Published in Transactions on Machine Learning Research (10/2022)

On Uncertainty in Deep State Space Models for Model-
Based Reinforcement Learning

Philipp Becker philipp. becker@kit. edu
Autonomous Learning Robots Lab, Karlsruhe Institute of Technology

Gerhard Neumann gerhard.neumann@kit. edu
Autonomous Learning Robots Lab, Karlsruhe Institute of Technology

Reviewed on OpenReview: https: //openreview. net/ forum? id=UQXdQyoRZh

Abstract

Improved state space models, such as Recurrent State Space Models (RSSMs), are a key fac-
tor behind recent advances in model-based reinforcement learning (RL). Yet, despite their
empirical success, many of the underlying design choices are not well understood. We show
that RSSMs use a suboptimal inference scheme and that models trained using this inference
overestimate the aleatoric uncertainty of the ground truth system. We find this overesti-
mation implicitly regularizes RSSMs and allows them to succeed in model-based RL. We
postulate that this implicit regularization fulfills the same functionality as explicitly model-
ing epistemic uncertainty, which is crucial for many other model-based RL approaches. Yet,
overestimating aleatoric uncertainty can also impair performance in cases where accurately
estimating it matters, e.g., when we have to deal with occlusions, missing observations, or
fusing sensor modalities at different frequencies. Moreover, the implicit regularization is a
side-effect of the inference scheme and not the result of a rigorous, principled formulation,
which renders analyzing or improving RSSMs difficult. Thus, we propose an alternative
approach building on well-understood components for modeling aleatoric and epistemic un-
certainty, dubbed Variational Recurrent Kalman Network (VRKN). This approach uses
Kalman updates for exact smoothing inference in a latent space and Monte Carlo Dropout
to model epistemic uncertainty. Due to the Kalman updates, the VRKN can naturally
handle missing observations or sensor fusion problems with varying numbers of observations
per time step. Our experiments show that using the VRKN instead of the RSSM improves
performance in tasks where appropriately capturing aleatoric uncertainty is crucial while
matching it in the deterministic standard benchmarks®.

1 Introduction

Accurate system models are crucial for model-based control and reinforcement learning (RL) in au-
tonomous systems applications under partial observability. Practitioners commonly use state space models
(SSMs) (Murphy, 2012) to formalize such systems. SSMs consist of a dynamics model, describing how one
state relates to the next, and an observation model, which describes how system states generate observations.
Yet, dynamics and observation models are unknown for most relevant problems, and exact inference in the
resulting SSM is usually intractable. Researchers have proposed numerous approaches to learn the models
from data and approximate the inference to solve those issues.

Recurrent State Space Models (RSSMs) (Hafner et al., 2019) are of particular interest here. Using RSSMs
as the backbone for their Deep Planning Network (PlaNet), Hafner et al. (2019) showed that variational
latent dynamics learning can succeed in image-based RL for complex control tasks. Combined with simple

1Code available at: https://github.com/pbecker93/vrkn

https://openreview.net/forum?id=UQXdQyoRZh
https://github.com/pbecker93/vrkn

Published in Transactions on Machine Learning Research (10/2022)

planning, RSSMs can match the performance of model-free RL while requiring significantly fewer environ-
ment interactions. The authors later improved upon their original model, including a parametric policy
trained on imagined trajectories (Dreamer) (Hafner et al., 2020). In general, approaches based on RSSMs
have found considerable interest in the model-based RL community. Yet, while RSSMs draw inspiration
from classical SSMs, they use a simplified inference scheme. During inference, they assume the belief is
independent of future observations instead of using the correct smoothing assumptions (Murphy, 2012) to
obtain the belief. We formalize this observation in Section 2 and discuss how these simplified assumptions
result in a theoretically looser variational lower bound. Further, we analyze the effects of these assumptions
on model learning and find they cause an overestimation of aleatoric uncertainty. Such aleatoric uncertainty
stems from partial observability or inherent stochasticity of the system (Hiillermeier & Waegeman, 2021).
It plays an important role in many realistic tasks, e.g., in the form of occlusions, missing observations, or
observations arriving in different modalities and frequencies. Consider, for example, low-frequency camera
images providing external information and high-frequency proprioceptive measurements of the robot’s inter-
nal state. Given such sensory inputs, we require an appropriate estimation of aleatoric uncertainty to fuse
all information optimally and form accurate belief states. Our experiments show that RSSMs performance
sub-optimally in such cases, which we attribute to the wrong estimation of aleatoric uncertainty.

Furthermore, we argue that the RSSM’s inference assumptions are a double-edged sword for model-based
RL. On the one hand, the overestimated aleatoric uncertainty can be beneficial as it leads to dynamics models
that generalize better and are more robust to objective mismatch (Luo et al., 2019; Lambert et al., 2020).
Such objective mismatch arises because the model aims to maximize the data likelihood while the metric we
care about is the agent’s reward. Additionally, as the agent explores during training, it will encounter states
and actions the model has not seen, causing a distribution shift between training and data collection. While
many approaches rely on explicit epistemic uncertainty to tackle this issue (Chua et al., 2018; Janner et al.,
2019), RSSMs succeed without capturing epistemic uncertainty. Such epistemic uncertainty (Hiillermeier &
Waegeman, 2021) stems from the lack of training data and plays an important role in model-based RL, where
the data is not given but collected during the training process. On the other hand, this heuristic approach
to address objective mismatch complicates the design and analysis of the approach as the robustness is a
side-product of the inference scheme and does not follow well-motivated principles. For example, purely
stochastic versions of the RSSM gives unsatisfactory results, and it is unclear why this is the case. Arguably,
an explanation could be the overestimated aleatoric uncertainty causing the purely stochastic model to be
unstable. As a remedy, Hafner et al. (2019) introduce a deterministic path, i.e., they combine stochastic and
deterministic features to form the belief state.

We show that removing this issue for RSSMs by implementing a naive approach to smoothing yields un-
satisfactory results, even if the model uses explicit epistemic uncertainty to compensate for the missing
overestimation of the aleatoric uncertainty. To make smoothing inference work, we redesign the model using
well-understood and theoretically founded components to model aleatoric and epistemic uncertainty. We dub
the resulting model Variational Recurrent Kalman Network (VRKN). It uses a linear Gaussian State Space
Model embedded in a latent space, which allows closed-form smoothing inference and proper estimation of
aleatoric uncertainty. Furthermore, as the inference builds on Bayes rule, it provides a natural treatment of
missing observations and sensor fusion settings. Additionally, the VRKN uses Monte Carlo Dropout (Gal
& Ghahramani, 2016) for a Bayesian treatment of its transition model’s parameters, explicitly modeling
epistemic uncertainty.

We first show that the resulting architecture allows model-based agents to perform comparably to RSSM-
based agents on standard benchmarks from the Deep Mind Control Suite (Tassa et al., 2018). Those
environments are almost deterministic, i.e., the aleatoric uncertainty is low. Subsequently, we modify tasks
from the Deep Mind Control Suite to create three different scenarios which exhibit high aleatoric uncertainty,
i.e., (i) we introduce occlusions, (ii) missing observations, and (iii) sensor fusions problems of external camera
images and internal proprioceptive feedback which are available at different frequencies. Using those, we show
that the VRKN improves the agents’ performance due to its accurate estimation of aleatoric uncertainty.
Our approach builds on well-motivated components for aleatoric and epistemic uncertainty. Additionally, it
does not require heuristic model components such as a deterministic path. As such, it may serve as a basis
for future research into improving state space models for model-based RL.

Published in Transactions on Machine Learning Research (10/2022)

To summarize our contributions:

1. We analyze the assumptions underlying the RSSM and show that they are not only suboptimal
but also have subtle effects on model learning. They lead to an overestimation of the aleatoric
uncertainty (Section 2.1 and Section 2.2).

2. We argue that, counterintuitively, this suboptimal inference is beneficial for the RSSMs performance
as it addresses objective mismatch in a heuristic way (Section 2.3). We evaluate several modifications
to the RSSM to provide empirical evidence to support this hypothesis (Section 4.1).

3. We introduce the VRKN, providing a more principled inductive bias for smoothing inference than the
RSSM (Section 3). We again show that a smoothing inference without additional measures results
in suboptimal performance, yet, when combined with epistemic uncertainty, the VRKN’s improved
inductive bias allows it to close the performance gap on standard benchmarks (Section 4.1).

4. We show that VRKN-based agents improve performance in tasks where correct uncertainty estima-
tion matters. Here we consider tasks with partial observability, missing information, or tasks that
require sensor fusion. (Section 4.2)

2 Inference and Learning in State Space Models

State Space Models (SSMs) (Murphy, 2012) assume
that a sequence of observations o<r {0t }1=0...7
is generated by a sequence of latent state variables
z<p = {2 }1=0..T, given a sequence of actions a<y =
{a;}t=0..7. In SSMs, each observation o; is assumed
to only depend on the current latent state z; via an
observation model p(o;|z¢). Further, they assume the
latent states are Markovian, i.e., each latent state only
depends on its direct predecessor and the correspond-

ing action via a dynamics model p(z¢41|z¢,a;). Finally,
the initial state is distributed according to a distribu-
tion p(zo). Figure la shows the corresponding graphical
model. Typically, when inferring latent states from ob-
servations, we consider three different beliefs for each z;.
Those are the prior p(z;lo<;—1,a<¢—1), i.e., the belief
before observing o, the posterior, p(z;|o<;,a<¢—1), i.e

) State Space Model) RSSM Inference Model

Figure 1: (a) State space model, serving as
the generative model throughout this work. (b)
Graphical Model underlying the RSSM (Hafner
et al., 2019) inference scheme. In contrast to the
generative SSM, the direction between observa-

the belief after observing o;, as well as the smoothed
belief p(z;|o<r,a<r) which is conditioned on all future
observations and actions, until the last time step T.
We refer to those estimates as state-beliefs to distin-
guish them from dynamics distributions, which are con-
ditioned on the previous state z;_; such as the prior dynamics p(z¢|z:—1,a;—1), the posterior dynamics
P(Z¢|2Zi—1,0¢,8,-1) and the smoothed dynamics p(z;|z¢i—1,0>;,a>¢—1). To get from a dynamics distribution
to the corresponding state belief we need to marginalize out the previous state, e.g., p(z|0<¢—1,a<¢—1) =
[p(z¢|ze—1,ai-1)p(2:—1|0<t—1,a<4_1)dz_1 for the prior.

tions and latent states is inverted. These indepen-
dence assumptions result in a simplified inference
and subtle effects on model learning.

Traditionally, the independence assumptions of the generative model, shown in Figure la, are also used
for inference. Yet, RSSMs (Hafner et al., 2019) work with a different set of assumptions during inference,
shown in Figure 1b?. In particular, in this graphical model the state z; is conditionally independent of all
observations o, and actions a>; given z;_1, a;—1, and o, which is not the case for the standard SSM. We

2The full model of Hafner et al. (2019) also includes a deterministic-path which is of no concern regarding the discussion
here. Thus, we omit it for brevity. Furthermore, Hafner et al. (2019) compare their RSSM to a baseline they abbreviate as
SSM (stochastic state model), which also builds on the simplified assumptions. In this work, we refer to all approaches based
on the simplified assumptions as RSSM.

Published in Transactions on Machine Learning Research (10/2022)

discuss the effects of those assumptions on inference and model learning. We refer to Appendix A for more
detailed derivations of the following identities.

2.1 Variational Inference for State Space Models

Inferring beliefs over the latent states given observations and actions is intractable for most models. Thus, we
usually use approximate inference methods. In this work, we focus on variational inference. Such variational
methods introduce an auxiliary distribution ¢ over the latent variables given the observable variables. They
decompose the data log-likelihood into a variational lower bound and a Kullback-Leibler divergence (KL)
term, measuring how close the bound is to the data log-likelihood. For State Space Models (SSMs) this
decomposition is given as log p(o<rla<r) =

plo<r,z<7|a<r)

E log

d(z<rlocracr)) +KL[g(z<7|o<r,a<r) || p(z<r|o<r,a<r)]. (1)

q(z<rlo<r,a<r)

KL term(>0)
Lower Bound

Variational inference methods try to find the optimal ¢ by maximizing the lower bound or minimiz-
ing the KL term. If a ¢ can be found such that ¢(z<r|lo<r,a<r) = p(z<r|o<r,a<r), the KL term
is 0, and the bound is said to be tight. While the decomposition is valid for arbitrary distributions
q(z<r|o<r,a<r), we need to pose a set of independence assumptions to obtain tractable variational
models. If we again use the independence assumptions of the generative model, shown in Figure 1la,
we can obtain the inference model by explicitly inverting the generative direction using Bayes rule,
q(z<rlo<r,a<r) = mp(zo) Hlep(zt\zt_l,at) Hthop(Ot|Zt)- For certain model parametrizations, this
variational distribution can be computed analytically, e.g., by Kalman smoothing if the model is linear and
Gaussian. In this case, the KL term vanishes, and the bound is tight.

Yet, RSSMs, as introduced in (Hafner et al., 2019), assume the variational distribution factorizes as

T

q(z<r|o<r,a<r) = q(2o|00) Hq 2¢|Z4—1,0¢,8-1).
t=1

This assumption results in a simplified inference procedure, as the belief over z; is assumed to be independent
of all future observations o, given z;_1, 0, and a;_1.

Inserting this assumptions into the KL term yields KL [¢(z<r|o<7,a<7) || p(z2<r|0<T, 8<7)] =

T

ZEq(zt,ﬂoSt,l,agt,z) KL [q(z¢|2¢—1,0¢,8i-1) || p(Z¢|Z¢—1,0>¢,a5¢-1)]] . (2)
=1

For general distributions p, the individual terms in this sum will not be 0, as the right-hand side distributions
receive information, i.e., future observations and actions, which are ignored by the variational distribution.
Thus, this bound can in general not be tight, not even for linear Gaussian models as the resulting variational
distribution can in general not represent p(z<¢|o<r,a<r). Typically, tight variational bounds are preferable
as they allow for faster optimization of the marginal log-likelihood.

The above discussion may be hypothetical, as all considered architectures do not provide tight lower bounds
due to the use of deep neural networks, which prevents analytic solutions for inference. Still, as a tight lower
bound does not even theoretically exist for the RSSM assumptions, we believe this is already an indication
of the misspecification of its inference distribution.

2.2 Model Learning under Different Inference Assumptions

In the model-based RL setting considered in this work, the generative model is usually assumed to be
unknown and we jointly learn a parametric generative model pg and an inference model gy using an auto-
encoding variational Bayes approach (Kingma & Welling, 2013; Sohn et al., 2015) by maximizing the lower

Published in Transactions on Machine Learning Research (10/2022)

10° o
2 ~ 10° 4 © 4 \ === Ground Truth o
= < = g B
,_c% 8] & | — Lrssm
< = i =] 4
=]
{ 8 -1 = et
A 5 107 3 = 107" 4
2 A] 2 1
fo ----- GT Smoothed ’qg 1 5]
< === GT Posterior = 1072 o =
= 2 \ \ T : \ \ \ 107 5 — —
0 100 200 0 100 200 0 100 200
Train Epochs Train Epochs Train Epochs
(a) Inference Tracking Error (b) Model Learning Error (c) Transition Variance

Figure 2: Comparison of inference and model learning results on a simple linear-Gaussian state space model
without actions, under both RSSM and SSM inference assumptions. We report average results over 10 seeds
and error bars indicating 95% bootstrapped confidence intervals. Note that the error bars are too small to
be visible. We consider both a closed-form (CF) version based on Kalman Smoothing and a version with a
neural network (NN) as an inference model for the SSM-based approaches and find that only the objective
matters, not the parametrization of the inference model. (a) Log-probability of the ground truth states under
the learned models. We compare against the quality of the ground truth smoothed (GT Smoothed) and
posterior (GT Posterior) beliefs, computed using a Kalman Smoother and ground truth generative model.
While the SSM objective reaches the quality of the smoothed belief, the RSSM-based inference fails to attain
the quality of even the posterior belief. (b): Distance between ground truth transition matrix and learned
transition matrix, measured using the Frobenius norm. Here, the SSM inference yields a model that is an
order magnitude closer to the ground-truth model than that learned by the RSSM-bound. (c): Transition
variance 6I. With the SSM bound we recover the ground-truth aleatoric uncertainty, yet with the RSSM
bound the aleatoric uncertainty is significantly overestimated.

bound part of Equation 1. Inserting the RSSM-assumptions into the general lower bound gives the objective
introduced by Hafner et al. (2019), Lissm(0<7,8<7) =

T
ZEQ#;(ZdOgmagt) [10gp9(0t|zt)] -]Eq¢(zt,—1|0§t—1ya§f,—1) [KL [qw (Zt|zt*17 a1, Ot) || pg(Zt|Zt,1, atfl)]] . (3)
t=1

If one instead uses the same factorization assumptions as the generative model, the inference distribution
factorizes as ¢y (z<r|0<7,a<7) = @y (Z0|O<T, 2<T) Hthl G (Z¢|Z4—1,a>,—1, 0>). Inserting this factorization
into the general lower bound leads to Legm(0<T,a<r) =

T
ZEq¢(zt\OST,a§T) [log pe(0¢|z¢)] — Eq¢(zt,1|0§T7a§T) (KL [y (2¢|Zt—1,2>t-1,0>¢) || po(2t|zi—1,a:—1)]]. (4)
t=1

Opposed to the RSSM-objective, this objective uses the smoothed belief-state g (z:/o<r,a<r) and the
smoothed dynamics gy (2¢|2z;—1,a>¢—1,0>;). The variational distribution considers all future information
until ¢ = T and thus can theoretically yield a tight bound.

These differences have interesting effects on the learned transition model pg(z¢|z;—1,a;—1). For the RSSM, the
belief over past states can, by definition, not change due to additional observations. Thus, any discrepancy
between this past belief and the current observation must be explained by the transition model. In contrast,
a smoothing inference can also explain the discrepancy by propagating information from observations to past
beliefs. In Equation 3, this observation is reflected in the expected KL-term, where the expectation does not
consider o; or other future observations. Thus, the transition model has to explain the transitions from a
given z;_1 to z;, even if z;_; would be rendered implausible by a future observation.

For a thought experiment illustrating these effects, consider the following scenario. You meet a person
holding a box, and they tell you there is a hamster inside. As your prior experience is that people are

Published in Transactions on Machine Learning Research (10/2022)

usually trustworthy, you chose to believe them. Next, the box opens, and a cat jumps out. As you trust
your eyes, you now believe it is a cat. Yet, under the RSSM-assumptions, you cannot revise your belief of
the first time step and thus still believe it originally was a hamster. When updating your model based on
this interaction, you would learn that hamsters can turn into cats, as you cannot capture the arguably more
likely explanation that the person lied. Learning under these assumptions requires you to model unlikely
events as more likely than they are. Thus, you overestimate the aleatoric uncertainty in the world.

More formally, we can demonstrate this effect using a simple linear-Gaussian State Space Model without
actions. We will use a state dimension of 4 and the ground-truth generative model given by

p(Zo) = N(Z0|O, I)7 p(0t|Zt) = N(Ot|IZt, 00251), p(Zt+1 |Zt) = N(Zt+1 |AZt, 0011)

where I denotes the identity matrix. The transition matrix A induces a slightly damped, oscillating behavior.
The complete matrix A, together with further details regarding the exact setup of this experiment, can
be found in Appendix B. Using this generative model, we generate 1,000 sequences of length 50. Even
in this simple setting, computing the optimal inference distribution for the RSSM-bound (Equation 3) is
impossible, and we thus resort to numerical methods. We parameterize g (2¢|z¢—1,0¢) as locally linear-
Gaussian distributions and learn the parameters using a neural network. For the SSM-bound (Equation 4
we can either compute the optimal inference in closed form, or again parameterize gu(z;|z;—1,0>;) as a
neural network. To condition on future observations, we use a GRU (Cho et al., 2014) which runs backward
over the observation sequence. For the generative model, we learn a transition matrix A and an isotropic
covariance 61 jointly with the parameters of the inference model, i.e., 8 = {A,&}. We fix the remaining
parts of the generative model to the ground-truth values. Figure 2 summarizes the results and demonstrates
that the RSSM-bound leads to a suboptimal inference and consequently to learning a wrong model. In
particular, we can see that for the RSSM, the transition variance & is much larger than the ground-truth
value ¢ = 0.01 as all unexpected observations have to be explained by the transitions instead of correcting
the beliefs of past time steps.

2.3 The Interplay of Policy Optimization and Regularization

Despite the theoretical considerations in the previous section, RSSMs work well for model-based RL. It
is well known that model-based RL suffers from an objective mismatch (Luo et al., 2019; Lambert et al.,
2020) issue. This issue arises because the model aims to maximize the ELBO (Equation 1) but is evaluated
based on the agent’s reward. The effect is further amplified by the distribution shift between training and
data collection, as data collection is typically performed only after a policy improvement step. In RL, we
explicitly want the agent to explore unseen parts of the state-action space, encountering observations the
model has not seen before. Thus, training the underlying model requires careful regularization such that
wrong predictions do not prevent the agent from exploring relevant parts of the state space. Many model-
based RL approaches (Chua et al., 2018; Janner et al., 2019) handle this issue by explicitly modeling the
epistemic uncertainty of the model, which is not required by the RSSM. Instead, we argue that RSSMs rely
on the overestimated aleatoric uncertainty caused by suboptimal inference to address objective mismatch in a
more heuristic manner. The overestimation implicitly regularizes the RSSM as it forces the transition model
to model unlikely events with higher probability. This regularization thus implicitly prevents overconfident
model predictions due to overfitting. Yet, while it alleviates the objective mismatch issue, there are also
drawbacks to this heuristic solution. First, it complicates the model design, analysis, and improvement
of RSSMs. As already observed by Hafner et al. (2019), a fully stochastic model based on the RSSM-
assumptions underperforms without additional measures as it fails at reliably propagating information for
multiple time steps. As a remedy, Hafner et al. (2019) introduce a deterministic-path, i.e., a Gated Recurrent
Unit (Cho et al., 2014), and base the belief update on this instead of the stochastic belief. Second, as we
show in Section 4.2, there are settings where appropriately capturing the aleatoric uncertainty is important,
and failing to do so can hurt performance.

In a first attempt to address those issues, we minimally adapt the RSSM to be capable of smoothing.
This Smoothing RSSM uses a GRU which is added before the actual RSSM and runs backwards over the
representations extracted by the encoder, effectively accumulating all future information. The RSSM then
receives the output of this GRU instead of the original observation as input. This model is an extension of the

Published in Transactions on Machine Learning Research (10/2022)

O O. — (Arcbrar™) = ot 20
)

1 1

1 1

O) |

1 1

- - I 2 2] | E A

Z Z z3 ! /’L?—)ﬂv ' 5= ' '90 1 E“ !

' = 1 [=} ' o~ ' j=} !

: 1 = 1 1 (@) :

- i exklssbinxtl=lIE

' = 1 1 = 1 !

W1 Wy W3 1 < . = .] . & 1

o B 2 | 2 e e e =
8= yn

: = =5 |

1 1

1 1

t
@ @ @ L cmmccmc e e ccee e ee e e e e e e e e e .. ——————————— 1

(a) VRKN Overview (b) Overview of the VRKN’s Dynamics Network

Figure 3: (a) We use an encoder (blue) to extracts an intermediate representation w; and the observation
noise o}’ from the original observation o;. Both, w; and o}", are then used to update the state estimate 2,
using the closed-form Kalman belief update (Bayes rule for Gaussians) (). A decoder (red) reconstructs
the observation given a state sample. We propagate the latent state estimate to the next time step using
the transition model pg(zi—1|z¢,a;—1) (green). The parameters of this distribution, Ay, by, and afy“, are
computed using the network ¢(u;,a;), shown in (b). The network receives the current posterior mean g,
and the action a; as inputs. Thus, the resulting dynamics are linearized around the posterior mean, which
allows closed-form belief propagation, similar to an extended Kalman Filter. For stability during training,
the network includes a gated unit, i.e., a GRU cell, which receives the posterior mean uzr at the memory
input. For a Bayesian treatment of the transition model’s parameters, we include Monte Carlo Dropout
layers at the positions indicated by the purple dashed lines.

neural network based inference model for Lggp, introduced in the previous section (Legm (CF) in Figure 1).
We compare this approach to the original RSSM and present the results in Section 4.1, in particular Figure 4.
Those results show that the performance decreases compared to the original RSSM. We argue that with a
proper inference, the overestimated aleatoric uncertainty no longer regularizes the model, making it more
prone to objective mismatch. Following other methods, we try to improve the results by modeling epistemic
uncertainty. To this end, we use Monte Carlo Dropout (MCD) but find that it does not help to improve
the Smoothing RSSM’s performance. From these results, again presented in Figure 4, we conclude that
solely addressing the suboptimal inference assumption is insufficient, but we also need to rethink the model’s
parameterization. We postulate that the additional GRU for the backward pass is a poor inductive bias and
that we require a smoothing approach that adds as little complexity as possible to the model. In the next
section, we will introduce an architecture that allows for parameter-free smoothing.

3 Variational Recurrent Kalman Networks

To provide a theoretically better-grounded alternative to the RSSM, we require a model which allows
tractable inference while still scaling to complex image-based control tasks. Further, the architecture should
allow efficient computation of smoothed and posterior state beliefs and dynamics. While we need smoothed
beliefs for training, we require (filtered) posteriors for online control. In particular, as only the smoothed
beliefs are explicitly used for training, the model needs to provide a strong inductive bias that enables it to
still produce reasonable posterior estimates.

To meet these criteria, we introduce a new parametrization of the latent dynamics based on a linear-Gaussian
state space model (LGSSM) (Murphy, 2012) embedded in a latent space. The linear-Gaussian assumptions
allow a rigorous treatment of uncertainties while working in a learned latent space allows for modeling
high-dimensional and non-linear systems. Inference in this LGSSM amounts to (extended) Kalman filtering
and smoothing, enabling smoothing inference without introducing additional parameters besides the latent
observation and dynamics model. Due to this property, the architecture can perform proper smoothing
inference for training and also produce reasonable posterior beliefs for online control. As an additional
benefit, the formulation can naturally handle missing observations and the fusion of multiple sensors, making
it amenable to many realistic problems. To include epistemic uncertainty in our approach, we use Monte

Published in Transactions on Machine Learning Research (10/2022)

Carlo Dropout (Gal & Ghahramani, 2016) for a Bayesian treatment of the LGSSM’s transition model. We
name the resulting approach Variational Recurrent Kalman Network (VRKN). Figure 3 shows a schematic
overview.

In the following, we first introduce the VRKN’s dynamics model, which is shared between the inference and
generative parts of the model. Next, we introduce the parameterization of the inference model ¢, and the
generative model pg. We describe how to train the model and use it for control and conclude by elaborating
on the natural fusion mechanism.

3.1 The VRKN’s Dynamics Model

Both, the VRKN'’s inference model ¢, and the generative model pg, use the same dynamics model. Such
parameter sharing is common for variational time-series models (Karl et al., 2016; Fraccaro et al., 2017;
Hafner et al., 2019; Klushyn et al., 2021), as it simplifies the architecture, reduces the number of parameters,
and simplifies training.

We model the latent dynamics as
po(zii1|zs,a:) = N (Zt+1|At(/J'2_aat)Zt + bt(,uj,at),o-fyn(uj,at)))

where p;” denotes the mean of the posterior state estimate ¢ (2¢]0<, a<;) provided by the inference model.
Thus, we learn a linearized dynamics around the current posterior mean. This parametrization builds on
the work of Shaj et al. (2020), who propose using a model that is locally linear in the state while depending
non-linearly on the action. Building on the assumption that there is no uncertainty in the actions, it is
maximally flexible while still allowing the usage of extended Kalman filtering (Jazwinski, 1970). Here, the
linearization around the current posterior mean p;” enables closed-form propagation of state beliefs.

We model A; to be a diagonal matrix which is emitted together with the offset term b, and the transition noise

o™ by a single neural network (At, b, oY n) = ¢(u;,as). We carefully design this network to prevent the

state estimates and gradients from growing indefinitely during training. First, as A; is diagonal, its values
are its eigenvalues, and constraining them in an appropriate range ensures stable dynamics. To this end, we
use an activation of the form f(x) = s-sigmoid(x +b) + m where we choose s, b, and m such that it saturates
at 0.1 and 0.99 while f(0) = 0.9. Here, the intuition is that we want plausible and stable dynamics, which we
initialize as a slightly dampened system. Second, we employ a gating mechanism to mitigate problems with
vanishing and exploding gradients. To this end, we use a standard GRU cell implementation but feed the
posterior mean ;" into the memory input, i.e., ¢(u;",a;) = ¢2(GRU(é1 (1}, as), u;7)). The resulting model
is still fully stochastic and linear in z;. In contrast to the RSSM, it does not use a determinstic-path as the
GRU cell does not introduce an additional deterministic memory and is used solely for addressing problems
arising from unstable dynamics and gradients. We empirically found this helpful and took inspiration
from standard recurrent architectures (Hochreiter & Schmidhuber, 1997; Cho et al., 2014), where gating
mechanisms are a well-known approach to mitigate instabilities. Figure 3b provides an overview of the
dynamics model architecture.

Modeling Epistemic Uncertainty. As discussed in Section 2.3, the overestimated aleatoric uncertainty
of the RSSM’s transition model avoids overconfident estimates due to overfitting and compensates for the
lack of explicit epistemic uncertainty. Thus, as our approach captures the aleatoric uncertainty correctly, we
need to explicitly consider epistemic uncertainty to obtain a model that is also useable for policy optimization.
We use Monte Carlo Dropout (Gal & Ghahramani, 2016) due to its simplicity and include corresponding
layers at appropriate points in the transition model. Those point are shown in Figure 3b.

3.2 Inference Model

We aim for a model that can work with high-dimensional observations which depend non-linearly on the latent
state while still allowing efficient inference of filtered and smoothed beliefs. Thus, we introduce an auxiliary,
intermediate representation w; for the original observations o;. Such an intermediate representation allows

Published in Transactions on Machine Learning Research (10/2022)

us to capture the highly complex relations between state and observations in the mapping from o; to w; while
using a simple observation model g, (w;|z;) in the latent space. This approach is common for variational
latent state space models (Karl et al., 2016; Fraccaro et al., 2017; Klushyn et al., 2021) as it enables efficient
inference in latent space. These approaches model w; as a latent Gaussian random variable and learn
it’s mean and variance based on o;. They then sample w; given these parameters. Yet, this assumption
complicates inference and training, as now an additional latent variable, w;, has to be addressed. Further,
it makes uncertainty propagation from observations to states harder (Becker et al., 2019; Volpp et al.,
2021), as explicit uncertainty information is lost during sampling. Thus, following (Haarnoja et al., 2016;
Becker et al., 2019; Shaj et al., 2020; Volpp et al., 2021), we instead formulate the observation model as
qu(We|ze) = N (W2, o)), where w, = enc,(0;) and the diagonal covariance o™* = enc, (0,) are given by an
encoder network taking the original observation. In practice, the encoder consists of a single neural network
with two output heads. This formulation does not suffer from the previously mentioned issues. First, as it
models w; as a direct mapping of the observation and not a random variable, we do not need to infer w; but
can assume it is observable. This assumption results in a simplified inference and training objective as we do
not have to account for unobserved latent variables other than the latent state itself. Second, the encoder
can directly extract the uncertainty in the observation, which tells the inference procedure how much it can
rely on w;. For example, when estimating w; from images, some images might contain certain information,
e.g., the positions of an object, while others do not. The former case would result in a low uncertainty and
the latter in a high one. Given w¢ and o}’ we can update belief states using the Kalman update, i.e., Bayes
rule for Gaussian distributions,

1
qyp(Zi|o<t,a<i—1) = Eqw(enco(otﬂzt)qw(zt|0§t717agtfl)-

Here, o} contributes to the computation of the Kalman gain, which highlights how the model uses the
encoder’s uncertainty to trade-off information from the prior belief and observation.

The inference observation model is combined with the shared locally linear dynamics model gy (2;+1|2¢, a¢) =
po(2t+1|Zt,a¢) to obtain a latent LGSSM for inference. Given this dynamics model, we can forward beliefs
in time using closed-form Gaussian marginalization,

qyp(Ze+1l0<i,a<t) = /qw(Zt+1IZt,at)qw(Zt\Ogt,agt—l)dZt~

Repeating the described forms of forwarding beliefs in time and updating them based on observations
amounts to standard (extended) Kalman filtering (Kalman, 1960; Jazwinski, 1970). Similarly, given these
models, we can compute smoothed belief states using the Rauch-Tung-Striebel (Rauch et al., 1965) equations.
In particular, the smoothing only requires beliefs and transition models computed during filtering and does
not introduce additional learnable parameters. Note that both the filtering and smoothing equations simplify
under our assumptions of diagonal covariances and are thus efficient and scalable. Thus, the smoothing in-
ference only slightly increases the computational load during training. Especially in the image-based settings
considered here, the computational cost largely stems from encoding and reconstructing observations.

3.3 Generative Model

Recall that we assume a generative State Space Model consisting of three parts. Those are the dynam-
ics model, the observation model, and the initial state distribution. First, we have the dynamics model
po(2t+1|Z:,a:) as described in Section 3.1. Second, we assume a Gaussian generative observation model
po(0¢|z:) parameterized by a neural network (decoder). Following Hafner et al. (2019), we parameterize the
mean by a neural network and assume a fixed variance. This parameterization is often empirically beneficial,
especially in the image-based setting considered in our experiments, but not a theoretical constraint. We
could also parameterize the variance by the network if required. Third, we have an initial state distribution
po(z0). Here we use a Gaussian with zero mean and a learned diagonal variance which we initialize with the
identity matrix.

Published in Transactions on Machine Learning Research (10/2022)

3.4 Stochastic Gradient Variational Bayes for Model Learning

We train our model using a version of stochastic gradient variational Bayes (Kingma & Welling, 2013) and
maximize Lgsm, (Equation 4). Like most approaches building on (Kingma & Welling, 2013) we approximate
all expectations in Equation 4 using Monte Carlo estimation with a single sample from the latent variable
and jointly optimize the parameters of gy and pg. For training, we infer the required belief states using the
Kalman-based smoothing procedure described in Section 3.2. To compute the KL term in Equation 4 we
additionally need the smoothed dynamics g (z¢+1|2¢, 8>+, 0>¢41) which we obtain with minimal overhead
by extending the RTS equations as detailed in subsection A.2.

The VRKN'’s formulation tightly couples posterior and smoothed beliefs by a fixed (not learned), deter-
ministic, and well-motivated procedure. Smoothing using the Rauch-Tung-Striebel equations ensures that
reasonable smoothed beliefs can only stem from reasonable posterior beliefs. Thus, while the posterior belief
is not explicitly part of the objective, it is still learned during training as a prerequisite of the smoothed
beliefs.

3.5 Using the Model for Online Control and Reinforcement Learning

When using the model for online control, we cannot smooth but have to act based on samples from the
posterior belief g (z¢|a<¢, 0<;). We can rely on Kalman filtering, as described in Section 3.2, to obtain this
posterior belief and omit the smoothing step, as future observations are unavailable. For the VRKN, the
tight coupling between smoothed and posterior beliefs ensures the posteriors are reasonable and usable for
control.

To act based on the latent state beliefs, we add a decoder network to predict rewards from latent states.
Following (Hafner et al., 2019), this decoder is trained by adding a reconstruction loss term to the objective.
Given the predicted reward, various forms of control are applicable to act optimally. Yet, in this work, we
focus on the underlying state space model and thus reuse two previously introduced methods building on
the RSSM (Hafner et al., 2019; 2020). The PlaNet (Hafner et al., 2019) approach plans actions using the
cross entropy method by rolling out trajectories on the model. The Dreamer (Hafner et al., 2020) approach
learns a parametric policy and value function based on latent imagination. Such latent imagination uses
the model as a differentiable simulator and optimizes the policy based on the estimated values of predicted
future states.

3.6 Sensor Fusion

Given the possibility of using the Kalman update for incorporating observations, we can use the VRKN
for a simple but principled approach to sensor fusion. Formally, we assume the observation o; factorizes
into K different observations ogk), ie., pe(oi]zy) = Hé{zlpg(ogk)\zt). Those observations can be of various
modalities and be available at different frequencies, e.g., high-frequency velocity information from an inertial
measurement unit and low-frequency camera images of the surroundings. In this scenario, we have K encoders

and K decoders, one for each ogk). Similar to more traditional sensor fusion approaches (Gustafsson, 2010),

we then accumulate the intermediate observation representation wgk) by repeatedly applying the Kalman
update. This approach reflects the invariance to permutations of all observations for a single time step.
Furthermore, it enables the model to omit the update if some of the K observations are unavailable for a
time step.

4 Evaluation

We compare the VRKN, the original RSSM,and the modified RSSM version introduced in Section 2.3
on image-based continuous control tasks using the DeepMind Control Suite (Tassa et al., 2020). Prior
works (Lambert et al., 2020; Lutter et al., 2021) concluded that the model’s predictive performance is of-
ten uninformative about the quality of the model-based agent. We concluded the same after preliminary
experiments and want to study the effects of the different assumptions and parametrizations on the perfor-
mance in a model-based RL setting. Thus, we evaluate the state space models as backbones for model-based

10

Published in Transactions on Machine Learning Research (10/2022)

Aggregated PlaNet Agents Aggregated Dreamer Agents
1,000

g

2 800 .

Q

2600 . ﬁ

e

£ 400 - .

3 5 —— RSSM —— Smooth RSSM

z 20 —— MCD-RSSM i —— Smooth MCD-RSSM

0 T T T T T T T T T T
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (x10) Environment Steps (x10)

Figure 4: Comparison of the RSSM, the simple smoothing extension (Smooth RSSM) as well as versions of
both models using Monte Carlo Dropout (MCD) to capture epistemic uncertainty in the dynamics (MCD-
RSSM and Smooth MCD-RSSM). Note that we use different tasks for PlaNet and Dreamer-based agents.
Thus the left and right plots are not directly comparable. For both types of agents, we find that proper
inference by smoothing deteriorates performance. The additional epistemic uncertainty does not compensate
for this decrease in performance.

agents and directly consider the achieved reward. As mentioned, we use both the PlaNet and the Dreamer
approaches for control and thus closely follow the experiment setup described by Hafner et al. (2019; 2020).
Appendix C gives further details about the experimental setup and used baselines.

For our experiments, we run a varying number of tasks from the DeepMind Control Suite (Tassa et al., 2020)
and report aggregated results over these tasks. Such aggregation is possible as the rewards in the DeepMind
Control Suite are normalized, and all sequences are of equal length (1,000 steps). Thus the returns are
normalized, and aggregation yields better performance estimates (Agarwal et al., 2021). Again following
the suggestions of Agarwal et al. (2021), we report interquartile means while indicating 95% stratified
bootstrap confidence intervals by shaded areas. These metrics are computed using the provided library3.
We base our conclusions on those aggregated results. Unless noted otherwise, we use 10 seeds for each
agent-environment pair, train for 1 million environment steps, and approximate the expected return using
10 rollouts. Appendix D provides reward curves for the individual tasks and additional quantitative results,
such as box plots of their final performance.

4.1 Evaluation of the Effect of Epistemic Uncertainty on Different Smoothing Architectures

We start our evaluation by comparing the original RSSM with its extended smoothing version using a
GRU with and without Monte Carlo Dropout (MCD), described in Section 2.3. For completeness, we
also include a version of the original-RSSM with MCD to model epistemic uncertainty. For the PlaNet-
agents, we evaluate the 6 tasks originally used in (Hafner et al., 2019). For the Dreamer-agents we use 8
tasks. Those are Cheetah Run, Walker Walk, Cartpole Swingup, Cup Catch, Reacher Easy, Hopper Hop,
Pendulum Swingup, and Walker Run. As indicated by the results in Figure 4, the proper smoothing inference
significantly deteriorates performance. Adding epistemic uncertainty in the form of MCD does, on average,
neither affect the performance of the original RSSM nor the smoothing RSSM. These results underpin the
argument that naive smoothing with the RSSM gives suboptimal performance. Additionally, they show that
epistemic uncertainty in the form of Monte Carlo Dropout cannot serve as a remedy for the RSSM.

Next, we compare the VRKN to the RSSM using the same environments and also include a version of the
VRKN without Monte Carlo Dropout (MCD), i.e., without epistemic uncertainty, dubbed VRKN (no MCD).
Figure 5 shows the aggregated results for both PlaNet and Dreamer agents. Those results demonstrate that
matching the RSSM’s performance is possible with a principled smoothing inference by explicitly modeling
epistemic uncertainty and providing a more appropriate inductive bias. Additionally, we find the VRKN
tends to reach a given performance with fewer environment interactions, especially for the Dreamer-agents.

Srliable: https://github.com/google-research/rliable

11

https://github.com/google-research/rliable

Published in Transactions on Machine Learning Research (10/2022)

Aggregated PlaNet Agents Aggregated Dreamer Agents
1,000
g
2 800 .
Q
Pé 600 .
ol — VRKN(no MCD)
S 200 T
i — RSSM
S
T T T T T T T T T T
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (x10) Environment Steps (x10)

Figure 5: Comparison of VRKN and RSSM based PlaNet and Dreamer agents on standard DeepMind
Control Suite tasks. Note that we use different tasks for PlaNet and Dreamer-based agents. Thus the left
and right plots are not directly comparable. The VRKN without epistemic uncertainty (VRKN (no MCD))
cannot compete with the RSSM-agents, especially using the more involved Dreamer-based agents. Yet, the
VRKN profits from the epistemic uncertainty, and closes the performance gap to the RSSM and even shows
a tendency to be more sample efficient.

Together, the results from Figure 4 and Figure 5 emphasize the importance of regularization for model-based
RL. This regularization can be either implicitly by suboptimal inference or explicitly by capturing epistemic
uncertainty. Additionally, they indicate that epistemic uncertainty alone is insufficient for approaches using
a correct smoothing inference. Yet, the VRKN’s appropriate inductive bias makes the more principled
approach of combining proper inference with explicit epistemic uncertainty feasible.

4.2 Evaluation on Tasks where Aleatoric Uncertainty Matters

The standard versions of the Deep Mind Control Suite Tasks have a deterministic simulation and rendering
process. Thus, their aleatoric uncertainty is low. To better analyze the approaches’ capabilities to capture
and handle aleatoric uncertainty, we design tasks where doing so is necessary. To this end, we modify the
Cheetah Run, Walker Walk, Cartpole Swingup, and Cup Catch tasks. First, we introduce transition noise
by adding Gaussian noise to the actions before execution. We added noise with a standard deviation of 0.2
for Cheetah Run and Walker Walk and 0.3 for Cartpole Swingup and Cup Catch. Note that valid actions
are between —1 and 1 for all tasks. Second, we modify the observations to contain only partial information,
are missing for several time steps, or are available in different modalities at different frequencies. For details,
we refer to the individual experiments below.

We use these tasks to study the effects of appropriately capturing aleatoric uncertainty in tasks where this
form of uncertainty matters. We compare VRKN-based and the RSSM-based Dreamer agents and find that
precise estimation of the aleatoric uncertainty makes a difference. Contrary to the original tasks, where RSSM
and VRKN-based agents performed similarly, agents building on the VRKN outperform their RSSM-based
counterparts in all considered scenarios.

4.2.1 Partial Observability through Occlusions

In a first approach to include observation uncertainty, we render two types of occlusions over the images,
i.e., discs and walls. See Figure 6 for an explanation and some examples. Due to these occlusions, the
individual observations have varying amounts of relevant information. Thus, the models need to correctly
capture uncertainties in the system, allowing them to trade off information from the prior belief and current
observation. For training, we use masked reconstruction, i.e., only non-occluded pixels contribute to the
reconstruction loss*. We also consider a baseline where we train the model solely to reconstruct the reward
to show that the approaches can still extract information from the highly occluded observations. Figure 7

4We want to emphasize that we do not consider the availability of such loss masks a realistic scenario but see the task as a
reasonable benchmark to evaluate the models’ capabilities to cope with uncertainties.

12

Published in Transactions on Machine Learning Research (10/2022)

(a) Disk Occlusions (b) Wall Occlusions

Figure 6: We introduce two types of occlusions to induce partial observability. (a) Disk Occlusion: Slow-
moving disks float through the image and bounce off its walls. (b)Wall Occlusions: Walls slide over the
image from right to left at a constant speed. Their width is sampled randomly between half the image
width and the image width. In both cases, the models have to accurately estimate which parts of the system
are visible and which are not. Yet, the wall-based occlusions are more correlated over time and require
memorization and prediction over longer time periods.

Disk Occlusions Wall Occlusions
- 1,000
5 g0l — VRKN —— RSSM
ja —— Reward Only
600 1
g
§ 400 *
g 200 B
0 x x x x x x x x
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (x106) Environment Steps (x10°)

Figure 7: Aggregated results for the partial observability experiments with both occlusion types. For the
experiments, except for the reward-only baseline, we used 20 seeds per task. Both approaches clearly perform
better than the reward-only baseline, showing that they can extract useful information from the occluded
images. Yet, especially in the wall-occlusion task, the VRKN-based agents outperform the RSSM-based
agents. They do not only achieve a higher reward but also converge faster. Especially in the wall occlusion
task, it is insufficient to only extract information from the occluded images, but a reasonable belief also
needs to be sustained over time.

shows the results of the comparison. Under the heavy occlusions considered here, the VRKN performs
significantly better than the RSSM. In particular for the wall occlusions, the VRKN-based agents achieve a
higher reward using fewer environment interactions. The wall occlusions are more correlated, i.e., occluded
parts in one image are more likely also occluded in the previous and next images. Thus, they test the
approaches’ capability to not only form a reasonable belief but also to propagate it for multiple time steps.

Additionally, we qualitatively compare images reconstructed from posterior beliefs of both approaches to
gain further insights into the quality of the belief state. Figure 8 shows some of those reconstructions for
the Cup Catch task, further images can be found in Appendix D.6. From these images, it appears that the
VRKN better captures the actual system state and uncertainty and thus allows the model-based agent to
achieve a higher reward. Yet, while the reconstructions are visually much better, we only observe a small
increase in performance, which we attribute to objective missmatch.

4.2.2 Dealing with Missing Observations

Another common setting where estimating aleatoric uncertainty is important is missing observations. It
requires the models to propagate a reasonable belief without information and update it if an observation
is available. Additionally, if no observations are available for multiple time steps, the belief state gradually
drifts away from the real state due to noise and model inaccuracies. Once a new observation arrives, the
discrepancy between this observation and the belief has to be explained. Recall that, due to its inference
assumptions, the RSSM must explain the discrepancy by the last transition and thus will overestimate the

13

Published in Transactions on Machine Learning Research (10/2022)

Figure 8: Exemplary sub-sequence of reconstructions,
based on the model’s posterior beliefs. The first row is
the noise-free ground truth image, which the models
never see. The second row is the model input, followed
by the VRKN and the RSSM reconstructions. Even
though the ball is partly visible in most images, the
RSSM fails to reconstruct its position. The VRKN
manages to do so and even provides a reasonable es-
timate for cup position. These results indicate the
VRKN’s improved ability to capture the system state
in noisy scenarios.

Without Transition Noise With Transition Noise
- 1,000
5 go0 VRKN — VRKN (Cat) |
® —— RSSM
600 :
T
g 400 s ~
m% 200 | s
0 T T T T T T T T
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (x10°) Environment Steps (x10°)

Figure 9: Aggregated results in the missing observations setting with and without transition noise. First,
we see that the VRKN works equally well if we provide the information about which information are
valid explicitly (VRKN) or if we provide it by concatenation (VRKN (Cat)). Second, the RSSM performs
significantly worse then both both VRKN version. Especially if the system is subject to transition noise it
fails to give good results.

aleatoric uncertainty even further. On the other hand, the VRKN with its smoothing inference can capture
the drift of the belief state and evenly attribute the discrepancy to all transitions since the last observation.
Thus the VRKN should be better equipped to solve such a task.

We consider a setting where we only provide every n-th image, where n is sampled uniformly between 4 and 8.
We assume knowledge about whether the observation for a given time step is valid and feed that knowledge
to the models as an additional input flag. For valid observation, the model receives the observation and a
1. For invalid observations, it receives a default value and a 0. The RSSM handles this flag by appending
it to the encoder output® or the default value. The VRKN allows for two ways of handling the flag. First,
we can again concatenate it to the observation before computing the latent observation and corresponding
uncertainty estimate (VRKN (Cat)). Second, the VRKNs design allows us to provide the information more
explicitly and the Kalman update step for invalid observations during inference. We evaluate with and
without additional transition noise and show the results in Figure 9. Those results underpin the initial
hypotheses that the VRKN is better equipped to learn in this setting and significantly outperforms the
RSSM. The improvement is independent of how we provide information about missing information to the
VRKN and, as expected, more significant with transition noise.

4.2.3 Fusing Information from Multiple Sensors at Different Frequencies

We extend the missing observations setting using proprioceptive information which is available at every
time step. The exact form of the proprioceptive information is task-dependent. For example, for Cup
Catch, we define the cup position as proprioceptive, but not the ball position, which has to be inferred from

5For the RSSM we refer to the convolution network processing the inputs as encoder, see Appendix C.3 for details.

14

Published in Transactions on Machine Learning Research (10/2022)

Without Transition Noise With Transition Noise
1,000
al
£ 800 s
Q
600 .
ol
£ 400 - .
Q 200 VRKN
Lﬁ | —— RSSM |
0 T T T T T T T T
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (x10°) Environment Steps (x109)

Figure 10: Aggregated results in the fusion setting with and without transition noise. When comparing
to Figure 9 we see that both approaches are able to exploit the additional proprioceptive information and
improve their performance. Yet, the VRKN seems to better exploit and accumulate the available information,
as the resulting agents significantly outperform their RSSM-based counterparts.

images. Appendix C.4 provides an overview for all considered tasks. This experiment mimics a common
robotics scenario where we have proprioceptive information about the robot at high frequencies but need to
estimate the environment’s state based on lower-frequency images. It tests the approaches’ abilities to form
reasonable state estimates from observations that arrive in different modalities and at varying frequencies.
Here, the models need to trade off information encoded in the prior belief with the information available in
both sensor sources. This trade off requires accurate estimates about the aleatoric uncertainty in both state
and observations. For the fusion task, the VRKN can rely on the natural fusion mechanism described in
Section 3. For the RSSM, we also use multiple encoder networks, decoders, and loss terms and concatenate
the outputs of the encoders before forming the posterior belief. For details, see Appendix C.3.

As shown in Figure 10, the VRKN achieves a higher reward than the RSSM, especially in the setting with
transition noise. This result again emphasizes the VRKNs capability to exploit all available information,
appropriately capture the system’s uncertainty, and form belief states that yield good performance.

5 Related Work

Recurrent State Space Models. While earlier works (Wahlstrom et al., 2015; Watter et al., 2015; Ban-
jjamali et al., 2018; Ha & Schmidhuber, 2018; Buesing et al., 2018) discussed and showed the feasibility
of control using learned latent state space models, the work originally proposing the RSSM (Hafner et al.,
2019) was the first to show that such approaches can achieve similar performance to model-free RL on pixel-
based complex continuous control tasks while using significantly fewer environment interactions. Since then,
Hafner et al. (2020) improved their approach using a parametric policy learned on imagined trajectories
and categorical latent spaces (Hafner et al., 2021). These approaches gained interest in the model-based RL
community and are empirically successful, yet, little attention has been paid to the underlying state space
model itself, the assumptions it builds upon, and its parametrization.

State Space Models. The Machine Learning community extensively studied and used state space models
(SSMs). Besides classical approaches using linear models (Shumway & Stoffer, 1982) and works using
Gaussian Processes (Eleftheriadis et al., 2017; Doerr et al., 2018), most recent methods build on Neural
Networks (NNs). The first class of NN-based models of particular relevance for this work embeds linear-
Gaussian SSMs (LGSSM) into latent spaces (Watter et al., 2015; Karl et al., 2016; Fraccaro et al., 2017;
Banijamali et al., 2018; Becker-Ehmck et al., 2019; Klushyn et al., 2021). These approaches assume actuated
systems and learn using stochastic gradient variational Bayes (Kingma & Welling, 2013). Yet, non of these
approaches were used to model or even control systems of the complexity considered by (Hafner et al.,
2019) and here. They are not directly applicable to these scenarios for various reasons. First, they use
full transition matrices and covariances, which prevents them from scaling to sufficiently high-dimensional
latent spaces. (Karl et al., 2016; Becker-Ehmck et al., 2019) do not allow smoothing. (Fraccaro et al., 2017;

15

Published in Transactions on Machine Learning Research (10/2022)

Klushyn et al., 2021) model the latent observations as random variables which are inferred jointly with
the latent states and use constant observation uncertainty for the filtering in the latent space. This choice
complicates inference and training and prevents principled usage of the observation uncertainty for filtering.
Our parameterization of the LGSSM alleviates these issues by building on factorization assumptions which
yield a scalable architecture. Further, it allows smoothing and principled usage of observation uncertainty
during filtering by modeling the observations in latent space as deterministic. Finally, non of these approaches
considered modeling epistemic uncertainty.

Another class of approaches directly uses NN-based, nonlinear parametrization for SSMs (Archer et al.,
2015; Krishnan et al., 2015; Gu et al., 2015; Zheng et al., 2017; Krishnan et al., 2017; Yingzhen & Mandt,
2018; Schmidt & Hofmann, 2018; Naesseth et al., 2018; Moretti et al., 2019). Out of this class, Structured
Inference Networks (SINs) (Krishnan et al., 2017) are the most relevant for our work. SINs build on the
same variational objective as VRKN, yet without conditioning on actions. The smoothing-RSSM baseline
introduced in Section 2.3 can be considered an instance of a SIN. Yet while it builds on the same loss and
fundamental ideas, the underlying NN architecture is different.

Kalman Updates in Deep Latent Space. Haarnoja et al. (2016) first proposed using an encoder
to extract uncertainty estimates from high-dimensional observations for filtering. They only learned the
encoder while assuming the transition dynamics to be known. Becker et al. (2019) proposed an efficient
factorization to additionally learn a high-dimensional, latent, locally-linear dynamics model. Shaj et al.
(2020) extended this approach by introducing a principled form of action conditioning. While the VRKN
builds on many of their design choices, there are also considerable differences. Those differences mainly
concern the parametrization of the dynamics model and further simplifying the factorization assumptions.
These changes are necessary to make the approaches scale to the complex control tasks considered in this
work. Additionally, Haarnoja et al. (2016); Becker et al. (2019); Shaj et al. (2020) train using regression and
do not learn a full generative model. Thus, they cannot produce the reasonable latent trajectories needed
for model-based RL.

Epistemic Uncertainty for Model-Based RL. Ample work emphasises the importance of modeling
epistemic uncertainty for model-based RL (Deisenroth & Rasmussen, 2011; Chua et al., 2018; Janner et al.,
2019) and several authors equipped RSSMs with epistemic uncertainty. Okada et al. (2020) use an ensemble
of RSSMs and showed improved results on modified versions of the Deep Mind Control Suite (Tassa et al.,
2020) benchmarks. Sekar et al. (2020) also combine an ensemble with the RSSM but focus on exploration
and generalization to unseen tasks. Yet, neither of these works questioned the assumptions underlying the
RSSM or analyzed their effects on the learned models.

6 Conclusion

We analyzed the independence assumptions underlying Recurrent State Space Models (RSSMs) and found
they are theoretically suboptimal. Yet, they implicitly regularize the model by causing an overestimated
aleatoric uncertainty and are crucial to the RSSMs success in model-based RL. When trying to avoid this
heuristic approach and use the correct assumptions while replacing the implicit regularization with a more
explicit approach using epistemic uncertainty, we found a simple extension of the RSSM architecture is
insufficient. Thus, we redesigned the model using well-understood and established components, providing
a more appropriate inductive bias for smoothing. The resulting Variational Recurrent Kalman Network
(VRKN) uses a latent linear Gaussian State Space Model (LGSSM) to address aleatoric uncertainty and
Monte-Carlo Dropout to model epistemic uncertainty explicitly. Building on an LGSSM allows exact in-
ference in the latent space using Kalman filtering and smoothing to obtain both smoothed and posterior
belief states efficiently. While agents based on the VRKN and the RSSM perform similar on the standard
DeepMind Control Suite (Tassa et al., 2020) benchmarks, the VRKN-based agents significantly outperform
those using the RSSM on tasks where capturing uncertainties is more relevant. Additionally, the VRKN
provides a natural approach to sensor fusion and outperforms the RSSM on tasks that require fusing sensor
observations from several sensors at different frequencies.

Limitations. We showed that designing a state space model out of well-founded components that matches
or improves the RSSMs performance is possible. This insight opens a path to improve them individually.

16

Published in Transactions on Machine Learning Research (10/2022)

Yet, here we used simple instances of these components and have not yet further investigated how to improve
them. Further, we have not investigated the interplay between the models and the controllers used on top
of them but used the control approaches proposed in (Hafner et al., 2019) and (Hafner et al., 2020) with
default parameters. Due to the intricate interplay between model learning and using the resulting controller
for data collection, it is reasonable to rethink the design of the controller when changing the model.

Acknowledgments

The authors acknowledge support by the state of Baden-Wiirttemberg through bwHPC, as well as the
HoreKa supercomputer funded by the Ministry of Science, Research and the Arts Baden-Wiirttemberg and
by the German Federal Ministry of Education and Research.

References

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare. Deep
reinforcement learning at the edge of the statistical precipice. Advances in neural information processing

systems, 34:29304-29320, 2021.

Evan Archer, Il Memming Park, Lars Buesing, John Cunningham, and Liam Paninski. Black box variational
inference for state space models. arXiv preprint arXiv:1511.07367, 2015.

Ershad Banijamali, Rui Shu, Hung Bui, Ali Ghodsi, et al. Robust locally-linear controllable embedding. In
International Conference on Artificial Intelligence and Statistics, pp. 1751-1759. PMLR, 2018.

Philipp Becker, Harit Pandya, Gregor Gebhardt, Cheng Zhao, C James Taylor, and Gerhard Neumann.
Recurrent kalman networks: Factorized inference in high-dimensional deep feature spaces. In International
Conference on Machine Learning, pp. 544-552, 2019.

Philip Becker-Ehmck, Jan Peters, and Patrick Van Der Smagt. Switching linear dynamics for variational
Bayes filtering. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
553-562. PMLR, 09-15 Jun 2019.

Lars Buesing, Theophane Weber, Sébastien Racaniere, SM Eslami, Danilo Rezende, David P Reichert, Fabio
Viola, Frederic Besse, Karol Gregor, Demis Hassabis, et al. Learning and querying fast generative models
for reinforcement learning. arXiv preprint arXiv:1802.03006, 2018.

Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of
neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learning in a
handful of trials using probabilistic dynamics models. Advances in Neural Information Processing Systems,
31, 2018.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy search.
In Proceedings of the 28th International Conference on machine learning (ICML-11), pp. 465-472. Citeseer,
2011.

Andreas Doerr, Christian Daniel, Martin Schiegg, Nguyen-Tuong Duy, Stefan Schaal, Marc Toussaint, and
Trimpe Sebastian. Probabilistic recurrent state-space models. In International Conference on Machine
Learning, pp. 1280-1289. PMLR, 2018.

Stefanos Eleftheriadis, Tom Nicholson, Marc Peter Deisenroth, and James Hensman. Identification of gaus-
sian process state space models. In NIPS, pp. 5309-5319, 2017.

Marco Fraccaro, Simon Kamronn, Ulrich Paquet, and Ole Winther. A disentangled recognition and nonlinear
dynamics model for unsupervised learning. In Advances in Neural Information Processing Systems, pp.
3601-3610, 2017.

17

Published in Transactions on Machine Learning Research (10/2022)

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pp. 1050-1059. PMLR, 2016.

S Gu, Z Ghahramani, and RE Turner. Neural adaptive sequential monte carlo. Advances in Neural Infor-
mation Processing Systems, 2015:2629-2637, 2015.

Fredrik Gustafsson. Statistical sensor fusion. Studentlitteratur, 2010.
David Ha and Jirgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Anurag Ajay, Sergey Levine, and Pieter Abbeel. Backprop kf: learning discriminative
deterministic state estimators. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, pp. 4383-4391, 2016.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James Davidson.
Learning latent dynamics for planning from pixels. In International Conference on Machine Learning, pp.
2555-2565. PMLR, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=0oabwyZb0u.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735-1780,
1997.

Eyke Hillermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning: An
introduction to concepts and methods. Machine Learning, 110(3):457-506, 2021.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in Neural Information Processing Systems, 32:12519-12530, 2019.

AH Jazwinski. Stochastic processes and filtering theory. ACADEMIC PRESS, INC.,, 1970.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal of basic
Engineering, 82(1):35-45, 1960.

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. Deep variational bayes filters:
Unsupervised learning of state space models from raw data. arXiv preprint arXiv:1605.06432, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster), 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1812.6114,
2013.

Alexej Klushyn, Richard Kurle, Maximilian Soelch, Botond Cseke, and Patrick van der Smagt. Latent
matters: Learning deep state-space models. Advances in Neural Information Processing Systems, 34,
2021.

Rahul Krishnan, Uri Shalit, and David Sontag. Structured inference networks for nonlinear state space
models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. arXiv preprint arXiv:1511.05121,
2015.

Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective mismatch in model-based
reinforcement learning. Proceedings of Machine Learning Research vol, 120:1-15, 2020.

18

https://openreview.net/forum?id=0oabwyZbOu
https://openreview.net/forum?id=0oabwyZbOu

Published in Transactions on Machine Learning Research (10/2022)

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic frame-
work for model-based deep reinforcement learning with theoretical guarantees. In International Conference
on Learning Representations, 2019.

Michael Lutter, Leonard Hasenclever, Arunkumar Byravan, Gabriel Dulac-Arnold, Piotr Trochim, Nicolas
Heess, Josh Merel, and Yuval Tassa. Learning dynamics models for model predictive agents. arXiv preprint
arXiv:2109.14311, 2021.

Antonio Moretti, Zizhao Wang, Luhuan Wu, and Itsik Pe’er. Smoothing nonlinear variational objectives
with sequential monte carlo, 2019.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Christian Naesseth, Scott Linderman, Rajesh Ranganath, and David Blei. Variational sequential monte
carlo. In International Conference on Artificial Intelligence and Statistics, pp. 968-977. PMLR, 2018.

Masashi Okada, Norio Kosaka, and Tadahiro Taniguchi. Planet of the bayesians: Reconsidering and im-
proving deep planning network by incorporating bayesian inference. arXiv preprint arXiv:2003.00370,
2020.

Herbert E Rauch, F Tung, and Charlotte T Striebel. Maximum likelihood estimates of linear dynamic
systems. AIAA journal, 3(8):1445-1450, 1965.

Florian Schmidt and Thomas Hofmann. Deep state space models for unconditional word generation. Advances
in Neural Information Processing Systems 31, 31:6158-6168, 2018.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak. Plan-
ning to explore via self-supervised world models. In International Conference on Machine Learning, pp.
8583-8592. PMLR, 2020.

Vaisakh Shaj, Philipp Becker, Dieter Buchler, Harit Pandya, Niels van Duijkeren, C James Taylor, Marc
Hanheide, and Gerhard Neumann. Action-conditional recurrent kalman networks for forward and inverse
dynamics learning. Conference on Robot Learning, 2020.

Robert H Shumway and David S Stoffer. An approach to time series smoothing and forecasting using the
em algorithm. Journal of time series analysis, 3(4):253-264, 1982.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep condi-
tional generative models. Advances in neural information processing systems, 28:3483-3491, 2015.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel,
Tom Erez, Timothy Lillicrap, and Nicolas Heess. dm__control: Software and tasks for continuous control,
2020.

Michael Volpp, Fabian Flirenbrock, Lukas Grossberger, Christian Daniel, and Gerhard Neumann. Bayesian
context aggregation for neural processes. In International Conference on Learning Representations, 2021.

Niklas Wahlstrém, Thomas B Schon, and Marc Peter Deisenroth. From pixels to torques: Policy learning
with deep dynamical models. arXiv preprint arXiv:1502.02251, 2015.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A locally
linear latent dynamics model for control from raw images. In Advances in neural information processing
systems, pp. 2746-2754, 2015.

Li Yingzhen and Stephan Mandt. Disentangled sequential autoencoder. In Jennifer Dy and Andreas Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 5670-5679. PMLR, 10-15 Jul 2018.

19

Published in Transactions on Machine Learning Research (10/2022)

Xun Zheng, Manzil Zaheer, Amr Ahmed, Yuan Wang, Eric P Xing, and Alexander J Smola. State space
Istm models with particle meme inference. arXiv preprint arXiv:1711.11179, 2017.

20

Published in Transactions on Machine Learning Research (10/2022)

A Derivations

For the derivations, we omit the subscripts for the generative and inference model € and ¢ as the derivations
are independent of those.

A.1 Lower Bound Objective
Derivation of the general ELBO objective (Equation 1)

p(o<r, z<r|a<r)
p(z<rlo<r,a<r)
plo<r|z<r,a<r)p(z<r|a<r) 4 log q(z<rlo<r,a<r)
p(z<rlo<r,a<r) q(z<rlo<r,a<r)

=Ey(acrlocracy) logp(o<r|z<r,a<r)] — KL[g(z<r|o<r,a<r) || p(z<r, [a<r)]

10gp(0§T|a§T) = log

:Eq(nglogT,agT) log

ELBO

+ KL [q(z<7|o<T,a<7) || p(2<7|0<T,0<7T)]

KL term(>0)
plo<r,z<7|acr)
q(z<rlo<r,a<r)

=Eqzorjocr,acr) [log +KL[g(z<rlo<r,a<r) || p(z<r|o<r,a<r)].

KL term(>0)

ELBO

Before we derive the decomposition of the KL term under the RSSM-assumptions (Equation 2) and the
lower bound under the SSM-assumptions (Equation 4), let us restate the independece assumptions. For all
approaches, the joint generative model factorizes as (cf. the graphical model in Figure 1a)

T T
plo<r,z<rla<r) = p(zo) Hp(Zt\Zt—l, at_1) Hp(0t|Zt)~
t=1 t=0

The same independence assumptions imply the following decomposition for the conditional distribution over
latent states given observations and actions p(z<r|o<r,a<r)

T T
plz<rlo<r,a<r) = p(zolo<r,a<r) [[p(zilz<i-1,0<r,a<r) = p(zolo<r,a<r) [[p(zi|2e—1, 051, 851 1).
=1 i=1

Thus, when using the same assumptions for the variational inference distribution ¢(z<r|o<r,a<r), it also
factorizes as

!

q(z<r|o<r,a<r) = q(zolo<r,a<r) [[a(zilzi—1,051,a51-1).
t=1

Contrary to that, as introduced by (Hafner et al., 2019), the RSSM’s joint variational distribution factorizes
as (cf. the graphical model in Figure 1b)

T T
g(o<r,z<rla<r) = q(zo00) [[a(z:|2e-1, 00,21 1) [] a(00).
t=1 t=0
Thus the variational inference distribution is given by
T
- Q<0§T7Z§T|3<T
q(z<rlo<r,a<r) = q(zoloo) [[a(ze|zi-1, 01, 2,1).
q(o<r) P}

21

Published in Transactions on Machine Learning Research (10/2022)

Let us now consider the KL term of the lower bound decomposition (Equation 1) when using the generative
assumptions for p and the RSSM’s inference assumptions for g. We get Equation 2:

KL (¢(z<rlo<r,a<r)|[p(z<T|o<T,a<T))
T

q(2z¢|z¢—1,0¢, 2
:/Q(ZO|00)HQ(Zt‘Zt—hOt,at 1 (Zl t|Ze-1, 0, 81— 1))>dng
t=1

Zt|Zt 1,0>t,a>¢—1

T T
Z¢|Zt—1,0¢, &
:E /<Q(ZO|OO)HQ(Zt|Zt—1702tyaZt—1)> log (q(tlZe—1,01,24-1) dz<r
t=1

p Zt|zt71;0>tya>t71)

12
—E / H q(2k|2k—1, 0k, ak—1)dzi q(20|00) Hq Zi+1|Zk, Ok+1, Ak)dZy
k=t+1
=1 q(zt—1|0ot—1,a¢—2)
q\Zt|Z¢—1,0¢,A¢—1
(| S) dthZt,1

Q(Zt‘zt—la O¢, at,]_) log
P(Zt|Zt—1, O>¢, aZt—l)

KL(g(2¢|2¢—1,04,8:-1)|p(#¢ |2:-1,051,851 1))
T

= ZEq(zt,l\OSt,l,agt,z) (KL [q(2z¢|Z:—1,0¢,a:-1) || p(2Z¢]Z¢—1,051,a51-1)]] -
=0

Plugging the same assumptions into the ELBO part of Equation 1 gives the RSSM objective already derived
by Hafner et al. (2019) (Equation 3).

To derive our objective (Equation 4) we instead use the generative assumptions for both the generative
model as well as the inference model. Again starting from the ELBO part of Equation 1, we get

Eq(zerlocracs) logp(o<r|z<r)] — KL (¢(z<r|o<r,a<r)|[p(z<r|a<r))

~

—

T

<Q(Zo |0§T7 agT) H q(Z¢|Zi—1, a>¢—1, 0>t)> Z log p(o¢ \Zt)dzgt
t=1 t=0

T

Zt|Zt 1,a>¢— 170>t)
q(z¢|Zt—1,8>¢-1,0>¢) Zlog dz<r
Ztlzt 1,t— 1)

=

- /(J(ZO\OST,agT)

o~
Il

1

T T
Z/((zolo<r,a<r) HQ(Zt|Zt—17aZt—1,02t)) log p(o¢|z¢)dz<¢
=0 t=1
a q(2e]zi-1,2511,05)
t —1,a>¢—-1,0>
—Z/<Q(ZO|O§T,3§T)H(J(Zt|Zt—1,azt—1,02t> log Lol dz<r
= t=1

p(zt‘ztflaatfl)

T

Z/ H q(zk|ZK—1,a>K-1,0>)dzy,

t=0 k=t+1

=1
t—1

q(2zolo<r,a<r) H (241|121, >k, 0>k+1)dzk log p(ot |z) dzy
k=1

(zt|0<T7a<T)

T -2

—Z/ H q(Zk|Z—1,25-1,0>1)dZ1(q (ZO|0<T7a<T)H(I(Zk+1|zk73~2k702k+1)dzk
k=t+1 k=1
=1 q(zi—1lo<r,a<T)

22

Published in Transactions on Machine Learning Research (10/2022)

(Zt|Zt—1, aA>t—1, Ozt)

dZt dzt—l
P(2z¢|Ze—1)

q
q(Z¢|Z¢—1,a>¢-1,0>¢,) log

KL(Q(Zt‘Zt—laazt—laozt)np(zt ‘Zt—hat—l))

T
EQ(ZHOST@ST) [Ing(Ot ‘Zt)]
=0

t
T

- ZEQ(thllogTﬁagT) [KL [Q(Zt|zt—17 aA>t—1, Ozt) H p(Zt|Zt_1, at_l)]] .
t=1

A.2 Extended Backward Pass for Smoothed Dynamics

Here we derive an extended backward pass, i.e., given the forward priors and posteriors we are interested in
the smoothed state ¢(z;—1|o<r,a<r) as well as the smoothed dynamics q(z;|z(—1,a>,_1,0>¢). We can read
off both these quantities from the joint smoothed estimate

Q(Ztazt—1|0§Taa§T) = q(Zt\Zt—l,azt—hozt)Q(Zt—l\Og%agT)~
This joint smoothed estimate can be computed using the identity

Q(Zt7Zt—1|0§T,a§T) = Q(Zt—1|Zt,09—1,agt—l)Q(Zt\OgT,agT)

:p(zt|zt—1; a;_1)q(zi—1 |0§t—1, agt—z) Q(Zt|0§T, agT)- (5)
Q(Zt‘ogtfh agtfl)

All quantities in Equation 5 are available in closed form as the smoothed state-estimate ¢(z;|o<r,a<r) is
computed during the previous iteration of the backward pass. To recursion starts with the last posterior
which is equal to the smoothed estimate for ¢ = T. We denote the parameters of the 4 distributions as
follows

q(ze|o<i—1,a<i-1) = N(zelpy , 27), q(ze-1lo<i—1,a<i-2) = N(zea|p 1,57)),
a(zi|o<r,acr) = N(z|p§, 25) and p(ze|z—1,a,-1) = N (2| Ar_12—1 + By_rae_1, 207,
Using Bayes rule we get

q(zi-1|zs,0<i-1,a<i-1) = N(pf 1 + Co1(ze — Ap_ipy +Biorar—1), (I - Ci1A)2 ,)

My

with C,; = F AT (A3 AT + 38 -1 — 5 AT (37)7". Thus, the full "two-sliced"

=

smoothed estimate is given by

Q(Zt—lazt|0§Taa§T) = Q(Zt—l\Zt,0§t—17a§t—1)Q(Zt|0§T,agT) =

N ((Zt—l) | (NZM + Cra(pi — /J’t)) ((I —Ci1A 1) + Ca ZCL Ct—12§>)
z i ’ =CL, x

() 05) (i,)
Zt Ky %Gy)In
We can just read off the smoothed dynamics at time ¢ from the joint above and get
Q(Zt|zt71732t71; 021&)
=N (elpsi + ZCLL (Bi) (21 — 5-0), Bi — ZCT () I Coa).

We can also read off the smoothed state estimate at time t — 1 and get the standard Rauch-Tung-Striebel
backward recursion.

23

Published in Transactions on Machine Learning Research (10/2022)

B Details on Introductory Example

Generative Model: The full generative linear-Gaussian State Space Model used to generate the data in
Section 2.2 is given as

p(z0) = N(0,I), p(os|ze) = NIz, 0.0251), p(z41]2¢) = N(Azg,0.011)
where

1.0 0.0 02 0.0
0.0 1.0 0.0 0.2
-02 00 095 0.0
0.0 -0.2 0.0 0.95

A =

We fix the initial state and observation model and only learn the dynamics model. The 16 entries of A are
initialized randomly, sampled from A/(0,0.05). The transition covariance is isotropic, thus we only learn a
scaling scalar initialized with 1. In the ground truth model, this factor is 0.01.

Inference for Lrssm (Equation 3): Computing the optimal inference distribution under the RSSM-
assumptions is not possible, even for this simple example. We thus parameterize it as ¢(z:;+1|z¢,0:) =
N(Cizi + ¢4, X5), where Cy, ¢, X7 are emitted by a small neural network given the observation and mean
of the previous belief. This network is trained jointly with the generative model.

Inference for Lss, (Equation 4): For the state space assumptions, we can compute the optimal inference
distribution in closed form using Kalman Smoothing. Thus we do not need an additional inference model
(Lssm (CF) in Figure 2). Yet, to evaluate the general feasibility of the approach later used for the Smoothing
RSSM, we also evaluate a NN-based inference distribution (Lgsm(NN) in Figure 2). To this end, we use a
GRU (Cho et al., 2014) to process the observations backward, extracting a latent representation of all future
observations o>; for each time step. We then feed this representation into the NN used for L,ssm described
above to get a NN emitting parameters for ¢(z;41|z¢, 0>¢).

Training: We train by maximizing the respective ELBOs using Adam(Kingma & Ba, 2015) with a learning
rate of 0.005 on 1,000 sequences with a length of 50 and a batch size of 50.

C Details on Experiment Setup, Baselines and Hyperparameters

We evaluate all variants of the RSSM and the VRKN in an experimental setup that closely follows (Hafner
et al., 2019) as well as (Hafner et al., 2020) by exchanging the underlying model while keeping all other parts
of the approach fix. We refer to the pseudo-code presented in those works for an overview of the training
procedure.

C.1 Smoothing RSSM

The smoothing RSSM works very similar to the Ly, (CF) and uses a GRU (Cho et al., 2014) to accumulate
information for all future time steps. This GRU is placed between the CNN which extracts the representation
for the RSSM and the RSSM itself, as indicated by the dashed red line in Figure 11. It processes the CNN’s
output backward and extracts a latent representation of all future observations o> which is fed to the rest of
the pipeline instead of the original CNN output. For online control, we only have o; as all future information
is unavailable. In this case, we only feed o;, together with the default initial memory value, through the
GRU and give the output to the remaining pipeline.

C.2 RSSM with Monte Carlo Dropout

For the baseline with Bayesian treatment of the RSSM’s transition parameters, we combined the original
RSSM with Monte Carlo Dropout (Gal & Ghahramani, 2016). Figure 11 provides an overview over the
resulting architecture.

24

Published in Transactions on Machine Learning Research (10/2022)

1
1 +
=
81 | = 2 ,
= . @ E (posterior)
3] /~ o ¢
o = : +
' ol I g +
Z 1 — S —~ steri
% GS_) § o_ipos erior)
S5
-
- 5 =
— : : — : .8' (prior)
Zt—1 Q) = P
m 1 1 m 1 l—llt
1 D 1 1 O
= S+ sl T
= 1 (@) 1 = 1
a < 1 1 < 1 = (prior)
t—1 g ' ' g ' q::) > oy
.- 1 (] o 1
— — NG
ht71 T \ N ht

Figure 11: Overview over the dynamics and inference model of the RSSM with MC Dropout baseline.
The general architecture is equivalent to that of the original RSSM, but we included Monte Carlo Dropout
Layers at the locations indicated by the purple dashed lines. For preliminary experiments, we also included
Dropout before the two linear layers in the computation path of the posterior but found that this decreases

performance. The dashed red line indicates the position where the backward GRU is added for the smoothing
version of the RSSM

Table 1: For the fusion experiment we split the standard observations of the environments into proprioceptive
and non-proprioceptive as follows.

Environment Proprioceptive Non-Proprioceptive

cheetah run Joints (bthigh, bshin, bfoot, Global Position/Orientation: (rootx, rooty, rootz)
fthigh, fshin, ffoot)

walker walk / run orientation of links height of center of mass above the ground

cartpole swingup Cart position (slider) Pole angle (hinge)

cup catch Cup Position (cup_x, cup_z) Ball Position(ball_x, ball_z)

C.3 Missing Observations and Fusion for RSSM.

For the experiments including missing observations, we concatenated the flag indicating the validity of the
observation after the CNN-Encoder in Figure 11.

For fusion, we used several encoders, whose output we concatenate before passing it to the next linear layer

(red dashed line in Figure 11). Like for the VRKN, we use a separate decoder an reconstruction loss term
for all observations (c.f. Section 3.6)

C.4 Proprioceptive Joints in Fusion Tasks

Table 1 shows how we split the observations in into proprioceptive and non-proprioceptive information for
the different environments. In all cases, we only provide positional information, no velocities.

C.5 Hyperparameters

Where applicable we reused the hyperparametes used in (Hafner et al., 2019) and (Hafner et al., 2020).

25

Published in Transactions on Machine Learning Research (10/2022)

State Space Models. The exact parametrization of the RSSM (layer widths and activation functions)
differs between (Hafner et al., 2019) and (Hafner et al., 2020) and we used the respective values for the
respective agents. Both use a stochastic state size of 30 and a deterministic state size of 200.

For the VRKN, we used a common set of hyper-parameters for all experiments and a stochastic state size of
230, to match the total state size of the RSSM approaches. All layers, including the GRU cell, are of width
300 and all linear layers use ReLU activation. The transition matrix output of the transition network is
transformed by the sigmoid-based transformation described in section 3, the offset output is unconstrained
and the transition noise output is constrained by the sigmoid-based transformation, saturating at 0.001,0.1
while f(0) = 0.01.

For the Monte Carlo dropout-based approaches, we use a dropout rate of 0.1.

Encoder - Decoder. We used the convectional architectures originally introduced in (Ha & Schmidhuber,
2018) and later used in (Hafner et al., 2019; 2020). For the VRKN the encoder was augmented with a linear
layer mapping to the latent observation and a linear layer + softplus for the uncertainty output.

For the reward decoder, we also followed (Hafner et al., 2019) and (Hafner et al., 2020) and used 2 layers of
width 200 with ReLU activation for PlaNet experiments and 3 layers of width 300 with ELU activation for
all the Dreamer experiments.

To encode low-dimensional proprioceptive observation in the fusion experiments we used an additional en-
coder network with 3 layers of width 300 with ELU activation.

Loss. Following the official implementation of (Hafner et al., 2019) we scaled the loss of the reward decoder
by a factor of 10 for the PlaNet experiments. Ee also found this beneficial for the VRKN. While the RSSM
(and all approaches based on the original parametrization) use a factor of 1 for Dreamer, we kept the factor
of 10 for the VRKN-parametrization based approaches. In both cases, that led to better performance of the
respective approaches. We used the 3-free nats trick used in (Hafner et al., 2019; 2020) to regularize the KL
term for all experiments and approaches.

Training. We started with 5 randomly collected initial episodes and collected one more episode every 100
model update steps. Each update step is performed on 50 sub-sequences of length 50, sampled uniformly
from all previously collected sequences. We used Adam (Kingma & Ba, 2015) with the same learning rates
and gradient clipping as (Hafner et al., 2019) for the PlaNet experiments (learning rate 10~3, clip by norm
1,000) and (Hafner et al., 2020) for Dreamer (learning rate world model: 6 - 10~%, learning rate actor and
critic: 8-107° , all with clip by norm 100).

Environments For PlaNet-agents we used the same action repeats as (Hafner et al., 2019) (Cheetah
Run: 4, Walker Walk: 2, Cup Catch: 4, Cartpole Swingup: 8, Reacher Easy: 4, Finger Spin: 2). For
Dreamer-agents we used an action repeat of 2 for all environments. Images are [64 x 64] pixels and the
color-depth is sub-sampled to 5-bits, following (Hafner et al., 2019). Table 1 shows splits into proprioceptive
and non-proprioceptive state information for the fusion experiments.

Data Collection and Evaluation. We collected data with an exploration noise of 0.3. For the Monte-
Carlo Dropout based approaches, we turned the dropout layers off during evaluation but not during data
collection.

Planet-Agent The CEM-Planning method is equivalent to the one used in (Hafner et al., 2019) for all
experiments.

Dreamer-Agent Actor and value networks, as well as the hyper-parameters for the generalized value
estimates, are equivalent to the one used in (Hafner et al., 2020) for all approaches up to the activation
function used in the value network. Here we use Tanh to avoid rare cases of exploding values for the VRKN
approaches. In the cases where the original formulation with ELU converged, we observed no difference from
Tanh.

26

Published in Transactions on Machine Learning Research (10/2022)

Cheetah Run Walker Walk Cartpole Swingup
_, 1,000
E —RSSM
£ 800+ —MCD-RSSM 1 \] &
& 600 1 2 1 S |
£ 400 : " 1 1 g
& 2001 1 4 —Smooth RSSM
is 0 — Smooth MCD-RSSM
Cup Caftch " Reacher Easy " Finger Spin
g
£
o~
=
o)
*g
o
=
A

02 04 06 08 10
Time Steps (x10%)

02 04 06 08 1.0
Time Steps (x10%)

02 04 06 08 1.0
Time Steps (x10%)

Figure 12: Comparison of RSSM and all baselines on all tasks considered for the PlaNet-agents.

RSSM MCD-RSSM Smooth RSSM Smooth MCD-RSSM

Cheetah Run
Walker Walk

Cartpole Swingup
Cup Catch

627.4290 £+ 7.4144
945.8944 £ 2.1465
790.4359 £ 8.4232

783.3987 £ 54.1554

862.8973 £+ 8.1286

616.2516 4+ 13.5786
912.0173 +£19.3413
791.2157 £ 8.4791
874.4680 £+ 23.6101
818.6773 + 10.3870

519.9207 £ 11.7773
794.5836 & 38.2716
640.5327 £+ 79.7364
233.3460 £ 78.0361
654.9960 + 23.2955

454.1092 £ 14.7283
557.6727 £ 33.9011
761.4190 £+ 10.7277
421.9260 + 122.9805
681.2360 £ 30.5072

Reacher Easy

Finger Spin 623.6027 & 21.5528 635.7293 + 32.7763 599.2760 + 17.6737 622.0860 4= 19.4163

Table 2: Mean and standard error of final performance for the comparison of RSSM and all baselines on all
tasks considered for the PlaNet-agents.

D Comprehensive Experiment Results and Visualizations

We provide results for the individual tasks for all conducted experiments. Here we report reward curves, as
well as the final performance. Following the suggestions of (Agarwal et al., 2021), for the reward curves, we
report the interquartile mean and 95% bootstrapped confidence intervals (shaded areas). Unless otherwise
noted, we use 10 seeds per task and approximate the expected return using 10 rollouts. We provide box
plots and tables stating the mean and standard error of the final performance. We define final performance
as the mean performance during the last 100,000 train steps.

We want to emphasize that we draw our conclusion and claims from the aggregated results reported in the
main part of the paper.

D.1 Comprehensive Results for the Comparison of the Different RSSM Versions in Section 4.1
(Figure 4)

Figure 12 shows the comparison to the Smoothing RSSM and the MCD versions for PlaNet-agents. Figure 13
and Table 2 show the corresponding box plots and table. Figure 14 shows the comparison to the Smoothing
RSSM and the MCD versions for Dreamer-agents. Figure 15 and Table 3 show the corresponding box plots
and table.

D.2 Comprehensive Results for VRKN and RSSM Comparison in Section 4.1 (Figure 5)
Figure 16 shows the reward curves for PlaNet-agents, Figure 17 and Table 4 show the corresponding box-

plots and table. Figure 18 shows the reward curves for Dreamer-agents, Figure 19 and Table 5 show the
corresponding box-plots and table.

27

Published in Transactions on Machine Learning Research (10/2022)

Cheetah Run Walker Walk Cartpole Swingup Cup Catch Reacher Easy Finger Spin

-
L "am

1,000

9001 o= 1 1
800,] j | |

700
500 == |
400 ! -

300
200

Expected Return

RSSM

MCD-RSSM

Smooth RSSM 1
RSSM

RSSM
RSSM -

MCD-RSSM 1
Smooth RSSM 1 }—I{

Smooth MCD-RSSMH
RSSM
RSSM 1

MCD-RSSM 1
Smooth RSSM+
MCD-RSSM 1
Smooth RSSM +
MCD-RSSM 1
Smooth RSSM +
MCD-RSSM 1
Smooth RSSM 1

Smooth MCD-RSSM 1
Smooth MCD-RSSM
Smooth MCD-RSSM 1
Smooth MCD-RSSM 1
Smooth MCD-RSSM 1

Figure 13: Box plots of final performance for the comparison of RSSM and all baseline on all tasks considered
for the PlaNet-agents.

1000 Cheetah Run Walker Walk Cartpole Swingup Cup Catch
Z 800+ : : :
<]
600+ v 1 1 ” T 1 \a
< ¢
% o] ’ ’ ’ r
4 |

Reacher Easy Hopper Hop Pendulum Swingup Walker Run

1,000 B
g —RSSM
% 800 — MCD-RSSM 7
~ 6004 i — Smooth RSSM i
ae! — Smooth MCD-RSSM
£ 400 1 1
S 200]]
4 |

02 04 06 08 1.0 02 04 06 08 1.0 02 04 06 08 10
Time Steps (x10°) Time Steps (x10%) Time Steps (x10°) Time Steps (x10%)

Figure 14: Comparison of RSSM and all baselines on all tasks considered for the Dremaer-agents.

D.3 Comprehensive Results for Occlusion Experiments in Section 4.2.1 (Figure 7)

Figure 20 shows the reward curves for Dreamer-agents on the disc occlusion task, Figure 21 and Table 6
show the corresponding box-plots and table.

Figure 22 shows the reward curves for Dreamer-agents on the wall occlusion task, Figure 23 and Table 7
show the corresponding box-plots and table.

D.4 Comprehensive Results for Missing Observation Experiments in Section 4.2.2 (Figure 9)

Figure 24 shows the reward curves for Dreamer-agents on the missing observation task without transition
noise, Figure 25 and Table 8 show the corresponding box-plots and table.

Figure 26 shows the reward curves for Dreamer-agents on the missing observation task with transition noise,
Figure 27 and Table 9 show the corresponding box-plots and table.

28

Published in Transactions on Machine Learning Research (10/2022)

Cheetah Run Walker Walk Cartpole Swingup Cup Catch Reacher Easy Hopper Hop Pendulum Swingup Walker Run
1,000

900 L %

— === i
|
i LTIk " | | | M b
700 ? ! !
600 !
|
400
300
200

Expected Return
o
o
o

R R
——
-
-

|
-

Z =2 =2 = =z = =2 = zZ = =2 = Z =2 =2 = Z =2 =2 = Z =2 =2 = Z =2 =2 = Z =2 =2 =
©ow » w © o»n » u w w »n u ©w »n »n A ©w w »n A ©w w v g 2B BT B wowm » »n
N B n n N B n n N B N n N B N n N v N n N B n oy n n n g n n n f
ECFE‘IZC? CCE;K:@ afo;r:n; Cﬁﬂliﬂdf; lﬁﬂ‘fmf:‘ IZQ;ZE; f:D;CﬁE; KZKZ‘KZZI
a = A a = A a = A a = A a = A a = A a = A a = A
2 % 9 g % g g % g S T ¢ ¢ % S g % ¢ S % 2 g % g
4%4 = g = = g = = g = = g = = g = - =2 = - = =
v = (75 -1 [- [I @ = n = n = n =

= = = = = = = =

=3 =] =] =] i=} =} =} =}

g]] 9) 9]]

= g g g =] =] =] =]

@a @ @n 5} @ 5} @n @n

Figure 15: Box plots of final performance for the comparison of RSSM and all baseline on all tasks considered
for the Dreamer-agents.

RSSM MCD-RSSM Smooth RSSM Smooth MCD-RSSM
Cheetah Run 828.3105 + 12.7068 779.5831 £ 17.5038 749.6598 4+ 12.6213 701.1207 4 20.8974
Walker Walk 915.0295 4+ 24.0175 866.2743 + 33.1511 841.6051 & 37.6502 887.1364 + 28.4298
Cartpole Swingup 837.0084 +8.9790 844.2569 £ 12.9288 800.4897 4 14.5373 769.1028 4= 23.8682
Cup Catch 961.1700 +1.3949 955.5520 £ 2.1011 825.4520 4+ 79.2088 683.2780 + 108.1605
Reacher Easy 562.4000 4= 80.4134 548.8700 + 82.5122 335.7420 4 55.2733 454.1340 £ 51.4296
Hopper Hop 263.8984 + 17.7745 239.7520 £ 29.6752 197.5490 + 36.8571 160.7789 £ 20.0703
Pendulum Swingup 689.7720 + 70.8294 798.3480 + 28.6680 476.3280 + 121.9812 799.9800 + 10.4065
Walker Run 500.7626 4+ 39.3808 499.6024 + 52.2246 397.7456 4+ 26.9991 367.6974 £+ 32.9808

Table 3: Mean and standard error of final performance for the comparison of RSSM and all baselines on all
tasks considered for the Dreamer-agents.

D.5 Comprehensive Results for Sensor Fusion Experiments in Section 4.2.3 (Figure 10)

Figure 28 shows the reward curves for Dreamer-agents on the fusion task without transition noise, Figure 29
and Table 10 show the corresponding box-plots and table.

Figure 30 shows the reward curves for Dreamer-agents on the fusion task with transition noise, Figure 31
and Table 11 show the corresponding box-plots and table.

D.6 Qualitative Image Reconstructions for Noisy-Dreamer Experiments

We show sub-sequences of decoded posterior belief states for the 4 noisy tasks in Figure 32, Figure 33,
Figure 34, and Figure 35. Note that the first image in those sequences is not necessary the first image
the respective model saw, thus the reconstruction might be reasonable even if the system is fully occluded.
Figure 36 explicitly shows the models’ behavior if no information is available at the beginning of a sequence.

D.7 Further Evaluation of Stochastic Baseline from Hafner et al. (2019)

Hafner et al. (2019) give little detail about the stochastic RSSM-baseline (referred to as SSM in their work)
they used. The state dimension in the official implementation defaults to 30, which is considerably smaller
than the combined state size of the deterministic and stochastic parts of the RSSM and also smaller than
the state size we used for our stochastic state. To ensure the difference in performance stems from the

29

Published in Transactions on Machine Learning Research (10/2022)

Cheetah Run Walker Walk Cartpole Swingup
_, 1,000
Z 800+ :
Q
= 6004 1
=
g 400 — VRKN (no MCD) | 1
2 2004 — VRKN i
] —
a7, RSSM
Cﬁp Catch Reacher Easy ‘ Fiﬁger Sf)in

= 1,000
—
£ 800 i
Q
& 600+ 1
T
g 4004 b
S 200N]
2

02 04 06 08 1.0 02 04 06 08 1.0 02 04 06 08 1.0

Time Steps (x10°) Time Steps (x10°) Time Steps (x10%)

Figure 16: Comparison of VRKN (with and without Monte Carlo Dropout) and RSSM on all tasks considered
for the PlaNet-agents.

1000 Cheetah Run Walker Walk Cartpole Swingup Cup Catch Reacher Easy Finger Spin
’ BT
9001 1 i i % i *
| | | - |
i 700,+ 1 1 . 1
LT - | -
E 500 1
g 400y
& 3004 i o
200 1 1 1 1 1 1
1001 i
0 —~ ; = ~) — —~) [—~) — ~) [~) —
5 2 Z 8§ 2 2 8§ & gz 8 2 gz &8 2 gz &8 2 Z
8 E @ S 2 @ S E @ S = @ =2 @ 8 £ @
- = ~ - = ~ = = ~ - = ~ = = ~ = = ~
= o = o = o
= = = = = =
Z Z Z Z Z Z
& & & & & &
~ ~ ~ ~ = ~
- -~ - - - -

Figure 17: Box plots of final performance for the comparison of VRKN (with and without Monte Carlo
Dropout) and RSSM on all tasks considered for the PlaNet-agents.

parametrization and not the reduced state size we compared the Stochastic RSSM baseline with state sizes
of 30 and 230. We also compared a version with Bayesian treatment using Monte Carlo Dropout (MCD).
The results are displayed in Figure 37 and show that neither an increased state size nor Bayesian treatment
yields significant performance improvements.

30

Published in Transactions on Machine Learning Research (10/2022)

VRKN (no MCD) VRKN RSSM
Cheetah Run 705.1629 + 7.3881 749.2355 £5.3298 627.4290 4+ 7.4144
Walker Walk 889.8291 + 14.2379 940.5245 + 11.0899 945.8944 + 2.1465
Cartpole Swingup 625.0746 + 22.7305 779.3265 + 7.7148 790.4359 + 8.4232
Cup Catch 548.4413 + 35.6197 652.2427 £ 37.5175 783.3987 4+ 54.1554
Reacher Easy 871.8760 + 10.4746 872.0493 +9.5175 862.8973 £ 8.1286
Finger Spin 564.7493 + 31.3898 578.9867 £ 31.7433 623.6027 £+ 21.5528

Table 4: Mean and standard-error of final performance for the comparison of VRKN (with and without
Monte Carlo Dropout) and RSSM on all tasks considered for the PlaNet-agents.

1000 Cheetah Run Walker Walk Cartpole Swingup Cup Catch
ERE sor R ?;gﬂq] v] A Y
Sé 600 i 7M i A/ 4 n 4 Y ’ L
e ~
£ 4004 —VRKN (no MCD) | 1/} 1 1 *
g 200 — VRKN 1] 1.
2
4 7 —RSSM |
" Reacher Basy " Hopper Hop Pendulum Swingup Walker Run
_ 1,000 B
Z 8001]] |
D
600 1 1 1 =
z
%] ’ ’ ’
&] ,
02 04 06 08 10 02 04 06 08 1.0 02 04 06 08 1.0 02 04 06 08 1.0
Time Steps (x10°) Time Steps (x10°) Time Steps (x10°) Time Steps (x10%)

Figure 18: Comparison of VRKN (with and without Monte Carlo Dropout) and RSSM on all tasks considered
for the Dreamer-agents.

Cheetah Run Walker Walk Cartpole Swingup Cup Catch Reacher Easy Hopper Hop Pendulum Swingup Walker Run

Figure 19: Box plots of final performance for the comparison of VRKN (with and without Monte Carlo
Dropout) and RSSM on all tasks considered for the Dreamer-agents.

1,000
== == == 7
00 T - =

gooi'?: | i

700
600
500

Expected Return

400

300
200

100

2l
- 3
n

VRKN
RSSM
VRKN
RSSM
VRKN
RSSM
VRKN
RSSM
VRKN
RSSM
VRKN
RSSM
VRKN
RSSM
VRKN
RSSM

VRKN (10 MCD)
VRKN (10 MCD)
VRKN (no MCD)
VRKN (no MCD)
VRKN (no MCD
VRKN (1o MCD)
VRKN (10 MCD)
VRKN (10 MCD)

31

Published in Transactions on Machine Learning Research (10/2022)

VRKN (no MCD) VRKN RSSM
Cheetah Run 678.8993 + 42.6969 834.1799 + 7.0240 828.3105 + 12.7068
Walker Walk 897.1648 +22.6760 951.5513 +6.6140 915.0295 + 24.0175
Cartpole Swingup ~ 441.9785 + 31.5798 818.7790 = 8.8191 837.0084 - 8.9790
Cup Catch 912.3980 £ 37.7156 945.1860 + 7.7854 961.1700 = 1.3949
Reacher Easy 290.6880 + 68.4338 646.3940 + 106.9958 562.4000 =+ 80.4134
Hopper Hop 152.6910 4 23.3830 257.7012 4 38.3835 263.8984 = 17.7745
Pendulum Swingup ~ 500.4280 4 98.7629 703.5000 4 75.4019 689.7720 =+ 70.8294
Walker Run 318.8323 + 68.5679 565.1005 + 32.1744 500.7626 + 39.3808

Table 5: Mean and standard-error of final performance corresponding for the comparison of VRKN (with
and without Monte Carlo Dropout) and RSSM on all tasks considered for the Dreamer-agents.

Cheetah Run, o = 0.2 Walker Walk, o = 0.2 Cartpole Swingup, o = 0.3 Cup Catch, 0 = 0.3
1,000
g — VRKN
£ 8007 —Rssm 1 1 1
~ 6004 — Reward Only 4 .
=]
% 4004 1 _ 1 o
S 2004 a#f — —
= 0
02 04 06 08 10 02 04 06 08 10 02 04 06 08 10
Environment Steps (x10°) Environment Steps (x10°) Environment Steps (x10°) Environment Steps (x10°)

Figure 20: Comparison of VRKN and RSSM on all tasks considered with disc occlusions. The o in the title
indicates the standard deviation of the Gaussian transition noise.

Cheetah Run o = 0.2 Walker Walk o = 0.2 Cartpole Swingup o = 0.3 Cup Catch 0 =0.3
1,000
900 1 1 1
£ 8001 8 ¢ 8 8
£ 700+ 1 1 1
600 | === @ g] i
< 400 1 | 1 1 4
& 300 7 B * 4 i
E 2001 R . T . ‘ T x
100 3 == q — B 3 = B p
0 T T : T T T T T T T T T
g Z = Z = = z p=i = z = =
& @ = & @ = & @ = & 7 £
o N ©] o=t %] o o=t %] o o] o
= = o = ~ o > ~ <] = = o
5 z = z
= & & =

Figure 21: Box plots of final performance for the comparison of VRKN and RSSM on all tasks for the disc
occlusion task.

VRKN RSSM Reward Only
Cheetah Run 578.7090 £ 9.4257 532.2949 +26.3772 79.7795 £ 39.9028
Walker Walk 539.5958 + 28.6619 564.8669 £ 30.8898 95.9638 £ 21.2174
Cartpole Swingup 503.7676 + 28.6705 429.8483 £+ 31.4116 102.1589 4 14.0952
Cup Catch 607.3370 £ 40.2025 512.6090 £+ 48.2354 166.6440 + 46.7917

Table 6: Mean and standard-error of final performance for the comparison of VRKN and RSSM on all tasks
for the disc occlusion task.

32

Published in Transactions on Machine Learning Research (10/2022)

Cheetah Run, o = 0.2 Walker Walk, o = 0.2 Cartpole Swingup, o = 0.3 Cup Catch, 0 =0.3
1,000

g — VRKN — RSSM

4?) 8001 Reward Only b b

600+ = 1 = 1

E

g w0y E E

2 20014~ = A E

&=

012 0‘.4 0.‘6 018 1.0 0‘.2 0‘.4 0.‘6 018 1.0 0‘.2 0.‘4 0.‘6 018 1.0 0‘.2 0.‘4 0.‘6 018 1.0
Time Steps (x10°) Time Steps (x10°) Time Steps (x10°) Time Steps (x10°)

Figure 22: Comparison of VRKN and RSSM on all tasks considered with wall occlusions. The o in the title
indicates the standard deviation of the Gaussian transition noise.

Cheetah Run o = 0.2 Walker Walk o = 0.2 Cartpole Swingup o = 0.3 Cup Catch o = 0.3
1,000
900 1 1 |
5 800] T] L
£ 600 | — | * | $
T 500 . 1 1 1
D *
£ 400+ 1 1 1 . +
& 300 . 1 1 1
& 200 1 1 . ; 1 8
100 B + — B o= B —
z = = z = = z = = z = =
: g : I - : 7 3 = 7 3
> F = > ~ = > e 9 > F =
g E g g
£ £ £ £
= = = =

Figure 23: Box plots of final performance for the comparison of VRKN and RSSM on all tasks for the wall
occlusion task.

VRKN RSSM Reward Only
Cheetah Run 677.8950 £ 11.7388 639.3058 £ 10.7563 79.7795 £ 39.9028
Walker Walk 703.8418 £ 27.3761 601.7267 £ 26.7561 95.9638 £ 21.2174
Cartpole Swingup 764.7615 + 5.8841 710.6911 £+ 31.6704 102.1589 + 14.0952
Cup Catch 861.7760 + 14.6734 789.6590 £ 27.4923 166.6440 + 46.7917

Table 7: Mean and standard-error of final performance for the comparison of VRKN and RSSM on all tasks
for the wall occlusion task.

Cheetah Run Walker Walk Cartpole Swingup Cup Catch
1,000
g — VRKN —RSSM
£ 809 —VRKN (Cat) 1 1 1
600 1 1 1
E 4
§ 400 g B B 7= ik
£ 200 Y 1 ’ 1 Z 1
<} o M y
(J‘.Z 0‘.4 0.‘6 018 1.0 0‘.2 O‘.4 0.‘6 018 1.0 0‘.2 ().‘4 0.‘6 018 110 0‘.2 ().‘4 0.‘6 018 110
Time Steps (x10°) Time Steps (x10°) Time Steps (x10°) Time Steps (x10°)

Figure 24: Comparison of VRKN and RSSM on all tasks considered with missing observations and without
transition noise.

33

Published in Transactions on Machine Learning Research (10/2022)

Cheetah Run Walker Walk Cartpole Swingup Cup Catch
1,000
900 1 1 ===
= 4 4 4 4
e f | el
9 500—_ T 1 I —
£ 4004 * 1 1 . 1
& 3001 . . .
M 200 1 1 i 1
100] []]] |
& 2] S & 2 S = 22 S e 2 S
- Z s Z = 7z - Z
& & & &
= = = =
= = = =

Figure 25: Box plots of final performance for the comparison of VRKN and RSSM on all tasks for the
missing observation task without transition noise.

VRKN RSSM VRKN (Cat)
Cheetah Run 479.6113 £ 39.0438 385.1623 + 34.2866 513.6416 - 20.9897
Walker Walk 205.5023 4+ 40.7882 138.5695 & 21.9475 335.1612 + 37.8743
Cartpole Swingup ~ 589.5220 & 91.1411 429.4998 4 59.3501 661.1643 & 36.6275
Cup Catch 806.2720 £ 75.0126 633.8480 & 140.1743 815.7960 - 44.0564

Table 8: Mean and standard-error of final performance for the comparison of VRKN and RSSM on all tasks
for the missing observation without transition noise.

Cheetah Run o = 0.2 Walker Walk o = 0.2 Cartpole Swingup o = 0.3 Cup Catch o = 0.3

1,000
g — VRKN — RSSM
£ 307 —VRKN (Cat)))
6004 4 4
T
E 400 4 T =
2200 4 B B -
=

02 04 06 08 10 02 04 06 08 10 02 04 06 08 10 02 04 06 08 10
Time Steps (x10°) Time Steps (x10°) Time Steps (x10°) Time Steps (x10°)

Figure 26: Comparison of VRKN and RSSM on all tasks considered with missing observations and transition
noise. The o in the title indicates the standard deviation of the Gaussian transition noise.

Cheetah Run o = 0.2 Walker Walk o = 0.2 Cartpole Swingup o = 0.3 Cup Catch o = 0.3

—
- -

Expected Return

= ot

o o

o o

-

-
T TR RO N R

VRKN -
RSSM
VRKN (Cat) 1
VREKN -
RSSM 1
VRKN (Cat) 1
VRKN -
RSSM 1
VRKN (Cat)
VRKN -
RSSM
VRKN (Cat) 1

Figure 27: Box plots of final performance for the comparison of VRKN and RSSM on all tasks for the
missing observation task with transition noise.

34

Published in Transactions on Machine Learning Research (10/2022)

VRKN

RSSM

VRKN (Cat)

Cheetah Run
Walker Walk

Cartpole Swingup

Cup Catch

431.1943 £ 19.2437
330.7420 £ 30.5173
594.6512 £ 22.4822
632.9800 + 64.4935

302.2760 <+ 20.2040
116.6937 £+ 13.0846
557.7137 £ 58.3520
203.1760 +£ 32.3139

502.3162 + 13.2101
360.0558 £ 26.1748
514.7862 % 32.5809
767.1400 £ 21.0592

Table 9: Mean and standard-error of final performance for the comparison of VRKN and RSSM on all tasks
for the missing observation task with transition noise.

Cartpole Swingup Cup Catch

/,f/“’”“

Cheetah Run Walker Walk

VRKN
— RSSM

1,000
800

600 i~
400 H o~
200 4 4

0

Expected Return

02 04 06 08 10 02 04 06 08 10 02 04 06 08 10 02 04 06 08 10

Time Steps (x10°) Time Steps (x10%) Time Steps (x10°) Time Steps (x10°)

Figure 28: Comparison of VRKN and RSSM on all tasks considered for the sensor fusion task without
transition noise.
Cup Catch

e

— .

Walker Walk Cartpole Swingup

= .

Cheetah Run

== —

1,000
900 A
800
700 A
600 A
500
400 A
300
200 A
1004

Expected Return

-
°

!

VRKN -
RSSM ~
VRKN -
RSSM
VRKN -
RSSM ~
VRKN -
RSSM ~

Figure 29: Box plots of final performance for the comparison of VRKN and RSSM on all tasks for the sensor
fusion task without transition noise.

RSSM

577.7296 + 26.4294
733.0111 £ 70.6512
440.9525 £ 36.0824
797.1000 % 66.0047

VRKN

Cheetah Run 628.8849 + 9.6539
Walker Walk 746.9262 + 60.4730
Cartpole Swingup 690.6291 + 51.6357
Cup Catch 885.5980 + 17.4907

Table 10: Mean and standard-error of final performance for the comparison of VRKN and RSSM on all
tasks for the sensor fusion task without transition noise.

VRKN

RSSM

Cheetah Run
Walker Walk

Cartpole Swingup
Cup Catch

594.5483 + 13.6106
663.4760 £ 68.0791
546.1525 + 64.0839
809.5620 +£ 69.0404

480.7173 £ 18.8966
635.1461 + 68.1526
354.1156 + 51.2910
478.1520 £ 60.6500

Table 11: Mean and standard-error of final performance for the comparison of VRKN and RSSM on all
tasks for the sensor fusion task with transition noise.

35

Published in Transactions on Machine Learning Research (10/2022)

Cheetah Run o = 0.2 Walker Walk o = 0.2 Cartpole Swingup o = 0.3 Cup Catch 0 = 0.3
1,000 £000 £000 £000

g — VRKN
£ 80 _Rssu 800 800 800
600 4 600 600 600
el
£ 400 = = 400 400 400
()
2 2001 200 200 - 200 - — -
€3]

0 : : ‘ : 0 : : ‘ : 0 : : ‘ : 0 : : ‘ ‘

02 04 06 08 10 02 04 06 08 10 02 04 06 08 10 02 04 06 08 10
Time Steps (x10°) Time Steps (x10°) Time Steps (x10°) Time Steps (x10°)

Figure 30: Comparison of VRKN and RSSM on all tasks considered for the sensor fusion task with transition
noise. The o in the title indicates the standard deviation of the Gaussian transition noise.

Cheetah Run o = 0.2 Walker Walk o = 0.2 Cartpole Swingup o = 0.3 Cup Catch 0 =0.3
1,000
900 1 | e—
£ 800+ B B ¥
% 7004 B B
6004 R R
S 4004 1 1
£ 300+ B B
B 2001 1 i 1 1 :
100 B B + B
0 T T T T T T T T
. — . — =z — . —
< Z < Z < z & 2
& & & = S = = &

Figure 31: Box plots of final performance for the comparison of VRKN and RSSM on all tasks for the sensor
fusion task with transition noise.

g

Model Input

VRKN

RSSM

Figure 32: Trajectory sample of the noisy Cup Catch task.

Published in Transactions on Machine Learning Research (10/2022)

Ground Truth

Model Input

Figure 33: Trajectory sample of the noisy Cheetah Run task.

E

Model Input

Figure 34: Trajectory sample of the noisy Cartpole Swingup task.

- o

e /

Ground Truth

Y
nn

Model Input

L Jh e

-
-

Figure 35: Trajectory sample of the noisy Walker Walk task.

: \ A
MY AN

37

Published in Transactions on Machine Learning Research (10/2022)

&

e I

_, 1,000
g —RSSM
£ 8009 —Stoch-RSSM 30
~ 6004 — Stoch-RSSM 230 -
3 — MCD-Stoch-RSSM 30
< 400 5 e
< |] no
S 200+ N _

=
=

Cup Catch Reacher Easy

g
~ i A AN
z ,
ol
2, il RPSeVY" " §
=
<5

Cheetah Run

Walker Walk

Figure 36: Another, sub-sequence of a cup
catch trajectory. The first image shown
here is the first image in the sequence. Nei-
ther the ball nor the cup is visible, i.e.,
the approaches have no information about
their whereabouts and have to rely on their
initial belief. As the model, towards the
end of the agent’s training, saw plenty of
trajectories with caught balls, the VRKN’s
initial belief appears reasonable. Further,
the VRKN’s belief does only change min-
imally over time while the RSSM halluci-
nates movements without any visual infor-
mation indicating them.

Cartpole Swingup

02 04 06 08
Time Steps (x10%)

1.0

02 04 06 08
Time Steps (x10%)

1.0 02 04 06 08 1.0
Time Steps (x10%)

Figure 37: Evaluating of different state sizes and Bayesian treatment of the stochastic baseline introduced in
(Hafner et al., 2019) using PlaNet-agents. Neither an increased state-size, nor Bayesian treatment increases

the performance.

38

	Introduction
	Inference and Learning in State Space Models
	Variational Inference for State Space Models
	Model Learning under Different Inference Assumptions
	The Interplay of Policy Optimization and Regularization

	Variational Recurrent Kalman Networks
	The VRKN's Dynamics Model
	Inference Model
	Generative Model
	Stochastic Gradient Variational Bayes for Model Learning
	Using the Model for Online Control and Reinforcement Learning
	Sensor Fusion

	Evaluation
	Evaluation of the Effect of Epistemic Uncertainty on Different Smoothing Architectures
	Evaluation on Tasks where Aleatoric Uncertainty Matters
	Partial Observability through Occlusions
	Dealing with Missing Observations
	Fusing Information from Multiple Sensors at Different Frequencies

	Related Work
	Conclusion
	Derivations
	Lower Bound Objective
	Extended Backward Pass for Smoothed Dynamics

	Details on Introductory Example
	Details on Experiment Setup, Baselines and Hyperparameters
	Smoothing RSSM
	RSSM with Monte Carlo Dropout
	Missing Observations and Fusion for RSSM.
	Proprioceptive Joints in Fusion Tasks
	Hyperparameters

	Comprehensive Experiment Results and Visualizations
	Comprehensive Results for the Comparison of the Different RSSM Versions in Section 4.1 (Figure 4)
	Comprehensive Results for VRKN and RSSM Comparison in Section 4.1 (Figure 5)
	Comprehensive Results for Occlusion Experiments in Section 4.2.1 (Figure 7)
	Comprehensive Results for Missing Observation Experiments in Section 4.2.2 (Figure 9)
	Comprehensive Results for Sensor Fusion Experiments in Section 4.2.3 (Figure 10)
	Qualitative Image Reconstructions for Noisy-Dreamer Experiments
	Further Evaluation of Stochastic Baseline from Hafner et al. (2019)

