k = k∗.
Moreover, for k = k∗ and λ = λ∗ the eigenspace is one-dimensional. □

It is clear that the kernel of Lk∗
λ∗ is spanned by the L2(R)-unitary element

ϕ∗(y) :=
√
k∗
√

1 − λ∗e
−k∗

√
1−λ∗|y|

ince Lk∗
λ∗ϕ

∗ = 0 in R\{0} and it satisfies ϕ∗′(0+) −ϕ∗′(0−)+αk2
∗ϕ

∗(0) = 0. The above lemma ensures that
ssumption (L2) is satisfied. The following lemma concerns the spectral properties of Lk

λ and shows that
ssumption (L3) holds true.

emma 5.2. There exists an open interval Iλ∗ ⊂ R containing λ∗ such that the following holds for all
≥ 3k∗ and all λ ∈ Iλ∗ : if Lk

λϕ = f for some f ∈ L2(R), then

∥ϕ∥L2(R) ≲
1
k2 ∥f∥L2(R) and ∥ϕ′∥L2(R) ≲

1
k

∥f∥L2(R).

In particular, there exists a constant c = c(k∗, |Iλ∗ |) > 0, depending on k∗ and the size of the interval Iλ∗ ,
such that

(−ck2, ck2) ⊂ ρ(Lk
λ) for every k ≥ 3k∗, λ ∈ Iλ∗ .

Proof. We show that for any λ < 1 we have

∥Lk
λϕ∥2

L2(R) ≥1
2

(
∥ϕ′′∥2

L2(−∞,0) + ∥ϕ′′∥2
L2(0,∞)

)
+ 2(1 − λ)

(
k2 − 4k2

∗ − 16(λ∗ − λ)
α2

)
∥ϕ′∥2

L2(R) +
(
k2

∗α
2

4 + λ∗ − λ

)2

k4∥ϕ∥2
L2(R),

which proves the assertion. We have that

∥Lk
λϕ∥2

L2(R) =
∫ 0

−∞
(Lk

λϕ)2 dy +
∫ ∞

0
(Lk

λϕ)2 dy.
17
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For the first integral on the right hand side, we compute∫ 0

−∞
(Lk

λϕ)2 dy =
∫ 0

−∞
(−ϕ′′ + k2(1 − λ)ϕ)2 dy

=
∫ 0

−∞
|ϕ′′|2 − 2k2(1 − λ)ϕ′′ϕ+ k4(1 − λ)2ϕ2 dy

= ∥ϕ′′∥2
L2(−∞,0) + 2k2(1 − λ)∥ϕ′∥2

L2(−∞,0) + k4(1 − λ)2∥ϕ∥2
L2(−∞,0) − 2k2(1 − λ)ϕ′(0−)ϕ(0),

where we used integration by parts. Similarly, we obtain that∫ ∞

0
(Lk

λϕ)2 dy = ∥ϕ′′∥2
L2(0,∞) + 2k2(1 − λ)∥ϕ′∥2

L2(0,∞) + k4(1 − λ)2∥ϕ∥2
L2(0,∞) + 2k2(1 − λ)ϕ′(0+)ϕ(0).

Taking the sum of the two integrals and using for ϕ ∈ D(Lk
λ) that

ϕ′(0+) − ϕ′(0−) = −k2αϕ(0)

we find that

∥Lk
λϕ∥2

L2(R) =∥ϕ′′∥2
L2(−∞,0) + ∥ϕ′′∥2

L2(0,∞) + 2k2(1 − λ)∥ϕ′∥2
L2(R) + k4(1 − λ)2∥ϕ∥2

L2(R)

− 2
α

(1 − λ) (ϕ′(0+) − ϕ′(0−))2
.

(5.5)

simple computation together with Young’s inequality implies that

|ϕ′(0+)|2 ≤ 2
∫ ∞

0
|ϕ′ϕ′′| dy ≤

(
ε∥ϕ′∥2

L2(0,∞) + 1
ε

∥ϕ′′∥2
L2(0,∞)

)
or any ε > 0. A similar estimate holds for |ϕ′(0−)|2. Therefore

|ϕ′(0+) − ϕ′(0−)|2 ≤ 2
(

|ϕ′(0+)|2 + |ϕ′(0−)|2
)

≤ 2
(
ε∥ϕ′∥2

L2(R) + 1
ε

∥ϕ′′∥2
L2((−∞,0)) + 1

ε
∥ϕ′′∥2

L2((0,∞))

)
.

nserting the latter into (5.5) yields

∥Lk
λϕ∥2

L2(R) ≥
(

1 − 4(1 − λ)
αε

)
(∥ϕ′′∥2

L2(−∞,0) + ∥ϕ′′∥2
L2(0,∞))

+ 2(1 − λ)(k2 − 2ε
α

)∥ϕ′∥2
L2(R) + k4(1 − λ)2∥ϕ∥2

L2(R).

The choice ε = 8
α (1 − λ) = 2αk2

∗ + 8(λ∗−λ)
α implies the claim. □

Collecting Lemmas 5.1 and 5.2, we infer that there exists an open interval Iλ∗ ⊂ R+ containing λ∗ such
that conditions (L0)–(L3) are satisfied, which concludes the proof of Corollary 2.5. The formulas for λ̇(0)
and λ̈(0) follow directly from Proposition 4.7.

5.2. (P2) V a δ-potential on a step background

Here we take V0(y) = 1|y|≥b, V1(y) = β1|y|<b + αδ0(y) and V (λ, y) = λ1|y|≥b + β1|y|<b + αδ0(y) with
> 0, β, λ < 1. The subsequent two results verify that the family of linear operators Lk

λ satisfies also the
ssumptions (L2) and (L3) in Theorem 2.3. They are the counterparts to Lemmas 5.1 and 5.2.
18
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Lemma 5.3. Let us fix a wavenumber k∗ ∈ N and let λ∗ < 1. We determine α > 0 such that

k∗α

2
√

1 − β
=

√
1 − β sinh(k∗

√
1 − βb) +

√
1 − λ∗ cosh(k∗

√
1 − βb)√

1 − β cosh(k∗
√

1 − βb) +
√

1 − λ∗ sinh(k∗
√

1 − βb)
. (5.6)

Then there exists an open interval Iλ∗ ⊂ R containing λ∗ such that

dim kerLk∗
λ∗ = 1,

and kerLk
λ = {0} for any (k, λ) ∈ N × Iλ∗ with (k, λ) ̸= (k∗, λ∗).

Proof. As before we are considering the zero-eigenvalue of Lk
λ. Hence we have µ = 0 and λ̃ = λ, β̃ = β.

Then (5.6) amounts to Lk∗
λ∗ having a simple zero eigenvalue, cf. Lemma A.6. It remains to show that for no

other value of λ ∈ Iλ∗ and k ∈ N there is a zero eigenvalue of Lk
λ. First note that for λ in a bounded interval

of (−∞, 1) there are only finitely many values of k ∈ {1, . . . ,K} which potentially also fulfill (5.6) since the
right-hand side is bounded in k and the left-hand side tends to infinity as k → ∞. Now we observe (by a
standard calculation) that for fixed λ = λ∗, the right-hand side of (5.6) divided by k is monotone decreasing
in k. Hence, for given λ∗ no other value of k ∈ {1, . . . ,K} than k∗ fulfills (5.6). Finally, since k ∈ {1, . . . ,K}
needs to be integer valued, we can find a sufficiently small open interval Iλ∗ ⊂ (−∞, 1) containing λ∗ such
that (5.6) is fulfilled for (λ, k) ∈ Iλ∗ × N if and only if (λ, k) = (λ∗, k∗). □

Lemma 5.4. There exists an open interval Iλ∗ ⊂ R containing λ∗ such that the following holds for all
sufficiently large k ∈ N and all λ ∈ Iλ∗ : if Lk

λϕ = f for some f ∈ L2(R), then

∥ϕ∥L2(R) ≲
1
k2 ∥f∥L2(R) and ∥ϕ′∥L2(R) ≲

1
k

∥f∥L2(R). (5.7)

In particular, there exists a constant c = c(k∗, |Iλ∗ |) > 0, depending on k∗ and the size of the interval Iλ∗ ,
such that

(−ck2, ck2) ⊂ ρ(Lk
λ) for every k sufficiently large, λ ∈ Iλ∗ .

Proof. The proof consists of two parts. First we determine an interval (−ck2, ck2) ⊂ ρ(Lk
λ) for all λ ∈ Iλ∗

and all sufficiently large k. This implies the first part of the estimate in (5.7). In the second part of the proof
we will show the remaining part of (5.7).

Part 1: Recall that σess(Lk
λ) = [k2(1 − λ),∞), which is consistent with the desired result provided we

choose Iλ∗ in such a way that it has a positive distance from 1. Subject to this observation we take the
bounded interval Iλ∗ from Lemma 5.3 and diminish it in the following if necessary. Notice that (5.2) describes
ll eigenvalues of Lk

λ of the form µ̃ = k2µ, where µ is so small that supλ∈Iλ∗
{λ̃ = λ+µ} < 1 and β̃ = β+µ < 1.

ow observe that uniformly for λ ∈ Iλ∗ and µ ∈ [−µ0, µ0] for small µ0 > 0 the left-hand side of (5.2) tends
o ∞ as k → ∞ whereas the right-hand side stays bounded in k. Therefore the set [−µ0k

2, µ0k
2] belongs to

he resolvent of Lk
λ for all λ ∈ Iλ∗ and all sufficiently large k.

Part 2: We need to distinguish the operator Lk
λ = − d2

dy2 +k2(1−λ−αδ0) of case (P1) from its counterpart
n (P2). Within this part of the proof let us denote it by Lk

λ,β = − d2

dy2 + k2(1 − λ1|y|≥b − β1|y|<b − αδ0).
Using Part 1 we find

∥(Lk
λ,β)−1∥L2→L2 ≤ 1

dist(0, σ(Lk
λ,β))

≲
1
k2 .

herefore, with f ∈ L2(R) and ϕ as in the hypothesis of the lemma, we get ∥ϕ∥L2(R) ≲ 1
k2 ∥f∥L2(R). The

estimate for ∥ϕ′∥L2(R) is obtained as follows. We have

Lk ϕ = Lkϕ+ k2(−β + λ)1 ϕ = f
λ,β λ |y|<b

19
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from which we deduce by using ∥(Lk
λ)−1∥L2→H1 ≲ 1

k for k ≫ 1 from Lemma 5.2

∥ϕ′∥L2(R) ≤ ∥(Lk
λ)−1∥L2→H1∥f − k2(−β + λ)1|y|<bϕ∥L2(R) ≲

1
k

(∥f∥L2(R) + k2∥ϕ∥L2(R)) ≲
1
k

∥f∥L2(R)

here in the last step we have used the result from Part 1. The finishes the proof of the lemma. □

Due to Lemmas 5.3 and 5.4 conditions (L0)–(L3) are satisfied. This concludes the proof of Corollary 2.6.

. Existence of traveling waves when Γ is a delta potential

Subject of this section is the proof of Theorem 2.10 when Γ = γδ0 is given by a multiple of a delta
otential and

V (λ, y) = λV0(y) +W (y) + αδ0(y)  
=V1(y)

,

here V0,W ∈ L∞(R) are even. The equation for traveling wave solutions (1.4) is then given by

− Φyy − (1 − λV0(y) −W (y) − αδ0(y))Φxx + γδ0(y)
(
Φ3)

xx
= 0 (6.1)

nd can be written as a linear partial differential equation on T×R\{0} equipped with a nonlinear boundary
ondition on T:

−Φyy − (1 − λV0 −W (y))Φxx = 0, (x, y) ∈ T × R \ {0}, (6.2)
Φy(x, 0+) − Φy(x, 0−) = ∂2

x

(
αΦ + γΦ3) (x, 0), x ∈ T. (6.3)

In what follows let us assume that Φ is even with respect to y. We seek for solutions Φ of the form

Φ(x, y) =
∑
k∈N

akϕk(y;λ) sin(kx), (6.4)

here ϕk(·;λ) ∈ H1(R) ∩H2(R \ {0}) is an evenly extended solution to the linear problem

Lλ
0,kϕk(y;λ) = 0 on (0,∞) with ϕk(0;λ) = 1 (6.5)

and
Lλ

0,k := − d2

dy2 + k2(1 − λV0(y) −W (y)).

Thus ansatz (6.4) already solves (6.2) and its remains to determine a = (ak)k∈N such that (6.3) is also
atisfied. It will be convenient to parameterize the sequence (ak) over Z instead of N by setting ak = −a−k.
n this way Φ(x, y) = 1

2
∑

k∈Z akϕk(y;λ) sin(kx). Here we have defined ϕ−k(·;λ) := ϕk(·;λ) for k ∈ N. Then,
we shall see that for s ≥ 5

2 the existence of a traveling wave solution Φ in the space

Xs = Hs(T;L2(R)) ∩Hs−1(T;H1(R)) ∩ C(R;Hs− 1
2 (T)) ∩ C1(R;Hs− 3

2 (T))

ollows from the existence of a sequence a ∈ hs
♯(R) satisfying the boundary condition

2akϕ
′
k(0+;λ) = −k2

(
αak − γ

4 (a ∗ a ∗ a)k

)
for all k ∈ N. (6.6)

Recall that the kth Fourier coefficient of Φ3(x, 0) is given by − 1
4 (a ∗ a ∗ a)k (cf. Lemma A.1). Notice that

or s ≥ 5
2 we have the embedding

Xs ↪→ X = H2(T;L2(R)) ∩H1(T;H1(R)) ∩ C(R;H2(T)) ∩ C1(R;H1(T)).

As in the previous section we aim to apply bifurcation theory with respect to the parameter λ to obtain
the existence of nontrivial solutions a ∈ hs

♯(R) of (6.6) for s ≥ 5
2 by the Crandall–Rabinowitz theorem. Recall

hat this time we are working under the assumptions (L̃0)–(L̃3) from Theorem 2.10.
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Remark 6.1. Existence and properties of the decaying solutions ϕk(·;λ) of (6.5):

(i) Due to (L̃1) the problem Lk
0,λϕk = 1[−2,−1] on R has a unique H2(R) solution. Its restriction to [0,∞)

satisfies (6.5). The fact that ϕk(y;λ) → 0 exponentially as y → ∞ can be seen as follows: Since Lλ
0,k

is a self-adjoint operator with 0 ∈ ρ(Lλ
0,k) and the resolvent set is open in C there exists ck,λ > 0 such

that (−ck,λ, ck,λ) ⊂ ρ(Lλ
0,k). Set ψk(y;λ) := eδkyϕk(y;λ). Then

Lλ
0,kψk(y;λ) +Bkψk(y;λ) = eδky1[−2,−1], (6.7)

where Bkψ := 2δk
d

dyψ + δ2
kψ. One can show that Bk is Lλ

0,k–bounded in the sense that there exist
ak, bk > 0 such that

∥Bkψ∥2
L2(R) ≤ ak∥ψ∥2

L2(R) + bk∥Lλ
0,kψ∥2

L2(R) for all ψ ∈ H2(R).

In fact, if bk > 0 is fixed, then ak := 16δ4
k

bk
+ 8δ2

kk
2∥1 − λV0 − W∥∞ + 2δ4

k. For fixed bk ∈ (0, 1) let us
choose δk > 0 so small that

a2
k + b2

kc
2
k,λ < c2

k,λ.

Then (−c̃k,λ, c̃k,λ) + iR ⊂ ρ(Lλ
0,k + Bk), where c̃k,λ = ck −

√
a2

k + b2
kc

2
k,λ, cf. [6, Theorem 2.1 (ii)]. In

particular, 0 ∈ ρ(Lλ
0,k +B) so that there exists a unique solution ψk ∈ H2(R) of (6.7). The boundedness

of ψk then implies that |ϕk(y;λ)| ≲ e−δky decays exponentially on the half-line [0,∞). This result is also
known as “exponential dichotomy”. Assumption (L̃3) may be interpreted as some kind of generalized
uniform exponential dichotomy with respect to k ∈ N and λ ∈ Iλ∗ .

(ii) In the specific examples (P1) and (P2) which we consider at the end of this section, the family of
ansatz-functions (ϕk(·;λ))k∈N satisfies a true uniform exponential dichotomy with respect to k ∈ N and
λ ∈ Iλ∗ ; that is, there exists C, δ > 0 independent of k ∈ N and λ ∈ Iλ∗ such that |ϕk(y;λ)| ≤ Ce−δy

for all y ≥ 0. This leads to an exponential decay in y-direction of the traveling solution Φ of (1.4) and
in particular it implies (L̃3).

(iii) Notice also that ϕk(0;λ) ̸= 0, since otherwise (by an odd reflection around zero) we would obtain an
eigenfunction of Lλ

0,k for the eigenvalue 0. This is excluded by assumption (L̃1). Likewise we see that
ϕ′

k(0;λ) ̸= 0 (using an even reflection around zero).

emark 6.2. If V0,W are bounded, even functions and there exists v̄ > 0 such that

1 − λV0(y) −W (y) ≥ v̄ for all λ ∈ Iλ∗ , y ∈ R,

then assumption (L̃0), (L̃1), and (L̃3) are satisfied. Clearly, if 1 − λV0 − W ≥ v̄, then Lλ
0,k is a self-adjoint

operator with σ(Lλ
0,k) ⊂ [k2v̄,∞); thus 0 ∈ ρ(Lλ

0,k) and (L̃1) is satisfied. As explained in Remark 6.1(i),
condition (L̃1) implies the existence of a solution ϕk(·, λ) ∈ H2(0,∞) with

− ϕ′′
k + k2(1 − λV0(y) −W (y))ϕk = 0 on (0,∞) (6.8)

and ϕk(0;λ) = 1. Multiplying (6.8) with ϕk and integrating over the half line (0,∞), we obtain that

− ϕ′
k(0+;λ) =

∫ ∞

0
|ϕ′

k|2 dy + k2
∫ ∞

0
(1 − λV0 −W )ϕ2

k dy. (6.9)
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On the other hand, multiplying (6.8) with ϕ′
k and integrating over (0,∞) yields

(ϕ′
k)2(0+;λ) = −k2

∫ ∞

0
(1 − λV0 −W )(ϕ2

k)′ dy

= −2k
∫ ∞

0
k
√

1 − λV0 −Wϕkϕ
′
k

√
1 − λV0 −W dy

≤ k∥
√

1 − λV0 −W∥∞

(∫ ∞

0
|ϕ′

k|2 dy + k2
∫ ∞

0
(1 − λV0 −W )ϕ2

k dy

)
= −k∥

√
1 − λV0 −W∥∞ϕ

′
k(0+;λ),

where we used relation (6.9) in the last equality. We deduce that ϕ′(0+;λ) < 0 and

|ϕ′
k(0+;λ)| ≤ k∥

√
1 − λV0 −W∥∞. (6.10)

Estimating the L2-norm of ϕk(·;λ), we obtain that

∥ϕk(·;λ)∥2
2 = 1

v̄
∥
√
v̄ϕk(·;λ)∥2

2 ≤ 1
v̄

∫ ∞

0
(1 − λV0 −W )ϕ2

k dy ≤ 1
v̄k2 |ϕ′

k(0+;λ)| ≤ 1
v̄k

∥
√

1 − λV0 −W∥∞,

where we used (6.9) and (6.10). In particular, we find that ∥ϕk(·;λ)∥2 ≲ 1 as claimed in (L̃3).

For s ≥ 0 denote the linearization of (6.6) around a = 0 by

Aλ : hs
♯(R) ⊂ hs−2

♯ (R) → hs−2
♯ (R), (Aλa)k := Ak

λak for k ∈ Z,

here
Ak

λ := 2ϕ′
k(0+;λ) + k2α for k ∈ Z.

hen (6.6) can be written as

Aλa− n(a) = 0, where n(a)k = γk2

4 (a ∗ a ∗ a)k. (6.11)

For m ∈ Z let us denote by em ∈ l2♯ (R) the sequence, which satisfies em
k = 0 for k ̸= ±m and

em
m = −em

−m = 1√
2 .

Lemma 6.3. Assume (L̃0)–(L̃3). Then

∥ϕk(·;λ)∥L∞(R) ≲ k
1
2 , ∥ϕ′

k(·;λ)∥L2(R) ≲ k, ∥ϕ′
k(·;λ)∥L∞(R) ≲ k

3
2 (6.12)

niformly for λ ∈ Iλ∗ . In particular, |ϕ′
k(0;λ)| ≲ |k|

3
2 and consequently Ak

λ = αk2 +O(k 3
2 ) as k → ±∞.

Proof. By a result of Komornik, cf. [13], the estimate

∥u∥∞ ≤ C∥u∥L2

holds true for every solution u of −u′′+q(y)u = 0 on (a, b) with the constant C = max
{

6
√

∥q∥L1(a,b),
12√
b−a

}
.

e apply this result to the solutions ϕk(·;λ) of (6.5) with q = k2(1 − λV0 − W ), a ≥ 0 and b = a + c with
:= 2(

√
∥1 − λV0 −W∥∞k)−1. Then

6
√

∥q∥L1(a,b) ≤ 6k
√

∥1 − λV0 −W∥∞
√
c = 6

√
2
√
k 4
√

∥1 − λV0 −W∥∞ = 12√

b− a
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and thus for a constant C̃ only depending on ∥1−λV0−W∥∞ we have ∥ϕk(·;λ)∥L∞(a,b) ≤ k
1
2 C̃∥ϕk(·;λ)∥L2(a,b)

≲ k
1
2 by (L̃3). Since a ≥ 0 was arbitrary we obtain the first part of (6.12).

Multiplying (6.5) with u, u′ and integrating from a ≥ 0 to ∞ we get∫ ∞

a

k2(1 − λV0(y) −W (y))ϕk(y;λ)2 + ϕ′
k(y;λ)2 dy = −ϕk(a;λ)ϕ′

k(a;λ), (6.13)∫ ∞

a

2k2(1 − λV0(y) −W (y))ϕk(y;λ)ϕ′
k(y;λ) dy = −ϕ′

k(a;λ)2, (6.14)

respectively. Using (L̃3) and applying the Cauchy–Schwarz inequality to (6.14) we find

∥ϕ′
k(·;λ)∥2

L∞ ≲ k2∥ϕ′
k(·;λ)∥L2(0,∞) (6.15)

and from (6.13), (6.15) we get

∥ϕ′
k(·;λ)∥2

L2(0,∞) ≲ k2 + ∥ϕk(·;λ)∥L∞(0,∞)∥ϕ′
k(·;λ)∥L∞(0,∞)

≲ k2 + ∥ϕk(·;λ)∥L∞(0,∞)k∥ϕ′
k(·;λ)∥

1
2
L2(0,∞).

he L∞–estimate from the first part of the lemma leads to

∥ϕ′
k(·;λ)∥2

L2(0,∞) ≲ k2 + k
3
2 ∥ϕ′

k(·;λ)∥
1
2
L2(0,∞) ≤ k2 + Cϵk

2 + ϵ∥ϕ′
k(·;λ)∥2

L2(0,∞),

here we have used Young’s inequality with exponents 4/3 and 4. This implies the second inequality in
6.12). Inserting this into (6.15) we obtain the third inequality in (6.12). □

emma 6.4. Assume (L̃0)–(L̃3) and let s ≥ 0. Then the operator Aλ : hs
♯(R) ⊂ hs−2

♯ (R) → hs−2
♯ (R) is

elf-adjoint. Its spectrum is discrete and consist of the values (Ak
λ)k∈N. Moreover kerAλ∗ = span{ek∗} and

erAλ = {0} for λ ∈ Iλ∗ \ {λ∗}.

roof. Due to Lemma 6.3 and since ϕ−k = ϕk for all k ∈ Z one can verify that Aλ : hs
♯(R) ⊂ hs−2

♯ (R) →
s−2
♯ (R) acting like an infinite dimensional diagonal matrix is self-adjoint. Using the characterization of
he spectrum via Weyl-sequences one sees that Aλ has the spectrum σ(Aλ) = clos{Ak

λ : k ∈ N}. Due to
emma 6.3 the set {Ak

λ : k ∈ N} is discrete and hence σ(Ak
λ) consists of the set of eigenvalues {Ak

λ : k ∈ N}.
inally, let us determine the kernel of Aλ. On the one hand, a ∈ kerAλ if and only if there exists k ∈ N
uch that Ak

λ = 0, and in this case a = ek (here we use that Ak
λ = A−k

λ ). On the other hand, using the
haracterization of the domain of Lλ

k from Section 5.1 we know that Lλ
kϕ = 0 if and only if ϕ(x) = ϕk(|x|;λ)

nd Ak
λ = 0. Thus, bringing both facts together and using assumption (L̃2) we obtain the final claim of the

emma. □

Similarly as in (4.3) we define the operator

Ãλ := Aλ + P ∗,

here P ∗a = ak∗e
k∗ .

emma 6.5. Assume (L̃0)–(L̃3) and s ≥ 0. Then we have that 0 ∈ ρ(Ãλ) for all λ ∈ Iλ∗ and hence
˜−1

λ : hs−2
♯ (R) → hs

♯(R) is a bounded linear operator. Moreover, if f ∈ hs
♯(R), s ≥ 5

2 is given and a ∈ hs
♯(R)

solves
a = Ã−1(−γM(f) + P ∗a) where M(f) := k2f (6.16)
λ k k
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then Φ(x, y) :=
∑

k∈N akϕk(x;λ) sin(kx) satisfies Φ ∈ Xs and solves

LλΦ + γδ0(y)Fxx = 0

or F (x, y) =
∑

k∈N fkϕk(y;λ) sin(kx) in the weak sense, i.e.,∫
T

∫
R
ΦyΨy − (1 − λV0(y) −W (y))ΦxxΨ dy dx+

∫
T

(
αΦxx(x, 0) + γFxx(x, 0)

)
Ψ(x, 0) dx = 0

or any Ψ ∈ H1(T;H1(R)).

roof. Lemma 6.4 says that kerAλ∗ = span{ek∗} and kerAλ = {0} for any λ ∈ Iλ∗ \ {λ∗}. We need to
show that 0 ∈ ρ(Ãλ) for any λ ∈ Iλ∗ . Let b ∈ hs−2

♯ (R) be arbitrary, then Ãλa = b if and only if{
Ak

λak = bk, if k ̸= k∗,
Ak

λak + ak = bk, if k = k∗,

which is equivalent to

ak = 1
Ak

λ

bk if k ̸= k∗ and ak∗ = 1
Ak∗

λ + 1
bk∗ . (6.17)

ue to Lemma 6.3 we obtain that for any b ∈ hs−2
♯ (R) the sequence a defined by (6.17) belongs to hs

♯(R)
nd solve Ãλa = b; whence 0 ∈ ρ(Ãλ).

Now suppose that f ∈ hs
♯(R) with s ≥ 5

2 and that a ∈ hs
♯(R) solves (6.16). The regularity of Φ follows

rom Lemma A.3. Moreover, (Aλa)k = −γk2fk and hence

2ϕ′
k(0+;λ)ak + αk2ak = −γk2fk. (6.18)

Using that
Lk

0,λϕk = 0 on R \ {0} for all k ∈ N,

e deduce by testing with akψk ∈ H1(R) and summing for 1 ≤ k ≤ K0 that

0 =
K0∑
k=1

∫
R
akϕ

′
kψ

′
k + k2(1 − λV0(y) −W (y))ϕkψk dy + ak(ϕ′

k(0+;λ) − ϕ′
k(0−;λ))ψk(0).

Since ϕk(·;λ) is even with respect to y we obtain by (6.18)

0 =
K0∑
k=1

∫
R
akϕ

′
kψ

′
k + k2(1 − λV0(y) −W (y))ϕkψk dy − αk2ak ϕk(0;λ)  

=1

ψk(0) − γk2fkψk(0).

Taking the limit K0 → ∞ in the previous equation will lead to

0 =
∫
T

∫
R
ΦyΨy − (1 − λV0(y) −W (y))ΦxxΨ +

∫
T
(αΦxx(x, 0) + γFxx(x, 0))Ψ(x, 0) dx

for any Ψ ∈ H1(T;H1(R)) due to the following estimates:∫
T

∫
R

|ΦyΨy| dy dx ≤
∑
k∈N

∥akϕ
′
k∥L2(R)∥ψ′

k∥L2(R) ≤ ∥Φ∥L2(T;H1(R))∥Ψ∥L2(T;H1(R))

≤ C∥a∥h1(R)∥Ψ∥L2(T;H1(R)),∫ ∫
|
(
1 − λV0(y) −W (y)

)
ΦxxΨ | dy dx ≤

∑
∥1 − λV0 −W∥L∞(R)k

2∥ϕk∥L2(R)∥ψk∥L2(R)

T R k∈N
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≤ ∥1 − λV0 −W∥L∞(R)∥Φ∥H2(T;L2(R))∥Ψ∥L2(T;L2(R))

≤ C∥a∥h2(R)∥Ψ∥L2(T;L2(R))∫
T

|Φxx(x, 0)Ψ(x, 0)| dx ≤ sup
y

∥Φxx(·, y)∥L2(T)∥Ψ(·, y)∥L2(T)

≤ ∥Φ∥C(R;H2(T))∥Ψ∥C(R;L2(T))

≤ C∥a∥
h

5
2 (R)

∥Ψ∥C(R;L2(T)),∫
T

|Fxx(x, 0)Ψ(x, 0)| dx ≤ ∥f∥
h

5
2 (R)

∥Ψ∥C(R;L2(T))

together with the continuous embeddings H1(T;H1(R)) ⊂ L2(T;H1(R)) ∩ C(R;L2(T)) and hs
♯(R) ⊂

5/2
♯ (R) ⊂ h2

♯ (R) ⊂ h1
♯ (R) since s ≥ 5

2 . □

In the same spirit as in Section 4, let us reformulate our problem (6.11) in a way suitable for applying
the Crandall–Rabinowitz theorem. Using the above lemma, Eq. (6.11) is equivalent to

G(a, λ) = 0,

here the function G : hs
♯(R) × Iλ∗ → hs

♯(R), s ≥ 5
2 , is defined by

G(a, λ) := a+ Ã−1
λ

(
−γ

4M(a ∗ a ∗ a) − P ∗a
)

and M(f)k := k2fk for f ∈ hs
♯(R). (6.19)

emark 6.6. Notice that hs
♯(R), s ≥ 1 is a Banach algebra, cf. Lemma A.4. Thus, for a ∈ hs

♯(R) the
onlinearity a∗a∗a stays in hs

♯(R) and M(a∗a∗a) ∈ hs−2
♯ (R). Hence, in order to control the nonlinearity in

(a, λ), it is necessary that Ã−1
λ is a bounded operator from hs−2

♯ (R) to hs
♯(R). Otherwise, assume that

we would only have that Ã−1
λ is bounded from hs−2

♯ (R) to hs′
♯ (R) where s′ < s, then the mapping G

is merely bounded from hs
♯(R) × Iλ → hs′

♯ (R). In this case, the Fréchet derivative has the property that
DaG(0, λ) : hs

♯(R) → hs
♯(R) (cf. Lemma 6.7(ii)) but is no longer a Fredholm operator from hs

♯(R) → hs′
♯ (R)

since the co-dimension of its image is infinite. The Fredholm property at λ = λ∗, however, is important for
pplying the Crandall–Rabinowitz theorem for bifurcation.

The following lemma provides the necessary preparations to apply bifurcation theory to G(a, λ) = 0.

emma 6.7. Let s ≥ 5
2 . The map G : hs

♯(R) × Iλ∗ → hs
♯(R) is a C∞-map. Moreover the following holds:

(i) The function ϕk is continuously differentiable with respect to λ and ψk(y;λ) := ∂λϕk(y;λ) satisfies

Lλ
0,kψk = k2V0(y)ϕk on (0,∞), ψk(0;λ) = 0 (6.20)

and ψ′
k(0;λ) = k2 ∫∞

0 V0ϕ
2
k dy = O(k2).

(ii) The linearization of G about a = 0, given by

DaG(0, λ) = Id −Ã−1
λ P ∗ : hs

♯(R) → hs
♯(R)

is a Fredholm operator of index zero. Its kernel is trivial for λ ∈ Iλ∗ , λ ̸= λ∗ and it is given by span{ek∗}
if λ = λ∗.

(iii) The mixed second derivative of G about a = 0 is given by

D2
aλG(0, λ) = Ã−1

λ BÃ−1
λ P ∗ : hs

♯(R) → hs+2
♯ (R) ⊂ hs

♯(R),

where B : hs+2(R) → hs(R) is the pointwise multiplication with 2ψ′ (0;λ).
♯ ♯ k
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Proof. (i) We are only interested in ψk(·, λ) = ∂λϕk(·, λ) on [0,∞). To find ψk(·, λ) we differentiate
λ
0,kϕk = 0 on (0,∞), ϕk(0;λ) = 1 with respect to λ ∈ Iλ∗ and obtain (6.20). If we define Qϕk(·, λ) : R → R

as the odd extension around y = 0 of ϕk(·, λ) : (0,∞) → R then we see that ψk(·, λ) is given by
ψk(·, λ) = (Lλ

0,k)−1(k2V0Qϕk(·, λ))|[0,∞). Testing the differential equation in (6.20) with ϕk and noting that
Lλ

0,kϕk = 0 on (0,∞) we find

⟨Lλ
0,kψk, ϕk⟩L2(0,∞) = (−ψ′

kϕk + ψkϕ
′
k)
⏐⏐∞
0 + ⟨ψk, L

λ
0,kϕk⟩L2(0,∞) = ψ′

k(0+;λ) = O(k2),

as claimed, in view of ⟨Lλ
0,kψk, ϕk⟩L2(0,∞) =

∫∞
0 k2V0ϕ

2
k dy = O(k2) because V0 ∈ L∞(R) and (L̃3).

(ii) The mapping properties of G follow from Remark 6.6. The differentiability of the cubic nonlinearity
a ∗ a ∗ a with respect to a is also a straightforward property of the Banach algebra property of hs

♯(R). The
differentiability property of G with respect to λ follows from differentiability of λ ↦→ ϕ′

k(0+;λ) as given in
(i). As in Lemma 4.4 the Fredholm property of Da(G(0, λ)) is satisfied since it is a compact perturbation of
the identity and the characterization of its kernel can be seen in a similar way using Lemma 6.4.

(iii) Note that d
dλ Ã

k
λ = d

dλA
k
λ = 2ψ′

k(0;λ). Since ψ′
k(0;λ) = O(k2) by (i) we have the mapping property

B : hs+2
♯ (R) → hs

♯(R). □

We are now in a position to apply the Crandall–Rabinowitz theorem for G(a, λ) : hs
♯(R) × Iλ∗ → Xs for

s ≥ 5
2 in order to proof Theorem 2.10 provided that the transversality condition in (2.6) is satisfied.

roof of Theorem 2.10. The existence result follows from the Crandall–Rabinowitz theorem applied to
(a, λ) = 0. Successfully applied, it provides an interval Iλ∗ ⊂ R containing λ∗, and a smooth curve through

0, λ∗) of the form
{(a(ε), λ(ε)) | |ε| < ε0} ⊂ hs(R) × Iλ∗

f nontrivial solutions of (6.11) with λ(0) = λ∗ and Dεa(0) = ek∗ . The curve (a(ε), λ(ε)) ⊂ hs(R) × Iλ∗ then
ranslates via Φ(ε)(x, y) =

∑
k∈N ak(ε)ϕk(y;λ) sin(kx) and by Lemma 6.5 into the curve {(Φ(ε), λ(ε)) | |ε| <

0} ⊂ Xs × Iλ∗ of nontrivial solutions of (6.1) with the stated property. The Crandall–Rabinowitz theorem
equires that the linearization

DaG(0, λ∗) = Id −Ã−1
λ∗ P

∗ : hs
♯(R) → hs

♯(R)

s a Fredholm operator of index zero with dim kerDaG(0, λ∗) = 1 and the transversality condition

D2
aλG(0, λ∗)ek∗ ̸∈ rangeDaG(0, λ∗) (6.21)

s satisfied. The Fredholm property is already shown in Lemma 6.7 (ii) and the kernel of DaG(0, λ∗) is one
imensional and spanned by ek∗ , that is

kerDaG(0, ω∗) = span{ek∗}.

oncerning the transversality condition (6.21), assume on the contrary that there exists b ∈ hs(R) such that

D2
aλG(0, λ∗)ek∗ = DaG(0, λ∗)b.

hen,
⟨D2

aλG(0, λ∗)ek∗ , ek∗⟩l2(R) = ⟨DaG(0, λ∗)b, ek∗⟩l2(R).

sing the formulas from Lemma 6.7 (ii) and (iii) and the fact that Ã−1
λ∗ P

∗ = P ∗ together with the symmetry
f Ã−1

λ∗ we obtain that

2ψ′
k∗(0;λ∗) = ⟨Bek∗ , ek∗⟩l2 = ⟨D2

aλG(0, λ∗)ek∗ , ek∗⟩l2(R) = ⟨DaG(0, λ∗)b, ek∗⟩l2(R)

= ⟨b− P ∗b, ek∗⟩l2(R) = 0.
(6.22)
ut due to Lemma 6.7(i) this is a contradiction to (2.6). This finishes the proof of Theorem 2.10.
26
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Similarly as in the previous section, we determine the bifurcation formulas. The Fréchet derivatives of G
ith respect to a are given by

DaG(a, λ)ek∗ = ek∗ − Ã−1
λ

(
3
4γM(a ∗ a ∗ ek∗) + ek∗

)
D2

aaG(a, λ)[ek∗ , ek∗ ] = −3
2γÃ

−1
λ

(
M(a ∗ ek∗ ∗ ek∗)

)
D3

aaaG(a, λ)[ek∗ , ek∗ , ek∗ ] = −3
2γÃ

−1
λ

(
M(ek∗ ∗ ek∗ ∗ ek∗)

)
here M is defined as in (6.19).

roposition 6.8. Let {(a(ε), ω(ε)) | |ε| < ε0} ⊂ hs(R) × Iλ∗ be the local bifurcation curve found in
heorem 2.10 corresponding to the bifurcation point (0, λ∗). Then

λ̇(0) = 0 and λ̈(0) = − 3γ
4
∫∞

0 V0(y)ϕ2
k∗ dy

.

roof. The proof follows essentially the lines of the proof of Proposition 4.7. We obtain that λ̇(0) = 0,
hich is due to the cubic character of the nonlinearity and

λ̈(0) = −1
3

⟨D3
aaaG(0, λ∗)[ek∗ , ek∗ , ek∗ ], ek∗⟩

⟨D2
aλG(0, λ∗)ek∗ , ek∗⟩

.

ue to Lemma 6.7(i) and (6.22) the denominator is given by

⟨D2
aλG(0, λ∗)ek∗ , ek∗⟩ = 2

∫ ∞

0
k2V0(y)ψ2

k∗ dy,

nd the numerator reads

⟨D3
aaaG(0, λ∗)[ek∗ , ek∗ , ek∗ ], ek∗⟩ = −3

2γk
2
∗(ek∗ ∗ ek∗ ∗ ek∗)k∗ .

ince (ek∗ ∗ ek∗ ∗ ek∗)k∗ = −3, as shown in Lemma A.2, the statement follows. □

. Examples for distributional Γ

In what follows we prove Corollaries 2.13 and 2.14, which state the existence of traveling waves for (1.4)
n the specific cases, when the potentials are given as in (P1) and (P2), respectively.

.1. (P1) V a δ-potential on a constant background

We consider the particular case when V0 = 1, W = 0 so that we have a positive constant background
otential with a multiple of a delta potential on top, i.e.,

V (λ, y) = λ+ αδ0(y).

e verify the conditions (L̃0) − (L̃3) of Theorem 2.10; thereby proving part one of Corollary 2.13. Let us
x a wavenumber k∗ ∈ N and a value λ∗ < 1. We determine α > 0 from

α = 2
√

1 − λ∗
.

k∗
27
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Notice that the transversality condition and (L̃0) are trivially satisfied. Moreover, the validity of (L̃1) and
(L̃3) follow immediately from Remark 6.2, since 1 − λV0 − W = 1 − λ > 0. Condition (L̃2) is exactly the
same as (L2) since our operator Lk

λ is the same as the one considered in Corollary 2.5 of Case (P1). Since
the choice of α, k∗, λ∗ is the same as in Corollary 2.5 condition (L̃1) holds and we are finished with treating
this example.

Now, Corollary 2.13 follows from Theorem 2.10 and the bifurcation formulas are an immediate conse-
quence of Proposition 6.8.

7.2. (P2) V a δ-potential on a step background

Now, we consider the case when V0 = 1|y|≥b, W = β1|y|<b for some b > 0 so that the potential V is given
y

V (λ, y) = λ1|y|≥b + β1|y|<b + αδ0(y),

gain we verify the conditions (L̃0) − (L̃3) of Theorem 2.10; thereby proving Corollary 2.14. First we fix a
wavenumber k∗ ∈ N and a value λ∗ < 1. According to Corollary 2.14 we have to distinguish between the
ase β < 1, β > 1, and β = 1. Notice that the transversality condition and (L̃0) are trivially satisfied for all
∈ R.
Let us begin with the case β < 1. The validity of (L̃1) and (L̃3) follow immediately from Remark 6.2,

since 1 − λV0 −W = (1 − λ)1|y|≥b + (1 − β1|y|<b) > 0. It remains to consider (L̃2). But again the operator
Lk

λ is the same as the one considered in Corollary 2.5 of Case (P1) and the choice of α in Corollary 2.14 is
xactly the same as in Corollary 2.6 of Case (P1). Hence (L̃1) holds and this example is complete.

Next we consider the case β > 1. Here we have made the choices√
β − 1b = π

nd
α = 2

√
1 − λ∗

k∗
.

e are left to verify (L̃1) − (L̃3) of Theorem 2.10. For (L̃1) we need to consider the operator Lk
0,λ =

d2

dy2 + k2(1 − λ1|y|≥b − β1|y|<b) : H2(R) → L2(R) which is self-adjoint with σess(Lk
0,λ) ⊂ [k2(1 − λ),∞).

Thus 0 ∈ ρ(Lk
0,λ) if and only if Lk

0,λϕ = 0 for some ϕ ∈ H2(R) implies that ϕ = 0. In other words: we need
o rule out that Lk

0,λ has a zero eigenvalue. This can be seen from Lemma A.6 in the Appendix if we set
= 0 (no delta potential in the equation) and µ = 0, i.e., λ̃ = λ and β̃ = β. Moreover, we need to make the

bvious changes
√

1 − β = i
√
β − 1 and sinh(ix) = i sin(x), cosh(ix) = cos(x). Following the ansatz (A.1)

for the eigenfunction we obtain c0 = d0 and c1 = d1 due to the C1-matching at x = 0. Moreover, the choice
of

√
β − 1b = π results in the invertible matrices

M± =
(

0 −e−k
√

1−λ̃b√
1 − β̃(−1)k ±

√
1 − λ̃e−k

√
1−λ̃b

)
.

ence the conclusion c1 = −d1 from Lemma A.6 holds and leads to c1 = d1 = 0. An inspection of the
1-compatibility at y = ±b then yields c2 = d2 = c0 = d0 = 0. Therefore, there is no zero-eigenvalue of Lk

0,λ

or any k ∈ N and any λ ∈ (−∞, 1) and (L̃1) holds.
Concerning (L̃2) we need to study a zero-eigenvalue of Lk

λ. The answer is again given by Lemma A.6 in
the Appendix since we already know the invertibility of the matrices M±. Hence the eigenvalue condition
s given by (5.2) with the obvious changes from the hyperbolic functions to the trigonometric function and
eads

kα√ = −
√
β − 1 sin(k

√
β − 1b) +

√
1 − λ cos(k

√
β − 1b)

√ √ √ √ .

β − 1 β − 1 cos(k β − 1b) + 1 − λ sin(k β − 1b)

28
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In view of
√
β − 1b = π this reduces to

α = 2
√

1 − λ

k

nd hence Lk
λ has a zero-eigenvalue if and only if k = k∗ and λ = λ∗. Thus (L̃2) holds. Finally, in order to

erify (L̃3), we compute the function ϕk which solves Lk
λϕk = 0 on (0,∞) with ϕk(0) = 1. From Lemma A.6

we obtain {
ϕk(y, λ) = cos(k

√
β − 1y) + ic1 sin(k

√
β − 1y), y ∈ [0, b],

ϕk(y, λ) = c2e
−k

√
1−λy, y ≥ b

with c1 = −
√

1−λ

i
√

β−1
and c2 = ek

√
1−λb(−1)k. Computing the L2-norm of ϕk we find that

1
2∥ϕk(·, λ)∥2

L2(R) =
∫ b

0

(
cos(k

√
β − 1y) −

√
1 − λ√
β − 1

sin(k
√
β − 1y)

)2

dy +
∫ ∞

b

e2k
√

1−λ(b−y) dy

= 1
2k

√
1 − λ

+ 1
2

(
1 − λ

β − 1 + 1
)
b ≤ C

(
1 + 1

k

)
,

here the constant C > 0 is independent of k and can be chosen uniformly for λ sufficiently close to λ∗.
his shows the validity of (L̃3).
The last case to be considered is β = 1. Also here, we are left to verify conditions (L̃1), (L̃2), and (L̃3).

irst we find that in this case with λ̃ = λ and β̃ = β = 1 condition (5.2) is replaced by

kα

2 =
√

1 − λ

1 +
√

1 − λkb
, (7.1)

which follows from a suitable adaptation of Lemma A.6. A zero eigenvalue of Lk
0,λ correspond to values k, λ

satisfying (7.1) with α = 0 which is impossible. Since σess(Lk
0,λ) = [k2(1−λ),∞) this shows that (L̃1) holds.

If we recall the definition of α, i.e.,

α = 2
√

1 − λ∗

k∗(1 +
√

1 − λ∗k∗b)
and compare with the 0-eigenvalue condition (7.1) we see that this ensures that 0 is a (simple) eigenvalue of
Lk

λ if and only if λ = λ∗ and k = k∗. Hence, (L̃2) holds. To see (L̃3) we compute (also with the help of an
adaptation of Lemma A.6) that the functions ϕk solving Lk

λϕk = 0 on (0,∞) with ϕk(0) = 1 are given by{
ϕk(y, λ) = 1 + c1y, y ∈ [0, b],
ϕk(y, λ) = c2e

−k
√

1−λy, y ≥ b

ith c1 = −
√

1−λk
kb

√
1−λ+1 and c2 = ek

√
1−λb

kb
√

1−λ+1 . From this we directly calculate that ∥ϕk(·, λ)∥2
L2(R) = O(1) as

k → ∞ uniformly for λ sufficiently close to λ∗. Hence, (L̃3) holds.
Now, Corollary 2.14 follows from Theorem 2.10.
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Appendix. Auxiliary results

Lemma A.1. Let A(x) =
∑

k∈N ak sin(kx), then

A3(x) = −1
4
∑

(a ∗ a ∗ a)k sin(kx),

k∈N

29
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d

P

a

where a = (ak)k∈Z is an infinite sequence with ak = −a−k for all k ∈ Z. The notation (a ∗ a ∗ a)k is used to
enote the kth entry in the sequence obtained by convolution a ∗ a ∗ a.

roof. If a is a sequence as above then using ak = −a−k for all k we find that∑
k∈Z

(
−1

2 iak

)
eikx =

∑
k∈Z

1
2ak sin(kx) =

∑
k∈N

ak sin(kx) = A(x),

nd
A3(x) =

∑
k∈Z

1
8 i(a ∗ a ∗ a)ke

ikx.

We are going to show that the Fourier coefficients (a ∗ a ∗ a)k are odd with respect to k. Notice first that

(a ∗ a ∗ a)k =
∑
j∈Z

(∑
l∈Z

ak−j−lal

)
aj .

We also have that

(a ∗ a ∗ a)−k =
∑
j∈Z

(∑
l∈Z

a−k−j−lal

)
aj = −

∑
j∈Z

(∑
l∈Z

ak+j+lal

)
aj

= −
∑
j∈Z

(∑
l∈Z

ak−j−la−l

)
a−j = −

∑
j∈Z

(∑
l∈Z

ak−j−lal

)
aj = −(a ∗ a ∗ a)k.

From this we deduce that

A3(x) =
∑
k∈Z

1
8 i(a ∗ a ∗ a)ke

ikx = −1
8
∑
k∈Z

(a ∗ a ∗ a)k sin(xk) = −1
4
∑
k∈N

(a ∗ a ∗ a)k sin(xk). □

Lemma A.2. Let k ∈ N and ek∗ be a sequence such that ek∗
k = 0 if k ̸= ±k∗, ek∗

k∗ = −ek∗
−k∗ = 1. Then,

(ek∗ ∗ ek∗ ∗ ek∗)k =

⎧⎪⎪⎨⎪⎪⎩
1, if k = 3k∗,
−1, if k = −3k∗,
−3, if k = k∗,
3, if k = −k∗.

Proof. The convolution ek∗ ∗ ek∗ ∗ ek∗ is given by

(ek∗ ∗ ek∗ ∗ ek∗)k =
∑
j∈Z

(∑
l∈Z

ek∗
k−j−le

k∗
l

)
ek∗

j =
∑
l∈Z

ek∗
k−k∗−le

k∗
l −

∑
l∈Z

ek∗
k+k∗−le

k∗
l

= ek∗
k−2k∗ − 2ek∗

k + ek∗
k+2k∗

and the claim follows. □

Lemma A.3. Let a ∈ hs(R) for some s ≥ 0 and define Φ(x, y) =
∑

k∈N akϕk(y;λ) sin(kx) for x ∈ T and
y ∈ R. Then

(i) Φ ∈ Hs(T;L2(R))
(ii) Φ ∈ Hs−1(T;H1(R))
(iii) Φ ∈ Hs−2(T;H2(0,∞))
(iv) Φ ∈ C(R;Hs− 1

2 (T))
(v) Φ ∈ C1(R;Hs− 3

2 (T))
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Proof. We verify that

∥Φ∥2
Hs(T;L2(R)) ≤ C

∑
k∈N

a2
kk

2s∥ϕk∥2
L2(R) ≤ C∥a∥2

hs(R),

∥Φ∥2
Hs−1(T;H1(R)) ≤ C

∑
k∈N

a2
kk

2s−2∥ϕ′
k∥2

L2(R) ≤ C∥a∥2
hs(R),

∥Φ∥2
Hs−2(T;H2(0,∞)) ≤ C

∑
k∈N

a2
kk

2s−4∥ϕ′′
k∥2

L2(0,∞)

≤ C1 + ∥1 − λV0 −W∥L∞(R)
∑
k∈N

a2
kk

2s∥ϕk∥2
L2(0,∞) ≤ C∥a∥2

hs(R),

∥Φ∥2
C(R;Hs− 1

2 (T))
≤ C

∑
k∈N

a2
kk

2s−1∥ϕk∥2
L∞(R) ≤ C∥a∥2

hs(R),

∥Φ∥2
C1(R;Hs− 3

2 (T))
≤ C

∑
k∈N

a2
kk

2s−3∥ϕ′
k∥2

L∞(R) ≤ C∥a∥2
hs(R). □

emma A.4. For s ≥ 1 the space hs(R) is a Banach algebra with respect to convolution.

Proof. In this proof we use the l1-norm ∥a∥l1(R) =
∑

k∈Z |ak| for a sequence a = (ak)k∈Z ∈ l1(R), i.e., the
Banach space of all real sequences with finite l1-norm. Due to convexity we have the inequality

|k|s ≤ 2s−1(|k − l|s + |l|s).

Therefore, if a, b ∈ hs(R) then

|k|s(a ∗ b)k = |k|s
⏐⏐⏐⏐⏐∑

l∈Z
ak−lbl

⏐⏐⏐⏐⏐ ≤ 2s−1
∑
l∈Z

|k − l|s|ak−l||bl| + |ak−l||l|s|bl|.

Using the convolution inequality ∥ã ∗ b̃∥l2 ≤ ∥ã∥l2∥b̃∥l1 once for (ã)k = |k|s|ak|, (b̃)k = |bk| and once for
(ã)k = |ak|, (b̃)k = |k|s|bk| we get

∥a ∗ b∥hs(R) ≤ 2s−1(∥a∥hs(R)∥b∥l1(R) + ∥a∥l1(R)∥b∥hs(R)).

Finally, a ∈ hs(R) implies a ∈ l1(R) due to∑
k∈Z

|ak| =
∑
k∈Z

|ak|(|k| + 1) 1
|k| + 1 ≤ C∥a∥h1(R) ≤ C∥a∥hs(R). □

Lemma A.5. Let L = − d2

dy + q(y) with q ∈ L∞(R) be a self-adjoint operator on L2(R) with domain
(L) = H2(R). Then, for any α ∈ R, we have that Lα := L+αδ0 is self-adjoint with domain D(Lα) = {u ∈

H1(R)∩
(
H2(0,∞) ∪H2(−∞, 0)

)
| u′(0+)−u′(0−) = −αu(0)}. Moreover for any α ∈ R the following holds:

(i) For sufficiently large µ > 0 we have that (Lα + µ)−1 : H−1(R) → H1(R) is bounded.
ii) σess(Lα) = σess(L).

Proof. A proof of the self-adjointness of Lα for any α ∈ R is given in [4]. For (i) we first note that Lα is
a semi-bounded self-adjoint operator so that Lα + µ is a positive operator for µ > 0 sufficiently large. Its
bilinear form bLα+µ : H1(R) ×H1(R) → R is coercive and equivalent to the standard H1(R)-inner product.
Therefore, any f ∈ H−1(R) can be represented by a unique u ∈ H1(R) such that bLα+µ(u, ϕ) = f(ϕ) for
any ϕ ∈ H1(R) and bLα+µ(u, u) = ∥ϕ∥2

H−1(R). This proves (i).
For (ii) we may take λ < 0 sufficiently negative such that λ ∈ ρ(L) ∩ ρ(Lα) ∩ R since both L,Lα are

semi-bounded from below. Using (i) we may also assume λ sufficiently negative that (λ−L )−1 : H−1(R) →
α
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H1(R) is bounded. By Weyl’s criterion it is sufficient to show that the operator Wλ := (λ−L)−1−(λ−Lα)−1 :
2(R) → L2(R) is compact in order to prove the statement. Since

Wλ = (λ− Lα)−1 ◦ ((λ− Lα)(λ− L)−1 − Id) = (λ− Lα)−1  
H−1(R)→H1(R)⊂L2(R)

◦ (L− Lα)  
H1(R)→H−1(R)

◦ (λ− L)−1  
L2(R)→H1(R)

nd since L− Lα = −αδ0 : H1(R) → H−1(R) is a bounded operator with 1-dimensional range spanned by
0 we see that Wλ is indeed compact. This finishes the proof. □

emma A.6. Let λ̃, β̃ < 1. Then the eigenvalue problem (5.1) is solvable for ϕ ∈ D(Lk
λ) if and only if (5.2)

olds. In this case the eigenspace is one-dimensional.

roof. Solutions of the differential equation in (5.1) have to be of the form

ϕ(y, λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c2e

−k
√

1−λ̃y, y ≥ b,

c0 cosh(k
√

1 − β̃y) + c1 sinh(k
√

1 − β̃y), y ∈ [0, b],
d0 cosh(k

√
1 − β̃y) + d1 sinh(k

√
1 − β̃y), y ∈ [−b, 0],

d2e
k
√

1−λ̃y, y ≤ −b

(A.1)

with C1-compatibility conditions at x = ±b and continuity at x = 0. The latter implies c0 = d0 and the
condition ϕ′(0+) − ϕ′(0−) + k2αϕ(0) = 0 at x = 0 translates into

k

√
1 − β̃(c1 − d1) + k2αc0 = 0. (A.2)

The C1-compatibility leads to the following set of four equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c0 cosh(k

√
1 − β̃b) + c1 sinh(k

√
1 − β̃b) = c2e

−k
√

1−λ̃b,√
1 − β̃

(
c0 sinh(k

√
1 − β̃b) + c1 cosh(k

√
1 − β̃b)

)
= −

√
1 − λ̃c2e

−k
√

1−λ̃b,

d0 cosh(k
√

1 − β̃b) − d1 sinh(k
√

1 − β̃b) = d2e
−k

√
1−λ̃b,√

1 − β̃
(
−d0 sinh(k

√
1 − β̃b) + d1 cosh(k

√
1 − β̃b)

)
=
√

1 − λ̃d2e
−k

√
1−λ̃b.

hese four equations can be written as

(
M+ 0

0 M−

)⎛⎜⎜⎝
c1
c2
d1
d2

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
−c0 cosh(k

√
1 − β̃b)

−
√

1 − β̃c0 sinh(k
√

1 − β̃b)
−c0 cosh(k

√
1 − β̃b)√

1 − β̃c0 sinh(k
√

1 − β̃b)

⎞⎟⎟⎟⎠
ith

M± =
(

± sinh(k
√

1 − β̃b) −e−k
√

1−λ̃b√
1 − β̃ cosh(k

√
1 − β̃b) ±

√
1 − λ̃e−k

√
1−λ̃b

)
.

Since both M+ and M− are invertible we see that w.l.o.g. we can choose c0 = 1. Moreover, the structure of
the linear systems yields that c1 = −d1 and c2 = d2. Finally, solving for c1, c2 we get

c1 = −
√

1 − β̃ sinh(k
√

1 − β̃b) +
√

1 − λ̃ cosh(k
√

1 − β̃b)√
1 − β̃ cosh(k

√
1 − β̃b) +

√
1 − λ̃ sinh(k

√
1 − β̃b)

,

c2 = ek
√

1−λ̃b(c1 sinh(k
√

1 − β̃b) + cosh(k
√

1 − β̃b)).

nserting c1, d1 = −c1 and c0 = 1 into (A.2) yields the condition (5.2) as claimed. It also shows that
he eigenspace is one-dimensional (the only degree of freedom is the choice of c0 which we took to be 1

.l.o.g.). □
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