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Abstract

Accurately georeferenced Red, Green, Blue and Depth (RGB-D) imagery with high resolution
form the basis for 3D street view web-services, which are already widely used for infrastructure
management. Mobile Mapping (MM) and 3D reality capturing techniques enable fast and
efficient data acquisition of infrastructures. Most outdoor Mobile Mapping Systems (MMSs)
rely on direct georeferencing, enabling absolute accuracies in the cm range in open areas.
However, under poor Global Navigation Satellite System (GNSS) reception, the accuracy
of direct georeferencing degrades rapidly to the dm- or even to the m-range. By contrast
indoor MMS predominately rely on Simultaneous Localization and Mapping (SLAM). As,
most SLAM algorithms focus on low-latency and real-time performance they accept trade-offs
in accuracy, map quality and maximum extension.
This thesis aims to capture and accurately and reliably georeference high-resolution RGB-D
imagery in different environments.
For data acquisition, we developed a high-performance image-focused backpack MMS, featuring
a multi-head panoramic camera, two multi-beam Light Detection and Ranging (LiDAR)
scanners and a navigation unit combining GNSS with an Inertial Measurement Unit (IMU)
with tactical grade performance. All sensors are precisely synchronized and provide access to
the raw data. Furthermore, we conducted an overall system calibration in test fields, using
bundle-adjustment-based as well as feature-based calibration methods as a prerequisite for
kinematic sensor data integration.
For accurate and reliable georeferencing in various environments, we propose a multi-stage
georeferencing approach that incorporates various sensor data and georeferencing methods.
Direct and LiDAR SLAM-based georeferencing provide initial poses for subsequent image-
based georeferencing, using an extended Structure-from-Motion (SfM) pipeline. Image-based
georeferencing results in a precise and sparse trajectory, which is suitable for the georeferencing
of images. To obtain a dense trajectory, which is suitable for the georeferencing of both
panoramic images and LiDAR points, we propose direct georeferencing with pose support
from image-based georeferencing.
Comprehensive performance investigations in three demanding large-scale test sites demon-
strate the performance and the limitations of our georeferencing approach with the different
georeferencing methods. The three test sites in a city center, in a forest and in a public
building represent real-world conditions with restricted GNSS reception, poor illumination,
moving objects and repetitive geometric patterns.
Image-based georeferencing showed a superior performance, whereby the mean precision
ranged from 5mm to 7mm between the different test fields and the absolute accuracy ranged
from 85mm to 131mm. This is an improvement by factor 2–7 compared to direct and
LiDAR SLAM-based georeferencing. Direct georeferencing, supported by Coordinate Updates
(CUPTs) from image-based georeferencing, resulted in slightly degraded mean precision
compared to image-based georeferencing in the range from 13mm to 16mm, whereby the
mean absolute as well as the relative accuracy did not significantly differ from image-based
georeferencing.
Our results within challenging environments confirm previous investigations under optimal
conditions as well as work from other groups. They can be used for creating RGB-D image-
based 3D geospatial web-services of infrastructures within challenging environments. Moreover,
accurately georeferenced RGB-D imagery has great potential for future visual localization
and Augmented Reality (AR) applications.
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Kurzfassung

Hochaufgelöste, genau georeferenzierte RGB-D-Bilder sind die Grundlage für 3D-Bildräume
bzw. 3D Street-View-Webdienste, welche bereits kommerziell für das Infrastrukturmana-
gement eingesetzt werden. MMS ermöglichen eine schnelle und effiziente Datenerfassung
von Infrastrukturen. Die meisten im Aussenraum eingesetzten MMS beruhen auf direkter
Georeferenzierung. Diese ermöglicht in offenen Bereichen absolute Genauigkeiten im Zenti-
meterbereich. Bei GNSS-Abschattung fällt die Genauigkeit der direkten Georeferenzierung
jedoch schnell in den Dezimeter- oder sogar in den Meterbereich. In Innenräumen eingesetzte
MMS basieren hingegen meist auf SLAM. Die meisten SLAM-Algorithmen wurden jedoch für
niedrige Latenzzeiten und für Echtzeitleistung optimiert und nehmen daher Abstriche bei der
Genauigkeit, der Kartenqualität und der maximalen Ausdehnung in Kauf.
Das Ziel dieser Arbeit ist, hochaufgelöste RGB-D-Bilder in verschiedenen Umgebungen zu
erfassen und diese genau und zuverlässig zu georeferenzieren.
Für die Datenerfassung wurde ein leistungsstarkes, bildfokussiertes und rucksackgetragenes
MMS entwickelt. Dieses besteht aus einer Mehrkopf-Panoramakamera, zwei Multi-Beam
LiDAR-Scannern und einer GNSS- und IMU-kombinierten Navigationseinheit der taktischen
Leistungsklasse. Alle Sensoren sind präzise synchronisiert und ermöglichen Zugriff auf die
Rohdaten. Das Gesamtsystem wurde in Testfeldern mit bündelblockbasierten sowie merk-
malsbasierten Methoden kalibriert, was eine Voraussetzung für die Integration kinematischer
Sensordaten darstellt.
Für eine genaue und zuverlässige Georeferenzierung in verschiedenen Umgebungen wurde
ein mehrstufiger Georeferenzierungsansatz entwickelt, welcher verschiedene Sensordaten und
Georeferenzierungsmethoden vereint. Direkte und LiDAR SLAM-basierte Georeferenzierung
liefern Initialposen für die nachträgliche bildbasierte Georeferenzierung mittels erweiterter SfM-
Pipeline. Die bildbasierte Georeferenzierung führt zu einer präzisen aber spärlichen Trajektorie,
welche sich für die Georeferenzierung von Bildern eignet. Um eine dichte Trajektorie zu
erhalten, die sich auch für die Georeferenzierung von LiDAR-Daten eignet, wurde die direkte
Georeferenzierung mit Posen der bildbasierten Georeferenzierung gestützt.
Umfassende Leistungsuntersuchungen in drei weiträumigen anspruchsvollen Testgebieten
zeigen die Möglichkeiten und Grenzen unseres Georeferenzierungsansatzes. Die drei Test-
gebiete im Stadtzentrum, im Wald und im Gebäude repräsentieren reale Bedingungen mit
eingeschränktem GNSS-Empfang, schlechter Beleuchtung, sich bewegenden Objekten und sich
wiederholenden geometrischen Mustern.
Die bildbasierte Georeferenzierung erzielte die besten Genauigkeiten, wobei die mittlere
Präzision im Bereich von 5mm bis 7mm lag. Die absolute Genauigkeit betrug 85mm bis
131mm, was einer Verbesserung um Faktor 2 bis 7 gegenüber der direkten und LiDAR SLAM-
basierten Georeferenzierung entspricht. Die direkte Georeferenzierung mit CUPT-Stützung von
Bildposen der bildbasierten Georeferenzierung, führte zu einer leicht verschlechterten mittleren
Präzision im Bereich von 13mm bis 16mm, wobei sich die mittlere absolute Genauigkeit nicht
signifikant von der bildbasierten Georeferenzierung unterschied.
Die in herausfordernden Umgebungen erzielten Genauigkeiten bestätigen frühere Untersuchun-
gen unter optimalen Bedingungen und liegen in derselben Grössenordnung wie die Resultate
anderer Forschungsgruppen. Sie können für die Erstellung von Street-View-Services in her-
ausfordernden Umgebungen für das Infrastrukturmanagement verwendet werden. Genau und
zuverlässig georeferenzierte RGB-D-Bilder haben ein grosses Potenzial für zukünftige visuelle
Lokalisierungs- und AR-Anwendungen.
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Chapter 1

Introduction

1.1 Image-focused 3D Mobile Mapping for Infrastructure
Management

Ongoing digitization trends lead to rapid transformations in infrastructure management, which
includes both the private and the public sector. The often-mentioned ambition towards the
smart city incorporates novel and more integral concepts in urban planning and in infrastruc-
ture management with respect to the entire life cycle, from construction to maintenance to
deconstruction. In the construction and real estate industry, Building Information Modeling
(BIM) is leading to a paradigm shift that affects and includes planning, construction and
operating processes. Such novel processes and paradigms require accurate, detailed and up-to-
date 3D geodata as well as intuitive and user-friendly software tools, that enable collaborative
work.

MM and 3D reality capturing techniques enable fast and efficient 3D data acquisition from
buildings and infrastructures. First experimental stereo image-based outdoor MMS date back
to the early 1990ies (Novak, 1991; Schwarz et al., 1993). With the aim of capturing urban
environments as comprehensively as possible, image-based MMS have evolved into systems
with (multi-) panorama configurations (Meilland et al., 2015). Blaser et al. (2017) present
a MMS configuration featuring two tilted panoramic cameras resulting in multiple stereo
systems that are directed to the sides and enable the capturing of entire façades of buildings
in urban canyons. Such (multi-) stereo image-based MMS hold an accuracy potential for
relative measurements (e.g. 3D distances or 3D areas) within the same stereo image ranging
from 1 cm to 2 cm and provide an absolute accuracy potential in the cm-range under good
conditions (Burkhard et al., 2012; Blaser et al., 2018b).

Currently, the majority of outdoor MMS rely on direct georeferencing combining GNSS and
IMU data. However, direct georeferencing rapidly degrades under poor GNSS reception from
the cm to the dm or even to the m range. Consequently, challenging environments with poor
GNSS reception, such as indoor environments, forests or urban canyons, require alternative
georeferencing approaches.

In recent years, various smaller and portable MMS for both indoor and outdoor mapping
have appeared on the market. They can be divided according to the platform type into
trolley-based MMS, such as the NavVis M6 (NavVis, 2020), backpack-based or personal MMS,
such as the Leica Pegasus Backpack (Leica Geosystems AG, 2022b), and into hand-held MMS,
such as the ZEB Revo (Geoslam, 2022). Trolley-based platforms are suitable for mapping of
large public buildings e.g. airports or museums, but they fail in obstacle-rich environments e.g.
construction sites or staircases. Backpack platforms represent a good compromise in terms

1



Chapter 1. Introduction

of flexibility and size, which allows the use of high-end sensor technology in obstacle-rich
environments, whereas the small form factor of hand-held MMS limits the sensor configuration.

Recent indoor MMS use SLAM for indoor localization and mapping, which originates from
the robotics and computer vision community (Stachniss et al., 2016; Thrun, 2002). Lehtola et
al. (2017) provide a comparison of numerous state-of-the-art LiDAR-focused indoor MMS
based on point clouds.

Cloud-based web services offer the direct using of such 3D data from the web browser
and provide interoperability with Geographic Information System (GIS) or BIM databases.
Paparoditis et al. (2012) propose image-based street navigation and 3D plotting services for
professional users, incorporating both image and LiDAR data. By contrast, Nebiker et al.
(2015) introduce cloud-based geospatial 3D image spaces as an urban model for smart city and
infrastructure management applications, which represent collections of georeferenced RGB-D
imagery (see Figure 1.1).

(a) Street environment with superimposed mains
from GIS data.

(b) Tramway environment with visualized track pa-
rameters and cable heights.

Figure 1.1: Cloud-based web client for infrastructure management, based on 3D geospatial image
spaces, which consist of large RGB-D image data sets. (Nebiker et al., 2015).

By general, LiDAR point clouds are characterized by high precision, which is independent of
the object texture and which deteriorates only slightly with increasing measurement distance.
However, compared to stereo images, they are limited in density. As a result, corners and
edges are not clearly mapped. In addition, images or georeferenced RGB-D images respectively
are easier to interpret by humans, while 3D point cloud handling requires expert knowledge.

Since most of the commercially available portable or indoor MMS are LiDAR-focused, they
use cameras primarily for the coloring of LiDAR point clouds. Their camera systems often
fail to meet the requirements for image-based 3D web services in terms of their configuration
or their image quality and size. In addition, such MMS are rather closed and allow neither
extensions of the existing sensor configuration nor investigations and improvements of the
provided standard georeferencing pipelines. Consequently, in-depth investigations on the
georeferencing require the development of a custom MMS in order to access raw sensor data
and to customize the configuration to the needs of georeferencing and subsequent mapping.

Tang et al. (2015) conducted performance investigations in forests, using direct georeferencing
as well as SLAM and IMU-combined georeferencing with a self-developed MMS on an all-
terrain-vehicle. Direct georeferencing showed better accuracy in open forest which was in the
dm-range, while SLAM-based georeferencing showed large drifts in the m-range. By contrast,
in mature forests, SLAM-based georeferencing showed an accuracy improvement by 38%
compared to direct georeferencing.

2



1.2. Robust and Accurate Georeferencing in Challenging Environments

Our very first investigations on bundle-adjustment-based georeferencing with an image-based
backpack MMS in a forest area failed due to a too large image capturing interval above 2m and
the lack of robust alternative georeferencing methods (Wittmer, 2017). By contrast, Cavegn et
al. (2018) successfully bridged GNSS outages of direct georeferencing in urban canyons as well
as of SLAM-supported georeferencing in indoor environments with subsequent image-based
georeferencing using an extended SfM-pipeline by Ground Control Point (GCP) support and
fixed Relative Orientation (RO) constraints of the camera rig. In both environments, their
resulting accuracy ranged in the cm-domain.

1.2 Robust and Accurate Georeferencing in Challenging Envi-
ronments

Creating aforementioned 3D geospatial image spaces for infrastructure management (see
Section 1.1) require georeferenced RGB-D image sets, which ideally cover and map respective
infrastructure as completely as possible. Creating georeferenced RGB-D images involves
a) georeferencing and b) depth reconstruction. When using e.g. single panoramic imagery
and LiDAR point clouds, the quality of depth reconstruction strongly relies on a robust and
accurate georeferencing.

This thesis focuses on the robust and accurate georeferencing in challenging environments.
This provides a basis for a wide range of further investigations, applications and products.

Direct georeferencing strongly depends on the GNSS reception, while LiDAR-based odometry
and SLAM algorithm require environments with unique geometric structure to perform
robustly. Image-based georeferencing methods, by contrast, depend on the brightness and the
texture of environments.

Consequently for georeferencing in multiple environments, we consider the simultaneous use of
different sensor technologies and georeferencing methods. First, we expect that this will lead
to a higher robustness, since if one technology fails or significantly decreases in accuracy, the
other might bridge this. Second, different sensor technologies could also lead to an increase in
accuracy by complementing different weaknesses.

However, kinematic multi-sensor data fusion depends on precisely calibrated and synchronized
sensors.

The previously stated overall objective of this thesis leads to the following main aspects:

• Conception, design and realization of a prototypical image-focused portable MMS, which
ideally a) supports the capture of image and LiDAR data with regard to the creation
of high-resolution RGB-D panoramic imagery and b) provides raw data from different
navigation and mapping sensors such as GNSS and IMU, cameras and LiDAR scanners,
as a basis for georeferencing in demanding environments.

• Development of novel robust and accurate georeferencing methods for challenging
environments with different environmental conditions. This is intended to include both
classic navigation sensor data such as from GNSS, IMU as well as mapping sensor data
such as from LiDAR scanners or from high-resolution cameras.

• Comprehensive investigations on the georeferencing methods in environments which
represent real-world conditions. The investigations should prove whether the proposed
georeferencing methods achieve similar accuracy in challenging environments as previous
image-based MMS on vehicle platformes achieved under ideal conditions (Burkhard et
al., 2012; Blaser et al., 2018b).
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1.3 Main Contributions

This section contains a compilation of the main contributions of this thesis. They include
the development and calibration of the portable, image-focused MMS as a prerequisite for
conception of robust and accurate georeferencing methods as well as performance investigations
under real-world conditions.

The system development involved:

• the evaluation of suitable navigation and mapping sensors meeting the requirements of
infrastructure management and enabling precise sensor synchronization, by considering
the limited platform form factor and the maximum payload. Interoperable interfaces
and data formats were particularly important.

• the conception of a suitable sensor configuration which has the most comprehensive cover-
age possible on the one hand and provides sufficient geometric stability for georeferencing
on the other hand.

• mechanical and electrical sensor integration of a tactical grade GNSS and Inertial
Navigation System (INS)-combined navigation system, a multi-head panoramic camera
and two multi-beam LiDAR scanners with precise hardware-based sensor synchronization.

• the development of a modular on-board software, that is based on the Robot Operating
System (ROS), used for data acquisition and recording as well as for real-time quality
and completeness checks during a campaign.

The overall system calibration comprised:

• the application and extension of a constrained bundle-adjustment-based test-field cali-
bration method (Ellum, El-Sheimy, 2002) for both the multi-head panoramic camera
and the GNSS and IMU-based navigation system.

• the extension of the functional model for the constrained bundle-adjustment-based
calibration by the equidistant camera model (Abraham, Förstner, 2005). This is
required for the Interior Orientation (IO) calibration of the individual panoramic camera
heads with wide-angle optics.

• the extension of a point cloud feature-based self-calibration method for calibration of
RO parameters between LiDAR scanner and camera (Hillemann, 2020) for the precise
calibration of multiple LiDAR scanners in indoor test-fields.

Furthermore, we developed a multi-stage georeferencing approach to increase the accuracy
and robustness in different challenging environments. This includes:

• the application of direct georeferencing, using tightly-coupled GNSS and IMU sensor
data fusion with multi-pass trajectory processing.

• the extension of a LiDAR-based georeferencing method, based on a state-of-the-art
LiDAR SLAM algorithm that operates fully in 3D, supports loop-closure (Hess et al.,
2016) and leads to a trajectory based on poses with 6 Degree of Freedom (DoF) .

• the application of subsequent image-based georeferencing, using initial camera poses
from direct or LiDAR-based georeferencing, that are based on an extended SfM-pipeline
by camera-rig constraints and GCP support (Cavegn et al., 2018).
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• the extension of direct georeferencing by external CUPT and/or Attitude Update
(ATTUPT) support, whereby the updates originate from image-based georeferencing.

The individual georeferencing methods of our developed multi-stage georeferencing approach
can be used separately or in combination. This allows to examine and compare the different
georeferencing methods under the same conditions as well as to evaluate our multi-stage
georeferencing approach.

Hence, we comprehensively investigated the different georeferencing methods within three
challenging and large-scale test sites, the first in a city center, the second in a forest and
the third in indoors. They represent real-world conditions for future infrastructure mapping
campaigns. Thereby, we investigated:

• the plausibility of the resulting trajectories by assessing the internal accuracy, which
may indicate gross errors.

• the precision and the accuracy of coordinate measurements obtained with the forward
intersection, using four consecutive image epochs. Thereby, we used Check Points (CPs)
with superior accuracy.

• the relative accuracy by comparing 3D distances with ground truth, which indicates the
quality of relative measurements (distances, areas, etc.).

1.4 Thesis Outline

The main focus of this thesis lies on robust and accurate georeferencing of a portable image-
focused MMS in various challenging environments to subsequently create georeferenced RGB-D
images that can be used in a cloud-based web-service e.g. for infrastructure management.
The thesis is organized in six chapters.

Chapter 2 provides fundamentals for this thesis, combined with a literature and state-
of-the-art review. It begins with the aspect of using 3D data, resulting from MM for
infrastructure management, and includes a discussion of different common MM data types and
representations, leading to our main objective of obtaining accurately georeferenced RGB-D
image sequences. Further, it treats MMS, including navigation and mapping sensors, various
sensor configurations, an overview of state-of-the-art terrestrial MMS and the fundamentals
and methods of overall system calibration of a MMS. Finally, different georeferencing methods
are discussed and compared from a sensing perspective.

Chapter 3 includes the design, development and calibration of a portable image-focused MMS,
which was a prerequisite for developing and investigating various georeferencing methods.

Chapter 4 presents our developed multi-stage georeferencing approach, combining various
georeferencing methods and different sensor data with the aim of providing robust and accurate
georeferencing in challenging environments. First, it outlines adopted direct georeferencing,
which is commonly used in outdoor MM. Second, it presents the LiDAR-based georeferencing,
which we developed by extending a state-of-the-art 3D LiDAR SLAM algorithm. Third, it
treats image-based georeferencing, based on an extended SfM pipeline, which subsequently
improves previously estimated camera poses of direct georeferencing or LiDAR SLAM. Finally,
it presents direct georeferencing, supported with CUPTs and ATTUPTs, which originate from
image-based georeferencing.

Chapter 5 contains our investigations on the georeferencing performance in challenging
environments. It presents our three test sites with demanding real-world conditions that
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represent scenarios with high practical relevance. In addition to relevant information on
data acquisition with the portable MMS, it contains the evaluation of various georeferencing
methods with resulting internal accuracy as well as qualitative results. Finally, it includes the
investigations on the georeferencing with an evaluation of the precision and the absolute and
relative accuracy.

Chapter 6 presents the discussion of our developments and results. It begins with our developed
image-focused backpack MMS, continues with the multi-stage georeferencing approach and
finally includes a comparison of our results with related work.

Finally, Chapter 7 concludes this thesis with a summary, by showing limitations and providing
recommendations, and an outlook for further work.
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Chapter 2

Mobile Mapping and Georeferencing

This chapter provides a state-of-the-art review as well as necessary fundamentals, principles
and methods related to the following developments and investigations of this thesis.

Section 2.1 treats resulting 3D data from MM, such as point clouds and RGB-D imagery and
includes a discussion of different 3D data types and representations with regard to their use
in geospatial 3D image spaces for infrastructure management applications.

Section 2.2 provides an introduction in MMS. It ranges from MM sensor technology through
various sensor configurations to state-of-the-art vehicle-based MMS as well as portable and
indoor MMS.

Section 2.3 contains sensor calibration methods as well as methods for overall MMS calibration,
which is essential for precise navigation, georeferencing and mapping. Furthermore, various
camera models and LiDAR calibration methods are discussed in detail.

Section 2.4 treats different georeferencing methods from a sensing perspective and evaluates
the different georeferencing methods with respect to the development of combined multi-stage
georeferencing approaches.

2.1 3D Mobile Mapping Data

By general, MM data recordings result in georeferenced 3D data, whereby data representations
depend on the mapping sensors used. Most common mapping sensors of terrestrial MMS are
cameras and LiDAR scanners that capture images and point clouds, respectively. Thus, this
section focuses on image and LiDAR data from terrestrial MMS.

MM data recordings result in large-scale data sets, and the huge amount of data complicates
their handling and efficient use. However, specialized applications and web services provide
intuitive tools, so that even non-specialists are able to successfully interact with the 3D MM
data and to combine it with existing GIS data.

Verbree et al. (2004) provide the early MM client application GeoFrame which was developed
for users from the public sector (municipalities, planning departments, etc.). GeoFrame sup-
ports measurements within panoramic images and allows coordinate observation by forward
intersection using neighboring panoramic images. Since the panoramic images are georefer-
enced, the application also allows the augmentation of existing GIS data (e.g. underground
mains).

By contrast, Anguelov et al. (2010) technically describe the popular Google Street View service,
which was developed for millions of non-professional users. In addition to panoramic images,
it provides coarse mesh models originating from LiDAR data in the background. Provided
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depth information in this way allows smart navigation functions such as click to go, where the
web client provides the closest image to a clicked object. Furthermore, it also allows more
precise placement of points of interests than in google maps.

Paparoditis et al. (2012) propose image-based street navigation and 3D plotting services
for both image and LiDAR data for professional users. Their web application provides 3D
measurement and mono-plotting functionality. For this purpose, 2D measurements taken in a
single panoramic image are reconstructed in 3D, using the LiDAR point cloud.

Meilland et al. (2015) present a method for dense large-scale mapping of outdoor environments
with RGB-D spherical panoramic images with regard to real-time visual localization for
autonomous vehicles, while Nebiker et al. (2015) propose cloud-based geospatial 3D image
spaces as an urban model for smart city applications. The obtained 3D image spaces represent
collections of georeferenced RGB-D imagery. By contrast to Paparoditis et al. (2012) and
Google Street View, 3D measurements do not rely on additional LiDAR point clouds or mesh
models and are completely performed in the georeferenced RGB-D imagery by 3D mono-
plotting. Thus, the presented approach allows to follow the demand ”what you see is what
you get”, assuming that the depth information coincides with the RGB image information.

Figure 2.1 illustrates the principle of 3D mono-plotting using solely georeferenced RGB-D
imagery. There is a mutual relationship between the RGB-D image and the 3D point cloud,
since a point cloud can be derived from an image and, vice versa, depth information can be
derived from a 3D point cloud. Consequently, georeferenced RGB-D imagery can be regarded
as an alternate representation of a dense and colored 3D point cloud.

RGB-D image

3D point cloud

Figure 2.1: Schematic illustration of the relationship between RGB-D images and 3D point clouds
according to Nebiker (2017)

Figure 1.1 shows the cloud-based web client, serving as a user interface to 3D geospatial
image spaces. It provides numerous navigation and measurement functions, that are useful
for infrastructure management, such as multi-view queries that allow objects to be inspected
from different sights, an orthogonal distance measurement tool using automatically detected
edges, plumb bob measurements as well as functionality for superimposing existing geodata.
Nebiker et al. (2015) provide a detailed description of the aforementioned functions.

Such cloud-based web clients, using 3D geospatial image spaces, enable virtual on-site visits
and provide an intuitive interface to GIS applications, even for persons not familiar with
geodata.

Figure 2.2 exemplarily depicts advantages of image-based or image-focused MM data in terms
of human scene interpretation compared to LiDAR-based or LiDAR-focused MM data. By
general, images provide higher information density than LiDAR point clouds. By contrast,
LiDAR point clouds generally provide a more homogeneous geometric 3D accuracy with
less outliers over the scene than 3D reconstructed point clouds from imagery. However,
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image-based 3D reconstruction has advantages in the explicit reconstruction of edges and
corners, which are often used for measurements in infrastructure management.

In addition to infrastructure management, 3D MM data is essential for numerous current
research areas.

Automatic semantic scene interpretation is an active field of research with successful results,
using both image and LiDAR data. Nebiker et al. (2021) present an application to gain
automatically parking statistics, using RGB-D images from low-cost RGB-D cameras, based
on artificial intelligence and region-based convolutional neural networks. Hübner et al.
(2021) focus on automatic voxel-based 3D indoor reconstruction and room partitioning and
classification from triangle meshes.

Another research and application field with very high potential is visual localization requiring
accurate and large-scale dense 3D data. As discussed in Meilland et al. (2015), MM represents
an efficient data acquisition method for such large-scale 3D data sets.

(a) RGB-D image (b) Point cloud

Figure 2.2: Comparison of an RGB-D image and a LiDAR point cloud from the same scene. (Nebiker,
2017)

2.2 Mobile Mapping Systems

This section provides an introduction as well as a state-of-the-art review in MMS with a
strong focus on terrestrial and portable MMS. Early MM publications clearly divide MMS
into platform, navigation sensors and mapping sensors. Recent developments in sensor and
navigation technology slightly confused this clear division and interactions as well as overlaps
appeared. Figure 2.3 shows a differentiation of the various MMS related terms and components
and its mutual relationships. Basically, the platform and the sensor configuration of a MMS
are almost independent of each other, since sensor configuration can be mounted on different
platforms. However, fundamental properties (e.g. weight and size) of both platforms and
sensor configurations might limit each other.

A sensor configuration includes both navigation and mapping sensors. Early MMS showed
a clear distinction between navigation and mapping sensors. Navigation sensors usually
consisted of GNSS, INS and odometer whereas typical mapping sensors were cameras and
LiDAR scanners. However, recent developments towards SLAM, especially in robotics and
computer vision, which have been accelerated by autonomous driving in particular, have
blurred this clear distinction so that there are overlaps. Techniques such as visual odometry
or SLAM increasingly use former mapping sensors for platform navigation as well as for
georeferencing.
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Mobile Mapping System

Sensor Configuration

Navigation Sensors

Mapping Sensors

Platform

Figure 2.3: Diagram showing the interrelationships between the MMS components.

Subsection 2.2.1 provides a state-of-the-art review of current navigation and mapping sensor
technology, while Subsection 2.2.2 gives a brief overview of most common sensor configurations.
Subsection 2.2.3 provides an introduction of vehicle-based MMS and addresses early prototyp-
ical systems as well as current MMS which are commercially available. Finally, Subsection
2.2.4 strongly focuses on state-of-the-art portable and indoor MMS on different platforms.

2.2.1 Navigation and Mapping Sensors

This subsection includes a brief introduction of most relevant and common navigation and
mapping sensor technology. In terms of navigation sensors, mainly the GNSS receiver
technology as well as the INS sensor technology are addressed. In terms of mapping sensors,
the focus lies on camera and on LiDAR scanner technology. For each sensor technology, the
basics are briefly covered, with a focus on MM applications. In addition, recent technological
developments and future trends for each sensor type are shown.

GNSS Receivers

GNSS receivers are used for various purposes and applications, that range from precise time
estimation up to platform navigation and geodetic measurements. While Kumar et al. (2021)
provide a good overview in GNSS technology for geo-scientific applications, Gunawardena,
Morton (2020) give an in-depth view of the functionality of GNSS receivers in terms of signal
models.

Eugster (2012) subdivides GNSS receivers into navigation receivers and geodetic receivers and
further classifies the receiver with regard to the frequencies, the observation types code or
carrier phase and the possible evaluation methods pseudo-range, differential, carrier-smoothing
of code pseudo-ranges, precise point positioning, kinematic ambiguity resolution and Real-Time
Kinematic (RTK), which leads to a typical accuracy.

Differential GNSS measurements require GNSS data from both, a user receiver or a rover as
well as a reference receiver or a network of reference receivers. The rover is typically used
for measurements at unknown locations and can be mounted on MM platforms, whereby
reference receivers or reference stations operate at known and accurately surveyed locations.
Gunawardena, Morton (2020) provide several state-of-the-art differential GNSS evaluation
algorithms and methods. They further describe that differential GNSS measurements can
result in dm accuracy when using code measurements and in cm accuracy when using carrier
phase measurements with resolved carrier phase ambiguities.
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Rapid developments during the last few years in drone and automotive industries have brought
low-cost multi-band GNSS RTK receivers with low energy consumption on the market. In
good conditions, GNSS RTK receivers typically provide position accuracy in the range of
0.01m to 0.02m and height accuracy in the range of 0.02m to 0.04m.

Hamza et al. (2021) compared such low-cost multi-band GNSS RTK receivers with geodetic
receivers by performing long-static measurements whereby the low-cost receivers came very
close to the geodetic receivers in terms of accuracy. They further show that the accuracy
depends significantly on the GNSS antenna used.

Rao et al. (2013) provide a comprehensive treatment of GNSS antennas and important
discussions on antenna characteristics and details. Especially noteworthy is the increased
use and suitability of multi-frequency quadrifilar helix antennas for geodetic measurements
(Wanninger et al., 2022). Their compact design is particularly suitable even for small MM
platforms.

Inertial Navigation Systems

An INS is a self-contained system which provides information about its position, attitude and
velocity, based on inertial sensors. Thus, an INS contains both a computing unit and an IMU.

IMUs typically contain three orthogonal gyroscopes and three orthogonal accelerometers,
measuring angular velocity and linear acceleration respectively. Basically, the following two
IMU types are represented:

• Stable platform systems

• Strap-down systems

While the stable platform system is held in alignment with the global frame (e.g. using
gimbals), the strap-down system is rigidly mounted on the platform. Depending on the design,
different navigation algorithms are necessary. In MM, most IMUs are strap-down systems as
they require fewer mechanical components and thereby can be built more compactly. Cramer
(2001) gives a comprehensive treatment of the strap-down algorithm based on the principle of
dead reckoning.

El-Sheimy, Youssef (2020) provide a recent review on IMU sensor technology and trends,
while Passaro et al. (2017) focus on gyroscopes. Table 2.1 provides an overview of different
IMU grades in terms of performance, costs and typical applications.

Particularly noteworthy are Micro-Opto-Electro-Mechanical Systems (MOEMSs) as a novel
approach which utilizes optical pick-off mechanisms in order to eliminate errors that occur in
Micro-Electro-Mechanical System (MEMS)-based sensors. They use similar concepts applied
in fiber-optic gyroscopes and are optimized for low-cost manufacturing while achieving high
accuracy.
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Table 2.1: IMU classification with regard to performance, costs and applications, using information
from El-Sheimy, Youssef (2020) and Passaro et al. (2017). Furthermore, they mention the used
gyroscope technologies Ring Laser Gyroscope (RLG), Fiber Optic Gyroscope (FOG), and MEMS.

Grade Strategic Navigation Tactical Commercial /
Automotive

Positional drift
in m/s

0.008–0.028 0.5 5–10 large

Gyroscope drift
in ◦/h

0.0001–0.01 0.01–0.1 0.1–30 30–1000

Gyroscope
technology

RLG & FOG RLG & FOG FOG & MEMS MEMS

Costs in $ 1 000 000 100 000 1000–10 000 1–1000
Applications Submarines,

intercontinental
ballistic missiles

General
navigation, high
precision
georeferencing,
mapping

Integrated with
GNSS for
mapping, short
time weapons

Research, Low
cost navigation,
pedometers,
automotive
applications

Cameras

Cameras enable full coverage detection of electromagnetic radiation, which is emitted or
reflected by an object. However, the majority of cameras operate in the visible spectrum
with wave lengths from 380 nm to 780 nm. Their compact and affordable design, and the high
information density of the resulting imagery, predestine cameras for the use in MM. While
Luhmann et al. (2019) comprehensively cover the fundamentals of camera technology used for
close-range photogrammetry, this thesis only briefly addresses a few aspects relevant to MM.

For MM applications, a camera should provide images that were captured at a single point in
time (epoch) and that are temporally consistent. Thus, it is essential to avoid opposing effects
such as motion blur or rolling shutter. Larger sensor pixel size or larger fill factor (ratio of a
pixel’s light sensitive area to its total area) increase the light sensitivity of an image sensor,
which might result in shorter exposure times (less motion blur) or in less gain amplification
(less noise) in darker environments.

Complementary Metal Oxide Semiconductor (CMOS) sensors are becoming more and more
widespread and seem to be increasingly replacing Charge-Coupled Device (CCD) sensors.
They have lower energy consumption, allow higher frame rates and have significantly reduced
blooming and smearing effects (Neumann et al., 2016).

CMOS sensors feature rolling or global shutter, whereby the rolling shutter exposes and reads
out the sensor line by line and the global shutter exposes the sensor at once. Rolling shutter
sensors have a simpler architecture, are more affordable, and often have a better fill factor
than global shutter sensors. However, they introduce significant distortions while moving.
Zhou et al. (2020) present a two-step approach for the correction of rolling shutter distortion
in Unmanned Aerial Vehicle (UAV) photogrammetry. However, the rolling shutter effect can
also be useful. For example, Kim et al. (2020) try to estimate object distances using the
rolling shutter effect in terrestrial MM application. By general, global shutter cameras are
applied in MM applications in order to avoid rolling shutter effects.

Another important criterion for MM applications is the camera triggering. Particularly critical
is the delay that occurs between the trigger command and the physical camera triggering,
which leads to errors in the image position. Consequently, the corresponding delay should be
minimal.
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Further application specific criteria are the frame rate, geometric and radiometric resolution
and the optics. For MM applications, optics with wide angles are preferred to cover as much
of the scene as possible. Though, wide angle optics or even fish-eye optics lead to significant
distortions, which have to be corrected with different distortion or camera models.

LiDAR Scanners

LiDAR scanners are active sensors that use laser to geometrically scan and capture the
environment. Shan, Toth (2018) systematically introduce the basic principles of laser ranging,
laser profiling and laser scanning. Laser ranging designates the distance measurement between
a laser ranger and a ground object using Time of Flight (ToF) of a very short laser pulse or
using continuous wave and the phase difference. A laser profile includes a series of laser range
measurements along a specific axis (e.g. tilting axis), whereby the measured angle and the
range result in 2D coordinates. Finally, a 3D laser scan either requires a series of laser profiles
around a further axis (e.g. horizontal axis) for terrestrial laser scanning or a series of laser
profiles along a trajectory for mobile laser scanning.

Profile LiDAR scanners are mainly used in MM applications. Important specifications of
profile LiDAR scanners are maximum range, range precision, range accuracy, laser pulse
repetition rate, scan speed, field of view and the angular resolution.

Increasingly, also multi-beam LiDAR scanners are used in automotive applications and in
MM. Since they provide 3D point clouds in real time, they are usable for 3D object detection
in real time as well as for SLAM applications.

Another trend, primarily in the consumer sector, is towards solid state LiDAR. Omitting
mechanical parts allows a much more compact and cost-effective design, enabling LiDAR
technology to even be integrated into smartphones. Nam, Gon-Woo (2021) provide an overview
of the most common implementation technologies, such as MEMS, optical phased array or
frequency-modulated continuous wave based LiDAR.

2.2.2 Sensor Configurations

There is a wide variety of sensor configurations for MMS. Many of them result from the
sensor characteristics and the space or weight limitations of the platform. Nevertheless,
certain basic patterns are discernible. This subsection, briefly shows and discusses certain
configuration patterns of mapping sensors, using cameras and LiDAR scanners in terms of
their characteristics.

Mono or divergent camera configurations (see Figure 2.4a) offer great flexibility and have only
few restrictions for the implementation. They are particularly suitable to capture a desired
scene area with specific properties based on images. A typical application is the coloring of
LiDAR point clouds.

By contrast, stereo camera configurations offer 3D stereo views and also allow 3D measurements
within the overlapping and stereoscopic area (see Figure 2.4b). Stereo configurations require
a precise calibration in order to obtain rectified stereo images. Furthermore, sufficiently sized
stereo bases require large space and are therefore not suitable for every platform. Luhmann
et al. (2019) provide comprehensive theory and fundamentals of stereo-photogrammetry.

Panoramic camera configurations (see Figure 2.4c) cover the entire environment and provide a
comprehensive overview. They are also suitable for coloring point clouds. Such configurations
may range from a single sensor with appropriate optics (e.g. catadioptric or fish-eye), to two
or few sensors with fish-eye optics or even to multi-head panoramic cameras. Multi-head
panoramic camera configurations require careful design to keep the distances between the
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projection centers of each camera head as small as possible, which mitigates or, in the best
case, avoids stitching errors.

The single-profile LiDAR scanner configuration (see Figure 2.4d) results in a regular pattern
of cross profiles and is for example suitable for road or rail parameter evaluation, while the
multi-profile LiDAR scanner configuration (see Figure 2.4e) better captures hidden niches
and corners in urban environments thanks to its slightly tilted arrangement.

Multi-sensor configurations enable combinations of different generic sensor configuration
patterns, whereby various sensor technologies might complement each other. Figure 2.4f shows
a panoramic camera configuration combined with a multi LiDAR profile scanner configuration,
which might be useful for street-level city mapping by providing panoramic imagery with
corresponding depth information from LiDAR point clouds.

(a) Divergent (b) Stereo (c) Panoramic

(d) Single scanner (e) Multi scanner (f) Multi sensor

Figure 2.4: Top views of typical mapping sensor configurations of MMS. Red filled sensors indicate
cameras or multi-camera systems while green filled sensors mark LiDAR scanners. Blue filled triangles
represent camera fields of view, where darker blue areas show overlapping. Blue dotted lines represent
LiDAR profiles, with profiles recorded at an earlier time shown more transparently.

2.2.3 Vehicle-based Mobile Mapping Systems

First experimental stereo-vision-based MMS were the Ohio State University Highway Mapping
System (Novak, 1991) and the VIASAT system (Schwarz et al., 1993). Both systems consist
of a GNSS and IMU combined navigation unit and a forward pointing stereo camera system
used for mapping. Schwarz et al. (1993) clearly introduced the principle of stereo vision-based
MMS and achieved an overall positioning accuracy of 0.3m and better for all objects within a
50m corridor on both sides of a highway. Beers (1995) developed an early panoramic-based
MMS, using a compass and an odometer for navigation and a single analogous fish-eye camera
for mapping.

With the rapid increase in computing power as well as in memory and storage capacity and
ongoing developments in sensor technology, stereo vision-based MMS have been evolved to
multi-stereo as well as panorama camera-based MMS. The image-based multi stereo MMS
Stereopolis II (Paparoditis et al., 2012) consists of two stereo systems as well as of a rigid
mount with an IMU, three LiDAR scanners and a panorama camera configuration (see Figure
2.5a). The stereo systems pointing to the driving as well as to the reverse direction allow
image-based 3D measurements on objects along the track. Blaser et al. (2017) present a
completely image-based MMS with a stereo-panoramic 360◦ configuration (see Figure 2.5b).
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The presented system consist of a GNSS and IMU combined navigation unit, of a forward
pointing stereo system as well as of two multi-head panorama cameras, which are tilted
forward and backward respectively. Thus, two camera heads of each panorama camera form a
stereo system to the side, which results in an upward and a downward looking stereo system
on both sides.

(a) Stereopolis II (Paparoditis et al., 2012) (b) SmartMMS IGEO (Blaser et al., 2017)

Figure 2.5: Multi-stereo and panoramic MMS configurations

Extensive accuracy analysis showed absolute 3D point accuracy in the range of 2 cm to 8 cm
and relative 3D distance accuracy in the range from 1 cm to 5 cm (Blaser et al., 2018b). The
accuracy of the panoramic configuration thus lies in the same order of magnitude as the
accuracy of a stereo image-based MMS, which is in the range of 4 cm to 5 cm for absolute 3D
point measurements, according to prior accuracy investigations (Burkhard et al., 2012).

A much larger number of work has been focused on accuracy evaluation of LiDAR-based
MMS. Puente et al. (2013) provide a comprehensive overview and comparison of various
commercially available mobile laser scanning systems in terms of their practical application.
Barber et al. (2008) performed a geometric validation of their ground-based mobile laser
scanning system StreetMapper, consisting of a GNSS and IMU-based navigation unit and
three LiDAR scanners.

They achieved a measurement precision in elevation in the order of 3 cm and planimetric
accuracy of approximately 1 cm. Haala et al. (2008) further performed accuracy investigations
with the StreetMapper system in challenging urban area. They confirmed an achievable
accuracy level below 3 cm with good GNSS coverage.

2.2.4 Portable and Indoor Mobile Mapping Systems

This subsection incorporates state-of-the-art portable and indoor MMS. They can be subdi-
vided, based on their platform, into trolley, backpack and hand-held systems. Furthermore,
their sensor configuration is discussed.

Trolley Systems

Trolley platforms are suitable for data recording of large indoor environments. Since they
remain on the floor and do not have to be carried, there are fewer limitations in terms of
sensor weight. As they can be pushed evenly and the sensors remain constantly at the same
height, the result is a smooth trajectory.

Huitl et al. (2012) present a custom-built mapping trolley equipped with two horizontally
and vertically mounted LiDAR scanners, a Ladybug 3 panoramic camera, and two digital
single-lens reflex cameras mounted on each side. For 2D navigation, they use odometry as
well as a horizontally mounted LiDAR profile scanner. Continued development led to the
NavVis M6 trolley (see Figure 2.6a) which consists of three single profile LiDAR scanners, a
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multi-beam LiDAR scanner and a divergent multi-camera configuration on the top. For data
processing, they provide a cloud solution, resulting in textured point clouds (NavVis, 2020).
By contrast, the Viametris Trolley iMS3D features three profile scanners and a Ladybug
3 panoramic camera configuration (see Figure 2.6c). The Trimble Indoor Mobile Mapping
Solution (TIMMS) also features a Ladybug 3 multi-head panoramic camera, which is located
directly above the operator’s head (see Figure 2.6b) and a high performance LiDAR profile
scanner which is mounted across the recording direction.

(a) NavVis M6 Trolley
(NavVis, 2020)

(b) TIMMS (Applanix Cor-
poration, 2017)

(c) Viametris iMS3D (Vi-
ametris, 2022b)

Figure 2.6: Trolley-based MMS

Backpack Systems

Backpack Systems offer more flexibility than trolley systems and thus have a greater range of
applications. However, there are limitations on the maximum sensor payload as well as on
the sensor configuration due to limited form factors.

Ellum, El-Sheimy (2000) discuss and simulate various sensor configurations in order to develop
a low-cost backpack MMS and Ellum, El-Sheimy (2001) present the developed low-cost
backpack MMS. Their system features a Leica Digital Magnetic Compass (DMC-SX) and
a NovAtel dual-frequency RT2 GNSS receiver as navigation sensors and a digital consumer
camera Kodak DC260 for mapping. Their investigations show an absolute accuracy of 25 cm
for a 20m camera to object distance.

Grejner-Brzezinska et al. (2006) present a self-developed backpack MMS. For navigation, they
integrate different navigation sensors such as GNSS, IMU, barometer and digital compass
within an extended Kalman filter and provide interesting findings with regard to human
dynamics-supported navigation.

By contrast, Liu et al. (2010) present a self-developed backpack MMS for indoor localization
and visualization, adapted for automated 3D modeling of building interiors. Their backpack
incorporates two IMUs and three profile LiDAR scanners that are arranged orthogonal to each
other (see Figure 2.7a). The three cameras have a resolution of 1338× 987 px and point to the
top, to the bottom and to the left. The navigation-grade IMU Honeywell HG9900 with three
ring laser gyros, having a bias stability below 0.003 ◦/h and high precision accelerometers,
serves as ground truth. The second, MEMS-based IMU is used for navigation in combination
with the horizontally mounted ”yaw” profile scanner. Their accuracy investigations showed
average position errors in the decimeter range. Results presented in Corso, Zakhor (2013)
show a mean accuracy of 10 cm within an office environment by using 100 surveyed control
points.

Nüchter et al. (2015) present a completely LiDAR-based backpack MMS without IMU support.
The system features a horizontally fixed profile scanner used for 2D mapping, as well as a
3D LiDAR scanner Riegl VZ-400, that is able to rotate freely around its vertical axis (see
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Figure 2.7b). Lauterbach et al. (2015) provide an evaluation of their developed backpack and
their proposed semi-rigid SLAM algorithm. They show maximum pose errors of 25 cm in
translation and 7◦ in rotation, which occurred mainly in places where the operator failed to
walk uniformly.

More recent academic backpack developments are mainly LiDAR-focused systems such as the
indoor backpack system from Wen et al. (2016) and the ITC-IMMS presented by Karam et al.
(2019) (see Figure 2.7c). Both systems feature three profile LiDAR scanners and MEMS-based
IMUs.

In recent years, commercial image-focused backpack MMS have appeared on the market. The
following three products are available: Leica Pegasus Backpack (Leica Geosystems AG, 2022b),
Viametris Backpack BMS3D-HD (Viametris, 2022a) and NavVis VLX (NavVis, 2022). By
contrast, the Vexcel Panther (Geo Week News, 2017) was recently discontinued.

The LiDAR scanner configuration of the Leica Pegasus Backpack, the Viametris Backpack
BMS3D-HD and the NavVis VLS are quite similar, as they all consist of both a horizontally
and a vertically mounted multi-beam LiDAR scanner. By contrast, the Vexcel Panther
features only a single multi-beam LiDAR scanner mounted almost horizontally (see Figure
2.7).

(a) Berkeley Backpack (Liu et al.,
2010)

(b) Würzburg Backpack (Nüchter
et al., 2015)

(c) ITC-IMMS (Karam et al.,
2019)

(d) Leica Pegasus Back-
pack (Leica Geosystems
AG, 2022b)

(e) Vexcel Panther (Geo
Week News, 2017)

(f) Viametris Backpack
(Viametris, 2022a)

(g) NavVis VLX
(NavVis, 2022)

Figure 2.7: Backpack MMS

The four commercial systems differ rather in their camera configuration. The Vexcel Panther,
the Viametris Backpack and the NavVis VLX feature panoramic camera configurations.
While the Vexcel Panther features a multi-head camera with 26 different camera heads and
provides a panoramic image with a total resolution of 172Mpx, the Viametris Backpack has
a Ladybug 5 panoramic camera with 6 camera heads and a total resolution of 30Mpx. The
NavVis VLX features 4 different cameras, using fish-eye optics with an overall resolution of
80Mpx. By contrast, the Leica Pegasus Backpack uses a divergent and mainly backward-faced
camera configuration which consists of five cameras with a resolution of 2046× 2046 px.
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Finally, the systems also differ in their navigation and georeferencing approaches. The NavVis
VLX uses a LiDAR SLAM for navigation with GCP support for georeferencing. Both the Leica
Pegasus Backpack and the Viametris Backpack combine a GNSS- and INS-based navigation
solution with LiDAR SLAM and the Vexcel Panther combines a GNSS and INS-based
navigation solution with visual odometry.

Hand-held Systems

Hand-held platforms offer the greatest flexibility since they can operate in areas that are
inaccessible for trolley and backpack systems. Nevertheless, hand-held systems are mainly
suitable for capturing smaller areas because a) they become inconvenient to hold after a short
time and b) their computing and storage capacity is often limited and insufficient for large
data records.

Bosse et al. (2012) present a spring-mounted profile LiDAR scanner combined with an
industrial-grade IMU Zebedee and a 3D SLAM algorithm for estimating a trajectory with 6
DoF. The system has been continuously improved and industrialized and is marketed under
the name GeoSLAM ZEB-REVO. The spring was replaced by a motor, which continuously
rotates the combined profile LiDAR scanner, and an IMU (see Figure 2.8b). Nocerino et
al. (2017) investigated both indoor and outdoor performance of the hand-held LiDAR-based
MMS GeoSLAM ZEB-REVO.

Another LiDAR-based hand-held MMS is Kaarta Stencil, featuring a multi-beam LiDAR
scanner as well as a low-grade IMU (Zhang et al., 2016). The successor system Kaarta
Stencil Pro has been evolved from an only LiDAR-based to a multi-sensor system, featuring a
multi-head panoramic camera with 4 camera heads and a total panoramic image resolution of
32Mpx (see Figure 2.8a). Furthermore, the system is equipped with a GNSS antenna and a
multi-frequency and multi-constellation GNSS receiver.

Finally, the former tripod-based LiDAR scanner Leica BLK360 evolved to a multi-sensor
hand-held MMS Leica BLK2GO, featuring a highly accurate LiDAR scanner, a 12Mpx rolling
shutter camera for mapping and three fish-eye cameras, arranged to a panoramic configuration
for navigation. For navigation, they use a combined IMU-supported LiDAR and visual SLAM.

Leica Geosystems AG (2022a) specify a range noise of 3mm and an indoor accuracy of 10mm
for the Leica BLK2GO, while the Kaarta Stencil is specified with a LiDAR accuracy of 3 cm
and the ZEB REVO ’s accuracy is specified from 1 cm to 3 cm (Geoslam, 2022).

(a) Kaarta stencil pro (Kaarta,
2022)

(b) ZEB Revo (Geoslam, 2022) (c) BLK2GO (Leica Geosystems
AG, 2022a)

Figure 2.8: Hand-held MMS
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2.3 Mobile Mapping System Calibration

This section treats the MMS calibration. Subsection 2.3.1 shows the functional dependencies
between the involved coordinate frames of typical MMS and includes a discussion of various
overall system calibration methods. Subsection 2.3.2 treats different camera sensor models.
Finally, Subsection 2.3.3 covers the calibration of profile and multi-beam LiDAR scanners
and discusses different calibration approaches and procedures.

2.3.1 Overall System Calibration

Figure 2.9 depicts the functional relationships between the different sensors, the body frame
and the mapping frame of a typical MMS for direct sensor orientation.

The figure below graphically shows the following equations:

wpi(t) =
wHb(t)

bHc
cpi(t) (2.1)

and

wpj(t) =
wHb(t)

bHl
lpj(t) (2.2)

which transform the homogeneous point coordinates measured, cpi(t) and lpj(t) using a

stereo camera system and a LiDAR scanner respectively. bHc and
bHl represent rigid body

transformations which are 4 × 4 matrices, incorporating lever-arm and misalignment of
each sensor to the body frame b. In this example, the body frame b is equivalent to the
navigation center of the INS. Finally, the body frame pose wHb(t) from the INS transforms
both points into the world coordinate frame w. More details on the homogeneous coordinate
transformations can be found in Appendix A.2.

Ellum, El-Sheimy (2002) divide the MMS calibration into three separate steps a) camera
calibration, b) lever-arm calibration between the body frame and the GNSS antenna center
and c) the boresight calibration between the camera configuration and the body frame. They
propose a bundle-adjustment-based self-calibration for the cameras according to Fraser (1997),
and discuss both advantages and disadvantages of different techniques for the lever-arm
and boresight calibration. Thereby, they consider external measurement of the lever-arm,
post-adjustment averaging as well as including the boresight parameters into the bundle-
adjustment.

Rau et al. (2011) extend the functional model of the bundle-adjustment-based camera calibra-
tion by the boresight alignment. This allows to simultaneously calibrate the cameras with the
boresight alignment. Kersting et al. (2012) further extend the functional model by relative
orientations between camera and reference camera coordinate systems enabling the single-step
calibration of multi-camera MMS.

Khoramshahi et al. (2019) present an accurate calibration scheme for a multi-camera MMS.
Their system features a Ladybug 5+ multi-head panoramic camera and a GNSS and INS-
combined navigation system. By contrast, Blaser et al. (2017) present an overall system
calibration procedure for stereo-panoramic MMS, featuring two tilted Ladybug 5 multi-head
panoramic cameras that build stereo camera configurations to the sides. The presented
MMS additionally features a stereo system to the front as well as a GNSS and INS-combined
navigation system.

Khoramshahi et al. (2019) and Rau et al. (2016) use the pinhole camera model for the
individual camera heads of the Ladybug 5+ and the Ladybug 5 panoramic camera, respectively.
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Figure 2.9: Outline of a MMS with a typical sensor configuration (a forward-pointing stereo camera
system, a profile LiDAR scanner in the rear and a GNSS- and INS-combined navigation unit on
the top). It shows the different coordinate frames involved, their relationships and the principle of
direct sensor orientation. Mapping sensors (e.g. stereo camera systems (red) or LiDAR scanners
(green)) capture 3D points cpi(t) and

lpj(t) at time t within their local sensor coordinate frames Sc

and Sl. Furthermore, the navigation unit (blue) continuously estimates poses wHb(t) between the
body frame Sb and the world coordinate frame Sw at the same time t. With pre-calibrated Boresight
Alignment (BA) (bHc,

bHl) and
wHb(t), the locally mapped 3D points can be transformed into the

world coordinate frame Sw.

By contrast, Blaser et al. (2017) use the equidistant fish-eye camera model to cope with the
significant distortions of the individual Ladybug 5 panoramic camera heads.

2.3.2 Camera Models

The increasing number of camera types used in close-range as well as in MM requires new
approaches in sensor modeling. Luhmann et al. (2016) provide a comprehensive review of
recent camera developments, state-of-the-art camera calibration methods and models, and
extended and generic calibration models.

Most camera calibration models assume a central perspective camera model and use additional
parameters for modeling distortions between the ideal mathematical camera model and the
physical camera reality. The distortion parameters provided by Brown (1971) are widely
used in close-range photogrammetry and have become a quasi-standard. They work well for
cameras with narrow-angle or wide-angle lenses. However, they are not suitable for fish-eye
lenses with large fields of view. Abraham, Förstner (2005) suggest using an ideal projection
of the imaging sphere onto the image plane and then applying subsequent corrections.

They review existing camera and fish-eye projection models, such as

• the perspective: r = f tan (θ),

• the stereo-graphic: r = 2f tan (θ/2),

• the equidistant: r = fθ,

• the orthogonal: r = f sin (θ)

• and the equi-solid-angle: r = 2f sin (θ/2),
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where θ is the angle between the principal axis and the incoming ray, r denotes the distance
between the image point and the principal point and f represents the focal length. Furthermore,
they propose two rectification models for fish-eye stereo images, providing parallel epipolar
lines: a) the epipolar equidistant and b) the epipolar stereo-graphic model. Both models allow
fast depth reconstruction of fish-eye stereo images, using standard stereo matching algorithms.

By contrast, Kannala, Brandt (2006) propose a generic camera model for fish-eye cameras,
which is based on Taylor polynomials and approximates both the best-fitting fish-eye projection
model and the physical distortions. Heuvel et al. (2006) present a calibration procedure
for MMS with a fish-eye-based panoramic camera, which is based on the generic camera
model presented in Kannala, Brandt (2006). Luber (2015) demonstrates that generic camera
models are suitable for a wide range of fish-eye optics and stereo systems and achieve maximal
calibration errors below 1 px. However, generic camera models used for stereo systems result
in epipolar curves that are not supported by standard stereo matching algorithms.

2.3.3 LiDAR Calibration

LiDAR calibration can be divided into a) the intrinsic sensor calibration, b) the extrinsic
calibration (boresight alignment), and c) the relative orientation between another sensor. In
particular, sensor data fusion of LiDAR and image data requires precisely calibrated relative
orientations between cameras and LiDAR scanners.

Chan et al. (2013) provide an overview of state-of-the-art boresight alignment calibration
methods for only LiDAR-based MMS and propose a feature-based approach for boresight
self-calibration. By contrast, Karam et al. (2019) present a plane-based calibration procedure
for calibrating their profile LiDAR scanner-based backpack indoor MMS, which relies on a
rectangular-shaped calibration room.

Similarly, the kinematic self-calibration procedure of a backpack-based multi-beam LiDAR
MMS, proposed by Kim et al. (2021), is based on plane constraints. They additionally consider
intrinsic sensor parameters. Thereby, their functional model includes the range offset, the
vertical and horizontal angular offset for each LiDAR beam, and the Exterior Orientation
(EO) parameters for each LiDAR scanner. Furthermore, they investigated the correlation
coefficients between intrinsic and extrinsic calibration parameters as well as the long-term
stability of the calibration. With their approach, they achieved an improvement of planar
misclosure in the range of 35% to 81%, while the internal calibration of Glennie et al. (2016)
improves the planar misclosure by 20%.

There exist different calibration methods for the relative orientation between LiDAR scanners
and cameras.

Scaramuzza et al. (2007) use a cost function that minimizes the difference of the bearing angles
of the camera points and the bearing angles of the re-projected LiDAR points and use the
Levenberg-Marquardt algorithm for non-linear optimization. They propose manually measured
corresponding points by using a visualization technique which facilitates the measurement
process.

By contrast, Alismail et al. (2012) present an automatic calibration procedure for the RO
between a LiDAR scanner and a camera system, using a single calibration target. Ilci, Toth
(2020) use LiDAR targets to calibrate the misalignment between LiDAR scanners and camera
systems, while estimating the lever-arm externally. Ravi et al. (2018) propose a simultaneous
system calibration of multi-LiDAR and multi-camera MMS, using planar targets which are
measurable from LiDAR data as well as from image data.

Hillemann (2020) proposes an approach for self-calibration of LiDAR profile scanners and
cameras that relies on LiDAR point cloud features and does not depend on targets or
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corresponding points. The approach is based on the optimization of the following cost function

K = s(F)
N∑
i=1

(fF ,i(
wpi,Ni))

2 = s(F)
N∑
i=1

(fF ,i(
wHc(i)

cHl
lpi,Ni))

2, (2.3)

where the function fF ,i calculates a feature, using a LiDAR point wpi that refers to the global
coordinate frame w and a neighborhood Ni which incorporates a predefined number of points
that are closest to wpi. Since the LiDAR point lpi refers to the local frame l of the LiDAR
scanner, the relative orientation cHl between the LiDAR coordinate frame l and the camera
coordinate frame c as well as the current camera pose wHc(i) are required to transform the
LiDAR point into the global coordinate frame w.

Hillemann (2020) evaluated different cost functions using different geometric 3D LiDAR
features whereby the omnivariance showed the best results. The omnivariance is calculated as
follows

fO,i(
wpi,Ni) =

3
√
λ1,iλ2,iλ3,i, (2.4)

where λ1,i, λ2,i and λ3,i are the eigenvalues of the structure tensor of the local neighborhood
Ni of the LiDAR point wpi.

2.4 Georeferencing Methods

Achieving homogeneous accurate and reliable georeferencing across different environments
is one of the most important unsolved research topics in MM. Historically, the problem
of georeferencing has been tackled mainly by the geomatics community. Due to the rapid
developments in emerging technologies, especially in the field of AR or autonomous vehicles
and platforms, other disciplines such as computer vision or robotics are increasingly addressing
georeferencing issues.

In addition to conventional georeferencing sensors such as GNSS and IMU, environmental
sensors such as cameras or LiDAR scanners are increasingly used for pose estimation and
georeferencing.

This section briefly treats various georeferencing methods from a sensing perspective, whereby
fundamentals as well as recent and novel developments are addressed. Subsection 2.4.1 includes
the direct georeferencing which mainly involves GNSS and IMU sensor data. Subsection 2.4.2
treats different LiDAR-based georeferencing methods and Subsection 2.4.3 includes various
image-based or visual methods for georeferencing. Subsection 2.4.4 summarizes, discusses and
evaluates the different georeferencing methods and provides a qualitative overview. Finally,
Subsection 2.4.5 briefly introduces the quality measures used for the quantitative evaluation.

2.4.1 Direct Georeferencing

By general, direct georeferencing refers to estimating the pose of the platform and sensors
using on-board sensors, that are independent from the mapping sensors. Since the early days
of MMS however, the sensor combination of GNSS and IMU has been widely used for direct
georeferencing.

Schwarz et al. (1993) present a GNSS and IMU integration for an early image-based MMS
using a Kalman Filter and describe in detail the advantages of direct georeferencing. Angrisano
(2010) provide a comprehensive treatment of different GNSS and IMU integration strategies.
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In this context, the two predominant strategies are the loosely and the tightly coupled sensor
integration. A loosely coupled integration processes raw data from GNSS and IMU separately
and integrates pre-processed positions and velocities from both sensors in combination with
attitudes from IMU within a Kalman Filter. By contrast, a tightly coupled sensor integration
combines raw observations from GNSS with predicted measurements from INS.

A loosely coupled sensor integration requires smaller filters, which results in lower processing
times. Furthermore, it is more robust since the raw data of both sensors are processed
separately and provide independent navigation solutions. However, tightly coupled sensor
integration results in a lower process noise and is capable of integrating partial GNSS satellite
constellations. Tightly coupled sensor integration proves beneficial in areas of disturbed GNSS
reception by reducing drifts caused by the INS.

By general, direct georeferencing strongly depends on the GNSS reception. In outdoor
environments with good GNSS reception, it enables cm-accuracy by using Post-Processed
Kinematic (PPK) or RTK GNSS combined with a tactical grade IMU.

However, partial or complete GNSS signal loss may reduce the accuracy to the dm or even to
the m-range (Cavegn et al., 2018).

There exist several methods and strategies for bridging GNSS outages or reducing accuracy
decrease. Grejner-Brzezinska et al. (2001) investigate the effects and the benefits of Zero
Velocity Updates (ZUPTs) on navigation accuracy in urban areas. Since a ZUPT sets the
velocity state of the Kalman filter to zero when the platform comes to a standstill, this also
has a beneficial effect on the accuracy of the correlated position and attitude.

By contrast, Eugster et al. (2012) propose to support a loosely-coupled integration of GNSS
and INS during GNSS outages by CUPTs from external sources. They investigate on CUPTs
that originate from either a stereo-image sequence obtained with a bundle-adjustment or
from individual GCP measurements in stereo images. Stereo image sequences processed
with bundle-adjustment can additionally be used to create ATTUPTs, whereas individual
GCP measurements are more efficient. Eugster et al. (2012) show improvements in standard
deviation from the dm- to the cm-range.

In case of post-processing, significant improvements in accuracy are possible by processing
trajectories two-sided and multiple times as well as by smoothing. Chen et al. (2021a) present
a new triple filtering algorithm, which performs a forward-backward-forward extended Kalman
Filter for trajectory processing. They show that the third forward processing further reduces
inaccuracies in the first forward processing when the filter has not reached convergence.

Recent developments in direct georeferencing focus on the tightly coupled GNSS and INS
integration using Precise Point Positioning (PPP). Gu et al. (2021) propose this approach for
vehicle navigation since PPP GNSS is cost-effective. They achieved horizontal positioning
errors in the sub-m-range in urban environments.

2.4.2 LiDAR-based Georeferencing

This subsection discusses various georeferencing methods that rely mainly on LiDAR sensors.

LiDAR Odometry

In general, LiDAR odometry leads back to a scan registration problem, whereby estimated
position and orientation differences between local LiDAR scans result in a local trajectory.
Most existing LiDAR odometry algorithms are based on variants of the Iterative Closest Point
(ICP) algorithm (Besl, McKay, 1992), such as point-to-plane ICP, plane-to-plane ICP, or
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combined methods developed to increase processing speed and robustness.

When using rotating multi-beam LiDAR scanners, the ongoing platform movements distort
the local LiDAR profiles. Thus, LiDAR odometry using rotating profile scanners includes the
following tasks:

1. Undistort or de-wrap the local LiDAR (multi-) profiles.

2. Estimate the rigid-body transformations to previous LiDAR (multi-) profiles or to the
global coordinate frame respectively.

De-wrapping local LiDAR (multi-) profiles requires high-frequency motion information, while
precision is less important. By contrast, rigid body transformation estimation requires the
opposite.

In literature, the term LiDAR Odometry and Mapping (LOAM) refers to algorithms that
consider both tasks simultaneously, whereby odometry refers to the estimation of high-
frequency motions, and mapping relates to the estimation of the rigid-body transformation.
Zhang, Singh (2017) present an edge and planar feature-based LOAM algorithm, showing
drift rates around 1% in indoor environments and 2.5% in outdoor environments.

Recent developments use deep convolutional neural network pipelines such as LO-Net (Li et
al., 2019). They show promising results with similar accuracy to state-of-the-art geometry-
based approaches. However, such pipelines are often trained with ground truth data, which
significantly limits the application scenarios.

By contrast, Zheng, Zhu (2021) significantly improve efficiency and accuracy with a geometry-
based LiDAR odometry approach by using both projected spherical and ground images. Their
algorithm shows drift rates around 0.7% and requires a computational time of about 27ms
on a NVIDIA Jetson AGX computer.

LiDAR SLAM

This subsection primarily deals with the general aspects of SLAM as well as LiDAR SLAM,
while the aspects of visual SLAM are treated in Subsection 2.4.3.

SLAM algorithms allow to simultaneously estimate sensor poses and create a map. This
technique was developed to realize autonomous robots and platforms. In contrast to LiDAR
odometry and LOAM algorithms, LiDAR SLAM additionally considers long term drifts by
loop closures.

Durrant-Whyte, Bailey (2006) describe the history and the formal structure of the SLAM
problem. Cadena et al. (2016) give a general comprehensive review on SLAM and Alsadik,
Karam (2021) provide a geomatics-related overview of various aspects of SLAM.

By general, a SLAM algorithm includes the following core components:

1. The map, which may represent a sparse map, a dense map or a grid-based map.

2. The front-end (also called local SLAM), which performs real-time tasks at a high
frequency (e.g. feature extraction and matching or local point cloud matching).

3. The back-end (also called global SLAM), which performs optimization tasks at a low
frequency (e.g. graph-optimization, particle filtering, loop closure, re-localization or
map estimation)
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Traditional LiDAR SLAM algorithms use grid-based maps, which either consist of 2D oc-
cupancy grids based on pixels or 3D occupancy grids based on voxels. Each grid cell can
indicate its state, whether it is free, occupied or unknown. Corso, Zakhor (2013) present a 2D
offline LiDAR SLAM algorithm with automatic loop-closure detection from a 2D occupancy
grid, while Hess et al. (2016) propose the real-time 2D LiDAR SLAM algorithm Cartographer,
based on 2D occupancy grids, which they subsequently extended to a real-time 3D SLAM
algorithm.

More recent LiDAR and multi-sensor SLAM algorithms such as Behley, Stachniss (2018) or
Park et al. (2021) focus on sparse or dense map representation. Especially SLAM with dense
map representation requires a high level of computing power as well as a large amount of
memory. However, geometric primitives derived from the point cloud (e.g. planes, cylinders
or surfels) that are used for scan registration increase computational efficiency.

2.4.3 Image-based Georeferencing

Image-based georeferencing denotes the pose estimation of a platform or a camera by using
imagery. There exist various techniques and approaches, which are differently suited, depending
on the situation or system.

Structure-from-Motion and Bundle-Adjustment

Image-based georeferencing using bundle-adjustments dates back several decades and was
first applied in aerial photogrammetry. Kruck (1983) extended the functional model for
bundle-adjustment with additional parameters used for terrestrial photogrammetry.

Advances in automatic detection and matching of robust image features, such as the Scale
Invariant Feature Transform (SIFT) introduced by Lowe (2004), led to novel methods for
image orientation and 3D reconstruction such as SfM. Similar to traditional photogrammetry
and bundle-adjustment, SfM uses the parallax between different images to reconstruct the
depth. By general, SfM lacks scale and global reference frame because it does not involve
GCPs. Consequently, camera poses and 3D points are estimated in a local image space,
using automatically detected and matched image features. However, subsequent 3D similarity
transformations allow the transformation of such local scenes into the desired global reference
frame.

There exist various SfM and image matching strategies to handle larger image data sets, which
may consist of thousands or even millions of images. Schönberger, Frahm (2016) mention
incremental, hierarchical and global approaches, whereby incremental SfM is the most popular.
Their presented open-source SfM implementation COLMAP basically follows the incremental
reconstruction strategy.

Cavegn (2020) extended the COLMAP SfM pipeline by a) support for GCPs, which enables
georeferencing directly in the SfM pipeline, b) support of prior EO parameters, which enable
spatial feature matching and which are used for bundle-adjustment and c) support for RO
parameters that enable to constrain multi-camera configurations and significantly reduce the
number of unknown parameters, thereby increasing the robustness of the bundle-adjustment.
By contrast to the original implementation, the extension of Cavegn (2020) follows the global
reconstruction strategy. It relies on prior EO parameters and allows to directly triangulate
the tie points for all images. Using the extended COLMAP SfM pipeline, Cavegn (2020)
significantly improved directly georeferenced poses within urban and indoor environments
from distortions in the dm-range to the cm-range. However, the processing time significantly
exceeded the data acquisition time. Thus, such SfM pipelines do not perform in real-time.
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Visual Odometry

Visual odometry originates from robotics and is primarily used for real-time platform navigation.
Nister et al. (2004) present a visual odometry system that supports single as well as stereo
visual odometry and estimates the camera motion in real-time. An overview on visual odometry
research can be found in Aqel et al. (2016). While SfM focuses on precise 3D reconstruction
and requires high-resolution imagery captured with a low frame rate, visual odometry focuses
on real-time performance with high frame rates and low latency and thus low-resolution.

Visual SLAM

Visual SLAM techniques originate from robotics and are closely related to visual odometry.
Visual SLAM algorithms allow to simultaneously estimate the pose of the sensor and create a
map. While visual odometry algorithms focus on local optimizations, visual SLAM algorithms
also consider global consistency e.g. employing loop closure detection to compensate drifts
accumulated at the end of the trajectory. Macario Barros et al. (2022) provide a recent review
on visual SLAM algorithms, while they focus on visual-only, visual-inertial and RGB-D SLAM
as the three main visual-based SLAM approaches.

2.4.4 Qualitative Comparison of Different Georeferencing Methods

This subsection provides a qualitative comparison of the georeferencing methods discussed in
the previous subsections with respect to terrestrial applications.

Basically, each sensor technology has its own characteristic with strengths and weaknesses
in various points, affecting the robustness and defining the range of possible applications.
Furthermore, environmental conditions required for successful georeferencing differ due to the
different physical principles of the measurement sensor technology.

Direct georeferencing using GNSS and IMU measurements strongly depends on the GNSS
reception. Even with only short GNSS absences, quite strong drifts occur, which can degrade
position accuracy from the cm- to the dm- or m-range – even with high-end equipment. There-
fore, direct georeferencing without further support is only suitable for outdoor environments
with good GNSS reception.

Since LiDAR scanners are active sensors, LiDAR-based georeferencing methods are less
dependent on environmental conditions such as lighting or surface texture than image-based
georeferencing methods. However, LiDAR-based georeferencing methods rely on environments
with unique geometric structures that provide a sufficient number of constraints, since they
mainly use geometric features (e.g. lines, planes or surfels) for pose estimation (see Table 2.2).

In addition, the georeferencing methods differ in the reference frame used. Direct georeferencing
operates in a global geodetic reference frame, whereas LiDAR or visual odometry generally
use local 3D coordinate frames. Also most SLAM and SfM algorithms operate in local
3D coordinate frames, which usually start from the first sensor position. There exist also
implementations with GCP support, enabling the use of existing local or global reference
frames.

SLAM and SfM provide global map consistency since SLAM algorithms include loop-closure
detection and re-localization techniques for global optimization, while SfM uses common
features and tie points that are optimized within a bundle-adjustment. Since the direct
georeferencing depends on GNSS updates, it also provides global consistency. By contrast,
visual as well as LiDAR odometry algorithms are not globally consistent since they focus on
local optimizations and do not respect long-term deviations and drifts.
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By general, the local accuracy potential for SfM and visual and LiDAR-based odometry
depends on sensor resolution and accuracy, reconstruction, feature quality and feature dis-
tribution. Whereas SfM generally requires high-resolution images and uses sophisticated
image features, its accuracy potential lies in the cm- or even mm-domain. By contrast, visual
odometry algorithms tend to use low-resolution images and simple features, resulting in low
computational demand but also in a lower local accuracy, which typically lies in the dm- or
cm-domain.

Furthermore, the global accuracy of visual and LiDAR-based SLAM is additionally affected
by the map resolution and by local distortions that are introduced by loop-closures.

Generally, LiDAR-based methods have lower drifts than image based methods due to higher
measuring distances. Loop-closures (SLAM) and the use of GCPs (SfM) significantly reduce
drifts. In odometry and GNSS-absent direct georeferencing, drifts extend along the trajectory,
while in SLAM and SfM without reference points they predominantly occur as a scale across
the entire scene. In case of GCP supported SLAM or SfM, drifts tend to occur between GCPs.

In addition, the georeferencing methods differ in the required sensor reception frequency,
which is strongly correlated with the resulting trajectory density. While direct georeferencing
as well as SLAM and odometry algorithms require high reception frequency, SfM algorithms
cope with a medium to lower frame rate.

Odometry and SLAM algorithms are optimized for real-time applications, such as platform
navigation, and require low computational time. Direct georeferencing is real-time capable
and is also suitable for platform navigation. By contrast, SfM pipelines focus on precision and
accuracy, usually processing high-resolution imagery. Hence, their processing time significantly
exceeds the time required for data acquisition, so that they are not real-time capable.

Table 2.2: Qualitative comparison of the georeferencing methods discussed. Pluses mark positive
effects and minuses indicate negative effects.

Sensors GNSS &
IMU

LiDAR-based Image-based

Methods Direct Odometry SLAM SfM Odometry SLAM

Environmental
requirements

GNSS reception Geometric variety Radiometric texture

Robustness −− + + ++ + +

Reference frame global local local or
global

local or
global

local local or
global

Consistency + − + + − +

Local accuracy
range

dm–cm cm dm–cm cm–mm dm–cm dm–cm

Drifts 0, (INS only:
−−−−)

−− − − −−− −−

Required
reception
frequency

GNSS: low,
IMU: high

high high low –
medium

high high

Processing tp vs.
acquisition ta
time

tp < ta tp ≤ ta tp ≤ ta tp > ta tp ≤ ta tp ≤ ta
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As the different sensors and georeferencing methods have partly complementary characteristics,
strengths, and weaknesses, there is great potential to improve accuracy, robustness, and
reliability when combined. Zhang, Singh (2018) propose a LiDAR-visual-inertial-based
odometry and mapping algorithm with high robustness and low drifts, while Chen et al.
(2021b) provide a LiDAR and visual-combined SLAM algorithm. Both use multi-profile
LiDAR scanners combined with low-resolution, high-frame-rate cameras to generate point
clouds in real-time.

Cavegn et al. (2018) improve resulting camera poses from direct georeferencing and from
LiDAR SLAM by subsequent image-based georeferencing with an extended SfM pipeline. By
contrast, Eugster et al. (2012) support direct georeferencing during GNSS outages by external
updates from stereo-based bundle-adjustment and GCP measurements.

However, there is still great potential for novel robust and accurate georeferencing meth-
ods combining GNSS, INS, multi-profile LiDAR and high-resolution imagery to create an
image-focused map, which is similar to geospatial image-spaces proposed for infrastructure
management.

2.4.5 Quality Measures for Quantitative Comparision

This subsection briefly introduces essential quality measures, which we use for the quantitative
evaluation of different georeferencing methods. While Luhmann et al. (2019) defines precision
and accuracy, we additionally distinguish between absolute and relative accuracy.

Precision defines the closeness of independent measurements to each other. Thus, it denotes
a measure of statistical variability. Luhmann et al. (2019) further defines precision as
internal accuracy which mainly indicates random errors.

Absolute Accuracy defines the closeness of measurements to the true value or to ground
truth, which is often estimated with superior accuracy and thus regarded as the true
value. Luhmann et al. (2019) further defines (absolute) accuracy as external accuracy
that additionally indicates systematic errors.

Relative Accuracy defines the local consistency of positions. Thus, it denotes a measure
of positional consistency between for example a point and another near point. The
relative accuracy could also be defined as local accuracy. This indicator has a practical
relevance, e.g. when the accuracy of local distances or area measurements has to be
quantified, which are not affected by locally occurring systematic errors.
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Chapter 3

Design and Calibration of a
Portable Image-focused Mobile
Mapping System

This chapter includes the design, the development and the calibration of our portable image-
focused MMS. It combines and complements content concerning the system development from
the following conference papers:

• Blaser, S., Cavegn, S., Nebiker, S., 2018a. Development of a Portable High Performance
Mobile Mapping System Using the Robot Operating System. ISPRS Annals of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, IV-1/1, 13–20. DOI:
10.5194/isprs-annals-IV-1-13-2018.

• Blaser, S., Meyer, J., Nebiker, S., Fricker, L., Weber, D., 2020. Centimetre-Accuracy
in Forests and Urban Canyons – Combining a High-Performance Image-Based Mobile
Mapping Backpack with new Georeferencing Methods. ISPRS Annals of Photogram-
metry, Remote Sensing and Spatial Information Sciences, V-1-2020, 333–341. DOI:
10.5194/isprs-annals-V-1-2020-333-2020.

The overall system calibration is mainly based on the methodology of the following journal
article:

• Blaser, S., Nebiker, S., Cavegn, S., 2018b. On a Novel 360◦ Stereo Panoramic Stereo
Mobile Mapping System. Photogrammetric Engineering & Remote Sensing, 84(6),
347–356. DOI: 10.14358/PERS.84.6.347.

The design and calibration of a portable image-focused MMS is a key component and a
prerequisite for developing and investigating novel georeferencing approaches that are robust
and accurate across different environments. The design and functionality of the complex
multi-sensor system strongly affects both possible applications and the feasibility of various
data evaluation capabilities.

Section 3.1 discusses the requirements on the MM platform, the sensors and the configuration
for novel georeferencing approaches with high accuracy and robustness across multiple en-
vironments as well as for subsequent mapping with respect to creating geospatial 3D image
spaces with georeferenced RGB-D image sequences.

Section 3.2 treats the sensor evaluation for our portable image-focused MMS. This includes
on the one hand, the degree of fulfilment for each sensor and on the other technical data. The
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specifications and relevant technical data of each sensor used as well as their potentials and
limitations are presented.

Section 3.3 describes and discusses the finally implemented hardware and sensor configuration
in detail. This concerns the platform, the fixation and orientation of the sensors and also the
coverage and the sensor footprints.

Section 3.4 covers the sensor synchronization, which is essential for kinematic data acquisition
with MMS, while Section 3.5 briefly shows the modular and graph-based design of our data
acquisition software.

Finally, Section 3.6 includes the overall system calibration of the portable image-focused MMS
in test fields.

3.1 Portable Mobile Mapping System Requirements

This section presents and discusses in detail the requirements for a portable and image-
focused MMS for infrastructure management in challenging, non-drivable areas. As shown and
discussed in Section 2.1, cloud-based web services that provide 3D geospatial image-spaces
from MM data for infrastructure management have been proven and are already widely used.
However, due to the system size of image-based MMS in use, data acquisition was so far
limited to drivable areas. Therefore, our aim is to extend data acquisition to non-drivable
areas, while achieving comparable georeferencing as well as mapping quality in order to enable
seamless extension of existing infrastructure services.

Some academic and commercially available portable MMS already exist. However, most
of them are LiDAR-focused and their cameras or camera configurations do not meet the
requirements of high-resolution RGB-D images. In addition, the few commercial image-focused
MMS tend to be closed systems, not allowing changes to the sensor configuration or the
acquisition and post-processing software, nor providing access to raw sensor data. Thus, further
investigations and improvements on the sensor configuration as well as on georeferencing and
post processing algorithms are very limited or impossible. For these reasons, the in-house
development of an image-based backpack MMS prototype was inevitable.

The developed MMS should be image-focused and ideally provide high-resolution and pano-
ramic RGB-D image data to meet the mapping requirements for infrastructure management.
Furthermore, it should ideally provide similar overall accuracy in different and in challeng-
ing environments as state-of-the-art image-based MMS on vehicle platforms, lying in the
cm-domain. Ideally, it should offer the same accuracy and data quality across different
environments. The developed MMS should have a compact platform to cover non-drivable
areas, which may be expanded flexibly with sensors as needed.

Subsection 3.1.1 discusses the platform requirements in detail, while Subsection 3.1.2 includes
the requirements for navigation and georeferencing. Finally, Subsection 3.1.3 treats the
requirements for mapping.

3.1.1 Platform Requirements

There are several demands on the MM platform in terms of flexibility, versatility and er-
gonomics. However, there are also conflicting requirements that demand compromises.

Investigations on the sensor configuration and rapid advances in sensor technology require a
flexible platform design that allows the rearrangement of sensors as well as the integration of
additional sensors and components. This requires a modular hardware design.
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The MM platform has to be versatile, enabling data acquisition in different environments.
This should include, as far as possible, all places accessible to humans and should also include
obstacle-rich environments. The platform therefore needs to have a small and convenient
shape and size, which ideally does not exceed the size of a person.

Furthermore, the platform has to be stable and appropriately sized, with enough payload
for high-end sensors. However, the MM platform should be as ergonomic as possible and
convenient enough for larger campaigns. Thus, a high system weight and a large form factor
are rather disadvantageous.

As already stated in Subsection 2.2.4, one may distinguish the following portable MM platform
types:

• trolley

• backpack

• hand-held

Obviously, hand-held MM platforms allow the greatest degree of freedom in data acquisition.
The large degree of freedom allows the acquisition of narrow areas which are inaccessible to
other platform types. However, they have severely limited space and payloads which often
excludes the integration of high-end sensors.

By contrast, trolley MM platforms are less restrictive on sensor size or sensor weight, so that
high-end sensors can be physically installed. The facts, that the trolley is usually moved in a
regular motion along the floor and the degree of freedom in height is eliminated, support the
uniform data acquisition in terms of data density as well as data quality. Trolley platforms
enable highly efficient acquisition of high quality data at the same time. They are suitable for
capturing large-area objects with few obstacles (e.g. airports, museums or other public areas).
However, obstacle-rich environments (e.g. construction sites or stair cases) are inaccessible.

Backpack MM platforms allow both the integration of high-end sensors and flexible data
acquisition. However, they are limited in the possible sensor configurations as the height of
the sensor array is not visible to the operator. Thus, if the height of the sensor assembly
exceeds the head height of the operator, this could become critical and prone to damage when
capturing indoor environments. In addition, the operator obscures the field of view to the
front for lower sensor assemblies. Nevertheless, the backpack platform fulfills our requirements
best in terms of flexibility in sensor configuration, versatility and ability to be equipped with
high-end sensors as well as ergonomics.

3.1.2 Navigation and Georeferencing Requirements

Creating georeferenced RGB-D images for infrastructure management does not require real-
time georeferencing. Therefore we focus in this thesis on post-processed georeferencing
methods. The navigation solution is only necessary for platform control.

From this point of view, the requirements for platform navigation are quite different from
the requirements for georeferencing. Intended applications relying on a real-time platform
navigation solution are geometry-based camera triggering and real-time progress control. Both
applications require high pose frequency and low latency, while the accuracy is secondary and
should preferably be in the sub-m range.

By contrast, post-processed georeferencing should be robust across various environments
and provide accuracy in the cm-domain. In order to achieve a high level of robustness,
different sensor types for different georeferencing methods are required to complement each
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other’s strengths and weaknesses in different environments. To achieve high accuracy with
MMS, precise sensor synchronization is essential. It should be sufficiently precise that the
remaining delays have a negligible effect on the accuracy, which strongly depends on the
planned platform operation speed. Furthermore, it is essential that all raw sensor data is
stored during acquisition and is accessible for evaluation.

For navigation and georeferencing in outdoor environments with good GNSS reception, we
consider to use direct georeferencing, combining GNSS and IMU sensor data. To achieve an
overall accuracy in the cm range under optimal conditions in the outdoor area, a (multi-)
phase GNSS receiver and a tactical grade IMU are required.

For indoor navigation and georeferencing, we propose using LiDAR SLAM. LiDAR SLAM
seems to be promising to overcome the lack of GNSS. Furthermore, since LiDAR sensors
directly provide 3D geometry, LiDAR SLAM tends to require significantly less computational
resources than visual SLAM and performs in real-time. Consequently, LiDAR SLAM may be
used for platform navigation in indoor and in GNSS-denied areas.

We propose using the high-resolution images for both mapping and georeferencing. High-
quality sensor technology used for mapping performs in darker environments than low cost
cameras, which are commonly used for visual SLAM. Thus, image sensor may be better suited
for high-precision and computationally intensive SfM with bundle-adjustment.

3.1.3 Mapping Requirements

As previously introduced, we intended to develop an image-focused MMS in order to obtain
georeferenced RGB-D imagery. Thus, the cameras are the primary mapping sensors, which
may be supplemented by other secondary mapping sensors.

The cameras should cover the environment as completely as possible and simultaneously deliver
accurate and temporally coherent depth information. In a purely image-based implementation,
these two requirements conflict with each other.

For example, the use of multiple pre-calibrated stereo-bases could provide accurate and
temporally coherent depth information. However, multiple stereo camera configurations are
not suitable for backpack platforms due to limited platform space and operator occlusions.
In addition, the limited platform space severely limits or precludes necessary base lengths
for sufficiently accurate depth reconstruction. Besides, multiple stereo cameras may lead
to configurations with very different projection centers, which in the case of a panoramic
projection leads to large stitching errors.

Another example is the use of a panoramic camera, which is the most comprehensive way to
capture the environment. However, a single panoramic camera does not provide additional
depth information. Although, depth information could be obtained with SfM, using parallax
from the movement, or by using additional LiDAR scanners. However, the depth information
would not be temporally coherent with the source images. Nevertheless, LiDAR and image
sensors could be ideal sensor combinations for robust depth reconstruction due to their
complementary characteristics.

Successful image-based depth reconstruction and precise image measurements rely on precisely
calibrated and stable IO parameters as well as on stable image geometry. Thus, the cameras
used should feature fixed focal length and global shutter. In addition, they should not apply
automatic image corrections that affect the IO, such as image stabilization.

On the one hand, the cameras should capture the environment as detailed as possible in high
resolution with small ground sampling distances. One the other hand, the cameras must also
operate under low light conditions for example in indoor and underground campaigns. These
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two requirements are opposite, as a low light sensor requires a certain pixel size to capture
enough photons in low light conditions, which stands in contrast to fine sensor subdivisions of
high resolution sensors. Another option would be to use a larger sensor, resulting however in
larger optics and a higher system weight. Consequently, an optimal balance between the two
requirements has to be found.

3.2 Sensor Evaluation

This section contains the evaluation of the sensors and the main hardware components for
the portable image-focused MMS. This concerns the sensors and components for navigation,
mapping, data registration and data preprocessing.

Subsection 3.2.1 treats the evaluation of the multi-head panoramic camera FLIR Ladybug 5
as the primary mapping sensor and presents its relevant specifications.

Subsection 3.2.2 discusses the evaluation and shows specifications of the multi-beam LiDAR
scanner Velodyne VLP-16 Puck which is used as a navigation as well as a mapping sensor.

Subsection 3.2.3 the GNSS- and IMU-combined navigation unit NovAtel SPAN CPT 7, which
is used as the principal navigation sensor and as the reference clock.

Finally, Subsection 3.2.4 shortly describes the high-performance mini computer used for data
registration and preprocessing.

3.2.1 Panoramic Camera

The panoramic camera serves as the primary mapping sensor in our portable MMS. As
discussed in Section 3.1.3, the image-based primary mapping sensor should meet the following
requirements:

1. Cover the environment as completely as possible (desirable)

2. Provide a high image resolution (desirable)

3. Deliver accurate and temporally coherent depth information (desirable)

4. Cover a wide range of different light conditions (desirable)

5. Stable interior orientation (mandatory)

6. Feature precise external sensor synchronization (mandatory)

7. Suitable size and weight for a backpack platform (mandatory)

Numerous cameras and camera configurations partially fulfill our requirements, while pano-
ramic cameras meet the requirements best. By general, panoramic cameras almost completely
cover the entire environment (criterion 1), whereas they do not provide any depth information
(criterion 3). Multi-head panoramic cameras provide a large overall sensor area, which is
composed of multiple sensors. Consequently, multi-head panoramic cameras offer the highest
resolution (criterion 2) and often provide a large dynamic range (criterion 4) thanks to large
sensor pixel sizes.

Most multi-head panoramic cameras available on the market are in the consumer range and
have been specifically designed for AR and Virtual Reality (VR) applications. However, they
do not offer interfaces for precise external sensor synchronization (criterion 6).
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By contrast, industrial multi-head panoramic cameras provide numerous interfaces for precise
triggering and sensor synchronization and feature stable IO.

However, there are only few industrial multi-head cameras available. Apart from its successor
model FLIR Ladybug 5+, the FLIR Ladybug 5 multi-head panoramic camera currently is the
only industrial grade high-resolution multi-head panoramic camera on the market. Since the
Ladybug 5+ does not offer significant technological advances, we decided to use the Ladybug 5.

The FLIR Ladybug 5 consists of six camera heads, whereby five of them point sideways and
the sixth camera head points upward (Figure 3.1a & b). All individual camera heads feature
Sony ICX655 CCD sensors with a resolution of 5MP and a sensor pixel size of 3.45 µm (see
Table 3.1).

The camera heads feature wide-angle optics with a focal length of 4.4mm. The wide-angle
optics strongly distort the image, so that the pinhole camera model in combination with
the Conrady-Brown distortion model (Brown, 1971) cannot adequately approximate the
distortions. Nevertheless, previous internal research has shown that the equidistant fish-eye
camera model (Abraham, Förstner, 2005) approximates the strong distortions the Ladybug 5
camera heads best.

In contrast to the perspective camera model, the horizontal and vertical opening angles are
not constant (see Figure 3.1c). Appendix B.1 includes derivations on the opening angles of the
equidistant camera. The diagonal viewing angle αd amounts to 143◦. The minimal horizontal
viewing angle αhmin

amounts to 92◦ and the minimal vertical viewing angle αvmin amounts to
110◦ (see Table 3.1).

(a) Oblique view of the FLIR
Ladybug5 multi-head panoramic
camera (FLIR Inc., 2017).
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(b) Horizontal outline of the FLIR
Ladybug5 panoramic camera with
labeled camera heads. The bright
red triangles show the view frus-
tum of the horizontally pointing
camera heads and the red arrows
show their viewing direction.
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(c) Equidistant image shape from
an individual camera head that
is projected to the perspective
camera model. αhmin and αvmin

mark the minimal horizontal and
vertical viewing angle.

Figure 3.1: Multi-head panoramic camera FLIR Ladybug 5

In total, the Ladybug 5 panoramic camera has a resolution of 30Mpx, while a single panoramic
camera head’s resolution amounts to 5Mpx. The overall field of view amounts to 90% of a full
sphere. The focus distance is 200 cm and FLIR Inc. (2017) specify an acceptable sharpness
from 60 cm to infinity. Furthermore, the camera has a 12-bit Analog to Digital Converter
(ADC), which allows a higher dynamic range in sunlight as well as in shadows.

The General Purpose Input and Output (GPIO) interface has several hardware trigger modes,
with a trigger latency of about 8 µs. By contrast, the latency of the software trigger mode,
using the Universal Serial Bus (USB) 3.0 interface, amounts to 2ms (FLIR Inc., 2017).
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Table 3.1: Technical data of an individual Ladybug 5 camera head (FLIR Inc., 2017)

Sensor type Sony ICX655 CCD
Shutter type Global shutter
Sensor dimension u× v in px 2048× 2448
Pixel size in µm 3.45
Focal length c in mm 4.4
Diagonal viewing angle αd in ◦ 143
Min. horizontal viewing angle αhmin in ◦ 92
Min. vertical viewing angle αvmin in ◦ 113

The camera has a diameter of 197mm and a height of 160mm, whereby the weight amounts
to 3 kg.

In the overall view, the FLIR Ladybug 5 panoramic camera fulfills the requirements for our
portable MMS. Particularly advantageous are the field of view, the high dynamic range as
well as the hardware trigger interface which provides numerous options.

3.2.2 Laser Scanner

The LiDAR scanner serves as a navigation sensor as well as a secondary mapping sensor in
our portable MMS. As discussed in Sections 3.1.2 and 3.1.3, the laser scanner should meet
the following requirements:

1. Cover the environment as completely as possible (desirable)

2. Provide a high resolution (desirable)

3. Provide a high data acquisition rate for navigation purposes (mandatory)

4. Provide an accuracy in the cm-range (mandatory)

5. Provide raw data access (mandatory)

6. Provide a precise external sensor synchronization (mandatory)

7. Suitable size and weight for a backpack platform (mandatory)

There exist numerous LiDAR scanners, which partially fulfill our requirements. For example,
high-end Terrestrial Laser Scanner (TLS) usually provide high resolution as well as high
precision. In a static application, they usually cover the entire environment. However,
their size and weight exceed the backpack platform limitations (criterion 7). Since they are
designed for static application, they usually do not provide any interfaces for external sensor
synchronization (criterion 6). Furthermore, TLS often deny raw data access and only provide
the resulting point clouds (criterion 5).

Profile LiDAR scanners and multi-profile LiDAR scanners are often used in robotics and for
autonomous platforms. They are primarily designed for mobile applications and thus have a
small size and low weight (criterion 7). In addition, they offer a high data acquisition rate
(criterion 3), an external sensor synchronization, and provide access to raw data. However,
the field of view is often limited by the number of beams and by the high acquisition rate.

The multi-profile LiDAR scanner Velodyne VLP-16 Puck meets our requirements best (see
Figure 3.2). It was primarily conceived for collision avoidance applications in the automotive
industry, and thus has a compact and rugged design and ranges from the medium- to low-cost
price segment.
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The LiDAR scanner Velodyne VLP-16 Puck consists of 16 different LiDAR modules, which
are fixed on a rotating module, resulting in 16 profiles (see Figure 3.2c). The module rotates
with an adjustable speed between 5 and 20 revolutions per second (Velodyne, 2016). This
results in a full horizontal Field of View (FoV) (see Table 3.2). The horizontal resolution
is limited by the detection rate of the LiDAR modules and by the rotation rate used. By
contrast, the vertical FoV and the vertical resolution are limited by the arrangement of the 16
LiDAR modules.

The Velodyne VLP-16 supports precise synchronization from an external source, using a Pulse-
Per-Second (PPS) signal in conjunction with a one-per-second National Marine Electronics
Association (NMEA) sentence (Velodyne, 2016).

(a) Oblique view (Velodyne,
2016).
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sensor coordinate frame.
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(c) Outline with the LiDAR pro-
files.

Figure 3.2: Multi-beam LiDAR scanner Velodyne VLP-16 PUCK

Table 3.2: Specifications of the LiDAR scanner Velodyne VLP-16 Puck (Velodyne, 2016)

Max. range in m 100
Typical accuracy in cm 3.0
Number of channels 16
Angular resolution (H × V) in ◦ 0.1 to 0.4 × 2.0
FoV (H × V) in ◦ 360× 30
Rotation rates in Hz 5 to 20
Max. points per s 300 000

In the overall view, the Velodyne VLP-16 Puck multi-profile LiDAR fulfills the requirements
for our portable MMS. Its high data acquisition rate, compact dimensions and low weight
are particularly advantageous. Furthermore, precise external sensor synchronization and raw
sensor data access enable mobile applications.

However, the specified typical accuracy of 3 cm is at the lower limit of the acceptable. In
addition, a higher vertical resolution as well as an extended vertical field-of-view would be
desirable.

3.2.3 Inertial Navigation System

The INS serves as a navigation sensor in our portable MMS. As discussed in Section 3.1.2,
the INS should meet the following requirements:

1. Provide direct georeferencing, combining GNSS and IMU (mandatory)

2. Provide tactical grade performance (desirable)
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3. Allow external position and attitude updates for sensor data fusion (mandatory)

4. Provide precise sensor synchronization (mandatory)

5. Provide access to sensor raw data (mandatory)

6. Provide sensor raw data without system initialization (desirable)

7. Suitable size and weight for a backpack platform (mandatory)

The GNSS and IMU-combined INS NovAtel SPAN CPT 7 meets our requirements best. The
system includes the MEMS-based IMU Honeywell HG4930P with tactical grade performance
and high robustness as well as a GNSS dual antenna receiver.

The specifications state a position accuracy of 10mm horizontally and 20mm vertically under
good GNSS coverage and after post-processing (NovAtel Inc., 2020). The accuracy of the
attitude angles roll Φ and pitch Θ is specified as 0.005◦ and the heading Ψ as 0.010◦ (see
Table 3.3). A GNSS outage of 60 s degrades the horizontal accuracy to 150mm, the vertical
accuracy to 50mm, the roll Φ and pitch Θ attitude accuracy to 0.007◦ and the heading
accuracy to 0.012◦. The system use in the navigation mode with single GNSS position and
without correction data provides a position accuracy in the m-range and an attitude accuracy
in the range from 0.010◦ to 0.055◦.

Table 3.3: Performance specifications during GNSS outages of the INS NovAtel SPAN CPT7 (NovAtel
Inc., 2020)

Positioning mode Outage Position RMSE Attitude RMSE
duration H V Φ or Θ Ψ

in s in m in m in ◦ in ◦

Single 0 1.20 0.60 0.010 0.030
position 10 1.30 0.65 0.020 0.040

60 5.10 1.30 0.030 0.055

Post 0 0.01 0.02 0.005 0.010
processing 10 0.01 0.02 0.005 0.010

60 0.15 0.05 0.007 0.012

In addition, the NovAtel SPAN CPT 7 provides GNSS RTK which significantly improves the
accuracy in the navigation mode. In our case, the single GNSS position accuracy meets the
requirements for the navigation solution. For this reason, RTK accuracy is not listed in Table
3.3 but is specified in NovAtel Inc. (2020).

Furthermore, the NovAtel SPAN CPT 7 provides raw data access without any prior system
initialization, since the system consists of an internal as well as a precise system clock.
Moreover, numerous sensor synchronization interfaces are available.

The connected GNSS dual quadrifilar helix antenna HX-CHX600A enables low noise signal
reception of satellites even with a low elevation angle. Furthermore, the manufacturer promises
exceptional coverage in areas with weak signals and signal reflections.

Finally, the NovAtel SPAN CPT 7 fulfils our requirements on a primary navigation sensor,
since it is compact and lightweight (450 g) and its performance is comparable to tactical-grade
navigation systems used in MMS vehicles with fiber-optic gyroscopes (cf. UIMU-LCI in
Cavegn et al. (2018)).
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3.2.4 Computer

Our MMS includes the powerful mini computer Prime Mini Pro with fast data storage
capacities above 2TB on Solid State Disk (SSD) as well as high Random Access Memory
(RAM) resources of 32GB (see Table 3.4). In addition, the computer has a low energy
consumption and no mechanical moving parts.

The Intel processor with the widely used x64 or amd64 architecture is advantageous in terms
of the available hardware drivers and libraries, compared to the ARM processor architecture
of most embedded computers.

The standard high-performance interfaces USB 3.0 and Gigabit Ethernet (GigE) allow trans-
mission and reception of large amounts of sensor data. However, the used mini computer lacks
on manually configurable pins, which could be useful for hardware-based camera triggering
and sensor synchronization.

Table 3.4: Specifications of the portable MMS computer Prime Mini Pro (Prime Computer AG, 2017)

Processor Intel Core i5-5300U vPro
Graphic card Intel HD Graphics 5500
RAM 32 GB DDR3L – 1600MHz

Data Storage 1 × 500GB SSD
1 × 2000GB SSD

Interfaces 4 × USB 3.0
1 × GigE

2 × Mini-DP 1.2

3.3 Sensor Configuration

This section focuses on the sensor configuration of our backpack MMS by describing the
MM platform and the sensor configuration in general. Subsection 3.3.1 discusses the realized
camera configuration and Subsection 3.3.2 treats the realized LiDAR scanner configuration in
detail.

The MM platform consists of a robust aluminium frame which is fixed on a load carrier
backpack. The aluminium frame comprises super lightweight 30mm aluminium extrusions
that can be flexibly arranged. It provides a modular and rugged design for stable sensor
mounting, by enabling fast and efficient incremental sensor configuration improvements (see
figure 3.3).

We fixed the navigation system NovAtel SPAN CPT7 with IMU and GNSS receiver on the
bottom of the frame, where the sensor can be fixed in a stable and protected way. The GNSS
antenna sits on top of the frame, providing optimal GNSS coverage and reception.

The multi-head panoramic camera FLIR Ladybug 5 is mounted on the top so that it slightly
overlooks the operator’s head to provide forward visibility. At the same time, the camera
should not be attached too high to avoid collisions with overhead obstacles such as door
frames. In addition, we tilted the panorama camera slightly backwards by a few degrees to
compensate the operator’s forward bending. This results in a roughly horizontal camera plane
(see Figure 3.3).

One of the two LiDAR scanners sits on top of the frame and is tilted by 30◦ to cover mainly
the walls and some parts of the floor and ceiling. By contrast, the second vertically mounted
LiDAR scanner mainly covers the floor and ceiling.
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Figure 3.3: CAD outline of the BIMAGE Backpack, showing the sensor configuration. Big black arrows
mark the moving direction. Bold labels b (body frame), Hz (horizontal LiDAR), V (vertical LiDAR)
and cam0 (panoramic camera) represent the coordinate frames. Point symbols in the coordinate frame
origin represent backward-pointing axes, while cross symbols mark forward-pointing axes.

Figure 3.4 shows the final sensor configuration, including all components. Generally, heavy
components, such as the battery, are located at the bottom and nearest to the operator’s back.
This keeps the center of gravity as low and as close to the back as possible and improves
ergonomics.

The backpack’s overall weight amounts to 25 kg. Significant weight reductions could be
achieved in future by simplifying and adapting the sensor frame to the final configuration as
well as by optimizing hardware interfaces and by reducing unnecessary cable lengths.
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Figure 3.4: BIMAGE Backpack system setup for indoor and outdoor applications. Sensors marked
with blue lines are mainly used for direct georeferencing, green lines show sensors used for LiDAR
SLAM-based georeferencing and red lines components used for image-based georeferencing. Black lines
indicate supporting components.
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3.3.1 Camera Configuration

The multi-head panoramic camera FLIR Ladybug 5 is located on top of the backpack frame,
so that the camera slightly overlooks the operator’s head.

The main panoramic camera head cam0 points opposite to the walking direction. The sub-
ordered panoramic camera heads cam1 – cam4 are horizontally arranged, so that they form a
regular pentagon with cam0. By contrast, the fifth sub-ordered panoramic camera head cam5
points upwards (see Chapter 3.2.1 and Figure 3.1). Figure 3.5 shows a simulated panoramic
camera image epoch, consisting of six images from the individual panoramic camera heads.

The system weight of 25 kg causes a natural forward-bending of the operator’s upper body.
Therefore, we slightly backwards-tilted the panoramic camera by approximately 8◦, which
almost compensates the operator’s forward-bending, so that the panoramic camera comes to
bear horizontally (see Figure 3.4, no. 3).

The overlapping images of the individual panoramic camera heads achieve an almost complete
coverage. The backpack frame causes only minor occlusions, while most occlusions are caused
by the operator’s head (see Figure 3.6).

Mounting the panoramic camera at a higher level, for example directly above the operator’s
head, would reduce occlusions and provide even more favorable image coverage. However, this
would restrict the flexibility of the backpack MMS and cause collision risks with overhead
obstacles (e.g. door frames, elevators, etc.).

A significant advantage of the panoramic camera configuration we implemented is that the
panoramic camera covers the environment almost completely with only minor occlusions by
the frame and the operator. The overlapping images from the individual panoramic camera
heads allow stitching them together to a panoramic image. Other advantages are the almost
horizontal camera alignment and the camera placement nearby the operator’s head. This
creates a familiar image perspective from a pedestrian’s point of view, which is ideal for
creating image-based web services similar to Street-View.

However, the only mono-panoramic configuration does not provide depth information from
the same image epoch. Furthermore, the front view is partially occluded by the operator’s
head. In addition, the panoramic camera mounted on the top limits the ground coverage.
However, the ground would be of great interest for many applications, for example for road
state assessments
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cam0 cam1 cam2 cam3 cam4 cam5

Figure 3.5: Backpack model worn by a dummy person in a virtual environment (top) and the camera
views from the individual camera heads (cam0 - cam5) of the Ladybug 5 panoramic camera (bottom),
assuming the equidistant camera model. The simulation was carried out with ROS and with the
multi-robot simulator gazebo within the Willow Garage World.

3.3.2 Laser Scanner Configuration

The backpack MMS consists of two Velodyne VLP-16 Puck LiDAR scanners.

The first LiDAR scanner, which we label as ”horizontal LiDAR scanner”, sits on the top of
the MM sensor frame (see Figure 3.4, no. 1). It is tilted backwards by approximately 30◦ so
that it mainly covers the walls and partially covers the ceiling and the floor.

The second LiDAR scanner, which we label as ”vertical LiDAR scanner” is vertically mounted
on the center of the MM sensor frame (see Figure 3.4, no. 5). It complements the first LiDAR
scanner and mainly covers the floor and the ceiling but also some parts of the walls.

In an early stage of development, we only used the horizontal LiDAR scanner. However,
combined with LiDAR SLAM, this resulted in geometrical singularities. When using only
the horizontal LiDAR scanner within a room with a small plot combined with a heigh ceiling
(e.g. staircase), it only scans the walls without the floor and the ceiling (see Figure 3.6, green
profiles). Assuming a room with even walls and no other objects, the backpack pose cannot
be estimated without LiDAR points from the floor or ceiling. Hence, the vertical LiDAR
scanner brings additional geometric stability to the LiDAR slam.

Otherwise, if only the vertical LiDAR scanner was used for LiDAR SLAM, the same phe-
nomenon would occur, but this time in the walking direction. By contrast, for pure mapping
applications, it is uncritical to use only the vertical scanner. In addition, this would even be
advantageous, as the amount of data generated could be halved.
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ceiling

floor

front backleft right

Figure 3.6: Footprint of the BIMAGE Backpack MMS sensor configuration within a quadric shaped
room with a side length of 2.5m and with a height of 3m that is shown unfolded. The body frame of
the backpack MMS is horizontally placed in the center of the floor and vertically placed 1.08m over
the floor. The orientation ω = −8◦, φ = 0◦ and κ = 0◦ simulates the natural forward bending during
carrying. Red areas show the panoramic camera footprint, whereby occlusions by the frame and the
operator are respected. Blue lines mark the horizontal LiDAR scanner profiles and green lines show
the vertical LiDAR scanner profiles.

3.4 Sensor Synchronization

In order to realize an appropriate sensor synchronization, it is essential to identify time-critical
processes that may have a direct influence on the resulting accuracy. However, the distinction
between time-critical and non-time-critical processes depends on the application.

In our case, we kinematically capture data with our backpack MMS but we primarily use the
post-processed data. Hence, the actions in the field are less time-critical than the captured
sensor data.

This section describes our requirements for the sensor synchronization of our system and shows
and discusses the implemented solution for every sensor component. Subsection 3.4.1 describes
the reference clock of our system, while Subsection 3.4.2 contains the panoramic camera
synchronization and Subsection 3.4.3 treats the synchronization of the LiDAR scanners.
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Figure 3.7: Diagram, showing the electronic design of the BIMAGE Backpack. The lightly colored
squares mark the sensors. Their interfaces are marked as small attached squares outlined in black.
Rhombi represent the data exchanged between the components and yellow filled rhombuses mark
time-critical data. Data flow and connections are represented with arrows. Blue symbols refer to direct
georeferencing, green symbols relate to LiDAR SLAM-based georeferencing, and red symbols refer to
image-based georeferencing.

44



3.4. Sensor Synchronization

3.4.1 Reference Clock

To synchronize all sensors uniformly, we use a system-wide reference clock. In our system, the
navigation unit NovAtel SPAN CPT7 supplies the system’s reference time (see Figure 3.7,
bottom right). The reference time provided is calculated as follows:

tδ = tGNSS − tint (3.1)

tclock = tint + tδ (3.2)

where:

tint = Internal receiver time
tGNSS = GNSS time (coarse or fine)
tδ = Clock offset
tclock = IMU time used as system reference time

The navigation unit continuously estimates the clock offset using the best available GNSS
time reference. Then, the estimated clock offset is used to correct the internal receiver time.

The accuracy of the estimated clock offset depends on the GNSS reception. A coarse time
can be calculated using the GNSS navigation message, which is transmitted every six seconds.
NovAtel Inc. (2020) specify the coarse time accuracy to the GNSS time with 30ms.

When a complete GNSS constellation with at least four satellites is available, the so-called
fine time can be calculated, which is a more precise clock offset with internal compensation.
NovAtel Inc. (2020) specify the fine time accuracy, using the standard position service, with
20 ns.

3.4.2 Panoramic Camera Synchronization

To use post-processed images of a panoramic camera, kinematically captured by a portable
MMS, we need to determine exact triggering timestamps of the panoramic camera in the
system reference time. Based on this objective, the entire camera triggering process can be
separated into time-critical and non-time-critical operations.

We divide the panoramic triggering process into three different operations:

• sending the triggering command to the camera system

• triggering all cameras of the camera system

• estimating the precise time of the camera system triggering

Time delays during the first operation will affect the distance between two image epochs, but
do basically not affect the georeferencing accuracy of the image pose. Thus, we regard the first
operation as non-time-critical. By contrast, time delays during the second operation result
in non-synchronous single images of the camera system and the third operation obviously
directly affects the accuracy of the image poses. Consequently, the second as well as the third
operation are time-critical.

We implemented the panoramic camera triggering as follows: First, the computer sends a
software-based camera trigger command over the USB 3.0 interface (see Figure 3.7, top).
Then, the panoramic camera Ladybug 5 internally triggers all panoramic camera heads
simultaneously. At the time all panoramic camera heads are simultaneously triggered, the
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panoramic camera generates an electronic pulse over the GPIO interface to the navigation
unit IMU SPAN CPT7 and triggers the creation of a timestamp (see Figure 3.7, left). Finally,
the navigation unit sends the created timestamp to the computer, where the data is stored.

However, in our implementation, we accept that time delays during the trigger command
transmission over the USB 3.0 interface from the computer to the panoramic camera might
occur. Nevertheless, this might only affect the execution of the trigger settings, so that the
chosen temporal or spatial differences between image epochs can vary. The accuracy of the
image pose will however not be affected.

3.4.3 Laser Scanner Synchronization

Post-processing of LiDAR data, using direct georeferencing, requires exact firing timestamps
for each LiDAR point.

Both Velodyne VLP-16 Puck LiDARs contain two counters, which represent the number of µs
since the top of the hour. The first counter represents the s since the top of the hour and the
second counter shows the µs since the top of the second. Basically, the internal oscillators of
the scanners drive the µs counter. If an external PPS source is available, then the LiDAR
scanner adjusts the second counter that represents the µs since top of the s. In order to align
the first counter with Coordinated Universal Time (UTC) time, the LiDAR scanner requires
an additional external NMEA sentence, which provides a valid GNSS time stamp (Velodyne,
2016).

In our backpack MMS, the navigation unit NovAtel SPAN CPT7 provides both a PPS signal
to align the µs counter and a related NMEA sentence to adjust the s counter of the LiDAR
scanners. The navigation unit transmits both elements from its IO I interface to the GPS
interfaces of the LiDAR scanners (see Figure 3.7).

Physically, each data block from the LiDAR scanner contains a precise timestamp from both
counters, whereby a data block consists of 384 LiDAR points in the single return mode, which
were captured within 1306.37 µs (Velodyne, 2016). Within one data block, we interpolate the
timestamps of the individual LiDAR points, using the specified firing times.

Consequently, when the LiDAR scanner is synchronized with a PPS and a NMEA sentence,
the clock drift depends on the PPS source. By contrast, the clock offset additionally depends
on the transmission and reception delay of the PPS signal as well as on the quality of the
timestamp of the NMEA sentence. Physically, a clock drift correction is applied discretely at
the beginning of each data packet with the length of 384 LiDAR points.

3.5 Acquisition Software

Our acquisition software runs on a mini computer with a Linux Ubuntu 16.04 installation.
Each external device with Virtual Network Computing (VNC) support is able to control the
mini computer via remote desktop over a WLAN connection.

The acquisition software is based on the ROS framework. Quigley et al. (2009) give an
introduction into the principles, paradigms and functionality of ROS. Thanks to the open
source philosophy and the wide distribution in robotics, there are numerous existing tools
and a comprehensive hardware support. Particularly noteworthy is the flexible graph-based
communication concept, consisting of nodes, messages, topics and services. A node describes
a software module, which we represent as a circle in our software schema (see Figure 3.8).
Nodes can communicate with each other by passing messages in a strictly predefined data
structure through given topics. In our software schema, we represent topics as rectangles (see
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Figure 3.8). Either a node can publish messages to one or more topics (red arrows) or it can
subscribe to one or more topics to receive messages (blue arrows). By contrast, services offer
synchronous communication. A node can advertise a service with predefined data structures
of both request and response, similar to a web service.

For both LiDAR scanners, we use the Velodyne driver from Withley (2016) with minor
modifications. The driver converts the sensors raw data into ROS pointcloud2 messages and
publishes them.

For the support of the navigation unit NovAtel SPAN CPT7 we used the ROS
novatel span driver (Purvis, 2020). We subsequently extended the driver to record raw GNSS
and IMU data as well as camera timestamps for post-processing.

The ROS node Bag stores the IMU messages as well as the messages from both LiDAR
scanners in a so-called ROS bag file. The ROS bag file can be replayed for post-processing.

By contrast, our implemented ROS panoramic camera driver writes image raw data in so-
called pointgrey image stream files, which might be post-processed for example in the software
LadybugCapPro.

The 3D LiDAR SLAM Cartographer combines LiDAR and IMU data and provides a system
pose and a map, which shows the acquisition progress. Hess et al. (2016) introduce the
functionality of Cartographer exemplarily with their 2D LiDAR SLAM.

Furthermore, we implemented the Conditional Trigger Node which supports spatial trigger
criteria, such as distance and orientation differences as well as temporal trigger criteria, such
as time differences. The Conditional Trigger Node uses the system pose to calculate spatial
differences. The system pose comes either from the navigation unit NovAtel SPAN CPT7 or
in indoor use from the LiDAR SLAM Cartographer.

Hz. LiDAR V. LiDAR IMU Panorama
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Figure 3.8: Diagram showing the graph-based design of our acquisition software, which is based on
ROS, Ellipse-shaped items represent ROS nodes and squares indicate ROS topics. ROS publishers are
marked as blue and ROS subscribers as red arrows.
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3.6 Overall System Calibration

This section includes the overall system calibration that we performed to estimate the following
parameters:

• IO parameters of the individual panoramic camera heads.

• RO parameters that describe the transformation from the sub-ordered panoramic camera
heads to the reference panoramic camera head.

• BA parameters, which consist of the lever-arm as well as the misalignment from an
individual sensor (e.g. panoramic camera or LiDAR scanner) to the body frame.

Since our backpack MMS incorporates high-end sensors that are mounted on a stable aluminium
frame, we do not expect parameter interference, occurring during a campaign, to significantly
affect the overall system accuracy.

Thus, we intend to pre-calibrate the aforementioned parameters in test fields. As test field
calibrations are performed in well-known and controlled environments, their results are
comprehensible and reproducible. The time and effort required for test field calibrations is
considerably lower than for laboratory calibrations, although it is possible to achieve superior
accuracy with a high degree of reliability, which is not guaranteed with self-calibrations.

However, test field calibrations do not necessarily consider real environmental conditions (e.g.
dimensions, temperature, etc.) of a campaign, which could lead to systematic deviations.
Therefore, it is crucial to design the test fields as close to reality as possible in order to avoid
extrapolations or additional biases during a campaign.

Our overall system calibration procedure in test fields is based on the calibration approach
for stereo image-based MMS which was presented in Ellum, El-Sheimy (2002) using bundle-
adjustment. Blaser et al. (2018b) advanced the approach in order to add support for multiple
stereo systems and cameras with fish-eye optics.

In this thesis, we extended the method to support a) a single multi-head panoramic camera
with fish-eye optics and b) multiple LiDAR scanners.

Thereby, we considered extending and integrating a geometric 3D feature-based calibration
approach, such as presented by Hillemann (2020), in order to precisely calibrate the RO
between the panoramic camera heads and both LiDAR scanners. With regard to future image
and LiDAR sensor data fusion, a high relative accuracy between the LiDAR scanners and the
panoramic camera heads is essential.

Subsection 3.6.1 treats the functional model of the overall system calibration in detail.
Subsection 3.6.2 describes our calibration fields used, whereas Subsection 3.6.3 comprises the
overall system calibration procedure and Subsection 3.6.4 presents the calibration results.

3.6.1 Functional Calibration Model

The functional calibration model describes the relationship between the estimated parameters
and the reference measurements.

Figure 3.11 provides an overview on the functional model of the overall system calibration.
The navigation center of the INS corresponds with the body frame, which we regard as the
origin of our backpack MMS.

First, we define the BA parameters to the panoramic camera and to both LiDAR scanners.
They mathematically equal with three rigid body transformations bHcam 0 from the reference
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panoramic camera head cam 0 to the body frame b, bHHz from the origin of the horizontal
LiDAR scanner Hz to the body frame b, and bHV from the origin of the vertical LiDAR
scanner V to the body frame b.

Second, we define five RO parameter sets from the sub-ordered panoramic camera heads
cam 1–cam 5 to the reference panoramic camera head cam 0. They also mathematically equal
with the following rigid body transformation: cam 0Hcamn.

Third, we define six IO parameter sets for the individual panoramic camera heads cam 0 –
cam 5. Each IO parameter set consists of the principal distance z′ = −c, and the principal
point offsets hx and hy. Luber (2015) shows, that generic calibration models are able to
calibrate wide-angle fish-eye lenses to around 1 pixel precision. In order to achieve higher
precision, we decided to use an explicit wide-angle fish-eye camera model. Our previous
investigations have shown, that the equidistant camera model fits best to the FLIR Ladybug
5 panoramic camera. Thus, we extend the collinearity equations

x′ = hx + z′
kx
kz

+∆x′ (3.3)

y′ = hy + z′
ky
kz

+∆y′ (3.4)

by the equidistant camera model, which results in

x′ = hx + z′
kx√

k2x + k2y

arctan


√
k2x + k2y

kz

+∆x′ (3.5)

y′ = hy + z′
ky√

k2x + k2y

arctan


√

k2x + k2y

kz

+∆y′, (3.6)

where x′ and y′ denote image coordinates, kx, ky and kz represent coordinate components
from RT (p− t) where R and t represent the rotational and the translational component of
the image pose and p represents a point in the object coordinate frame (more details see
Appendix B.2). In addition, ∆x′ and ∆y′ represent image distortions.

Furthermore, we model the distortions ∆x′ and ∆y′ according to the distortion model in
Brown (1971) with the radial distortion parameters A1, A2 and A3 as well as the decentring
distortion parameters B1 and B2. We use the following equations to compensate the radial
distortions:

∆r′rad = A1r
′(r′2 − r20) +A2r

′(r′4 − r40) +A3r
′(r′6 − r60) (3.7)

∆x′rad = x′
∆r′rad
r′

(3.8)

∆y′rad = y′
∆r′rad
r′

(3.9)

where r′ =
√
x′2 + y′2 and r0 =

2
3rmax.

For compensating the decentring distortions, we use the following equations:

∆x′dec = B1(r
′2 + 2x′2) + 2B2x

′y′ (3.10)

∆y′dec = B2(r
′2 + 2y′2) + 2B1x

′y′ (3.11)
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3.6.2 Calibration Fields

For the overall system calibration, we use both an indoor and an outdoor calibration field.

The indoor calibration field is located in the building of our industrial partner iNovitas AG in
Baden-Dättwil (Switzerland). Originally, the calibration field was designed for MMS vehicles.
It is located in a room with a length of 12.50m, a width of 6.90m and a height of 3.25m. By
total, the indoor calibration field contains 329 well-distributed photogrammetric targets. Most
of the photogrammetric targets were measured by a contact-less high-precision industrial
measurement system with a superior accuracy below 0.3mm. Coordinates of subsequently
extended target points were measured photogrammetrically with the same precision.

Figure 3.9 a provides a good overview of the indoor calibration field. High contrasts between
the photogrammetric targets and the environment allow precise image measurements. However,
difficult illumination with strong variations in the brightness, which are mainly caused by the
glass door, complicates or hinders automatic target detection. Therefore, all target points
have to be measured semi-automatically or even manually, which is very time-consuming.

The outdoor calibration field is located on a basketball court near the FHNW campus in
Muttenz (Switzerland). By total, it contains 98 targets. Most of them are natural target
points, such as edges of lines on the ground, façade elements or window corners. By contrast,
some of them are marked with photogrammetric targets on pillars of basketball hoops as
well as on an artwork. We measured the target points by a total station and achieved an
accuracy below 5mm. Figure 3.9 b provides a good overview of the outdoor calibration field,
which provides good GNSS reception as well as clearly defined target points. However, the
outdoor calibration field requires manual point measurements, since natural points are not
automatically detected.

cam 0 cam 1 cam 2 cam 3 cam 4 cam 5

(a) Indoor calibration field

cam 0 cam 1 cam 2 cam 3 cam 4 cam 5

(b) Outdoor calibration field

Figure 3.9: Overall views of our calibration fields captured with the FLIR Ladybug 5 panoramic
camera. Images from the individual panoramic camera heads are stitched together.
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3.6.3 Calibration Procedure

The proposed overall system calibration procedure comprises data from both the indoor and
outdoor calibration field and consists of three separate evaluation steps in order to finally
determine a) the IO parameters for each panoramic camera head cam 0 - cam 5, b) the RO
parameters between the sub-ordered panoramic camera heads cam 1 - cam 5 and the principal
panoramic camera head cam 0, and finally c) the BA parameters pointing from the principal
panoramic camera head cam 0 and from both LiDAR scanners, Hz and V , respectively, to
the body frame b (see Figure 3.11). The body frame b equals with the INS navigation center.

We then distinguished all steps that do not rely on GNSS reception, so that we could perform
them in the indoor calibration field with superior target point distribution and accuracy.

This led to the following three evaluation stages:

1. Calibration of the IO parameters and the RO parameters of the panoramic camera in
the indoor calibration field using bundle-adjustment.

2. Calibration of the partial BA parameters pointing from both LiDAR scanners Hz and
V to the principal panoramic camera head cam 0 in the indoor calibration field, using
3D feature-based calibration.

3. Calibration of the BA parameters pointing from the principal panoramic camera head
cam 0 to the body frame b in the outdoor calibration field using bundle-adjustment.

Figure 3.10 gives an overview of the entire calibration procedure. It begins with data acquisition
in the indoor calibration field by capturing multiple epochs with both the panoramic cameras
and the LiDAR scanners. Each epoch comprises a total of six images from the individual
panoramic camera heads and a total of two multi-profile scans from both LiDAR scanners.
In order to avoid motion blur in the images on the one hand and movements in the LiDAR
multi-profiles on the other hand, we recorded all epochs statically. For each epoch, we put the
backpack on a certain height so that the distance between the vertical LiDAR scanner and the
floor did not fall below the scanner’s minimum distance. In the calibration field, we captured
a total of 16 epochs at two different locations in the calibration field. At each location, we
captured 8 epochs, while we rotated the backpack 45◦ around the z axis between each epoch.
The 45◦ rotations ensure that the calibration field has been completely scanned. In addition,
the data acquisition from two different locations results in an ideal intersection geometry for
the image measurements.

We semi-automatically performed a total of 4985 image measurements using our Python-based
self-developed image measurement toolbox, which supports the equidistant fish-eye camera
model. The toolbox features an ellipse fit function for precise target point measurements. In
addition, it provides direct linear transformation for approximate image orientation, using a
few manually measured target points. This allows to re-project the remaining target points
into the image and to perform the remaining point measurements semi-automatically. During
semi-automatic point measurement, it is possible to manually discard erroneous measurements,
which are mainly caused by difficult light conditions.

The first evaluation stage ends with a first bundle-adjustment-based calibration. Thereby,
we used the image measurements as well as the initial poses, which resulted both from the
semi-automatic image measurement tool. Furthermore, we set the BA parameters bHcam 0

to zero, so that cam 0 equaled with b. The calibration results in IO and RO parameters as
described above and additionally in the EO parameters for each epoch. Figure 3.11a gives an
overview of the functional model used.
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The second step includes the feature-based calibration of the first part of the BA parameters
of both LiDAR scanners cam 0HHz and cam 0HV . Figure 3.11b depicts its functional model
used. The feature-based calibration estimates the BA parameters between the camera and
the LiDAR scanners by minimizing the omnivariance of the resulting point cloud (Hillemann,
2020). We extended the original functional calibration model from Hillemann (2020) by
multiple LiDAR scanner support.

For feature-based calibration, we used the resulting EO parameters from the first calibration
step as camera poses with superior precision. Furthermore, we estimated initial values for
cam 0HHz and cam 0HV with a gauge for the translation. For the initial attitude values, we
obtained the initial values from the backpack construction plan.

Since we acquired the multi-profiles from both LiDAR scanners and the camera poses as
temporally coherent data pairs without any movements, the calibration results are only
affected by deviations of the image poses and of the LiDAR profiles used. However, the
feature-based calibration did not converge as we estimated all parameters of cam 0HHz and
cam 0HV .

The initial translation parameters measured using a gauge have a precision in the mm-range.
While the initial translation parameters are below the range of our expected overall accuracy,
the initial attitude values that originate from the backpack construction plan might show
significant deviations.

In order to mitigate the non-convergence of the feature-based calibration, we reduced the
model by the translation parameters. Thus, we only estimated the attitude parameters of
cam 0HHz and cam 0HV , using the feature-based calibration.

The third calibration stage begins with data acquisition in the outdoor calibration field
in order to obtain multiple image epochs with six images from the individual panoramic
camera heads as well as directly georeferenced INS poses, which are temporally associated
to the corresponding image epochs (see Figure 3.10, right). In the outdoor calibration field,
we performed a kinematic data acquisition. It resulted in a set of image epochs from the
panoramic camera and in associated, directly georeferenced body frame b poses.

By total, we used 6 measurement epochs, located in the center of the outdoor calibration
field and pointing in different directions. Furthermore, we manually performed a total of 519
image measurements by using our Python-based image measurement tool.

Figure 3.11c shows the functional model of the third calibration stage, based on bundle-
adjustment. In this step, we fixed the previously estimated IO and RO parameters as well as
the directly georeferenced poses from the body frame b and used the image measurements in
order to obtain the BA parameters bHcam 0 from cam 0 to b.

Finally, we obtained the BA parameters of both LiDAR scanners by concatenating both BA
parts as follows:

bHHz =
bHcam 0

cam 0HHz

bHV = bHcam 0
cam 0HV

(3.12)
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Figure 3.10: Sequence of the developed overall system calibration for the portable image-focused MMS.
The left column describes the bundle-adjustment-based panoramic camera calibration and whereas the
middle column outlines the feature-based RO calibration of both LiDAR scanners in the indoor test
field. The right column describes the BA calibration in the outdoor test field. Boxes representing data
and results are filled in gray, while boxes representing processes are filled in white. All final results are
highlighted in bold italics.

Hz V0
IO

1 2 3 4 5
IO IO IO IO IO

INS
EO

R
O

R
O

R
O

R
O

R
O

B
A

B
A

B
A

(a) Indoor calibration of the cam-
era configuration

Hz V0
IO

1 2 3 4 5
IO IO IO IO IO

INS
EO

R
O

R
O

R
O

R
O

R
O

B
A

B
A

B
A

(b) Indoor calibration of the Li-
DAR scanners

Hz V0
IO

1 2 3 4 5
IO IO IO IO IO

INS
EO

R
O

R
O

R
O

R
O

R
O

B
A

B
A

B
A

(c) Outdoor calibration of the
boresight alignment

Figure 3.11: Functional models of the three overall system calibration stages. Colored rectangles
represent sensors (red: panoramic camera heads, green: scanners, blue: GNSS/IMU navigation unit)
and the top label shows the sensor name, while the bottom label indicates sensor-related parameters.
Lines mark the relationships between sensors whereas the labels next to the lines represent their
associated parameters. Bold parameters are estimated, while parameters with italic labels are fixed
and parameters with normal font are not involved. Bold sensor labels denote involved sensors, bold
italicized sensors denote involved sensors with measurements used, and normal sensor labels denote
non-involved sensors.
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3.6.4 Calibration Results

The first, bundle-adjustment-based calibration step, using 4985 image measurements, resulted
in a mean standard deviation of 0.29 px for an image measurement. Table 3.5 contains the
calibrated IO parameters for each individual panoramic camera head. Furthermore, table
3.6 shows the calibrated RO parameters of the panoramic camera and shows its standard
deviations. While the standard deviation of the translation components varied between
0.2mm and 0.3mm, the standard deviation of the rotation components ranged from 0.0044◦

to 0.0233◦. The standard deviations of the EO parameters of the image epochs were in the
same range as the standard deviations of the RO parameters.

The second, feature-based calibration step was performed using 2× 16 LiDAR multi-profiles
results in a total of 921.6× 103 LiDAR points. Since we only calibrated the orientations of
cam 0HHz and cam 0HV , the translation parameters originated from the initial measurements,
using a gauge. For the translation parameters, we assumed a standard deviation for each
component of 2mm. By contrast, the standard deviations of the rotation components varied
between 0.0001◦ and 0.0162◦ (see Table 3.6) and lay in the same range as the respective
standard deviations of the RO parameters.

The third, bundle-adjustment-based calibration step, using 519 image measurements, resulted
in a mean standard deviation of 0.62 px for an image measurement. The translation parameters
of bHcam 0 resulted in a standard deviation of the translation parameters of 0.8mm and the
standard deviations of the rotation components ranged from 0.0173◦ to 0.0177◦.

Thus, the standard deviations of the rotation components of all three steps are in the same
range. By contrast, the standard deviations of the translation components varied due to the
different measurement methods. Nevertheless, all standard deviations are significantly below
the expected georeferencing accuracy and within the targeted absolute measurement accuracy.

Table 3.5: Calibrated IO parameters of the individual panoramic camera heads. The sensor pixel size
amounts to 3.45 µm and the sensor dimension is 2048× 2248 px.

Camera ck hx hy A1 A2 A3 B1 B2

head mm mm mm 10−4 10−5 10−8 10−5 10−5

cam 0 4.259 0.000 −0.067 4.389 −1.660 3.831 2.604 −5.276
cam 1 4.267 −0.094 0.033 4.545 −1.978 14.16 7.655 −4.494
cam 2 4.269 −0.058 −0.067 3.072 −0.575 −29.48 3.255 −7.806
cam 3 4.259 −0.106 0.008 4.330 −1.552 2.647 4.292 0.070
cam 4 4.249 −0.092 −0.007 5.148 −2.237 18.45 −4.647 −7.302
cam 5 4.265 −0.038 −0.050 4.341 −1.725 7.070 −10.26 0.896
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Table 3.6: Calibrated BA and RO parameters of the backpack MMS. While the first lines contain the
calibrated parameters, the second lines show their standard deviations.

Parameters Translation in m Rotation in ◦

x y z ω φ κ

bHHz −0.174 0.075 0.882 31.410 −0.011 −179.514
s(cam 0HHz) 0.0020 0.0020 0.0020 0.0047 0.0059 0.0001

bHV −0.005 −0.208 0.216 89.510 0.100 −90.068
s(cam 0HV ) 0.0020 0.0020 0.0020 0.0001 0.0001 0.0162

bHcam 0 −0.028 −0.033 0.685 −78.903 0.494 179.001
s(bHcam 0) 0.0008 0.0008 0.0008 0.0174 0.0173 0.0177

cam 0Hcam 1 0.058 0.000 0.042 −0.636 −72.066 −0.246
s(cam 0Hcam 1) 0.0002 0.0002 0.0002 0.0233 0.0103 0.0216

cam 0Hcam 2 0.035 0.000 0.110 0.535 −144.047 0.413
s(cam 0Hcam 2) 0.0002 0.0002 0.0002 0.0089 0.0103 0.0044

cam 0Hcam 3 −0.036 0.000 0.110 0.027 −216.104 0.239
s(cam 0Hcam 3) 0.0002 0.0002 0.0003 0.0098 0.0103 0.0050

cam 0Hcam 4 −0.058 0.000 0.041 0.554 −288.253 −0.235
s(cam 0Hcam 4) 0.0002 0.0002 0.0002 0.0182 0.0089 0.0166

cam 0Hcam 5 0.000 0.074 0.061 90.071 0.041 180.652
s(cam 0Hcam 5) 0.0002 0.0003 0.0002 0.0075 0.0053 0.0069
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Chapter 4

Robust and Accurate
Georeferencing

This chapter presents our methods for robust and accurate georeferencing in challenging
environments, by using backpack MMS sensor data. It extends and complements content on
georeferencing methods from the following conference paper:

• Blaser, S., Meyer, J., Nebiker, S., Fricker, L., Weber, D., 2020. Centimetre-Accuracy
in Forests and Urban Canyons – Combining a High-Performance Image-Based Mobile
Mapping Backpack with new Georeferencing Methods. ISPRS Annals of Photogram-
metry, Remote Sensing and Spatial Information Sciences, V-1-2020, 333–341. DOI:
10.5194/isprs-annals-V-1-2020-333-2020.

Robust and accurate georeferencing in a variety of vehicle-denied areas is a challenging task.
Vastly varying environmental conditions make it difficult or impossible to develop a universal
georeferencing method that can cover all different areas.

Due to this, we propose a modular multi-stage georeferencing approach, which combines
different georeferencing methods, using various sensor technologies. Figure 4.1 provides an
overview of the different georeferencing methods that we use in combination to achieve a
robust and accurate georeferencing. It also shows dependencies between the different methods.

Direct Georeferencing Georeferencing Using 3D LiDAR-SLAM

Image-based Georeferencing

Direct Georeferencing Supported with Coordinate and Attitude Updates

Figure 4.1: Flow of our proposed multi-level georeferencing approach incorporating different georefer-
encing methods and sensor data.

Direct georeferencing and georeferencing using 3D LiDAR SLAM are independent of each
other. While direct georeferencing performs well in outdoor environments with good GNSS
reception, 3D LiDAR SLAM suits best for indoor environments with varied geometry. Both
methods perform in real-time and thus can be used for platform navigation.

Direct georeferencing provides cm-accuracy in environments with good GNSS reception, results
in a dense trajectory and is not limited by the size of a measurement campaign. However, in
GNSS obstructed or denied environments the accuracy rapidly degrades to the dm- and m-
range.
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By contrast, 3D LiDAR SLAM provides dm- to cm accuracy in closed or obstructed environ-
ments with objects and walls at a short distance. However, uniform geometry or repetitive
geometric patterns may cause large errors. Moreover, 3D LiDAR SLAM shows an increasing
demand for memory and computing power with increasing map size. This limits the size of a
measurement campaign or requires a subdivision into multiple maps.

Both methods, direct georeferencing and 3D LiDAR SLAM, provide a dense trajectory, which
is required to georeference LiDAR points. While direct georeferencing operates in a global
coordinate frame, 3D LiDAR SLAM generally uses a local coordinate frame with the origin
at the starting point of the map or measurement campaign. The use of 3D LiDAR SLAM
as georeferencing method requires for each map a subsequent transformation from its local
coordinate frame to the global coordinate frame.

By contrast, image-based georeferencing aims at the subsequent improvement of camera poses,
obtained by direct georeferencing or by LiDAR SLAM. For image-based georeferencing, we
use an extended SfM pipeline, based on bundle-adjustment. As we use high-resolution images,
captured by the multi-head panoramic camera and taken at a low frame rate, the result of
image-based georeferencing is a sparse trajectory. By contrast to direct georeferencing as well
as to 3D LiDAR SLAM, the processing time exceeds the acquisition time by a multiple. Thus,
image-based georeferencing is not real-time capable with the currently available computing
capacity. The use of initial camera poses accelerates feature matching as well as the bundle-
adjustment. For this reason, we propose to use directly georeferenced poses or georeferenced
poses with 3D LiDAR SLAM as initial values.

Finally, we aim to obtain a dense trajectory with high accuracy and robustness. For this,
we support direct georeferencing with coordinate and attitude updates from image-based
georeferencing, which significantly reduces drifts during GNSS outages.

The following sections describe the georeferencing methods in detail and include extensions
and further developments that are necessary for the combined use. Section 4.1 contains direct
georeferencing, while Section 4.2 treats georeferencing using 3D LiDAR SLAM. A detailed
treatment of image-based georeferencing can be found in Section 4.3 and finally, Section 4.4
includes the improvement of direct georeferencing supported with coordinate and attitude
updates.

4.1 Direct Georeferencing

GNSS and INS sensors allow to directly estimate complete sensor poses in a global coordinate
frame without any additional measurements. The GNSS and INS sensor data fusion based on
Kalman Filters utilizes complementary properties from both sensor technologies and leads to
an accurate and reliable georeferencing solution. While the INS provides measurements at a
high rate but drifts strongly with time, the GNSS, having a low measurement rate but a high
absolute accuracy, corrects drift. Finally, the result is a dense trajectory with a positional
accuracy in the cm-range. However, GNSS occlusions and GNSS absence significantly degrade
the accuracy of direct georeferencing from the cm- to the m-range.

Nonetheless, different integration depths of sensor data fusion deal with GNSS absences in
a different way. Loosely-coupled GNSS and INS sensor data fusion introduce pre-processed
GNSS data (position and velocity) by a separate Kalman Filter into the principal Kalman
Filter. In the pre-processing of GNSS data, gross errors can be detected and eliminated
before the data support the INS-based trajectory. By contrast, tightly-coupled GNSS and
INS sensor data fusion introduces raw GNSS observations (pseudo-range measurements, phase
measurements or Doppler observations) into the principal Kalman Filter. Hence, even a GNSS
satellite constellation with less than four satellites is able to support the INS-based trajectory
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and to reduce drifts (Cramer, 2001). Thus, tightly-coupled GNSS and INS sensor data fusion
possibly deliver better results than the loosely-coupled integration even in GNSS obscured
environments, such as urban canyons or forests.

4.1.1 GNSS- and INS-based Platform Navigation

The GNSS/INS-combined navigation system NovAtel Synchronized Position Attitude Naviga-
tion (SPAN) CPT7 provides both a real-time navigation solution and accessible sensor raw
data, which can be used for post-processing.

We use the real-time navigation data for initialization as well as for several on-board applica-
tions. The azimuth standard deviation provides a good indication of how the system has been
aligned. We also use the navigation solution during the mission for geometrically constrained
camera triggering. Furthermore, we plot the navigation trajectory on a map during the
mission, so that the operator can track and check the data acquisition progress. Since meter
position accuracy is sufficient for both system initialization and on-board applications, we
operate the SPAN system without GNSS reference data.

However, the navigation solution rapidly degrades in large GNSS denied areas (e.g. buildings,
tunnels, etc.). In addition, during long GNSS absences, the velocity value may drift and exceed
the regulatory velocity limit of 515m/s. This will automatically block all navigation-related
raw data. Hence, GNSS- and INS-based platform navigation is only suitable for outdoor
missions with partial GNSS obscuration or only short time periods with complete GNSS
absence. For missions with large GNSS denied areas we recommend to disable the real-time
navigation and only record raw sensor data.

4.1.2 Post-processed GNSS and INS Sensor Data Fusion

The main advantage of post-processed GNSS- and INS-based sensor data fusion, using an
extended Kalman filter, are that all observations are available for state estimation at any
epoch. By contrast to real-time applications, also later recorded sensor data is available for
processing. This allows multi-sided trajectory processing, which has the potential to improve
the accuracy in GNSS denied areas.

Elbahnasawy et al. (2018) graphically show the error behaviour during a GNSS outage over
time for a) the forward processed trajectory, b) the backward processed trajectory and c) the
forward and backward processed and smoothed trajectory.

In addition, Chen et al. (2021a) discuss the advantages of multi-pass trajectory processing.
They achieved a more advantageous convergence of the extended Kalman filter with forward-
backward-forward processing, since the first forward processing is only used to provide
initialization. Finally, they only use the second backward and the third forward processing
for smoothing.

As we use sensor data from a backpack MMS with low dynamics, we aim to achieve a more
rapid azimuth convergence during initialization, using multi-pass trajectory processing. In
addition, since we expect numerous areas of large GNSS outages in non-drivable environments,
we intend to use combined forward and backward processing and smoothing to improve error
performance.

For trajectory processing, we use the Inertial Explorer software version 8.9 from Waypoint.
By contrast to real-time platform navigation (see Section 4.1.1), we use differential GNSS,
incorporating raw data from the backpack MMS as well as from a Virtual Reference Station
(VRS) provided by a network of permanently installed GNSS antennas that is operated by
the Swiss Federal Office of Topography swisstopo. For GNSS and INS sensor data fusion, we
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use tightly-coupled processing that performs two-sided and multi-pass trajectory processing
with subsequent smoothing (see Figure 4.2 a).
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Figure 4.2: Flow charts from georeferencing methods for outdoor a and indoor b environments. The
first two labels in the grey-filled data fields describe the data, whereas in the white-filled process fields
they describe the process. In data fields either the data source or a pose with the coordinate frames
involved is indicated below, whereas in process fields the software used is denoted. A pose from the
body frame b to the global reference frame WGS84 is expressed as WGS84Hb. LV 95 denotes the Swiss
national projected reference frame, while map shows a local map coordinate frame.

The algorithm uses the static initialization phase to perform an initial IMU bias estimate
using GNSS observations, to initialize roll and pitch values using the gravity and to start
with zero velocities. By contrast, the dynamic initialization phase is mainly used for aligning
the heading component of the IMU attitude with the navigation coordinate frame, using the
GNSS heading (NovAtel Inc., 2020).

Since the trajectory processing is two-sided, it requires static and kinematic initialization
phases at the beginning and at the end of the mission.

The resulting directly georeferenced trajectory consists of numerous poses WGS84Hb of the
body frame b in the global coordinate frame WGS84 with a resolution of the INS frequency
of 200Hz.

In order to obtain directly georeferenced sensor poses, we interpolate sensor timestamps, using
the Inertial Explorer software. In the case of camera poses, we use the timestamps from
camera triggering that were registered by the NovAtel SPAN unit. Then, we transform the
directly georeferenced poses from the global coordinate frame WGS84 into the projected Swiss
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national coordinate frame LV 95 using the REFRAME software from swisstopo. Appendix
A.4 treats the additionally required transformation for orientations in detail. Finally, we apply
the BA and the RO parameters with a self-developed python tool in order to obtain directly
georeferenced poses from the individual panoramic camera heads.

4.2 Georeferencing Using 3D LiDAR SLAM

SLAM is widely used in robotics as well as in autonomous driving. By general, it simultaneously
creates a map, using sensor data from the mapping sensor and estimates the current pose,
based on the created map data.

Both LiDAR scanners of our backpack MMS provide point clouds at a high data frequency.
Hence, they are suitable for 3D LiDAR SLAM.

For 3D LiDAR SLAM-based georeferencing, we use the real-time SLAM solution Google
Cartographer. Previous investigations have shown that the graph-based 3D LiDAR SLAM
algorithm Cartographer is robust and suitable even for larger indoor environments. Hess
et al. (2016) give a system overview of their first developed 2D approach, which they have
subsequently extended to the full 3D SLAM Cartographer.

Their SLAM architecture includes a local as well as a global part. The local SLAM matches
each consecutive scan against a submap, using a non-linear optimization, whereby the submap
represents a probability grid with a given resolution (e.g. 5 cm). However, local scan matching
requires good initial values, for example from an IMU, in order to estimate the rotational
component between scan matches. Usually, the scan matching provides better precision than
the grid resolution. A submap only consists of a predefined number of consecutive scans
because the local scan matching accumulates error over time.

Hence, the global SLAM prevents and compensates error accumulation over time. An
additional global scan matcher, using branch and bound, runs in the background. In case
of a good match, the global scan matcher returns a constraint, which represents a relative
pose with its associated covariance matrix. The Cartographer distinguishes two different
types of constraints. Intra constraints extend over the current node and two further submaps,
whereas inter constraints or loop closures extend beyond this. Every few seconds, the sparse
pose adjustment optimizes submap poses as well as scan poses by using previously estimated
constraints. The sparse pose adjustment uses a loss function to prevent outliers due to false
matches, which can occur in symmetrical environments (e.g. office cubicles).

4.2.1 LiDAR SLAM-based Platform Navigation

The 3D LiDAR SLAM Cartographer is real-time capable, so that we can use the SLAM
algorithm for platform navigation.

By contrast to the GNSS and INS-based platform navigation, the LiDAR SLAM operates in
a local 3D coordinate frame. Its origin is located at the starting point of the algorithm.

As with the GNSS and INS-based platform navigation, we use the local coordinate pose for
geometric camera triggering. In addition, the LiDAR SLAM provides a 2D map view of the
probability grid, which we use for progress monitoring in real time.

However, LiDAR SLAM-based platform navigation has increasing computational power
requirements as map size increases. This can lead to a situation where the LiDAR SLAM
algorithm no longer runs smoothly and the data is only partially processed or even to other
processes being disrupted.
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Consequently, LiDAR SLAM-based platform navigation is suitable for indoor environments or
for smaller GNSS-denied outdoor environments.

4.2.2 Post-processed 3D LiDAR SLAM

To obtain sensor poses, we use post-processed 3D LiDAR SLAM.

While real-time SLAM mainly operates with the default parameter set, post-processed SLAM
allows subsequent parameter tuning in order to achieve a more precise performance. The
Cartographer provides numerous parameters and different configurations, which are partially
documented in Hess et al. (2021). Hess et al. (2021) give an introduction in the basic principles
of parameter tuning. Rechsteiner, Wisler (2018) show that adjustments in the number of
accumulated LiDAR data, translation and rotation weights for scan matching and the number
of scans per submap have the greatest impact on local SLAM. The sparse pose adjustment
rate, the maximum constraint distance and the minimum score parameters of the constraint
builder have greatest impact on the global SLAM.

The processed LiDAR SLAM, incorporating LiDAR point clouds from both scanners and raw
IMU data, results in a so-called cartographer state which mainly contains the trajectory (see
Figure 4.1 b). In a subsequent step, the Cartographer uses raw sensor data, the boresight
alignment, and the cartographer state to create a dense 3D point cloud. There are different
asset writers available to export the 3D point cloud into various data formats.

We developed an additional asset writer as a Cartographer plug-in that exports the times-
tamped trajectory in a readable text format. The LiDAR SLAM trajectory has a temporal
resolution of ten poses per second and refers to the local map frame map that denotes a
cartesian coordinate frame with its origin at the starting position. To obtain camera poses, we
first linearly interpolate camera timestamps recorded by the SPAN unit. We then transform
the poses from the local coordinate frame into a global coordinate frame, using a self-developed
Python-based 6 DoF coordinate transformation tool.

Finally, we apply the BA and RO parameters, using the same tools as for direct georeferencing,
to obtain SLAM-based camera poses.

4.3 Image-based Georeferencing

With image-based georeferencing we aim to improve directly georeferenced or LiDAR SLAM-
based camera poses.

Our proposed method of sub-sequent image-based georeferencing is based on the fundamentals
of integrated georeferencing, which is widely used in aerial photogrammetry. We extended
this method so that it is also applicable for image-based MM with a multi-head panoramic
camera.

SfM pipelines and toolboxes enable camera pose estimation without external tie point mea-
surements and finally provide 3D information at least as a sparse point cloud. The algorithms
of SfM pipelines are developed for the close range use.

Cavegn et al. (2018) extended the open source SfM toolbox COLMAP by RO, EO, GCP and CP
support, so that it supports integrated georeferencing for image-based MMS with multi-camera
systems. Basically, the COLMAP pipeline incorporates two different processing steps. In the
first step of correspondence searching, the algorithm extracts features and performs a spatial
feature matching, using prior EO parameters. Furthermore, the first step also incorporates a
geometric verification. By contrast, the second step of global reconstruction comprises scene
point triangulation and local or global bundle-adjustment, which additionally incorporates
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EO, RO parameters, GCPs and CPs. The iterative progress of global reconstruction also
includes an outlier filter.

Our method does not rely on the extended COLMAP SfM toolbox, but is also supported by
other SfM software such as Agisoft Metashape or any other SfM software which supports

• the equidistant camera model,

• RO constraints,

• prior EO parameters,

• GCPs and CPs.

First, we undistort the raw images from each individual panoramic camera head to the
equidistant camera projection model, based on pre-calibrated IO parameters, by using our
self-developed Python-based rectification tool Undistorter. Since we use undistorted images
for image-based georeferencing, we fix the distortion parameters in the SfM pipeline to zero
and disable self-calibration of any IO parameters (see Figure 4.3).

Second, we define and fix the RO constraints in the bundle-adjustment between all sub-
ordered panoramic camera heads camn and the principal panoramic camera head cam 0.
RO constraints define the camera rig of a MMS. Predefined RO constraints significantly
reduce the number of unknown parameters in the bundle-adjustment. Thus, for each image
epoch only the EOs of the principal panoramic camera head cam 0 remains to be determined.
Consequently, using pre-calibrated RO constraints strengthens the robustness of image-based
georeferencing so that even images with an insufficient number of features can be oriented
and support the pose estimation of cam 0.

Third, we use prior estimated EO parameters as initial values for the bundle-adjustment.
For indoor environments, we use previously estimated cam 0 poses from LiDAR SLAM. By
contrast, for outdoor environments, we use directly georeferenced cam 0 poses. Initial EO
parameters enable spatial feature matching that significantly reduces processing time, while
increasing the robustness.

Finally, we introduce both GCPs and CPs as well as the corresponding image measurements
into the bundle-adjustment. By general, GCPs are used for the absolute orientation. In
our case, we have a single panoramic camera configuration, where the image scale is not
fixed. Using GCPs in a bundle-adjustment fixes the image scale of the 3D reconstruction and
transforms the 3D reconstruction into the reference frame of the GCPs.

Image-based georeferencing results in subsequently improved camera poses as well as in a
sparse 3D point cloud.

However, the resulting trajectory from image-based georeferencing has the same temporal
resolution as the frame rate of the backpack MMS. Since our backpack MMS acquires image
epochs with a frame rate between 0.5 and 2 frames per second, the temporal resolution of the
resulting image-based georeferencing is too sparse to be able to register 3D LiDAR points
over the trajectory.

Moreover, the processing time of image-based georeferencing exceeds the acquisition by far.
Thus, this method is currently not real-time capable with the currently available processing
power.
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Figure 4.3: Flow chart from image-based georeferencing. Labels with normal font represent data or
processes, while italicized labels indicate data sources, camera models or software tools. The left upper
label from a pose represented as a homogeneous transformation H mark the target coordinate frame,
while the right bottom label marks the origin coordinate frame.

4.4 Direct Georeferencing Supported with Coordinate and
Attitude Updates

With direct georeferencing supported with coordinate and attitude updates from image-based
georeferencing, we aim to combine the advantages of direct and image-based georeferencing.
While direct georeferencing provides a continuous trajectory with high resolution, image
based georeferencing results in a sparse trajectory with highly accurate image poses which is
independent from GNSS coverage.

Angrisano (2010) provides a comprehensive review on GNSS and INS sensor data fusion
using both loosely coupled and tightly coupled integration depth as well as on supporting the
heading by measurements from external sources. In addition, Eugster et al. (2012) mainly
focus on supporting a loosely coupled GNSS and INS sensor data fusion by CUPTs and
ATTUPTs from external source. They investigated both, CUPTs and ATTUPTs originating
from bundle adjustment as well as CUPTs originating from single control point measurements
in the images.

In our method, we update the tightly coupled GNSS and INS sensor data fusion and trajectory
processing with both CUPTs and ATTUPTs which originate from image-based georeferencing.
Since the frame rate of the panoramic camera in our portable backpack MMS corresponds
with the GNSS frequency, CUPTs and ATTUPTs from image-based georeferencing hold the
potential to both improve the overall trajectory and to support and bridge the trajectory
in GNSS denied areas. CUPTs may reduce trajectory displacements and ATTUPTs may
primarily support the critical heading component, which is degrading due to multipath-effects
or due to the lack of GNSS reception.

We developed a workflow for direct georeferencing supported with CUPTs and ATTUPTs by
using an undocumented legacy feature of Inertial Explorer (see Figure 4.4).

The improved camera poses from cam 0 by image-based georeferencing refer to the Swiss
projected national coordinate frame LV95 and to the local Swiss height levelling system
LN02. Before they can be used for tightly coupled trajectory processing, they have to be
transformed so that they originate from the body frame b and refer to the global coordinate
frame WGS84. Various tools perform the necessary transformations. In a first step, a
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self-developed Python-based tool appends the boresight alignment as follows,

LV 95Hb =
LV 95Hcam 0

cam 0Hb, (4.1)

so that the poses originate from the body frame b and refer to the Swiss projected national
coordinate frame LV 95. The second transformation step concerns the transformation from
LV 95 to WGS84 and to the navigation coordinate frame respectively,

WGS84Hb =
WGS84HLV 95

LV 95Hb, (4.2)

while we use the swisstopo software tool REFRAME for the translation part of WGS84HLV 95.
The rotation part from LV 95 to the navigation coordinate frame is performed in a self-
developed Python tool. Appendix A.5 contains detailed formulas for the rotation part of the
datum transformation.

In addition, a Python-based tool creates the updates, while CUPTs or ATTUPTs as well as
combined updates are supported. Moreover, each individual component can be weighted for
trajectory processing (see Figure 4.4), which allows further tuning of tightly coupled trajectory
processing.

In contrast to image-based georeferencing, which only results in improved camera poses, direct
georeferencing supported with CUPTs and ATTUPTs provides an improved dense trajectory.
Since this method is based on direct georeferencing, it is only available for campaigns with
outdoor system initialization at the beginning and at the end and with good GNSS reception.
Thus, indoor-only campaigns are excluded. Moreover, erroneous image-based updates will
distort the resulting trajectory. Ideally, outliers should be previously detected and eliminated.
For this, it is reasonable to select the updates based on quality indicators from image-based
georeferencing.
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Chapter 5

Georeferencing Performance in
Challenging Environments

In this chapter, we investigate the performance and suitability of our backpack MMS under
real world conditions. As our backpack MMS is a multi-sensor system with well-calibrated
sensors, it allows a direct comparison of different georeferencing methods.

We conducted our extended investigations in three test sites within challenging environments
in the outdoor as well as in the indoor. The first test site is located in a city center, whereas
the second test site is located in a forest. Both test sites include areas inaccessible to vehicles
for which the backpack platform is particularly suitable. The third test field is located in the
FHNW campus in Muttenz, which represents a typical public building. Section 5.1 gives a
detailed overview of the test fields and the data sets collected. The data sets from the city
center and the forest test site are publicly available as open data sets 1 (Blaser et al., 2021),
while the indoor data set is unpublished.

Section 5.2 addresses various aspects of data acquisition with our backpack MMS that are
relevant for further data processing and evaluation.

The evaluation of different georeferencing methods is described in Section 5.3. In each case,
internal results of the respective georeferencing method are presented and discussed. The
internal accuracy is a first indicator of the performance of a georeferencing method, which
may be sufficient to reject a method before further investigation is conducted.

Finally, Section 5.4 compares different georeferencing methods within three different test
sites in terms of precision, absolute accuracy and relative accuracy. Since we compared point
measurements taken from the images with reference points of superior accuracy, we are able
to obtain meaningful statements on the overall system performance.

5.1 Test Sites

This section shows the test sites where we recorded the data sets for our research and describes
the captured data sets. In total, we conducted three campaigns within three different test
sites. All test sites are located in vehicle denied areas and include challenging environments
for all sensors. Two test sites are located outdoors, one in the city center and the other in
the forest. We published both outdoor data sets in Blaser et al. (2021), so that they are
publicly available for research purposes. By contrast, the third test site is located in indoor
environment. The data set from the indoor campaign has not been published yet.

1https://www.fhnw.ch/habg/bimage-datasets
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Table 5.1 shows a summary with key figures relating to the test sites and data recordings.

All test sites include GNSS-denied areas. However, they significantly differ in GNSS availability.
All three data sets contain imagery from the panoramic camera, LiDAR raw data from both
LiDAR scanners, raw GNSS data from both backpack and virtual reference station as well as
raw IMU data.

Table 5.1: Key figures on test sites and data recordings.

Test site City centre Forest Indoor

Number of targets (CPs, GCPs) 69 (54, 15) 72 (57, 15) 112 (104, 8)
Number of panoramic images 725 843 575
Number of single images 4350 5058 3450
Number of LiDAR points 840× 106 850× 106 1240× 106

Number of IMU epochs 288× 103 300× 103 432× 103

Trajectory length in m 800 740 573
Duration of data recording in s 1440 1500 2160

5.1.1 City Center

The first test site is located in the city center of Basel in Switzerland and covers an area of
150m× 200m. It covers a large square as well as different types of roads and alleys. Image 1
in Figure 5.1 shows the large square with good GNSS reception that is well suited for system
initialization. By contrast, the narrow alley in image 2 (Figure 5.1) has significant GNSS
signal blockage. It has steps and slopes up to 16% and is only accessible to pedestrians. The
test site includes a main traffic axis through the city center with busy tram and bicycle traffic
(see Figure 5.1, image 3), as well as wide promenade with stores on both sides that is very
crowded with pedestrians (see Figure 5.1, image 4).

Figure 5.1: Map of the test site located in the city centre of Basel with images showing environmental
conditions. Arrows in combination with different colored trajectory parts show the moving direction.

The city center test site comprises a total of 69 reference points of which we published 33 in
the open data set and retained 36. Most of them are well-defined natural reference points
whereas some are marked with photogrammetric targets. Fricker, Weber (2019) provide a
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detailed description of reference point measurements by tachymetry and show a 3D standard
deviation below 5mm.

Our captured city data set extends along an 800m loop-shaped trajectory that starts and
ends on the large square for system initialization. For our performance investigations, we
divide the overall trajectory into three parts, based on the loops (see Figure 5.1, Trajectories
1-3). This allows the measurements to be clearly assigned in the case of duplicate passes and
further increases the oversight.

The data set was captured within 24min and contains 721 panoramic images, approx. 840×106

LiDAR points, GNSS data as far as available as well as approx. 288× 103 IMU epochs (see
Table 5.1).

The city center test site is challenging for all georeferencing methods used. Narrow alleys as
well as urban canyons with high buildings on both sides can cause GNSS signal blockage and
multi-path effects, affecting the accuracy and the robustness of the direct georeferencing. Even
non-GNSS-dependent georeferencing methods will reach their limits. The three trajectory
loops have a length between 200m and 300m, which is significantly longer than even in
large indoor environments where LiDAR SLAM is typically used. Consequently, the drifts at
the end of a loop will be higher so that the automatic loop closure detection could be more
difficult and the subsequent trajectory correction could also be subject to larger uncertainties.
Furthermore, poor and homogeneous textured façades with repetitive patterns might be
challenging for feature detection and matching of the image-based georeferencing.

5.1.2 Forest

The second test site is located in a forest in Münchenstein nearby Basel in Switzerland and
covers an area of approximately 100m× 200m. The test site incorporates both narrow paths
within dense vegetation at ground level that are only accessible by pedestrians (see Figure 5.2,
images 3 and 5) and drivable forest roads with less dense vegetation (see Figure 5.2, Images 4
and 6). Furthermore, the forest path in image 2 of Figure 5.2 leads trough a road underpass.
In addition to various forest paths, the test field also includes a highway exit where good
GNSS reception is available, allowing system initialization (see Figure 5.2, image 1).

Figure 5.2: Map of the test site located in a forest nearby Basel with images showing the environmental
conditions. Arrows in combination with different coloured trajectory parts show the moving direction.
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The forest test site comprises a total of 72 reference points of which we published 23 in the
open data set and retained 49. Most of them are marked with photogrammetric targets
fixed on trees or driven-in pillars, whereas only few of them are well-defined natural target
points. Fricker, Weber (2019) provide a detailed description of reference point measurements
by tachymetry and show a 3D standard deviation below 5mm.

Our captured forest data set extends along a 740m trajectory that starts and ends at the
highway exit. The start and end of the trajectory are linear shaped (see Figure 5.2, Trajectories
1 and 4), whereas trajectories 2 and 3 are loop-shaped (see Figure 5.2, Trajectories 2 and 3).
This partition allows clearly assigned measurements even in the case of duplicate passes and
further increases the oversight.

The data set was captured within 25min and contains 843 panoramic images, approx. 850×106

LiDAR points, approx. 300× 103 IMU epochs as well as GNSS observation as available (see
Table 5.1).

The forest data set is challenging for all georeferencing methods used. The forest leads to
significant GNSS signal blockage, which affects the direct georeferencing. In addition to the
long loop length discussed in Section 5.1.1, ambiguous geometry and moving boughs and
leafs can affect the LiDAR SLAM. Dark environments in the narrow forest paths with dense
vegetation makes feature detection and feature matching difficult or even impossible, and thus
affects the image-based georeferencing.

5.1.3 Indoor

The third test site is located in the FHNW campus in Muttenz nearby Basel in Switzerland
and covers an area of approximately 60m × 80m in the eastern part of the building. The
indoor test site represents a typical public building and incorporates dimly lit core zones with
staircases and elevators (see Figure 5.3, image 1), long corridors with large window fronts on
the one side and numerous doors on the other (see Figure 5.3, images 2 and 3) as well as a
modern open space office with flexible workplaces (see Figure 5.3, image 4).

Figure 5.3: Map of the indoor test site located in the FHNW campus nearby Basel with images showing
environmental conditions. Arrows in combination with different colored trajectory parts show the
moving direction
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The indoor test site comprises a total of 112 well-defined natural target points. We previously
measured all target points by tachymetry with a superior accuracy, achieving a 3D standard
deviation below 5mm.

We initialized our system on a survey platform on top of the building on the 13th floor and
then descended the stairs to our test site on the 10th floor. The trajectory is loop-shaped and
leads the first time counter-clockwise and the second time clockwise through the test site.
In total, the trajectory has a length of 573m. The data set was recorded within 36min and
contains 574 panoramic images, approx. 1240× 106 LiDAR points and approx. 432× 103 IMU
epochs. GNSS measurements were only recorded during the system initialization on the survey
platform as there occurred a total GNSS signal loss in the building. The indoor recordings
took longer because the images were taken manually while the backpack was stationary in
order to avoid motion blur due to long exposure times.

The indoor test site is challenging for all georeferencing methods used. The complete GNSS
absence in the building causes large drifts in the meter range for the direct georeferencing.
Challenges for SLAM-based georeferencing in such buildings are repetitive geometric patterns
(e.g. modularized room size) that may cause wrong loop closures, resulting in gross errors.
Moreover, narrow-shaped stairwells and doors are challenging for SLAM-based georeferencing
and may cause geometric singularities and gross errors. Main challenges for image-based
georeferencing are poorly textured walls and repetitive patterns, reflective objects and large
glass walls as well as changing light conditions (e.g. when a motion detector switches on the
light or a room or corridor is significantly brighter than the other). The above-mentioned
occurrences make feature detection and feature matching difficult or even impossible.

5.2 Mobile Data Acquisition

This section shows different aspects of mobile data acquisition with our self-developed backpack
MMS, that are important or essential for further data processing and investigations. This
ranges from different kinds of system initialization in various environments, described in
Subsection 5.2.1, to the amount of recorded data from each sensor in Subsection 5.2.2.

5.2.1 System Initialization

Our backpack MMS supports system initialization in indoor or other environments without
GNSS reception as well as in outdoor environments with good GNSS coverage.

Indoor initialization

When the backpack MMS is only used in indoor environments or in other environments
without GNSS reception, the data acquisition is completely performed in a local system. This
concerns on the one hand the coordinate frame which is a local 3D coordinate frame and on
the other hand the system reference time, which completely uses the local sensor time without
any GNSS offset so that it completely depends on the oscillator from the navigation unit
NovAtel SPAN CPT7.

In indoor use, the mapping frame is equal to the local coordinate frame and no GNSS
synchronization is performed. Consequently, there is no initial alignment routine required.
Thus, the backpack MMS is ready for data acquisition just after the system start-up.

However, in indoor use, the backpack MMS only acquires raw IMU data, raw LiDAR data and
raw image data from the panoramic camera. Because of the lack of GNSS, the navigation unit
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does not provide any navigation solution during data acquisition and direct georeferencing as
well as integrated georeferencing methods that are based on the direct georeferencing are not
available. Furthermore, there is no correction of the time drift by GNSS synchronization.

Outdoor initialization

For outdoor use, the backpack MMS requires a initialization process so that the real-time navi-
gation solution from the navigation unit is available and the trajectory for direct georeferencing
can be post-processed.

The initialization process of the navigation unit fulfills the following tasks:

1. to synchronize the navigation unit with the GNSS time

2. to estimate initial velocity, position and attitude information

The first task is performed within the static system initialization and requires good GNSS
reception. The most critical part of the second task is to align the IMU with the mapping
frames, which requires additional external information or separate alignment routines.

The MEMS-based IMU of the NovAtel SPAN CPT7 navigation unit can be aligned with
a dynamic alignment routine that estimates the heading from the GNSS velocity vector.
NovAtel Inc. (2020) note that the platform roll angle should remain below 10◦ during the
dynamic alignment routine. Furthermore, the unit only performs the dynamic alignment when
a minimum velocity above 0.5m/s is reached. The duration of the alignment routine strongly
depends on the GNSS reception and the GNSS coverage. Our experience has shown that the
dynamic alignment usually takes between 2min and 3min under good GNSS conditions.

In order to enable forward as well as backward trajectory post-processing, using a tightly-
coupled Kalman filter, the system needs to be initialized at the beginning as well at the end
of the campaign in the following order:

1. static initialization (approx. 3min)

2. dynamic alignment (approx. 2min – 3min)

3. outdoor MM campaign

4. dynamic alignment (approx. 2min – 3min)

5. static initialization (approx. 3min)

Initialization for both indoor and outdoor

For combined indoor and outdoor campaigns, the same initialization procedure as for outdoor
campaigns can be used. However, longer GNSS absence in indoors will probably cause strong
drifts so that the velocity of the Kalman filter exceeds the regulated speed limits. In case
that the regulated speed limit is reached, the navigation unit restricts data processing and
recording.

For this reason, we disable the Kalman filter on the navigation unit and only record raw data
for combined indoor and outdoor campaigns. As a result, the real-time navigation solution
using GNSS and IMU data is not available and no quality indicators are available to directly
assess the system initialization in the field.
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5.2.2 Data Acquisition and Recording

During the MM campaign, the panoramic camera can be triggered a) manually or b) time-
based or c) based on geometric conditions (e.g. distance-based or angle-based). An image
epoch consists of six images from the individual panoramic camera heads. Each image has a
resolution of 5Mpx. Consequently, the total resolution of an image epoch amounts to 30Mpx.
The computer’s hardware limits the maximum frame rate of the Ladybug 5 panoramic camera
to approximately 2Hz (see Figure 5.4).

The backpack MMS continuously captures LiDAR data with a rate of 10 multi-profiles per
second from both Velodyne VLP-16 Puck LiDAR scanners. A multi-profile comprises in total
32 profiles, whereby each of the two LiDAR scanners includes 16 profiles. In addition, one
LiDAR detector scans a profile with a rate of 18.08 kHz (see Figure 5.4). Consequently, both
scanners of the backpack MMS detect a maximum of approximately 576 000 LiDAR points
per second.

The navigation unit NovAtel SPAN CPT7 provides IMU raw data with 200Hz, while the
frequency of GNSS epochs amounts to 1Hz.

The data acquisition rates shown in Figure 5.4 give an indication of the amount of captured
data. Thereby, the data type as well as the size of the data of the individual data epochs are
considered.
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Figure 5.4: Frequency spectrum of the data recordings from the BIMAGE Backpack. Image epoch
denotes a high-resolution multi-head panoramic image consisting of 6 individual images. GNSS and
IMU epoch declare one sensor reading. LiDAR multi-profile represents the revolution rate of the
multi-beam LiDAR scanners, while LiDAR detector represents the point rate of one LiDAR beam and
LiDAR point indicates the point rate of both LiDAR scanners involved. Blue indicates data used for
direct georeferencing, green indicates data used for SLAM-based georeferencing and red indicates data
used for image-based georeferencing.
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5.3 Evaluation of Georeferencing Methods

This section contains the evaluation of four different georeferencing methods. Thereby, internal
results and the accuracy of each georeferencing method are presented and discussed.

While the first two methods, direct georeferencing (Subsection 5.3.1) and LiDAR SLAM-based
georeferencing (Subsection 5.3.2), are almost independent from each other, the other two
methods image-based georeferencing (Subsection 5.3.3) and direct georeferencing supported
with CUPTs and ATTUPTs originating from image poses, are more integrated (Subsection
5.3.4).

5.3.1 Direct Georeferencing

For all test sites, we used the following data for direct georeferencing:

• GNSS raw observations from a reference station

• GNSS raw observations from the rover (backpack MMS)

• IMU raw observations from the rover (backpack MMS)

We obtained GNSS reference data from the network of continuously operating GNSS reference
stations AGNES, which is provided by the Swiss Federal Office of Topography swisstopo.
Beside raw data from a single reference station, they also provide raw data from virtual
reference stations, which are interpolated using surrounding reference stations. For both
city center and forest data sets, we used virtual reference stations close to the test sites to
minimize lengths of base lines. For the indoor data set, we used the GNSS reference station
which is directly installed on top of the FHNW campus building in Muttenz.

For the processing of the direct georeferencing, we used two-sided tightly-coupled multi-pass
trajectory processing, using differential GNSS, provided by the Inertial Explorer software
version 8.9 from Waypoint. Furthermore, we used the error model for the IMU type IMU
HG4930 that is provided by the manufacturer.

The IMU used cannot detect the earth rotation accurate enough as required for static alignment
of the heading angle, because it contains MEMS-based gyroscopes with lower sensitivity than
FOG-based gyroscopes. Thus, for all test we used sites kinematic alignment only with
a minimum speed threshold of 0.5m/s and with a maximum heading standard deviation
tolerance of 45◦.

Trajectory processing successfully performed without failures in all test sites. In the city
center and in the forest test site 12 or even more GNSS satellites were available (see Figure
5.5a and b) whereas in the indoor test site the number of GNSS satellites used varied between
5 and 8 (see Figure 5.5c). The lower number of satellites is due to the fact that Global
Navigation Satellite System (GLONASS) was deactivated in the indoor test field and only
Global Positioning System (GPS) was used, while in both outdoor test sites both satellite
navigation systems, GPS as well as GLONASS, were activated.

The mean standard deviations of the roll and pitch angles varied in all test sites between
0.003◦ and 0.004◦ and the standard deviations of the heading angle amounted to 0.023◦ in
the city center test site, 0.039◦ in the forest test site and 0.029◦ in the indoor test site. The
higher mean heading standard deviation in the forest test site might come from the shorter
initialization phase at the end of the campaign. This is also apparent in Figure 5.5b where
the heading standard deviation curve increases towards the end of the campaign. By contrast,
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in the other test sites with longer initialization periods, the heading standard deviation curves
decrease to the end.

The mean standard deviation of a 3D position varied the most between the different test
fields. In the city center test field it amounted to 0.124m, in the forest test field to 0.567m
and in the indoor test field to 3.930m. Figure 5.5 shows a strong correlation between the
GNSS availability and the standard deviation of a 3D position. Furthermore, it clearly shows
that the standard deviation of a 3D position increases from the cm to the dm or even to the
sub-m range during short-term GNSS outages of a few s. During long-term GNSS outages, it
clearly drifted to the m range (see Figure 5.5c).
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(a) City centre

(b) Forest

(c) Indoor

Figure 5.5: Results from the direct georeferencing for each test site. The upper part of each diagram
shows the satellite availability whereas the bottom of each diagram contains the internal standard
deviation, estimated by the Kalman filter. Panoramic images were captured during the yellow marked
time period.
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5.3.2 LiDAR SLAM-based Georeferencing

For the evaluation of the LiDAR SLAM-based georeferencing, we used the following data:

• LiDAR raw data from the horizontally mounted LiDAR scanner

• LiDAR raw data from the vertically mounted LiDAR scanner

• IMU raw data

We tuned the SLAM algorithm for our large-scale test fields by adjusting some parameters.
First, we adjusted the IMU gravity time constant to 9.81 m

s2
in order to achieve higher precision.

Second, we increased the maximum constraint distance of the constraint builder, which is
part of the global SLAM. This causes poses that are further away from the sub-map to
be considered for constraints as well. The additional overlapping constraints might further
stabilize the trajectory. Third, we aim to prevent wrong constraints which may caused by
repetitive patterns (e.g. similar room shapes) by the following parameter adjustments. We
increased the minimum score threshold as well as the minimum global localization score of
the constraint builder. Finally, we used the same configurations for all test sites.

Internal quality indicators of the LiDAR SLAM are the resulting point cloud, which is a
first visual and qualitative indicator, and the rotation and translation deviations from the
constraints of the global SLAM, which are numeric indicators.

On the one hand, top views of the resulting point clouds (see Figure 5.6) show the completeness.
On the other hand, possible gross errors, caused for example by wrong loop-closures, can be
identified.

Thanks to the prior SLAM parameter tuning, such gross errors can be prevented. In the
city center test site (see Figure 5.6a) also interiors of stores which were visible through store
windows, were partially mapped. In the indoor test site, some rooms and corridors with large
window walls were reflected (see Figure 5.6c). In the forest test site, a point cloud mess and
a circling trajectory occurred at the end of the trajectory (see Figure 5.6b). The reason for
this was an IMU data outage caused by an IMU failure, which occurred shortly after the
initialization at the end of the campaign. During this time the SLAM lacked the IMU data for
correct point cloud registration. Nevertheless, the recordings in the forest were not affected
by this and are still usable for our investigations.

In the city center, the SLAM trajectory consists by a total of 14 935 poses and 29 557 global
observations (poses, local constraints and loop-closures) with a mean translational error of
0.053m and a mean rotational error of 0.200◦. In the forest, the SLAM trajectory comprises
15 655 poses and 31 150 global observations with a mean translational error of 0.061m and
a mean rotational error of 0.523◦. The SLAM trajectory of the indoor test site comprises
16 054 poses and 31 948 observations with a mean translational error of 0.066m and a mean
rotational error of 0.412◦. The cumulative frequency plots (see Figure 5.7) show the error
distribution which behaves similarly in the translational component a across all test sites.

In the rotational component b, the city centre test site showed lower residuals than the forest
and indoor test sites. In the forest test site, the failure of IMU may also have been the cause
of the larger rotational residuals, since the error distribution equals almost that of the indoor
test site.
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(a) City centre

(b) Forest

(c) Indoor

Figure 5.6: Top views of the resulting point clouds from LiDAR SLAM. The blue lines represent the
trajectory, whereby the start point is marked in green and the end point is marked in red.
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(a) Translational residuals

(b) Rotational residuals

Figure 5.7: Cumulative frequency plots with translational and rotational residuals after the final
optimization of the global SLAM. For each test site, the range of residuals was divided into ten equal
parts, for which the cumulative frequency was estimated.
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5.3.3 Image-based Georeferencing

For the image-based georeferencing, we used the following data:

• Single images from the panoramic camera

• Initial poses for each panoramic camera epoch

• GCPs

Since we previously undistorted the single images from the panoramic camera according the
equidistant camera model, we fix the IO parameters, by using calibrated focal lengths, setting
the distortions of the principal point and the distortion parameters to zero. We previously
defined the relative orientations, using calibrated values. By contrast to Cavegn et al. (2018)
which use fixed weights for the relative orientation constraints, we used the standard deviations
resulting from the calibration as weights.

Furthermore, we used prior estimated EO parameters from cam0 as initial poses for each
panoramic camera epoch. To process the city center and the forest test site, we used initial
poses from direct georeferencing whereas to process the indoor test site, we used initial poses
from LiDAR SLAM-based georeferencing.

Finally, we introduced and measured the GCPs. In contrast to Blaser et al. (2020), we only
measured the GCPs in four images next to the points but did not measure any CPs.

We processed the image-based georeferencing using the SfM software Agisoft Metashape on a
desktop workstation with the following specifications:

• CPU: Intel Xeon CPU E5-2623 v3 with 3.0GHz and 8 cores

• GPU: NVIDIA GeForce GTX 1080

• RAM: 32GB

• OS: 64-bit Ubuntu 18.04 LTS

• Agisoft Metashape v1.7.1 build 11797

For the processing, we used the full image resolution for feature extraction and limited the
number of features to 80 000 per image. Furthermore, we disabled the tie point limit.

Table 5.2 shows the most important internal results of image-based georeferencing. With
the developed workflow and chosen settings, all images in all test fields were successfully
registered. In the indoor test site, the mean reprojection error amounted to 2.25 px, which
was significantly higher than in both outdoor test sites with 0.425 px in the city center and
0.555 px in the forest. One reason could be the shorter object distance and the resulting
higher object resolution. This, in addition to the higher exposure time in indoors, favors
additional motion blur. Another reason could be that in certain cases the minimum object
distance of the Ladybug 5 panoramic camera was missed, which resulted in image blur.

By general, the processing time of image-based georeferencing exceeds the acquisition time by
far. In our test sites, the ratio between processing time and acquisition time varied between
1.9 in indoor environments and 4.4 in the forest.
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Table 5.2: Table with the results from the image-based georeferencing.

Test site City centre Forest Indoor

Number of single images 4350 5058 3450
Registered single images 4350 5058 3450
Number of projections 1029× 103 1777× 103 2063× 103

Number of tie points 315× 103 628× 103 683× 103

Mean reprojection error in px 0.425 0.555 2.25

Matching time in s 1655 3600 2664
Alignment time in s 3141 3057 1432
Total processing time in s 4796 6657 4096
Ratio processing time / recording time 3.3 4.4 1.9

5.3.4 Direct Georeferencing Supported with Coordinate and Attitude Up-
dates

For the evaluation of the direct georeferencing supported with CUPTs and ATTUPTs, we
used the following data:

• GNSS raw observations from a reference station

• GNSS raw observations from the rover

• IMU raw observations from the rover

• Poses from image-based georeferencing for creating CUPTs and ATTUPTs

We introduced external updates to the direct georeferencing evaluation to improve the
trajectory in GNSS denied areas. In our test sites, GNSS obscured periods correspond almost
with periods where panoramic images were captured (see Figure 5.9).

Evaluations for Obtaining Optimal Update Settings

For obtaining optimal weights and combinations of CUPTs and ATTUPTs, we performed in
a first step six evaluation samples with different settings. In a second step, we assessed the
internal accuracy of each setting, in order to identify the most promising settings for further
investigation.

The first evaluation sample concerned all test sites with CUPTs and global weights. We used
equal weights of 5mm for all coordinate components, which corresponds to the standard
deviation of the reference points.

By contrast, for the second evaluation sample, we used the resulting standard deviation from
image-based georeferencing. Both weighting approaches succeeded for all test sites. Since the
individual weights did not produce any significant improvement, we used only the evaluation
with the globally weighted updates for the further investigations.

The third evaluation sample concerned all test sites with ATTUPTs and global weights. For
the roll and pitch angles, we used low weights of 0.1◦, because they are not significantly
affected by GNSS absence. By contrast, we used higher weights of 0.005◦ for the heading
component.

In the fourth evaluation sample, we weighted the ATTUPTs individually, based on the
resulting standard deviations from the image-based georeferencing. Both evaluations resulted
in standard deviations of the 3D position in the m-range.

81



Chapter 5. Georeferencing Performance in Challenging Environments

In the fifth evaluation sample, we used combined CUPTs and ATTUPTs with global weights
and in the sixth evaluation sample, we used combined CUPTs and ATTUPTs with individual
weights from the image-based georeferencing. While the fifth evaluation sample succeeded for
all test sites, the sixth evaluation sample partially failed and resulted standard deviations of
the 3D position were in the m-range.

Finally, we used only globally weighted CUPTs (first evaluation) and globally weighted CUPTs
combined with ATTUPTs (fifth evaluation) for further investigations.

Evaluation of the Internal Accuracy

As far as two settings were identified for further investigation, we evaluate their internal
accuracy in detail.

The first setting included globally weighted CUPTs with equal weights of 5mm for all
coordinate components. The second setting included globally weighted CUPTs and ATTUPTs
with equal weights of 5mm for all coordinate components of the CUPTs. For the ATTUPTs
we weighted the roll and pitch angles with 0.1◦, whereby we used with 0.005◦ higher weights
for the heading component.

Direct georeferencing supported with globally weighted CUPTs showed a significant decrease
of the internal mean standard deviation of the 3D position to 0.006m in the city center, to
0.005m in the forest and to 0.067m in the indoor test site. Figure 5.8 shows the significant
improvement of the mean standard deviation of the 3D position, even in GNSS denied areas.
Moreover, the mean standard deviation of the roll and pitch angles slightly decreased in all
test sites to 0.002◦ and the standard deviation of the heading angle remained constant.

By contrast, direct georeferencing supported with globally weighted combined CUPTs and
ATTUPTs, resulted in a significantly decreased mean heading standard deviation of 0.004◦ in
the city center and the forest test sites and 0.006◦ in the indoor test site. These standard
deviations are by an order of magnitude lower than without the use of ATTUPTs. Figure
5.9 shows the significant decrease of the heading standard deviation during the time range
of the introduced updates, which equals with the time period when panoramic images were
captured.
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(a) City centre

(b) Forest

(c) Indoor

Figure 5.8: Results from the direct georeferencing supported with CUPTs for each test site. The upper
part of each diagram shows the satellite availability whereas the bottom of each diagram contains the
internal standard deviation, estimated by the Kalman filter. Panoramic images were captured during
the yellow marked time period.
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(a) City center

(b) Forest

(c) Indoor

Figure 5.9: Results from the direct georeferencing supported with CUPTs and ATTUPTs for each
test site. The upper part of each diagram shows the satellite availability whereas the bottom of each
diagram contains the internal standard deviation, estimated by the Kalman filter. Panoramic images
were captured during the yellow marked time period.
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5.4 Investigations on the Georeferencing Methods

While the previous Section 5.3 considered the separate evaluation of the different georeferencing
methods and addressed their internal accuracy, this section focuses on the investigation of
their precision, absolute accuracy as well as their relative accuracy in different test sites.
Thereby we aim to obtain a meaningful performance comparison of the different georeferencing
methods under a variety of conditions.

The investigation structure includes the five evaluated georeferencing methods a) direct
georeferencing, b) LiDAR SLAM-based georeferencing, c) image-based georeferencing, d)
direct georeferencing supported with CUPTs and e) direct georeferencing supported with both
CUPTs and ATTUPTs in different test sites 1) city center, 2) forest and 3) indoor. Thereby,
we compare the different georeferencing methods in the three test sites in terms of precision
and absolute and relative accuracy.

To obtain a meaningful evaluation of the accuracy, we compared image-based point measure-
ments with reference points. Therefore, we conducted image-based point measurements, using
forward intersection of four consecutive image poses in the closest possible proximity to the
point.

Subsection 5.4.1 describes the investigation on the precision, whereby we used the standard
deviation of the forward intersection. The precision indicates the amount of local relative
deviations between the four consecutive image poses used. By using the same image mea-
surements for all georeferencing methods, the results become comparable since other error
influences, such as the image measurement accuracy or influences of the intersection geometry,
occur in equal measure.

Subsection 5.4.2 concerns the investigation on the absolute accuracy, whereby we investigated
the amount of the deltas between image-measured points and reference coordinates.

Finally, Subsection 5.4.3 includes the investigation on the relative accuracy. Thereby, we
defined 3D distances, using neighboring reference points, with various lengths. This indication
is relevant in practice, when, for example, a high 3D distance accuracy is required and the
absolute coordinate accuracy is not important.

5.4.1 Precision

The precision shows the closeness of measurements by each other and is a measure of statistical
variability. Furthermore, precision is also a requirement to achieve a certain accuracy and can
therefore also be part of the absolute accuracy.

In our case, local relative deviations between the image poses, used for forward intersection
affect primarily the precision. We investigated the precision for all evaluated georeferencing
methods in order to quantify the magnitude of local deviations. Whereas, we used the same
image measurements for all georeferencing methods, we obviously used different camera poses.
This avoids differential effects of image measurements on the accuracy between the different
methods.

The standard deviation of the point measurement with forward intersection from four consec-
utive images represents the precision. We use the euclidean norm of the resulting covariance
matrix KXX

m3D =
√

K11 +K22 +K33 (5.1)

as a scalar measure to compare the precision.
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Figure 5.10 shows the distribution of the precision for all georeferencing methods and test
sites separately in a box-plot diagram. All test sites and measurement methods are subject to
outliers. Thus, we used the median in addition to the mean as a statistical parameter which
is more robust to outliers.

Figure 5.10: Boxplot with the precision of the 3D coordinate observations, arranged by test field. The
boxplot colors represent the georeferencing method, whereas the black diamond symbols indicate the
mean precision. By contrast, the lines in the center of the boxes show the median precision and the
upper and the lower bounds of boxes mark the upper and the lower quartiles.

In both outdoor test sites (city center and forest) direct georeferencing showed a lower median
precision (30mm and 20mm, respectively) than LiDAR SLAM-based georeferencing (49mm
and 41mm, respectively). By contrast, in the indoor test site the median precision of SLAM-
based georeferencing (39mm) was significantly lower than the median precision from the
direct georeferencing (235mm, see Table 5.4). Thus, the precision seems to be robust to some
minor GNSS degradation but still seems to increase significantly in the complete absence of
GNSS. This could be related to the high relative accuracy of the IMU, which only decreases
with strong drift after a long absence of GNSS.

In all test sites, the median precision of the image-based georeferencing was significantly
lower (by factor 10 or even more) compared to LiDAR SLAM-based georeferencing and direct
georeferencing. In the city center, it amounted to 3mm, in the forest to 2mm and in the
indoor test site to 5mm.

Furthermore, the support of the direct georeferencing with CUPTs from image-based georef-
erencing improved the median precision by factors 2-3 in outdoor environments and by factor
20 in the indoor test sites and achieved a median precision in a range of 11mm to 13mm.

However, the support of the direct georeferencing with both CUPTs and ATTUPTs did not
improve but even slightly degrade the median precision. Thus, contrary to our expectations,
additional ATTUPTs had rather a counter-productive effect on the local relative accuracy.
External alignment updates possibly introduced discontinuities into the attitude estimation,
which is less affected by missing GNSS-updates.

86



5.4. Investigations on the Georeferencing Methods

5.4.2 Absolute Accuracy

The absolute accuracy incorporates systematic or gross deviations as well as random errors
and is a measure of truthfulness.

In advance, we had conducted rigid 3D body transformations to all georeferencing methods,
using the same GCPs in order to guarantee that all measurement methods will be evaluated
in the same global reference framework. For the transformation, we used a rigid 3D body
transformation, where we first eliminated the shifts by reducing the GCPs to the center of
gravity. We then estimated the rotation parameters ω, φ and κ. Thus, the rotational points
equal with the centers of gravity. Check points or poses must therefore be transformed as
follows:

wpn = wHct
ctHco

coHl
lpn, (5.2)

where lpn is a point in a local coordinate frame, that is being transformed into the global
coordinate frame wpn, whereas

coHl is the translation from the local coordinate frame into the
center of gravity, wHct is the translation from the center of gravity to the global coordinate
frame, and ctHco represents the rotation.

The translation values x, y and z listed in Table 5.3 designate the concatenated translation
related to the global coordinate frame. The translation parameters of the direct georeferencing
resulted in the dm-range for the outdoor test sites and in the m-range for the indoor test
site. By contrast, the translation as well as the rotation parameters of the LiDAR SLAM-
based georeferencing additionally incorporate the transformation from the local to the global
reference frame. Translation parameters from the other georeferencing methods resulted in
the cm-range.

Table 5.3: Parameters of the rigid 3D body transformations for each test site and georeferencing
method. The letter a marks direct georeferencing, b denotes LiDAR SLAM-based georeferencing,
c represents image-based georeferencing, d marks direct georeferencing with CUPT support, and e
represents direct georeferencing with CUPT and ATTUPT support.

Test site Method x in m y in m z in m ω in ◦ φ in ◦ κ in ◦

City a -0.119 0.381 0.529 -0.233 -0.496 0.113
centre b 2611329.767 1267111.837 259.357 -0.068 -0.051 26.591

c -0.007 -0.016 -0.009 0.012 0.012 -0.011
d -0.004 -0.022 -0.018 0.012 0.012 -0.010
e 0.002 0.028 -0.020 0.019 0.028 -0.032

Forest a 0.256 -0.148 -0.226 -0.116 1.556 -0.266
b 2612903.332 1261958.365 281.846 -0.220 -0.031 -75.406
c 0.019 -0.047 0.080 -0.037 -0.112 -0.004
d 0.005 -0.046 0.063 -0.019 -0.105 -0.016
e -0.016 -0.067 0.062 -0.015 -0.099 -0.035

Indoor a 1.395 19.296 1.930 -9.747 -15.242 1.045
b 2615247.016 1264936.289 342.652 -0.097 -0.129 166.553
c -0.002 0.001 -0.001 -0.007 -0.004 0.001
d -0.005 -0.009 -0.113 -0.013 0.037 0.012
e -0.003 0.041 -0.140 -0.016 0.039 -0.045
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In order to evaluate the absolute accuracy, we estimated the 3D coordinate deviation that is
euclidean norm δ3D between the image-measured point coordinates i and the corresponding
reference points coordinates r, which were measured by tachymetry:

δ3d = ∥i− r∥2. (5.3)

Thereby, we calculated the image-measured point coordinates i for each georeferencing method
with the transformed image poses by using the same image measurements as for the evaluation
of the precision.

While Table 5.4 lists mean as well as median 3D coordinate deviations from different geo-
referencing methods and test sites, Figure 5.11 shows the error distribution. The direct
georeferencing resulted in a median accuracy of 484mm in the city center, 898mm in the
forest and 7513mm in the indoor test site. Obviously, the absolute accuracy of the direct
georeferencing correlates with GNSS availability. The LiDAR SLAM-based georeferencing
resulted in lower median 3D coordinate deviations than direct georeferencing and amounting
of 272mm and 351mm in both outdoor test sites and to 136mm in the indoor test site. The
absolute accuracy of image-based georeferencing was by factor 1.5 (indoor test site) to 6
(city test site) better than the absolute accuracy of the LiDAR SLAM. The median accuracy
amounted to 47mm in the city center, to 140mm in the forest and to 78mm in the indoor
test site. Direct georeferencing supported with CUPTs resulted in similar mean 3D coordinate
deviations than in image-based georeferencing, while the median 3D coordinate deviations
slightly increased. Finally, the direct georeferencing supported by both CUPTs and ATTUPTs
was by factor 1.5 to 2 worse than the image-based georeferencing.

Table 5.4: Summary of precision and accuracy of the 3D coordinate observations using different
georeferencing methods for all test sites. The table contains both the mean and the median precision
and accuracy values. The precision represents the standard deviation of the forward intersection of a
single point measurement, whereas the accuracy shows the 3D coordinate deviations to the ground
truth.

Method Test Site Points Precision in mm Accuracy in mm
mean median mean median

Direct City center 68 34 30 522 484
Forest 88 31 20 957 898
Indoor 246 1225 235 N.A. 7513

SLAM-based City center 68 61 49 334 315
Forest 88 58 41 321 272
Indoor 246 51 39 150 136

Image-based City center 68 5 3 85 47
Forest 88 7 2 131 140
Indoor 246 5 5 87 78

Direct City center 68 13 12 88 70
CUPTs Forest 88 17 11 129 125

Indoor 246 16 13 90 76

Direct City center 68 47 39 162 149
CUPTs Forest 88 40 25 168 166
ATTUPTs Indoor 246 45 39 138 127

Figure 5.12 depicts the error distribution in four error vector maps of the city center, resulting
from different georeferencing methods. Figure 5.13 shows the resulting error distribution in
the forest and Figure 5.14 only shows three error maps of the indoor test site, where the error
map for the direct georeferencing was omitted due to gross errors.
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Figure 5.11: Boxplot with 3D coordinate deviations to the ground truth, representing the absolute
accuracy. All samples are grouped by test site while the boxplot colors represent the georeferencing
method. The black diamond symbols indicate the mean 3D coordinate deviation.

Considering the direct georeferencing, largest 3D coordinate deviations occurred in the center
of the entire trajectory which are the farthest in time from the initialization phases at the
beginning and end of the campaign. This phenomenon can be recognized in trajectory 2 of
the city center (see Figure 5.12a) and in the trajectories 2 and 3 of the forest test site (see
Figure 5.13a). Since the error vectors in the indoor test field clearly exceeded the meter range,
no further analysis with error vectors was necessary.

By contrast, regarding the error distribution of LiDAR SLAM-based georeferencing, larger
3D coordinate deviations occurred at the periphery of the test sites, whereas the deviations
in the center were much smaller. This phenomenon can be clearly recognized in the city
center test site (see Figure 5.12b) and partially in the forest test site when regarding both
ends in the north and in the south (see Figure 5.13b). This indicates a scaling whereby the
SLAM-based georeferencing had mapped the environment rather too small in extent. By
contrast, this error behavior is not apparent in the indoor test site as there were no points
in the center of the test site. In the indoor test site gross errors did occur in the south of
the test site. The passing through a glass door might have caused systematic errors. While
the error vectors of the same points, which were measured in different runs, point in various
directions in the SLAM-based georeferencing, they almost point in the same direction in the
image-based georeferencing (see Figure 5.14a and b).

With image-based georeferencing, the much smaller errors on the vector plot are hardly visible
any more in the city center and in the forest (see Figures 5.12c and 5.13c). However, larger
errors in the dm-range occurred in areas with poor initial values or within poorly illuminated
areas, such as trajectory 2 of the city center (see Figure 5.12c) and the south-eastern part
of the indoor test site (see Figure 5.14b). In addition, deviations in the dm-range occurred
in the center of long corridors without GCP support in the indoor test site. In the western
corridor, a systematic error behavior in height occurred, while the error vectors in the eastern
corridor indicated a systematic drift.

The error behavior of direct georeferencing with CUPT support equals almost with the image-
based georeferencing. In some cases with larger systematic deviations of the image-based
georeferencing, small improvements can be seen (see Figure 5.12d, trajectories 2 and 3 as well
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as Figure 5.13d, trajectory 2). However, direct georeferencing with CUPT support distributed
error vectors from the same point which were measured from different runs, which can be
observed in the indoor test site (see Figure 5.14c).

Since the support of the direct georeferencing with both CUPTs and ATTUPTs did decrease
the accuracy, we refrained from a detailed analysis and from creating an error vector map.

(a) Direct georeferencing (b) SLAM-based georeferencing

(c) Image-based georeferencing (d) Direct georeferencing supported with CUPTs

Figure 5.12: Error vector maps of the city test site for different georeferencing methods. The error
vectors are colored according to the trajectory section. The thin and opaque error vectors represent
the position error while the thicker and transparent vectors represent the elevation error. The map
scale is black, whereas the twenty times larger error vector scale is colored in blue.
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(a) Direct georeferencing (b) SLAM-based georeferencing

(c) Image-based georeferencing (d) Direct georeferencing supported with CUPTs

Figure 5.13: Error vector maps of the forest test site for different georeferencing methods. The error
vectors are coloured according to the trajectory section. The thin and opaque error vectors represent
the position error while the thicker and transparent vectors represent the elevation error. The map
scale is black, whereas the twenty times larger error vector scale is colored in blue.
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(a) SLAM-based georeferencing (b) Image-based georeferencing

(c) Direct georeferencing with CUPTs support

Figure 5.14: Error vector maps of the indoor test site for different georeferencing methods. The error
vectors are coloured according to the trajectory section. The thin and opaque error vectors represent
the position error while the thicker and transparent vectors represent the elevation error. The map
scale is black, whereas the twenty times larger error vector scale is colored in blue.
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5.4.3 Relative Accuracy

In addition to the precision and the absolute accuracy, we also investigated the relative
accuracy. The relative accuracy has a practical relevance when a high accuracy for 3D distance
measurements or area measurements is required. Relative accuracy might be possibly less
affected by some systematic errors regarding the absolute 3D coordinates.

We investigated the relative accuracy by forming 3D distances with neighboring reference
points. Then, we estimated the length deviation δl between the 3D distance formed with
image-measured point coordinates i1 and i2 and the 3D distance formed with reference point
coordinates r1 and r2 that were measured by tachymetry:

δl = ∥i1 − i2∥2 − ∥r1 − r2∥2. (5.4)

Thereby, we used the same image measurements as for the precision and accuracy investigations.

Figure 5.15 shows increasing length deviations in test sites with poorer GNSS reception for
direct georeferencing. The LiDAR SLAM-based georeferencing resulted in the city center and
in the indoor test site in similar median deviations of 55mm and 39mm, respectively, while
the median deviations in the forest test site were slightly higher and amounted to 76mm.
Image-based georeferencing showed a significantly better relative accuracy (by factor 2–5)
whereby the median deviations amounted to 10mm in the city center, to 23mm in the forest
and to 17mm in the indoor test site. The support of the direct georeferencing with CUPTs
slightly decreases the median relative accuracy in the city center to 20mm, in the forest to
41mm and in the indoor test site to 21mm, while a further support with ATTUPTs leads to
a further decrease by factor 1.5–3.0 (see Table 5.5).

Table 5.5: Summary of accuracies of 3D distance observations using different georeferencing methods
for all three test sites. The table contains both the mean and the median accuracy values. Accuracy
represents the length deviation to the ground truth.

Method Test Site Distances Accuracy in mm
mean median

Direct City centre 69 90 50
Forest 85 169 113
Indoor 140 N.A. 506

SLAM-based City centre 69 84 55
Forest 85 93 76
Indoor 140 56 39

Image-based City centre 69 27 10
Forest 85 42 23
Indoor 140 24 17

Direct City centre 69 35 20
CUPTs Forest 85 51 41

Indoor 140 29 21

Direct City centre 69 82 56
CUPTs Forest 85 96 77
ATTUPTs Indoor 140 44 34
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Figure 5.15: Box-plot with length deviations between measured 3D distances and ground truth,
representing the relative accuracy. All samples are listed from left to right by test site, while the
box-plot colors represent different georeferencing methods. The black diamond symbols indicate the
mean 3D distance deviation.
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Chapter 6

Discussion and Evaluation

This chapter contains the discussion of our developments and results. It begins with our
developed image-focused portable backpack MMS (Section 6.1), continues with the georefer-
encing methods (Section 6.2) and finally includes a comparison of our results with related
work (Section 6.3).

6.1 Developed Image-focused Portable Backpack MMS

This section contains a discussion of the strengths and shortcomings of our developed portable
MMS with regard to practical use and application in infrastructure management.

Platform

The backpack platform used allows to cover a wide range of different areas that are inacces-
sible to other platform types such as trolley or vehicle platforms. This thesis successfully
demonstrates its application in the city center, in forests and in indoor environments.

Furthermore, the developed backpack platform allows sufficiently large payload and enough
space to use high-end sensors and implement different sensor configurations. For our pro-
totypical implementation, we used a stable aluminum frame with a modular design, that
allows changes on the sensor configuration in a straightforward manner. This enabled the
incremental development from an only indoor MMS (Blaser et al., 2018a) to a MMS suited
for both indoor and outdoor environments (Blaser et al., 2020), that is extended by a second
vertical LiDAR scanner and holds a GNSS and IMU-combined navigation system with tactical
grade performance instead of the formerly used industrial grade IMU.

However, the modular and flexible platform design resulted in an overall weight of 25 kg where
the frame already weights 11 kg. Hence, there is great potential for weight reduction through
redesign and industrialization.

Sensor Configuration

Since the backpack platform does not offer enough space for a stereo panoramic camera
configuration with reasonable base lines, we propose a combined panoramic camera and LiDAR
configuration. In contrast to numerous LiDAR-focused portable MMS with comparable sensor
configurations that provide colored LiDAR point clouds, we focused on the resulting panoramic
images with the aim of using LiDAR point clouds for depth reconstruction, yielding RGB-D
panoramic images. A stereo panoramic camera configuration provides images with temporally
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coherent RGB-D channels. By contrast, using a combined configuration with (panoramic)
camera and LiDAR scanners provides LiDAR points that are not acquired at the same time
as the images so that moving objects cannot be captured with the correct depth information.
This limits the field of application to static objects.

As described in Section 3.3, the sensor configuration of our portable MMS incorporates a
multi-head panoramic camera Ladybug 5, two multi-beam LiDAR scanners Velodyne VLP-16
and a GNSS and IMU-combined navigation unit SPAN CPT7.

The panoramic camera and the LiDAR scanners provide a large coverage of the environment.
However, the operator’s head obscures a significant area of the panoramic camera of the front
and the horizontally mounted LiDAR scanner, which sits on top of the frame, obscures a
small part of the top left (see Figure 3.6). In addition, the area towards the top tends to
be well imaged, while the ground is only captured by the camera from a certain distance.
Within buildings, coverage towards the top is essential, since the ceiling often contains objects
and installations that are important for infrastructure management. By contrast, in outdoor
environments, the top view often captures only the sky, while the ground with road or rail
infrastructure is of higher importance. Therefore, it could be useful to supplement the camera
configuration with additional cameras pointing downwards.

Sensors

The used panoramic camera Ladybug 5 satisfied the requirements for robust and precise
georeferencing under difficult conditions. Both a higher camera resolution and better low
light performance would nevertheless be desirable for infrastructure management in order to
recognize critical scene details such as labels and to allow a more efficient data acquisition
in indoor environments without halting during image captures. Both improvement options
conflict with each other to some extent and require balancing to the physical optimum.
Furthermore, the lack of hardware triggering interfaces on the onboard computer demanded
the triggering of the panoramic camera by software. This limited the possible frame rate of 5
frames per second to 2 frames per second.

The Velodyne VLP-16 LiDAR scanners used proved themselves suitable for initial SLAM-
based georeferencing. However, the limited field of view due to the small vertical angle of
30◦ required the use of a second vertically mounted scanner in order to cover the ceiling and
ground in indoor environments.

Since the NovAtel SPAN CPT7 GNSS and IMU-combined navigation unit provide raw data
access, it was possible to use IMU raw data for both direct georeferencing and SLAM-based
georeferencing.

6.2 Georeferencing Methods

This section contains a discussion of strengths and shortcomings of our developed georeferencing
methods.

Direct Georeferencing

Direct georeferencing using GNSS and IMU with tactical grade performance may provide cm
accuracy under good GNSS reception. In areas with partial GNSS obscurity, the position
accuracy rapidly decreases to the dm range and in areas with complete GNSS absence it
decreases to the m range or even more. Thus, direct georeferencing is suitable for areas with
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good GNSS reception and also provide suitable initial values for image-based georeferencing
in areas with partial GNSS obscurity.

Our investigations in the city center and in the forest test site resulted in mean accuracies
of 52.2 cm and 95.7 cm, respectively, which is sufficient to provide suitable initial values for
image-based georeferencing with spatial feature matching. In contrast, directly georeferenced
image poses in the interior proved insufficient as initial values due to the strong drifts in the
clear m range.

Nevertheless, direct georeferencing is rapidly processed and results in a trajectory with high
pose density that is suitable for georeferencing of both images and LiDAR points.

LiDAR SLAM-based Georeferencing

Our extended LiDAR SLAM algorithm fully operates in 3D and provides poses with 6 DoF.

Since point cloud matching, local constraints as well as loop closures base on a 3D occupancy
grid map, the grid resolution strongly affects the precision and the relative and absolute
accuracy. For our investigations, we used a voxel size of 5 cm. This manifests itself in the
reported internal accuracy, which shows deviations between poses, local constraints as well
as loop closures. The mean translational errors varied from 5.3 cm to 6.6 cm, while mean
rotational errors varied in the range from 0.2◦ to 0.5◦. The mean precision ranged in the same
order of magnitude from 5.1 cm to 6.1 cm, mainly showing very local deviations between the
four consecutive poses used for the forward intersection. The mean accuracy of 3D distance
observations between neighboring CPs ranged from 5.6 cm to 9.3 cm and showed slightly
higher deviations than the mean precision.

The mean accuracy of absolute coordinate deviations amounted in indoors to 15 cm whereas
it was twice as high in both the city center (33 cm) and in the forest (32 cm). This significant
difference could be related to the size of test sites. While the test sites city center and forest
have a similar size, the indoor test site is significantly smaller. This behavior could indicate a
scale effect over the entire map. Another indication for a global scale factor is the typical
systematic error behavior, which is especially visible in the error vector plot of the city center
test site (see Figure 5.12b). In the future, a global scaling factor could be considered in the
transformation from the local to the global coordinate system.

In our investigations, our SLAM-based georeferencing pipeline based on Cartographer proved
to be robust in different environments. Basically, our LiDAR SLAM-based georeferencing is
real-time capable but claims high RAM and Central Processing Unit (CPU) resources which
increase with growing map size. Hence, the map size of LiDAR SLAM is limited.

Chen et al. (2021b) performed investigations on the Cartographer within an indoor test site
with equally shaped rooms, which resulted in gross errors in the m range. They point out,
that the Cartographer tends to erroneous loop closures within buildings with equally shaped
rooms, because the Cartographer detects loop closures based on the point cloud similarity.
Consequently, they recommend either to deactivate loop closures or to use another SLAM
algorithm for campaigns within buildings with equally shaped rooms.

All in all, LiDAR SLAM-based georeferencing is suitable for various environments and results
in dm accuracy. LiDAR SLAM clearly outperformed direct georeferencing in GNSS-denied
areas, in terms of accuracy and robustness and proves itself as an alternative method to obtain
initial values for image-based georeferencing. Although, LiDAR SLAM results in a dense
trajectory and the high local and relative pose deviations cause a noisy point cloud when used
for LiDAR georeferencing.
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Image-based Georeferencing

Subsequent image-based georeferencing results in a highly accurate but sparse trajectory
which consists of image poses with 6 DoF.

Image-based georeferencing using the SfM pipeline Agisoft Metashape resulted in a mean
re-projection error in outdoor environments of 0.4 px and 0.5 px, respectively, and in the indoor
test site of 2.2 px. As already discussed in 5.3.3, reasons for the significantly higher mean
re-projection error in indoor environments could be that the minimum focus distance of the
Ladybug 5 panoramic camera was missed or the higher exposure time in indoors led to motion
and image blur. However, shorter object distances in indoors might compensate the higher
re-projection error, since the mean precision ranged in all test sites from 0.5 cm to 0.7 cm. The
precision achieved by image-based georeferencing was by an order of magnitude higher than the
precision achieved by both direct and LiDAR-based georeferencing. Image-based georeferencing
thus showed the highest precision of all evaluated georeferencing methods. The mean accuracy
of 3D distance observations between neighboring CPs ranged from 2.4 cm to 4.2 cm and the
mean absolute coordinate accuracy ranged from 8.5 cm to 13.1 cm. Consequently, subsequent
image-based georeferencing improved the mean absolute coordinate accuracy of direct and
LiDAR SLAM-based georeferencing by factors 2–7.

Furthermore, image-based georeferencing proved to be highly robust within different environ-
ments. In our investigations, all images were successfully oriented, even in the city center with
numerous pedestrians and moving vehicles, in the mature forest with low-light conditions as
well as in challenging indoor environments with glass façades, texture-less walls and repeti-
tive patterns. Most likely, the constraint rig configuration used for the bundle-adjustment
significantly increased the robustness, since it requires a much smaller number of features to
georeference a panoramic epoch. However, under really harsh conditions, for example in a
mature forest, some outliers with deviations in the dm-range occurred.

Since the portable MMS features a single panoramic camera configuration, leading to single
panoramic image sequences, it requires GCPs or accurate image poses from external sources
to precisely estimate the scale of the 3D reconstruction. In addition, the processing of the
panoramic image sequences results in a drift, which is for example visible in the error vector
plot of the indoor test site (see Figure 5.14b). However, the drift could be tackled with
additional GCPs. Another limitation of image-based georeferencing is that the processing
time significantly exceeds the acquisition time, being by factor 2–4 higher.

Direct Georeferencing Supported with Coordinate and Attitude Updates

Direct georeferencing supported with CUPTs and ATTUPTs that originate form image poses
enables the bridging of GNSS-denied areas and results in a highly accurate and dense trajectory,
consisting of image poses with 6 DoF. Thus, it is suitable for both the georeferencing of images
and LiDAR points.

As already discussed in Subsection 5.3.4, we created the two following differently combined
CUPTs and ATTUPTs:

• CUPTs only, whereby we weighted each coordinate component with 5mm.

• combined CUPTs and ATTUPTs, whereby we weighted each coordinate component
with 5mm, roll and pitch angles with 0.1◦ and the heading angle with 0.005◦.

Combined CUPTs and ATTUPTs showed better internal accuracy than CUPTs only. CUPTs
only improved the mean standard deviation of 3D position to the range from 0.5 cm to 7.0 cm,
while the mean heading standard deviation remained in the range of direct georeferencing.
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Combined CUPTs and ATTUPTs additionally improved the mean heading standard deviation
to a range from 0.004◦ to 0.005◦.

However, the mean precision of the CUPT only supported direct georeferencing was by factor
2 lower than the mean precision of the image-based georeferencing, and ranged from 1.3 cm to
1.6 cm. The further addition of ATTUPTs decreased the precision by an order of magnitude
so that it came to range between 4.0 cm and 4.7 cm.

The same behavior occurred with the relative accuracy. The mean accuracy of 3D distances
between neighboring CPs decreased to a range from 2.9 cm to 5.1 cm and from 4.4 cm to 9.6 cm
by supporting the direct georeferencing with CUPTs only and with combined CUPTs and
ATTUPTs, respectively. This behavior may be explained by the fact that direct georeferencing
smoothed and thereby deteriorated the introduced image pose.

The absolute accuracy of CUPT supported direct georeferencing within a range from 8.8 cm to
12.9 cm is comparable with image-based georeferencing, while a further support of the direct
georeferencing with ATTUPT slightly decreased the absolute accuracy to a range from 13.8 cm
to 16.8 cm. In total, direct georeferencing with only CUPT support significantly outperformed
direct georeferencing with combined CUPT and ATTUPT support. Consequently, direct
georeferencing supported only by CUPTs is preferable in the future.

Direct georeferencing supported with CUPTs and ATTUPTs significantly improved the robust-
ness of direct georeferencing. Especially CUPT originating from image-based georeferenced
poses, were able to bridge areas with poor GNSS reception and even to bridge indoor environ-
ments with complete GNSS absence. Furthermore, CUPT supported direct georeferencing
even slightly increased the robustness of image-based georeferencing by smoothing outliers.

However, direct georeferencing supported with CUPTs and ATTUPTs depends on the result
of image-based georeferencing, which requires a long processing time. From this point of
view, the discussed georeferencing method is not only precise and highly robust, but also
resource-intensive and time-consuming.

6.3 Comparison of our Results with Related Work

This section includes a discussion and comparison of our georeferencing methods with related
work in terms of the hardware used, the evaluation methods and the achieved results. By
general, our results confirm those of our previous work as well as of work from other groups
in terms of accuracy, but presents new findings about increasing robustness and versatility.

Lehtola et al. (2017) carried out investigations on point clouds of indoor environments using a
comparable backpack MMS. Their deviations reached up to 14 cm and 55 cm in floor heights
with the Leica Pegasus Backpack and the Würzburg Backpack, respectively and are thus in the
same order of magnitude. However, their results are not directly comparable to ours, because
they only concern the height component and show maximum rather than mean deviations.

By contrast, Corso, Zakhor (2013) investigated the end-to-end system performance of their
LiDAR-focused backpack indoor MMS in an indoor test site that is comparable to ours
in terms of size and conditions. In contrast to our investigations, they measured CPs by
intersecting the manually measured line of sight in the camera image with a plane, that
was previously fitted into the mapped LiDAR points closest to the target. Their analysis,
using 100 surveyed CPs, showed a mean accuracy of 10 cm, while the mean accuracy of our
LiDAR SLAM-based georeferencing showed a mean accuracy of 15 cm using 246 surveyed CPs.
However, their offline 3D localization pipeline consists of a 2D LiDAR SLAM that is based on
2D occupancy grids, while they regard the 1D height estimation separately. As the height
estimation depends on vertical planes, the method is limited to man-made environments.
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While their position part of the pose originates from a 2D LiDAR SLAM and from a 1D
height estimation algorithm, they use roll and pitch angles from the IMU and the yaw angle
originating from 2D LiDAR SLAM. By contrast, our LiDAR SLAM used fully operates in 3D
and uses sub-maps based on 3D occupancy grids. It performs robustly in various environments.
However, the limited resolution of the 3D occupancy grid possibly decreased the accuracy of
our LiDAR SLAM-based georeferencing. Nonetheless, our mean accuracy of both image-based
georeferencing and CUPT supported direct georeferencing amounted to 9 cm and thus slightly
outperformed their algorithm.

Tang et al. (2015) performed experiments with an all-terrain-vehicle LiDAR-based MMS
in the forest within similar conditions. In mature forest, they reported 2D stem position
deviations to the reference with GNSS and IMU as well as with SLAM and IMU in the
range of 40 cm to 72 cm and of 4 cm to 45 cm, respectively. Our 3D coordinate differences
with direct georeferencing were slightly higher, which might result from the fact that we
additionally considered the third dimension and that our acquisition speed was significantly
slower. By contrast, their deviations of the SLAM-based georeferencing are comparable to
ours. Although, our investigated SLAM-based georeferencing seems to be more robust to
environmental changes.

As proven in our previous work (Cavegn et al., 2018), subsequent image-based georeferencing
significantly improved the accuracy by a multiple and the precision by an order of magnitude
compared to published results with direct or SLAM-based georeferencing in similar environ-
ments. Moreover, image-based georeferencing was able to bridge significant deviations and
therefore increased the robustness of georeferencing.

100



Chapter 7

Conclusion and Outlook

This chapter includes a summary of this thesis (see Section 7.1), shows limitations and provides
recommendations for further work (see Section 7.2). Finally, Section 7.3 provides an outlook
with regard to subsequent research questions as well as current and future technological
developments.

7.1 Summary

The overall objective of this thesis was to provide robust and accurate georeferencing of
RGB-D images originating from MM in various challenging environments. MM enables
rapid and efficient 3D data capturing and its resulting data can be used in cloud-based web
services, for example for infrastructure management in combination with GIS or BIM. While
Nebiker et al. (2015) indicate the high potential of cloud-based geospatial image spaces using
georeferenced RGB-D images, it is meanwhile already commercially deployed and widely used
for infrastructure management. However, in outdoor environments, this approach has so far
only been used for linear infrastructures, such as roads or railways, that are easily accessible
with large platforms, using high-quality sensor technology. Such infrastructures often include
areas that are inaccessible to vehicles, such as operational buildings or narrow alleys, for
which there is a great demand for equally accurate coverage.

In a first step, we successfully developed a prototypical portable image-focused backpack
MMS, which is equipped with a multi-head panoramic camera Ladybug 5 for omni-directional
image coverage, with two multi-profile LiDAR scanners Velodyne VLP-16 (horizontal and
vertical) and with a GNSS and INS-combined navigation unit SPAN CPT7 with tactical
grade performance. Its modular and flexible hardware and software design, which is based
on a robust aluminium frame and the ROS, respectively, allowed straightforward adaptions
of the sensor configuration. Furthermore, all sensors are precisely synchronized, based on
hardware pulses, which is essential for kinematic systems.

We successfully calibrated our backpack MMS in test fields. For camera related parameters
(IO, RO and BA), we applied a bundle-adjustment-based calibration approach, which we
extended by the equidistant camera model in order to support the wide-angle optics of our
panoramic camera heads. Furthermore, we precisely calibrated the RO parameters from both
LiDAR scanners to the panoramic camera, using a feature-based calibration approach, which
requires no targets but minimizes the LiDAR point cloud deviation by the use of point cloud
features. Thereby, the standard deviations of the RO parameters between the panoramic
camera heads were in the sub-mm range for the translation and ranged from 0.0044◦ to 0.0233◦

for the rotation. Moreover, the standard deviations of the RO parameters between the LiDAR
scanners and the panoramic camera were in the same order of magnitude. They were in the
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mm range for the translation, whereas they ranged from 0.0001◦ to 0.0162◦ for the rotation.
Accurate RO parameters between LiDAR scanners and cameras are crucial for LiDAR point
cloud and image data fusion.

We considered direct georeferencing and LiDAR SLAM-based georeferencing as two well
established methods for outdoor and indoor environments. While direct georeferencing strongly
relies on good GNSS reception and thus is only suitable for open field application, LiDAR
SLAM depends on environments with distinct geometric structures and with geometric variety.
Thus, LiDAR SLAM is also suitable for GNSS-denied environments. Direct georeferencing
operates in a global reference frame and has no limitations regarding the expansion of the
trajectory. By contrast, most LiDAR SLAM algorithms operate in a local coordinate frame
and have a limited maximum map size. Both methods are real-time capable and result in a
dense trajectory, which can be used for georeferencing of both image and LiDAR data.

In order to improve the accuracy and robustness of both direct and LiDAR SLAM-based
georeferencing, we considered subsequent image-based georeferencing. Cavegn et al. (2018)
extended the SfM pipeline COLMAP by indirect georeferencing capabilities, which includes
the support of prior EO parameters, RO constraints for fixing of the camera rigs, as well as
GCP. This showed improvements in accuracy by an order of magnitude compared to direct and
LiDAR SLAM-based georeferencing. Consequently, subsequent image-based georeferencing
results in a highly accurate but sparse trajectory that can only be used for image georeferencing.

In order to obtain a highly accurate and dense trajectory, we proposed direct georeferencing
supported with CUPTs and ATTUPTs originating from image-based georeferenced poses.
This method should support and improve the trajectory in areas with poor or no GNSS
reception. Finally, we implemented and investigated two variants, one using only CUPTs and
the other using combined CUPTs and ATTUPTs. Thereby, we expected that the combined
variant would correct drifts in the heading component faster and that it would yield further
improvements in the absolute accuracy.

We evaluated and extensively investigated all considered georeferencing methods in three
test sites that represent challenging real-world scenarios. The first test site was located in
the city center, including narrow alleys with poor GNSS reception, busy with pedestrians
and trams. The second test site was located in a forest with mature and dense vegetation
and paths that lead through the undergrowth. The third test site represents a public indoor
environment with glass façades and repetitive patterns. Beside the internal accuracy of
each georeferencing method, we investigated both the precision and the accuracy of image-
measured CPs, that we had previously measured with superior accuracy by tachymetry.
For this purpose, we performed the image measurements with forward intersection of four
consecutive panoramic image epochs. Furthermore, we investigated the relative accuracy by
comparing image-measured 3D distances to ground truth.

Subsequent image-based georeferencing showed a median precision that was by an order of
magnitude higher than of direct georeferencing and LiDAR SLAM-based georeferencing and
ranged from 5mm to 7mm in the different test sites. It also showed by factor 2–7 higher
absolute accuracies, ranging from 85mm to 131mm. Furthermore, subsequent image-based
georeferencing showed a higher relative accuracy by factor 2, ranging from 24mm to 42mm.
The absolute and relative accuracies of direct georeferencing with CUPT support were similar
to those of subsequent image-based georeferencing, whereas the mean precision was slightly
lower (13mm to 16mm). Contrary to our expectations, direct georeferencing supported with
combined CUPTs and ATTUPTs showed a lower precision and absolute as well as relative
accuracy than direct georeferencing with CUPT support only.
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7.2 Recommendations

Our investigations show great potential for complementing 3D geospatial web services of
infrastructures, using a high-performance backpack MMS that combines direct georeferencing
with CUPTs from image-based georeferencing. As discussed in Section 6.3, our obtained
absolute accuracy confirms both the results from previous work, using image-based MMS
with fixed stereo bases (Blaser et al., 2018b; Burkhard et al., 2012; Cavegn et al., 2018), and
work by other groups, using LiDAR-focused MMS (Tang et al., 2015; Corso, Zakhor, 2013).
However, our obtained relative accuracy was slightly lower than the results achieved with
fixed stereo bases (Blaser et al., 2018b). Overall, our portable MMS, in combination with
the proposed georeferencing methods, has proved itself suitable for an equivalent extension of
existing 3D geospatial services for infrastructures in terms of the accuracy and robustness of
the georeferencing.

Our prototypical backpack MMS has a high overall weight of 25 kg and the panoramic camera
is partially obscured by the top LiDAR scanner as well as by the operator. A new arrangement
of the sensors could reduce the occlusion of the panoramic camera, for example by a placement
of the panoramic camera directly above the operator’s head and the horizontal LiDAR scanner
just below the panoramic camera. However, this would require a smaller panoramic camera,
in order to avoid collisions with the ceiling or with door frames in indoor environments.
Furthermore, the frame structure, as well as the wiring of the sensors, could be massively
simplified by a fixed and industrialized configuration, which would bring a significant weight
reduction.

The performed overall system calibration included IO, RO and BA parameters of the individual
panoramic camera heads and the RO and BA parameters of both LiDAR scanners. However,
we had not considered the internal parameters of the LiDAR scanners, as they were not
crucial for the LiDAR SLAM-based georeferencing. Nevertheless, Kim et al. (2021) achieved
significant improvements of planar misclosure after calibration in the range from 35% to
81% by considering the internal parameters. Thus, internal calibration of LiDAR scanners
might reduce point cloud noise. This could be particularly relevant for subsequent depth
reconstruction in order to obtain georeferenced RGB-D images by the use of georeferenced
LiDAR point clouds.

Our proposed multi-stage georeferencing approach for vehicle-denied areas proved to be robust
in our test sites with comparable accuracy to direct georeferencing under optimal conditions.
However, as Chen et al. (2021b) determine, our LiDAR SLAM algorithm Cartographer used
tends to wrong loop-closures in indoor environments with uniform structures (e.g. similar-
shaped rooms). This is caused by the loop-closure detection algorithm that is based on point
cloud similarity. It is therefore advisable to deactivate loop-closure or to use alternative SLAM
algorithms for indoor campaigns in large building complexes. For larger combined indoor
and outdoor campaigns, we recommend to use direct georeferencing as initial values for the
subsequent georeferencing and to use LiDAR SLAM only for local areas with restricted GNSS
reception.

The positional accuracy of LiDAR SLAM-based georeferencing could be improved by applying
a scale factor, as indicated by the results of our investigations.

Furthermore, we recommend to deactivate the real-time GNSS and INS-combined navigation
and only to record raw data for large indoor or underground campaigns with long GNSS
absence. GNSS and INS-combined navigation systems have a regulatory velocity limit of
515m/s and deactivate navigation and all raw data capturing when exceeding the maximum
velocity. This limit can be exceeded in case of strong drifts caused by long GNSS outages.
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When supporting the direct georeferencing from external sources, for example from image-
based georeferenced poses, we recommend to primarily use only CUPTs, since the combined
use of CUPTs and ATTUPTs resulted in a significantly lower precision and accuracy. There
might be a potential to improve the combined CUPTs and ATTUPTs supported direct
georeferencing by optimizing the filter algorithms.

7.3 Outlook

The most obvious research objectives concern dense and accurate 3D reconstruction from both
image and LiDAR data to fully meet the requirements for obtaining georeferenced RGB-D
imagery. The simplest method would be to georeference the LiDAR data using the dense
trajectory from direct georeferencing supported by CUPTs, and afterwards re-project the
resulting point clouds into the images. Among other things, the following questions should be
addressed:

• Filter and remove points in the point cloud that are invisible in the image.

• Filtering moving objects in the point cloud (e.g. vehicles or pedestrians).

• Handling moving objects visible in the image that were not captured by the LiDAR
scanners.

Another possibility would be the 3D reconstruction using georeferenced imagery. However,
image-based 3D reconstruction strongly depends on the object texture and the image quality.
Furthermore, it would be interesting to develop and investigate hybrid approaches for dense
3D reconstruction, based on both image and LiDAR data balancing the advantages and
disadvantages of each other.

With the reconstructed depth information, it would be possible to investigate the end-to-end
accuracy by measuring CPs directly in single RGB-D images with mono-plotting.

Other relevant research areas could aim towards high quality SLAM for infrastructure man-
agement, by using precise georeferencing for 3D reconstruction on the one hand, and on the
other hand to optimize the reconstructed 3D scene, using e.g. machine learning to improve
the georeferencing.

Current developments in sensor technology, such as RGB-D cameras equipped with solid-state
LiDAR, have great potential to massively simplify and miniaturize the entire MMS. Presently,
the achievable accuracy and range of solid-state LiDAR are below the requirements for
georeferenced RGB-D imagery for infrastructure management. However, Nebiker et al. (2021)
show the great potential of using RGB-D cameras combined with low-cost MM components
for applications with accuracy requirements in the m- to sub-m-range (e.g. for on-street
parking statistics). With additional maturity and higher accuracy, solid-state LiDAR-based
RGB-D cameras have great potential to replace multi-profile LiDAR scanners in future, since
it would allow to capture RGB-D images that coincide in time and would provide dense depth
information. In addition, this would massively simplify georeferencing indoor environments, as
the subsequent direct georeferencing with CUPT support could be dropped when multi-profile
LiDAR data is no longer required.

Furthermore, investigations towards the on-site calibration of the overall system would be of
great interest. First, this would allow additional consideration of prevailing environmental
conditions, such as different temperatures or humidity. Second, great efforts of regular test
field calibration could be avoided.
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In terms of georeferencing, ongoing developments in visual localization (Sarlin et al., 2019)
have great potential to reduce or omit GCPs and CPs within areas with existing accurately
georeferenced RGB-D image data, that was previously acquired with a high-performance MMS.
Since the visual localization using deep-learned features allows image matching of images with
different times and environmental conditions, extensions to existing image data sets or updates
in already mapped areas could be performed without any control points. Consequently, the
transformation from the local to the global reference frame could be performed using image
poses determined with visual localization. As a result, the entire georeferencing process could
be fully automated.

In addition, robust and accurate georeferenced RGB-D imagery of urban environments
combined with visual localization has an enormous potential for future on-site AR applications
with very high practical relevance.

105





Bibliography

Abraham, S., Förstner, W., 2005. Fish-eye-stereo calibration and epipolar rectifica-
tion. ISPRS Journal of Photogrammetry and Remote Sensing, 59(5), 278–288. DOI:
10.1016/j.isprsjprs.2005.03.001.

Alismail, H., Baker, L. D., Browning, B., 2012. Automatic Calibration of a Range Sen-
sor and Camera System. Proceedings of the 2012 Second International Conference on 3D
Imaging, Modeling, Processing, Visualization & Transmission, 286–292. DOI: 10.1109/3DIM-
PVT.2012.52.

Alsadik, B., Karam, S., 2021. The Simultaneous Localization and Mapping (SLAM)-
An Overview. Surveying and Geospatial Engineering Journal, 2(01), 01–12. DOI:
10.38094/sgej1027.

Angrisano, A., 2010. GNSS/INS Integration Methods. PhD thesis, Universita’ degli studi
di Napoli ”Parthenope”. https://www.ucalgary.ca/engo_webdocs/other/Angrisano_
PhD%20Thesis_ENG2.pdf, (accessed: 18/5/2022).

Anguelov, D., Dulong, C., Filip, D., Frueh, C., Lafon, S., Lyon, R., Ogale, A., Vincent, L.,
Weaver, J., 2010. Google Street View: Capturing the World at Street Level. Computer,
43(6), 32–38. DOI: 10.1109/MC.2010.170.

Applanix Corporation, 2017. TIMMS: Fast, Accurate & Cost-Effective Indoor Mapping.
https://www.applanix.com/downloads/products/brochures/2017_Timms2Brochure_

r1_feb2017_web.pdf, (accessed: 18/5/2022).

Aqel, M. O., Marhaban, M. H., Saripan, M. I., Ismail, N. B., 2016. Review of visual odom-
etry: types, approaches, challenges, and applications. SpringerPlus, 5(1), 1–26. DOI:
10.1186/s40064-016-3573-7.

Barber, D., Mills, J., Smith-Voysey, S., 2008. Geometric validation of a ground-based mobile
laser scanning system. ISPRS Journal of Photogrammetry and Remote Sensing, 63(1),
128–141. DOI: 10.1016/j.isprsjprs.2007.07.005.

Beers, B. J., 1995. FRANK - the design of a new landsurveying system using panoramic
images. PhD thesis, Technische Universiteit Delft. http://resolver.tudelft.nl/uuid:
72a50ee7-332e-43aa-b216-fba148b28d60, (accessed: 18/5/2022).

Behley, J., Stachniss, C., 2018. Efficient Surfel-Based SLAM using 3D Laser Range Data in
Urban Environments. Robotics: Science and Systems. DOI: 10.15607/RSS.2018.XIV.016.

Besl, P. J., McKay, N. D., 1992. Method for registration of 3-D shapes. P. S. Schenker (ed.),
Sensor Fusion IV: Control Paradigms and Data Structures, 1611, International Society for
Optics and Photonics, SPIE, 586–606. DOI: 10.1117/12.57955.

107

https://doi.org/10.1016/j.isprsjprs.2005.03.001
https://doi.org/10.1109/3DIMPVT.2012.52
https://doi.org/10.1109/3DIMPVT.2012.52
https://doi.org/10.38094/sgej1027
https://www.ucalgary.ca/engo_webdocs/other/Angrisano_PhD%20Thesis_ENG2.pdf
https://www.ucalgary.ca/engo_webdocs/other/Angrisano_PhD%20Thesis_ENG2.pdf
https://doi.org/10.1109/MC.2010.170
https://www.applanix.com/downloads/products/brochures/2017_Timms2Brochure_r1_feb2017_web.pdf
https://www.applanix.com/downloads/products/brochures/2017_Timms2Brochure_r1_feb2017_web.pdf
https://doi.org/10.1186/s40064-016-3573-7
https://doi.org/10.1016/j.isprsjprs.2007.07.005
http://resolver.tudelft.nl/uuid:72a50ee7-332e-43aa-b216-fba148b28d60
http://resolver.tudelft.nl/uuid:72a50ee7-332e-43aa-b216-fba148b28d60
https://doi.org/10.15607/RSS.2018.XIV.016
https://doi.org/10.1117/12.57955


Bibliography

Blaser, S., Cavegn, S., Nebiker, S., 2018a. Development of a Portable High Performance Mobile
Mapping System Using the Robot Operating System. ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Sciences, IV-1/1, 13–20. DOI: 10.5194/isprs-annals-
IV-1-13-2018.

Blaser, S., Meyer, J., Nebiker, S., 2021. Open Urban and Forest Datasets from a High-
Performance Mobile Mapping Backpack – a Contribution for Advancing the Creation of
Digital City Twins. ISPRS – International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XLIII-B1-2021, 125–131. DOI: 10.5194/isprs-archives-
XLIII-B1-2021-125-2021.

Blaser, S., Meyer, J., Nebiker, S., Fricker, L., Weber, D., 2020. Centimetre-Accuracy in
Forests and Urban Canyons – Combining a High-Performance Image-Based Mobile Mapping
Backpack with new Georeferencing Methods. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences, V-1-2020, 333–341. DOI: 10.5194/isprs-annals-V-
1-2020-333-2020.

Blaser, S., Nebiker, S., Cavegn, S., 2017. System Design, Calibration and Performance
Analysis of a Novel 360◦ Stereo Panoramic Mobile Mapping System. ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-1/W1, 207–213.
DOI: 10.5194/isprs-annals-IV-1-W1-207-2017.

Blaser, S., Nebiker, S., Cavegn, S., 2018b. On a Novel 360◦ Stereo Panoramic Stereo Mobile
Mapping System. Photogrammetric Engineering & Remote Sensing, 84(6), 347–356. DOI:
10.14358/PERS.84.6.347.

Bosse, M., Zlot, R., Flick, P., 2012. Zebedee: Design of a Spring-Mounted 3-D Range Sensor
with Application to Mobile Mapping. IEEE Transactions on Robotics, 28(5), 1104–1119.
DOI: 10.1109/TRO.2012.2200990.

Brown, D. C., 1971. Close-range camera calibration. Photogrammetric Engineering, 37(8),
855–866.

Burkhard, J., Cavegn, S., Barmettler, A., Nebiker, S., 2012. Stereovision Mobile Mapping:
System Design and Performance Evaluation. ISPRS – International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B5, 453–458. DOI:
10.5194/isprsarchives-XXXIX-B5-453-2012.

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard,
J., 2016. Past, Present and Future of Simultaneous Localization and Mapping: Toward
the Robust-Perception Age. IEEE Transactions on Robotics, 32(6), 1309–1332. DOI:
10.1109/TRO.2016.2624754.

Cavegn, S., 2020. Integrated georeferencing for precise depth map generation exploiting
multi-camera image sequences from mobile mapping. PhD thesis, Fakultät Luft- und
Raumfahrttechnik und Geodäsie, Universität Stuttgart. DOI: 10.18419/opus-11210.

Cavegn, S., Blaser, S., Nebiker, S., Haala, N., 2018. Robust and Accurate Image-Based Geo-
referencing Exploiting Relative Orientation Constraints. ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Sciences, IV-2, 57–64. DOI: 10.5194/isprs-annals-
IV-2-57-2018.

Chan, T. O., Lichti, D. D., Glennie, C. L., 2013. Multi-feature based boresight self-calibration
of a terrestrial mobile mapping system. ISPRS Journal of Photogrammetry and Remote
Sensing, 82, 112–124. DOI: 10.1016/j.isprsjprs.2013.04.005.

108

https://doi.org/10.5194/isprs-annals-IV-1-13-2018
https://doi.org/10.5194/isprs-annals-IV-1-13-2018
https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-125-2021
https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-125-2021
https://doi.org/10.5194/isprs-annals-V-1-2020-333-2020
https://doi.org/10.5194/isprs-annals-V-1-2020-333-2020
https://doi.org/10.5194/isprs-annals-IV-1-W1-207-2017
https://doi.org/10.14358/PERS.84.6.347
https://doi.org/10.1109/TRO.2012.2200990
https://doi.org/10.5194/isprsarchives-XXXIX-B5-453-2012
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.18419/opus-11210
https://doi.org/10.5194/isprs-annals-IV-2-57-2018
https://doi.org/10.5194/isprs-annals-IV-2-57-2018
https://doi.org/10.1016/j.isprsjprs.2013.04.005


Bibliography

Chen, Q., Li, L., Xu, K., An, X., Wu, Y., 2021a. A New Triple Filtering Algorithm and Its
Application for Aerial GNSS/INS-Integrated Direct Georeferencing System. Journal of
Sensors, 2021, 13. DOI: 10.1155/2021/6527356.

Chen, S., Zhou, B., Jiang, C., Xue, W., Li, Q., 2021b. A LiDAR/Visual SLAM Backend
with Loop Closure Detection and Graph Optimization. Remote Sensing, 13(14). DOI:
10.3390/rs13142720.

Corso, N., Zakhor, A., 2013. Indoor Localization Algorithms for an Ambulatory Human
Operated 3D Mobile Mapping System. Remote Sensing, 6611–6646. DOI: 10.3390/rs5126611.

Cramer, M., 2001. Genauigkeitsuntersuchungen zur GPS/INS-Integration in der Aeropho-
togrammetrie. PhD thesis, Fakultät für Bauingenieur- und Vermessungswesen der Universität
Stuttgart.

Durrant-Whyte, H., Bailey, T., 2006. Simultaneous Localization and Mapping: Part I. IEEE
Robotics & Automation Magazine, 13(2), 99–110. DOI: 10.1109/MRA.2006.1638022.

El-Sheimy, N., Youssef, A., 2020. Inertial sensors technologies for navigation applications:
State of the art and future trends. Satellite Navigation, 1(2), 1–21. DOI: 10.1186/s43020-
019-0001-5.

Elbahnasawy, M., Shamseldin, T., Habib, A., 2018. Image-assisted GNSS/INS navigation for
UAV-based mobile mapping systems during GNSS outages. 2018 IEEE/ION Position, Lo-
cation and Navigation Symposium (PLANS), 417–425. DOI: 10.1109/PLANS.2018.8373409.

Ellum, C., El-Sheimy, N., 2000. The Development of a Backpack Mobile Mapping System.
ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences, XXXIII-B2, 184–191. https://www.isprs.org/proceedings/XXXIII/
congress/part2/184_XXXIII-part2.pdf, (accessed: 18/5/2022).

Ellum, C., El-Sheimy, N., 2001. A Mobile Mapping System for the Survey Community.
Proceedings of the 3rd International Symposium on Mobile Mapping Technology.

Ellum, C., El-Sheimy, N., 2002. The Calibration of Image-Based Mobile Mapping Systems.
Proceedings of the 2nd Symposion on Geodesy for Geotechnical and Structural Engineering,
21–24.

Eugster, H., 2012. Echtzeit-Georegistrierung von Videodaten mit Hilfe von Navigationssensoren
geringer Qualität und digitalen 3D-Landschaftsmodellen. PhD thesis, Humboldt-Universität
zu Berlin. DOI: 10.13140/RG.2.1.4124.0565.

Eugster, H., Huber, F., Nebiker, S., Gisi, A., 2012. Integrated Georeferencing of Stereo
Image Sequences Captured with a Stereovision Mobile Mapping System – Approaches and
Practical Results. ISPRS – International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XXXIX-B1, 309–314. DOI: 10.5194/isprsarchives-XXXIX-
B1-309-2012.

FLIR Inc., 2017. FLIR Ladybug5 USB3, Technical Reference. https://www.flir.

app.boxcn.net/s/owk6vr6x2mflmna0gto9h98uw802t7z1/file/418657863786, (accessed:
18/5/2022).

Förstner, W., Wrobel, B. P., 2016. Photogrammetric computer vision. Springer. DOI:
10.1007/978-3-319-11550-4.

Fraser, C. S., 1997. Digital camera self-calibration. ISPRS Journal of Photogrammetry and
Remote Sensing, 52(4), 149–159. DOI: 10.1016/S0924-2716(97)00005-1.

109

https://doi.org/10.1155/2021/6527356
https://doi.org/10.3390/rs13142720
https://doi.org/10.3390/rs5126611
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1186/s43020-019-0001-5
https://doi.org/10.1186/s43020-019-0001-5
https://doi.org/10.1109/PLANS.2018.8373409
https://www.isprs.org/proceedings/XXXIII/congress/part2/184_XXXIII-part2.pdf
https://www.isprs.org/proceedings/XXXIII/congress/part2/184_XXXIII-part2.pdf
https://doi.org/10.13140/RG.2.1.4124.0565
https://doi.org/10.5194/isprsarchives-XXXIX-B1-309-2012
https://doi.org/10.5194/isprsarchives-XXXIX-B1-309-2012
https://www.flir.app.boxcn.net/s/owk6vr6x2mflmna0gto9h98uw802t7z1/file/418657863786
https://www.flir.app.boxcn.net/s/owk6vr6x2mflmna0gto9h98uw802t7z1/file/418657863786
https://doi.org/10.1007/978-3-319-11550-4
https://doi.org/10.1016/S0924-2716(97)00005-1


Bibliography

Fricker, L., Weber, D., 2019. Portables Mobile Mapping im Aussenraum. Bachelor’s thesis,
FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz,
Switzerland. unpublished.

Geo Week News, 2017. Vexcel UltraCam Panther: An Anticipated
3D-Scanning Backpack Arrives. https://www.geoweeknews.com/news/

vexcel-ultracam-panther-long-awaited-3d-scanning-backpack-arrives, (accessed:
18/5/2022).

Geoslam, 2022. ZEB REVO RT - Scan, process and track your progress as you go. https:
//geoslam.com/solutions/zeb-revo-rt/, (accessed: 18/5/2022).

Glennie, C., Kusari, A., Facchin, A., 2016. Calibration and Stability Analysis of the VLP-16
Laser Scanner. ISPRS – International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XL-3/W4, 55–60. DOI: 10.5194/isprs-archives-XL-3-W4-
55-2016.

Grejner-Brzezinska, D. A., Toth, C. K., Jwa, Y., Moafipoor, S., Kwon, J. H., 2006. Multi-
Sensor Personal Navigator: System Design and Calibration. International Journal of Urban
Sciences, 10(2), 115–129. DOI: 10.1080/12265934.2006.9693596.

Grejner-Brzezinska, D. A., Yi, Y., Toth, C. K., 2001. Bridging GPS Gaps in Urban
Canyons: The Benefits of ZUPTs. Navigation, 48(4), 216–226. DOI: 10.1002/j.2161-
4296.2001.tb00246.x.

Gu, S., Dai, C., Fang, W., Zheng, F., Wang, Y., Zhang, Q., Lou, Y., Niu, X., 2021. Multi-GNSS
PPP/INS tightly coupled integration with atmospheric augmentation and its application in
urban vehicle navigation. Journal of Geodesy, 95(6), 1–15. DOI: 10.1007/s00190-021-01514-8.

Gunawardena, S., Morton, Y. J., 2020. Fundamentals and Overview of GNSS Receivers. John
Wiley & Sons, Ltd, chapter 14, 307–338. DOI: 10.1002/9781119458449.ch14.

Haala, N., Peter, M., Kremer, J., Hunter, G., 2008. Mobile LiDAR Mapping for 3D Point
Cloud Collection in Urban Areas – A Performance Test. ISPRS – International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII-B5,
1119–1124.

Hamza, V., Stopar, B., Sterle, O., 2021. Testing the Performance of Multi-Frequency Low-Cost
GNSS Receivers and Antennas. Sensors, 21(6). DOI: 10.3390/s21062029.

Hess, W., Kohler, D., Rapp, H., Andor, D., 2016. Real-Time Loop Closure in 2D LIDAR
SLAM. Proceedings of the 2016 IEEE International Conference on Robotics and Automation
(ICRA), 1271–1278. DOI: 10.1109/ICRA.2016.7487258.

Hess, W., Kohler, D., Rapp, H., Andor, D., 2021. Cartographer ROS Documen-
tation. https://buildmedia.readthedocs.org/media/pdf/google-cartographer-ros/
latest/google-cartographer-ros.pdf, (accessed: 18/5/2022).

Heuvel, F. V. D., Verwaal, R., Beers, B., 2006. Calibration of Fisheye Camera Systems and the
Reduction of Chromatic Aberration. ISPRS – International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, XXXVI-5.

Hillemann, M., 2020. Selbstkalibrierung mobiler Multisensorsysteme mittels geometrischer
3D-Merkmale. PhD thesis, KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften,
Karlsruher Institut für Technologie (KIT). DOI: 10.5445/IR/1000125412.

110

https://www.geoweeknews.com/news/vexcel-ultracam-panther-long-awaited-3d-scanning-backpack-arrives
https://www.geoweeknews.com/news/vexcel-ultracam-panther-long-awaited-3d-scanning-backpack-arrives
https://geoslam.com/solutions/zeb-revo-rt/
https://geoslam.com/solutions/zeb-revo-rt/
https://doi.org/10.5194/isprs-archives-XL-3-W4-55-2016
https://doi.org/10.5194/isprs-archives-XL-3-W4-55-2016
https://doi.org/10.1080/12265934.2006.9693596
https://doi.org/10.1002/j.2161-4296.2001.tb00246.x
https://doi.org/10.1002/j.2161-4296.2001.tb00246.x
https://doi.org/10.1007/s00190-021-01514-8
https://doi.org/10.1002/9781119458449.ch14
https://doi.org/10.3390/s21062029
https://doi.org/10.1109/ICRA.2016.7487258
https://buildmedia.readthedocs.org/media/pdf/google-cartographer-ros/latest/google-cartographer-ros.pdf
https://buildmedia.readthedocs.org/media/pdf/google-cartographer-ros/latest/google-cartographer-ros.pdf
https://doi.org/10.5445/IR/1000125412


Bibliography

Huitl, R., Schroth, G., Hilsenbeck, S., Schweiger, F., Steinbach, E., 2012. TUMindoor: An
Extensive Image and Point Cloud Dataset for Visual Indoor Localization and Mapping.
Proceedings of the 19th IEEE International Conference on Image Processing, 1773–1776.
DOI: 10.1109/ICIP.2012.6467224.
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Appendix A

Coordinate Frames and
Transformations

A.1 Coordinate Frames

Cramer (2001) provides a comprehensive overview of all coordinate frames involved in platform
navigation. This section briefly depicts the different coordinate frame definitions used for
both the navigation frame and the body frame. All coordinate frames shown are right-handed
systems.

The following coordinate system definitions are commonly used for navigation applications:

• North-East-Down for the navigation frame. Thereby the x-axis points along the meridian
to the geodetic north, the y-axis points to the east and the z-axis points downwards
along the ellipsoid normal (see Figure A.1a).

• Forward-Right-Down for the body frame. Thereby the x-axis points forward along the
moving direction, the y-axis points to the right and the z-axis points downwards (see
Figure A.1c).

The following coordinate system definitions are commonly used for photogrammetric and MM
applications:

• East-North-Up for the mapping frame. Thereby the x-axis points to the east, the y-axis
points along the meridian to the geodetic north and the z-axis points upwards along the
ellipsoid normal (see Figure A.1b).

• Right-Forward-Up for the body frame. Thereby the x-axis points to the right, the y-axis
points forward along the moving direction and the z-axis points upwards (see Figure
A.1d).
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equator

G
re
en
w
ic
h

λ

ϕ

N

x

y
z

(a) North-East-Down

equator

G
re
en
w
ic
h

λ

ϕ

N

x

y

z

(b) East-North-Up

x

y

z

moving

direction

(c) Forward-Right-Down

y

x

z

moving

direction

(d) Right-Forward-Up

Figure A.1: Different coordinate frame definitions from the navigation frame a and b and from the
body frame c and d. The longitude is represented as λ while the latitude is declared as ϕ.
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A.2 Pose and 3D Rigid Body Transformation

This section includes the definition of a pose as well as its 3D rigid body transformation,
using homogeneous coordinates. A comprehensive theoretical treatment of the transformation
with homogeneous coordinates can be found in Förstner, Wrobel (2016). Here we use the
mathematical notation proposed in Förstner, Wrobel (2016).

By general, a pose H mathematically equals with a 3D rigid body transformation. Here, it
describes a transformation from coordinate frame a to coordinate frame b:

bHa =

[
bRa

bta
0T 1

]
=


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 (A.1)

Thereby, we express the 3D rigid body transformation H with a 4× 4 matrix incorporating a
3 × 3 rotation matrix R as well as a 3 × 1 translation vector t. This enables to transform
homogeneous point coordinates p from coordinate frame a to coordinate frame b as following:

bpn = bHa
apn =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



px
py
pz
pw

 (A.2)

while apn denotes that the point with point number n refers to the coordinate frame a. The
transformation from homogeneous coordinates to cartesian coordinates,

pc = f(ph) =
ph

pw
=

pxpy
pz


pw

(A.3)

is straightforward as well as the transformation from cartesian to homogeneous coordinates,

ph = f(pc) =

[
pc

1

]
=


px
py
pz
1

 (A.4)

while ph denotes homogeneous coordinates and pc shows cartesian coordinates.

Furthermore, 3D rigid body transformations can be concatenated as following:

cHa = cHb
bHa (A.5)

Observe, how the coordinate frame b in the center of the second term diagonally omits.

Finally, 3D rigid body transformations can be inverted by an inversion of the respective 4× 4
matrix:

bHa = (aHb)
−1 (A.6)
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A.3 Rotation Conventions

We use the photogrammetric rotation convention with ω, φ and κ that uses rotated axes
(Luhmann et al., 2019), while ω represents a rotation around the x-axis, φ around the y-axis
and κ around the z-axis. The rotation matrix can be calculated as following:

R = RωRφRκ =

 cosφ cosκ − cosφ sinκ sinφ
cosω sinκ+ sinω sinφ cosκ cosω cosκ− sinω sinφ sinκ − sinω cosφ
sinω sinκ− cosω sinφ cosκ sinω cosκ+ cosω sinφ sinκ cosω cosφ


(A.7)

Inversely, the angles ω, φ and κ can also be determined from the rotation matrix:

φ = arctan

(
r13√

r223 + r233

)

ω =

{
arctan

(
− r23

r33

)
, if cosφ ̸= 0

0, otherwise

κ =


arctan

(
−r12
r11

)
, if cosφ ̸= 0

arctan
(
r22
r32

)
, else if φ = π

2

arctan
(
− r22

r32

)
, otherwise

(A.8)

A.4 Transformation of Pose Orientations into the Swiss Refer-
ence Frame LV95

This section includes the transformation of resulting pose orientations from direct georef-
erencing into the projected Swiss reference frame LV95. Basically, n1nedRbfrd represents
the pose orientation resulting from direct georeferencing. It rotates from the body frame b
following the forward-right-down (frd) coordinate system definition bfrd (see Appendix A.1)
to the global navigation frame WGS84 (n1) following the north-east-down (ned) coordinate
frame definition n1ned. However, for our investigation it is required to transform them to
the rotation representation p2enuRbrfu which rotates from the body frame b following the
right-forward-up (rfu) coordinate frame definition brfu to the local projected reference frame
LV95 (p2) following the east-north-up (enu) coordinate frame definition p2enu.

The following formula represents the entire transformation:

p2enuRbrfu = p2enuRn2enu
n2enuRn2ned

n2nedRe2
e2Re1

e1Rn1ned

n1nedRbfrd
bfrdRbrfu , (A.9)

whereby the rotations from right-forward-up to forward-right-down (bfrdRbrfu) and from east-
north-down to east-north-up (n2enuRn2ned

) are the same. Furthermore, e1Rn1ned
represents

the rotation from the navigation frame to the earth-centered earth-fixed (ECEF) reference
frame, while n2nedRe2 represents the inverse rotation. e2Re1 represents the rotation of the
datum transformation from the global reference ellipsoid WGS84 (e1) to the local reference
ellipsoid CH1903+ (e2). Finally, p2enuRn2enu incorporates the rotation from the navigation
frame n2 to the swiss map projection Swiss Grid (p2), which basically includes the meridian
convergence.
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The previously mentioned rotations are represented as following:

• Rotations from the right-forward-up (rfu) to the forward-right-down (frd) coordi-
nate system definition and from the east-north-down (end) to the east-north-up (enu)
coordinate system definition respectively and vice versa:

bfrdRbrfu = n2enuRn2ned
=

0 1 0
1 0 0
0 0 −1

 (A.10)

• Rotation from the navigation frame n to the ECEF reference frame e:

e1Rn1ned
= n2nedRT

e2 =

− sinϕ cosλ − sinλ − cosϕ cosλ
− sinϕ sinλ cosλ − cosϕ sinλ

cosϕ 0 − sinϕ

 , (A.11)

whereby ϕ represents the latitude and λ represents the longitude.

• Rotation from the navigation frame n to the Swiss map projection Swiss Grid (p):

p2enuRn2enu =

cos γ − sin γ 0
sin γ cos γ 0
0 0 1

 , (A.12)

whereby γ represents the meridian convergence.

• Rotation from the global reference frame WGS84 to the local reference frame CH1903+:

e2Re1 = I. (A.13)

Since the alignments of the global reference ellipsoid WGS84 (e1) and the local reference
ellipsoid CH1903+ (e2) are identical, the formula A.9 is simplified as following:

penuRbrfu = penuRnenu
nenuRnned

nnedRbfrd
bfrdRbrfu (A.14)

A.5 Transformations for Creating Attitude Updates

This section contains transformations of the rotational component necessary to create AT-
TUPTs for direct georeferencing. It covers the case that the pose refers to the Swiss reference
frame LV95. For instance, this is given when poses from image-based georeferencing are used.
It is assumed that the poses were already transformed from the camera projection center to
the body frame, using the calibrated RO and BA parameters.

Basically, p2enuRbrfu represents the pose orientation from image-based georeferencing, whereby
it rotates from the body frame (b) following the right-forward-up (rfu) coordinate frame
definition to the Swiss reference frame LV95 (p2) following the east-north-up (enu) coordinate
frame definition.

However, ATTUPTs require the rotation n1nedRbfrd which rotates from the body frame (b)
following the forward-right-down (frd) coordinate frame definition to the global navigation
frame WGS84 (n1) following the north-east-down (ned) coordinate frame definition.

We rearrange the formula A.9 and obtain
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n1nedRbfrd = n1nedRe1
e1Re2

e2Rn2ned

n2nedRn2enu
n2enuRp2enu

p2enuRbrfu
brfuRbfrd , (A.15)

whereby the rotations from forward-right-down to right-forward-up (brfuRbfrd) and from east-
north-up to east-north-down (n2nedRn2enu) are the same. Furthermore, n1nedRe1 represents
the rotation from the earth-centered earth-fixed (ECEF) reference frame to the navigation
frame, while e2Rn2ned

represents the inverse rotation. e1Re2 represents the rotation of the
datum transformation from the local reference ellipsoid CH1903+ (e2) to the global reference
ellipsoid WGS84 (e1). Finally, n2enuRp2enu incorporates the rotation from the swiss map
projection Swiss Grid (p2) to the navigation frame (n2), which basically includes the meridian
convergence.

The previously mentioned rotations are represented as following:

• Rotations from the forward-right-down (frd) to the right-forward-up (rfu) coordi-
nate system definition and from the east-north-up (enu) to the east-north-down (end)
coordinate system definition, respectively:

brfuRbfrd = n2nedRn2enu =

0 1 0
1 0 0
0 0 −1

 (A.16)

• Rotation from the ECEF reference frame (e) to the navigation frame (n):

nnedRe =
eRT

nned
=

− sinϕ cosλ − sinϕ sinλ cosϕ
− sinλ cosλ 0

− cosϕ cosλ − cosϕ sinλ − sinϕ

 , (A.17)

whereby ϕ represents the latitude and λ represents the longitude.

• Rotation from the Swiss map projection Swiss Grid (p) to the navigation frame (n):

nenuRpenu =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 , (A.18)

whereby γ represents the meridian convergence.

• Rotation from the local reference frame CH1903+ to the global reference frame WGS84 :

e1Re2 = I. (A.19)

Since the alignments of the global reference ellipsoid WGS84 (e1) and the local reference
ellipsoid CH1903+ (e2) are identical, the formula A.15 is simplified as following:

nnedRbfrd = nnedRnenu
nenuRpenu

penuRbrfu
brfuRbfrd (A.20)
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Appendix B

Camera Models

B.1 Opening Angles of the Equidistant Camera Model

For the equidistant camera model, the radial distance from the principal point corresponds to
the angle between the optical ray from the camera to the point and the optical axis. Thus,
the diagonal viewing angle αd can be calculated using the sensor dimensions u, v and the
focal length c as following:

αd =

√
u2 + v2

c
(B.1)

However, the rectangular shaped sensor causes variable horizontal and vertical viewing angles
which depend on the y image coordinate component and the x image coordinate component
(see Figure 3.1c). The following function shows the relationship between the horizontal viewing
angle αh and the image coordinate component y, using the horizontal sensor dimension u and
the focal length c:

αh(y) = 2 arctan


u tan

(√
u2

4c2
+

y2

c2

)

2c

√
u2

4c2
+

y2

c2

 (B.2)

The following function shows the relationship between the vertical viewing angle αv and the
image coordinate component x, using the vertical sensor dimension v and the focal length c:

αv(x) = 2 arctan


v tan

(√
v2

4c2
+

x2

c2

)

2c

√
v2

4c2
+

x2

c2

 (B.3)

In order to calculate the minimal image overlap, we specify the minimal horizontal viewing
angle as well as the minimal vertical viewing angle. They extend along the axes of the image
coordinate system with the origin in the principal point (see Figure 3.1a). As we put zero for
x and y into αh(x) and αv(y), the equations can be simplified as following:

αhmin
=

u

2c
(B.4)

IX



Appendix B. Camera Models

αvmin =
v

2c
(B.5)

B.2 Collinearity Equations

The following collinearity equations are taken from Luhmann et al. (2019) and were slightly
adopted to the formal logic of this thesis:

x′ = hx + z′
kx
kz

+∆x′ = hx + z′
r11(px − tx) + r21(py − ty) + r31(pz − tz)

r13(px − tx) + r23(py − ty) + r33(pz − tz)
+ ∆x′, (B.6)

y′ = hy + z′
ky
kz

+∆y′ = hx + z′
r12(px − tx) + r22(py − ty) + r32(pz − tz)

r13(px − tx) + r23(py − ty) + r33(pz − tz)
+ ∆y′, (B.7)

where,

x′, y′ = Image coordinates of the object point p
hx, hy = Image coordinates of the principal point
z′ = Principal distance (z′ = −c)
c = Calibrated focal length
px, py, pz = Coordinates of the object point p
tx, ty, tz = Translational components of the image pose wHcam

r11, ..., r33 = Rotational components of the image pose wHcam

∆x′,∆y′ = Distortions of the image

X
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