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We consider a 2+1 dimensional wave equation appearing in the context of polarized
waves for the nonlinear Maxwell equations. The equation is quasilinear in the time
derivatives and involves two material functions V and I'. We prove the existence
of traveling waves which are periodic in the direction of propagation and localized
in the direction orthogonal to the propagation direction. Depending on the nature
of the nonlinearity coefficient I" we distinguish between two cases: (a) I' € L™
being regular and (b) I' = vdp being a multiple of the delta potential at zero. For
both cases we use bifurcation theory to prove the existence of nontrivial small-
amplitude solutions. One can regard our results as a persistence result which shows
that guided modes known for linear wave-guide geometries survive in the presence
of a nonlinear constitutive law. Our main theorems are derived under a set of
conditions on the linear wave operator. They are subsidized by explicit examples
for the coefficients V' in front of the (linear) second time derivative for which our
results hold.
©2022 The Authors. Published by Elsevier Ltd. This is an open access article under the
CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd /4.0/).

1. Introduction

Of concern is the following 2+1 dimensional quasilinear wave equation
— Au+ 97 (VA y)u+ I'(y)u®) =0, (1.1)

which appears in the context of polarized waves for the nonlinear Maxwell equations. Here, u = u(t, z,y) is
the unknown depending on time ¢ € Ry and the two spatial variables x,y. We assume u to be periodic in
z-direction and localized in y-direction. In what follows, we denote by T the one dimensional flat 27-periodic
torus, so that (x,y) € T x R. The potentials V(},-) and I" depend only on y and incorporate material
properties. Here, A\ € R is a parameter. The function I" might be a bounded function (referred to as regular
I') or a multiple of a delta potential at y = 0 (referred to as distributional I').
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To motivate our interest in (1.1), let us explain how it appears in the context of electromagnetics. Recall
that the Maxwell equations in the absence of charges and currents are given by

V-D=0, VxE =— 9B, D =E + P(E),
V.B=0, V x H=9,D, B =uoH.

The modeling of the underlying material is done by making assumptions on the form of the polarization
field P. Here, we assume that P depends instantaneously on the electric field E as follows

P(E) = cox1(X)E + cox3(x)|E[*E

with x = (2,9,2) € R3, cf. [1, Chapter 2.3]. For simplicity we take 1, x3 as given scalar functions instead
of the more general matrix/tensor structure of these quantities. The values eg, g are constant such that
c? = (eopo) ! and c is the speed of light in vacuum. By direct calculations from Maxwell’s equations one

obtains the second-order quasilinear wave-type equation for the electric field
0=V xVxE+09; (V(x)E+I'x)|EE), (1.2)

where V(x) = pogo (1 + x1(x)) and I'(x) = poeoxs(x). The magnetic induction B can be retrieved from
V x E = —0;B by time-integration and it will satisfy V - B = 0 provided it does so at time t = 0. By
assumption the magnetic field is given by H = ;TloB and it satisfies V x H = 9;D. It remains to check
that the displacement field D satisfies the Gauss law V - D = 0 in the absence of external charges. This
follows directly from the constitutive equation D = go(1 + x1(x))E + £0x3(x)|E[?E and the assumption of
the polarized form of the electric field

E(x,t) = (0,0, u(t,z,y))".

If we assume additionally that V(x) = V(y) and I'(x) = I'(y) then the quasilinear vectorial wave-type
Eq. (1.2) turns into the scalar Eq. (1.1) for u = u(t, z, y).

We study the existence of traveling wave solutions of (1.1) propagating in z-direction for certain classes
of potentials V. More precisely, we consider potentials of the form

V(A y) = AVoly) + Vi(y), AeR,
where Vy € L*°(R) and V; is a distribution (e.g a d-potential). If

u(t,x,y) = &(x —t,y) (1.3)

is a traveling wave solution of (1.1), propagating in a-direction with wave speed v =1, then & : T xR — R
satisfies

The parameter A € R will serve as a bifurcation parameter. One might ask why we introduced A as a
bifurcation parameter in the form V(A y) = AVy(y) + Vi (y) and not in the more intuitive form V(\,y) =
AVo(y) + Vi(y)) — the latter giving v/A the meaning of the propagation speed of the traveling wave. The
reason lies in the distributional character of V;. The choice of the underlying function spaces for our analysis
allows to formulate a (suitably defined, cf. Lemma 4.3) bounded inverse of Ly, which is a slightly modified
version of the wave operator Ly = —82 — (1 — AVy(y) — Vi(y))92. Extending the multiplication with X also
to the distributional part V; causes difficulties when differentiating wit respect to A, cf. Remark 4.5.

Throughout the paper, a function u is called a traveling wave solution of (1.1) if u takes the form (1.3)
and @ is a solution of (1.4), which is periodic in its first and localized in its second component.
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We investigate the existence of nontrivial solutions @, of (1.4) corresponding to the parameter A under
certain assumptions on the potential V'; thereby providing the existence a nontrivial traveling wave solution
uy of (1.1). We apply bifurcation theory for the parameter A to find nontrivial solutions of (1.4). Our aim
is to analyze the existence of nontrivial solutions in a way as general as possible, finding key properties
of associate linear operators, which guarantee the existence of solutions via bifurcation theory. Eventually,
we provide examples of specific potentials V' for which these properties can be verified. In particular, the
following cases are under consideration:

(P1) V is a {—potential on a constant background, that is V is a distribution of the form
V(N y) =X+ ado(y).
(P2) V is a {—potential on a step background, that is V is a distribution of the form
VA y) = ALy s + BLiyj<p + ado(y).

Concerning the nonlinear potential I' we distinguish between regular I, that is I’ € L*°(R), and
distributional I', that is I' = ~Jp. The main results for regular I' are shown in Section 2.1 and for
distributional I" in Section 2.2.

Let us also comment on related work. Problem (1.1) has been considered in [17] where spatially localized
traveling wave solutions of the 1+1-dimensional quasi-linear Maxwell model were investigated. The authors
assume that V' (y) is a periodic arrangement of delta potentials. Using a multiple scale ansatz in fast and slow
time, the field profile is expanded into infinitely many modes which are quasiperiodic in time (time-periodic
both in the fast and slow time variables). Using local bifurcation methods the authors solve a related system
which is homotopically linked to the Maxwell problem written as an infinite coupled system. It is not clear if
the local bifurcation connects the related system and the Maxwell problem but numerical results support the
existence of spatially localized traveling waves. In [7,9] another approximation (including error-estimates)
of a version of (1.1) with periodic coefficients by finitely many coupled modes near band edges has been
performed both analytically and numerically.

In the studies of the nonlinear Maxwell-system (1.2), often monochromatic waves E(x) = U(x)e'*! +
c.c. are considered. Since a typical cubic nonlinearity generates higher harmonics, they either need to
be neglected (leading to an error), or the constitutive equation for D is replaced by a time-averaged
nonlinearity D = &o(1 4+ x1(x))E + €ox3(x)+ fOT|E|2 dtE, cf. [2,8,14,16,19-21] and particularly the two
survey papers [3,15].

In contrast to the previously cited works, our approach is genuinely polychromatic and does not rely on
time-averaged material laws. In our solution ansatz we allow for harmonics of arbitrary order and we treat
(1.1) without any approximation. Recently in [12] a similar approach was taken and spatially localized, time-
periodic solutions of (1.1) were obtained via variational methods. The result of the present paper and [12] are
complementary in the following sense: (a) in [12] only distributional I" is considered whereas in the present
paper we also allow for regular I € L*°; (b) in the case of distributional I', [12] only treats V' € L* whereas
in the present paper we always have a delta potential contributing to V. Variational methods as in [12]
have the advantage of producing solutions which may be far away from the trivial solution whereas local
bifurcation methods as in the present paper produce solutions in the vicinity of zero. On the other hand, the
local bifurcation method leads to more precise information about the actual shape of the bifurcating branch
of solutions.

Outline of the paper. We close the introduction with a brief outline of the paper. In Section 2, we collect
our main results. In Theorem 2.3 and Theorem 2.10 we provide a set of conditions on the linear wave operator
guaranteeing the existence of nontrivial traveling wave solutions of (1.1) for regular and distributional I,
respectively. Subsequentially, we present in Corollaries 2.5, 2.6, 2.13 and 2.14 particular examples in the
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form of (P1) and (P2) for regular and distributional I'. In Section 3 we fix some notation. The remaining
Section 4-7 are devoted to the proofs of our main results. To be more precise, in Section 4 we prove the
existence result in Theorem 2.3 for regular I' followed by the proofs of Corollaries 2.5 and 2.6 in Section 5
which provide specific examples. Similarly, we prove in Section 6 the existence result in Theorem 2.10 for
distributional I" and finalize our studies in Section 7 with the proofs of Corollaries 2.13 and 2.14 on specific
examples in the case of distributional I'. In the appendix we collect auxiliary results.

2. Main results

We are looking for solutions of (1.4) of the form

Bz, y:N) = 3 bx(y: N)sin(ka) (1)

keN

Our analysis is going to be divided into two parts separating the case when I' is regular in the sense
that I' € L°(R) and the case when I' is distributional and takes the extreme form of a d-potential. This is
essentially due to the fact that in the former case we are concerned with a nonlinear equation on the domain
T x R, while in case of I" being a d-potential the problem can be viewed as a linear equation on T x R\ {0}
— which can be solved separately — equipped with a nonlinear boundary condition at = 0 induced by the
delta potential.

2.1. Main result for reqular I’
Let us start with the definition of a weak solution of (1.4) in the case when I" € L= (R).

Definition 2.1 ( Weak Solution in the Case of Regular I').
We say that & € H?(T; L%(R)) N H'(T; H(R)) is a weak solution of (1.4) if and only if

/T/Rqﬁy%—(1—)\Vo(y))¢szdydx—A<V1(.)¢w( ), @ dm+// Voo 0 dy iz = 0

for any ¥ € H'(T; H'(R)). Here, (-, -) is the dual pairing between H~!(R) and H*(R).

Remark 2.2.

(a) We consider V; as a bounded linear operator from H!(R) into H!(R). When V; = §y this means that
for f,g € H*(R) we have (V4 f,g) = f(0)g(0), i.e., since f € C(R) it multiplies Jp and generates f(0)do
as a distribution acting on g.

(b) Clearly @,, € L*(TxR). We shall see in Section 4 (cf. (4.8), (4.9) in Lemma 4.4) that also & € L>(TxR)
and @, € L*(T x R) so that (%), = 362 &,, + 6682 € L(T x R).

If I' € L*°(R), the ansatz in (2.1) allows us to reduce the problem of finding nontrivial solutions of (1.4)
to studying spectral properties of the family of linear wave operators

2
Llf\::—dd—Q—s—kzz(l—)\Vo() V1(y)) for keN.

We prove the following theorem:

Theorem 2.3 (Existence of Traveling Waves for Regular I'). Assume that I' € L>°(R), the potential V is
given by
V(A y) = AVo(y) + Va(y)
4
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and

(LO) Vo € L*®(R) and Vi : HY(R) — H~Y(R) is bounded;

(L1) for every fized k € N and X € R the operator L% : D(L%) C L*(R) — L?(R) is self-adjoint;

(L2) there exist a wavenumber k. € N, a value M. € R, and an open interval I, C R containing \. such that
zero is an isolated simple eigenvalue ofL]f: and 0 € p(LY) for any (k,\) € Nx Iy, with (k,\) # (K, \s);

(L3) if LY¢ = f for some f € L%(R), then

1 1
||¢||L2(R) S ﬁ”f”LQ(]R) and ||¢/HL2(JR) S EHf”LZ(]R)

uniformly for A € I, and k € N sufficiently large.

If in addition Vy satisfies the transversality condition

<%¢*’¢*>L2(R) # 0, (2:2)

where ¢* spans the one-dimensional kernel of Ll;i, then there exists €9 > 0 and a smooth curve through
(07 )\*)7
{(2(e),M(e)) | le] < g0} € (H(T; L*(R)) N HY(T; H'(R))) x Iy,

of montrivial solutions of (1.4) with
¢(0) =0, D ®(0)(x,y) = ¢"(y) sin(k. x)7

3 f]R y)(9 4 )*(y) dy
2 [ Vo(w)(0)2(y) dy

A0) = A, A0)=0, X0)=

Remark 2.4. The transversality condition (2.2) is trivially satisfied if V5 > 0, Z0 or Vy <0, Z 0.

In Section 4 we prove Theorem 2.3. There are two main requirements on L’f\ providing the existence of
nontrivial solutions via bifurcation theory: The first is that there exists a value A\, € R of the bifurcation
parameter such that L’X* has a one-dimensional kernel if and only if & = k. for some wave number k, € N
(see (L2)); this is a necessary bifurcation condition. Secondly, we demand that for any k # k. the self-adjoint
operator L’f\ has a spectral gap (—ck?, ck?) around zero, which ensures the decay properties of ¢ (; \) (see
(L3)). Eventually, after we have established Theorem 2.3, we turn to the specific case, when I' € L*>(R) is
regular, V' are potentials of the form as in (P1) and (P2) and formulate tangible assumptions on the triple
(K, A, @) (see (2.3) and (2.4)), which guarantee that conditions (L0) — (L3) of Theorem 2.3 are satisfied;
thereby proving the existence of nontrivial traveling wave solutions of (1.1). In particular, we prove the
following corollaries.

Corollary 2.5 (Case P1, Regular I'). Let I' € L*(R) and V(A y) = X+ ado(y). If k. € N and A\, <1 are
giwen and o > 0 is determined from
21—\,

_ 2.
o= (23)

then the assumptions in Theorem 2.3 are satisfied with

y) =1/ k*\/l — A B VIS Ayl

and
#(0) =0, D, 9(0)(x,y) = ¢" (y) sin(k.x),
_ —gkf(l _ A*)Af(y)6_4k*V1_A*|y|dy.

>
—~
(e
=
>
*
£
=
Il
=
=
(e
=
|
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Corollary 2.6 (Case P2, Regular I'). Let I' € L(R) and V/(\,y) = Ajy;>p + BLjyj<p + @do(y). If k. €N,
b >0 and B, s <1 are given and o > 0 is determined from

_2/T=F VI Bsinh(kv/T= Bb) + VI— X, cosh(k.yT= ) (24)

k* V1 = Bcosh(k./T— pb) + /1 — X, sinh(k./T— b)’

then the assumptions in Theorem 2.3 are satisfied.

Remark 2.7. Details on the construction of ¢* in Corollary 2.6 can be taken from Section 5.2.

2.2. Main result for distributional I’

Again, we start with the definition of a weak solution of (1.4), but now in the case when I' is given by a
o-potential. We assume that the function Vi = W + ady splits into a regular part W and the distributional
part adp so that V= AVy + W + adg, where Vo, W € L*®(R) and I" = ~vdy.

Definition 2.8 (Weak Solution in the Case of Distributional I'). We say that ¢ € H?(T;L*{R)) N
HY(T; HY(R)) N C(R; H(T)) is a weak solution of (1.4) if and only if

/ / By Wy — (1= AVo(y) — W(y)) D ¥ dy dz + /(a@m(x, 0) + (%) e (2,0)) ¥(2,0) dz = 0
T JR T

for any ¥ € HY(T; H'(R)).

Remark 2.9. Clearly &,,(-,0) € L*T) and &(-,0), ®,(-,0) € L*(T) so that (&3(-,0))ps =
30(-,0)20(-,0) 40 +68(-,0)®(-,0)2 € L?(T). Moreover, ¥ € H*(T; H*(R)) C H*(T x R) has an L>-trace at
y=0.

Note that (1.4) can be written as a linear partial differential equation on T x R\ {0} equipped with a
nonlinear boundary condition on T:

— By — (1= AV = W) Py = 0, (z,y) € T xR\ {0}, 25)
Py(2,04) — By(z,0-) = 02 (a® +~v9°%) (2,0), z€T. '
As before let 2
Ly = TaR + E*(1 = AVo(y) — W(y) — ado(y))

be a family of linear wave operators and set
2

d
L(/},k = T4 + k(1= A\Vo(y) — W(y))

to be the regular part of Lﬁ. We prove the following theorem:

Theorem 2.10 (Ezistence of Traveling Wave for Distributional I'). Assume that I' = 78y, the potential V
is given by
V(A y) = AVo(y) + W(y) + ado(y),

and

(LO) Vo, W € L*®(R) are even;
(L1) there exists an interval I C R such that for every fized k € N and \ € I the operator L’g’)\ : H2(R) C
L*(R) — L*(R) satisfies 0 € p(L§ 5);
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(E2) there exist a wavenumber k., € N, a value A, € R, and an open interval Ix, C I C R containing .
such that zero is an isolated simple eigenvalue of L];i and 0 € p(L%) for any (k,\) € N x I, with

~ (ka)‘) 7é (k*a)‘*)7
(L3) there exist C > 0 such that |[ox(:; M\)ll120,00) < C uniformly for A € Iy, k € N, and where
o € H%(0,00) satisfies’

Loxor(y; ) =0 on (0,00) with ¢ (0;A) = 1.
If in addition V satisfies the tramsversality condition
Voo™, ¢*>L2(R) # 0, (2.6)
where ¢* spans the one-dimensional kernel olef\*;, then there exists g > 0 and a smooth curve through (0, A,)
{(2(e), M) | le] < eo} © (H*(T; L*(R)) N H'(T; H' (R)) N {(-,0) € H*(T)}) x I,
of nontrivial solutions of (1.4) with

D.8(0)(w,y) = ¢* (y) sin(k.=),

0
A0) = A, 50 =0, 50) = 31*) ST
R

Remark 2.11. The transversality condition (2.6) is trivially satisfied if V5 > 0, # 0 or Vj <0, # 0.

Remark 2.12. We can formulate (L2) entirely in terms of the ansatz-functions ¢y (-; \) defined in (L3). To
this end notice that O'ESS(L’&/\) = 0ess(LE), cf. Lemma A.5. Since 0 ¢ 0(L§7/\) by assumption (L1) it is clear
that 0 € o(L%) is characterized by zero being an eigenvalue of L. This, however, in combination with the
evenness of Vp, W, means that ¢ (|y|; A) is up to scalar multiples the unique candidate for the eigenfunction
and has to satisfy

205, (045 \) + k*a = 0.

Here 2¢},(04;A) is the jump of the first derivative of the even function ¢ (|y|; A) at y = 0. Based on this
characterization of zero belonging to the spectrum of Lg we can replace (f/2) by

(E2) there exists a wavenumber k, € N, A, > 0, and an open interval I, C R, containing A, such that
203,(045A) + k*a =0
if and only if (k,\) = (ks, \s) for any k € Nand A € I,.

In Section 6 we prove Theorem 2.10. Claiming periodicity in one spatial direction and evenness in the
transverse direction we make a Fourier ansatz of the form

(z,y; A Zak Yor(lyl; A) sin(kz), (2.7)

keN

where ¢y are the decaying functions from assumption (I~/3) In particular, the ansatz (2.7) solves the linear
differential equation in (2.5) and thus reduces the problem of finding nontrivial solutions of (1.4) to the
following family of algebraic equations

2ax(\)$) (045 \) = —k? (aak()\) - i’y(a(/\) k a(A) % a()\))k) for all ke N. (2.8)

1 The existence and the properties of the functions ¢, are detailed in Remark 6.1.

7
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In the spirit of Section 4, we show that if conditions (L0) — (L3) are satisfied, then the nonlinear Eq. (2.8)
has a non-trivial solution (ax(X\))kez with ar(A\) = —a_r(\) and the decay property

(K*ar(N)x € P(R);
thereby providing a solution of (1.4) in the form of (2.7). Here, {?(R) denotes the space of [?~summable
sequences in RZ. Condition (L1) guarantees the existence of the family of even ansatz-functions (¢x)ren

with ¢5(0;\) = 1. Condition (L2) assures that there exists k, € N, A\, € R and an interval I, C R
including A, such that the linearization of (2.8), given by the multiplication operator

AS =290 (0450) + ke,
has a one-dimensional kernel if (k,A) = (k.,\,), that is AY* = 0; and A} # 0 for all (k,\) € N x I,
with (k,A) # (k«, Ax). This is a necessary bifurcation condition. After we have proved Theorem 2.10, we
investigate the specific cases, when V' is a potential of the form as in (P1) and (P2). The former being a
d-potential on a constant background, while the latter is a §-potential on the background of a step function.

In both cases the d-potential part in V' is essential, guaranteeing sufficient decay properties of the sequence
(ak(A))ken. In particular, we prove the following corollaries:

Corollary 2.13 (Case P1, Distributional I'). Assume that I' = g and V(N y) = X+ ado(y). If k. € N
and A, < 1 are given and o > 0 is determined from
2v/1 =\,
k.
then the assumptions in Theorem 2.10 are satisfied with
¢*(y) = e~ FVIT 2]

o =

and
¢(0) =0, D.®(0)(x,y) = e~ "V MWl sin(k,z),
A0) = A, M0) =0, A0) = —yko/1— \,.

Moreover, the solutions ®(e) take the form

O(e)(x,y) = Z ak(s)e*km“’l sin(kx).
kEN

Corollary 2.14 (Case P2, Distributional I'). Let I' € L>®(R) and V(A,y) = Ajy>p + B1Lyj<p + ado(y).
Suppose furthermore that k., € N and A\, <1 are given. If

o (Case 8 >1)b,a > 0 are determined from

e (Case f < 1)b> 0 is given and a > 0 is determined from
o 2v/1 -8 ' V1 = Bsinh(key/1 — Bb) + /1 — A cosh(k./1 — Bb)
k* V1 = Bcosh(key/T — Bb) + /1 — A, sinh(k./1 — Bb)
o (Case 5 =1)b>0 is given and a > 0 is determined from
21 =X,
T+ VI oAkD)

then in all three cases the assumptions in Theorem 2.10 are satisfied.

Remark 2.15. Details on the construction of ¢* in Corollary 2.14, the functions ¢, and the form of the
solutions @(e)(z,y) = > ey ar(€)Pr(y; A) sin(kx) can be taken from Section 7.2.

8
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3. Notation

If f and g are elements in an ordered Banach space with f,g > 0, we write f < g (f 2 g) if there exists a
constant ¢ > 0 such that f < cg (f > cg). Moreover, the notation f < g is used whenever f < g and f = g.
We write ¢ = ¢(p1,p2,...) > 0 if we want to emphasize that the constant ¢ > 0 depends on the parameters
D1, P2, - - -- In Section 6 we are looking for solutions of an infinite dimensional system of nonlinear algebraic
equation. We consider solutions in the sequence spaces related to

I*(R) :== {a = (ar)kez | ar € R for all k € Z and ||a||122(R) = Z lag] < oo} .
kEZ

Eventually, for any r € R we set
h"(R) = {a € B(R) | ((1+ k) ar) oy € lz(R)}.
and equip the space h"(R) with the norm

r 2
lallfr @y = D (14 KD laxl”.
keZ

We also consider the subspaces
l?(R) ={acl’R):a_y = —ay, for k € Z},
hi(R) == A"(R) N IF(R).

Throughout the paper we use the notation (-,-)y to denote the dual pairing in the Hilbert space H. If
f,g € L*(U) are real-valued functions, where U C R" is a domain in R", n € N, then

92w, = /U f(2)g(2) dz

and if a,b € I?(R) then
(a,b)i2(m) = Zakbk-

keZ
If L: D(L) C H— H is a linear operator with domain D(L), we denote by

p(L) ={ e C|X\—L:D(L)— H has a bounded inverse}

the resolvent set of L. The spectrum of L is given by C\ p(L). If L is self-adjoint, then o(L) C R and the
spectrum of L can be decomposed as a disjoint union

J(L) = Uess(L) U Ud(L),

where o4 is the discrete spectrum of L consisting of isolated eigenvalues of o(L) of finite multiplicity and
Oess(L) = o(L) \ 04(L) is the essential spectrum.

4. Existence of traveling waves for bounded potentials I’

This section is devoted to the proof of Theorem 2.3. Subsequently, we affirm in Section 5 that the condi-
tions are fulfilled for special cases where V' takes the form in (P1) or (P2), thereby proving Corollaries 2.5
and 2.6. In the following we restrict ourself to solutions @ of (1.4) having the form

Oz, y;0) = > drly; A sin(ka),
keN
9
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where the y-dependent Fourier coefficients ¢ := (¢ )ren are decaying at infinity (suitable function spaces
are formulated later). Then, @ is a solution of
= Dy — (1= AVo(y) = Vi(y)) Pow + T(y)(%)z = 0 (4.1)

if and only if
1
—o) + K21 = M\Vo(y) — Vi(y))dr + Zk2r(y) (p*xdp*p), =0 forall keN.

Note that —i (¢ * ¢ * ¢) is the kth Fourier coefficient of @3, cf. Lemma A.1. The Fourier ansatz with respect
to & decomposes the operator

Ly = =05 — (1= \Vo(y) - Vi(y))o; (4.2)
into the sequence of Schrédinger operators
k d
LY = T +E(1 = AVoly) — Va(y)).-

Recall that we are working under the assumptions (L0)—(L3) from Theorem 2.3.

Remark 4.1.

(i) Notice that a necessary condition for (L3) to hold is that the operator L% satisfies the spectral gap
property
(—ck?, ck?) C p(L%) for some constant ¢ > 0

uniformly in A € I, and k € N sufficiently large.

(ii) The domain of L} is a subset of H!(R), which is the domain of the quadratic form of L%. As a vector
space, it does not depend on A. However, the graph norm on D(L’}\) is A-dependent and the embedding
D(L%) ¢ HY(R) is locally uniformly bounded with respect to .

The next lemma extends property (L3) to all values of k¥ € N by adding a projection to L’)f for k = k..
For this purpose let ker L’;z = span{¢”*} with [|¢*|| 2(r) = 1. Denote by P* the projection mapping

P ¢ = (,¢%) 29" forany ¢ L*(R)
and define by L% : D(L%) ¢ L*(R) — L?*(R) for k € N and X € I, the family of operators

. L 4 Po i k=k,
ik :{ x ot ! ’ (4.3)

Lk if k # k..
Lemma 4.2. Let I~/§\¢ = g for some g € L2(R). Then, by possibly shrinking the interval Iy, , we have that

1 1
||¢HL2(JR) S EHQHLZ(R) and HQS/HLQ(R) S *||g||L2(R) (4.4)

for all k € N uniformly in X € I, .

Proof. By Theorem VIIL.25 in [18] it follows that the map A\ + L is norm-resolvent continuous, that
is A — (L5 —1)7! € L(L?*(R)) is continuous with respect to the operator norm. Let us verify that also
L is norm-resolvent convergent to E’;i as A — \.. Note that Id +P* (L'f: —i)7t : L2(R) — L3(R)
is a compact perturbation of the identity, injective and hence bijective. Then, for A close to A, also
Id +P* (L5* —1)=1: L*(R) — L*(R) is bijective. Note that we have the identity

(£ —i+Pk*)71 = (P —71) (@ )
10
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From this we see that .
(L =7 = (Lh = )7 (AP =0)71)

Using the assumption that L’;* converges to L’;’: in the norm resolvent sense, this implies the claim.

Next we show that 0 € p(ii’;) Since adding a (compact) projection opera~t0r only changes the discrete
spectrum, we may assume by (L2) for contradiction that 0 is an eigenvalue of Llf\’;, that is L§z¢ + Pk = 0.
Testing with ¢*, which spans the kernel of L’f\z, we get (¢, ¢*>L2(R) = 0 and hence P**¢ = 0. Thus, ¢ also
belongs to the kernel of L *, which contradicts (¢, $*)2z) = 0 and the simplicity of the 0-eigenvalue of

ks
Ly:.

Finally, by (L3) we know that there exists kg € N (we assume w.l.0.g. kg > k) such that (4.4) holds for

k > ko > k.. This implies that

inf inf dist(0, (L% 0. 4.5
anf A0t ist(0,0(Ly)) > (4.5)

Now we want to extend this inequality to the remaining values of k € {1,...,ko} by possibly diminishing
0. Thus, let k € N with 1 < k < kg and assume for contradiction the existence of a sequence A, — A, as
n — oo such that there exists u,, € U(i’j\n) with lim, o tt, = 0. By norm-resolvent convergence this implies
0 € U(ﬂ’j\*), which is impossible for k # k. by (L2) and also impossible for k = k, as stated above. This
contradiction establishes (4.5) for all k& € N. Finally, (4.5) shows that the map A — ||(I~/§)_1||L2(R)%L2(R) is
bounded for A € (A, — §, A« + J) uniformly for k¥ € N. The same holds for A — ||(L’§\)_1||L2(]R)_>D(L;§)7 and

due to (ii) in Remark 4.1, also for A — |\(Z~L’§\)71||L2(R)_>H1(R). This establishes (4.4) for all k e N. O

Now, we introduce suitable function spaces and use Lemma 4.2 to reformulate the nonlinear problem (4.1)
in a setting, which makes the local bifurcation theorem due to Crandall-Rabinowitz [5] applicable. Set

X:—{¢6H2(T;L2(R))OH1(T;H( )| Bz,y) =Y rly Smkx}
keN

and

Y;{@eLQ(T;H( )| @(z,y) =D dily smkx}

keN
Moreover, we set
o )
Ly := L)+ P*,

where P* denotes the L2-orthogonal projection onto ker Ly, = span{®*} with &*(z,y) = ﬁcﬁ*( ) sin(k.z).
Recall, that the operator L) is defined in (4.2). As an immediate consequence of (L0)—(L3), we obtain the
following lemma.

Lemma 4.3. Assume that (L0)—(L3) holds true and let X € I,. There exists a bounded linear map
i;l 1Y — X with the following property: if f € Y is given and the function ® € X solves

&=L (f+P o) (4.6)

then @ solves

Ld=f
in the weak sense, that is
[ [ e - 0= M) @ vdyde — [0 a0, Bale ) do= [ [ fodyds
TJR T T JR

forany ¥ € X.

11
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Proof. Let A € I),. For g € Y the definition of ¢ := ﬂ;lg is given by

P(x,y) = Z dk(y)sin(kz)  with ¢ = (LX) " g
keN

Then Lemma 4.2 implies that @ € X and that I~/;1 :Y — X is bounded. Now suppose that & € X solves
(4.6). Then ¢, = (E’f\)_l(fk + PF ¢y, so that ¢y, € D(f/j\) = D(L%) for all k € N. In particular, we know
that

LYo = fu for all keN

and thus for Ko € N and 91,...,9%k, € H'(R) we have

Ko Ko
! 201 _ o _
;(/ Bl + K21 — AVoly)) dy <v1¢k,¢k>) > / Fetbe dy.

Taking the limit Ky — oo in the previous equation will lead to

A/}Rqﬁy%—(l—m(y)) qﬁmwydx—/qul(d@m(x,-),%(m,-»dx:/qr/RfMyd:c

for any ¥ € X due to the following estimates:

/T / 18,0, dydz < 3 164l 2 194l 2w < 1912 @yl 2l sz gen @),
keN

/T / Vo) B @] dyd < 3 [Voll oo ey k201 2 168 2

keN

< Vollzoo @yl 2l m2er 2y | 2 Ml 27 L2 (R))
/T|<V1(')¢z(mw)a o (2, ) d <D Vil g1 Vel ey 16k | a1 gmy

keN

< Vil S = N2l st ey 1 e (s )

/T/R |f¥]dydr < Z ||kaL2(R)||1/JkHL2(R) < ||f||L2(T;L2(R))|| W”L2(T;L2(R))' O
keN

Equipped with the above lemma, we use the invertibility of Ly to reformulate (4.1) as
F(o,\) =0, (4.7)
where F': X x I, — X is given by
F(9,0) =&+ Ly (I'(y)(9%)30 — P* D).

We want to apply bifurcation theory to Eq. (4.7). Clearly, F(0,A) = 0 for any A € I, and the line
{(0,\) | A € I,,} constitutes the line of trivial solutions from which we aim to bifurcate at A = A,. The
following lemma collects the necessary properties of the map F'.

Lemma 4.4. The map F : X x I, — X is a C*°-map. Moreover the following holds:

(i) The linearization of F about ¢ = 0, given by
DgF(0,\) =1d—L'P*: X - X

is a Fredholm operator of index zero. In particular D F (0, \,) = Id—P*. The kernel of DeF(0,\) is
trivial for A € I, \ {\:} and it is given by span{®*} if A = A,.

12
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(ii) The mized second derivative of F' about ® = 0 is given by
D% \F(0,)) = Ly'Voo2L ' P X — X.

Proof. Let us first verify the mapping properties of F' by checking that (#3),, € Y for ¢ € X. First note
that @ € X implies

19leo = sup | Sty sin(ka)| < D lonllzem < D I9elam ey
T€RYET  pen keN keN
1\3 3 (4.8)
< (X ) (X Flolig)” S 10l
keN keN
and, using |cos(kz)| < 1,
4 1/4 4 , % %
([ [10attdydz)™ < 3 onl oo = V27 3 bl éullzace) S 3 K16 gy 60 oy
TJR keN keN keN
by the Gagliardo—Nirenberg inequality, cf. [10]. Using a triple Holder inequality we obtain that
1 1 3 1
I 8 8 _ 3
([ 1ot dyaz)® < o(F Rk (3 Klanlz)* (30 42)
T /R keN keN keN (4.9)

1 3
5 ” QH;II(T;HI(R)) ” ¢||1%12(11‘;L2(]R))'

Hence, for @ € X we have (03),, = 362d,, + 6082 € L*(T; L*(R)) C Y and thus the mapping properties
of I' are proved.

The differentiability properties of F' with respect to @ also follow in a similar way from ¢ € L>®°(T x R)
and @, € L*(T x R). This can be seen as follows: the (formal) first/second derivatives of F' with respect to
@ are linear/bilinear operators and contain terms of the form abc,, or ab,c, where a,b,c € X. Based on
the estimates

2
/T / abaca” dy do < lallZa b2 e e 2

2
[ aberal? dyda < JalE bl s e

we find in view of (4.8) and (4.9) that the first/second derivatives of F' with respect to @ exist, are bounded
linear/bilinear operators from X to Y, and depend continuously on @ and A. Due to the cubic nature of the
nonlinearity, derivatives of F' of order higher than two with respect to @ are independent of ®.

The differentiability properties of F' with respect to A follow from

It = Ly Iy = Ly ey (4.10)
and due to i;l 1Y — X and V592 : X — Y, we see that the resulting operator on the right-hand side of
(4.10) is indeed a bounded linear map from ¥ — X. Moreover, (4.10) explains the formula for D% , F(0, )
in (ii).

Finally, the formula in (i) shows that DgF'(0,A) is a compact perturbation of the identity, and hence
Fredholm of index zero. Let us compute the kernel of DgF (0, A). If ¥ € X satisfies DgF(0,\)¥ = 0
then according to Lemma 4.3 we have that ¥ is a weak solution of Ly¥ = 0. Then, for A # A, we
have ¢, = 0 for all £ € N and hence ¥ = 0. For A = X\, we have ¢, = 0 for all £ € N\ {k.} and
Yr, € span{¢*} so that ¥ € span{®*} as claimed. Notice finally that DgF'(0, A\,) = Id ff/;*lP* =Id-P*
since range P* = span{®*} is the eigenspace of Ly, corresponding to the eigenvalue 1. This finishes the
proof. O

13
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Remark 4.5. Let us briefly describe the difficulty that arises when one considers the bifurcation problem
for V(A y) = A\V(y) with V =V, + V4, i.e., when multiplication with the bifurcation parameter is extended
to the distributional potential V7. In this case one already obtains a problem in verifying the C''-property
of the map F. Formally one finds

Dy\F(®,)\) = —L' V2L N (I (y)(9°%) e — P* ).

As above, we would expect to have E;l‘/&%Ii;l :Y — X as a bounded linear map. But this is not the case,
as a calculation in the case where Vy(y) = 1 and Vi (y) = ady(y) shows. Namely, let A = L;':Y — X and
B =Vd? Then B: X — H-YT; H~'(R)) and C = Ly ' : range(B) — H**(T; L*(R)) N HY/*(T; H'(R)) ¢
X, i.e., we are missing a half-derivative in the regularity gain.

The advantage of formulating the problem (4.1) as F/(®,\) = 0 relies on the fact that its linearization
about @ = 0 is of the form identity plus compact operator, which provides the Fredholm property for free.
Applying the Crandall-Rabinowitz theorem (cf. e.g. [5] or [11, Theorem 1.5.1]), we prove that assumption
(L0)—(L3) on the family of Schrédinger operators L% are sufficient to guarantee the existence of nontrivial
small-amplitude solutions of (4.1) provided a certain transversality condition is satisfied, which we can
formulate in terms of the potential Vp, see (2.2).

Proof of Theorem 2.3. Recall from Lemma 4.4 that DgF(0,\.) = Id—P* : X — X. More-
over, DgF(0,)\,) is a Fredholm operator of index zero with a one-dimensional kernel spanned by &*.
Correspondingly, we can split the underlying space as follows:

X = span{®*} @ span{&*}*12 = ker(DgF(0, \.)) @ range(D s F (0, \.)).

Hence, according to the Crandall-Rabinowitz theorem, the existence of a local bifurcation branch of
nontrivial solutions of (1.4) follows provided that the transversality condition

D2%,F(0,\,)®* ¢ range Do F (0, \.) = span{ &*} 12

is satisfied. In view of f/;*l ¢* = &* and the symmetry of f/;*l (which follows from the self-adjointness of
L’i* , f/;*) the transversality condition holds since

(D3, F(0,\,) 9%, ") 2(rxR) = (LyVo®s,, ") p2(rxr) = (V0 Pras @) L2(TxR) = _Wk2<V0¢;a¢;>L2(R) #0

due to assumption (2.2) of the theorem. This finishes the proof of Theorem 2.3.

Now, we are going to state the bifurcation formulas with the help of the Lyapunov—Schmidt reduction
(cf. [11, Theorem I1.2.3]). The Lyapunov—Schmidt reduction theorem in our context reads as follows:

Theorem 4.6 (Lyapunov-Schmidt Reduction, [11], Theorem 1.2.3). Let F : X x I — X be a C*™-map
and X = N @& N*22 with N = span{®*} = ker DgF(0,)\,) and N\, € I. There exists a neighborhood
OxI'C{(P,N) € X xRy} of the bifurcation point (0, \y) such that the problem

F(o,\)=0 for (&,\)eOxTI
is equivalent to the finite-dimensional problem

nEed*, \) = P*F(ed" +¢(eP*,A),\) =0 (4.11)

14
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for functions n € C=°(On x I';N), ¥ € C®(On x I'; N*12) where Ox C N is an open neighborhood of the
zero element in N. One has that

and solving (4.11) provides a solution
O =cd" +Y(ed*, \)

of the infinite-dimensional problem F(®,\) = 0.

We have the following Fréchet derivatives:

DgF(9,\)0* = ¢* + L (I'(y)3(9°D*) e — P* 0%,
D3 F(®,N)[0", &°] = Ly (I'(y)68(2*)?)
DaaF (2,007, 0%, 0% = L' (I'(y)6(2")%) ,

According to [11, Section 1.6], we have that

1 (D34 F(0,\,)[9*, D], ") L2(TxR)
2 (D3\F(0,\) 9%, &) 1o (1xr)

A0) =

In view of F' being cubic in @ it is clear that )\(0) = 0. In this case the second derivative is given by

)\(0) _ 71 <D?§5¢q577(0a )\*)[(15*’ o7, ¢*]’ ¢*>L2(’J1‘><]R)
3 (DZAF (0, M) D%, D) 127y

(4.12)

Proposition 4.7. Let {(®(g), Me)) | |e] < eo} C X x Iy, be the local bifurcation curve found in Theorem 2.3
corresponding to the bifurcation point (0, \.). Then

37 Je T(W)(¢7) (y) dy
2 [pVo(y)(¢*)(y) dy

AMO)=0  and  A0)=

Proof. As already mentioned, the cubic nonlinearity of F' implies already that /\(O) = 0. We are left to
compute the second derivative of A at the origin. According to the formula in (4.12) we need to compute
the third derivative of n with respect to @ evaluated at (0, \.). As for instance in [11, Eq. (I.6.5)] we obtain
that

D:;Sqf'@n(ov )‘*)[¢*7 (15*, (25*} = P*D:;B(P(PF(O? )‘*)[95*7 é*’ QS*] + 3P*D%¢¢F(07 )‘*)[95*7 Dgﬁéw(ov )‘*)[¢*7 (25*]]
Again, since F is cubic in @, we have that D% ;F(0, ) = 0, whence
<P*D3§¢¢F(O’)‘*)[¢*v o7, é*]’ ¢*>L2(T><]R)
(DHAF (0, M) D%, D7) 121y

1
3

1 (D% paF (0, \)[ 9%, 0%, 9], ") L2(TxR)
3 (DAF(0, ) 9%, 9*) 2 (7xr)

A0) = —

We have that

<D?<;5<P¢F(0’ )‘*)[@*7 o7, é*L ¢*>L2(’J1‘><]R) = <L)7\*1 (F(y)G(@*)?’)Ix’ ¢*>L2(’]1‘><]R)'

Using the symmetry of L A, together with E;*l o* = ¢* we obtain that

(Dhoa PO 8 8], 5} oy = 6 0) (97, 8 ) s2imy = —572 | D)) () dy

15
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and we know already that the denominator in )\(0) is given by

<D%¢/\F(0a As) D7, ¢*>L2(TXR) = (Vo(y) 274 ¢*>L2(’JI‘><R) = —ka/RVO(y)(fﬁ*)Q(y) dy.
Summarizing, we conclude that

3 Ja T W)(¢*) (v) dy

MO = =5 T @ ) dy

O

5. Examples for regular I

In what follows, we consider specific examples of potentials V' and prove Corollaries 2.5 and 2.6, which
state the existence of traveling waves of (1.4) in the specific case when the potentials are given as in
(P1), (P2), respectively. Both Corollaries 2.5 and 2.6 are immediate consequences of Theorem 2.3 and
Proposition 4.7, provided conditions (L0) — (L3) are satisfied.

Recall that V(\,y) = AVo(y) + Vi(y) where in case (P1) we have Vo(y) = 1, Vi(y) = ado(y) and in
case (P2) we have Vo(y) = 1jy>p, Vi(y) = Bljyj<p + a@do(y). The transversality condition (2.2) is trivially
satisfied, since in both cases V) > 0 and # 0. It is also clear that (L0) holds true. The beginning of this
section will be valid both for (P1) and (P2) since at the general level we may consider (P1) as a special case
of (P2) with 8 = A. In the subsequent subsections the considerations will split according to the two cases.

Let us consider the operator

d2
LY = “aE T K2 (1= ALy 55 — By < — @do(y))
with A, 8 < 1. According to [4] the operator L% : D(L%) ¢ L?(R) — L?(R) is self-adjoint on the domain
D(LY) ={¢ € H'(R) | ¢ € H*(—00,0) N H*(0,00),¢'(01) — ¢'(0-) = —k*ag(0)};

thereby (L1) is fulfilled. Moreover, o¢ss(Li) = [k*(1—)), 00) according to Lemma A.5. Next we consider the
point spectrum of Ly, i.e., the eigenvalue problem of finding ¢ € D(L%) with LY¢ = k%u¢ where ji = k?p is
the actual eigenvalue. Setting A = A+ p and 5 = 8 + p the eigenvalue problem then reduces to

{‘15” + R (1= Ay 5 — By )9 =0, y € (—00,0) U (0,00),

¢'(0+) — ¢'(0=) + k2ag(0) = 0. (5.1)

For reasons that will become obvious in the subsequent discussion we suppose x to be so small that X, 5 < 1.
In Lemma A.6 in the Appendix we show that this problem is solvable (with a one-dimensional eigenspace)

if and only if
ko V1 — Bsinh(ky/1 — b) + /1 — Acosh(kv/1 — jb)

= = = = = —. (5.2)
21— 5 /1— Beosh(ky/1— Bb) + /1 — Xsinh(k\/1 — j3b)
Now we will split the discussion into subsections according to the cases (P1) and (P2), verifying (L2) and
(L3) separately.

5.1. (P1)V a d§-potential on a constant background

Here we take Vp = 1 and Vi = adp and V(\,y) = X + ado(y) with @« > 0 and A < 1. In the
subsequent results of Lemma 5.1, Lemma 5.2 we verify that the family of linear operators L’/{ satisfies also
the assumptions (L2) and (L3) in Theorem 2.3. Since (P1) is a special case of (P2) with A = 5 we see that

the eigenvalue condition (5.2) becomes
ka

21—\

~1. (5.3)

This leads to the following lemma.
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Lemma 5.1. Let us fiz a wavenumber k, € N and let A, < 1. We determine a > 0 such that

RN o

Then there exists an open interval Iy, C R containing \. such that
dim ker Llf\’; =1,
and ker L5 = {0} for any (k,\) € N x I, with (k,\) # (Ku, \s).

Proof. Since we are considering the zero-eigenvalue of L5 we have p = 0 and XA = \. Together with our
choice of a the eigenvalue condition (5.3) becomes

Recall that k£ € N is integer valued. Therefore, choosing a sufficiently small interval I, C (—oo,1) that
contains A, the eigenvalue condition is satisfied for A € I, and k € N if and only if A = A, and k = k..
Moreover, for k = k, and A = A, the eigenspace is one-dimensional. [

It is clear that the kernel of Ll)t is spanned by the L?(R)-unitary element

¢ (y) = \/me_k*\/l—)\*\y\

since L];i #* = 0in R\ {0} and it satisfies ¢*'(0+) — ¢*'(0—) + ak2¢*(0) = 0. The above lemma ensures that
assumption (L2) is satisfied. The following lemma concerns the spectral properties of L’/{ and shows that

assumption (L3) holds true.

Lemma 5.2. There exists an open interval Iy, C R containing A\« such that the following holds for all
k >3k, and all X € I, : if Lk¢ = f for some f € L*(R), then

1 1
H¢||L2(R) s ﬁ”fHLQ(R) and ||¢'||L2(R) S %”fHL?(]R)'

In particular, there exists a constant ¢ = c(k.,|Ix,|) > 0, depending on k. and the size of the interval Iy,
such that

(—ck?,ck?) C p(L%)  for every k> 3k., A€ Iy,.
Proof. We show that for any A < 1 we have

186122 25 (107122 ooy + 16”1220 00)

16(\, —
Oé

2 2 N k2 ’ |2
21— N (K2 -4k - 1M1 Z 2 sy + T A=A ) KONz ),

which proves the assertion. We have that

0 %)
150l ey = [ Lk dy+ [tk

— 0o
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For the first integral on the right hand side, we compute

0 0
/_ (Lh)* dy = /_ (—" + k(1 — N)6)? dy
0
- / 61 — 2K2(1 = \)¢ + K (1 — A)262 dy

= 162 gy + 22— MO 2y + R0 = N2l oe ) — 21 = N (0-)6(0),

where we used integration by parts. Similarly, we obtain that

/0 (L56)2 dy = 16”1220 oy + 26 (L = N6/ 12200y + KL = N2 [6]22(0,00) + 2K2(1 = N)6(04)6(0).

Taking the sum of the two integrals and using for ¢ € D(L%) that

¢'(04) — ¢'(0-) = —k*agp(0)
we find that

”L ¢||L2(]R) _||¢”||L2( 00,0) + ||¢N||L2(o 00) + 2k2(1 - )||¢ ||L2(R + k4(1 - )‘)2||¢H%2(]R)
2

5.5
= 20- N (04 - $0))". o

A simple computation together with Young’s inequality implies that
0 2<2oo///d< 12 1//2
$OF <2 [ 106 1dy < (161320, + 219" 200
for any € > 0. A similar estimate holds for |¢/(0_)|*. Therefore
/ / 2 ’ 2 / 2
16/(04) = ¢/ (0-)* <2 (19/(04)° +16/(0-))
1 1
/112 11|12 /712
<2 (410 Bage) + 16" B oo + 219" P ) -
Inserting the latter into (5.5) yields
A=A > 2
12500 = (1= SE22) (16 ey + 100
2e
201 = N0 = )6 2agzy + K1~ 0160
The choice ¢ = 3(1 — ) = 2ak? + w implies the claim. O

Collecting Lemmas 5.1 and 5.2, we infer that there exists an open interval Iy, C Ry containing A, such
that conditions (L0)~(L3) are satisfied, which concludes the proof of Corollary 2.5. The formulas for A(0)
and A(0) follow directly from Proposition 4.7.

5.2. (P2)V a d-potential on a step background

Here we take Vp(y) = 11y1>6s Vily) = /Bl\y\<b + adp(y) and V(N y) = /\1\y|2b + ﬁ1|y|<b + adp(y) with
a > 0, B, < 1. The subsequent two results verify that the family of linear operators L§ satisfies also the
assumptions (L2) and (L3) in Theorem 2.3. They are the counterparts to Lemmas 5.1 and 5.2

18
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Lemma 5.3. Let us fiz a wavenumber k, € N and let A, < 1. We determine o > 0 such that

koo /T— Bsinh(k./T— Bb) + VI — A, cosh(k,/T — Bb) (5.6)

2T =B /1= Bcosh(ke/T— Bb) + /1 — A, sinh(k,/T — Bb)’

Then there exists an open interval I, C R containing A, such that

dim ker L’;’; =1,
and ker LY = {0} for any (k,\) € N x I, with (k,\) # (ku, As).

Proof. As before we are considering the zero-eigenvalue of L’j. Hence we have g = 0 and X\ = )\, 3 = 3.
Then (5.6) amounts to L’f\z having a simple zero eigenvalue, cf. Lemma A.6. It remains to show that for no
other value of A € I, and k € N there is a zero eigenvalue of L’/{. First note that for A in a bounded interval
of (—o0, 1) there are only finitely many values of k € {1,..., K} which potentially also fulfill (5.6) since the
right-hand side is bounded in k and the left-hand side tends to infinity as k¥ — oo. Now we observe (by a
standard calculation) that for fixed A = A, the right-hand side of (5.6) divided by k is monotone decreasing
in k. Hence, for given A, no other value of k € {1,..., K} than k, fulfills (5.6). Finally, since k € {1,..., K}
needs to be integer valued, we can find a sufficiently small open interval I, C (—oo, 1) containing A, such
that (5.6) is fulfilled for (A, k) € I, x N if and only if (A, k) = (A\s, ki). O

Lemma 5.4. There exists an open interval Iy, C R containing . such that the following holds for all
sufficiently large k € N and all X € Iy, : if Lk¢ = f for some f € L*(R), then

1 1
H¢||L2(R) S ﬁ”fHLQ(R) and ||¢,||L2(R) S *||fHL2(JR)- (5.7)

In particular, there exists a constant ¢ = c(kx, |Ix,]) > 0, depending on k. and the size of the interval Iy,
such that
(—ck?,ck?) C p(L%)  for every k sufficiently large, \ € Iy, .

Proof. The proof consists of two parts. First we determine an interval (—ck?, ck?) C p(L%) for all A € Iy,
and all sufficiently large k. This implies the first part of the estimate in (5.7). In the second part of the proof
we will show the remaining part of (5.7).

Part 1: Recall that oess(L5) = [k*(1 — ), 00), which is consistent with the desired result provided we
choose Iy, in such a way that it has a positive distance from 1. Subject to this observation we take the
bounded interval Iy, from Lemma 5.3 and diminish it in the following if necessary. Notice that (5.2) describes
all eigenvalues of L% of the form fi = k?p, where 4 is so small that SUPjer, =X pu} <landfB = f+u < 1.
Now observe that uniformly for A € I, and p € [—po, o] for small g > 0 the left-hand side of (5.2) tends
to oo as k — oo whereas the right-hand side stays bounded in k. Therefore the set [—puok?, uok?] belongs to
the resolvent of L5 for all X € I, and all sufficiently large k.

Part 2: We need to distinguish the operator L} = —% +k%(1—X—ady) of case (P1) from its counterpart

in (P2). Within this part of the proof let us denote it by L’f\ﬁ = —%22 +k2(1 - ALy >p — By j<p — o).

Using Part 1 we find )

IS 5) Moz € g S
AT TIETEET  dist (0,0 (LY )

1

ﬁ-

Therefore, with f € L*(R) and ¢ as in the hypothesis of the lemma, we get [[¢]lz2®) S k%||f||L2(R)~ The
estimate for ||¢'||2(g) is obtained as follows. We have

LY 56 = L56 + k(=B + N1yj<6 = f
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from which we deduce by using ||(L5) || 2, ;1 < 7 for k> 1 from Lemma 5.2
_ 1 1
16| 2y < IEX) 2o m If = B2 (=B + N1y <0l 2@y S E(”f”LQ(R) + B9l 2 ) S EHf”LQ(]R)
where in the last step we have used the result from Part 1. The finishes the proof of the lemma. [J

Due to Lemmas 5.3 and 5.4 conditions (L0)—(L3) are satisfied. This concludes the proof of Corollary 2.6.

6. Existence of traveling waves when [’ is a delta potential

Subject of this section is the proof of Theorem 2.10 when I' = ~dg is given by a multiple of a delta
potential and
V(A ) =AVo(y) + Wy) + ado(y),
~—_———

=Vi(y)
where Vo, W € L*°(R) are even. The equation for traveling wave solutions (1.4) is then given by
— By — (1= AVo(y) = W(y) — ado(y)) Paz + 700 (y) (2°),, =0 (6.1)

and can be written as a linear partial differential equation on T xR\ {0} equipped with a nonlinear boundary
condition on T:

=y — (1= AVo = W(y)) @z = 0, (z,y) € T x R\ {0}, (6.2)
By (2,04) — &y(2,0-) = 92 (a® + %) (2,0), zeT.

In what follows let us assume that @ is even with respect to y. We seek for solutions @ of the form

@(.13, y) = Z akPr (y; )‘) Sin(kx)’ (64)

keN

where ¢x(;A) € HY(R) N H2(R\ {0}) is an evenly extended solution to the linear problem

L&k(ﬁk(y;)\) =0 on (0,00) with  ¢r(0;A) =1 (6.5)
and
d? 9
L(/)\,k = T + k(1= AVo(y) — W(y)).
Thus ansatz (6.4) already solves (6.2) and its remains to determine a = (aj)keny such that (6.3) is also
satisfied. It will be convenient to parameterize the sequence (ay) over Z instead of N by setting a = —a_j.

In this way ®(z,y) = 3 > ,cz arxdr(y; A) sin(kz). Here we have defined ¢_x(; A) :== ¢y (+; A) for k € N. Then,
we shall see that for s > g the existence of a traveling wave solution @ in the space

X, = H*(T; L*(R) N B~} (T3 H'(R) N C(R; H* 2 (T)) N C* (R H*4(T))
follows from the existence of a sequence a € hj(R) satisfying the boundary condition
25 b}, (04 ) = —k? (aak - %(a ¥ ax a)k) for all k € N. (6.6)

Recall that the kth Fourier coefficient of @3(z,0) is given by —1(a * a * a); (cf. Lemma A.1). Notice that
for s > % we have the embedding

X, = X = H*(T; L*(R)) n H(T; H(R)) N C(R; H*(T)) N C*(R; H*(T)).

As in the previous section we aim to apply bifurcation theory with respect to the parameter A to obtain
the existence of nontrivial solutions a € hj(R) of (6.6) for s > 5 by the Crandall-Rabinowitz theorem. Recall
that this time we are working under the assumptions (L0)—(L3) from Theorem 2.10.
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Remark 6.1. Existence and properties of the decaying solutions ¢ (-; A) of (6.5):

(i) Due to (L1) the problem L§ xéx = 1;_2,_1j on R has a unique H?(R) solution. Its restriction to [0, c0)
satisfies (6.5). The fact that ¢x(y; A) — 0 exponentially as y — oo can be seen as follows: Since L())" &
is a self-adjoint operator with 0 € p(Lak) and the resolvent set is open in C there exists ¢x » > 0 such
that (—cga, crn) C p(L&k). Set x(y; A) = e®k¥y.(y; A). Then

LY we(ys \) + Buto(y; \) = €Y1y _y), (6.7)

where By = 20 d%z/} + 07¢). One can show that By is L()\,kfbounded in the sense that there exist
ag, br > 0 such that

||Bk7/)||2L2(R) < akHd’”zL%R) + kaLS,kw”%?(R) for all 1+ € H2(R)~

4
In fact, if by > 0 is fixed, then a) = % + 852k2(|1 — AV — W /|0 + 26} For fixed by, € (0,1) let us
choose §; > 0 so small that

2 2 2 2
ay + bkck’)\ < Cjga-

Then (—¢x x, Ckn) + iR C p(Lg‘,k + By,), where ¢\ = ¢, — \/ag + bici 5, cf. [6, Theorem 2.1 (ii)]. In
particular, 0 € p(Lé‘yk—f—B) so that there exists a unique solution 1, € H?(R) of (6.7). The boundedness
of 1), then implies that |¢x (y; )| < €%k decays exponentially on the half-line [0, 0o). This result is also
known as “exponential dichotomy”. Assumption (E3) may be interpreted as some kind of generalized
uniform exponential dichotomy with respect to k € N and A € I,,.

(ii) In the specific examples (P1) and (P2) which we consider at the end of this section, the family of
ansatz-functions (¢ (+; \))gen satisfies a true uniform exponential dichotomy with respect to k € N and
A € I,,; that is, there exists C,d > 0 independent of k € N and A € I, such that |¢x(y; \)| < Ce™%
for all y > 0. This leads to an exponential decay in y-direction of the traveling solution @ of (1.4) and
in particular it implies (L3).

(iii) Notice also that ¢ (0; ) # 0, since otherwise (by an odd reflection around zero) we would obtain an
eigenfunction of L()J‘} i for the eigenvalue 0. This is excluded by assumption (El) Likewise we see that

¢5.(0; X) # 0 (using an even reflection around zero).
Remark 6.2. If V5, W are bounded, even functions and there exists v > 0 such that
1—-AV(y) —W(y) >0 forall A € I, ,y € R,
then assumption (L0), (L1), and (L3) are satisfied. Clearly, if 1 — AVy — W > @, then Lé’k is a self-adjoint
operator with O'(Lé’k) C [k*v,00); thus 0 € p(Lé’k) and (L1) is satisfied. As explained in Remark 6.1(i),
condition (L1) implies the existence of a solution ¢z (-, A) € H?(0,00) with
— O + k(1= AVo(y) = W(y)ge =0 on (0,00) (6.8)

and ¢ (0; A) = 1. Multiplying (6.8) with ¢ and integrating over the half line (0, c0), we obtain that

— 0 = [Py [T v - Wot dy (©.9)
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On the other hand, multiplying (6.8) with ¢} and integrating over (0, 00) yields

(6,)(04:1) =~k / T = Ve — W)(2) dy

— —Qk/ k1= AVo — Wopdh /1 — AVo — W dy
0

<k 1—AVO—W||OO(/ |¢z|2dy+k2/ (1—AV0—W>¢idy)
0 0
= KT Ao — W e (02 0)

where we used relation (6.9) in the last equality. We deduce that ¢'(04;\) < 0 and

|60 )] < El[V1 = AV = Wloo. (6.10)

Estimating the L2-norm of ¢x(-; \), we obtain that

1

1.~ ° 1
1G5 A = VAo AIB < 3 [ (1= Ao = W)6t do < Sloh(020] € S VT =35 = W .

where we used (6.9) and (6.10). In particular, we find that ||¢g(-; \)|]2 < 1 as claimed in (L3).

_kQ

For s > 0 denote the linearization of (6.6) around a = 0 by
Ay hi(R) C hi (R) — B *(R), (Axa)y == ASay, for k € Z,

where
AL = 20043 \) + k2o for k € Z.

Then (6.6) can be written as

k}2
Axa —n(a) =0, where n(a), = %(a QK Q). (6.11)
For m € Z let us denote by e™ € l%(R) the sequence, which satisfies e]* = 0 for & # Zm and
em = —e = %

Lemma 6.3. Assume (L0)-(L3). Then

[Ny

1
lor (s Mllzeemy S k2, 1RGN 2@ Sk 6165V o) S K (6.12)

uniformly for X € I, . In particular, |¢;,(0; N)] S |k:|% and consequently AY = ak? + O(k%) as k — £oo.
Proof. By a result of Komornik, cf. [13], the estimate

[tfloo < Clluf2

holds true for every solution u of —u"”+¢(y)u = 0 on (a, b) with the constant C' = max{ﬁ1 Mall L1 ap)s \/%}

We apply this result to the solutions ¢ (-;\) of (6.5) with ¢ = k*(1 — A\Vy — W), a > 0 and b = a + ¢ with
c:=2(y/|[1 = AVo — W] sk)~ L. Then

12
63/ 19l 210y < 68T = AVo = W ve = 6V2VEYT = AV = Wiloo = —=

s}

22



G. Bruell, P. Idzik and W. Reichel Nonlinear Analysis 225 (2022) 113115

and thus for a constant C only depending on ||[1—AVo—W || we have ||¢r (3 \) | oo (a,p) < k%C’Hqﬁk(-; Ml L2 (a,p)
< k2 by (L3). Since a > 0 was arbitrary we obtain the first part of (6.12).
Multiplying (6.5) with «, v’ and integrating from a > 0 to co we get

/ TR AVo(y) — W) buly: A + 6l (s )2 dy = — s Nt (a: ), (6.13)

a

[ 2 AVo0) = W )0n 5 )64 05 0 dy =~ (ai (6.14)
respectively. Using (L3) and applying the Cauchy-Schwarz inequality to (6.14) we find

65 Mo S K265 M) £2(0,00) (6.15)

and from (6.13), (6.15) we get

163 (5 M7 2 0.00) S K% 4 1108 (5 M) | o0 (0,00 164 (5 A [ 2% 0,00
1
S K+ 110803 Ml oo 0,000 Rl 87 (5 M) 12 g 00

The L>°—estimate from the first part of the lemma leads to
/ 2 < 1.2 EXIPY; 3 2 2 / 2
1055 M 220,000 S B+ F2 D15 M F2 (0 00y S K+ Ck” + €l 0, (5 M T2 (0,00

where we have used Young’s inequality with exponents 4/3 and 4. This implies the second inequality in
(6.12). Inserting this into (6.15) we obtain the third inequality in (6.12). O

Lemma 6.4. Assume (L0)~(L3) and let s > 0. Then the operator Ay : hi(R) C h;fQ(R) — hng(R) is
self-adjoint. Its spectrum is discrete and consist of the values (A%)ren. Moreover ker Ay, = span{e**} and
ker Ay = {0} for A € I\, \ {\}.

Proof. Due to Lemma 6.3 and since ¢_j, = ¢y, for all k € Z one can verify that A : hg(R) C h§72(R) —
h§_2(R) acting like an infinite dimensional diagonal matrix is self-adjoint. Using the characterization of
the spectrum via Weyl-sequences one sees that Ay has the spectrum o(Ay) = clos{A% : k € N}. Due to
Lemma 6.3 the set {A% : k € N} is discrete and hence o(A%) consists of the set of eigenvalues {A% : k € N}.
Finally, let us determine the kernel of Ay. On the one hand, a € ker A, if and only if there exists k € N
such that A = 0, and in this case a = e* (here we use that A¥ = A;"). On the other hand, using the
characterization of the domain of Ly from Section 5.1 we know that Ly¢ = 0 if and only if ¢(z) = ¢r(Jz|; \)
and A% = 0. Thus, bringing both facts together and using assumption (f/Z) we obtain the final claim of the
lemma. O

Similarly as in (4.3) we define the operator

fi)\ = Ay + P~

where P*a = ay,, e**.

Lemma 6.5. Assume (L0)(L3) and s > 0. Then we have that 0 € p(Ay) for all X\ € I, and hence
At h§_2(R) — hi(R) is a bounded linear operator. Moreover, if f € hi(R),

solves

s > 3 is given and a € hi (R)

a= A (—yM(f) + P*a) where M(f)g = k> fr (6.16)
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then ®(x,y) == > ey axdr(w; A) sin(kx) satisfies ¢ € X, and solves

for F(z,y) = > ey fedr(y; A) sin(kx) in the weak sense, i.e.,

/T/]R Dy ¥y — (1= AVo(y) — W(y)) Ppe ¥ dy do + /T(ozéﬁm(a:,O) + Y Fy(2,0)) ¥(z,0) dz = 0

for any ¥ € HY(T; H*(R)).

Proof. Lemma 6.4 says that ker Ay, = span{e**} and ker Ay = {0} for any A € Iy, \ {\.}. We need to
show that 0 € p(A,) for any A € I,. Let b € hng(R) be arbitrary, then Aya = b if and only if

Aﬁak :bk, if k#k’*,
A’f\ak—kak:bk, if k=k,,

which is equivalent to

1

1
— b, if k#k, and  ap, = ——Dby,.
k # k AF 1 k

_ (6.17)
A§

ak

Due to Lemma 6.3 we obtain that for any b € hg_z(R) the sequence a defined by (6.17) belongs to hj(R)
and solve Aya = b; whence 0 € p(4)).

Now suppose that f € hj(R) with s > 5 and that a € hi (R) solves (6.16). The regularity of @ follows
from Lemma A.3. Moreover, (Axa)r = —vk?fx and hence

205 (045 Nag + ak?ay, = —vk? fy. (6.18)
Using that
LG xér =0 on R\ {0} for all k € N,

we deduce by testing with agyp € H'(R) and summing for 1 < k < Ky that

Ko
0=% / ardl + K21 — AVa(y) — W () oxtbn dy + an($(0+51) — 6405 ) (0).
k=1

Since ¢y (+; A) is even with respect to y we obtain by (6.18)

Ko
0= [ andhos + KL= AValy) = W ()t dy — aban 6u(0:0) 61(0) = 14 i 0).
=1 /R N——

=1
Taking the limit Ky — oo in the previous equation will lead to

o:/T/Rqsywy—(l_Av(xy)—W@» qsmw/T(aqsm(x,o)+7Fm(x,0>)¢(x’0)dx

for any ¥ € HY(T; H'(R)) due to the following estimates:

/T / 18, 0y dyde < 3 lawdi g 104l 2 < 18l o Pl 2o
keN

< CHath(R)H W||L2(’JI‘;H1(R))7
/T / (1= \Voly) = W () Bua W] dydr < 3711 = AVo — W ooy k2l e 168 2

keN
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<1 = AVo = Wl poo ) | 2l 22y | Y ll 2 (ms 2 (m))
< Cllallpz@)ll Pl L2 ;2 (m))

/T | B (2, 0) U, 0)] dr < sp || B (-, 0)l| 2 | ¥ 9) 2,
Y

< 12llc@mzmn | ¥ llom;L2(ry)
< Cllal

h%(R) H W”C(]R;LQ(’]I‘))a

[ el 0) 00l o < 151, 5. [Pl eszeny

together with the continuous embeddings H'(T; H'(R)) < L*(T; H'(R)) N C(R; L*(T)) and h§(R) C
hy*(R) € h3(R) C hi(R) since s > 3. O

In the same spirit as in Section 4, let us reformulate our problem (6.11) in a way suitable for applying
the Crandall-Rabinowitz theorem. Using the above lemma, Eq. (6.11) is equivalent to

G(a,\) =0,
where the function G : hf(R) x I, — h{(R), s > 5. is defined by

G(a,)) = a+ A} <7%M(a*a*a)fp*a) and  M(f)p=k>fp for fehi(R).  (6.19)

Remark 6.6. Notice that hi(R), s > 1 is a Banach algebra, cf. Lemma A.4. Thus, for a € h;(R) the
nonlinearity a*ax*a stays in b (R) and M(axaxa) € h§_2(R). Hence, in order to control the nonlinearity in
G(a, ), it is necessary that A;' is a bounded operator from h;‘Q(R) to h(R). Otherwise, assume that
we would only have that A} is bounded from h§72(R) to h;l (R) where s’ < s, then the mapping G
is merely bounded from hg(R) x Iy — h;l (R). In this case, the Fréchet derivative has the property that
D.G(0,A) : ki (R) — h(R) (cf. Lemma 6.7(ii)) but is no longer a Fredholm operator from hj(R) — hgl (R)
since the co-dimension of its image is infinite. The Fredholm property at A = A,, however, is important for
applying the Crandall-Rabinowitz theorem for bifurcation.

The following lemma provides the necessary preparations to apply bifurcation theory to G(a, A) = 0.

Lemma 6.7. Lets> 3. The map G : hi(R) x In, — hi(R) is a C°°-map. Moreover the following holds:

(i) The function ¢y is continuously differentiable with respect to A and ¥y (y; \) == Or¢k(y; A) satisfies
Ly kon = K*Vo(y)dw on (0,00),  9i(0;4) =0 (6.20)

and },(0; \) = k? fooo Voos dy = O(k?).
(ii) The linearization of G about a = 0, given by

D,G(0,A) =1d—A'P* : hi(R) — hi(R)

is a Fredholm operator of index zero. Its kernel is trivial for A € Ix,, X # \. and it is given by span{e¥*}
if A= A
(iii) The mized second derivative of G about a = 0 is given by

D2,G(0,)) = AY'BAT'P* : hi(R) — hi**(R) C hi(R),

where B : hg”(R) — hi(R) is the pointwise multiplication with 24 (0; A).
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Proof. (i) We are only interested in ¢y(-,\) = Or¢dr(-,A) on [0,00). To find ¢y (-,\) we differentiate
L ¢r = 0 on (0,00), ¢%(0; A) = 1 with respect to A € I, and obtain (6.20). If we define Q¢ (-, A) : R = R
as the odd extension around y = 0 of ¢r(-,A) : (0,00) — R then we see that ¢y(-,\) is given by
V(- A) = (L3 1)~ (k*VoQ0r (-, M) lj0,00)- Testing the differential equation in (6.20) with ¢, and noting that
Lé’kfﬁk =0 on (0, 00) we find

(Lo k¥k Dk) £2(0,00) = (—UhSk + Vi) |0 + (Vks LY xOk) 12(0,00) = Y3 (015 A) = O(K?),

as claimed, in view of (L ,thk, Ok) 12(0,00) = 15" k*Vodi dy = O(k?) because Vg € L>(R) and (L3).

(ii) The mapping properties of G follow from Remark 6.6. The differentiability of the cubic nonlinearity
a * a * a with respect to a is also a straightforward property of the Banach algebra property of h§ (R). The
differentiability property of G with respect to A follows from differentiability of A — ¢ (04;A) as given in
(). As in Lemma 4.4 the Fredholm property of D,(G(0, \)) is satisfied since it is a compact perturbation of
the identity and the characterization of its kernel can be seen in a similar way using Lemma 6.4.

(iii) Note that %A’j = d%\A’j\ = 241.(0; \). Since },(0; \) = O(k?) by (i) we have the mapping property
B:hi**(R) = b (R). O

We are now in a position to apply the Crandall-Rabinowitz theorem for G(a, A) : hg(]R) x Iy, — X, for
s> g in order to proof Theorem 2.10 provided that the transversality condition in (2.6) is satisfied.

Proof of Theorem 2.10. The existence result follows from the Crandall-Rabinowitz theorem applied to
G(a, ) = 0. Successfully applied, it provides an interval I, C R containing A, and a smooth curve through
(0, A) of the form

{(a(e), A(e)) | le] <eo} C R*(R) x I,

of nontrivial solutions of (6.11) with A\(0) = A, and D.a(0) = e**. The curve (a(e), A\(¢)) C h*(R) x I, then
translates via @(e)(z,y) = > ey ar(€) @k (y; A) sin(kx) and by Lemma 6.5 into the curve {(®(e), A(e)) | |e] <
g0} C X x I, of nontrivial solutions of (6.1) with the stated property. The Crandall-Rabinowitz theorem
requires that the linearization

D,G(0,\.) =1d —A'P* : hi(R) — hi(R)
is a Fredholm operator of index zero with dimker D,G(0, A\,) = 1 and the transversality condition
D2,G(0, \,)e™ & range D,G(0, \,.) (6.21)

is satisfied. The Fredholm property is already shown in Lemma 6.7 (ii) and the kernel of D,G(0, \.) is one
dimensional and spanned by e**, that is

ker D,G(0,w,) = span{ef*}.
Concerning the transversality condition (6.21), assume on the contrary that there exists b € h*(R) such that
D2,G(0,\)eM = D,G(0, \,)b.

Then,
<DZ}\G(O, )\*)ek* 5 ek*>l2(]R) = (DQG(O, )\*)b, ek*>l2(R).

Using the formulas from Lemma 6.7 (ii) and (iii) and the fact that A;:P* = P* together with the symmetry
of A;*l we obtain that

205, (0; \) = (Be*, €™ ) ;2 = (D2\G(0, Au)e", €") 12 (r) = (DaG(0, Au)b, €5 )2y
= <b - P)*b7 ek*>12(R) =0.
But due to Lemma 6.7(i) this is a contradiction to (2.6). This finishes the proof of Theorem 2.10.

(6.22)
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Similarly as in the previous section, we determine the bifurcation formulas. The Fréchet derivatives of G
with respect to a are given by

~ 3
D,G(a,\)eks = b — AT? (’yM(a *a*efr) 4 ek*)

4
3 -
D?mG(a, )\)[ek*,ek*] = —§7A;1 (M(a * efr % ek*))
D3 ,.G(a,\)[er, eP ef] = —gq/fl;1 (M(ek* * el x e"”‘*))

where M is defined as in (6.19).

Proposition 6.8. Let {(a(e),w(€)) | |le| < eo} C R*(R) x Iy, be the local bifurcation curve found in
Theorem 2.10 corresponding to the bifurcation point (0, A.). Then

A0)=0 and A0) = 4f000 Vo)L, a

Proof. The proof follows essentially the lines of the proof of Proposition 4.7. We obtain that )\(0) =0,
which is due to the cubic character of the nonlinearity and

5(0) = — L {DaaaGOA[et et k], b

3 (D%, G(0, Ay )b, ekx)

Due to Lemma 6.7(i) and (6.22) the denominator is given by

(D2\G(0, M )et= M) =2 / k*Vo(y)vi, dy,
0
and the numerator reads

3
(D3, G0, \)[e", e, ef], €M) = —SqkZ (e « e x )y,

aaa 2

Since (e** x ef x eF+),, = —3, as shown in Lemma A.2, the statement follows. [

7. Examples for distributional I’

In what follows we prove Corollaries 2.13 and 2.14, which state the existence of traveling waves for (1.4)
in the specific cases, when the potentials are given as in (P1) and (P2), respectively.

7.1. (P1)V a d-potential on a constant background

We consider the particular case when Vy = 1, W = 0 so that we have a positive constant background
potential with a multiple of a delta potential on top, i.e.,

VA y) =X+ ado(y).

We verify the conditions (L0) — (L3) of Theorem 2.10; thereby proving part one of Corollary 2.13. Let us
fix a wavenumber k. € N and a value A\, < 1. We determine o > 0 from

2¢/1 — A,
ks '
27
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Notice that the transversality condition and (L0) are trivially satisfied. Moreover, the validity of (L1) and
(L3) follow immediately from Remark 6.2, since 1 — AV — W =1 — X > 0. Condition (L2) is exactly the
same as (L2) since our operator L% is the same as the one considered in Corollary 2.5 of Case (P1). Since
the choice of a, k., A, is the same as in Corollary 2.5 condition (I~/1) holds and we are finished with treating
this example.

Now, Corollary 2.13 follows from Theorem 2.10 and the bifurcation formulas are an immediate conse-
quence of Proposition 6.8.

7.2. (P2)V a §-potential on a step background

Now, we consider the case when Vo = 1)>, W = 1< for some b > 0 so that the potential V' is given
by
V(A y) = ALy >p + By j<p + ado(y),

Again we verify the conditions (L0) — (L3) of Theorem 2.10; thereby proving Corollary 2.14. First we fix a
wavenumber k, € N and a value A\, < 1. According to Corollary 2.14 we have to distinguish between the
case § <1, 8 > 1, and 8 = 1. Notice that the transversality condition and (EO) are trivially satisfied for all
B eR.

Let us begin with the case 8 < 1. The validity of (L1) and (L3) follow immediately from Remark 6.2,
since 1 — AV — W = (1 = A)1jy;>p + (1 — B1})<p) > 0. It remains to consider (L2). But again the operator
L% is the same as the one considered in Corollary 2.5 of Case (P1) and the choice of a in Corollary 2.14 is
exactly the same as in Corollary 2.6 of Case (P1). Hence (L1) holds and this example is complete.

Next we consider the case § > 1. Here we have made the choices

b—1b=m

and
21—\,

ke
We are left to verify (L1) — (L3) of Theorem 2.10. For (L1) we need to consider the operator L’&A =
f% + k2(1 = Ay >p — Ly <p) : H*(R) — L?*(R) which is self-adjoint with UESS(L’&)\) C [K%(1 — \),0).
Thus 0 € p(L’S’A) if and only if L’g,/\gb = 0 for some ¢ € H?(R) implies that ¢ = 0. In other words: we need
to rule out that L’& » has a zero eigenvalue. This can be seen from Lemma A.6 in the Appendix if we set
o = 0 (no delta potential in the equation) and = 0, i.e., A = X and § = 3. Moreover, we need to make the
obvious changes /1 — 3 = iy/8 — 1 and sinh(iz) = isin(z), cosh(iz) = cos(x). Following the ansatz (A.1)
for the eigenfunction we obtain ¢y = dy and ¢; = d; due to the C'-matching at x = 0. Moreover, the choice
of /B — 1b = 7 results in the invertible matrices

e 0 7€7kmb
e (ﬂ(—l)k + 1—Xek\/ﬁb>'

Hence the conclusion ¢; = —d; from Lemma A.6 holds and leads to ¢; = d; = 0. An inspection of the

o =

C'-compatibility at iy = &b then yields ¢y = dy = ¢y = dg = 0. Therefore, there is no zero-eigenvalue of ng’ N
for any k € N and any X\ € (—oo, 1) and (L1) holds.

Concerning (l~/2) we need to study a zero-eigenvalue of L§. The answer is again given by Lemma A.6 in
the Appendix since we already know the invertibility of the matrices M. Hence the eigenvalue condition
is given by (5.2) with the obvious changes from the hyperbolic functions to the trigonometric function and

ka _ —+v/B — 1sin(ky/B — 1b) + V1 — Acos(k+/B — 1b)
VB=1 /B —T1cos(ky/B—1b) + 1 — Asin(ky/F — 1b)

28
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In view of v/B — 1b =  this reduces to
2v/1 =X
k
and hence L% has a zero-eigenvalue if and only if k = k, and A = \.. Thus (L2) holds. Finally, in order to
verify (L3), we compute the function ¢, which solves L5 ¢ = 0 on (0, 00) with ¢5,(0) = 1. From Lemma A.6

o =

we obtain
ok (y, \) = cos(kv/B — 1y) + icy sin(kv/B — 1y), y € [0,0],
Oy, N) = coe™MVITAY, y>b
with ¢; = 7\/%:\ and ¢y = eFVI=A(—1)k Computing the L2-norm of ¢, we find that
1 ° — (b
108 M) 2agey = / ( (/5= 1y) — Y=g sinky/F =1y ) g+ [V g

1 1/1-A 1
=—— 4+ ([—Z=+1)bp<C (14—,
2kV1— N 2 (6— 1 > - ( k>

where the constant C' > 0 is independent of k& and can be chosen uniformly for A sufficiently close to A..
This shows the validity of (L3).

The last case to be considered is 8 = 1. Also here, we are left to verify conditions (L1), (L2), and (L3).
First we find that in this case with A = A and § = 8 = 1 condition (5.2) is replaced by

@:7”1_)‘ (7.1)
2 14+ 1= Xkb’ '

which follows from a suitable adaptation of Lemma A.6. A zero eigenvalue of L’g’ y correspond to values k, A
satisfying (7.1) with & = 0 which is impossible. Since g5 (LI&A) = [k%(1—)), 00) this shows that (L1) holds.
If we recall the definition of «, i.e.,

2v/1 — A,

T k(1 + VI MEaD)

and compare with the 0-eigenvalue condition (7.1) we see that this ensures that 0 is a (simple) eigenvalue of
L% if and only if A = A\, and k = k.. Hence, (L2) holds. To see (L3) we compute (also with the help of an
adaptation of Lemma A.G) that the functions ¢y, solving L5¢y = 0 on (0, 00) with ¢;(0) = 1 are given by

¢k(y7 )\) =1 + ay, Yy S [07 b}a
Pr(y, \) = coe™FVITAY, y=b
with ¢; = k;\/iv”\j:l and ¢ = kbli/i-il From this we directly calculate that ||¢g(-, )||2LQ(R) = 0(1) as

k — oo uniformly for A sufficiently close to A,. Hence, (L3) holds.
Now, Corollary 2.14 follows from Theorem 2.10.
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Appendix. Auxiliary results

Lemma A.1. Let A(x) =), .y axsin(kx), then

A (z) = —i Z(a % a* a)sin(kz),

keN
29



G. Bruell, P. Idzik and W. Reichel Nonlinear Analysis 225 (2022) 113115

where a = (ay)kez i an infinite sequence with a, = —a_y, for all k € Z. The notation (a * a * a)y is used to
denote the kth entry in the sequence obtained by convolution a * a * a.

Proof. If a is a sequence as above then using ax = —a_, for all £ we find that
Z (—21ak> Z —ay sin(kx) Zak sin(kx) = A(x),
keZ kez keN

and

1 .
A3(x) = Z gi(a % a)pe.
kezZ

We are going to show that the Fourier coefficients (a * a % a); are odd with respect to k. Notice first that

(a*a*akz<2ak - la;)a]

JEZ \I€Z

We also have that

(axaxa) Z (Za - la;) a; = Z <Z ak+j+lal> a;

JEZ \Il€Z JELZ \I€Z
= — E ( E akjlal> a_j = — E ( E akjlal> a; = —(axax*a).
JEZ \I€Z JEZ \I€Z

From this we deduce that

A3(z) = Z %i(a * a* a)pett = fé Z(a *a*a)sin(zk) = 7% Z(a xax*a)sin(zk). O

kEZ kEZ keN

Lemma A.2. Letk € N and e** be a sequence such that ey =01if k # %k, eﬁ: = —eli*k* = 1. Then,

1, if k=3k,

Ex ke o ks _ o if k= =3k,
(e x ™ x ™) = 3 if k—k,
3, if k= —k.

Proof. The convolution e** x eF* x eF* is given by

ku ok
(e x e x et Z (Zek —j- i ) Zek k*—lel E :ek+k*—lel
jez \lez lez lez

K«
=€ o, 26k +6k+2k

and the claim follows. O

Lemma A.3. Leta € h*(R) for some s > 0 and define ®(x,y) = > ey ardr(y; A) sin(kx) for x € T and
y € R. Then

(i) ¢ € H*(T; L*(R))
(i) ® € H~Y(T; H'(R))
(iii) ® € HS(T; H2(0, o))
(iv) & € C(R; HS"( )
(v) & € CHR; H*~%(T))
30
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Proof. We verify that

||¢||§18(T;L2(R)) < Czaik%”(bkll%?(ﬂ{) < CH“H%s(Ry

keN
”@”zs—l('[r;]{l(ng)) < CZaik2572||¢;€||iz(R) < C”a”iS(R)’
keN
||¢||§IS*2('JI‘;H2(O,00)) < Oza’ik2574”¢;€/”12(070®)
keN
< OL+ 1= AVo = Wllzoo) D aih® 9l 72(0,00) < Cllalis ey,
keN
P2 <CY AE*E Y or2eom < Cllall?s gy,
91, ey < € 2 Wl <l
2 21.25s—3 /112 2
H@Hcl(R;HS_%(T)) < O%akk [0kl Zo0 ) < Cllallhs®y- O

Lemma A.4. For s > 1 the space h*(R) is a Banach algebra with respect to convolution.

Proof. In this proof we use the I'-norm |lal|;1g) = Yz lax| for a sequence a = (ar)rez € I'(R), i.e., the
Banach space of all real sequences with finite {!-norm. Due to convexity we have the inequality

[B[* <227 (k= 11° + JII°).

Therefore, if a,b € h*(R) then

kI (a b)) = [k[*

Zak—lbl

IeZ

< 277 S [k — 1 Janil Bl + lan—alI° o]
lEZ

Using the convolution inequality ||  b|[,2 < ||@l|;2||b]|;: once for (@)r = |k|*|ax|, (b)x = |bx| and once for
(@)k = |ak|, (b)r = |k|”|bk| we get

lla # bllns @y < 27 (lallns @) 6]l gy + lallia @y 16l ns w))-

Finally, a € h*(R) implies a € [*(R) due to

1
> laxl =Zlakl(lkl+1)|,€|+1 < Cllallpy < Cllallps@)- O
kEZ kEZ

Lemma A.5. Let L = —% + q(y) with ¢ € L>®(R) be a self-adjoint operator on L*(R) with domain
D(L) = H*(R). Then, for any o € R, we have that L, :== L+ ady is self-adjoint with domain D(L,) = {u €
HY(R)N (H?(0,00) U H*(—00,0)) | v/ (04) —u/(0-) = —au(0)}. Moreover for any o € R the following holds:

(i) For sufficiently large u > 0 we have that (Lo + p)~' : H7Y(R) — HY(R) is bounded.
(’LZ) JESS(LOL) = Uess(L)-

Proof. A proof of the self-adjointness of L, for any o € R is given in [4]. For (i) we first note that L, is
a semi-bounded self-adjoint operator so that L, + p is a positive operator for p > 0 sufficiently large. Its
bilinear form by, 4, : H'(R) x H'(R) — R is coercive and equivalent to the standard H!(R)-inner product.
Therefore, any f € H™'(R) can be represented by a unique u € H'(R) such that by, 1, (u,¢) = f(¢) for
any ¢ € H'(R) and by, (u,u) = H(bHi,_l(R). This proves (i).

For (ii) we may take A < 0 sufficiently negative such that A € p(L) N p(L,) N R since both L, L,, are
semi-bounded from below. Using (i) we may also assume \ sufficiently negative that (A\—L,)~! : H~}(R) —
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H'(R) is bounded. By Weyl’s criterion it is sufficient to show that the operator Wy := (A—L)~'—(A—L,) "' :
L?*(R) — L*(R) is compact in order to prove the statement. Since

Wy=OA=La) o ((AN=La)AN=L)"' —1d) = (A=Ly) ! o (L—Lg) o (A—=L)™!
N———— N—_—— N——
H*l(R)—>H1(R)CL2(R) Hl(R)—>H*1(R) L2(JR)—>H1(R)

and since L — L, = —ady : H*(R) — H~}(R) is a bounded operator with 1-dimensional range spanned by
do we see that W), is indeed compact. This finishes the proof. [

Lemma A.6. Let \, < 1. Then the eigenvalue problem (5.1) is solvable for ¢ € D(L%) if and only if (5.2)
holds. In this case the eigenspace is one-dimensional.

Proof. Solutions of the differential equation in (5.1) have to be of the form

Cgeik v 175\@/, Yy 2> ba

co cosh(k\/1 — By) + ¢ sinh(k\/1 — By), € [0, b],
do cosh(k/1 — By) + dy sinh(k/1 — By), y € [-b,0],
dQek 1_5\ya Yy < -b

with C'-compatibility conditions at = +b and continuity at = 0. The latter implies cg = dy and the
condition ¢/(0+) — ¢'(0—) + k?a¢(0) = 0 at = = 0 translates into

k\/1— B(c; — dy) + k*aco = 0. (A.2)

The C'-compatibility leads to the following set of four equations

co cosh(kv/1 — fBb) + ¢; sinh(k+/1 — 3b) = cye V12,
M(Co sinh(kﬂb) +c1 cosh(kﬂb)) = 7m02€*kmb,
do cosh(k/1 — Bb) — dy sinh(k+/1 — 3b) — dye—*VIR0,

V1= B(~dosinh(kv/T— 3b) + dy cosh(ky/1— 5b)) = v/1— Adge V13,

These four equations can be written as

1 —cg cosh(kv/1 — Bb)
<MJr 0 ) ca | | =1 — Beysinh(ky/1 — 3b)
0 M_)|di| —co cosh(kv/1 — 3b)

da V1 — Begsinh(ky/1 — Bb)

o :< +sinh(kv/1 — Bb) k1 )
- V1= Bcosh(kv/1—pb) + 1 e—kVi-x )"

Since both M, and M_ are invertible we see that w.l.o.g. we can choose ¢y = 1. Moreover, the structure of

with

the linear systems yields that ¢; = —d; and ¢ = ds. Finally, solving for ¢, co we get

V/1 = Bsinh(kv/1 — Bb) + V1 — Xcosh(k\/1 — fb)
V1= Bcosh(ky/1— Bb) + /1 — Xsinh(kv/1— Bb)’

eo = V1IN (e sinh(ky/1 — b) + cosh(ky/1 — 3b)).

C1 — —

Inserting c¢1, di = —c; and ¢y = 1 into (A.2) yields the condition (5.2) as claimed. It also shows that
the eigenspace is one-dimensional (the only degree of freedom is the choice of ¢y which we took to be 1
wlo.g). O
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