Dynamics of bubble cutting by interaction with a solid cylinder

M. Börnhorst ${ }^{1, *}$, T.A.M. Homan², P. Rohlfs ${ }^{1}$, N.G. Deen ${ }^{2}$, M. Wörner ${ }^{1}$
${ }^{1}$ Karlsruhe Institute of Technology (KIT), *present address TU Dortmund
${ }^{2}$ Eindhoven University of Technology, Power \& Flow Group and Institute for Renewable Energy Systems (EIRES)

Motivation

- Widespread use of bubble columns in industry with high optimization potential
- Purpose of reactor internals
> Increase interfacial area by bubble breakup enhancing thereby heat/mass transfer
Act as catalyst support ${ }^{[1]}$

Objective

- Outcomes of bubble interaction with a cylinder ${ }^{[2,3]}$
> Small bubbles bypass the cylinder
> Large bubbles are cut by the cylinder with or without generation of satellite bubbles
\rightarrow Study interaction dynamics experimentally
\rightarrow Determine a theoretical criterion for the critical bubble size which separates both regimes
Set-up adapted from Segers ${ }^{\text {2] }}$
Glycerol-water solution $M=0.068$
Bubble volume $V_{\mathrm{B}}=25-1000 \mu \mathrm{~L}$
Cylinder diameter $d_{\text {cyl }}=4 \mathrm{~mm}$
Recording by HS camera and
image analysis with Matlab
- Glycerol-water solution $M=0.068$
- Bubble volume $V_{\mathrm{B}}=25-1000 \mu \mathrm{~L}$
- Cylinder diameter $d_{\text {cyl }}=4 \mathrm{~mm}$
- Recording by HS camera and image analysis with Matlab

- $V_{B, \text { crit }}=100-150 \mu \mathrm{~L}$ $\rightarrow 1.73<W e_{\text {crit }}<2.66$
- Exp. Segers ${ }^{[2]} W e_{\text {crit }} \approx 2$
- Liquid film thickness increases with $V_{B} \rightarrow$ (minimum before split)

Analytical model

- Energy balance for free rise of mother (B) and two equal-size daughter (b) bubbles

$$
E_{\mathrm{kin}}^{B}+E_{\sigma}^{B}+E_{g}^{B}=2 E_{\mathrm{kin}}^{b}+2 E_{\sigma}^{b}+2 E_{g}^{b}+E_{\mathrm{diss}}
$$

- Sphericity of an oblate spheroid (for E_{σ})
$\psi=f_{\psi}(E)=4 E^{2 / 3}\left[2+\frac{E^{2}}{\sqrt{1-E^{2}}} \ln \left(\frac{1+\sqrt{1-E^{2}}}{1+\sqrt{1-E^{2}}}\right)\right]^{-1}$
- Added mass of oblate spheroid ${ }^{[5]}\left(E_{\text {kin }}\right)$
$C_{\mathrm{am}}^{-1}=2\left(1-\frac{6.6}{128} W e\right)^{3}\left(1+\frac{3}{64} W e\right)^{2}\left(1-\frac{3}{32} W e\right)$
$W e_{B}=\frac{\rho_{l} d_{B} u_{B}^{2}}{\sigma}, u_{b}=\alpha u_{B} \rightarrow W e_{b}=\frac{\alpha^{2}}{\sqrt[3]{2}} W e_{B}$
- Bubble aspect ratio ${ }^{[4]}$ ($M=$ Morton no.)
$E=f_{E}(W e, M)=1-\frac{9}{64} \frac{W e}{1+0.2 M^{0.1} W e}$
- Gravitational energy and dissipation
$E_{g}^{B}-2 E_{g}^{b}-E_{\text {diss }}=g\left(\rho_{l}-\rho_{g}\right) H V_{B}(1-\beta)$
- Weber number criterion from energy balance

$$
\frac{W e_{\text {crit }}}{12}=\frac{2^{1 / 3} / f_{\psi}\left(f_{E}\left(W e_{B}, M\right)\right)-1 / f_{\psi}\left(f_{E}\left(W e_{b}, M\right)\right)}{C_{\mathrm{am}}\left(W e_{B}\right)-\alpha^{2} C_{\mathrm{am}}\left(W e_{b}\right)+8 n(1-\beta) / 3 C_{\mathrm{D}}^{B}}
$$

- Free bubble rise velocity (exp.)
$u_{B} \sim V_{B}^{1 / 4} \rightarrow \alpha=u_{b} / u_{B}=2^{-1 / 4}=0.84$
$C_{D}^{B} \approx 5, n=H / d_{B} \approx 10$
> Iterative solution required
> Dissipation parameter β (=1 for free rise)

β
W_{c}

$\begin{array}{lll}1.00 & 0.93 & 0.75 \\ 3.09 & 2.66 & 1.73\end{array}$
$3.09 \quad 2.66 \quad 1.73$
$\beta<1$ is reasonable
\leftarrow range from exp.

[1] Höller et al., Ind. Eng. Chem. Res. 40 (2001) 1575-1579
[2] Segers, PhD thesis, TU Eindhoven, 2015
[3] Wang et al., Chem. Ing.Techn. 94 (2022) 385-392
[4] Legendre et al., Phys. Fluids 24 (2012) 043303
[5] Kendoush, Physics Letters A 366 (2007) 253-255
[6] Liu et al., Exp. Therm. Fluid Sci. 78 (2016) 254-265

- Outcomes of bubble-cylinder interaction: bypass or splitting
> Duration of interaction increases with decrease of bubble volume
> Development of analytical Weber number criterionfor break-up
- Liquid film eliminates influence of solid material on interaction
> Film thickness (i.e. diffusion path) increases with bubble volume
> Reducing bubble size is essential to intensify 3-phase-reactions

