
Universally Composable
Verifiable Random Oracles

Master’s Thesis of

Tim Scheurer

at the Department of Informatics

KASTEL – Institute of Information Security and Dependability

Reviewer: Prof. Dr. Jörn Müller-Quade

Second reviewer: Prof. Dr. Thorsten Strufe

Advisor: M.Sc. Michael Klooß

18. April 2022 – 18. October 2022

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, 18.10.2022

. .

(Tim Scheurer)

Abstract

Random Oracles are frequently used in cryptography to construct very efficient instanti-

ations of powerful cryptographic primitives. Nevertheless, this practice is not sound in

general as the uninstantiability result by Halevi et al. (JACM ’04) for random oracles by

any function family shows.

The Random Oracle Model can be made sound by instantiating the random oracle not

with a locally computable hash-function, but by using an interactive protocol. In reality,

such an interactive protocol may involve a trusted server that is reachable at some address

over the internet. This server could use one of the usual techniques such as lazy sampling
or the evaluation of a pseudo-random function to provide the random oracle.

One obvious drawback of this approach is a large amount of interaction each time a random

oracle output is involved in some computation. We want to reduce this interaction to a

minimum. First, it is clear that to circumvent the impossibility result from above, a party

holding some input and wishing to know the corresponding random oracle output has

to interact with another party in some way. This is, however, not the only way in which

random oracles are commonly used within cryptographic protocols. Another use case first

has a party 𝐴 query the oracle on some input, thereby receiving a hash. 𝐴 subsequently

sends both input and hash (all in the context of some protocol) to a second party 𝐵 and

wants to convince 𝐵 of the fact that the oracle has been queried correctly. A simple way

for 𝐵 to check correctness is to simply recompute the hash, but in our setting, this entails

interaction.

The wish to allow this second use case to be non-interactive leads to the notion of a

Verifiable Random Oracle (VRO) as an augmentation of a random oracle. Abstractly, a

VRO consists of two oracles. The first part behaves like a random oracle whose output

is augmented with a proof of correct evaluation. Using this proof, the second oracle can

be used to publicly verify the correct evaluation of the random function. While this

formulation does not inherently force verification to be non-interactive, the introduction

of explicit proofs does at least allow for it.

In this thesis, we first formalize the notion of a VRO in the Universal-Composability

framework of Canetti (FOCS ’01). We then apply VROs to two cryptographic applications

formulated in the Random Oracle Model and show that they remain sound. To show that

our definition is sensible, we give several protocols realizing the ideal VRO functionality

ranging from protocols for a single trusted party to distributed protocols allowing for

some malicious corruption. We also compare VROs to existing primitives.

i

Zusammenfassung

Random Oracles werden häufig in der Kryptographie eingesetzt um sehr effiziente In-

stanziierungen mächtiger kryptographischer Primitive zu konstruieren. Jedoch ist diese

Praxis im Allgemeinen nicht zulässig wie verschiedene Nicht-Instanziierungs-Ergebnisse

für Random Oracles mittels lokal berechenbarer Familien von Funktionen durch Halevi et
al. (JACM ’04) zeigt.

Die Random Oracle Modell kann sicher eingesetzt werden, indem Random Oracles nicht

mit einer lokal berechenbaren Hashfunktion, sondern stattdessen mit einem interaktiven
Protokoll instanziiert werden. In der realen Welt könnte solch ein interaktives Protokoll

beispielsweise aus einem vertrauenswürdigen Server, welcher über das Internet erreichbar

ist, bestehen. Dieser Server würde sodann eine der bekannten Techniken wie lazy sampling
oder das Auswerten einer Pseudo-Zufälligen Funktion verwenden, um die Funktionalität

eines Random Oracle bereitzustellen.

Ein klarer Nachteil dieses Ansatzes ist die große Menge an Interaktion, die bei jeder

Berechnung, die eine Auswertung des RandomOracle beinhaltet, nötig ist.Wir wollen diese

Interaktion auf ein Minimum reduzieren. Um obiges Unmöglichkeitsresultat zu umgehen,

muss die Auswertung des Random Oracle auf einer frischen Eingabe Interaktion der

auswertenden Partei mit einer anderen Partei beinhalten. Dies ist jedoch nicht der einzige

Verwendungszweck von Random Oracles, der häufig in kryptographischen Protokollen

auftritt. Bei einem weiteren solchen Zweck wertet zunächst eine Partei 𝐴 das Orakel auf

einer Eingabe aus und erhält einen Hashwert. Im Anschluss sendet𝐴 Eingabe und Ausgabe

(im Kontext eines Protokolls) an eine zweite Partei 𝐵 und möchte 𝐵 davon überzeugen,

dass das Random Oracle korrekt ausgewertet wurde. Eine einfache Möglichkeit dies zu

prüfen besteht darin, dass 𝐵 selbst eine Auswertung des Random Oracle auf der erhaltenen

Eingabe tätigt und die beiden Ausgaben vergleicht. In unserem Kontext benötigt dies

jedoch erneut Interaktion.

Der Wunsch diesen zweiten Verwendungszweck nicht-interaktiv zu machen führt uns

zum Begriff eines Verifiable Random Oracle (VRO) als Erweiterung eines Random Oracle.

Abstrakt besteht ein VRO aus zwei Orakeln. Das erste Orakel verhält sich wie ein Random

Oracle dessen Ausgabe um einen Korrektheitsbeweis erweitert wurde. Mit Hilfe dieses

Beweises kann das zweite Orakel dazu verwendet werden öffentlich die korrekte Auswer-

tung des Random Oracle zu verifizieren. Obwohl diese Orakel-basierte Formulierung nicht

notwendigerweise nicht-interaktive Verifikation besitzt, so erlaubt jedoch die Einführung

epliziter Korrektheitsbeweise dies.

In dieser Masterarbeit formalisieren wir zunächst den Begriff eines VRO im Universal-

Composability Framework von Canetti (FOCS ’01). Danach wenden wir VROs auf zwei

kryptographische Anwendungen an, die in ihrer ussprünglichen Formulierung das Random

iii

Oracle Modell verwenden, und zeigen, das deren Sicherheitseigenschaften erhalten bleiben.

Um zu zeigen, dass unsere Definition realisierbar ist, konstruieren wir mehrere Protokolle,

die die ideale VRO Funktionalität realisieren. Diese reichen von Protokollen für eine

einzelne vertrausenswürdige Partei bis hin zu verteilten Protokollen, die eine gewisse

Menge an böswilliger Korruption erlauben. Wir vergleichen weiterhin VROs mit ähnlichen

existierenden Primitiven.

iv

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Motivation . 1

1.2. Goal . 3

1.3. Technical Overview . 4

1.3.1. The Ideal Functionality . 4

1.3.2. Applications . 5

1.3.3. Challenges . 6

1.3.4. Instantiations . 7

1.4. Related Work . 10

1.5. Contribution . 11

1.6. Organization . 11

2. Preliminaries 13
2.1. Definitions and Notation . 13

2.2. The Random Oracle Model . 14

2.3. Multi-Party Computation . 14

2.4. The Universal Composability Framework 15

2.4.1. The Universal-Composition Theorem and Hybrid Models 18

2.4.2. Some Ideal Functionalities and Notation 19

2.5. Cryptographic Primitives . 21

2.5.1. Verifiable Random Functions . 21

2.5.2. Simulatable Verifiable Random Functions 22

2.5.3. Fully-Homomorphic Encryption 23

2.5.4. Proof Systems and Related Notions 27

2.5.5. Extractable Non-Interactive Witness-Indistinguishable Arguments 32

2.5.6. Sigma Protocols . 34

3. The Verifiable Random Oracle Model 37
3.1. The Ideal VRO Functionality . 37

3.1.1. The Actual Functionality . 37

3.1.2. Comparison with Existing Functionalities 41

3.1.3. Design Decisions . 42

3.2. The VROM . 45

3.3. Comparing Random Oracles to Verifiable Random Oracles 46

v

Contents

3.4. An Alternative Version . 48

4. Applications 49
4.1. Full-Domain Hash . 49

4.1.1. Definition of Security . 50

4.1.2. FDH in the ROM . 52

4.1.3. FDH in the VROM . 52

4.1.4. Proof of Security . 55

4.1.5. Final Thoughts . 58

4.2. The Fischlin Transformation . 58

4.2.1. Definition of Security . 59

4.2.2. The Fischlin Transformation in the ROM 62

4.2.3. The Fischlin Transformation in the VROM 69

4.2.4. Proof of Security . 70

4.2.5. Universally Composable Transferable Zero-Knowledge 74

4.2.6. In the VROM . 83

4.2.7. Removing the Need for Unique Proofs 86

4.2.8. Final Thoughts . 88

5. VRO Instantiations 91
5.1. ROM Instantiation . 91

5.1.1. Small Codomains Using Truncation 92

5.2. Trusted Party Instantiation . 94

5.3. Allowing Corruption . 99

5.3.1. Distributing Protocols for Trusted Parties 99

5.3.2. The PRF Construction . 100

5.4. Adding Privacy Using FHE-Encryption 102

5.4.1. Goals . 103

5.4.2. Rationale for FHE . 103

5.4.3. Building Blocks . 103

5.4.4. The Protocol . 105

5.4.5. Proof of Security . 108

5.4.6. Reducing to Semantic Security 125

5.4.7. Using Singly-Homomorphic Encryption 126

5.4.8. Relying on Preprocessing . 126

5.4.9. Eliminating Secure Channels . 126

5.4.10. Analyzing Efficiency . 127

5.4.11. Analyzing Scalability . 128

5.5. Relaxing the VRO . 129

5.5.1. Revisiting the PRF Construction 129

5.6. Strengthening the VRO . 133

5.6.1. Stronger Proofs . 133

5.6.2. Hiding Proofs . 135

5.7. Hybrid Instantiations . 135

5.8. Multiple Sessions . 139

vi

Contents

5.9. Semi-Honest Adversaries . 140

5.10. General MPC . 141

5.10.1. Client-Server Protocols . 142

5.10.2. General Multi-Party Protocols . 144

6. Related Primitives 145
6.1. Comparing VRO Definitions . 145

6.1.1. Syntax . 145

6.1.2. Security . 146

6.1.3. Comparison . 147

6.1.4. Other Differences . 148

6.2. Comparing VRO and OPRF Variations . 149

6.2.1. OPRF Variations . 149

6.2.2. Comparison . 155

6.2.3. Evaluating the FHE Construction 156

6.3. Generic Constructions from OPRF . 156

6.3.1. Relation between OPRF and Hybrid Instantiations 159

6.4. Using a Concrete OPRF . 159

6.5. VOPRF from VRO . 161

6.5.1. Naive Approach . 161

6.5.2. Arguments Against an Unconditional Construction 162

6.5.3. Relying on Computational Assumptions 162

7. Future Work 163
7.1. Adaptive Adversaries . 163

7.2. Standalone Security . 163

7.3. More Tasks . 164

7.4. Weaker Randomness Guarantees . 164

7.5. Global VRO . 164

7.6. More Efficient Instantiations . 164

8. Conclusion 165

Bibliography 167

A. Appendix 173
A.1. Standard Definitions . 173

A.1.1. Pseudo-Random Functions . 173

A.1.2. Trapdoor One-Way Permutations 173

A.1.3. Digital Signature Schemes . 174

A.2. An Ideal VRO Functionality with Algorithmic Verification 176

A.3. Additional Remarks . 179

A.3.1. Remarks about the FHE Protocol 179

A.3.2. Remarks About OPRF Variants 182

vii

Contents

A.4. Relaxing the VRO (Continued) . 183

A.4.1. Leaking Only the Hash . 183

A.4.2. Leaking Both Input and Hash . 183

A.4.3. Leaking Only the Input . 186

A.5. An Attack on the Randomized Fischlin Transform 187

A.6. Reducing to Semantic Security . 192

A.7. Simplifying the FHE Construction for Semi-Honest Adversaries 196

A.8. Using VROs in OPRF Protocols . 197

viii

List of Figures

1.1. Typical interaction between two partiesA and B using a random oracle RO. 3

2.1. The UC experiment with real adversary A and protocol 𝜋 (left) and with

simulator S and ideal functionality F (right). The multiple lines indicate

thatZ may interact with multiple protocol parties. 16

2.2. The security game for a simulatable VRF. 23

2.3. The zero-knowledge security game for NIZKs in the ROM. 29

2.4. The two UC Zero-Knowledge functionalities we use. The parts not high-

lighted in gray make up the NIZK functionality. Including them yields the

TZK functionality. Where a highlighted passage succeeds an underlined

one, the highlighted portion is meant to replace the underlined one. . . . 32

2.5. The WI game for NIWI protocols. 34

2.6. Schematic run of a Σ-protocol. 34

3.1. The UC Verifiable Random Oracle functionality. 39

3.2. The UC Signature functionality. 40

4.1. The FDH-ROM procedures. 52

4.2. The FDH-VROM procedures. 53

4.3. The original (left) and the randomized version (right) of the Fischlin prover. 65

4.4. The Fischlin verifier in the ROM. 66

4.5. The Fischlin zero-knowledge simulator in the ROM. 67

4.6. The online extractor in the ROM. 69

4.7. The Fischlin prover in the VROM. 71

4.8. The Fischlin verifier in the VROM. 71

4.9. The Fischlin online extractor in the VROM. 71

4.10. The Fischlin zero-knowledge simulator in the VROM. 73

5.1. The algorithms run by a party P. 95

5.2. The algorithms run by the trusted party T 95

5.3. The client algorithms of 𝜋𝑃𝑅𝐹 . 101

5.4. The server algorithms of 𝜋𝑃𝑅𝐹 from the perspective of server S𝑛 102

5.5. The UC Zero-Knowledge functionality. 105

5.6. The UC Bulletin-Board functionality. 106

5.7. The client algorithms for 𝜋𝐹𝐻𝐸 from the perspective of a party P. 109

5.8. The server algorithms for 𝜋𝐹𝐻𝐸 from the perspective of server P𝑛 110

5.9. The algorithms used by the simulator. 112

5.10. The Prove algorithm sent by the simulator. 131

5.11. The client algorithms for 𝜋𝐻𝑦𝑏 . 137

ix

List of Figures

5.12. Visualization of the typical flow of messages for a hash query by a caller

C on input 𝑞 with servers S1, . . . ,S𝑛 and ideal functionality F . Time

advances from left to right. 143

6.1. The Pseudorandomness game for a gVRO. 147

6.2. The Weak Unforgeability game for a gVRO. 147

6.3. An ideal OPRF functionality for evaluating a random function. 151

6.4. An ideal OPRF functionality parametrized by a PRF 𝐹 which it evaluates. 151

6.5. An ideal VOPRF functionality (taken from [2], figure 1). 153

6.6. A second ideal VOPRF functionality (taken from [66], figure 2). 154

A.1. The PRF security game. 174

A.2. The TDOWP security game. 174

A.3. The sEUF-CMA security game. 175

A.4. An alternative variant of the F𝑉𝑅𝑂 functionality where proofs are verified

algorithmically. 178

A.5. The UC Key-Registration functionality. 181

x

List of Protocols

1.1. Simplified pseudo-code for the PRF Construction. 8

1.2. Simplified pseudo-code for the augmented PRF Construction. 9

4.1. The sEUF-CMA security game in the VROM. 51

4.2. The reduction from EUF-CMA in the VROM to EUF-CMA in the ROM. For

space reasons we use the following abbreviations: HashProof(HP), Hash(H),
Hashing(HA), SimInfo(SI), Verify(VFY), Verified(V), Key(K). 56

4.3. The reduction from online extractability in the ROM to online extractability

in the VROM. 75

xi

1. Introduction

In this chapter, we first motivate our approach and our goals for this thesis. Then we give

a technical overview of our results. We briefly discuss related work before stating our

contribution. We conclude this chapter by laying out the organization of the remaining

parts of this thesis.

1.1. Motivation

While giving all parties of a protocol oracle access to a random function had been previously

done, random oracles (RO) and the random oracle model (ROM) have been explicitly defined

in the seminal paper by Bellare and Rogaway in 1993 [7]. Since then, random oracles have

been used to construct many efficient constructions for cryptographic primitives. These

include BLS short signatures [12] where signatures consist of a single group element and

which in addition allow for aggregation as well as batch verification of signatures, and

OEAP encryption [6]. For some primitives, either the first known construction was in the

ROM and only later constructions in the standard model
1
were found, e.g. the first HIBE

by Gentry and Silverberg [56] and later the scheme by Boneh and Boyen [11], or only

ROM-based constructions are efficient, e.g. compare the efficient RSA-based signature

scheme PSS [8] and the (inefficient) scheme by Hohenberger and Waters [65].

Ideal Properties of Random Oracles The strength of random oracles lies in their ideal

properties which are much stronger than standard model properties such as collision
resistance or universal one-wayness [76]. The main properties which can be identified are

observability/extractability and programmability. Informally, the former means that a party

claiming to know the RO response for some input 𝑥 either has queried the RO on 𝑥 , in

which case a reduction algorithm providing the RO can extract 𝑥 , or otherwise, the party
(even allowing it to be unbounded) has a chance no better than guessing of knowing the

correct hash. Programmability, on the other hand, even allows for active interference

by the entity providing the oracle. It allows setting outputs of the RO to some chosen

value under the restriction that they remain independent and uniform. This gives the

reduction great power, e.g. by allowing it to learn the pre-image of each response under

some one-way permutation or to embed a challenge to a hard problem.

Intuitively, both of these properties crucially rely on the fact that the RO is provided

as an oracle, which in a reduction is provided by the reduction algorithm. And indeed,

Halevi et al. [22] showed that the random oracle methodology of instantiating random

oracles with hash function families H = {𝐻pk}pk∈PK is in general unsound. This has

sparked a controversy over the continued use of random oracles with opponents arguing

1
That is, the model where there are no random oracles.

1

1. Introduction

that provable security is necessary while proponents refer to the fact that no practical

attack on a cryptographic primitive relied on the discrepancy between the hash function

used and a RO. Some even argue that (more complicated) schemes designed to not rely on

random oracles have introduced additional weaknesses which did not exist in the original

RO-based schemes [70].

Introducing Interaction As has been shown to be the case in various cryptographic

contexts, the above discussion can be wholly circumvented by using interaction to evaluate
the RO. The attack in [22] is based on the fact that the adversary is given the code of the

hash function that is used within the attacked protocol. By restricting its access to this

code, e.g. by letting it be executed by a trusted third party. When using a pseudo-random
function as the hash function, this approach can be shown to securely instantiate a RO.

Such interaction, while allowing for provably secure schemes, is oftentimes either

unwanted or impossible in the case of isolated systems. Situations where interaction is

unwanted include non-interactive zero-knowledge proofs, e.g. those achieved by using

the Fiat-Shamir transform [44]. Their main purpose lies in generating proofs 𝜋 , attesting

to the correctness of some statement 𝑥 , such that 𝜋 can at some later point in time be

verified without the verifier having to contact any other party. While a fully interactive RO

may still have the advantage over interactive proofs of reducing the required availability

of the prover
2
, this situation seems unsatisfactory. For the prover, on the other hand,

some amount of interaction may be tolerable. Proofs can be generated once and later be

non-interactively verified by many other parties.

An Alternative Use Case of Random Oracles The main insight on the path to achieving

partially non-interactive use of random oracles is the following. In many protocols, parties

which collectively could be called verifiers (e.g. of signatures, zero-knowledge proofs,

etc.) only contain instructions involving a random oracle RO of the form ℎ
?

= RO(𝑞) and
where both 𝑞 and ℎ were in some way computed from the parties’ input or the protocol

messages received so far. A typical such interaction is shown in Figure 1.1. The party A
has input 𝑞 and evaluates RO at this input, thereby obtaining the hash ℎ. Both data are

sent within some protocol message𝑚 to a second party B which aborts if the evaluation

was done incorrectly. Based on the extractability of random oracles described above, such

comparisons can only succeed with large probability if 𝑞 has previously been submitted

to the RO.
3
This submission was presumably done by another protocol party wishing to

convince the verifier that it used the honest RO output in its computation.

Adding an Interface for Verification Our approach is based on this last observation.

Informally, we augment the notion of a random oracle RO by another oracle ROVfy. As
before, RO is used to query the RO on inputs 𝑞. In addition to the hash ℎ, we allow RO
to output a second value 𝜋 . The oracle ROVfy receives as input a triple (𝑞, ℎ, 𝜋) and
returns a bit 𝑏 ∈ {0, 1} indicating whether ℎ = RO(𝑞) holds (with respect to 𝜋). While

we have seen that queries to RO necessarily involve interaction, our goal is to instantiate

ROVfy without having to resort to interaction. To be called a proof, 𝜋 should satisfy some

2
With this we mean the ability for a verifier to interact with the prover, i.e. over some communication

network.

3
Briefly assuming the common case of a super-polynomial codomain.

2

1.2. Goal

A B
ℎ = RO(𝑞)
...

𝑚 = (𝑞, ℎ, . . .)

if ℎ ≠ RO(𝑞) do
abort

...

Figure 1.1.: Typical interaction between two parties A and B using a random oracle RO.

form of unforgeability condition. As a minimal requirement, it should be computationally

infeasible (or even impossible) to come up with a proof 𝜋 ′ attesting to the fact that ℎ′

is the hash associated to 𝑞, if in reality ℎ = RO(𝑞) with ℎ ≠ ℎ′. In addition to this basic

property, we have identified further security properties and captured them within an ideal

functionality in the UC framework. This, among others, includes modeling verification of

proofs as a local computation which may not involve any interaction with other parties.

1.2. Goal

We describe the goals we are striving to achieve in this thesis with our model and instanti-

ations thereof.

Modular Analysis Random oracles are almost exclusively used within other protocols.

As VROs can be viewed as a replacement for random oracles in certain contexts, the same

holds for them. The soundness of this practice relies on strong composability guarantees

by the (V)RO. Definitions that are based on games played between a challenger and an

adversary do not provide any composability guarantees per se. Simulation-based definitions

are intended to provide the required composability but differ in their strength. While

stand-alone simulation-based security is secure under non-concurrent composition (see

[57]), i.e. only one protocol may be executing at a time, but multiple protocols may be

“active” at the same time, UC security allows for arbitrary composition. As the typical

use of random oracles is concurrent with the surrounding protocol, only striving for the

strongest form of composability, i.e. UC, seems to be sufficient.

Provable Security In contrast to the heuristic security guarantees provided by instan-

tiating random oracles using locally computable families of hash functions, we aim to

realize our VRO definition using a provably secure protocol. Such a protocol can thus be

employed in contexts in which one does not wish to rely on heuristics.

Corruption Resistance To further increase the resilience, we, apart from realizations

involving a single trusted server, seek to reduce trust in individual parties by constructing

distributed protocols for a VRO. These protocols should be resistant to some form of

3

1. Introduction

passive and/or active corruption by the parties providing the VRO. For parties using the

VRO, no amount of deviation from the honest protocol should allow them to compromise

security.

1.3. Technical Overview

In this section, we give a high-level technical overview of our definitions and constructions.

1.3.1. The Ideal Functionality

We give an overview of the ideal VRO functionality. The formal definition will be in the

UC framework by Canetti [18]. The description given here conveys the main intended

behavior, but exact security guarantees regarding the use of the functionality within other

protocols can only be derived from a formal specification and have to be viewed in the

context of the execution model defined by the UC framework.

Introduction to the UC Framework We assume familiarity with the UC framework but

quickly recount the main structure. Security of a protocol 𝜋 is defined by comparing an

execution of 𝜋 to an execution where the participants interact with an ideal functionality

F capturing the intended behavior. The former is referred to as the real interaction and the
latter as the ideal interaction. In the real interaction, there is an additional entity A called

the adversary which tries to break the security of 𝜋 by corrupting parties according to some

corruption model. In our case we allow the adversary to do static malicious corruptions
which means that the adversary can control the complete behavior of corrupted parties,

but can only corrupt parties which have not yet participated otherwise in the protocol.

As the ideal interaction is secure by definition, to argue that 𝜋 is as secure while being

attacked by A we compare the two interactions. If the interactions are indistinguishable

then 𝜋 has to be as secure as running the ideal interaction. Indistinguishability is defined

with respect to an additional entity Z called the environment which executes either a

session involving 𝜋 or F and gives input and receives output from uncorrupted parties. It

also interacts with A and can communicate with it throughout the execution. As A only

exists in the real world, an ideal adversary S also called the simulator is introduced. S,
while only interacting with F , has to giveZ the same interface as if it was interacting with

A and 𝜋 . Z acts as an “interactive distinguisher” and 𝜋 is secure if the output distributions

ofZ are indistinguishable when comparing runs of the real and the ideal interaction.

Description of the Functionality Ideal functionalities in the UC framework are structured

into what we chose to call tasks. We now describe the tasks of our ideal VRO functionality

which is called F𝑉𝑅𝑂 . In addition to allowing for the retrieval of some initialization

information, e.g. a key required during the otherwise non-interactive verification process,

the functionality essentially allows parties to submit queries for two different tasks. The

first task consists in querying the random oracle portion of the VRO on some input 𝑞

and receiving both the output ℎ and proof 𝜋 .4 F𝑉𝑅𝑂 guarantees consistency; queries for

the same input 𝑞 made by different parties in the same session of F𝑉𝑅𝑂 receive the same

4𝜋 = ⊥ is allowed.

4

1.3. Technical Overview

ℎ. Outputs for different inputs behave as if they were sampled independently from the

codomainH and different instances of F𝑉𝑅𝑂 are totally independent. As the UC adversary

is in control of the network, to model the necessary interactiveness of this task we have to

allow the adversary to prohibit the delivery of individual responses.

So far we have not described how proofs are generated by F𝑉𝑅𝑂 . As in this idealized

context, proofs are merely strings without any inherent meaning, we let their concrete

form be chosen by the adversary. There are some further technicalities to this which

we will describe in the main part of the thesis. The real definition involves letting the

adversary provide an algorithm Prove for generating proof strings which can be run within
F𝑉𝑅𝑂 without involving the adversary except during an initialization step. Briefly, this is

necessary as we want to allow proof strings for input 𝑞 and output ℎ to depend on both of

these data, but do not wish to provide them to the adversary.

For technical reasons we also have to provide some leakage to the adversary. Namely, for

each hash query with input 𝑞 by some party P we hand the length ∥𝑞∥ of 𝑞 to the adversary.
The reason for the latter is that during simulation the simulator has to be able to extract 𝑞

from any corrupted party making a hash query. At the same time, an honest party doing a

hash query has to be able to hide its input 𝑞 from the adversary in the real execution. If

we want to allow verifiable random oracles with a priori unbounded input length, these

two requirements are incompatible unless we add the aforementioned leakage. Informing

the simulator about the identity of P is necessary to allow the simulator to provide an

accurate simulation towards the (also simulated) adversary.

Verification requests contain an input 𝑞, the supposed hashℎ, a proof 𝜋 , and potentially a

verification key vk obtained during initialization. Answers to such requests contain a single
bit 𝑏. Receiving 𝑏 = 1 signals to the party making the request that ℎ is the correct hash

associated with 𝑞 in this session of F𝑉𝑅𝑂 . On the other hand, 𝑏 = 0 can mean one of two

things. Either ℎ is not the correct hash of 𝑞, or 𝜋 is an incorrect proof. These two properties

ensure that proofs are perfectly unforgeable. Note that we explicitly allow verification

requests for correct (𝑞, ℎ), but containing some 𝜋 which was not previously output by F𝑉𝑅𝑂
to verify under certain conditions. This relaxation is similar to the distinction between

EUF-CMA-secure and sEUF-CMA-secure signature schemes.

To force protocols attempting to realize the functionality to have a non-interactive

verification step, the adversary is not given the ability to delay responses to verification

requests. These are guaranteed to be answered immediately. As part of this modeling,

we use the framework developed by Camenisch et al. in [16] which allows forcing the

adversary to answer certain types of messages within the same activation. Any protocol

for F𝑉𝑅𝑂 must thus realize verification using only local computations and possibly calls to

ideal functionalities which themselves are guaranteed to respond and can not be delayed

by the adversary.

1.3.2. Applications

Next, we apply F𝑉𝑅𝑂 to two cryptographic applications.

Full-Domain Hash The first is the full-domain hash (FDH) signature scheme. Briefly, a

signature of a message𝑚 is obtained by hashing ℎ = RO(𝑚) using the random oracle

5

1. Introduction

RO and then computing the pre-image of ℎ under a trap-door one-way permutation

(TDOWP) 𝑓 , i.e. 𝜎 = 𝑓 −1(ℎ). In the security proof of FDH, essential use is made of both

the extractability as well as the programmability of the RO. The reduction is given a value

𝑥 in the domain of the TDOWP and is successful if it can compute 𝑓 −1(𝑥). To achieve this

while having to answer queries to the signing oracle it has to provide to the underlying

FDH adversary, 𝑥 is embedded at some randomly chosen RO query𝑚. All other queries are

answered in such a way that the reduction knows a pre-image under 𝑓 of the returned hash.

Using this pre-image, signing queries for RO input corresponding to it can be answered

with a valid signature. If the FDH adversary is successful, it will produce a pair (𝑚∗, 𝜎∗)
such that 𝜎∗ is a valid signature for𝑚∗ and𝑚∗ has not been submitted to the signing oracle.

The reduction now hopes for𝑚 =𝑚∗ as then 𝜎∗ is the pre-image of 𝑥 under 𝑓 . Note that

extractability has indeed been used to ensure that𝑚∗ is among the queries, except with

probability one over the cardinality of the domain of the TDOWP.

In the main part of this thesis, we show how to modify this variant of FDH in the ROM

to rely on F𝑉𝑅𝑂 instead. The modification is based on the observation that verifying a

signature 𝜎 for message𝑚 consists in checking RO(𝑚) = 𝑓 (𝜎). Hence, we let the signer
include a proof 𝜋 attesting to (𝑚,RO(𝑚)) as well as RO(𝑚) itself in the signature. The

new verification procedure involves performing the equality check not by re-querying𝑚,

but by verifying 𝜋 . We additionally show that RO(𝑚) can be excluded from the signature

while retaining security.

Fischlin Transformation The second application is to the Fischlin transform, which is a

generic transformation for a certain class of Σ-protocols to make them non-interactive

in the ROM. The differences between it and the Fiat-Shamir transform lie in the online
extractability of the Fischlin transform. Informally, this requires being able to extract

witnesses for valid proofs from the RO queries of the prover and in particular without

having to rewind the prover. We show that also in this case the random oracle can soundly

be replaced with F𝑉𝑅𝑂 . This application was the main motivation for restricting the leakage

of F𝑉𝑅𝑂 upon each query to the length of the input. Leaking the full input would allow

the adversary to extract witnesses from honest provers, based on the online extractability

of the Fischlin-transformed protocol.

We even go a step further and show that both protocols transformed with the Fischlin

transform in the ROM as well as those using F𝑉𝑅𝑂 realize an ideal functionality F𝑇𝑍𝐾
modeling transferable zero-knowledge proofs.

5
Note that for this application, a slight mod-

ification to the F𝑉𝑅𝑂 -based version of the Fischlin transform has to be made to reestablish

the non-malleability of proofs required by F𝑇𝑍𝐾 . This property is destroyed by naïvely

including proofs produced by F𝑉𝑅𝑂 in the zero-knowledge proof. Our solution to this

problem relies on strong one-time signatures.

1.3.3. Challenges

Before we describe the protocols with which F𝑉𝑅𝑂 can be realized, we go over the main

technical difficulties posed by our definition.

5F𝑇𝑍𝐾 is a variant of a non-interactive zero-knowledge proof functionality F𝑁𝐼𝑍𝐾 which we have defined

for this thesis.

6

1.3. Technical Overview

• Unpredictability: Hash values have to be offline unpredictable to the adversary/envi-
ronment. This means that the adversary can not be allowed to possess knowledge of

any keying material which would allow it to predict the hash ℎ corresponding to an

input 𝑞 without actually querying the VRO. Such keying material can not exist in

the ideal interaction as there hashes are chosen lazily by F𝑉𝑅𝑂 , hence the simulator

can not provide such information to the environment.

• Non-Interactive Verification: Answers to verification requests have to be either

locally computable or at least they can not be interfered with by the adversary.

• Unforgeable Proofs: It has to be infeasible for the adversary, based on the knowl-

edge it obtains either by partially controlling the entities computing hash values or

by interacting with honest protocol parties in an arbitrary manner, to come up with

a valid proof 𝜋 for some (𝑞, ℎ) such that ℎ is not the true hash value for 𝑞.

• Input/Output Hiding: As stated above, the only information the adversary learns

upon a hash query is the length of the input, the identity of the party making the

query, and the fact that a hash query has occurred. This means both the full 𝑞 and ℎ

have to be hidden from the adversary in any protocol trying to realize F𝑉𝑅𝑂 . This
prevents any protocol where 𝑞 is sent in the clear to some set of servers, even if no

single server can compute ℎ and the proof 𝜋 on its own. As we will see, this turns

out to be the main obstacle in realizing F𝑉𝑅𝑂 .

1.3.4. Instantiations

We now first describe a protocol that achieves the first three properties. We then modify it

to also achieve the third property using primitives such as fully-homomorphic encryption
(FHE) and extractable witness-indistinguishable arguments (NIWI). The first one of these

constructions is essentially the PRF construction from [35], the second protocol is original

to this thesis.

PRF Construction The PRF construction is in the client-server model, meaning the main

functionality of the VRO is provided by a fixed number of servers with well-known

identities. While it in principle works with any number 𝑛 of servers and allows for

𝑡 < 𝑛/3 malicious parties, the runtime of each party scales exponentially with 𝑡 and so the

construction is only practical for small 𝑡 . In the following we describe the protocol for the

case of 𝑛 = 4 and 𝑡 = 1.

During a trusted initialization stage, each of the four servers S𝑖 , 𝑖 ∈ [4], is given three

PRF keys 𝑘 𝑗 with 𝑗 ≠ 𝑖 , i.e. all but the one corresponding to its identity. In addition, every

server generates a key-pair (sk𝑖, vk𝑖) for a signature scheme SIG. The vk𝑖 are made public.

To create a hash and proof for input 𝑞, the party making the request sends 𝑞 in the clear to

all the S𝑖 . Server S𝑖 evaluates the PRF on 𝑞 for all of the keys in its possession, obtaining

values ℎ𝑖, 𝑗 = PRF(𝑘 𝑗 , 𝑞). It then signs the messages (𝑞, ℎ 𝑗) using sk𝑖 and obtains signatures6
𝜎𝑖, 𝑗 . All ℎ 𝑗 and 𝜎 𝑗 are returned.

6
There is a technicality here which we will resolve in the main part of the thesis.

7

1. Introduction

Client C Server S𝑖
Input: 𝑞 Holds: {𝑘 𝑗 } 𝑗∈[4]\{𝑖}, sk𝑖

Contact Servers
for 𝑖 ∈ [4] do

𝑞
for 𝑗 ∈ [4] \ {𝑖} do
ℎ𝑖, 𝑗 = PRF(𝑘 𝑗 , 𝑞)
𝜎𝑖, 𝑗 ← Sign(sk𝑖 , (𝑞, ℎ))

{(ℎ𝑖, 𝑗 , 𝜎𝑖, 𝑗)} 𝑗∈[4]\{𝑖}
endfor

Construct Hash and Proof
for (𝑖, 𝑗) ∈ [4]2, 𝑖 ≠ 𝑗 do
ℎ𝑖 = Maj({ℎ𝑖, 𝑗 } 𝑗∈[4]\{𝑖})

ℎ =
⊕

4

𝑖=1
ℎ𝑖

𝜋 = ({ℎ𝑖}𝑖∈[4], {𝜎𝑖, 𝑗 }(𝑖, 𝑗)∈[4]2,𝑖≠ 𝑗)
return (ℎ, 𝜋)

Protocol 1.1.: Simplified pseudo-code for the PRF Construction.

The responses are collected. From every three PRF outputs which according to the

protocol have been made with respect to the same key 𝑘𝑖 , the correct ℎ𝑖 = PRF(𝑘𝑖, 𝑞) is
computed via a majority vote. The result is guaranteed to be correct as at most one output

is wrong. The final hash ℎ is then computed as ℎ =
⊕

4

𝑖=1
ℎ𝑖 . Valid proofs for (𝑞, ℎ) have

to consist of four values ℎ𝑖 summing to ℎ as well as (at least) two signatures valid under

verification keys associated to two different servers for messages (𝑞, ℎ𝑖). Pseudo-code for
the generation of proofs is shown in Protocol 1.1. The function Maj is used to compute

the most common value occurring in a set 𝑆 .

This construction almost realizes F𝑉𝑅𝑂 if we disregard hiding the input. As the corrupted

server only holds three out of the total four PRF keys, it can not predict hash values on

its own. This same fact can also be exploited by the simulator to program. The simulator

can choose the outputs of the PRF instance corresponding to the unknown key freely

as long as they are distributed correctly. In this way, it can bias the hash for input 𝑞 to

the hash ℎ which it obtains from F𝑉𝑅𝑂 . This change remains hidden from the simulated

adversary. Proofs are unforgeable by the security of the used signature scheme. Modifying

an existing proof 𝜋 for (𝑞, ℎ) to be valid for (𝑞, ℎ′) with ℎ ≠ ℎ′ requires forging a signature
for one of the honest servers. Forging a proof for a yet unqueried 𝑞 even requires forging

two such signatures.

Augmenting the PRF Construction We now augment the above construction to also hide

the input. Our protocol employs strong cryptographic primitives and it is interesting

future work to either provide a simpler way to hide the input in the above protocol or to

come up with another protocol altogether.

8

1.3. Technical Overview

Client C Server S𝑖
Input: 𝑞

Holds: vk = {vk𝑙 }𝑙∈[4] Holds: {𝑘 𝑗 } 𝑗∈[4]\{𝑖}, sk𝑖
Contact Servers

(pk, sk) ← FHE.Gen(1𝜆)
𝑐 ← Enc(pk, 𝑞)
for 𝑖 ∈ [4] do

Prove knowledge of sk

(pk, 𝑐)
for 𝑗 ∈ [4] \ {𝑖} do
𝐶1 = PRF(𝑘 𝑗 , ·)
𝐶2 = Sign(sk𝑖 , (·, ·))
𝑐ℎ,𝑖, 𝑗 = Eval(pk,𝐶1, 𝑐)
𝑐𝜎,𝑖, 𝑗 ← Eval(pk,𝐶2, 𝑐, 𝑐ℎ,𝑖, 𝑗)

{(𝑐ℎ,𝑖, 𝑗 , 𝑐𝜎,𝑖, 𝑗)} 𝑗∈[4]\{𝑖}
endfor

Construct Hash and Proof
for (𝑖, 𝑗) ∈ [4]2, 𝑖 ≠ 𝑗 do
ℎ𝑖, 𝑗 ← Dec(sk, 𝑐ℎ,𝑖, 𝑗)
𝜎𝑖, 𝑗 ← Dec(sk, 𝑐𝜎,𝑖, 𝑗)
ℎ𝑖 = Maj({ℎ𝑖, 𝑗 } 𝑗∈[4]\{𝑖})

for 𝑖 ∈ [4] do
𝑤𝑖 = {𝜎𝑖, 𝑗 | 𝑖 ∈ [4] \ {𝑖}}
𝑥𝑖 = (vk, (𝑞, ℎ𝑖))
𝜋𝑖 = NIWI(𝑥𝑖,𝑤𝑖)

ℎ =
⊕

4

𝑖=1
ℎ𝑖

𝜋 = (ℎ𝑖, 𝜋𝑖)𝑖∈[4]
return (ℎ, 𝜋)

Protocol 1.2.: Simplified pseudo-code for the augmented PRF Construction.

9

1. Introduction

Roughly, to hide the input 𝑞 we let the party making the hash query encrypt it under the

public key pk of an FHE scheme that it has generated. Let 𝑐 be the resulting ciphertext. The

server then executes the same protocol as above but does so on 𝑐 using the homomorphic

properties of the FHE scheme. There are, however, two problems with this basic approach.

First, as 𝑞 is now no longer given in the clear to the servers, the simulator has to be given

a way to extract it. There are two main ways to solve this, both involve a zero-knowledge

proof of knowledge by the party making the request. We can either require a proof of

knowledge of the plaintext itself, or we can require a proof of knowledge of the FHE

decryption key. As the latter is computationally more efficient, especially if we want to

allow long inputs, we have chosen this solution. Some care has to be taken here regarding

to invalid ciphertexts being provided by corrupted parties.

Another difficulty concerns the structure of proofs. If we want to use the semantic

security of the FHE scheme to argue that the corrupted server does not gain information

about 𝑞, we can not let proofs produced by honest parties depend on the information

provided by the corrupted server. The exact argument for this is given in the main body,

but it informally goes as follows: In the game-hop where we wish to use semantic security,

the reduction does not have access to the FHE decryption key sk but has to produce proofs
which are distributed correctly. The structure of proofs, however, depends on whether a

corrupted server did its homomorphic computation honestly or not. If it did, signatures

by this server have to be included in proofs. If it did not, none can be included. Without

being able to decrypt, the reduction is unable to differentiate between a server following

or not following the protocol.

We establish this independence in the followingway. We no longer include the signatures

themselves as this leaks the identity of the signers. Instead, we only include a NIWI proof

which proves that the creator of the proof was in possession of enough signatures to create

a valid signature-based proof. In the security proof, we can then, in one of the game-hops,

switch to a hybrid where proofs are computed only from signatures by honest servers. The

environment is unable to tell the difference between these two games based on the witness-

indistinguishability of the NIWI. Simplified pseudo-code for the augmented protocol is

shown in Protocol 1.2.

In the main body of the thesis we prove that these changes are sufficient to realize F𝑉𝑅𝑂 .

1.4. Related Work

There are many primitives which involve the generation of (pseudo-)random bits destined

to be used in some higher-level protocol. Many of these primitives such as pseudo-random
generators [10], pseudo-random functions [58] and its verifiable variant, or protocols for

oblivious evaluation of pseudo-random functions (OPRF), involve a single entity which is in

possession of a secret key. Only to parties not knowing this key does the generated output

look random. VROs, on the other hand, are unkeyed primitives and are provided as a

public service to the parties in a protocol. Nonetheless, all of the just-mentioned primitives

may themselves serve as building blocks in protocols that realize a VRO and indeed we

will do so in later parts of this thesis. OPRF protocols in particular are conceptionally close,

but some major differences remain. An extensive comparison will be drawn in Chapter 6.

10

1.5. Contribution

There have also been other attempts to securely instantiate random oracles in certain

contexts. These include the use of correlation-intractable hash functions in the context of Σ-
protocols [20], point-function obfuscation [17], or universal computational extractors (UCE)
[5] which can be used to replace random oracles in various applications. Our approach,

however, is fundamentally different. While the aim of obtaining provable security instead

of the heuristic security offered by random oracles is similar, we use interaction to be able

to securely instantiate (a form of) random oracle. The other approaches mentioned, on

the other hand, are trying to find standard model properties of hash functions which can

be used to rid constructions of the need for random oracles altogether.

1.5. Contribution

Our contributions are both definitional as well as constructive. We give an ideal function-

ality F𝑉𝑅𝑂 in the UC framework and argue that it captures all relevant security properties

we intuitively expect it to have based on the motivation given in Section 1.1. We validate

our definition by applying it to two cryptographic applications, FDH signatures and the

Fischlin transformation. To be able to do this, we define security models for signatures

and a certain class of zero-knowledge proofs in the presence of VROs instead of ROs. We

then modify FDH signatures and the Fischlin transform to make use of VROs and proof

that they retain their security. A third contribution consists in the concrete constructions

realizing the definition we put forth. These constructions are applicable in different cor-

ruption scenarios up to allowing for a certain set of parties to be statically and maliciously

corrupted. We further analyze variations of F𝑉𝑅𝑂 in which we either weaken or strengthen

its properties and investigate instantiations for them.

1.6. Organization

This thesis is organized as follows. In Chapter 2 we start by giving the necessary notational

and definitional background information required to follow the rest of this thesis. Then,

in Chapter 3 we formally define the verifiable random oracle model by giving an ideal

verifiable random oracle functionality in the UC framework and compare the result to

the random oracle model. In Chapter 4 we apply our definition to two applications that

originally used the random oracle model and which we adapt to use verifiable random

oracles instead. We turn to concrete instantiations of verifiable random oracles in Chapter

5. First, we give a simple single-party instantiation based on either signatures and pseudo-

random functions or simulatable and verifiable random functions. Then we give a more

involved construction in a client-server model and which allows for some amount of static

malicious corruption of the servers and all of the clients. We also analyze relaxed variations

of our definition of verifiable random oracles which possess weaker security guarantees

but may be easier to instantiate securely. We show that this is indeed true by proving that

an existing protocol designed for a weaker, game-based definition of verifiable random

oracles securely realizes this relaxed definition. In Chapter 6 we investigate the relation

11

1. Introduction

of verifiable random oracles to other primitives defined for similar purposes. We draw a

conclusion in Chapter 8.

12

2. Preliminaries

In this chapter, we give the necessary background information used in later chapters.

2.1. Definitions and Notation

In this section, we introduce basic notation. For a probability distribution D we write

𝑠 ←$ D to generate a sample 𝑠 distributed according toD. If 𝑆 is a set, |𝑆 | is the cardinality
of 𝑆 ; we also apply this notation to vectors 𝑣 to denote the number of components |𝑣 . We

denote by 𝑠 ←$ 𝑆 sampling an element 𝑠 ∈ 𝑆 according to the uniform distribution. We will

sometimes extend this to allow sampling a subset {𝑒1, 𝑒2, · · · , 𝑒𝑖} ∈ P(𝑆) of cardinality 𝑖
by writing {𝑒1, 𝑒2, . . . , 𝑒𝑖} ←$ 𝑆 , assuming |𝑆 | ≥ 𝑖 . For 𝑛 ∈ N, we define [𝑛] := {1, 2, . . . , 𝑛}.
For a string 𝑠 ∈ {0, 1}∗ let ∥𝑠 ∥ be the length of 𝑠 .

Let A be a probabilistic Turing machine. If A runs in polynomial time in the length

of its input we call it a probabilistic polynomial-time (PPT) Turing machine. We write

𝑦 = A(𝑥 ; 𝑟) to denote (deterministically) running A on input 𝑥 and random coins 𝑟 and

producing output 𝑦. With 𝑥 ← A(𝑥) we denote the process of first sampling coins 𝑟 of

the appropriate length and runningA(𝑥 ; 𝑟). While algorithms representing cryptographic

primitives will usually have this uniform shape, adversarial algorithms, i.e. distinguishers,

will be non-uniform. A non-uniform machine A receives an additional input adv, the so-
called advice, of length 𝑝 (∥𝑥 ∥) and where 𝑝 is a polynomial associated withA. The advice

given to A is the same for all inputs of the same length. Alternatively, a non-uniform

algorithm can be thought of as a family {C𝑛 | 𝑛 ∈ N, |C| ≤ 𝑝 (𝑛)} of polynomial-sized

circuits.

We let 𝜆 be the security parameter and 1
𝜆
its unary representation. We implicitly (and

sometimes explicitly) give 1
𝜆
as the first input to any PPT algorithm A to allow it to run

in time that is at least polynomial in 𝜆.

If 𝑓 : N→ [0, 1] is a function mapping from the natural numbers into the unit interval,

we call 𝑓 negligible if for all 𝑑 ∈ N there exists a 𝑛0 ∈ N such that for all 𝑛 > 𝑛0 it holds

that 𝑓 (𝑛) < 𝑛−𝑑 . We also call 𝑔 overwhelming iff 1 − 𝑔 is negligible.
A random variable𝑋 : Ω → R is a function from the sample space Ω of some probability

space (Ω, Σ, Pr) to the real numbers. Given two random variables 𝑋 and 𝑌 , we can define

the total variation distance between 𝑋 and 𝑋 , Δ(𝑋,𝑌) as

Δ(𝑋,𝑌) =
∑︁
𝜇∈R
| Pr[𝑋 = 𝜇] − Pr[𝑌 = 𝜇] |

= max

𝐴⊆R
| Pr[𝑌 ∈ 𝐴] − Pr[𝑌 ∈ 𝐴] |

13

2. Preliminaries

A collection of random variables 𝑋𝜆 indexed by 𝜆 ∈ N is called an ensemble of ran-
dom variables. We also require ensembles 𝑋𝜆,𝑧 which are indexed by larger sets than

N such as pairs (𝜆, 𝑧) ∈ N × {0, 1}∗. Given two ensembles X = {𝑋𝜆,𝑧}𝜆∈N,𝑧∈{0,1}∗ and
Y = {𝑌𝜆,𝑧}𝜆∈N,𝑧∈{0,1}∗ we call X and Y statistically close, iff

∀𝑧 ∈ {0, 1}∗ : Δ(𝑋𝜆,𝑧, 𝑌𝜆,𝑧) ≤ negl(𝜆)
for some negligible function negl(𝜆).

For a weaker notion of indistinguishability we also define computational indistinguisha-
bility of ensemblesX = {𝑋𝜆,𝑧}𝜆∈N,𝑧∈{0,1}∗ andY = {𝑌𝜆,𝑧}𝜆∈N,𝑧∈{0,1}∗ , in symbolsX 𝑐≈ Y. For
X and Y to be computationally indistinguishable, we require that for any non-uniform

algorithm A outputting a bit, for any 𝑑 ∈ N, for all 𝜆 ∈ N and all 𝑧 ∈ ∪𝜅≤𝜆𝑑 {0, 1}𝜅 it holds
that:

Advdist

A,X,Y (𝜆) :=

���Pr[A(1𝜆, 𝑋𝜆,𝑧) = 1

]
− Pr

[
A(1𝜆, 𝑌𝜆,𝑧) = 1

] ��� < 𝑛−𝑑
where the probability is taken over the random coins of A and the distributions of 𝑋𝜆,𝑧
and 𝑌𝜆,𝑧 .

Note that these past two definitions for general ensembles indexed by the set N× {0, 1}∗
naturally descend to the ordinary case of ensembles indexed by N alone.

Remark 2.1.1. From this definition, we can see why adversaries in this document will be

non-uniform machines. Imagine for a moment that computational indistinguishability

was to only quantify over (uniform) PPT adversariesA. ForA to break the computational

indistinguishability of two ensembles X and Y would then require that there exists a

𝑑 ∈ N and infinitely many 𝜆𝑖 ∈ N, 𝑖 ∈ N, such that for each of these 𝜆𝑖 there exists a

corresponding 𝑧𝑖 ∈ ∪𝜅≤𝜆𝑑
𝑖
{0, 1}𝜅 for which���Pr[A(1𝜆, 𝑋𝜆,𝑧) = 1

]
− Pr

[
A(1𝜆, 𝑌𝜆,𝑧) = 1

] ��� ≥ 𝑛−𝑑 .
To use the distinguishing ability of A within some reduction B to a hard problem, B
would have to know the association from 𝜆𝑖 to 𝑧𝑖 to let A execute on the correct samples.

As 𝑧𝑖 will generally be difficult to compute from 𝜆𝑖 it seems like we have to provide it as an

additional advice to A (and also B during the reduction such that it may indeed run A).

2.2. The Random Oracle Model

A random oracle 𝐻 is an oracle providing a truly random function 𝐻 : D → H from some

domain D to a codomain H . Giving a party oracle access to 𝐻 essentially means that

there exists a box which, given some 𝑥 ∈ D returns 𝐻 (𝑥) without revealing any other

information. The Random Oracle Model (ROM) [7] describes a model for the definition of

cryptographic protocols where all parties are given access to a single random oracle.

2.3. Multi-Party Computation

In the simplest case, Multi-Party Computation (MPC) is concerned with the task of 𝑛

parties P1 through P𝑛 each holding (private) input 𝑥𝑖 for some (randomized) function

14

2.4. The Universal Composability Framework

𝑓 : N × ({0, 1}∗)𝑛 × {0, 1}∗ → {0, 1}𝑛 which receives as input a security parameter, the

different parties inputs, and random bits, and produces output 𝑓 (𝜆, 𝑥1, . . . , 𝑥𝑛, 𝑟)𝑖 for party
P𝑖 .
To compute 𝑓 , the parties engage in some kind of protocol 𝜋 involving sending messages

over some kind of communication channels, e.g. an authenticated point-to-point network,

and local computations based on the parties’ input, random coins, and the messages

received so far. At the end of the computation, each party P𝑖 outputs some result 𝑦𝑖 .

A number of parties may be corrupted by an adversary A which in the mildest case

follows the protocol honestly and tries to extract information from the view of the parties it

controls after the protocol has concluded (semi-honest adversary). A may also arbitrarily

deviate from the protocol, sending messages of its choice (malicious adversary).

Some of the properties we would like 𝜋 to have in the presence of an adversary A
corrupting a number of parties are the following:

• Input Privacy: Any function of some honest parties input that the adversary can

compute, it can already compute from the corrupted parties outputs.

• Input Independence: The adversary can choose its inputs as a function of the

honest parties’ inputs.

• Fairness: The honest parties receive output if and only if the adversary receives the

output of the corrupted parties.

• Guaranteed Output Delivery: The honest parties always receive their outputs,
independent of the behavior of the adversary.

The definition of security of a protocol for an MPC task depends on the specific set of

properties one wishes to achieve. What they all have in common is that they compare an

execution of 𝜋 with adversary A to an interaction where, essentially, the honest parties

hand their inputs to a trusted party computing 𝑓 . The inputs for the corrupted parties

are provided by another machine called the simulator S and 𝜋 is called secure if the joint

distribution over the outputs of the honest parties and A/S is indistinguishable between

the two kinds of interactions. We will not make this definition more explicit as we will

later be working with the stronger definition for MPC which we define in the next section.

Note that MPC can be generalized from secure function evaluation of a function 𝑓 to the

computation of reactive functionalities F which keep an internal state and can be queried

iteratively. It is common for only some of the parties to send input and receive output to

and from F in any given iteration.

2.4. The Universal Composability Framework

In this section we define the Universal Composability (UC) [18] framework for specifying

functionalities F as well as the UC notion for what it means for a protocol 𝜋 to securely

realize a functionality F . This notion follows the simulation paradigm.

Traditionally, protocols and their security were analyzed in isolation, both from instances

of other protocols, but also from additional sessions of the same protocol, i.e. parallel

15

2. Preliminaries

Z

A

𝜋 Z

S

F

Figure 2.1.: The UC experiment with real adversary A and protocol 𝜋 (left) and with

simulator S and ideal functionality F (right). The multiple lines indicate that

Z may interact with multiple protocol parties.

composition. It is well-known that proving the security of a protocol in this stand-alone

sense has (in general) little meaning for the security of the protocol in larger contexts.

A well-known example involves the parallel composition of just two instances of a zero-

knowledge protocol and where this completely breaks the security guarantees by leaking

the full witness.

Ideal and Real Interaction UC, on the other hand, defines the security of protocols in

such a way that they retain their security properties even when run concurrently with

an arbitrary, a priori unbounded, number of sessions of the same or other protocols. This

is achieved by first defining an ideal world where (dummy) parties receive their input

and privately give it to a trusted party implementing the functionality F . Based on the

received input, F may generate output for some of the parties, which is again privately

returned. To model some form of allowed corruption even in this ideal world, F interacts

with the ideal-world adversary S (which is also called the simulator). For example, S may

receive the length of a message sent via an ideal encrypted message-transfer functionality

where it is well-known that in general the length of the message can not be hidden by an

encryption scheme allowing for arbitrarily long messages to be transmitted. If the length

of the message was not leaked, there would not exist a protocol realizing the functionality.

S may also be able to control when the delivery of outputs occurs.

Apart from this ideal world, there is the real world with real parties running a protocol

𝜋 and communicating over some network. Instead of a simulator, there is an adversary A
which, depending on the corruption model, is given varying amounts of influence over

the protocol execution, e.g. by being allowed to delay and deliver messages or to corrupt

parties and from this point on act on their behalf.

Defining Security What we would like to have is that running a session of 𝜋 with A
is “essentially as secure” as having the parties interact with F and S. As the ideal world
interaction is secure by definition this would mean that also 𝜋 securely realizes F . To
formalize this, anothermachineZ called the environment is introduced. The environment’s

job is to “play” with a single session, called the test session, either of the protocol 𝜋 with

adversary A or the ideal protocol involving F and simulator S. Z spawns protocol

parties, generates inputs for and collects outputs from the honest parties, and interacts

with an adversary continuously throughout the protocol execution. At the end of the

session Z generates some output corresponding to its decision as to which of the two

16

2.4. The Universal Composability Framework

cases occurred. 𝜋 is then said to UC-realize F if the output distributions for the two cases

are computationally indistinguishable.

In more detail,Z also receives auxiliary input 𝑧 ∈ {0, 1}∗. We then define REAL𝜋,Z,A (𝑧)
to be the random variable consisting of the output ofZ when interacting with a session

of 𝜋 with adversary A where the randomness is over the random coin tosses of all

involved PPT machines. For the ideal interaction we define IDEALF ,Z,S (𝑧) to be the

random variable consisting of the output of Z when interacting with an instance of

F with adversary/simulator S. REAL𝜋,Z,A and IDEALF ,Z,S denote the ensembles of

random variables {REAL𝜋,Z,A (𝑧)}𝑧∈{0,1}∗ and {IDEALF ,Z,S}𝑧∈{0,1}∗ respectively. Having
introduced this notation we are ready to define what it means for a protocol 𝜋 to UC-realize
a UC-functionality F .

Definition 2.4.1 (UC-Realization I). A protocol 𝜋 UC-realizes a functionality F iff for

all PPT A there exists a PPT S such that for every auxiliary-input PPT machine Z,

REAL𝜋,Z,A
𝑐≈ IDEALF ,Z,S .

This definition requires the construction of a simulator S for any adversary A. One

important simplification to the proof strategy is possible by realizing that it is already

enough to give a single simulator SD for the so-called dummy adversary D. All the

adversary D does is relay messages between the environmentZ and the protocol parties.

This effectively gives Z control over the actions of all corrupted parties based on all

information which the adversary is able to observe during the protocol execution. We

make the following definition to capture this fact.

Definition 2.4.2 (UC-Realization II). A protocol 𝜋 UC-realizes a functionality F iff for

the dummy adversary D there exists a PPT SD such that for every auxiliary-input PPT

machineZ
REAL𝜋,Z,A

𝑐≈ IDEALF ,Z,S

Corruption The UC framework is very expressive with respect to the corruption of both

ideal functionalities and real protocol parties. As is usually done, we will later appeal to

the more intuitive notions of static and malicious corruption but will define them here in

some more detail.

Formally, each party P is an interactive Turing machine endowed with different tapes.

One of these tapes is called the backdoor tape. This tape is used for communication with the

adversary. A specification of how messages received on the backdoor tape are processed is

thus formally part of a specific protocol and not of the UC framework itself. The notion of

static corruption is then defined as having parties only react to backdoor messages if they

receive such a message during their first activation, i.e. when they have not yet participated

in the actual protocol. Adaptive corruption, on the other hand, allows corruptions to take

place at any point during the protocol execution. A party may react in one of several ways

to such a corruption taking place. In the case of semi-honest corruption, the party will still

follow the protocol, but leaks any information it receives to the adversary. For malicious

corruption, the party first sends its current state to the adversary (in the adaptive case)

and from then onwards the adversary is allowed to freely choose messages sent by the

party.

17

2. Preliminaries

For ideal functionalities, we use the standard notion of corruption. The simulator can

choose which parties it corrupts by sending a message containing the identity of the party

to the functionality. From that point on, all communication that previously was between

the now corrupted party and the functionality is now between the simulator and the

functionality, i.e. the simulator has to provide input and receives the output. Note that

this means the functionality is aware of the set of currently corrupted parties
1
and its

behavior can depend on it. For example, there could exist a threshold 𝑡 such that, if more

than 𝑡 parties are corrupted, the functionality loses all its security guarantees. This could

be modeled by leaking some kind of otherwise secret information to the simulator.

In practice, this latter point is rarely explicitly utilized. Rather than saying a protocol 𝜋 ,

e.g. for general function evaluation, realizes a functionality F which leaks all inputs once

more than 𝑡 parties are corrupted, one says that 𝜋 realizes another functionality F ′ (which
never leaks inputs), but only as long as less than 𝑡 parties are corrupted. The threshold

for the number of corrupted parties is thus framed as an external assumption. As the two

ways of stating such a property of 𝜋 are ultimately equivalent, we will later also make

use of the more simple way. In particular, this allows for more succinct specifications of

functionalities.

2.4.1. The Universal-Composition Theorem and Hybrid Models

The strength of working within the UC framework lies in its powerful composition theorem.

We have already stated that the goal of the UC framework consists in giving a way to

design protocols that can be arbitrarily composed with both further instances of itself as

well as other protocols. This notion of arbitrary (or universal) composability of protocols is

formalized in the Universal-Composition Theorem. So far we have only defined two kinds of

worlds, the real world involving the PPT machinesZ andA as well as any protocol parties

of some session of a protocol 𝜋 , and the ideal world involving the PPT machinesZ and S
and the ideal functionality F . To be able to formulate the composition theorem in its most

general form we first have to define the intermediate notion of a F -hybrid model for some

functionality F . In such a hybrid model there exist real protocol parties, an adversary A,

as well as an unlimited number of instances of F . Protocol parties are able to give input

and receive output from these instances and A is given the corresponding corruption

information. The notion of hybrid models generalizes to multiple hybrid-functionalities

in an obvious way. An important fact to note is that in the bare UC framework, the

environment is not allowed to directly interact with ideal functionalities.

The setting of the composition theorem is the following. There is a protocol 𝜉 in some

F -hybrid model and UC-realizing a functionality H , i.e. the description of 𝜉 involves

protocol parties interacting with instances of F . Let 𝜋 be a protocol UC-realizing F in

some G-hybrid model and define a third protocol 𝜉F→𝜋 which is constructed from 𝜉 by

replacing sessions of F by sessions of 𝜋 . The following theorem is taken from [18].
2
.

1
There is also a reporting mechanism through which the environment can retrieve this set. This is necessary

to force the simulator to not corrupt too many parties compared to the real execution.

2
Note that we have chosen to ignore the notion of subroutine-respecting protocols for simplicity It essentially

requires protocols to not pass information outside its current session, except as output generated by the

main machines of the session.

18

2.4. The Universal Composability Framework

Theorem 2.4.3 (Universal-Composition Theorem). If 𝜉 is a protocol which UC-realizesH
in the F -hybrid model and 𝜋 is a protocol that UC-realizes F in the G-hybrid model then
𝜉F→𝜋 UC-realizesH in the G-hybrid model.

As a special case of the above theorem, if 𝜋 UC-realizes F without relying on another

functionality G, 𝜉F→𝜋 UC-realizesH .

The composition theorem allows the analysis of complex protocols in a modular fashion.

First, the complete protocol 𝜋 for a functionality F is formulated and proven secure in

some hybrid-model using functionalities F1, F2, Then the F𝑖 are themselves shown to

be realized by protocols 𝜋𝑖 , maybe themselves making use of further ideal functionalities.

This process is repeated in the desired granularity. At the end, the composition theorem is

used to show the security of 𝜋 ′ = 𝜋F1→𝜋1,F2→𝜋2,...
.

2.4.2. Some Ideal Functionalities and Notation

We now introduce some of the functionalities used in this thesis. The rest will be introduced

as we require them. First, we define some shorthand for defining functionalities.

Notation The real-world adversary A is usually given control of the network. For

protocols 𝜋 which involve communication between multiple parties, this means that A
can always execute a denial-of-service attack. As any kind of attack by A has to be

executable by the simulator S, S often has to be given similar abilities when formulating

some functionality F . To keep descriptions of functionalities brief, we introduce some

shorthand notation.

To let the simulator

• delay the delivery of some message (Task, 𝑠𝑖𝑑,𝑚) by F to a party P we write

send private delayed output to P. This is translated to: Let F send a message

(PrivDelay, Task, 𝑠𝑖𝑑,P) to S. Upon receiving a response ok, send a message

(Task, 𝑠𝑖𝑑,𝑚) to P.

• delay the delivery of some message (Task, 𝑠𝑖𝑑,𝑚) by F to a party P and also leak𝑚

to S we write send public delayed output to P. This is translated as in the first case

except for using PubDelay and including𝑚 in the message by F to S.

• provide an immediate response to a message by F , we write wait for a message𝑚
from the adversary.

The concept of immediate responses by the simulator/environment is formally defined

in [16] by introducing so-called responsive environments and restricting to them as the

set of environments considered Definition 2.4.2. It is required to force the simulator to

immediately answer urgent requests by a functionality. In this way, modeling artifacts

resulting from simulators being able to do other work after receiving such a request, but

before answering, are avoided. Requiring immediate responses should be restricted to

meta-information exchanged between functionalities and the simulator as such information

does not correspond to actual network communication in the real protocol. One important

fact to notice is that messages requiring immediate responses do not make a specific task

19

2. Preliminaries

interactive as it does not inherently give the simulator the ability to delay responses by

the functionality to honest parties.

Remark 2.4.4. Technically speaking, S has to be able to respond to delaying messages in

any order. By simply responding with ok, F has no way of knowing which message it

should deliver. This can be solved by using some kind of identifier that is included in both

messages, e.g. a simple counter. It is understood that such a mechanism is used anytime

the description of a functionality contains a phrase such as wait for a response.

Standard Functionalities The first functionality is the standard random oracle function-

ality F𝑅𝑂 which is parametrized by a domain D and codomainH . Notably, the adversary

is not involved in any way. For protocols 𝜋 trying to UC-realize F𝑅𝑂 this has the following

implications. First, the real-world adversary is not allowed to gather any information

on oracle inputs by and oracle outputs to honest parties using a session of 𝜋 . The UC

execution model in the ideal world also guarantees that parties receive their output. This
immediately disqualifies any protocol where oracle queries are not merely local evaluations

of a public function as usually the real-world adversary is given the ability to indefinitely

delay messages sent over the communication network. Together with the uninstantiability

result for the ROM this essentially means that F𝑅𝑂 can not be UC-realized. Protocols in the

F𝑅𝑂 -hybrid model should thus be seen as providing the same heuristic security guarantees

as for the traditional RO model.

The F𝑅𝑂 functionality
Init Initialise an empty list L ← ∅
Query On input (Query, 𝑠𝑖𝑑, 𝑞) for 𝑞 ∈ D from some party P, if there does not exist a
(𝑞, ℎ) ∈ L, let ℎ ←$H and store (𝑞, ℎ) in L. Return (Answer, 𝑠𝑖𝑑, 𝑞, ℎ).

One possible relaxation of F𝑅𝑂 is F 𝑑
𝑅𝑂

where the 𝑑 means that we allow the adversary

to observe when oracle queries are happening and delay responses, i.e. to decide when

to deliver the output. F 𝑑
𝑅𝑂

is shown below. This formulation allows the protocol where a

trusted party does lazy sampling or computes oracle outputs using a PRF to UC-realize it.

The F 𝑑
𝑅𝑂

functionality
Init Initialise an empty list L ← ∅
Query On input (Query, 𝑠𝑖𝑑, 𝑞) for 𝑞 ∈ D from some party P, if there does not

exist a (𝑞, ℎ) ∈ L, let ℎ ←$ H and store (𝑞, ℎ) in L. Send private delayed output

(Answer, 𝑠𝑖𝑑, 𝑞, ℎ) to P.

In UC, different modes of communication are captured by way of ideal functionalities.

F𝐴𝑈𝑇𝐻 allows some party A to send a single message𝑚 to another party B in an ideally

authenticated way. The adversary is able to observe𝑚 and is in control of when to deliver

it, but it can not change 𝑚 to some other message 𝑚′ ≠ 𝑚 or deliver a message to B
without A having indeed sent it. Assuming authenticated channels can thus be translated

to working in the F𝐴𝑈𝑇𝐻 -hybrid model.

20

2.5. Cryptographic Primitives

Communication that is both authentic as well as confidential is modeled by the function-

ality F𝑆𝑀𝑇 for secure message transfer. The adversary is still allowed to delay the delivery

of the message, but instead of learning the full message𝑚, it only learns 𝑙 (𝑚) where 𝑙 is a
function parametrizing the leakage of F𝑆𝑀𝑇 , e.g. the length of the transmitted message. If

the formulation of a protocol assumes secure channels can be translated to working in the

F𝑆𝑀𝑇 -hybrid model.

This concludes our introduction to the UC framework. We note that we did not intend

to give a fully rigorous definition of the UC framework and refer to [18] for details. In

particular, we did not answer questions regarding how activations of parties are scheduled

or how the number of computation steps a party may make is determined. We strongly

believe that all protocols contained in this thesis are efficient with respect to all definitions

of efficient polynomial-time computation which have been used in the context of UC.

2.5. Cryptographic Primitives

In this section, we will define the various cryptographic (game-based) primitives and their

game-based security notions which we will use and refer to throughout this thesis.

The standard definitions for pseudo-random functions, sEUF-CMA-secure digital signa-
ture schemes and trapdoor one-way permutations can be found in Appendix A.1.

2.5.1. Verifiable Random Functions

An augmented version of pseudo-random function are verifiable (pseudo-)random functions

(VRF) [74]. With normal PRFs, the pseudo-randomness of outputs crucially depends on

the fact that the key is unknown. But then a party receiving outputs from the holder of a

PRF key has to trust that the evaluation was done correctly. If some security guarantee of

the receiver relies on the correctness of the received outputs, using a PRF is insufficient.

VRFs augment PRFs by adding three algorithms (Gen, Eval,Verify).
The first is a key generation algorithm Gen which produces evaluation keys ek and

verification keys vk. Eval combines the evaluation of the underlying function

PRF : K × X → Y

with the generation of proofs 𝜋 , i.e. for (𝑦, 𝜋) ← Eval(ek, 𝑥) it holds that 𝑦 = PRF(ek, 𝑥)
(here we assume that the whole ek is used as key to PRF). Proofs can then be verified using

Verify, which outputs a value in {0, 1}, and vk. Apart from the already stated correctness

condition involving PRF, the following also has to hold

∀𝜆 ∈ N∀ (ek, vk) ← Gen(1𝜆) ∀𝑥 ∈ X : Verify (vk, Eval(ek, 𝑥)) = 1 (2.1)

Security is defined two-fold. On the one hand, pseudo-randomness of Eval when
restricted to the first output component is defined as in the PRF case. On the other hand,

it is required that Verify for any verification key vk and each 𝑥 ∈ X accepts proofs for at

most a single 𝑦 ∈ Y, i.e. we require a kind of perfect unforgeability, even an unbounded

adversary is unable to find valid proofs for wrong outputs.

21

2. Preliminaries

Definition 2.5.1 (Verifiable Random Function). A VRF VRF is secure iff the underlying

PRF is secure and it holds that

∀𝜆 ∈ N∀ (ek, vk) ← Gen(1𝜆) ∀ (𝑥,𝑦1, 𝜋1, 𝑦2, 𝜋2) :

Verify(vk, 𝑥,𝑦1, 𝜋1) = 1 ∧ Verify(vk, 𝑥,𝑦2, 𝜋2) ⇒ 𝑦1 = 𝑦2

2.5.2. Simulatable Verifiable Random Functions

In some cases, the guarantees provided by the above definition of VRFs are not enough.

For example, publishing a verification key vk commits the sender to the whole function as

can be seen from the perfect unforgeability we require of VRFs. While it may seem like this

is a good and useful property, proving the security of a surrounding protocol using a VRF

sometimes requires being able to “break” a primitive (think of simulating zero-knowledge

proofs) which in the case of VRFs corresponds to being able to forge proofs for arbitrary

pairs (𝑥,𝑦).
Simulatability For this to be possible, however, the reduction or the simulator has to be

able to gain an advantage over an honest party setting up an instance of a VRF. One natural

way to achieve this is by working in the common reference string (CRS) model where each

party has access to some string 𝜎 which is chosen according to some known distribution

D and in a real protocol execution is generated by an honest party. During the security

game, however, the simulator is the one providing 𝜎 and in turn only has to ensure that 𝜎

is chosen from some distribution D′ with D′ 𝑐≈ D. This also allows the simulator to gain

backdoor information 𝜏 associated with 𝜎 . Using the backdoor 𝜏 as well as the changed

distribution D′ of reference strings, the simulator is able to simulate proofs.

In more detail, algorithms (Setup, SimSetup, SimGen, SimProve) are added where Setup
is the honest setup algorithm for generating reference strings, SimSetup outputs simulated

reference strings 𝜎 and backdoors 𝜏 , SimGen on input (𝜎, 𝜏) generates simulated key-pairs

(ek, vk). The algorithm SimProve, on input (𝜎, 𝜏), an evaluation key ek output by SimGen,
and any pair (𝑥,𝑦), outputs simulated proofs 𝜋 . The other algorithmsGen, Eval, and Verfiy
are extended to also take 𝜎 as input.

Security We follow the definitions in [27]. Correctness is extended to also hold for

simulated reference strings, simulated keys, and simulated proofs. Security of the honest

algorithms remains unchanged and security in the simulated case is defined via indistin-

guishability of two games GsVRF

A,sVRF(𝜆, 0) and GsVRF

A,sVRF(𝜆, 1) shown in Figure 2.2. In both

games, the adversary A receives parameters 𝜎 and a verification key vk. It is further
given access to an oracle that replies to inputs 𝑥 with their evaluation 𝑦 and a proof 𝜋 .

In GsVRF

A,sVRF(𝜆, 0), the challenger uses the real algorithms while in GsVRF

A,sVRF(𝜆, 1) it uses the
algorithms which allow simulation. Furthermore, evaluation queries in GsVRF

A,sVRF(𝜆, 1) are
answered via lazy sampling of values in the range accompanied by simulated proofs.

Definition 2.5.2 (Simulatable VRF). A simulatable VRF sVRF is secure iff no PPT adversary

A can distinguish between GsVRF

A,sVRF(𝜆, 0) and GsVRF

A,sVRF(𝜆, 1) shown in Figure 2.2, except

with negligible probability, and for all non-simulated parameters 𝜎 and therefrom derived

verification keys vk, the same perfect unforgeability as in Definition 2.5.1 holds.

22

2.5. Cryptographic Primitives

GsVRF

A,sVRF(𝜆, 0)
1 : 𝜎 ← Setup(1𝜆)
2 : (ek, vk) ← Gen(1𝜆, 𝜎)
3 : 𝑏 ← AEval1 (·) (1𝜆, 𝜎, vk)
4 : return 𝑏

GsVRF

A,sVRF(𝜆, 1)
1 : 𝐿[·] ← ⊥
2 : (𝜎, 𝜏) ← SimSetup(1𝜆)
3 : (ek, vk) ← SimGen(1𝜆, 𝜎, 𝜏)
4 : 𝑏 ← AEval2 (·) (1𝜆, 𝜎, vk)
5 : return 𝑏

Eval1(𝑥)
1 : (𝑦, 𝜋) ← Eval(𝜎, ek, 𝑥)
2 : return (𝑦, 𝜋)

Eval2(𝑥)
1 : 𝑦 = 𝐿[𝑥]
2 : if 𝑦 = ⊥ do
3 : 𝑦 ←$ Y
4 : 𝐿[𝑥] = 𝑦
5 : fi
6 : 𝜋 ← SimProve(𝜎, 𝜏, ek, 𝑥,𝑦)
7 : return (𝑦, 𝜋)

Figure 2.2.: The security game for a simulatable VRF.

2.5.3. Fully-Homomorphic Encryption

Encryption schemes are usually employed to guarantee both the confidentiality as well as

the integrity or non-malleability of messages from a sender to a receiver. In some cases, it

can be advantageous to only require confidentiality and explicitly allow the malleability

of ciphertexts. The simplest case thereof are so-called (singly) homomorphic encryption
schemes HE = (Gen, Enc,Dec) where both the message spaceM as well as the ciphertext

space C are equipped with group structures ⊕ and ⊗ respectively and the following holds

for all messages𝑚1,𝑚2 ∈ M

∀𝜆 ∈ N∀ (pk, sk) ← Gen(1𝜆) : Enc(pk,𝑚1) ⊗ Enc(pk,𝑚2) = Enc(pk,𝑚1 ⊕𝑚2) (2.2)

This kind of structure can for example be found in the encryption schemes by El’Gamal

[42] or Paillier [78] and allows for the construction of primitives such as homomorphic
commitment schemes. A stronger variant of this homomorphic property is achieved by

so-called fully-homomorphic encryption schemes (FHE). In that case there are (essentially)

two compatible group operations⊞1 and⊞2 for⊞ ∈ {⊕, ⊗} on the message and ciphertext

space, i.e. there exist ring structures on both spaces and Enc mediates a ring homomor-
phism fromM to C. For most FHE schemes this analogy is not quite perfect. While for

most schemes, the operations on the message space indeed form a ring (or even a field),

homomorphic evaluation on ciphertexts is done by introducing special algorithms Eval1
and Eval2 and such that instead of (2.2) the following holds

23

2. Preliminaries

∀𝜆 ∈ N, 𝑖 ∈ {1, 2}, (pk, sk) ← Gen(1𝜆) :

Dec (sk, Eval𝑖 (pk, Enc(pk,𝑚1), Enc(pk,𝑚2))) =𝑚1 ⊕𝑖 𝑚2

(2.3)

Many FHE schemes have the simplest possible message space consisting of single bits

𝑏 ∈ {0, 1}. The two operations then correspond to addition and multiplication modulo

two, i.e.M is considered to be F2, the finite field with two elements. Ciphertext spaces,

on the other hand, vary widely.

Encryption of longer messages is possible by encrypting them bit-wise. Based on this

observation, we define what in later sections will be understood to be meant when we

speak of an FHE scheme.

Definition 2.5.3 (Fully-Homomorphic Encryption Scheme). An FHE scheme FHE is a

tuple of algorithms (Gen, Enc1,Dec1, Enc,Dec,
Eval1, Eval2, Eval) with the following behaviors

• Gen(1𝜆) → (pk, sk): on input the security parameter 1
𝜆
, the key generation algo-

rithm outputs a public key pk and a secret key sk.

• Enc1(pk, 𝑏) → 𝑐: on input a public key pk and a bit 𝑏 ∈ {0, 1}, the bit-encryption
algorithm outputs a ciphertext 𝑐 .

• Dec1(sk, 𝑐) → 𝑏: on input a secret key sk and a ciphertext 𝑐 ∈ im(Enc1(pk, ·)) in
the image of the encryption algorithm for the corresponding public key pk, the
bit-decryption algorithm outputs a bit 𝑏. If 𝑐 is not in this set, ⊥ is output.

• Enc(pk,𝑚) → 𝑐: on input a public key pk and a message 𝑚 ∈ {0, 1}∥𝑚∥ , the en-

cryption algorithm outputs the vector (𝑐𝑖)1≤𝑖≤∥𝑚∥ where 𝑐𝑖 ← Enc1(pk,𝑚𝑖) for
1 ≤ 𝑖 ≤ ∥𝑚∥.

• Dec(sk, 𝑐) → 𝑚: on input a secret key sk and a ciphertext 𝑐 = (𝑐1, 𝑐2, . . . , 𝑐𝑛), the
decryption algorithm outputs either the vector𝑚 = (𝑚𝑖)𝑖∈[𝑛] where𝑚𝑖 = Dec1(sk, 𝑐𝑖)
for 𝑖 ∈ [𝑛] or𝑚 = ⊥ if for some 𝑗 ∈ [𝑛], ⊥ ← Dec1(sk, 𝑐 𝑗).

• Eval𝑖 (pk, 𝑐1, 𝑐2) → 𝑐: on input a public key pk and two ciphertext vectors 𝑐1, 𝑐2 of

length one, the bit-evaluation algorithm outputs a ciphertext vector 𝑐 of length one.

If both input ciphertexts are valid encryptions of 𝑏1 and 𝑏2 respectively with respect

to pk, then 𝑐 is a valid ciphertext of 𝑏1 ⊕𝑖 𝑏2 with respect to pk.

• Eval(pk,𝐶, 𝑐) → 𝑐′: on input a public key pk, a (boolean) circuit 𝐶 : {0, 1}𝑛 →
{0, 1}𝑘 with in-degree 𝑛 and out-degree 𝑘 , and a ciphertext vector 𝑐 of length 𝑛,

the evalutation algorithm outputs a ciphertext vector 𝑐′ of length 𝑛. If 𝑐 is a valid
ciphertext of a plaintext𝑚 ∈ {0, 1}𝑛 with respect to pk then 𝑐′ is a valid ciphertext

of the plaintext 𝐶 (𝑚) ∈ {0, 1}𝑘 with respect to pk.

Remark 2.5.4. We will usually suppress Enc1, Dec2 and Eval1/2 and let FHE only consist of

(Gen, Enc,Dec, Eval).

24

2.5. Cryptographic Primitives

The main use case for FHE, and also what we will later use it for, lies in outsourcing

computation. One party is in possession of some data𝑚 and some other party holds a

circuit 𝐶 and possibly more data𝑚′ such that |𝑚 | + |𝑚′| is the in-degree of 𝐶 . The first
party encrypts 𝑚 and sends the result to the party holding 𝐶 . This party encrypts 𝑚′

using the first parties’ public key and evaluates𝐶 on the two ciphertexts. The result of the

evaluation is sent back and decrypted, thereby recovering 𝐶 (𝑚,𝑚′).

Security A common security notion for FHE schemes is the usual IND-CPA definition.

This can even be simplified to require that no distinguisher be able to distinguish en-

cryptions of zero from encryptions of one, given the public key, i.e. that the following

hold: {
Enc1(pk, 0) | (pk, sk) ← Gen(1𝜆)

}
𝑐≈

{
Enc1(pk, 1) | (pk, sk) ← Gen(1𝜆)

}
Security for longer messages then follows by a standard hybrid-argument.

This seems to be a minimal assumption for FHE to be useful and we will always assume

it. While it is clear that, due to their inherent malleability, FHE schemes can not be

IND-CCA2-secure, there have been proposed and achieved various intermediate notions

including IND-CCA1. For the type of FHE scheme we have defined above and which allow

for the evaluation of circuits of unbounded depth, public keys are often augmented by an

encryption of the secret key to enable execution of a bootstrapping process [53]. Most FHE

schemes are noise-based and homomorphic evaluations increase this noise. This limits the

amount of homomorphic computation which can be done to a ciphertext. Bootstrapping

circumvents this limitation by evaluating the decryption circuit homomorphically using

the encrypted secret key, thereby lowering the noise and allowing for further evaluations.

The soundness of giving the adversary such an encrypted secret key is usually not proven

but assumed. This assumption is called circular security and is a form of security under

key-dependent messages (KDM).

Circuit Privacy In some applications, including ours, we do not want an evaluated ci-

phertext to leak information about the evaluator’s private input𝑚′ and/or the circuit 𝐶
(which may be viewed as a “secret” circuit 𝐶′ = 𝐶 (·,𝑚′) known only to the evaluator).

Such a property is called circuit privacy. There, a simulator Sim can generate simulated

ciphertexts given only the result𝐶 (𝑥) of the computations and which are indistinguishable

(for some notion) from evaluated ciphertexts Eval(pk,𝐶, 𝑥). As the simulator does not

receive 𝐶 this means that evaluated ciphertexts are “zero-knowledge” with respect to 𝐶 .

Semi-Honest Security There are several notions of this. We begin by defining the

weakest definition we will be using called semi-honest statistical circuit privacy.

Definition 2.5.5 (Semi-Honest Statistical Circuit Privacy). An FHE scheme FHE has

semi-honest statistical circuit privacy, if there exists a PPT simulator Sim and a negligible

function negl(𝜆), such that for all (pk, sk) ← Gen, all messages𝑚1, . . . ,𝑚𝑖 , all circuits

𝐶 : {0, 1}𝑖 → {0, 1}𝑜 , the following holds

Δ(Sim(1𝜆, pk,𝐶 (𝑚1,𝑚2, . . . ,𝑚𝑖)), Eval(pk,𝐶, (Enc(pk,𝑚1), . . . , Enc(pk,𝑚𝑖)))) ≤ negl(𝜆)

25

2. Preliminaries

Remark 2.5.6. Observe that this definition clearly holds for schemes where evaluated

ciphertexts and fresh encryptions of the contained result are statistically close under the

assumption that the un-evaluated ciphertext and the public key are well-formed. In that

case, Sim simply returns Enc(pk,𝐶 (𝑚1,𝑚2, . . . ,𝑚𝑖). This is achieved for example by the

original FHE scheme by Gentry [53] using noise flooding, but also by the schemes in [84,

37].

Malicious Security Definition 2.5.5 only considers well-formed public keys and well-

formed ciphertexts. In some contexts, i.e. when the holder of a key-pair or a party providing

a ciphertext is corrupted, this assumption may no longer hold. In such situations, a stronger

notion called malicious statistical circuit privacy may be required. There, also potentially

malformed public keys pk∗ and ciphertexts 𝑐∗ may be given to Sim.

We do not give a full definition for the following reason. The usual definition for

maliciously circuit private FHE schemes has been made with one-round (i.e. two-message)

two-party computation protocols in the plain model in mind. Due to an impossibility result,

such a protocol can not offer full malicious security with polynomial-time simulation for

both the client holding the input and the server holding the circuit. For this reason, the

simulator is allowed to be unbounded. The security guaranteed by the existence of such a

simulator is then that for any public key pk∗ and ciphertext 𝑐∗, some effective input 𝑥∗ is
determined. For a discussion of this subject, see [77].

We note that a generic method to upgrade semi-honest circuit privacy tomalicious circuit

privacy is by letting the owner of a public key pk prove knowledge of the corresponding

secret key sk as well as the fact that the provided ciphertext is well-formed. In that case,

the impossibility result can be circumvented by either: (1) using NIZK proofs, thereby

retaining the two-message structure but not the plain model (2) using interactive zero-

knowledge proofs, thereby retaining the plain model but not the two-message structure.

By employing one of these two strategies, polynomial-time simulation can be recovered.

Another advantage of this approach is the fact that by using a UC-secure zero-knowledge

protocol, simulation in the UC sense can be achieved. Informally, this means that the

simulator will have to be able to explicitly efficiently recover the effective input 𝑥∗ from
some (pk∗, 𝑐∗) supplied by a corrupted party. As we will be using FHE to realize a UC-

functionality we will later explicitly upgrade a semi-honestly circuit private FHE scheme

using UC-secure zero-knowledge protocols.

Remark 2.5.7. There also exist relaxed notions of privacy where the circuit 𝐶 is public

and only the additional input 𝑦 of the evaluator is supposed to be protected. The above

definition for malicious circuit privacy would then be changed to allow the simulator to

receive also the circuit𝐶 , but still keep the input hidden. Such a notion would be sufficient

for our purposes. To be specific, 𝐶 will either be the evaluation circuit of a PRF where

the server holds the key and a client supplies encrypted input or 𝐶 will be the signing

algorithm of a signature scheme where a server holds the signing key and a client supplies

an encrypted message. For simplicity, we will, however, use the above definition.

Multi-Hop Schemes FHE schemes, as we have defined them above, allow circuits of

unbounded depth to be evaluated. They also allow chaining of evaluations, i.e let 𝑐 be

a ciphertext with respect to a public key pk. Then these schemes allow to first evaluate

26

2.5. Cryptographic Primitives

𝑐′ ← Eval(pk,𝐶, 𝑐) and later to also compute 𝑐′′ ← Eval(pk,𝐶′, 𝑐′) for two circuits 𝐶

and 𝐶′ which can be composed. Adding malicious circuit privacy can, however, lead to

this no longer being possible in the sense that circuit privacy may be broken if multiple

evaluations are chained together [77]. Schemes where chaining of evaluations is possible

are called multi-hop. Schemes where this is not possible are called single-hop. While we

will later indeed be required to execute two evaluations in sequence, they will be executed

by the same party and can thus be considered single-hop. There can not be a situation in

which a second, honest evaluator is denied circuit privacy by receiving a non-well-formed

ciphertext from a first, corrupted evaluator. Either both evaluations are done honestly, in

which case the single-hop malicious circuit privacy protects both evaluations, or both are

done by corrupted parties, in which case there is no honest party to protect. We can thus

make use of more efficient single-hop constructions.

Ciphertext Spaces There exist various ciphertext spaces in different algebraic settings.

As with ordinary encryption schemes, some of them possess ciphertext spaces that are

hard to recognize and/or hard to sample from. In some applications where the provider of

a ciphertext to which some evaluation is applied may be corrupted, invalid ciphertexts

can be problematic. One solution involves letting providers of ciphertexts prove their

well-formedness in zero-knowledge to the evaluator. For simplicity, we will later assume

that all well-formed ciphertexts (which are required to be efficiently recognizable) are

decryptable. We describe an FHE scheme having this property as having a full ciphertext

space. Such schemes exist, e.g. see the scheme in [55].

Remark 2.5.8. As a slight relaxation, we could require the space Cpk of valid ciphertexts

under a given public key pk to be efficiently recognizable under the assumption that pk
is itself well-formed. If an evaluator was then first proven the well-formedness of the

public key, it could efficiently reject non-well-formed ciphertexts. Under both assumptions,

efficient recognizability of ciphertexts given a well-formed key or a full ciphertext space,

proving knowledge of the secret key is sufficient to upgrade semi-honest to malicious

circuit privacy.

2.5.4. Proof Systems and Related Notions

An (interactive) proof system (IPS) (V,P) for a language 𝐿 allows a prover P to convince

a verifier V (interactively) of the fact that a certain statement 𝑥 belongs to 𝐿, i.e. that 𝑥 ∈ 𝐿.
While in general only V is required to be PPT and P is allowed to be unbounded, we

restrict our attention to proof systems where both parties are PPT and 𝐿 is an NP-language

with associated witness-relation R𝐿 ⊂ {0, 1}∗× {0, 1}∗. The common input for both parties

is then a purported statement 𝑥 and the prover additionally receives a witness𝑤 (assuming

𝑥 ∈ 𝐿).
The two principal properties of a plain IPS (informally) are

• Completeness: For all (𝑥,𝑤) ∈ R𝐿 , the verifier V on input 𝑥 , when interacting

with the honest prover P on input (𝑥,𝑤), accepts, except with negligible probability.

• Soundness: For all 𝑥 ∉ 𝐿, no PPT P∗ in the role of the prover can make the honest

proverV accept, except with negligible probability.

27

2. Preliminaries

The negligible probability is in this case not with respect to a security parameter, but

with respect to ∥𝑥 ∥.
Remark 2.5.9. Requiring that soundness hold only with respect to PPT machines P∗ as
opposed to arbitrary machines leads to argument systems instead of proof systems. As the

distinction is not important to the content of this thesis we will usually speak of proofs
even though arguments are sufficient.

Zero-Knowledge A plain IPS for an NP-language 𝐿 is relatively uninteresting as the

honest prover may just send its witness to the verifier and the verifier accepts if and

only if the witness is correct. More interesting proof systems are those endowed with a

zero-knowledge property [60]. Informally, for an IPS to be zero-knowledge requires the

verifier to learn nothing from an accepting interaction except that the statement 𝑥 belongs

to 𝐿.

As we will only require exact definitions for specialized notions of zero-knowledge in

this thesis
3
, we keep the following definition rather informal.

Generally, zero-knowledge requires for every PPT adversarial verifierV∗ the existence
of a machine called a simulator SimV∗ , which is often only required to run in expected
polynomial time and which on input a 𝑥 ∈ 𝐿 generates transcripts of conversations between
V∗ and P. These transcripts are required to be indistinguishable from true transcripts

between these two machines, for some notion of indistinguishability.

Non-Interactiveness So far, all IPS were allowed to consist of multiple rounds of interac-

tion betweenV and P. In its most extreme form, an IPS only has the prover send a single

message to the verifier, i.e. it is non-interactive. This message is hence called the proof

𝜋 and can be interpreted as having been computed with some PPT algorithm Prove by
the prover. The verifier, after receiving 𝜋 , checks its validity with respect to the common

input 𝑥 by running another PPT algorithm Verify, which outputs a decision-bit 𝑏.

In this case, we can altogether dispense with the two parties and only consider properties

of Prove andVerify. Completeness and soundness are defined analogously to the interactive

case. But when we try to define non-interactive zero-knowledge proofs (NIZK) we run into

an impossibility result in the plain model [59], i.e. the model where there is no shared

trusted setup such as a common reference string (CRS) and also no random oracles.

NIZK in the CRS Model An exact definition then necessarily depends on the particular

model that is chosen and for each model, there exists a whole zoo of definitions. Consider

the conceptually simplest CRS model. In the honest case, a trusted party generates the

CRS and hands it to two parties. The zero-knowledge simulator, on the other hand, is

allowed to generate its own reference string as long as it is distributed computationally

indistinguishable from honest reference strings. This allows the simulator to retain a

trapdoor which is subsequently used to create fake proofs for statements 𝑥 ∈ 𝐿 without

requiring a witness 𝑤 . In some definitions, the simulated CRS is allowed to depend on

𝑥 while in others it has to be selected without seeing the statement. A NIZK in the CRS

model may only allow a single statement to be proven with respect to a single CRS or

polynomially many.

3
For ROM/UC NIZKs and Σ-protocols to be exact.

28

2.5. Cryptographic Primitives

Gzk−rom

D,P (𝜆, 0)
1 : 𝑏 ← D𝐻,P (1𝜆)
2 : return 𝑏

P(𝑥,𝑤)
1 : if (𝑥,𝑤) ∉ R𝐿 do
2 : return ⊥
3 : fi
4 : 𝜋 ← Prove(𝑥,𝑤)
5 : return 𝜋

Gzk−rom

D,Sim (𝜆, 1)
1 : 𝑏 ← D𝐻Sim,PSim (1𝜆)
2 : return 𝑏

𝐻Sim(𝑥)
1 : ℎ = Sim(RO, 𝑥)
2 : return ℎ

PSim(𝑥,𝑤)
1 : if (𝑥,𝑤) ∉ R𝐿 do
2 : return ⊥
3 : fi
4 : 𝜋 ← Sim(𝑥)
5 : return 𝜋

Figure 2.3.: The zero-knowledge security game for NIZKs in the ROM.

NIZK in the ROM The augmentation of the plain model for which we require an exact

definition of NIZK is the assumed existence of a random oracle 𝐻 .
4
This is a common way

to achieve NIZK from interactive zero-knowledge in practice due to the efficiency of the

Fiat-Shamir transform [44]. A similar variety of definitions exists in this setting and we

have selected a common one. Both Prove and Verify are allowed to contain instructions

of the form ℎ = 𝐻 (𝑥) to indicate random oracle queries. Completeness and soundness

remain as in the plain model.

For the notion of zero-knowledge we consider, there has to exist a PPT simulator Sim
such that no PPT distinguisherD can distinguish between the following two environments:

1. In the first, D interacts with an honest random oracle 𝐻 and an oracle P which on

input (𝑥,𝑤) ∈ R𝐿 outputs 𝜋 ← Prove𝐻 (𝑥,𝑤) and ⊥ otherwise.

2. In the second, D interacts with an oracle 𝐻Sim and an oracle PSim which on input

(𝑥,𝑤) ∈ R𝐿 outputs Sim(𝑥) and ⊥ otherwise.

The two games are shown in Figure 2.3.

Remark 2.5.10. The wrapper around Sim is necessary because, presumably, 𝐿 is a hard

language to decide and the prover and hence also the simulator is only required to work

on inputs in the language. Also note that Sim is stateful and queries to both 𝐻Sim and PSim
use and update the same state, e.g. the random oracle may be programmed adaptively

depending on which statements proofs are requested for. Consistency of 𝐻Sim is ensured

as without loss of generality the distinguisher either only queries each input once and

caches the result for subsequent use or may use discrepancies between responses to the

same input to distinguish.

Definition 2.5.11 (ROM NIZK). A pair of PPT algorithms NIZK = (Prove,Verify) is called
a NIZK in the random oracle model if it is complete, sound, and there exists a PPT machine

4
With some domain and codomain specified by the concrete protocol.

29

2. Preliminaries

Sim such that for all PPT distinguishers D���Pr[Gzk−rom

D,P (𝜆.0)
]
− Pr

[
Gzk−rom

D,Sim,1(𝜆, 1)
] ���

is negligible in 𝜆.

Proofs of Knowledge Sometimes a stronger property than soundness, which guards the

verifier against malicious provers trying to prove false statements 𝑥 ∉ 𝐿, called knowledge
soundness is required. A proof system having this property not only ensures that no false

statements can be proven, but also that the prover is in possession of a witness𝑤 for 𝑥 . The

prover knowing a witness is formalized by some procedure using which a witness can be

extracted from a prover with large enough probability related to the probability with which

the malicious prover can make the honest verifier accept. Again there exist a multitude of

game-based definitions ranging from extraction with rewinding in the plain model, over

online extraction without rewinding in the ROM, to stronger kinds of extractability where

extraction of a witness has to be possible adaptively multiple times and after letting the

adversary see a polynomial number of simulated proofs. We require concrete definitions

for one of these notions which we give next.

Online Extractability Being able to extract a witness without rewinding the prover, at

first sight, seems to defy the zero-knowledge property. And this would indeed be true if

the extractor was not given any further abilities. In the case of online extractability, this

additional advantage of the extractor lies in the fact that it has, in addition to a (supposedly

valid) proof 𝜋 for some statement 𝑥 produced by an adversary A, also the random oracle

queries made by A while it came up with 𝜋 . This information is in any other situation

unavailable to the verifier or any other party.

There then has to exist an online extractor Ext such that for any (possibly unbounded)

adversary A and a random oracle 𝐻 the following holds. Let (𝑥, 𝜋) ← A𝐻 (1𝜆) and let

Q𝐻 (A) be the set of random oracle queries including their responses made byA. Let then

𝑤 ← Ext(𝑥, 𝜋,Q𝐻 (A)) and define the probability of success P𝑆𝑢𝑐𝑐 of Ext as

P𝑆𝑢𝑐𝑐 = Pr[(𝑥,𝑤) ∈ R𝐿 ∨ Verify(𝑥, 𝜋) = 0]

Definition 2.5.12 (Online-Extractable NIZK). A NIZK NIZK = (Prove,Verify) is called
online extractable if there exists a PPT extractor Ext such that its probability of success

P𝑆𝑢𝑐𝑐 in the above experiment is overwhelming.

Universally Composable NIZK We also require a definition of NIZK in the UC framework.

It comes in the form of an ideal functionality F𝑁𝐼𝑍𝐾 given in Figure 2.4 (based on a

functionality from [29]). F𝑁𝐼𝑍𝐾 in a single session allows multiple provers P1,P2, . . . ,P𝑛
to prove multiple statements towards a set of verifiersV1,V2, . . . ,V𝑛 . In particular, proofs

are transferable, i.e. a proof created once can be verified by multiple verifiers.

To create a proof for a statement 𝑥 ∈ 𝐿, the prover has to submit 𝑥 together with a

witness 𝑤 such that (𝑥,𝑤) ∈ R𝐿 . Proofs consist of proof strings 𝜋 . To model that these

strings have no inherent meaning associated with them, they are provided by the simulator

S after seeing the (true) statement 𝑥 . To verify a proof, the verifierV submits the proof

30

2.5. Cryptographic Primitives

string 𝜋 as well as the statement 𝑥 to F𝑁𝐼𝑍𝐾 . If 𝜋 was previously output by F𝑁𝐼𝑍𝐾 itself,

it is immediately accepted. To answer verification requests for proofs for which this is

not the case, the simulator is asked to provide a witness𝑤 for 𝑥 . It has to extract𝑤 from

the pair (𝑥, 𝜋) and any additional knowledge it has obtained, e.g. extracted from an ideal

random oracle functionality that it provides to the environment.

We quickly describe how the different game-based notions for completeness, soundness,

and zero-knowledge proof of knowledge are captured by F𝑁𝐼𝑍𝐾 .

• Completeness: Any proof 𝜋 for a statement 𝑥 returned by F𝑁𝐼𝑍𝐾 is stored and

when the verifier later provides the same (𝑥, 𝜋), it is accepted.

• Soundness: Bare soundness is captured by the fact that the verification bit is always

determined as R(𝑥,𝑤). Hence, if 𝑥 ∉ 𝐿, no proof for 𝑥 will be accepted.

• Zero-Knowledge: The witness 𝑤 is only given to F𝑁𝐼𝑍𝐾 , but the adversary has

to provide the proof 𝜋 without knowing𝑤 . Hence 𝜋 can not leak any information

regarding𝑤 to the verifier.

• Proof of Knowledge: The prover has to present a valid witness 𝑤 for the proof

statement 𝑥 to F𝑁𝐼𝑍𝐾 . It thus has to know all of𝑤 and𝑤 can easily be extracted by

having the extractor impersonate F𝑁𝐼𝑍𝐾 , i.e. when the extractor is the simulator for

some protocol in the F𝑁𝐼𝑍𝐾 -hybrid model.

A Relaxed Functionality In Chapter 4 we will try and construct protocols which UC-

realize some form of zero-knowledge functionality and which make use of a verifiable

random oracle. In its most commonly used form, F𝑁𝐼𝑍𝐾 however does require both the

creation of proofs as well as their verification to always succeed. On the other hand,

using the oracle portion of a VRO will have to entail interaction. This means that the

UC adversary is able to deny access to it as it will be in full control of the network. The

success of proof generation could thus not be guaranteed if we suppose for a moment that

this requires access to the random oracle. Similarly, before a party is able to check VRO

proofs, it may have to retrieve a verification key. Again, this may involve interaction.

One way to weaken F𝑁𝐼𝑍𝐾 to allow protocols making use of a VRO to realize it would be

to allow the simulator to decide when to deliver answers to both proof generation as well

as verification queries. We feel like this would lose most of the spirit of non-interactive

zero-knowledge. For proof generation, we do not see any other way. It will have to involve

queries to the random oracle (if we suppose that no other setup is used) and as such has to

be delayable. Verification of proofs, however, could be made non-interactive if access to

the VRO verification key was ensured.

Based on these thoughts we have come up with variant of the F𝑁𝐼𝑍𝐾 functionality

which we call transferable zero-knowledge F𝑇𝑍𝐾 . The changes we have made to F𝑁𝐼𝑍𝐾 are

highlighted in Figure 2.4 and are as follows:

• There exists an additional task Init which is used to retrieve a verification key vk.
The form of the key itself is chosen by the adversary. The adversary is able to decide

when to deliver individual response messages.

31

2. Preliminaries

The F𝑇𝑍𝐾 /F𝑁𝐼𝑍𝐾 functionality

Init On input (Init, 𝑠𝑖𝑑) from party V , if this is the first such message, send a

message (Init, 𝑠𝑖𝑑) to the adversary. Wait for a message (Key, 𝑠𝑖𝑑, vk) from the

adversary and store vk. In any case, send public delayed output (Key, 𝑠𝑖𝑑, vk) to
V .

Proof On input (Prove, 𝑠𝑖𝑑, 𝑥,𝑤) from party P, ignore if (𝑥,𝑤) ∉ R. Send

(Prove, 𝑠𝑖𝑑,P, 𝑥) to the adversary. Wait for an (Upon receiving an) answer

(Proof, 𝑠𝑖𝑑, 𝜋) from the adversary, store (𝑥, 𝜋) and send public delayed output

(Proof, 𝑠𝑖𝑑, 𝜋) to P.

Verification On input (Verify, 𝑠𝑖𝑑, 𝑥, 𝜋 , vk′) from a partyV

• if vk′ = vk, check whether (𝑥, 𝜋) is stored. If not, send

(Verify, 𝑠𝑖𝑑,V, 𝑥, 𝜋) to the adversary and wait for a message

(Witness, 𝑠𝑖𝑑,𝑤). Check whether (𝑥,𝑤) ∈ R and in that case, store

(𝑥, 𝜋). If (𝑥, 𝜋) has been stored, let 𝑏 = 1. Else set 𝑏 = 0. Send output

(Verification, 𝑠𝑖𝑑, 𝑥, 𝜋 , vk , 𝑏) toV .

• If vk′ ≠ vk and (𝑥, 𝜋, vk′, 𝑐) is stored, return (Verification, 𝑠𝑖𝑑, 𝑥, 𝜋, vk′, 𝑐).
Else, send (WrongKey, 𝑠𝑖𝑑,V, 𝑥, 𝜋, vk′) to the adversary and wait for a

response (WrongKey, 𝑠𝑖𝑑,V, 𝑥, 𝜋, vk′, 𝑐). Store (𝑥, 𝜋, vk′, 𝑐) and return

(Verification, 𝑠𝑖𝑑, 𝑥, 𝜋, vk′, 𝑐).

Figure 2.4.: The twoUCZero-Knowledge functionalities we use. The parts not highlighted

in gray make up the NIZK functionality. Including them yields the TZK

functionality. Where a highlighted passage succeeds an underlined one, the

highlighted portion is meant to replace the underlined one.

• Responses to proof generations are delivered by the adversary.

• Verification queries contain an additional input vk′. If the provided key is equal to the
stored verification key, then F𝑇𝑍𝐾 behaves like F𝑁𝐼𝑍𝐾 . For different vk′, verifications
are still consistent, two queries for the same input yield the same output, but the

result is fully determined by the adversary.

2.5.5. Extractable Non-Interactive Witness-Indistinguishable Arguments

In some situations the full strength of zero-knowledge is unnecessary and the weaker

property of a proof/argument system beingwitness-indistinguishable (WI) may be sufficient.

The general structure is unchanged with respect to NIZK, i.e. there are algorithms Prove
and Verify. Prove, on input (𝑥,𝑤) ∈ R𝐿 for some NP-relation R𝐿 , produces a proof

32

2.5. Cryptographic Primitives

𝜋 ← Prove(𝑥,𝑤). Verify, on input (𝑥, 𝜋), outputs a bit 𝑏 indicating whether the proof was

accepted or not.

While in contrast to NIZK, NIWI can exist in the plain model, we need additional

properties which require us to work in the CRS model. The CRS 𝜎 is provided by an

algorithm Setup and given to both Prove and Verify as an additional input.

The four properties a NIWI has to possess in our setting are the following. Note that

extractability already implies soundness, but we state it for completeness. The definitions

are based on those in [64].

Definition 2.5.13 (Extractable NIWI). A non-interactive argument system NIWI =

(Setup, Prove,Verify) is called an extractable non-interactive witness-indistinguishable ar-
gument system in the CRS model for a relation R𝐿 with associated language 𝐿, if it has the

following properties.

• Correctness: For all 𝜎 ← Setup(1𝜆), all (𝑥,𝑤) ∈ R𝐿 , and all honestly generated

proofs 𝜋 ← Prove(𝜎, 𝑥,𝑤), it holds that Verify(𝜎, 𝑥, 𝜋) = 1.

• Computational Soundness: For all PPT adversaries A the probability

Pr
[
𝜎 ← Setup(1𝜆); (𝑥, 𝜋) ← A(𝜎) : Verify(𝜎, 𝑥, 𝜋) = 1 ∧ 𝑥 ∉ 𝐿

]
is negligible in 𝜆.

• Witness-Indistinguishability: No PPT adversary A can distinguish the games

Gwit−ind

A,NIWI(𝜆, 0) and Gwit−ind

A,NIWI(𝜆, 1) shown in Figure 2.5, except with negligible proba-

bility. We also define

Advwit−ind

A,NIWI(𝜆) :=

���Pr[Gwit−ind

A,NIWI(𝜆, 0) = 1

]
− Pr

[
Gwit−ind

A,NIWI(𝜆, 1) = 1

] ���
• Extractability: There exists an alternative PPT setup algorithm ExtSetup (called E1

below) which produces outputs (𝜎, 𝜏) such that

{𝜎 | (𝜎, 𝜏) ← ExtSetup(1𝜆)}𝜆∈N
𝑐≈ {𝜎 |← Setup(1𝜆)}𝜆∈N

There also exists a PPT algorithm Extract (E2 below) such that for all PPT A:

Pr
[
(𝜎, 𝜏) ← E1(1𝜆); (𝑥, 𝜋) ← A(𝜎);𝑤 ← E2(𝜎, 𝜏, 𝑥, 𝜋) :

Verify(𝜎, 𝑥, 𝜋) = 1⇒ (𝑥,𝑤) ∈ R𝐿
]

is overwhelming in 𝜆.

33

2. Preliminaries

Gwit−ind

A,NIWI(𝜆, 0)
1 : 𝜎 ← Setup(1𝜆)
2 : (𝑥,𝑤0,𝑤1, state) ← A(1𝜆, 𝜎)
3 : 𝜋 ← Prove(𝜎, 𝑥,𝑤0)
4 : return A(𝜋, state)
5 : ∧ (𝑥,𝑤0) ∈ R𝐿 ∧ (𝑥,𝑤1) ∈ R𝐿

Gwit−ind

A,NIWI(𝜆, 1)
1 : 𝜎 ← Setup(1𝜆)
2 : (𝑥,𝑤0,𝑤1, state) ← A(1𝜆, 𝜎)
3 : 𝜋 ← Prove(𝜎, 𝑥,𝑤1)
4 : return A(𝜋, state)
5 : ∧ (𝑥,𝑤0) ∈ R𝐿 ∧ (𝑥,𝑤1) ∈ R𝐿

Figure 2.5.: The WI game for NIWI protocols.

P(𝑥,𝑤) V(𝑥)

com

ch ch←$ {0, 1}𝑙

resp returnV(𝑥, com, ch, resp)

Figure 2.6.: Schematic run of a Σ-protocol.

2.5.6. Sigma Protocols

Sigma protocols (Σ-protocols) [32] are a special kind of interactive protocols for an NP-

language 𝐿 with witness-relation R𝐿 between a prover P and verifierV having a certain

set of properties. Their name derives from the communication pattern where the first and

third messages are sent from the prover to the verifier and the second message is sent in

the other direction, thereby tracing a Σ through the space-time diagram of the interaction

(if we imagine the verifier at the end responding with whether the proof was accepted or

not).

The messages are usually given the names com for commitment, ch for challenge, and
resp for response. Σ-protocols are public coin, meaning that the challenge message by the

verifier is randomly chosen from {0, 1}𝑙 for some challenge length 𝑙 ∈ N and independent

of the received commitment.
5
We call a triple (com, ch, resp) a transcript. Based on the

fact that ch is chosen independent of com, the behavior ofV is essentially determined

by a single deterministic algorithm which receives as input the statement 𝑥 and such a

transcript and outputs a bit. By abuse of notation, we will call this algorithmV as well.

A (well-formed) transcript 𝜏 = (com, ch, resp) can be either accepting and non-accepting,
depending on the output ofV(𝑥, 𝜏).

5
The challenge space may also be a more general set C. For example the Schnorr protocol [82] for discrete

logarithms has C = Z𝑞

34

2.5. Cryptographic Primitives

There are slightly deviating collections of properties defining Σ-protocols in the litera-

ture. We make the following definition.

Definition 2.5.14 (Non-Asymptotic Σ-Protocol). An interactive proof system (V,P)
having the structure outlined above is called a non-asymptotic Σ-protocol for the relation
R𝐿 with associated language 𝐿, if it has the following properties.

• Completeness: For every 𝑥 ∈ 𝐿, in an interaction betweenV on input 𝑥 and P on

input (𝑥,𝑤) and such that (𝑥,𝑤) ∈ R𝐿 ,V accepts.

• Special Soundness: There exists a PPT special soundness extractor Ext which, given
two accepting transcripts 𝜏1 = (com, ch, resp), 𝜏2 = (com, ch′, resp′) with ch ≠ ch′

for some 𝑥 , outputs𝑤 ← Ext(𝑥, 𝜏1, 𝜏2) with (𝑥,𝑤) ∈ R𝐿 .

• SpecialHonest-Verifier Zero-Knowledge: There exists a PPT special zero-knowledge
simulator Sim. On input 𝑥 ∈ 𝐿 and any challenge ch ∈ {0, 1}𝑙 , (com, ch, resp) ←
Sim(𝑥, ch) is an accepting transcript and transcripts by Sim are distributed identically

to honest transcripts.
6

Note that the special soundness property implies that Σ-protocols are proofs of knowl-
edge. Similarly, the special honest-verifier zero-knowledge is a strengthening of ordinary

honest-verifier zero-knowledge as there the simulator may choose the challenge by itself,

as long as the produced distribution is correct.

Asymptotic Definition While these three properties make sense in a non-asymptotic

setting, we also require two properties that do not. For this reason, we now let 𝜆 be the

security parameter and add 1
𝜆
as common input for both P andV . Making the definition

asymptotic involves letting 𝑙 = 𝑙 (𝜆) be a function of the security parameter.
7
We also split

the relation R𝐿 into efficiently computable relations R𝜆 , i.e. such that R𝐿 = ∪∞𝜆=0
R𝜆 . The

relations R𝜆 can be thought of as containing those pairs (𝑥,𝑤) for which ∥𝑥 ∥ = 𝜆. For
simplicity, we assume that R𝜆 can be deduced from any (𝑥,𝑤) ∈ R𝜆 .

We now amend the previous definition.

Definition 2.5.15 (Asymptotic Σ-Protocol). An interactive proof system (V,P) satisfying
Definition 2.5.14 for a relation R𝐿 = ∪∞

𝜆=0
is called an (asymptotic) Σ-protocol, if it in

addition has the following properties.

• Super-Logarithmic Commitment Min-Entropy: The min-entropy of a probabil-

ity distribution D is a measure for the best-guess predictability of D. It is defined as

max𝑘 − log(𝑝𝑘) where the 𝑝𝑘 are the probabilities associated with the outcomes ofD.

Super-logarithmic min-entropy of commitments then means that the first message

by the prover com← P(1𝜆, 𝑥,𝑤) for (𝑥,𝑤) ∈ R𝜆 is guessable using polynomially

many guesses only with negligible probability.

6
Of course for this to hold we have to restrict honest transcripts to those with the same challenge.

7
This is not technically necessary to obtain an asymptotic definition, but not doing so leads to a larger (in

particular, constant) knowledge error.

35

2. Preliminaries

• Quasi-Unique Responses: No PPT adversary A, on input 1
𝜆
, can produce a

(𝑥, com, ch, resp, resp′) such that resp′ ≠ resp and both (com, ch, resp′) and
(com, ch′, resp′) are accepting transcripts for 𝑥 , except with negligible probability.

Remark 2.5.16. We briefly exemplify the difference between an asymptotic and non-

asymptotic definition for the Schnorr discrete-logarithm protocol. A non-asymptotic

relation R may have the form

R = {(𝑔𝑥 , 𝑥) | ⟨𝑔⟩ = G, |G| = 𝑞, 𝑥 ∈ Z𝑞}

for some prime number 𝑞. For an asymptotic relation. Let R𝑎𝑠𝑦𝑚𝑝 = ∪∞
𝜆=0
R𝜆 where R𝜆

has the same form as R and for 𝑞 a 𝜆-bit prime. In each case a prover, on input (𝑔𝑥 , 𝑥),
would set com = 𝑔𝑟 for 𝑟 a random exponent from the same group as 𝑥 , but only in the

asymptotic case can commitments have high min-entropy as a function of 𝜆 (indeed they

have fixed min-entropy in the non-asymptotic case).

36

3. The Verifiable Random Oracle Model

In this chapter, we introduce the Verifiable Random Oracle Model (VROM). We start in

Section 3.1 by defining an ideal functionality F𝑉𝑅𝑂 formulated in the UC framework. The

decisions we made during the design of F𝑉𝑅𝑂 and their consequences for protocols using

F𝑉𝑅𝑂 are given in Section 3.1.3. In Section 3.2 we describe how F𝑉𝑅𝑂 fits into protocols

defined either within the UC framework or within a game-based context. Section 3.3

contains a comparison between a random oracle and an instance of F𝑉𝑅𝑂 as well as an

investigation of transformations from protocols using the former to protocols using the

latter. We conclude the chapter by giving a second ideal functionality providing stronger

privacy guarantees during proof verification, but which is less general in that it restricts

the class protocols which are able to realize it.

3.1. The Ideal VRO Functionality

We now define a VRO by means of an ideal functionality F𝑉𝑅𝑂 in the UC framework. As

we have described in Section 2.4, each instance of a functionality F is associated with a

session identifier 𝑠𝑖𝑑 . There are parties P1, . . . ,P𝑛 interacting with F by sending messages

to and receiving responses from F . F also interacts with an ideal adversary/simulator

which both interacts with F on behalf of corrupted parties as well as receives and provides

backdoor information from/to F .

3.1.1. The Actual Functionality

There are three types of queries the protocol parties can make: initialization queries, hash

queries, and verification queries. We describe each of them in turn in text. The formal

specification of F𝑉𝑅𝑂 is shown in Figure 3.1.

• Parameters: F𝑉𝑅𝑂 is parametrized by a domain1 X and a codomainH which serve

as input and hash spaces for the random oracle portion of F𝑉𝑅𝑂 . Both X andH will

usually consist of bit-strings of some fixed or bounded length. We allow X to have

infinite cardinality, i.e. to be the set {0, 1}∗ of arbitrary bit-strings. To allow uniform

sampling,H is required to be finite (for constant security parameter).

• Initialization: Initiated by a party P sending a message (Init, 𝑠𝑖𝑑) to F𝑉𝑅𝑂 . Upon
the first such message, F𝑉𝑅𝑂 asks the adversary to provide a string vk representing

the verification key as well as the description of a stateless Turing machine Prove.

1
We use X to let us later use D to denote the UC dummy adversary.

37

3. The Verifiable Random Oracle Model

This response has to be sent immediately. P receives as response receives a message

(Key, 𝑠𝑖𝑑, vk), the time of delivery of which is decided upon by the adversary
2
.

• Hash Queries: Initiated by a party P sending a message (Query, 𝑠𝑖𝑑, 𝑞) to F𝑉𝑅𝑂 ,
where 𝑞 is from X. Upon each first such message containing some 𝑞, an independent

and uniform element fromH is drawn and associated with 𝑞. A message containing

only the length ∥𝑞∥ of 𝑞 as well as the identity of P is given to the adversary which

(not necessarily immediately) responds with a message containing a string 𝑠 . A proof

string 𝜋 is computed as 𝜋 ← Prove(𝑞, ℎ, 𝑠), a record containing (𝑞, ℎ, 𝜋) is stored, and
returned within a message (Answer, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋) to P. The adversary again decides

when this message is delivered, but can only observe the identity P of the recipient

as well as the Answer portion of the message.

• VerificationQueries: Initiated by a partyP sending amessage (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′)
to F𝑉𝑅𝑂 , where 𝑞 is from X, ℎ is from H , and 𝜋 and vk′ are arbitrary bit-strings.

A bit 𝑏 signaling the validity of 𝜋 as a proof for the fact that ℎ is the correct hash

for 𝑞 is determined as follows. First, if there has been a previous verification query

containing the same data, 𝑏 is set to the same value. Notice that this is indepen-

dent of whether vk′ is equal to the correct key vk. Else, if vk′ is equal to vk, and
either 𝑞 was never contained as input in a hash query or ℎ is not the correct hash

associated with 𝑞, then 𝑏 is set to 0. If 𝑏 is still not set at this point, the adversary

is given the ability to fully determine 𝑏 after seeing all of 𝑞, ℎ, 𝜋 , and vk′. Again,
this response by the adversary is required to be immediate. In any case F𝑉𝑅𝑂 stores

a record containing (𝑞, ℎ, 𝜋, vk′, 𝑏) for use in later queries. F𝑉𝑅𝑂 sends a message

(Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′, 𝑏) to P and without giving the adversary the ability to

deliver it.

In short, parties can request the verification key vk for a session 𝑠𝑖𝑑 , can query values 𝑞

from the domain X and receive the corresponding hash ℎ fromH and a proof 𝜋 of correct

evaluation, and can present an input value 𝑞, a purported hash ℎ and proof 𝜋 attesting to

this fact, as well as the verification key vk and check whether the proof was correct.

Remark 3.1.1. We note that there are different ways of specifying an ideal functionality

F in the literature. The first (and “correct” one with respect to the UC specification [18])

is the following. For each session of F with session identifier 𝑠𝑖𝑑 there exists a different

interactive Turing machine instance (ITI)MF
𝑠𝑖𝑑

which is aware both of the functionality

it is providing as well as its 𝑠𝑖𝑑 . Parties wishing to communicate “with F ” in session

𝑠𝑖𝑑 by sending a message𝑚 simply send𝑚 toMF
𝑠𝑖𝑑
. In particular, the delivered message

does not contain 𝑠𝑖𝑑 . A textual description using this style is then always implicitly

parametrized by some session identifier 𝑠𝑖𝑑 , but protocol messages do not contain 𝑠𝑖𝑑 .

Another way considers all sessions of F to be provided by the same physical machine.

Thus, to differentiate between different sessions, each message has to contain 𝑠𝑖𝑑 . Textual

descriptions in this style often require F to store “tuples of the form (𝑠𝑖𝑑, . . .)” to keep

track of the different states of all the multiplexed sub-functionalities. A third intermediate

way, which we will be using, does include 𝑠𝑖𝑑 in messages, but only uses them to signify the

2
The adversary is allowed to see the full message in this case, but of course, it has itself determined vk.

38

3.1. The Ideal VRO Functionality

The F𝑉𝑅𝑂 functionality

Initialization Upon receiving a value (Init, 𝑠𝑖𝑑) from party P, if this is the first

time that (Init, 𝑠𝑖𝑑) was received, send (Init, 𝑠𝑖𝑑) to the adversary. Wait for an

answer (Init, 𝑠𝑖𝑑, Prove, vk) where Prove is the description of a stateless PPT

TM and vk is a string, store these data. Send public delayed output with either

the just received or stored vk as (Key, 𝑠𝑖𝑑, vk) to P.

Hashing Upon receiving a value (Hash, 𝑠𝑖𝑑, 𝑞) from party P, if there is no stored

(ver, 𝑞, ℎ, 𝜋, vk, 1) for some ℎ and 𝜋 , let ℎ ← H . In either case proceed

to send the adversary a message (Hashing, 𝑠𝑖𝑑,P, ∥𝑞∥). Upon receiving an

answer (SimInfo, 𝑠𝑖𝑑,P, 𝑠), let 𝜋 ← Prove(𝑞, ℎ, 𝑠). If there is no tuple

(ver, 𝑞, ℎ, 𝜋, vk, 0) stored, store a (ver, 𝑞, ℎ, 𝜋, vk, 1) and send private delayed

output (HashProof, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋) to P. If there is such a tuple, halt.

Verification Upon receiving a value (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′) from some partyV , do

the following:
b

• If there exists a stored record (ver, 𝑞, ℎ, 𝜋, vk′, 𝑏), set 𝑓 ← 𝑏 (Consistency).
• Else, if vk′ = vk and no record (ver, 𝑞, ℎ, ∗, vk, 1) exists, set 𝑓 ← 0 (Unforge-
ability).

• Else, send (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′) to the adversary and wait for an answer

(Verified, 𝑠𝑖𝑑, 𝑏), set 𝑓 ← 𝑏.

• Then, and if it is not yet stored, store (ver, 𝑞, ℎ, 𝜋, vk′, 𝑓) and return

(Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, 𝑓) toV .

a
We implicitly assume that there was a previous Init message when receiving the first Hash message.

If there has not been such a message, F𝑉𝑅𝑂 does the initialization now.

b
Again, assume a previous Init message.

Figure 3.1.: The UC Verifiable Random Oracle functionality.

39

3. The Verifiable Random Oracle Model

The F𝑆𝑖𝑔 functionality

Key Generation Upon receiving a value (KeyGen, 𝑠𝑖𝑑) from P, verify that this is the

first request and 𝑠𝑖𝑑 = (P, 𝑠𝑖𝑑′) for some 𝑠𝑖𝑑′. If not, then ignore the request. Else,
hand (KeyGen, 𝑠𝑖𝑑) to the adversary. Upon receiving (VerificationKey, 𝑠𝑖𝑑, vk)
from the adversary, store vk and output (VerificationKey, 𝑠𝑖𝑑, vk) to P.

Signature Generation Upon receiving a value (Sign, 𝑠𝑖𝑑,𝑚) from P, verify that

𝑠𝑖𝑑 = (P, 𝑠𝑖𝑑′) for some 𝑠𝑖𝑑′. If not, then ignore the request. Else, send

(Sign, 𝑠𝑖𝑑,𝑚) to the adversary. Upon receiving (Signature, 𝑠𝑖𝑑,𝑚 𝜎̧) from the

adversary, verify that no entry (𝑚,𝜎, vk, 0) recorded. If it is, then output an error

message to P and halt. Else, output (Signature, 𝑠𝑖𝑑,𝑚, 𝜎) to P, and record the

entry (𝑚,𝜎, vk, 1).

Signature Verification Upon receiving a value (Verify, 𝑠𝑖𝑑, 𝜎, vk′) from partyP, ver-
ify that vk is recorded. If not, output (Verified, 𝑠𝑖𝑑,𝑚, 𝜎, vk′, 0) to P. Else, hand
(Verify, 𝑠𝑖𝑑,𝑚, 𝜎, vk′) to the adversary. Upon receiving (Verified, 𝑠𝑖𝑑,𝑚, 𝜙)
from the adversary do:

• If vk′ = vk and the entry (𝑚,𝜎, vk, 1) is recorded, then set 𝑓 = 1. (Complete-
ness)

• Else, if vk′ = vk, the signer is not corrupted, and no entry (𝑚,𝜎′, vk, 1)
for any 𝜎′ is recorded, then set 𝑓 = 0 and record the entry (𝑚,𝜎, vk, 0).
(Unforgeability)

• Else, if there is an entry (𝑚,𝜎, vk′, 𝑓 ′), then set 𝑓 = 𝑓 ′. (Consistency)

• Else, let 𝑓 = 𝜙 and record the entry (𝑚,𝜎, vk′, 𝜙).

Output (Verified, 𝑠𝑖𝑑,𝑚, 𝑓) to P.

Figure 3.2.: The UC Signature functionality.

40

3.1. The Ideal VRO Functionality

session of the party to which the message is sent, otherwise it follows the first paradigm.

The reason for this being that it is easier to send a message (Task, 𝑠𝑖𝑑,𝑚) to a functionality
G rather than sending (Task,𝑚) to the instance of G in session 𝑠𝑖𝑑 .

3.1.2. Comparison with Existing Functionalities

The ideal functionality F𝑉𝑅𝑂 is reminiscent of other existing functionalities which, speaking

loosely, create and output proof strings asserting some statement and which are supposed

to be publicly verifiable by parties other than the original creator of the proof. In the

following, we will compare F𝑉𝑅𝑂 to such functionalities. The first is a functionality F𝑆𝑖𝑔,
capturing the security provided by signature schemes, and F𝑁𝐼𝑍𝐾 , a functionality for

multi-proof, transferable non-interactive zero-knowledge proofs. For reference, F𝑆𝑖𝑔 is
shown in Figure 3.2. F𝑁𝐼𝑍𝐾 has already been defined in Section 2.5.4.

F𝑆𝑖𝑔 is essentially taken from [23], but we apply the framework for immediate responses

to model that these are supposed to be local computations (this did not seem to be a

concern for the original authors).

The differences between F𝑉𝑅𝑂 and F𝑆𝑖𝑔 are the following:

• Distinguished Signer: With F𝑆𝑖𝑔, there is a distinguished party S, the signer. Only
S can execute the KeyGen to successfully retrieve the verification key vk as well as
generate signatures. It is part of the surrounding protocol to authentically transfer

this key to the prospective verifier. Also, the verification of signatures is affected

by whether S is corrupted or not. With F𝑉𝑅𝑂 , on the other hand, there is no such

distinguished party “owning” any session. Any party can request to retrieve the

verification key and request proofs. In addition, F𝑉𝑅𝑂 is independent of the corruption

status of any party.

• Hashes: There is nothing within F𝑆𝑖𝑔 which corresponds to the association of hashes

ℎ to inputs 𝑞 as done by F𝑉𝑅𝑂 .

• Signature/Proof Generation: Signature and proof requests are similar in some

ways but different in others. Both signature strings and proof strings are ultimately

determined by the simulator. F𝑆𝑖𝑔, however, leaks the whole message 𝑚 to the

simulator and lets the simulator (adaptively) respond with the signature string 𝜎

for 𝑚. Proof strings output by F𝑉𝑅𝑂 also depend on the “message” 𝑞 (as well as

the associated hash ℎ), but are computed by the initially provided Prove algorithm,

i.e. the simulator has to commit to a strategy for the generation of proofs strings

once and for all at the start of the session. On the one hand, F𝑉𝑅𝑂 leaks less about

the input—only the length of 𝑞—but has to also provide the identity of the party

requesting the proof to the simulator.

• Unforgeability Guarantees: Due to the existence of hash values, verification of

proofs differs slightly from the verification of signatures. Consistency is guaran-

teed by both functionalities, verifications for the same inputs yield the same result,

independent of the identity of the party making the request. The unforgeability

41

3. The Verifiable Random Oracle Model

guarantees differ slightly. F𝑆𝑖𝑔 guarantees that for no message𝑚 for which no signa-

ture was previously generated, a valid signature can be found (assuming that the

sender is not corrupted). Unforgeability for F𝑉𝑅𝑂 consists of two sub-cases. The

rejection of any proof for a yet unqueried 𝑞 corresponds to the single case of F𝑆𝑖𝑔
while requiring that there can only be valid proofs for the ℎ assigned to 𝑞 has no

direct correspondence.

Altogether, F𝑉𝑅𝑂 can succinctly be described as, on input 𝑞, providing signatures over

(𝑞, ℎ) where ℎ is computed from 𝑞 using a random function RF and where the choice of

RF can not be influenced from outside F𝑉𝑅𝑂 . In addition, F𝑉𝑅𝑂 is augmented by privacy

regarding the input values.

F𝑁𝐼𝑍𝐾 is conceptually much further away from F𝑉𝑅𝑂 . One difference that could have

inspired our design of F𝑉𝑅𝑂 is the absence of a verification key. Proofs by F𝑁𝐼𝑍𝐾 can be

transferred to and verified by any party without the verifier having to obtain the correct

verification key. In most concrete protocols, however, this is bought by relying on either a

common reference string or a random oracle. Access to either of these can not be denied

by the adversary. To remain flexible we have chosen not to go down this path and retain

an explicit initialization step.

3.1.3. Design Decisions

In this section, we will explain F𝑉𝑅𝑂 in more detail with respect to what the description

means in the UC framework.

Delaying Initialization We allow the simulator to decide whether and when to answer

initialization requests on a per-request basis. This models the fact that in a real protocol

the delivery of, e.g. the verification key, might occur by network communication. As the

real adversary is usually (and also in all our later instantiations) given the ability to decide

when to deliver network messages and do so per message, allowing this is necessary.

Code Upload We let the simulator provide the Prove algorithm during the initialization

stage of F𝑉𝑅𝑂 . This technique is called code upload in the UC literature and models two

security properties: (1) it forces the simulator to commit to a strategy for generating proofs

at the onset of the session, (2) it allows hiding from the simulator either when certain

ideal tasks are invoked or at least allows to hide certain kinds of information, e.g. in our

case proofs 𝜋 have to depend on 𝑞 and ℎ, but we do not wish to let the simulator gain full

knowledge of these data.

Verification Keys One might ask whether the existence of explicit verification keys is

required. Indeed, we can imagine a functionality F 𝑛𝑜−𝑣𝑘
𝑉𝑅𝑂

which does not reference any

vk or vk′. Such a functionality would then either (1) only consist of two tasks for proof

generation and verification or (2) still contain the same three tasks of F𝑉𝑅𝑂 , but a response
to an Init message merely acts as a receipt that the requesting party has been initialized

and may thus generate proofs and verify proof. Both of these cases have some deficiencies

either in requiring stronger assumptions to realize them or in their usability. In some more

detail:

42

3.1. The Ideal VRO Functionality

(1) Presume for a moment that a protocol 𝜉 which realizes F 𝑛𝑜−𝑣𝑘
𝑉𝑅𝑂

itself requires a

party V trying to verify a proof 𝜋 for some (𝑞, ℎ) to know a verification key vk.3

As verification queries have to always succeed without delay while starting from

(𝑞, ℎ, 𝜋) alone,V has to be able to obtain vk in the same manner. In practice, this

will require assuming an ideal distribution mechanism for vk. We do not wish to

restrict protocols to making such pre-processing assumptions.

(2) First, in this case, F 𝑛𝑜−𝑣𝑘
𝑉𝑅𝑂

has to ensure that parties making a verification query

have previously completed initialization. Again this is due to the fact that this may

involve retrieval of a physical verification key without which the verification can

not succeed. If this is ensured, a major drawback of such a functionality is that

higher-level protocols can not transfer the ability to verify proofs by transmitting

verification keys among parties. As we think that this is a common occurrence (and

indeed we will make use of this in Chapter 4), we have opted not to employ such a

F 𝑛𝑜−𝑣𝑘
𝑉𝑅𝑂

.

Statefulness We require Prove to be stateless. For Prove to be stateless means that proofs

𝜋 can only depend on 𝑞, ℎ, and 𝑠 , but not on any information associated with previous

queries. Note that 𝑠 can not be used to outsource the state to the simulator as the simulator

does not learn 𝑞 and ℎ for hash queries made by honest parties. It may keep some state

based on information such as the lengths of past queries, however.

Incorrect Verification Key For verification queries where the provided verification key

vk′ differs from the correct key vk, no guarantees regarding the unforgeability of proofs

are made. This captures the fact that each verifier has to be sure that the verification key

it uses to verify proofs is authentic. This is similar to the case of signature schemes where

keys are not inherently associated with parties and verifiers have to obtain authentic keys

to have any guarantee that a message was indeed signed by some other party. Concretely,

this allows the adversary to claim any triple (𝑞, ℎ, 𝜋) to constitute a valid input-hash-proof
triple under such a key. It also allows the adversary to circumvent the unforgeability

property regarding multiple valid proofs for a single 𝑞 but different ℎ1, ℎ2.

Alternative Proofs and Malleability Our formulation allows for verification queries on

input (𝑞, ℎ, 𝜋) to return accept, even though 𝜋 was not generated within F𝑉𝑅𝑂 , but only
when 𝑞 was queried before and ℎ is the correct hash for 𝑞. We allow this as it does not con-

tradict any of our unforgeability requirements and allows for simpler instantiations. The

distinction is identical to the one between strong and non-strong existentially unforgeable

signature schemes.

Verification Queries As we have mentioned before while motivating the VROM, we do

wish to have verification of proofs (𝑞, ℎ, 𝜋) to be non-interactive, i.e. have it be a local

computation in any protocol realizing F𝑉𝑅𝑂 . This is achieved by not giving the simulator

the ability to decide when responses to such queries are delivered. Note that we do notify
the simulator for some of the verification requests and have F𝑉𝑅𝑂 wait for a response

3
As we will see, this is generally the case.

43

3. The Verifiable Random Oracle Model

before delivering the result. By using the mechanism of requiring immediate responses by

the simulator, this can not be used to induce a (visible) delay in the delivery of responses.

Whenever the simulator is notified, it gains knowledge of the full input to the verification
request, i.e. (𝑞, ℎ, 𝜋). The reason for this weakened privacy when compared to hash queries

is two-fold. For the primary reason, see the discussion in Section 3.4. A simpler reason is

that proofs by F𝑉𝑅𝑂 are publicly verifiable. As such, we feel that it makes sense to assume

that the adversary could in practice gain access to this information.

Hash Queries For hash queries, on the other hand, we do inform the simulator using

Hashing messages upon each query. This models the fact that such queries are allowed

to be interactive. We also leak the length ∥𝑞∥ of the input 𝑞 as it is infeasible to hide the

length of inputs from the adversary, e.g. by encrypting them, if the domain X contains

strings of arbitrary length. Again due to the control over the network exhibited by the

adversary, we have to allow the simulator to decide when responses are delivered.

Halting There is one condition from which F𝑉𝑅𝑂 can not recover and has to halt, namely

when Prove generates a proof 𝜋 for input (𝑞, ℎ) and for which there exists a stored record

(ver, 𝑞, ℎ, 𝜋, vk, 0). Proceeding by outputting 𝜋 to the partymaking the query and recording

(ver, 𝑞, ℎ, 𝜋, vk, 1) would either break consistency or completeness should (𝑞, ℎ, 𝜋, vk) be
later used in a verification query. As such, we choose to let F𝑉𝑅𝑂 halt.

Simulation Information We allow the simulator to supply a string 𝑠 which is later given

to Prove using the SimInfo messages to model the fact that the adversary may have some

influence on the specific form of proofs produced in any protocol realizing F𝑉𝑅𝑂 . Note
that due to the completeness condition, 𝑠 may not influence whether the produced proof is

valid or not. We believe this to be reasonable due to the fact that the Query task is already

interactive and the fact that similar functionalities which produce a kind of proof/signature
string give total control over the concrete form of such strings to the simulator.

We remark that we were not required to use non-trivial 𝑠 within our main instantiation.

We chose to retain it for two reasons:

• To keep F𝑉𝑅𝑂 as general as possible and allow greater flexibility for future protocols.

• While we did not make use of 𝑠 in our main instantiation of F𝑉𝑅𝑂 , we used it to show
that the protocol on which this instantiation is based realizes a relaxed variant of

F𝑉𝑅𝑂 which we will define later.

Let us quickly sketch how 𝑠 is used in the latter. Proofs in this relaxed protocol consist

of a number of signatures. These are produced by a set of servers, some of which are

corrupted. Corrupted servers can choose whether to submit valid signatures or not.

Independent of this choice, valid proofs are produced. Nonetheless, the distribution of

proofs hinges on how exactly the corrupted servers behave during any given interaction.

In the ideal interaction, Prove has to produce proofs that are consistent with the strategy

of the real-world adversary A. The simulator S can, by simulating an instance of A, gain

knowledge of howA behaves upon each hash query and can also obtain the signatures in

case A follows the protocol. S can then use 𝑠 (containing the signatures by A) to give

Prove the ability to produce correctly distributed proofs.

44

3.2. The VROM

Completeness Proofs 𝜋 which are generated by F𝑉𝑅𝑂 itself are guaranteed to be accepted

when later submitted in a verification query containing also the correct verification key

vk. This is a natural completeness condition.

Unforgeability This is modeled by the fact that F𝑉𝑅𝑂 never accepts a proof as valid

for a value 𝑞 for which the hash ℎ has not even been determined yet, nor for a hash ℎ′

which differs from the correct hash ℎ assigned to 𝑞. The need for the second condition

is clear, without it no verifier receiving a valid proof for some pair (𝑞, ℎ) could be sure

that ℎ is the correct output for 𝑞. The first condition could seem quite strong. It means

that even for polynomially small codomainsH , no valid proofs for some input 𝑞 should

be efficiently computable, although the (future) hash ℎ for 𝑞 can be guessed with non-

negligible probability.

In particular, this means that there can be no instantiation of F𝑉𝑅𝑂 where the size of

H is polynomial and proofs are empty as in that case predicting ℎ’s and forging proofs

for unqueried values 𝑞 are equivalent. We note that this could be solved by allowing

forged proofs to be found with a certain probability related to the size of the codomain.

To simplify the description of F𝑉𝑅𝑂 we have decided not to include such a mechanism.

3.2. The VROM

Just as the ROM in the UC setting can be defined as working in the F𝑅𝑂-hybrid model,

we can define the VROM in the UC setting to correspond to the F𝑉𝑅𝑂-hybrid model.
4
In

this thesis, however, we wish to also apply VROs in a game-based context. The definition

of the ROM in a game-based setting is trivial and unambiguous. All parties gain oracle

access to the same random function. In particular, there is no adversary which is able to

influence the behavior of the oracle, prohibit certain parties from obtaining their requested

output, or learn about inputs given to and outputs obtained from it. F𝑉𝑅𝑂 , on the other

hand, explicitly interacts with an adversary, leaking to it information and giving it power

over the execution.

The Adversary Interface We hence have to provide this adversary interface to some party

participating in the game. Thankfully, most games explicitly involve a single adversarial

entity which is the natural choice for receiving this interface. As we are working with

an ideal functionality, all powers given to the adversary are by definition permitted and

so this should not lead to unnatural attacks, e.g. by the adversary not delivering any

responses to Init requests made by honest parties. We will see that such behavior is

usually directly unfavorable to the goal the adversary is trying to achieve. Imagine for

example the EUF-CMA game and imagine a signature scheme where verification involves

the verification of a proof obtained from F𝑉𝑅𝑂 . If the adversary was not to deliver the

response to the Init query by the challenger (note here that even the challenger must

make such a query and is not simply “given” the verification key of F𝑉𝑅𝑂), then there is

no way for the adversary to, at the end of the game, provide a forged signature 𝜎∗ which
the challenger will deem valid and which thus would let the adversary win.

4
We will speak of the VROM or the F𝑉𝑅𝑂 -hybrid model interchangeably from now on.

45

3. The Verifiable Random Oracle Model

Immediate Responses We have modeled some of the interactions between F𝑉𝑅𝑂 and

the adversary as requiring immediate responses. In the UC framework, this is achieved

by restricting the class of adversaries considered in the notion of UC-realization. Similar

techniques are known in the game-based setting, e.g. restricting adversaries to some

notion of admissible adversary behaving in a certain well-behaved way. Hence, we will

usually restrict to adversaries which immediately reply. Note that as this condition is

efficiently checkable, we could instead incorporate such a check into the challenger and

end up with an equivalent notion.

Multiple Sessions Another difference between the UC and game-based context, which

also exists in the ROM, is the following. By working in the F𝑅𝑂 -hybrid model, protocols are

free to make calls to F𝑅𝑂 in arbitrary sessions 𝑠𝑖𝑑1, . . . , 𝑠𝑖𝑑𝑛 . In the game-based ROM, on

the other hand, parties are given oracle access to what can be described as a single session

of F𝑅𝑂 . We choose to make a similar restriction for the game-based VROM. Formally, we

let the challenger of the respective game run a single instance of F𝑉𝑅𝑂 (we can let the

adversary choose the session identifier in some cases) and give the adversary oracle access

to the aforementioned adversary interface. The challenger in addition makes the ordinary

interface of F𝑉𝑅𝑂 accessible to any of the game procedures it executes during the game,

e.g. within a signing oracle provided to the adversary.

Remark 3.2.1. Note that this last change is introduced mostly in order to simplify reductions

as they only have to provide a single instance of the VRO. It has generally no security

implications as the attacked protocol does not itself rely on information provided by any

other sessions and different sessions are perfectly isolated. Also, note that this does not

mean that “real” protocols are stated obliviously with respect to the session of F𝑉𝑅𝑂 they

are using.

3.3. Comparing Random Oracles to Verifiable Random Oracles

In this section, we compare random oracles and verifiable random oracles. We investigate

in which situations verifiable random oracles can be used to replace random oracles and

also the other way around.

Differences There are a number of differences between the RO functionality F𝑅𝑂 and the

VRO functionality F𝑉𝑅𝑂 . Each of these differences may affect the security of a protocol

trying to use F𝑉𝑅𝑂 instead of F𝑅𝑂 . We have identified the following list:

• Queries to F𝑅𝑂 always succeed in producing an answer while the same is true only

for the Verify task of F𝑉𝑅𝑂 .

• The simulator is not informed of queries to F𝑅𝑂 while it is informed upon each type

of query (initialization, hashing, verification) to F𝑉𝑅𝑂 .

• The only output generated by F𝑅𝑂 are hash values ℎ associated to some input 𝑞 while

F𝑉𝑅𝑂 returns other additional kinds of data including verification keys and proof

strings 𝜋 .

46

3.3. Comparing Random Oracles to Verifiable Random Oracles

An Unsound Transformation There is no general, sound transformation from protocols

defined in the F𝑅𝑂-hybrid model (or the oracle-based ROM) to protocols that are instead

defined in the F𝑉𝑅𝑂-hybrid model. Rather, for each protocol there exists a multitude of

ways of replacing random oracle queries with a mixture of hash and verification queries

made to F𝑉𝑅𝑂 . The simplest of these consists in replacing every Query message on some

input 𝑞 to F𝑅𝑂 by the corresponding Hash message to F𝑉𝑅𝑂 and ignoring the proof 𝜋

contained in the response. While such a canonical transformation is always possible, it

may not yield the best results. First, this transformation by no means transforms a protocol

𝜋𝑅𝑂 secure in the F𝑅𝑂-hybrid model UC-realizing some functionality F into a protocol

𝜋𝑉𝑅𝑂 in the F𝑉𝑅𝑂-hybrid model which also UC-realizes F .
The smaller of two reasons for this lies in the delayability of responses to Hashmessages

by the F𝑉𝑅𝑂 adversary. This alone may not break the transformation, however, as long as

all tasks of F which require protocol parties in 𝜋𝑅𝑂 to make queries to F𝑅𝑂 are themselves

delayable by the simulator for F . A larger reason for why the transformation may lead to

𝜋𝑉𝑅𝑂 not realizing F lies in the leaked information which the F𝑉𝑅𝑂 -adversary is provided

with upon each Hash message. While it may not seem like leaking the identity of each

party making a query and the length of the input, one can easily imagine protocols that are

secure using F𝑅𝑂 , but which become completely insecure when providing the adversary

with this information. For example, imagine a (contrived) signature protocol where signing

involves making a number of random oracle queries and where from the lengths of the

queries the signing key can be reconstructed. There exist secure signature protocols in

the ROM where this is possible (indeed, any secure signature scheme in the ROM can

be changed as to allow this), but the canonically transformed protocol would be totally

insecure as it leaks the signing key to the adversary whenever any party tries to sign a

message.

It thus seems like any transformed protocol (using any kind of transformation from

ROM to VROM, not necessarily the canonical transformation) has to be separately analyzed

to ensure that the additional abilities gained by the adversary do not interfere with the

provided security guarantees.

When restricting to the canonical transformation, a (non-formal) set of sufficient require-

ments for 𝜋𝑅𝑂 seems to be the following:

• All tasks of F which are realized by a protocol party in 𝜋𝑅𝑂 querying the random

oracle can be delayed by the simulator interacting with F .

• The adversary can already gain knowledge of the lengths of random oracle queries

and the identity of the party making them in the original protocol.

Adding Verification Queries When the transformation also includes replacing some in-

structions of the form ℎ = 𝐻 (𝑞) with Verify queries to F𝑉𝑅𝑂 , additional requirements

have to be added. To enable a party to execute verification queries, it first has to either

execute the Init task or has to be provided the verification key authentically via some

other method. In addition, having physical proof strings may open further attack vectors

to the adversary which were previously not available. For verification queries to be useful,

most of the time the proof is provided to the verifier by including it in some protocol

47

3. The Verifiable Random Oracle Model

message by another party. If, in the original protocol, this message was supposed to

be non-malleable, then adding a proof string 𝜋 may break this non-malleability as we

explicitly allow the simulator for F𝑉𝑅𝑂 to claim proofs as valid if they do not conflict with

the unforgeability properties. Again, it seems to be the case that each replacement of a

hash query by a verification query and the necessary changes to the protocol required

by having to distribute the corresponding proof string has to be analyzed separately to

ensure that no attack of this type is possible.

As we will see in the next chapter, going in the other direction, an instance of F𝑅𝑂 can

be seen as an idealized version of an instance of F𝑉𝑅𝑂 by employing an instantiation of

F𝑉𝑅𝑂 where proofs are empty and verifications consist in re-querying on the same input

and comparing the result.
5
This means an instance of F𝑉𝑅𝑂 can be replaced by an instance

of F𝑅𝑂 without any restrictions. We will formally describe this instantiation in Section 5.1.

3.4. An Alternative Version

In the version of F𝑉𝑅𝑂 we have defined above, there is an asymmetry between how answers

to hash and verification queries are generated. Proofs are generated by running the initially

provided algorithm Prove while proofs are verified by, in some cases, letting the adversary

determine whether they are accepted adaptively. It then seems like we may require the

simulator to provide a second algorithm Verify during initialization. This would remove

the just mentioned adaptivity while in addition having the adversary not even be aware

of when a verification query has occurred, thereby further strengthening the fact that

verification should correspond to a local operation.

We have defined such an alternative version of F𝑉𝑅𝑂 in Appendix A.2. We show that

some expressive power is lost by this definition and argue why we ultimately chose the

more complex and in some aspects less private formulation of F𝑉𝑅𝑂 above.

5
There is a minor technical issue here, see the discussion at the end of Section 5.1 and our solution in

Section 5.1.1.

48

4. Applications

In this chapter, we validate the VROM. We present two applications where random oracles

are used and modify them to instead use verifiable random oracles. The first application is

the well-known full-domain hash or hash-then-invert construction for signature schemes,

the security proof of which makes essential use of the programmability of random oracles.

As a second application, we chose the Fischlin transform which, similar to the Fiat-Shamir

transform, is used to make a certain class of interactive zero-knowledge protocols non-

interactive in the ROM. Each model, be it the ROM or the plain model, comes with its own

specific notions of security. For both applications, we thus begin by defining a notion of

security in the VROM. In both cases, we base this new definition on the existing ROM

definition and extend it to encompass the additional capabilities of the VROM. Having

fixed our notion of security, we first recapitulate the formulation of each of the applications

in the ROM. Based on this description we translate them into the VROM. As there are

several choices involved in this translation, we justify these choices. We then prove that

the adapted schemes satisfy our new security definitions in the VROM.

In the case of the Fischlin transform we prove an additional result, namely that the

Fischlin transform even results in UC transferable zero-knowledge proofs (TZK) protocols.

For a definition of the F𝑇𝑍𝐾 functionality see Section 2.5.4. We recall that it is a slight

variation of the UC NIZK functionality F𝑁𝐼𝑍𝐾 such that it can be realized by protocols in

the F𝑉𝑅𝑂-hybrid model where the generation of proofs can be delayed by the adversary.

We then prove that the Fischlin transform, when instantiated in the VROM (after a small,

inexpensive modification) still yields UC TZKs. Note that in this latter case we do not

have to define a separate notion of security for the VROM setting. Both random oracles,

as well as verifiable random oracles, can be represented uniformly as ideal functionalities.

These functionalities can then be employed in protocols realizing the same ideal TZK
functionality.

4.1. Full-Domain Hash

Full-Domain Hash (FDH) [7] is a generic construction for building signature schemes

from any family of trapdoor one-way permutations. The construction involves a hash

function which, in general, has to be modeled as a random oracle to show security
1
[39].

This makes FDH a worthwhile application to apply our techniques.

This section is organized as follows. We begin by stating our notion of security for

signature schemes in the ROM which is the usual EUF-CMA notion. Then we adapt this

notion for signature schemes in the VROM. After that we recall the definition of FDH

in the ROM, which we will call FDH-ROM in the following, and the adapted version

1
Note that this result only holds if access to the permutation is restricted to be black-box.

49

4. Applications

FDH-VROM. The section concludes with a security proof for FDH-VROM with respect to

the just-defined VROM notion of security for signature schemes.

4.1.1. Definition of Security

In this section, we state the adapted security notion we wish signature schemes in the

VROM to fulfill. We have already defined EUF-CMA-security for signature schemes in

the plain model, but here we are working in the ROM and thus recall the exact definition

before adapting it to the VROM.

The ROM Definition In the game-based formulation, an attacker A is first given the

verification key vk of the signature scheme. It has also access to a signing oracle, which,

on input a message𝑚, returns an honestly generated signature 𝜎 for𝑚. At some point, the

attacker outputs a pair (𝑚∗, 𝜎∗) and wins if it never queried its signing oracle on𝑚∗. In
the ROM, the attacker additionally has access to the same random oracle 𝐻 with respect

to which the signatures produced by its signing oracle can be verified.

The VROM Definition Adapting the above to the VROM, we give the attacker A access

to the VRO used by the signing oracle at all times. As per the discussion in Section 3.2,

this access also contains the interface afforded to the adversary by F𝑉𝑅𝑂 . That means A
is asked to initialize F𝑉𝑅𝑂 by providing am algorithm Prove and verification key vk. A
receives Hashing messages and is supposed to provide SimInfo responses to them. A is

formally also tasked with delivering messages whenever this is required by F𝑉𝑅𝑂 , although
not delivering messages is not in A’s interest in the present setting and so we could just

assume that all messages are being delivered. Also as per Section 3.2, we change the way

session identifiers are handled. In the present game-based context we formally fix the

session by removing 𝑠𝑖𝑑 from all messages exchanged between F𝑉𝑅𝑂 and any protocol

party P. This is in line with the usual game-based ROM formulation where a single

random oracle is provided to all parties. The winning condition still involves the adversary

presenting a pair (𝑚∗, 𝜎∗), but the challenger checking the validity of 𝜎∗ may also involve

verification queries made to F𝑉𝑅𝑂 .
The complete interaction between the challenger C and A is shown in Protocol 4.1.

Double-ended arrows indicate bi-directional communication between F𝑉𝑅𝑂 , A, and C.

Definition 4.1.1 (VROM Digital Signature Scheme). Let SIG = (Gen, Sign,Verify) be a
signature scheme in the VROM. SIG is sEUF-CMA-secure iff for all PPT adversariesA the

probability

Pr[sEUF-CMA(A, 𝜆) = 1]

is negligible in 𝜆. SIG is EUF-CMA-secure iff the probability is negligible in the altered

game where the check (𝑚∗, 𝜎∗) ∉ Q is replaced by the check that𝑚∗ is not among the first

components of elements in Q.

50

4.1. Full-Domain Hash

Protocol: sEUF-CMA(A, 𝜆)
C F𝑉𝑅𝑂 A

Initialization
Q ← ∅

(vk𝑆𝑖𝑔, sk) ← Gen(1𝜆)
vk𝑆𝑖𝑔

Init

(Prove, vk𝑉𝑅𝑂

Sign Queries
Sign(𝑚)

HashProof Hash SimInfo Hashing

𝜎 ← Gen(𝑠𝑘,𝑚) 𝜎

Q = Q ∪ {(𝑚,𝜎)}

Forgery
(𝑚∗, 𝜎∗)

𝑏 = Verify(vk𝑆𝑖𝑔, 𝜎∗,𝑚∗)
Verified Verify Verified Verify

return 𝑏 ?

= ∧(𝑚∗, 𝜎∗) ∉ Q

Protocol 4.1.: The sEUF-CMA security game in the VROM.

51

4. Applications

Gen(1𝜆)
1 : (𝑓 , 𝑓 −1) ← TDP.Gen(1𝜆)
2 : vk = 𝑓

3 : sk = 𝑓 −1

4 : return (vk, sk)

Sign𝐻 (sk,𝑚)
1 : ℎ = 𝐻 (𝑚)
2 : 𝑓 −1 = parse(sk)
3 : return 𝑓 −1(ℎ)

Verify𝐻 (vk,𝑚, 𝜎)
1 : 𝑓 = parse(vk)
2 : ℎ = 𝑓 (𝜎)

3 : return ℎ ?

= 𝐻 (𝑚)

Figure 4.1.: The FDH-ROM procedures.

4.1.2. FDH in the ROM

We recall the definition of FDH in the ROM. Let FDH-ROM = (Gen, Sign,Verify) denote
the algorithms defining the signature scheme. LetM be the message space and X the

signature space. The required building blocks are the following:

• A family TDP of trapdoor one-way permutations with key-generation algorithm

TDP.Gen and domain X.

• A hash function 𝐻 mapping the message spaceM to the signature space X, in the

following modeled as a random oracle.

The Protocol Key generation consists in running TDP.Gen(1𝜆) to obtain a permutation

key 𝑓 and the corresponding trapdoor 𝑓 −1
allowing efficient evaluation of the inverse

permutation. The verification key vk is set to the permutation key 𝑓 and the signing key

sk is the trapdoor 𝑓 −1
. Signing a message𝑚 using the signing key sk = 𝑓 −1

first hashes𝑚

using 𝐻 , obtaining a digest 𝑥 = 𝐻 (𝑚). The signature then is the pre-image 𝜎 = 𝑓 −1(𝑥)
of 𝑥 under 𝑓 . A signature 𝜎 given message 𝑚 and verification key vk = 𝑓 is valid iff

𝑓 (𝐻 (𝑚)) = 𝜎 . Exact descriptions of the algorithms are shown in Figure 4.1.

Note that both signer and verifier make one hash query each for signing a given

message/checking the signature of a given message. Both queries are on the message𝑚.

4.1.3. FDH in the VROM

In this section, we propose an adapted formulation of FDH in the VROM. As can be seen

above, a party verifying a signature 𝜎 on message𝑚 merely has to recompute 𝐻 (𝑚) to
check an equality involving the hash. This allows us to replace it with a verification query

to F𝑉𝑅𝑂 . For this to work, however, we have to augment the signature to include both

the hash 𝐻 (𝑚) as well as the proof 𝜋 . The query during signing has to be replaced by a

hash query as its input is the (fresh) message𝑚. Key generation also has to be changed

52

4.1. Full-Domain Hash

Gen(1𝜆, 𝑠𝑖𝑑)
1 : (𝑓 , 𝑓 −1) ← TDP.Gen(1𝜆)
2 : (Init, 𝑠𝑖𝑑) → F𝑉𝑅𝑂
3 : (Key, 𝑠𝑖𝑑, 𝑣) ← F𝑉𝑅𝑂
4 : vk = (𝑓 , 𝑣, 𝑠𝑖𝑑)
5 : sk = (𝑓 −1, 𝑠𝑖𝑑)
6 : return (vk, sk)

Sign(sk,𝑚)
1 : (𝑓 −1, 𝑠𝑖𝑑) = parse(sk)
2 : (Hash, 𝑠𝑖𝑑,𝑚) → F𝑉𝑅𝑂
3 : (HashProof, 𝑠𝑖𝑑,𝑚,ℎ, 𝜋) ← F𝑉𝑅𝑂
4 : 𝜎 = 𝑓 −1(ℎ)
5 : return (𝜎,ℎ, 𝜋)

Verify(vk,𝑚, 𝜎)
1 : (𝑓 , 𝑣, 𝑠𝑖𝑑) = parse(vk)
2 : (𝜎 ′, ℎ, 𝜋) = parse(𝜎)
3 : ℎ′ = 𝑓 (𝜎 ′)
4 : if ℎ′ ≠ ℎ do
5 : return 0

6 : fi
7 : (Verify, 𝑠𝑖𝑑,𝑚,ℎ′, 𝜋, 𝑣) → F𝑉𝑅𝑂
8 : (Verified, 𝑠𝑖𝑑, 𝑞, ℎ′, 𝜋, 𝜏) ← F𝑉𝑅𝑂
9 : return 𝜏 ?

= 1

Figure 4.2.: The FDH-VROM procedures.

to choose a session identifier 𝑠𝑖𝑑 for F𝑉𝑅𝑂 and this identifier has to be available during

signing and verification.

Let FDH-VROM = (Gen, Sign,Verify) denote the algorithms defining the signature

scheme. LetM be the message space and X the signature space. The required building

blocks are as follows:

• As before, a trapdoor one-way permutation TDP on the domain X and with key-

generation algorithm TDP.Gen.

• The ideal functionality F𝑉𝑅𝑂 , parametrized with domainM and codomain X.

The Protocol Compared to the ROM variant, signing and verification keys are augmented

by including in them a session identifier 𝑠𝑖𝑑 , which was provided as an additional input

to Gen. To sign a message 𝑚, the signer sends the message (Hash, 𝑠𝑖𝑑,𝑚) to F𝑉𝑅𝑂 and

receives a response (HashProof, 𝑠𝑖𝑑,𝑚,ℎ, 𝜋). She computes 𝜎′ = 𝑓 −1(ℎ) and returns the

signature 𝜎 = (𝜎′, ℎ, 𝜋). To verify a pair (𝑚,𝜎) with 𝜎 = (𝜎′, ℎ, 𝜋), if this is the first

verification, the verifier sends a message (Init, 𝑠𝑖𝑑) to F𝑉𝑅𝑂 and receives an answer

(Key, 𝑠𝑖𝑑, vk). He then sends a message (Verify, 𝑠𝑖𝑑,𝑚,ℎ, 𝜋, vk) to F𝑉𝑅𝑂 and receives a

response (Verified, 𝑠𝑖𝑑,𝑚,ℎ, 𝜋, , 𝑏). If 𝑏 = 0, return 0. Else return whether 𝑓 (𝜎′) is equal
to ℎ. Formal descriptions of the algorithms are given in Figure 4.2.

Remark 4.1.2. To keep the protocol generally applicable, we have described it without

fixing a single session of F𝑉𝑅𝑂 and providing oracle access for hashing and verification.

For proving security below we remove 𝑠𝑖𝑑 from keys and give the adversary access to a

fixed session of F𝑉𝑅𝑂 instead.

53

4. Applications

Removing the Hash We can actually remove the hash ℎ from the signature. The verifier

then only has to check that 𝜋 is a correct proof under verification key 𝑣 for input𝑚 and

hash 𝑓 (𝜎′). This transformation is analogous to leaving out the challenge in Σ-protocols
that have been transformed via the Fiat-Shamir transform because it is already determined

by public information, in our case the message [3].

We show the following lemma:

Lemma 4.1.3. FDH-VROM without hashes included in signatures is EUF-CMA-secure in
the VROM, iff FDH-VROM with hashes included in signatures is.

Proof. To see why this is valid, imagine that there exists an algorithm A producing

forgeries of the form 𝜎 = (𝑥, 𝜋) for message𝑚. This means that 𝜋 is a verifying proof for

hash 𝑓 (𝑥) and input𝑚. We claim that we can construct from A another adversary B for

the variant where hashes are included in signatures. B behaves as follows:

• B runs a simulated copy of A.

• Upon receiving a verification key vk from its challenger, B gives vk to A.

• B gives A access to F𝑉𝑅𝑂 by connecting A to the interface of its own instance of

F𝑉𝑅𝑂 which B is given by its challenger.

• Upon a signing request by A on a message𝑚, B first gives𝑚 to its own signing

oracle. After receiving a signature 𝜎 = (𝜎′, ℎ, 𝜋), B constructs 𝜎∗ = (𝜎′, 𝜋) and gives

𝜎∗ to A.

• Upon receiving a purported forgery (𝑚∗, 𝜎∗) with 𝜎∗ = (𝜎′, 𝜋∗), B executes a Hash

query on𝑚∗, obtaining a hash ℎ∗. B outputs (𝑚∗, (𝜎′, ℎ∗, 𝜋∗)) to its challenger.

We have to show that B outputs a valid forgery with non-negligible probability if A
does. So let us suppose thatA produces a forgery (𝑚,𝜎) = (𝑚, (𝑥, 𝜋)), i.e. the verification
request with input (𝑚, 𝑓 (𝑥), 𝜋, 𝑣𝑘) returns 1. Let (𝑚,𝜎′) = (𝑚, (𝑥, ℎ, 𝜋)) be the output of
B where ℎ is the hash part of the response by the VRO to a query on input 𝑞. Whether

this signature is correct is determined by whether ℎ = 𝑓 (𝑥) and the verification query

on input (𝑚,ℎ, 𝜋, 𝑣𝑘) returns 1. As we know that this verification query with ℎ replaced

by 𝑓 (𝑥) does in fact return 1 we have to check that ℎ = 𝑓 (𝑥) holds with great enough

probability, but this is implied by the fact that the ideal functionality F𝑉𝑅𝑂 never returns 1

on verification requests for pairs (𝑞, ℎ) where either the hash of 𝑞 has not been fixed yet

or has been fixed to a value ℎ′ ≠ ℎ. Both cases might occur, because A might not have

queried the VRO on𝑚.

Issues of Interaction Note that with the changes we have made, key generation and

signing are no longer purely non-interactive (where this definition of non-interactive

includes random oracle calls as they are guaranteed to be answered). Requiring interaction

during signing is necessary, the signer has to learn the hash of its likely fresh message.

Retrieving the verification data from F𝑉𝑅𝑂 could be shifted to the verification step, thereby

making key generation non-interactive again, but this seems to be a strictly worse option

as it nullifies what we gain by the inclusion of proofs in signatures.

54

4.1. Full-Domain Hash

4.1.4. Proof of Security

In this section, we prove that FDH-VROM (with hashes included in signatures) does fulfill

the EUF-CMA definition in the VROM given in Section 4.1.1. We mainly have to prove

that the augmented signatures do not make it substantially easier to forge signatures by

using the properties of the ideal functionality F𝑉𝑅𝑂 . We reduce the security of the scheme

to the security of the original scheme in the ROM.

Remark 4.1.4. While FDH-ROM is sEUF-CMA secure and even has unique signatures, our
definition of F𝑉𝑅𝑂 has (perfectly) malleable proofs.

2
By including these malleable proofs

in signatures we can not hope to proof any stronger notion than EUF-CMA security for

FDH-VROM.

We prove the following theorem.

Theorem 4.1.5. The signature scheme FDH-VROM with hashes included in signatures is
EUF-CMA-secure in the VROM.

Proof. We consider an adversary A in the VROM and construct another adversary B in

the ROM such that ifA has a non-negligible advantage, then so has B. We construct B by

having it internally run a copy of A. B has access to a signing oracle Sign and a random

oracle 𝐻 while A expects access to an instance of F𝑉𝑅𝑂 , including the adversary interface,

as well as a signing oracle Sign′.
As we have described in Section 3.2, the adversariesA which we have to consider answer

immediately when this is required by F𝑉𝑅𝑂 . This still allows A to delay responses to Init

or Hash messages sent to F𝑉𝑅𝑂 . We now argue that in the present situation, not delivering

all messages immediately only lowers the probability of winning for A. Formally, for

any adversary A which is allowed to delay messages we construct another adversary
ˆA

which immediately delivers all messages and such that the probability of
ˆA to win the

EUF-CMA game in the VROM is at least as high as the corresponding probability of A.

ˆA behaves as follows: It acts as a channel between A and the challenger. Whenever
ˆA

is asked by F𝑉𝑅𝑂 to deliver some message𝑚, it does so immediately. When A finally asks

for𝑚 to be delivered,
ˆA does nothing. When

ˆA receives a signature 𝜎 for some message

𝑚, it checks whether A has allowed the contained proof 𝜋 to be delivered and only sends

𝜎 to A when this has happened. The same mechanism is used for proofs requested by A
directly from F𝑉𝑅𝑂 as well as any time the verification key vk is retrieved by A.

It is easy to see that the view provided to A by
ˆA is as if A had interacted with the

challenger itself. As such, by outputting whatever A outputs,
ˆA has a larger or equal

probability of winning.

Now we describe B in detail. B behaves as follows:

• B runs a simulated copy of A.

• B provides access to an honest instance of F𝑉𝑅𝑂 , except that instead of sampling the

hash ℎ for some input 𝑞 as ℎ ←$ X, B sets ℎ = 𝐻 (𝑞).
2
With this we mean that, once a proof 𝜋 for (𝑞, ℎ) has been output by F𝑉𝑅𝑂 , the adversary is free to let

F𝑉𝑅𝑂 accept any 𝜋 ′ as a valid proof for (𝑞, ℎ).

55

4. Applications

Reduction: EUF-CMA

C B F𝑉𝑅𝑂 A

Initialization
(𝑓 , 𝑓 −1)
← Gen(1𝜆) 𝑓 Init Init

(K, 𝑣) (K, Prove, 𝑣)

vk = (𝑓 , 𝑣) vk

Signing
Sign(𝑚) Sign′(𝑚)

𝜎 = 𝑓 −1(𝐻 (𝑚)) (H,𝑚) (HA,B, ∥𝑚∥)

𝜎 H?(𝑚)

ℎ = 𝑓 (𝜎) ℎ

(HP,𝑚,ℎ, 𝜋) (SI,B, 𝑠)

𝜎′ = (𝜎,ℎ, 𝜋)

Hash Queries
𝑞 H?(𝑞) (𝐻,𝑞)

𝐻 (𝑞) 𝐻 (𝑞) (HA,A, ∥𝑞∥)

(SI,A, 𝑠)

(HP, 𝑞, 𝐻 (𝑞), 𝜋)

Verify Queries
(VFY, 𝑞, ℎ, 𝜋, vk′)

(V, 𝑞, ℎ, 𝜋, vk′, 𝜏)

Forgery
(𝑚∗, 𝜎′) (𝑚∗, 𝜎∗) = (𝑚∗, (𝜎′, ℎ, 𝜋))

Protocol 4.2.: The reduction from EUF-CMA in the VROM to EUF-CMA in the ROM. For

space reasons we use the following abbreviations: HashProof(HP), Hash(H),
Hashing(HA), SimInfo(SI), Verify(VFY), Verified(V), Key(K).

56

4.1. Full-Domain Hash

• Upon receiving a TDOWP key 𝑓 :

1. B simulates a Init query to F𝑉𝑅𝑂 .
2. A responds by providing a message containing (Prove, 𝑣) and allows the re-

sponse (Key, 𝑣) for B to be delivered, B constructs the verification key vk =

(𝑓 , 𝑣).
3. B sends vk to A.

• Upon receiving a Sign′(𝑚) request from A:

1. B executes a Sign(𝑚) query itself, obtaining a signature 𝜎 .

2. It then makes a simulated hash query for𝑚 to F𝑉𝑅𝑂 and receives (ℎ, 𝜋) (where
ℎ = 𝐻 (𝑚) as per the way F𝑉𝑅𝑂 is simulated).

3. A receives the signature 𝜎′ = (𝜎,ℎ, 𝜋).

• Upon receiving a purported forgery (𝑚∗, 𝜎∗) from A:

1. B parses 𝜎∗ as (𝜎,ℎ, 𝜋).
2. And returns (𝑚∗, 𝜎) to its own challenger.

The full reduction is shown in Protocol 4.2. To simplify the code for B, especially with

respect to the instance of F𝑉𝑅𝑂 it has to simulate towards A, we show F𝑉𝑅𝑂 in a separate

column and let messages H?(𝑞) sent from F𝑉𝑅𝑂 to B denote F𝑉𝑅𝑂 asking for the hash ℎ it

should set for 𝑞. In every other aspect F𝑉𝑅𝑂 behaves honestly.

Proving Success We now prove that ifA has a non-negligible probability of producing a

forgery then so does B. We first show that the B simulates a valid environment for A
and then that any valid forgery output by A leads to B outputting a valid forgery as well.

First, as 𝐻 is a random oracle, the instance of F𝑉𝑅𝑂 which B provides for A behaves

exactly like an honest instance. The answers to Sign′ queries are also correct. Let𝑚 be

a queried message and 𝜎′ = (𝜎,ℎ, 𝜋) be the response by B. Assuming that A allows the

hash query of B for𝑚 to succeed, 𝑓 (𝜎) is equal to ℎ and 𝜋 is a valid proof for the fact that

the hash of𝑚 is equal to ℎ (under verification key 𝑣). As these are exactly the conditions

that are checked by the verification algorithm of FDH-VROM, the returned signature 𝜎′

is valid with respect to the verification key vk and the simulated F𝑉𝑅𝑂 . Notice that 𝜋 is

distributed correctly by running the Prove provided by A on𝑚, ℎ and 𝑠 (where A was

also allowed to provide 𝑠).

We now turn to analyzing the probability of success of B in breaking EUF-CMA in the

ROM. Suppose we are given a message and signature pair (𝑚∗, 𝜎∗) by A and where A
has never made a Sign′ query for𝑚∗. Let again vk = (𝑓 , 𝑣) be the verification key. We can

expand 𝜎∗ to (𝜎′, ℎ, 𝜋). If A would have won the EUF-CMA game, then it must hold that

𝑓 (𝜎′) = ℎ and 𝜋 is a proof such that if B was to send a message (Verify,𝑚∗, ℎ, 𝑣, 𝜋) to F𝑉𝑅𝑂 ,
F𝑉𝑅𝑂 would accept. By the verification portion of the code of F𝑉𝑅𝑂 , the latter implies that

• a hash query has been previously made for𝑚.

57

4. Applications

• ℎ is the hash that has been associated with 𝑞 upon the first such hash query.

As𝑚∗ has not been included in any previous Sign′ query, this query was done byA. By

the manner in which B supplies hashes to be used by F𝑉𝑅𝑂 , it then holds that ℎ = 𝐻 (𝑚∗).
Combining this with 𝑓 (𝜎′) = ℎ we obtain 𝑓 (𝜎′) = 𝐻 (𝑚∗) which is exactly the equation

to verify signatures within FDH-ROM. This shows that B has the same probability of

producing a forgery as A.

By combining Theorem 4.1.5 and Lemma 4.1.3 we obtain the following corollary.

Corollary 4.1.6. The signature scheme FDH-VROM without hashes included in signatures
is EUF-CMA-secure in the VROM.

4.1.5. Final Thoughts

As we saw in the last section, there is essentially nothing to prove to show that FDH can

be transferred into the VROM. This is because of the perfect unforgeability properties of

F𝑉𝑅𝑂 which yield that every verifying signature (𝜎′, ℎ, 𝜋) has to contain the true hash of

the image of the first component of the signature under 𝑓 . What one should keep in mind

is that this only holds with respect to the ideal F𝑉𝑅𝑂 . Once one replaces F𝑉𝑅𝑂 by some

protocol 𝜋 UC-realizing it, these properties may degrade to only hold in a computational

sense. The (Hashing, . . .) messages we provided to the attacker were not helpful to him,

because the signatures already contain the hash contained in these messages (and the

attacker knows the message and so could just query the VRO directly). Similarly, the

ability to delay the delivery of responses to F𝑉𝑅𝑂 queries could not help the adversary in

the present context.

4.2. The Fischlin Transformation

In this section we apply the VROM to a more involved example, the Fischlin transformation

[45]. The Fischlin transform is used to transform a certain class of Σ-protocols into non-

interactive zero-knowledge proofs of knowledge (NIZKPoK) in the ROM. In contrast to

other kinds of transforms which achieve the same goal, such as the Fiat-Shamir transform

[44], whose knowledge extractor relies on rewinding techniques and the forking lemma

[80], the Fischlin transform has the nice property that the produced NIZKPoKs are online
extractable. As we have already defined in Chapter 2, online extractability requires the

existence of an efficient machine Ext, the online extractor, which, when given the output

(𝑥, 𝜋) and list of random oracle queries Q made by a cheating prover A, can extract a

witness𝑤 for the proved statement 𝑥 , assuming that 𝜋 is a valid proof.

We begin by defining online extractable NIZKPoKs in the VROM. The notions of security

we consider are completeness, zero-knowledge, and online extractability. We base these

definitions on the respective definitions in the ROM which are stated in Chapter 2. Then

we recall definitions related to the Fischlin transform in the ROM from [45, 71] and give

our adaptation of it to the VROM setting. We conclude by proving the Fischlin transform

in the VROM secure with respect to our security definitions.

58

4.2. The Fischlin Transformation

4.2.1. Definition of Security

In defining the security of NIZKPoKs, we consider completeness, zero-knowledge, and

online extractability. We do not consider soundness separately, because it is implied by

online extractability. For the complete definitions of these notions in the ROM, we refer

back to Chapter 2.

There are multiple ways we might go about defining the security of a NIZKPoK in the

VROM. The first is by extending the usual game-based definitions involving honest and

cheating provers or verifiers, simulators, and extractors and describing how they interact

in the presence of an instance of F𝑉𝑅𝑂 . This is the route chosen below. There are also

ideal functionalities trying to capture either zero-knowledge in general or non-interactive

zero-knowledge in particular. We will explore this setting in Section 4.2.5.

Completeness Completeness means that an honest prover will convince an honest

verifier on an input (𝑥,𝑤) ∈ R𝐿 , either always in the perfect completeness case or with

overwhelming probability in the statistical case. As a NIZKPoK which is the result of

applying the Fischlin transform in general possesses a negligible completeness error
3
, this

is the notion we consider.

Recall that for completeness in the ROMwe require that there exists a negligible function

negl(𝜆) such that for a random oracle 𝐻 and every (𝑥,𝑤) ∈ R𝜆 it holds that

Pr
[
𝜋 ← P𝐻 (𝑥,𝑤) : V𝐻 (𝑥, 𝜋) = 0

]
≤ negl(𝜆)

where the probability is taken over the random coins of P𝐻 as well as the randomness

used to generate outputs of 𝐻 .

In the completeness “game”, both the prover and the verifier are honest. There thus does

not immediately seem to exist any adversarial party to which we could make the adversary

interface of F𝑉𝑅𝑂 available. This did not pose any problems when working in the ROM

where there exists a clear definition of a RO which is under no adversarial influence. The

same is, however, not true in the VROM as F𝑉𝑅𝑂 requires explicit initialization. One way

to handle this is as follows: The verification key vk is set to ⊥ and Prove, on input (𝑞, ℎ, 𝑠)
always returns ⊥ as well. There is, however, another possibility that seems to be more

natural.

We consider an arbitrary adversaryA which acts as a kind of external attacker, corrupt-

ing neither the prover nor the verifier, trying to break the completeness of the protocol by

way of its corruption of F𝑉𝑅𝑂 . By considering such an A we formally give it the ability

to delay the delivery of HashProof responses, supposedly to the prover, as well as Key

responses, supposedly to the verifier. Delaying all such messages would immediately

break the ordinary notion we have for completeness, i.e. requiring the verifier to end the

interaction by accepting a proof it has received. We solve this issue by restricting the

class of adversaries to those delivering all types of messages by F𝑉𝑅𝑂 mentioned above.

Note that this is in addition to the restriction to adversaries which provide immediate

responses to certain requests by F𝑉𝑅𝑂 , see the discussion in Section 3.2. The abilities of

A are thus essentially the following: (1) Initializing F𝑉𝑅𝑂 by providing Prove and vk, (2)
being notified upon each hash query made to F𝑉𝑅𝑂 and where this notification includes

3
We note that in [45], Fischlin describes a way to achieve perfect completeness.

59

4. Applications

learning the identity P of the party making the request as well as the length ∥𝑞∥ of the
input, (3) being able to provide SimInfo messages 𝑠 , (4) in some cases determining the bit

in the response to proof verification queries.

Definition 4.2.1 (VROM Completeness). A NIZKPoK Π = (P,V) in the VROM is called

complete, if for all PPT adversaries A which deliver all messages between F𝑉𝑅𝑂 and the

algorithms in Π there exists a negligible function negl(𝜆), such that for all 𝜆 ∈ N and all

(𝑥,𝑤) ∈ R𝜆 the probability that in the following game 𝑏 = 1 is output, is less than negl(𝜆).

• Give A the adversary interface for a single session of F𝑉𝑅𝑂 .

• Run P(1𝜆, 𝑥,𝑤) with oracle access to F𝑉𝑅𝑂 until P outputs some 𝜋 .

• RunV(1𝜆, 𝑥, 𝜋) with oracle access to F𝑉𝑅𝑂 untilV outputs a bit 𝑏.

• Set 𝑏 as the output of the game.

The probability is taken over the randomness used by P as well as F𝑉𝑅𝑂 .

Zero-Knowledge In the original paper [45], zero-knowledge is defined in a somewhat

non-standard manner. It requires the existence of a zero-knowledge simulatorS = (S1,S2)
such that for all PPT distinguishers D = (D1,D2), the following two distributions are

indistinguishable
4
:

• Let 𝐻 be a random oracle, (𝑥,𝑤, 𝛿) ← D𝐻
1
(1𝜆), and 𝜋 ← P𝐻 (𝑥,𝑤).

If (𝑥,𝑤) ∈ R𝐿 , output D𝐻
2
(𝜋, 𝛿).

• Let (𝐻1, 𝜎) ← S1(1𝜆), (𝑥,𝑤, 𝛿) ← D𝐻1

1
(1𝜆), and (𝐻2, 𝜋) ← S2(𝜎, 𝑥).

If (𝑥,𝑤) ∈ R𝐿 , output D𝐻2

2
(𝜋, 𝛿).

We will, however, instead use the definition we have made in Section 2.5.4 as we find it

easier to work with. Our definition is in some ways stronger than the definition shown

above. Our simulator has to provide up to polynomially many proofs for statements

that were adaptively selected. Nonetheless, the two definitions seem to be ultimately

incomparable. In principle, a simulator for our definition can make the simulated proofs it

produces depend on the random oracle inputs previously given to it by the distinguisher.

This is allowed as both the proof-generation and random oracle share a common state.

S2 above, however, can not do so as the random oracle queries made by D1 are perfectly

hidden from it.

We are unaware of any interesting case where the first part of the simulator S1 chooses

𝐻1 to be anything other than a simple PRF. The simulator we will give below could

similarly be transformed into a simulator having the form above. As such, at least in this

case working with our definition yields a stronger result.

4
We have already slightly simplified the interaction here by explicitly checking that (𝑥,𝑤) ∈ R𝐿 , but it is
easy to see that both definitions are equivalent.

60

4.2. The Fischlin Transformation

The VROM Definition Using our definition, adapting to the VROM is now straight-

forward. We give the distinguisher D oracle access to a session of F𝑉𝑅𝑂 , including the

adversary interface, as well as either an honest prover P or the simulator S. In the case

with the simulator, the simulator also implements the instance of F𝑉𝑅𝑂 (called F S
𝑉𝑅𝑂

below),

in the other case F𝑉𝑅𝑂 is honest. The prover P also has oracle access to F𝑉𝑅𝑂 , but without
the adversary interface.

Definition 4.2.2 (VROM Zero-Knowledge). A NIZKPoK Π = (P,V) in the VROM is said

to have the zero-knowledge property, if for every PPT D there exists a negligible function

negl(𝜆) such that���Pr[DF𝑉𝑅𝑂 ,PF𝑉𝑅𝑂 (1𝜆) = 1

]
− Pr

[
DF S𝑉𝑅𝑂 ,S (1𝜆) = 1

] ��� = negl(𝜆)

Remark 4.2.3. We have in some sense recreated the usual UC setting here. The distinguisher

corresponds to the environment and giving it the adversary interface of F𝑉𝑅𝑂 can be seen

as having this access provided through the dummy adversary (as it would have if we were

working in the F𝑉𝑅𝑂-hybrid model). S then corresponds to the simulator for the dummy

adversary.

The Necessity of Hiding Inputs To prove zero-knowledge of the Fischlin transform

in the VROM, it is essential that the distinguisher is not given the queries made by the

prover or the simulator. Imagine that we were including the hash query input 𝑞 in the

(Hashing, . . .) messages generated by F𝑉𝑅𝑂 . Now also imagine that the verifier is corrupted

and is provided with these messages. By the online extractability of the Fischlin transform

this would immediately allow the adversary to obtain a witness.

In the current setting, this manifests itself as the distinguisher being able to extract

a witness from the observed hash queries when interacting with the honest prover. To

keep both kinds of interactions indistinguishable, the simulator would thus have to be

able to simulate these hash queries. The simulator, however, does not have the witness to

do so. Thus, either breaking the underlying relation has to be easy or there can not exist

an efficient simulator. Depending on which is the case would make the NIZKPoK either

trivial or not zero-knowledge.

Online Extraction In the ROM, online extractability says that there exists a PPT algorithm

Ext such that for any algorithmA the following holds. Let𝐻 be a random oracle, (𝑥, 𝜋) ←
A𝐻

and Q𝐻 be all the queries made by A to 𝐻 and the corresponding answers. Then let

𝑤 ← Ext(𝑥, 𝜋,Q𝐻). The probability that (𝑥,𝑤) ∉ R𝐿 andV𝐻 (𝑥, 𝜋) = 1 is negligible.

Online extractability is a soundness property and as such considers a cheating prover.

We thus give the prover adversary access to the instance of F𝑉𝑅𝑂 with which it interacts.

Essentially, this means the adversary is the one providing the verification key and the

code for generating proofs. The notification for each hash query does not provide any

new information. Apart from this, the definition is as in the ROM, if we let Q𝐻 be the list

consisting of tuples (𝑞, ℎ, 𝜋), i.e. we augment them to also contain the obtained proof.

61

4. Applications

Definition 4.2.4 (VROM Online Extractability). A NIZKPoK Π = (P,V) in the VROM is

online extractable, if there exists a PPT algorithm Ext such that for all adversaries A, the

probability

Pr
[
(𝑥, 𝜋) ← AF𝑉𝑅𝑂 (1𝜆);𝑤 ← Ext(1𝜆, 𝑥, 𝜋,Q) | 0 = V(1𝜆, 𝑥, 𝜋) ∧ (𝑥,𝑤) ∉ R𝜆

]
is negligible in 𝜆 where A is given the adversary access to F𝑉𝑅𝑂 and Q is contains a tuple

(𝑞, ℎ, 𝜋) for every hash query for input 𝑞 and which returned (ℎ, 𝜋) made by A.

Remark 4.2.5. The definition given here requires that Ext work for any, not necessarily

PPT, machine A. This is fine when working with the ideal F𝑉𝑅𝑂 .
Remark 4.2.6. We may also give the extractor access to other types of queries made by A,

i.e. also verification queries. Our reasoning for not doing so is the following: First, only

verification queries for the correct verification key vk could be of any use for A as it has

to forge a proof verifiable with respect to vk. Second, only accepting verification queries

are useful and these have to be preceded by a hash query for the same input.

4.2.2. The Fischlin Transformation in the ROM

We now define the Fischlin transform in the ROM. The basic idea to achieve online

extractability without relying on rewinding techniques is by essentially forcing the prover

to rewind itself. Informally, to compute a proof for some input (𝑥,𝑤), the prover tries
to find inputs 𝑞 of a specific format, which include a valid transcript of the underlying

Σ-protocol, and for which 𝐻 (𝑞) = 0 where 𝐻 is a random oracle. Depending on the output

length of 𝐻 , this will take more or fewer attempts. Furthermore, the 𝑞 which together can

be used to form a valid proof 𝜋 are linked in such a way that they can only be efficiently

computed and input into 𝐻 if a witness for the statement to be proved is known. This

then leads to the situation that any party not in possession of a witness𝑤 can not produce

a valid proof 𝜋 , and a party which does know a witness 𝑤 is forced to give inputs to 𝐻

which allow efficient computation of𝑤 . We now give a formal definition.

Let Σ = (VΣ,PΣ) be a Σ-protocol for the language 𝐿 with witness-relationR𝐿 . According
to our definition from Chapter 2 this means:

• Σ is complete.

• Σ has quasi-unique responses.

• Σ has super-logarithmic commitment min-entropy.

• There exists a special zero-knowledge simulator SΣ, which on input any statement 𝑥

and challenge ch outputs an accepting transcript (com, ch, resp).

• There exists a special soundness extractor ExtΣ, which on input two accepting

transcripts (com, ch, resp) and (com, ch′, resp′) for statement 𝑥 with ch ≠ ch′ outputs
a witness𝑤 with (𝑥,𝑤) ∈ R𝐿 .

62

4.2. The Fischlin Transformation

These restrictions to a sub-class of Σ-protocols to which the transform can be applied

are taken from [45].

We further introduce parameters 𝑙, 𝑏, 𝑟 and 𝑡 which are functions of the security param-

eter 𝜆. Let 𝐻 be a random oracle with domain {0, 1}∗. Then:

• 𝑙 is the length of challenges of Σ, i.e. Σ has challenge space {0, 1}𝑙 .

• 𝑏 is the length of outputs of 𝐻 , i.e. 𝐻 has codomain {0, 1}𝑏 .

• 𝑟 and 𝑡 are computational parameters of the Fischlin transform where 𝑟 is the number

of repetitions of the underlying Σ-protocol and 𝑡 is a soundness parameter.

These parameters have to fulfill several relations:

• 𝑙, 𝑏, 𝑟, 𝑠 ∈ O(log 𝜆)

• 𝑏𝑟 ∈ 𝜔 (log 𝜆)

• 2
𝑡−𝑏 ∈ 𝜔 (log 𝜆)

• 𝑏 ≤ 𝑡 ≤ 𝑙

The above set of requirements is required for the applicability of the transformation as

originally described by Fischlin [45] (call this the original Fischlin transform). Recently,

Kondi et al. [71] have identified practical issues regarding the applicability of the original

Fischlin transform. In particular, they show that it can be difficult to decide whether

the required quasi-uniqueness property holds in certain contexts as it depends on what

additional information the attacker A possesses. This leads to situations where quasi-

uniqueness holds intuitively, but does not under more careful inspection. They also

describe a practical attack on a class of protocols which have been transformed using the

original Fischlin transform. It is based on the deterministic nature of the prover as defined

by Fischlin and which allows an attacker to determine which witness was used by the

prover to compute a proof in a transformed OR-protocol [30]. OR-protocols are used to

prove logical disjunctions and require that the prover supply a witness for either term

of the statement. It has to be stressed that this is not an attack on the original Fischlin

transform itself. The protocol used in the attack violates the quasi-uniqueness property

and so does not allow the original Fischlin transformation to be applied soundly. We will

go into more detail after we have defined both versions of the transform. In [71] it is

shown how to forego the context-dependent requirement of quasi-unique responses by

introducing the notion of strong special soundness for Σ-protocols. It is defined as follows.

Definition 4.2.7 (Strong Special Soundness). A Σ-protocol Σ for the NP-relation R has

the strong special soundness property if there exists a PPT algorithm Ext such that for

all 𝑥 , two valid transcripts 𝑡 = (com, ch, resp) and 𝑡 ′ = (com, ch′, resp′) with 𝑡 ≠ 𝑡 ′, and
𝑤 ← Ext(𝑥, 𝑡, 𝑡 ′), it holds that (𝑥,𝑤) ∈ R.

63

4. Applications

Remark 4.2.8. Note that having quasi-unique responses and ordinary special soundness

implies strong special soundness. Given two transcripts 𝑡 = (com, ch, resp) and 𝑡 ′ =
(com, ch′, resp)with 𝑡 ≠ 𝑡 ′ and for some statement𝑥 , the strong special soundness extractor

runs the special soundness extractor on (𝑥, 𝑡, 𝑡 ′). This is valid as with overwhelming

probability resp ≠ resp′ due to the quasi-unique responses property.

The authors of [71] then show that there exists a transformation from Σ-protocols satis-
fying the same conditions as for the original Fischlin transform, except with strong special

soundness replacing quasi-unique responses and ordinary special soundness, to online

extractable NIZKPoKs where all security definitions are as defined in [45]. Informally,

they randomize the original Fischlin prover and adjust the zero-knowledge simulator

accordingly. For this reason, we call this the randomized Fischlin transform. The ran-

domized Fischlin transform depends on the same parameters 𝑙, 𝑏, 𝑟, 𝑠, 𝑡 defined above. In

[71], identical conditions as above are imposed on these parameters. As we will show in

Appendix A.5, the proof of the validity of the zero-knowledge simulator in [71] contains a

small formal error that allows an attacker to distinguish honestly generated proofs from

simulated proofs by detecting the programming of the random oracle by the simulator.

We give one possible solution to resolve this issue. To do so, we invert the requirement

𝑙 ∈ O(log 𝜆) imposed by the original Fischlin transform and instead require 𝑙 ∈ 𝜔 (log 𝜆).
As we still require 𝑡 ∈ O(log 𝜆), we in addition replace the requirement 𝑏 ≤ 𝑡 ≤ 𝑙 by
𝑏 ≤ 𝑡 ≤ 𝑚 for𝑚 ∈ O(log 𝜆).

Prover We first describe the prover in the original Fischlin transform. The prover P𝐻
receives as input a pair (𝑥,𝑤) ∈ R𝐿 . It begins by running the prover PΣ of the underlying

Σ-protocol 𝑟 times on (𝑥,𝑤) to generate 𝑟 commitments com𝑖 for 𝑖 ∈ [𝑟]. It combines

all the commitments into a vector ®com = (com1, . . . , com𝑟). For each repetition 𝑖 ∈ [𝑟],
P𝐻 sequentially steps through all strings ch𝑖 = 0, 1, . . . , 2𝑡 of length 𝑡 and computes the

response resp𝑖 which makes (com𝑖, ch𝑖, resp𝑖) a valid transcript for 𝑥 . It continues to do

this until it finds one for which 𝐻 (𝑥, ®com, 𝑖, ch𝑖, resp𝑖) = 0
𝑏
. If for one of the repetitions no

such input is found, 𝜋 = ⊥ is output. Otherwise P𝐻 outputs 𝜋 = (com𝑖, ch𝑖, resp𝑖)𝑖=1,2,...,𝑟 .

The algorithm on the left in Figure 4.3 is the original definition from [45] which we

have just described. The algorithm on the right is the randomized prover from [71]. As

noted in the introduction to the current section, the right prover uses challenges of length

𝑙 ∈ 𝜔 (log 𝜆) rather than 𝑙 ∈ O(log 𝜆) as the original Fischlin prover does. This only

slightly increases the total size of proofs as the size of commitments is already required to

be in 𝜔 (log 𝜆) due to the requirement on their min-entropy. As opposed to the original

prover, to the randomized prover in each iteration of the loop, instead of incrementing the

previous challenge by one, chooses a random challenge from the set of challenges that

have not been previously tried.

We have only described the original prover for completeness, but will from now on

restrict our attention the randomized prover. We note that the verifier described above

is used in both variants of the transform. In particular, stepping through the challenges

randomly does not affect the completeness error. In case no proof is computed, both

provers will have tried the same number of challenges, albeit of different lengths. As each

query to 𝐻 produces independent random output, only the number of trials determines

the probability of success.

64

4.2. The Fischlin Transformation

P𝐻 (𝑥,𝑤)
1 : for 𝑖 ∈ {1, 2, . . . , 𝑟 } do
2 : com𝑖 ← PΣ (𝑥,𝑤)
3 : endfor
4 : ®com = (com1, com2, . . . , com𝑟)
5 : for 𝑖 ∈ {1, 2, . . . , 𝑟 } do
6 : for ch𝑖 ∈ {0, 1}𝑡 do
7 : resp𝑖 ← PΣ (𝑥,𝑤, com𝑖 , ch𝑖)
8 : ℎ = 𝐻 (𝑥, ®com, 𝑖, ch𝑖 , resp𝑖)
9 : if ℎ = 0

10 : go to next 𝑖
11 : fi
12 : if ch𝑖 = 2

𝑡 − 1

13 : return ⊥
14 : fi
15 : endfor
16 : endfor
17 : 𝜋 = (com𝑖 , ch𝑖 , resp𝑖)𝑖=1,2,...,𝑟

18 : return 𝜋

P𝐻 (𝑥,𝑤)
1 : for 𝑖 ∈ {1, 2, . . . , 𝑟 } do
2 : com𝑖 ← PΣ (𝑥,𝑤)
3 : endfor
4 : ®com = (com1, com2, . . . , com𝑟)
5 : for 𝑖 ∈ {1, 2, . . . , 𝑟 } do
6 : E𝑖 = ∅
7 : while |E𝑖 | < 2

𝑡 do

8 : ch𝑖 ←$ {0, 1}𝑙 \ E𝑖
9 : resp𝑖 ← PΣ (𝑥,𝑤, com, ch𝑖)
10 : ℎ = 𝐻 (𝑥, ®com, 𝑖, ch𝑖 , resp𝑖)
11 : if ℎ = 0 do
12 : go to next 𝑖
13 : fi
14 : if |E𝑖 | = 2

𝑡 − 1 do
15 : return ⊥
16 : fi
17 : endwhile
18 : endfor
19 : 𝜋 = (com𝑖 , ch𝑖 , resp𝑖)𝑖=1,2,...,𝑟

20 : return 𝜋

Figure 4.3.: The original (left) and the randomized version (right) of the Fischlin prover.

65

4. Applications

V𝐻 (𝑥, 𝜋)
1 : (com𝑖 , chi, resp𝑖)𝑖=1,2,...,𝑟 = parse(𝜋)
2 : ®com = (com1, com2, . . . , com𝑟)
3 : for 𝑖 ∈ {1, 2, . . . , 𝑟 } do
4 : ℎ = 𝐻 (𝑥, ®com, 𝑖, ch𝑖 , resp𝑖)
5 : 𝜎 = VΣ (𝑥, com𝑖 , ch𝑖 , resp𝑖)
6 : if ℎ ≠ 0 ∨ 𝜎 = 0 do
7 : return 0

8 : fi
9 : endfor
10 : return 1

Figure 4.4.: The Fischlin verifier in the ROM.

Remark 4.2.9. Notice how the original prover samples challenges from {0, 1}𝑡 instead of

{0, 1}𝑙 , although 𝑙 is technically the challenge length of the underlying Σ-protocol. This is
done for efficiency reasons. As long as 𝑡 in conjunction with the other parameters fulfills

the requirements laid out at the beginning of the current section, the prover can get away

with only trying at most 2
𝑡
challenges and still achieve a negligible completeness error.

This is not a problem as any Σ-protocol Σ1 with challenges of length 𝑙1 can be interpreted

as Σ-protocol Σ2 with challenges of length 𝑙2 ≤ 𝑙1 by having the verifier of Σ2 behave as

the verifier in Σ1, but fix the first 𝑙1 − 𝑙2 bits of each challenge to zeroes. These zeroes do

not have to be communicated to the prover of Σ2 but can rather be added to the truncated

challenge by it when running the code of the underlying prover of Σ1.

Verifier The verifier V𝐻
receives as input a statement 𝑥 and a purported proof 𝜋 =

(com𝑖, ch𝑖, resp𝑖)𝑖=1,2,...,𝑟 and returns a bit 𝑏 ∈ {0, 1}. It outputs 𝑏 = 1 if and only if for all of

the 𝑟 transcripts (com𝑖, ch𝑖, resp𝑖), the verifier VΣ of the underlying Σ-protocol accepts and
in addition 𝐻 (𝑥, ®com, 𝑖, ch𝑖, resp𝑖) = 0

𝑏
where ®com is again the vector of all commitments

contained in 𝜋 . The code for the Fischlin verifier is shown in Figure 4.4.

Sum of Hashes In the original paper, the sum of the 𝐻 (𝑥, ®com, 𝑖, ch𝑖, resp𝑖) only had to

be less than some parameter 𝑆 with 𝑆 ∈ O(𝑟). This was done to reduce the completeness

error introduced by the transform, i.e. reduce the probability of not being able to produce

a valid proof.

Requiring all of them to be 0
𝑏
still leaves the completeness error to be negligible and

lets us save some space later. It can be seen by looking at the upper estimate for the

completeness error from [45] which is given by

exp

(
𝑟 ln(e(2𝑆 + 1)) − (𝑆 + 1)2𝑡−𝑏

)
.

Setting 𝑆 = 0 leads to the expression

exp

(
𝑟 ln(e) − 2

𝑡−𝑏
)
= exp

(
𝑟 − 2

𝑡−𝑏
)
.

66

4.2. The Fischlin Transformation

S(𝑥)
1 : for 𝑖 ∈ {1, 2, . . . , 𝑟 } do
2 : ch𝑖 ←$ {0, 1}𝑡

3 : (com𝑖 , resp𝑖) ← SΣ (𝑥, ch𝑖)
4 : endfor
5 : ®com = (com1, com2, . . . , com𝑟)
6 : for 𝑖 ∈ {1, 2, . . . , 𝑟 } do
7 : ℎ = (𝑥, ®com, 𝑖, ch𝑖 , resp𝑖)
8 : if 𝐻S is already defined on ℎ do
9 : return ⊥
10 : fi
11 : define 𝐻S (ℎ) = 0

12 : endfor
13 : return (com𝑖 , ch𝑖 , resp𝑖)𝑖=1,2,...,𝑟

Figure 4.5.: The Fischlin zero-knowledge simulator in the ROM.

By the requirements on 𝑟 , 𝑡 and𝑏 for the applicability of the Fischlin transform, 𝑟 ∈ O(log𝜆)
and 2

𝑡−𝑏 ∈ 𝜔 (log𝜆), the above term is negligible in the security parameter 𝜆 also when

setting 𝑆 = 0.

Simulator We directly give a simulator for our definition of zero-knowledge. We also

make some efficiency changes to the original simulator afforded to us by simulating for

the second prover from above. The code of the simulator is shown in Figure 4.5 and is

essentially taken from [71], except that like the prover, the challenger samples challenges of

super-logarithmic length 𝑙 . Compared to the simulator for the original Fischlin transform,

this simulator only has to program 𝐻 on 𝑟 inputs and uses fewer random bits.

As we have changed the zero-knowledge definition, the prover, and the simulation

strategy with respect to [45] we have to prove that what we have defined is a valid

simulator. We claim the following theorem to hold.

Theorem 4.2.10. Let Σ be a Σ-protocol satisfying the requirements for the randomized
Fischlin transform and let Σ′ be the transformed protocol in the ROM. Then Σ′ has the
zero-knowledge property as defined in Section 4.2.1.

Proof. We have shown above that the completeness error for the prover is negligible. The

same is true for the simulator. For the simulator to not be able to produce a proof, it must

have failed to program 𝐻S at some input. Because the 𝑟 commitments com𝑖 contained in

each hash query by the prover have entropy which is super-logarithmic in the security

parameter, this only happens with negligible probability. We can in the following thus

condition on no completeness error occurring. Note that this reasoning only shows that

the distinguisher can not induce the simulator to fail using adaptive proof requests. It

remains to be shown that they do not aid the distinguisher in other ways.

67

4. Applications

We turn to the distribution of proofs and focus our attention on a single com𝑖 . As the

honest prover steps through the challenges randomly, each challenge has the same chance

of being included in the final proof. The simulator, on the other hand, chooses a single

challenge uniformly. These two distributions are identical. Equality of proof distributions

now follows from the (perfect) special zero-knowledge property of the Σ-protocol.5

This leaves the possibility of distinguishing both worlds by detecting the programming

of the random oracle. Note that only distributional attacks have to be considered as we

have chosen to let the simulator halt if it would have tried to change some already defined

oracle output. If our simulator had chosen (pseudo-)random outputs to program, no

argument would have to be made. Such programming is always allowed. But S programs

using the fixed value 0
𝑏
which is decidedly not pseudo-random.

In the following, we will argue that even an unbounded distinguisher has negligible

probability in distinguishing the simulated random oracle 𝐻S from an honest random

oracle 𝐻 . First, consider a single proof for (𝑥,𝑤) being generated by S and P and where

both parties use the same vector ®com = (com1, com2, . . . , com𝑟) of commitments. After

having generated ®com, P will make a number of queries to 𝐻 . The set of all possible such

queries, at most 2
𝑡
of which are actually made by P, is

Q =

{
(𝑥, ®com, 𝑖, ch, resp) | 𝑖 ∈ [𝑟], ch ∈ {0, 1}𝑙 ,V𝐻 (𝑥, com𝑖, ch, resp) = 1

}
.

We also define

Q𝑖 =
{
(𝑥, ®com, 𝑖, ch, resp) | ch ∈ {0, 1}𝑙 ,V𝐻 (𝑥, com𝑖, ch, resp) = 1

}
.

Now, suppose that both S and P end up with the same proof 𝜋 = (com𝑖, ch𝑖, resp𝑖)𝑖=1,2,...,𝑟 .
6

As P has arrived at these challenges by sampling from Q until it has found enough

inputs with hash 0
𝑏
, 𝐻 will return a uniform random value on all inputs in Q. In short

𝐻↾Q𝑖 : Q𝑖 → {0, 1}𝑏 is a random function and 𝑞𝑖 = (𝑥, ®com, 𝑖, ch𝑖, resp𝑖) are random values

such that 𝐻 (𝑞𝑖) = 0
𝑏
holds

7
. S, on the other hand, has sampled the ch𝑖 randomly and then

programmed 𝐻S to output 0
𝑏
on 𝑞𝑖 for 𝑖 ∈ [𝑟]. In short, 𝐻S ↾Q𝑖 : Q𝑖 → {0, 1}𝑏 has been

sampled from the set of all functions from Q𝑖 to {0, 1}𝑏 and only then 𝐻S (𝑞𝑖) has been set

to 0
𝑏
(alternatively, conditioned on these relations holding).

The distinguishers task (for a single proof) is then to distinguish 𝑟 samples taken from

either of these distributions (outside of all theQ𝑖 , both𝐻 and𝐻S are identically distributed).
But the statistical distance between the two distributions just described is less than 2

−𝑙

(probability mass of less than this amount has been shifted from hashes other than 0
𝑏
to 0

𝑏
)

and therefore negligible. A polynomial-time distinguisher requesting 𝑝 = poly(𝜆) proofs
thus receives 𝑟𝑝 samples and so this type of attack adds at most 𝑟𝑝2

−𝑙
to the distinguishing

advantage, which is still a negligible amount.

5
We note that computational special zero-knowledge would be sufficient, but would require a hybrid-

argument to show that even the polynomially many samples observed by the distinguisher only help

him negligibly.

6
Recall that we have assumed that the prover always succeeds in producing a proof.

7
This does not mean that we have conditioned on this to be the case.

68

4.2. The Fischlin Transformation

Ext(𝑥, 𝜋,Q𝐻)
1 : (com𝑖 , ch𝑖 , resp𝑖)𝑖=1,2,...,𝑟 = parse(𝜋)
2 : ®com = (com1, com2, . . . , com𝑟)
3 : for 𝑖 ∈ {1, 2, . . . , 𝑟 } do
4 : if (𝑥, ®com, 𝑖, ch∗, resp∗) ∈ Q𝐻 , ch𝑖 ≠ ch∗ do
5 : return ExtΣ (𝑥, com𝑖 , ch𝑖 , ch∗, resp𝑖 , resp

∗)
6 : fi
7 : endfor
8 : return ⊥

Figure 4.6.: The online extractor in the ROM.

Remark 4.2.11. Notice how this reasoning breaks down if we do not require 𝑙 ∈ 𝜔 (log 𝜆). It
would only mean that the statistical distance is bounded by 2

−𝑙 ∈ O(1

poly(𝜆)). The attack in

Appendix A.5 can then quickly be described as follows: The distinguisher requests a proof

for (𝑥,𝑤) and receives a proof 𝜋 = (com𝑖, ch𝑖, resp𝑖)𝑖=1,2,...,𝑟 . It picks some 𝑗 ∈ [𝑖] and for

all ch ∈ {0, 1}𝑙 with ch ≠ ch 𝑗 it computes the accepting transcript (com 𝑗 , ch, resp). Then,
it queries the random oracle on all the (𝑥, ®com, 𝑗, ch, resp) and compares the distribution

of hashes to the uniform distribution.

Online Extractor The code for the online extractor is shown in Figure 4.6. It works by

looking through Q𝐻 for an accepting transcript for a commitment com that is also included

in the proof 𝜋 , but which contains a different challenge. Using the special soundness

extractor of the underlying Σ-protocol a witness for 𝑥 is extracted.

We refer to [45] for a proof that Ext is a valid online extractor. We do remark, however,

that the same proof applies in our setting, even though we have altered the definition of

the prover, as online extractability considers arbitrary provers and we have left the verifier

unchanged.

4.2.3. The Fischlin Transformation in the VROM

We are now ready to adapt the Fischlin transform from ROM to VROM. First, observe

how the random oracle is used in the Fischlin transform. As in the FDH case, the prover

is required to query the random oracle on fresh inputs. Hence, these queries have to be

replaced by Hash queries to F𝑉𝑅𝑂 . The verifier, on the other hand, merely has to reconstruct

inputs that have previously been queried and has to ensure that the corresponding outputs

have a special form. In our case, that they all consist of zeroes. These queries can be

replaced by verification queries to F𝑉𝑅𝑂 .
To allow the verifier to make these queries we augment proofs to also include 𝑟 proofs

𝜋𝑖 , 𝑖 ∈ [𝑟]. Proofs thus have the form (com𝑖, ch𝑖, resp𝑖, 𝜋𝑖)𝑖=1,2,...,𝑟 . Notice that again we can

get away with not including any hashes as all of them are required to be a fixed value

known to the verifier. The verifier first checks the validity of all the 𝜋𝑖 and then verifies

the validity of all the (com𝑖, ch𝑖, resp𝑖) usingVΣ as before.

69

4. Applications

The complete code for the new prover, verifier, and online extractor is shown in Figures

4.7, 4.8 and 4.9. Note that the verifier has become semi-interactive. Upon verifying the

first proof it receives, the verifier has to execute a Init request to retrieve the verification

key vk. All subsequent proofs only require verifications of F𝑉𝑅𝑂-proofs and are therefore

non-interactive.

Prover The prover receives as input (𝑥,𝑤) ∈ R𝐿 and has access to an instance of F𝑉𝑅𝑂 .
It executes the code shown in Figure 4.7. The changes with respect to the ROM version

consist in replacing 𝐻 -queries with Hash queries to F𝑉𝑅𝑂 and including the proofs 𝜋𝑖
alongside the transcripts in the final proof 𝜋 .

Verifier The verifier receives as input a pair (𝑥, 𝜋) where 𝜋 is a purported proof for 𝑥 ∈ 𝐿.
The verifier also has access to an instance of F𝑉𝑅𝑂 . The code for the verifier is shown in

Figure 4.8. The changes with respect to the ROM version consist of the verifier having

to retrieve the verification key vk and replacing all checks of the form 𝐻 (𝑚) = 0
𝑏
by

verification queries to F𝑉𝑅𝑂 .
Online Extractor Our changes to the ROM extractor are similarly straightforward. LetA
be the adversary and let (𝑥, 𝜋) be its output. Let also Q be the queries it made to F𝑉𝑅𝑂 as

tuples (𝑞 𝑗 , ℎ 𝑗 , 𝜋 𝑗).
Ext operates as follows. It parses 𝜋 as (com𝑖, ch𝑖, resp𝑖, 𝜋𝑖)𝑖=1,2,...,𝑟 . Then it runs ExtΣ on

input (𝑥, (com𝑖, ch𝑖, resp𝑖)𝑖=1,2,...,𝑟 ,Q′) where Q′ is constructed from Q by removing the

last component. It receives output𝑤 and outputs it. The complete code of Ext is shown in

Figure 4.9.

4.2.4. Proof of Security

In this section we prove the security of the transformed scheme using F𝑉𝑅𝑂 . Again we

fix the session of F𝑉𝑅𝑂 by removing 𝑠𝑖𝑑 from all messages. We proceed via three lemmas

stating the completeness, zero-knowledge property, and online extractability.

Lemma 4.2.12. Let Σ be a Σ-protocol satisfying the requirements for the randomized Fischlin
transform and let Σ′ be the transformed protocol in the VROM. Then Σ′ is complete in the
VROM according to Definition 4.2.1.

Proof. We show that completeness is preserved. Let A be the restricted adversary (see

Section 4.2.1). It is easy to see that the prover in that case will produce a proof with

exactly the same probability as the ROM prover. As the verifier will be able to retrieve

the verification key and by the perfect completeness guaranteed by F𝑉𝑅𝑂 , it will always
output 1 if it receives a proof. Thus, the transformed scheme has the same negligible

completeness error as before.

Lemma 4.2.13. Let Σ be a Σ-protocol satisfying the requirements for the randomized Fischlin
transform and let Σ′ be the transformed protocol in the VROM. Then Σ′ has the zero-knowledge
property in the VROM according to Definition 4.2.2.

Proof. We have to show the existence of a simulatorS for our definition of zero-knowledge

in the presence of F𝑉𝑅𝑂 with domain {0, 1}∗ and codomain {0, 1}𝑏 . LetD be a distinguisher

and P the honest prover. We have to describe the following things:

70

4.2. The Fischlin Transformation

PF𝑉𝑅𝑂 (𝑥,𝑤)
1 : for 𝑖 ∈ {1, 2, . . . , 𝑟 } do
2 : com𝑖 ← PΣ (𝑥,𝑤)
3 : endfor
4 : ®com = (com1, com2, . . . , com𝑟)
5 : for 𝑖 ∈ {1, 2, . . . , 𝑟 } do
6 : E𝑖 = ∅
7 : while |E𝑖 | < 2

𝑡 do
8 : ch𝑖 ←$ {0, 1}𝑡 \ E𝑖
9 : resp𝑖 ← PΣ (𝑥,𝑤, com𝑖 , ch𝑖)
10 : 𝑞 = (𝑥, ®com, 𝑖, ch𝑖 , resp𝑖)
11 : (Hash, 𝑠𝑖𝑑, 𝑞) → F𝑉𝑅𝑂
12 : (HashProof, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋𝑖) ← F𝑉𝑅𝑂
13 : if ℎ = 0 do
14 : go to next 𝑖
15 : fi
16 : if |E𝑖 | = 2

𝑡 − 1 do
17 : return ⊥
18 : fi
19 : endwhile
20 : endfor
21 : 𝜋 = (com𝑖 , ch𝑖 , resp𝑖 , 𝜋𝑖)𝑖=1,2,...,𝑟

22 : return 𝜋

Figure 4.7.: The Fischlin prover

in the VROM.

VF𝑉𝑅𝑂 (𝑥, 𝜋)
1 : if vk = ⊥ do
2 : (Init, 𝑠𝑖𝑑) → F𝑉𝑅𝑂
3 : (VerificationKey, 𝑠𝑖𝑑, vk) ← F𝑉𝑅𝑂
4 : fi
5 : (com𝑖 , chi, resp𝑖)𝑖=1,2,...,𝑟 = parse(𝜋)
6 : ®com = (com1, com2, . . . , com𝑟)
7 : for 𝑖 ∈ {1, 2, . . . , 𝑟 } do
8 : 𝑞 = (𝑥, ®com, 𝑖, ch𝑖 , resp𝑖)
9 : (Verify, 𝑠𝑖𝑑, 𝑞, 0𝑏, 𝜋𝑖 , vk) → F𝑉𝑅𝑂
10 : (Verified, 𝑠𝑖𝑑, 𝑞, 0𝑏, 𝜋𝑖 , vk, 𝜎) ← F𝑉𝑅𝑂
11 : 𝜁 = VΣ (𝑥, com𝑖 , ch𝑖 , resp𝑖)
12 : if 𝜁 = 0 ∨ 𝜎 = 0 do
13 : return 0

14 : fi
15 : endfor
16 : return 1

Figure 4.8.: The Fischlin verifier

in the VROM.

Ext(𝑥, 𝜋,Q)
1 : (com𝑖 , ch𝑖 , resp𝑖 , 𝜋𝑖)𝑖=1,2,...,𝑟 = parse(𝜋)
2 : 𝜋 ′ = (com𝑖 , ch𝑖 , resp𝑖)𝑖=1,2,...,𝑟

3 : Q𝐻 = {(𝑞, ℎ) | (𝑞, ℎ, 𝜋) ∈ Q}
4 : 𝑤 = Ext𝑅𝑂𝑀 (𝑥, 𝜋 ′,Q𝐻)
5 : return𝑤

Figure 4.9.: The Fischlin online extractor

in the VROM.

71

4. Applications

• How F S
𝑉𝑅𝑂

, including the adversary interface, is provided to D.

• How, given 𝑥 , the proof 𝜋 is simulated.

S behaves as follows:

• F S
𝑉𝑅𝑂

is an honest emulation of F𝑉𝑅𝑂 . Let 𝐿 be the list of ver-tuples. All hash and

verification queries of D are then answered honestly with respect to 𝐿.

• To program F S
𝑉𝑅𝑂

on input 𝑞 to return ℎ, S aborts if there already exists some

(ver, 𝑞, ℎ′, 𝜋 ′, vk, 1) in 𝐿, i.e. if 𝑞 has been queried before. If not, it simulates a hash

query for 𝑞 under identity P (i.e. the real prover) and receives SimInfo 𝑠 from D. It

computes a proof 𝜋 ← Prove(𝑞, ℎ, 𝑠) and stores (ver, 𝑞, ℎ, 𝜋, vk, 1) in 𝐿.

• Upon receiving input a statement 𝑥 :

– S chooses 𝑟 challenges ch𝑖 uniformly at random.

– It runs the special zero-knowledge simulator SΣ on (𝑥, ch𝑖), obtaining tran-

scripts (com𝑖, ch𝑖, resp𝑖), 𝑖 ∈ [𝑟].
– S constructs ®com = (com1, com2, . . . , com𝑟) and attempts to program F S

𝑉𝑅𝑂
on

all inputs (𝑥, ®com, 𝑖, ch𝑖, resp𝑖), 𝑖 ∈ [𝑟]. If any fail, S aborts. Else, S for each

𝑖 ∈ [𝑟] simulates a correctly distributed number of hash queries under the

identity P and of the correct length. It samples random elements from {0, 1}𝑏
until the all-zero string is found the first time to determine this number. Note

that 𝐿 is not affected during this process, S does not determine (and could not

know) the concrete inputs for which it is simulating queries.

The code of S is shown in Figure 4.10. Note that we have suppressed the ability for D
to delay the delivery of messages.

Proving Indistinguishability We have to show that the above is an indistinguishable

simulation. First, S has the same strategy of which inputs to program as the simulator

in the ROM. Hence it has the same probability of returning ⊥ when asked to simulate a

proof. This probability is again negligible and we can condition on the fact that both the

honest prover as well as S always produce a proof. Note that this assumes that D allows

S/P to complete all of its hash queries, but not doing so affects both P and S in the same

manner.

We turn to the distribution of proofs 𝜋 = (com𝑖, ch𝑖, resp𝑖, 𝜋𝑖)𝑖=1,2,...,𝑟 . The portions

of proofs apart from the 𝜋𝑖 are correctly distributed by the proof of the validity of the

zero-knowledge simulator in the ROM. But the 𝜋𝑖 are generated by Prove on inputs

𝑞 = (𝑥, ®com, 𝑖, ch𝑖, resp𝑖), ℎ = 0
𝑏
, and 𝑠 obtained fromD after sending it a Hashingmessage

containing P and ∥𝑞∥. This is the same process that is used by P. Thus, proofs are

distributed correctly.

What remains to be shown is that F S
𝑉𝑅𝑂

is a valid simulation of an honest F𝑉𝑅𝑂 . There
are two differences:

72

4.2. The Fischlin Transformation

F S
𝑉𝑅𝑂
(Init)

1 : 𝐿 ← ∅
2 : Init→ D
3 : (Key, Prove, vk) ← D
4 : return (Key, vk)

F S
𝑉𝑅𝑂
(Hash, 𝑞)

1 : if ∄(ver, 𝑞, ℎ′, 𝜋 ′, vk, 1) ∈ 𝐿 do

2 : ℎ ← {0, 1}𝑏

3 : else
4 : ℎ = ℎ′

5 : (Hashing,D, ∥𝑞∥) → D
6 : (SimInfo,D, 𝑠) ← D
7 : fi
8 : 𝜋 = Prove(𝑞, ℎ, 𝜋)
9 : if (ver, 𝑞, ℎ, 𝜋, vk, 0) ∈ 𝐿 do
10 : halt
11 : fi
12 : 𝐿 = 𝐿 ∪ {(ver, 𝑞, ℎ, 𝜋, vk, 1)}
13 : return (HashProof, 𝑞, ℎ, 𝜋)

F S
𝑉𝑅𝑂
(Verify, 𝑞, ℎ, 𝜋, vk)

1 : if ∃(ver, 𝑞, ℎ, 𝜋, vk, 𝑏) ∈ 𝐿 do
2 : return (Verified, 𝑞, ℎ, 𝜋, vk, 𝑏)
3 : fi
4 : if ∃(ver, 𝑞, ℎ, 𝜋 ′, vk, 1) ∈ 𝐿 do
5 : (Verify, 𝑞, ℎ, 𝜋, vk) → D
6 : (Verified, 𝑞, ℎ, 𝜋, vk, 𝑐) ← D
7 : return (Verifed, 𝑞, ℎ, 𝜋, vk, 𝑐)
8 : fi
9 : return (Verified, 𝑞, ℎ, 𝜋, vk, 0)
10 :

S(𝑥)
1 : for 𝑟 ∈ {1, 2, . . . , 𝑟 } do
2 : ch𝑖 ←$ {0, 1}𝑡

3 : (com𝑖 , resp𝑖) ← SΣ (𝑥, ch𝑖)
4 : endfor
5 : ®com = (com1, com2, . . . , com𝑟)
6 : for 𝑖 ∈ {1, 2, . . . , 𝑟 }
7 : 𝑞 = (𝑥, ®com, 𝑖, ch𝑖 , resp𝑖)
8 : if ∃(ver, 𝑞, ℎ′, 𝜋 ′, vk, 1) ∈ 𝐿 do
9 : return ⊥
10 : fi
11 : (Hashing,P, ∥𝑞∥) → D
12 : (SimInfo,P, 𝑠) ← D
13 : 𝜋𝑖 ← Prove(𝑞, 0𝑏, 𝑠)
14 : 𝐿 = 𝐿 ∪ {(ver, 𝑞, 0𝑏, 𝜋𝑖 , vk, 1)}
15 : endfor
16 : for 𝑖 ∈ {1, 2, . . . , 𝑟 } do
17 : 𝑛𝑖 = 0

18 : while 𝑡𝑟𝑢𝑒 do

19 : 𝑚 ←$ {0, 1}𝑏

20 : if 𝑚 = 0
𝑏 do

21 : break
22 : fi
23 : 𝑛𝑖 = 𝑛𝑖 + 1

24 : endwhile
25 : len = ∥(𝑥, ®com, 𝑖, ch𝑖 , resp𝑖)∥
26 : for 𝑖 ∈ {1, 2, . . . , 𝑛𝑖} do
27 : (Hashing,P, len) → D
28 : (SimInfo,P, 𝑠) ← D
29 : endfor
30 : endfor
31 : 𝜋 = (com𝑖 , ch𝑖 , resp𝑖 , 𝜋𝑖)𝑖=1,2,...,𝑟

32 : return 𝜋

Figure 4.10.: The Fischlin zero-knowledge simulator in the VROM.

73

4. Applications

• By programming 0
𝑏
as the output for 𝑟 inputs for each requested proof for some

statement 𝑥 , S increases the fraction of such hashes over the expected number.

• For each 𝑖 ∈ [𝑟],P queries inputs of the form (𝑥, ®com, 𝑖, ch, resp)with (com𝑖, ch, resp)
an accepting transcript and while randomly stepping through the challenges ch until

the output 0
𝑏
occurs. While doing so it adds tuples of the form (ver, . . . , 1) to 𝐿. S for

each 𝑖 ∈ [𝑟] only adds one such tuple to 𝐿. It then randomly samples elements from

{0, 1}𝑏 until 0
𝑏
occurs the first time and each time sends a notification containing

the correct information to D, but without adding to 𝐿.

Both of these differences already existed in the ROM case. AsS does, the ROM simulator

for each generated proof programmed the random oracle for 𝑟 randomly chosen challenges

to return 0
𝑏
. It did not fix the hash values of any other inputs until finding one with the

correct hash, as the honest prover would have done. The notifications toD do not contain

any information which is not already known to D, i.e. the identity of the prover P and a

constant length len. Hence, the same argument from Section 4.2.2 also applies here.

Thus, the zero-knowledge properly follows from the zero-knowledge property of the

ROM version and the properties of F𝑉𝑅𝑂 .

Lemma 4.2.14. Let Σ be a Σ-protocol satisfying the requirements for the randomized Fischlin
transform and let Σ′ be the transformed protocol in the VROM. Then Σ′ is online extractable
according to Definition 4.2.4.

Proof. We claim that the extractor shown in Figure 4.9 is a valid extractor. Essentially we

are saying that removing the proofs 𝜋𝑖 with overwhelming probability produces a valid

ROM proof with respect to the RO defined by the random function which F𝑉𝑅𝑂 uses to

assign hashes to inputs.

We proceed with a reduction. Let A be an adversary in the VROM. We construct an

adversary B in the ROM. B provides F𝑉𝑅𝑂 by using its random oracle 𝐻 as the source of

randomness. The interaction is shown in Protocol 4.3. Verification queries by A are not

shown as they do not require any action by B.
Let (𝑥, 𝜋) = (𝑥, (com𝑖, ch𝑖, resp𝑖)𝑖=1,2,...,𝑟) be the output of A and assume that 𝜋 is

a valid proof for 𝑥 with respect to F𝑉𝑅𝑂 and verification key vk. This implies that

F𝑉𝑅𝑂 answers all messages (Verify, 𝑞𝑖, 0𝑏, 𝜋, vk) where 𝑞𝑖 = (𝑥, ®com, 𝑖, ch𝑖, resp𝑖) with
(Verified, 𝑞𝑖, 0𝑏, 𝜋, vk, 1). Inspecting the code of F𝑉𝑅𝑂 we see that this implies that 0

𝑏
is

set as the hash for all the 𝑞𝑖 . But by how the randomness of F𝑉𝑅𝑂 is chosen this means that

𝐻 (𝑞𝑖) = 0
𝑏
for all 𝑖 ∈ [𝑟] and hence that the proof 𝜋 ′ is a valid proof for 𝑥 with respect to

𝐻 . This shows that the probability of success of A is transferred to B.

4.2.5. Universally Composable Transferable Zero-Knowledge

In addition to the above, we want to investigate whether the Fischlin transform does

realize an ideal UC TZK functionality F𝑇𝑍𝐾 defined in Section 2.5.4 in either the F𝑅𝑂 or

F𝑉𝑅𝑂-hybrid model. Notice that this is a strictly stronger notion than what we have seen

above. Online extractability is implied as the simulator S interacting with F𝑇𝑍𝐾 is asked to

extract witnesses from (𝑥, 𝜋) alone. It is able to obtain the random oracle queries because

74

4.2. The Fischlin Transformation

Reduction: Online Extractability

B F𝑉𝑅𝑂 A
Initialization

Init

(Key, Prove, vk)

Hashing

Hash?(𝑞) (Hash, 𝑞)

ℎ = 𝐻 (𝑞) ℎ (Hashing,A, ∥𝑞∥)

(SimInfo,A, 𝑠)

𝜋 ← Prove(𝑞, ℎ, 𝑠)
(HashProof, 𝑞, ℎ, 𝜋)

Proof

(𝑥, 𝜋) = (𝑥, (com𝑖, ch𝑖, resp𝑖, 𝜋𝑖)𝑖=1,2,...,𝑟)

𝜋 ′ = (com𝑖, ch𝑖, resp𝑖)𝑖=1,2,...,𝑟

return (𝑥, 𝜋 ′)

Protocol 4.3.: The reduction from online extractability in the ROM to online extractability

in the VROM.

75

4. Applications

in the ideal world it is the entity providing (a simulated instance of) F𝑅𝑂 to the adversary.

Our notion of zero-knowledge for NIZKs where the adversary is provided with an oracle

producing proofs of true statements is also implied. F𝑇𝑍𝐾 , on input (𝑥,𝑤) ∈ R, asks the
simulator to provide a proof for 𝑥 (without seeing𝑤). Hence the simulator has to provide

a simulated proof 𝜋 for 𝑥 which is returned to the environment. Again, due to being

the entity providing F𝑅𝑂 , the simulator is able to program. The environment can make

multiple such queries and thus essentially has oracle access to proofs of true statements. In
the real world, these will be honestly generated proofs while in the ideal world they are

simulated. A successful distinguisher for the game-based definition of zero-knowledge

would hence immediately yield a distinguishing environment that never verifies a proof.
8

To show that the Fischlin transform produces UC TZKs, we have to prove that for

any Σ-protocol Π = (VΣ,PΣ) satisfying the prerequisites of the Fischlin transform, the

transformed protocol Π𝑅𝑂𝑀 = (V𝑅𝑂𝑀 ,P𝑅𝑂𝑀), when considered as a protocol 𝜋𝑅𝑂𝑀 and

in the multi-prover setting, 𝜋𝑅𝑂𝑀 UC-realizes F𝑇𝑍𝐾 in the F𝑅𝑂-hybrid model. Similarly,

we want to show that Π𝑉𝑅𝑂𝑀 = (V𝑉𝑅𝑂𝑀 ,P𝑉𝑅𝑂𝑀) with the VROM-adaptations and in the

multi-prover setting defines a protocol 𝜋𝑉𝑅𝑂𝑀 that UC-realizes F𝑇𝑍𝐾 in the F𝑉𝑅𝑂-hybrid
model. As in the previous sections, all instances of F𝑅𝑂 and F𝑉𝑅𝑂 are parametrized with

domain {0, 1}∗ and codomain {0, 1}𝑏 .
Remark 4.2.15. We note that we have defined the relaxation F𝑇𝑍𝐾 of F𝑁𝐼𝑍𝐾 solely for the

analysis of 𝜋𝑉𝑅𝑂𝑀 as there the verifier will have to be able to retrieve a verification key

from F𝑉𝑅𝑂 and whether and when this succeeds is under the control of the adversary.

Similarly, the delivery of proofs output by F𝑉𝑅𝑂 are able to be delayed and as such we

have to allow this for proofs produced by F𝑇𝑍𝐾 as well. The protocol 𝜋𝑅𝑂𝑀 does in fact

UC-realize F𝑁𝐼𝑍𝐾 without any relaxations. We do not prove this separately, but it can be

seen by inspecting proof for the F𝑇𝑍𝐾 case.

The Protocols We first describe 𝜋𝑅𝑂𝑀 and 𝜋𝑉𝑅𝑂𝑀 . A party P running one of the protocols

𝜋𝑋 , 𝑋 ∈ {𝑅𝑂𝑀,𝑉𝑅𝑂𝑀} and having a session identifier 𝑠𝑖𝑑 behaves as follows:

• On input (Init, 𝑠𝑖𝑑), if 𝑋 = 𝑅𝑂𝑀 return (Key, 𝑠𝑖𝑑,⊥). Else, send (Init, 𝑠𝑖𝑑) to F𝑉𝑅𝑂 .
Upon receiving a response (Key, 𝑠𝑖𝑑, vk), return it.

• On input (Prove, 𝑠𝑖𝑑, 𝑥,𝑤), run 𝜋 ← P𝑋 (𝑥,𝑤) while providing access to the session

with identifier 𝑠𝑖𝑑 of either F𝑅𝑂 or F𝑉𝑅𝑂 . Return (Proof, 𝑠𝑖𝑑, 𝜋).

• On input (Verify, 𝑠𝑖𝑑, 𝑥, 𝜋, vk), if 𝑋 = 𝑅𝑂𝑀 and vk = ⊥ or 𝑋 = 𝑉𝑅𝑂𝑀 , runV𝑋 (𝑥, 𝜋)
while providing access to the session with identifier 𝑠𝑖𝑑 of either F𝑅𝑂 or F𝑉𝑅𝑂 as well

as vk. UponV𝑋 outputting a bit 𝑏, return (Verification, 𝑠𝑖𝑑, 𝑥, 𝜋, vk, 𝑏). If𝑋 = 𝑅𝑂𝑀

and vk ≠ ⊥, return (Verification, 𝑠𝑖𝑑, 𝑥, 𝜋, vk, 0).

In short, all parties have access to either F𝑅𝑂 or F𝑉𝑅𝑂 and generate and verify proofs

with respect to this shared functionality. Due to F𝑅𝑂 not having any verification keys,

some simplifications were possible such as being able to reject any verification attempts

for wrong keys.

8
Note that this holds for every simulator and simulators for distinguishers and environments which only

request proofs are in direct correspondence. Only then the claimed implication holds.

76

4.2. The Fischlin Transformation

4.2.5.1. In the ROM

We begin in the ROM. First, we give a simulator S𝑅𝑂𝑀 for the dummy adversary D.

Then we prove that S𝑅𝑂 is a valid simulator. S𝑅𝑂 makes use of the Fischlin simulator S𝐹
described in Section 4.2.2, augmented by having it output a list L𝑝𝑟𝑜𝑔 of pairs (𝑞, ℎ) which
describe how S𝐹 wishes to program the random oracle for its current input 𝑥 ∈ 𝐿. Let
Ext be the online extractor in the ROM. For a list of pairs T , let T𝑓 𝑠𝑡 be the list of first
components.

S𝑅𝑂𝑀 behaves as follows:

• S𝑅𝑂𝑀 simulates an instance of D and provides an instance of F𝑅𝑂 to it. S𝑅𝑂 keeps a

list L of pairs (𝑞, ℎ) to answer random oracle queries.

• Upon receiving a message (Init, 𝑠𝑖𝑑) from F𝑇𝑍𝐾 , S𝑅𝑂𝑀 responds with a message

(Init, 𝑠𝑖𝑑,⊥).

• Upon receiving a message (Prove, 𝑠𝑖𝑑,P, 𝑥) from F𝑇𝑍𝐾 , S𝑅𝑂𝑀 simulates a proof 𝜋

for 𝑥 by first running S𝐹 (𝑥), obtaining (𝜋,Q). If L𝑓 𝑠𝑡 ∩ Q𝑓 𝑠𝑡 is non-empty, then S𝑅𝑂
outputs abort and halts. Otherwise it sets L = L∪Q to add the freshly programmed

entries. S𝑅𝑂 then sends a message (Proof, 𝑠𝑖𝑑,P, 𝜋) to F𝑇𝑍𝐾 .

• Upon receiving a message (Verify, 𝑠𝑖𝑑,V, 𝑥, 𝜋) from F𝑁𝐼𝑍𝐾 , S𝑅𝑂𝑀 checks whether

𝜋 is a valid proof for 𝑥 with respect to F𝑅𝑂 (and by adding pairs to L where this

involves queries for inputs which have not been queried before) by runningV𝑅𝑂 (𝑥, 𝜋)
with access to the RO represented by L. If 𝜋 is not a valid proof for 𝑥 , S𝑅𝑂 sends

(Witness, 𝑠𝑖𝑑,⊥) back to F𝑁𝐼𝑍𝐾 . Else, S𝑅𝑂 lets T ⊂ L be those queries in L which

are prefixed by 𝑥 . It then runs Ext on input (𝑥, 𝜋,T). Let𝑤 be the obtained output.

If𝑤 = ⊥, S𝑅𝑂 outputs fail and halts. Else, S𝑅𝑂 sends the message (Witness, 𝑠𝑖𝑑,𝑤)
to F𝑁𝐼𝑍𝐾 .

• Upon receiving a message (WrongKey, 𝑠𝑖𝑑,V, 𝑥, 𝜋, vk′) from F𝑇𝑍𝐾 , return
(WrongKey, 𝑠𝑖𝑑,V, 𝑥, 𝜋, vk′, 0).

There is no direct communication between parties andD has no adversarial influence on

F𝑅𝑂 so there is nothing further for S𝑅𝑂𝑀 to do than simulating F𝑅𝑂 and answer messages

by F𝑇𝑍𝐾 .
Having defined S𝑅𝑂𝑀 , we now have to show that

• S𝑅𝑂𝑀 attempts to extract witnesses for the correct set of Verify messages by F𝑁𝐼𝑍𝐾 .

• abort happens with negligible probability. This event occurring implies that S𝑅𝑂𝑀
was unable to program F𝑅𝑂 using the list returned by S𝐹 . We could lower its

probability by re-running S𝐹 , but as a single run is already sufficient to achieve a

negligible probability of aborting, we have chosen to keep the description simple.

• fail happens with negligible probability. In this event, S𝑅𝑂𝑀 was unable to extract

a witness from a valid statement/proof pair (𝑥, 𝜋) where valid means that in the real

interaction, the party trying to verify 𝜋 would accept. F𝑁𝐼𝑍𝐾 , on the other hand, will

reject the proof without receiving a valid witness𝑤 .

77

4. Applications

• the proofs produced by S𝑅𝑂𝑀 are computationally indistinguishable from those

generated in the real interaction. Note that this is not immediately implied by the

zero-knowledge property for the Fischlin transform which we have proven above as

here the “adversary” has in addition access to an extraction oracle.

Remark 4.2.16. It may seem like S𝑅𝑂𝑀 should not halt in the event of fail occurring as 𝑥

may not be in the language and hence there does not exist a valid witness which could be

extracted from 𝜋 . But still, in the real interaction 𝜋 would be accepted while F𝑁𝐼𝑍𝐾 rejects

any proof for a 𝑥 ∉ 𝐿. As such, this event must occur only with negligible probability and

S𝑅𝑂 is allowed to halt.

For the first point, we observe that the goal of S𝑅𝑂𝑀 is to emulate a real protocol

execution. As such, the initial check upon receiving some (𝑥, 𝜋) that 𝜋 is a valid proof

for 𝑥 with respect to the simulated random oracle is equivalent to letting the simulated

instance of the partyV making the verification query execute the real verification protocol

on input (Verify, 𝑠𝑖𝑑, 𝑥, 𝜋). Only ifV outputs (Verification, 𝑠𝑖𝑑, 𝑥, 𝜋, 1) does S𝑅𝑂 have

to come up with a witness 𝑤 with (𝑥,𝑤) ∈ R to make F𝑁𝐼𝑍𝐾 generate the same output.

If instead (Verification, 𝑠𝑖𝑑, 𝑥, 𝜋, 0) is output by the simulatedV , F𝑁𝐼𝑍𝐾 will output the

same message iff S𝑅𝑂 outputs an invalid witness. It achieves this by setting𝑤 = ⊥ (which

we assume to not be a valid witness for any 𝑥). Note that this discussion is independent of

whether 𝑥 ∈ 𝐿.
To show that no environment can tell a difference between the world where all honest

parties execute the protocol 𝜋𝑅𝑂𝑀 and generate and verify proofs according to it, and the

world where proofs are simulated and verification involves extraction, we proceed via

a series of hybrid interactions. We start from the real interaction involvingZ, D and a

session of 𝜋𝑅𝑂𝑀 . After each change, we argue that the distribution of outputs ofZ in the

new interaction is at least computationally indistinguishable from the previous interaction.

The first change we make is merely conceptual. We introduce a new entity C called

the challenger. C will be the entity executing the different interactions and changes made

to it. In the beginning, C will simply be executing the honest protocol on behalf of the

honest parties and also provide an honest simulation of F𝑅𝑂 toZ and D. Gradually, C
will behave in ways in which no honest party could on its own behave. This does not

matter as long as Z is unable to observe the changes based on the information known

to it. After enough steps, C will behave in a way that is essentially identical to the ideal

interaction. At that point, all that will be left to do is restructure C and split it into F𝑇𝑍𝐾
and S𝑅𝑂 , so that formally the ideal interaction has been reached.

Let REAL
F𝑅𝑂
𝜋𝑅𝑂𝑀 ,Z,D denote the ensemble of random variables in the real interaction where

Z interacts with D and a session of 𝜋𝑅𝑂𝑀 in the F𝑅𝑂-hybrid model. For some 𝑖 ≥ 1, let

INT
F𝑅𝑂
𝑖,C,Z,D denote the ensemble of random variables in interaction 𝑖 between the challenger

C,Z and D. Third, let IDEAL
F𝑅𝑂
F𝑇𝑍𝐾 ,Z,S𝑅𝑂𝑀 denote the ensemble of random variables in the

ideal interaction involvingZ, F𝑇𝑍𝐾 and S𝑅𝑂𝑀 .

Interaction 1: C executes an instance ofZ (with the appropriate auxiliary input) and

D. It executes 𝜋𝑅𝑂𝑀 honestly on behalf of all honest parties which are activated by

78

4.2. The Fischlin Transformation

Z over the course of the interaction. The ideal random oracle F𝑅𝑂 is also simulated

honestly.

Lemma 4.2.17. The distribution of outputs ofZ is identically distributed in the real interac-
tion and Interaction 1, formally

REAL
F𝑅𝑂
𝜋𝑅𝑂𝑀 ,Z,D = INT

F𝑅𝑂
1,C,Z,D

Proof. As we have already observed the introduction of C is merely syntactical and does

not impact the view byZ of the interaction in any way. This proves the lemma.

In the next step, we replace the way C lets honest parties generate proofs. Instead

of running the honest prover, it uses the simulator. As the simulator expects to be able

to program F𝑅𝑂 , C also deviates from its honest emulation of F𝑅𝑂 . Intuitively, this step
corresponds to using our notion of zero-knowledge for NIZKPoKs where the distinguisher

is able to adaptively request proofs for up to polynomially many inputs (𝑥,𝑤) while having
access to the random oracle with respect to which the proofs are generated. Also, note that

both C and the Fischlin simulator are able to answer random oracle and proof requests

with respect to a shared state.

Interaction 2: C behaves as in Interaction 1, except in the following cases. Whenever

Z asks an honest party to produce a proof for some input (𝑥,𝑤), S runs the Fischlin

simulator S𝐹 , thereby obtaining a proof 𝜋 . C also incorporates how S𝐹 wishes to

program the random oracle into its simulation of F𝑅𝑂 . Whenever S𝐹 tries to program

F𝑅𝑂 on some input which is already set, C outputs abort and halts.

Lemma 4.2.18. The distribution of outputs of Z in Interaction 1 is computationally
indistinguishable from the distribution in Interaction 2, formally

INT
F𝑅𝑂
1,C,Z,D

𝑐≈ INT
F𝑅𝑂
2,C,Z,D

Proof. We reduce to the zero-knowledge property in the ROMofΠ𝑅𝑂𝑀 . From any successful

distinguisher D∗ for the output distributions ofZ in Interaction 1 and Interaction 2
we construct a distinguisher D′ for the zero-knowledge property of Π𝑅𝑂𝑀 . D′ has access
to either an oracle outputting honest proofs and an honest random oracle, or an oracle

for simulated proofs and a simulated random oracle. It emulates C as in Interaction
1 (say), except that it implements F𝑅𝑂 using its external random oracle and answers

proof generation requests made to honest parties using proofs from its second oracle. In

particular, proofs are verified using the honest verification algorithm from Π𝑅𝑂𝑀 and with

respect to whichever random oracle is provided. OnceZ generates some output, D′ gives
it as input to D∗ and outputs whatever D∗ outputs.
When D′ is interacting with honest oracles, Interaction 1 is played. If, on the other

hand, simulated oracles are supplied, Interaction 2 is played. In each case the emulation

79

4. Applications

is perfect. By the assumed success ofD∗ in distinguishing outputs ofZ and by the perfect

emulation, this non-negligible probability of success perfectly transfers onto D′. This
contradicts the zero-knowledge property of Π𝑅𝑂𝑀 which concludes the proof.

We are now in a world where all proofs by honest parties have been replaced by

simulated proofs, but verifications are still done as in the real interaction. This will now

change. In the next interaction, honest verifiers will accept simulated proofs as valid

but will behave differently when they receive a fresh proof. Assuming that such a proof

verifies with respect to the honest verification algorithm of Π𝑅𝑂𝑀 , C will run the Fischlin

online extractor on all the queries made to F𝑅𝑂 which the environment has made through

the dummy adversary. The answer to the verification request will then depend on whether

a valid witness was able to be extracted.

Another thing to note is that in Interaction 1, the generation of proofs using the honest

prover had a negligible completeness error, i.e. sometimes the proof returned even by an

honest party would not verify using the honest verification algorithm. In Interaction 2,
on the other hand, a proof which is output will always verify with respect to the current

(programmed) state of F𝑉𝑅𝑂and using the honest verification algorithm. This is, however,

exchanged for a negligibly small change of C outputting abort and halting.

Interaction 3: C behaves as in Interaction 2, except in the following cases. Whenever

an honest party, on input a pair (𝑥,𝑤) such that R(𝑥,𝑤) = 1, outputs a (simulated)

proof 𝜋 , C stores the tuple (𝑥, 𝜋). Now, whenever Z asks an honest party to verify

some proof (𝑥, 𝜋), C behaves as follows. If 𝜋 does not verify with respect to 𝑥 and 𝜋 ,

the proof is rejected. Otherwise, C runs the online extractor Ext on (𝑥, 𝜋) as well as
the set Q of all queries made to F𝑅𝑂 so far. Let𝑤 be the result of this computation. If

(𝑥,𝑤) ∉ R, 𝜋 is rejected (even though the proof was valid!). Else, if (𝑥,𝑤) ∈ R, (𝑥, 𝜋)
is added to the stored set of valid proofs and 𝜋 is accepted.

Lemma 4.2.19. The distribution of outputs of Z in Interaction 2 is computationally
indistinguishable from the distribution in Interaction 3, formally

INT
F𝑅𝑂
2,C,Z,D

𝑐≈ INT
F𝑅𝑂
3,C,Z,D

Proof. The fact that proofs generated by honest parties are immediately accepted is indis-

tinguishable due to the fact that simulated proofs always verify (conditioned on no abort

occurring). What remains to be shown is essentially that the online extractor works even

against an adversary which is able to obtain simulated proofs for true statements, i.e. that

it is simulation-sound. Plain simulation-soundness is formally not quite enough as the

environment may try and verify multiple proofs for which extractions have to succeed. As

we will see, this is not a problem due to the fact that extraction does not use rewinding.

We first argue that multiple extractions do not help the environment by using the fact

that all inputs for the extractor are already known to the environment. Formally, let A be

an adversary on the simulation-sound extractability of Π𝑅𝑂𝑀 and let 𝐻 be a random oracle.

A is allowed to freely interleave queries of the form (𝑥,𝑤) ∈ R, which are answered by

80

4.2. The Fischlin Transformation

simulated proofs using S𝐹 , and queries of the form (𝑥, 𝜋) where 𝜋 was not among the

proofs simulated for 𝑥 . Queries of the latter form and where 𝜋 is a valid proof for 𝑥 lead

to Ext being run on (𝑥, 𝜋), and the set Q of all random oracle queries so far. If 𝑤 with

(𝑥,𝑤) ∈ R is obtained, the game continues. Otherwise, A wins. A loses once it halts

and has not won already. We construct another adversary B on the simulation-sound

extractability which is only allowed one query of the form (𝑥, 𝜋) for a fresh 𝜋 and which

wins if 𝜋 is valid and no witness for 𝑥 can be extracted.

B behaves as follows:

• Queries to 𝐻 made by A are answered by relaying them to B’s own random oracle.

• Simulation queries (𝑥,𝑤) are relayed to the simulation oracle of B and the resulting

proof 𝜋 is returned to A.

• Upon an extraction query (𝑥, 𝜋) by A and if 𝜋 is a valid proof for 𝑥 , B computes

𝑤 ← Ext(𝑥, 𝜋,Q) where Q is the set of previous queries to 𝐻 made by A. If𝑤 = ⊥,
B outputs (𝑥, 𝜋) to its challenger and halts. Otherwise, the simulation continues.

First, as long as B does not halt, the simulation of the environment expected by A is

perfect. Second, whenever B generates output it wins. This shows that the probability of

B to win is at least as large as that of A.

We have thus reduced simulation-sound extractability with multiple extraction queries

to simulation-sound extractability with a single extraction query. The remaining two steps

in the proof consist in proving thatΠ𝑅𝑂𝑀 is simulation-sound with a single extraction query

and reducing the computational indistinguishability of Interaction 2 and Interaction 3
to the simulation-soundness with a multiple extraction queries of Π𝑅𝑂𝑀 .

First, we prove the former. For this we let A be an adversary on the simulation-sound

extractability of Π𝑅𝑂𝑀 . Let (𝑥, 𝜋) be the output ofA after interacting with an oracle which

on input (𝑥,𝑤) ∈ R replies with 𝜋 ← S𝐹 and with a random oracle 𝐻S which is also

controlled by the simulator. Let further Q be the set of queries to 𝐻S made by A during

its runtime.

Assume that A wins, i.e. that 𝜋 is a valid proof for 𝑥 with respect to the final state of

𝐻S . We show that either 𝜋 has previously been output by the simulation oracle on input

(𝑥,𝑤) for some 𝑤 or else that 𝑤 ′ ← Ext(𝑥, 𝜋,Q) such that (𝑥,𝑤 ′) ∈ R. We assume that

not the former has occurred and show that the latter holds. There are three different cases

to consider:

1. 𝑥 is not in the language defined by R.

2. 𝑥 is a fresh statement for which no simulated proofs have been requested.

3. 𝑥 was among the statements for which A previously requested simulated proofs.

Only the first of these cases immediately leads to A winning the game as in that case

Ext must fail. For the remaining two cases, Ext has to be unable to extract a witness with

non-negligible probability. The strategy from here on is then to show that the first case

81

4. Applications

occurs with negligible probability and the other two allow successful extraction, except

with negligible probability.

We will start with the first one as it is the easiest. IfA is able to produce a valid proof for

an 𝑥 not in the language, then this means A has broken (ordinary) simulation-soundness

where no failed extraction is required for the adversary to win.
9
Even though in this

game the simulator programs the random oracle, we show that this does not help A. The

idea is to simply replace simulated proofs and the simulated random oracle with their

honest counterparts. This immediately reduces to the zero-knowledge property. In the

new environment, A submits pairs of the form (𝑥,𝑤) ∈ R to an oracle that runs the

honest prover and thus does not have to program the random oracle. This A could just

have done by itself, i.e. A is really playing the ordinary soundness game where it has

to produce a valid proof for a false statement without any additional help. As we know,

ordinary soundness is implied by (ordinary) online extractability.

For the second case, we first argue that any previous requests for simulated proofs are

of no use to A. Primarily, this follows from the fact that all inputs checked by the verifier

for hashing to 0
𝑏
are prefixed by the statement for which the proof was made. Therefore,

all the programming done by the simulator can not have helped A in producing a valid

proof.

This leaves us with the third case. Unlike in the previous case, we can not argue that

past simulated proofs can not help A. We can do so, however, for all the simulated proofs

for statements 𝑥′ ≠ 𝑥 . Let 𝜋1, 𝜋2, . . . , 𝜋𝑛 be the previously simulated proofs for 𝑥 with

proof 𝜋𝑖 = (com𝑖, 𝑗 , ch𝑖, 𝑗 , resp𝑖, 𝑗) 𝑗=1,2,...,𝑟 . Also let 𝜋 = (com 𝑗 , ch 𝑗 , resp 𝑗) 𝑗=1,2,...,𝑟 be the proof

byA. By the requirement thatA has to produce a fresh proof, all the transcripts in the 𝜋𝑖
differ from all the transcripts in 𝜋 in at least one component

10
. First, if some 𝜋 𝑗 contains

a transcript that differs from a transcript in 𝜋 only in the challenge and/or the response,

then this allows the extractor to extract by the strong special soundness property. We may

thus assume that the vector of commitments ®com differs from the commitment vector of

all the 𝜋𝑖 . As this vector is included in all the random oracle queries this shows that the

previous proofs for 𝑥 can not improve A’s probability of success in this case and we are

back to the second case which we have already analyzed.

We now are in the position where we have shown the simulation-sound online ex-

tractability under multiple extractions of the randomized Fischlin transform and may

now use it to show that Interaction 2 and Interaction 3 are indistinguishable. From

a distinguishing environment Z, we construct a successful adversary A. A simulates

an instance ofZ and uses its oracles to generate proofs and simulate F𝑅𝑂 . WheneverZ
makes a verification query for some (𝑥, 𝜋) where 𝜋 is a valid proof for 𝑥 and 𝜋 is different

from all previously obtained proofs for 𝑥 , A does the following. It collects all the random

oracle queries Q whichZ made so far and computes𝑤 ← Ext(𝑥, 𝜋,Q). If (𝑥,𝑤) ∈ R, A
continues the simulation. In particular, it responds to the verification query for (𝑥, 𝜋) by
accepting. Otherwise, A outputs (𝑥, 𝜋) to its challenger and halts.

9
And where only proofs for true statements can be requested.

10
For this to work it has to be ensured that transcripts contained in a proof can not be reordered while still

yielding a valid proof, but this holds due to including the index of each transcript in the random oracle

queries.

82

4.2. The Fischlin Transformation

Now, as long as the simulation continues, the view ofZ is exactly as in Interaction
2. It is also clear that A wins whenever it outputs some (𝑥, 𝜋) as it runs the extractor
on the same queries as later the challenger. Thus, the probability of the views of Z
differing between Interaction 2 and Interaction 3 is lower than the advantage of A by

the difference lemma. As we have assumed thatZ is a distinguishing environment, but

have also assumed that no A can be successful in attacking the simulation-sound online

extractability, this is a contradiction.

What remains to be done is to observe the remaining differences between Interaction
3 and the ideal interaction. We make the following claim.

Lemma 4.2.20. The distribution of outputs ofZ is identically distributed in Interaction 3
and the real interaction, formally

INT
F𝑅𝑂
3,C,Z,D = REAL

F𝑅𝑂
𝜋𝑅𝑂𝑀 ,Z,D

In Interaction 3, proofs by honest parties are simulated using S𝐹 and F𝑅𝑂 is pro-

grammed accordingly by C. This is exactly the process for generating proofs which is

executed jointly by F𝑇𝑍𝐾 and S𝑅𝑂𝑀 in the ideal interaction. Similarly, verification of proofs

in Interaction 3 is as in the ideal interaction. First, all proofs which were previously

generated by an honest party are immediately accepted. All other proofs are first checked

for correctness using the honest verifier and the current state of F𝑅𝑂 . If this check succeeds,
a witness is tried to be extracted by running the same extraction algorithm on the same

set of queries to F𝑅𝑂 .
Note that during the whole proof we were able to ignore delayed delivery of proofs, the

initialization task, as well as wrong verification keys being supplied to verify a proof as

the reaction to these did not change throughout the different interactions.

Combining the Lemmas 4.2.17 to 4.2.20, we have proven the following theorem.

Theorem 4.2.21. The protocol 𝜋𝑅𝑂𝑀 UC-realizes F𝑇𝑍𝐾 in the F𝑅𝑂 -hybrid model.

4.2.6. In the VROM

Turning to the VROM setting, it seems like the same proof does not go through in the

F𝑉𝑅𝑂-hybrid model and with 𝜋𝑉𝑅𝑂𝑀 as the protocol. First, not even ordinary simulation-

soundness holds, because a cheating prover can simply alter a simulated proof

(com𝑖, ch𝑖, resp𝑖, 𝜋𝑖)𝑖=1,2,...,𝑟 by modifying one of the 𝜋𝑖 to be valid for the same hash. Recall

that this is explicitly allowed to the adversary by F𝑉𝑅𝑂 . One possible solution to this issue

is requiring unique proofs. In this way, the non-malleability of proofs would be restored.

In the following, we first show that adding this assumption does indeed allow 𝜋𝑉𝑅𝑂𝑀 to

UC-realize F𝑇𝑍𝐾 . Then in Section 4.2.7 we will give a more efficient alternative that works

with the original F𝑉𝑅𝑂 , but involves a small change to the Fischlin transform itself.

Unique Proofs We thus proceed under the assumption that F𝑉𝑅𝑂 proofs are unique, i.e

during any session of F𝑉𝑅𝑂 and for any pair (𝑞, ℎ) there is at most one 𝜋 such that for the

correct verification key 𝑣𝑘 the verification query on (𝑞, ℎ, 𝜋, 𝑣𝑘) returns 1. This is formally

enforced by changing the verification code of F𝑉𝑅𝑂 such that the bit 𝑏 which is currently

83

4. Applications

supplied by the adversary is always set to 𝑏 = 0 whenever the verification key contained

in the request is correct. For different keys vk′ ≠ vk the adversary is still in full control,

subject to consistency requirements.

As in the ROM, we give a simulator S𝑉𝑅𝑂𝑀 for the dummy adversaryD. Then we prove

that S𝑉𝑅𝑂𝑀 is a valid simulator. S𝑉𝑅𝑂𝑀 makes use of the Fischlin simulator S𝐹 , this time in

the VROM, which we have described in Section 4.2.4. As S𝐹 expects to be in control of

F𝑉𝑅𝑂 , instead of letting S𝐹 output a list to signal how it wishes to program F𝑉𝑅𝑂 , we give
it the following abilities.

We allow it to

1. check whether some input 𝑞 already has some hashℎ associated and if not to program

F𝑉𝑅𝑂 at input 𝑞.

2. create faux queries, i.e. queries which only consist in F𝑉𝑅𝑂 sending Hashingmessages

to the adversary and waiting for the corresponding SimInfo responses, but which

do not lead to any hash being set for any input.

All real or faux queries by S𝐹 will be in the name of some party P which we give as an

additional input. Should S𝐹 not be able to simulate a proof we let it output abort.

S𝑉𝑅𝑂𝑀 behaves as follows:

• S𝑉𝑅𝑂𝑀 simulates an instance of D and provides an instance of F𝑉𝑅𝑂 to it. As noted

above, the simulator S𝐹 is given partial control over this simulated instance of F𝑉𝑅𝑂 .

• Upon receiving a message (Init, 𝑠𝑖𝑑) from F𝑇𝑍𝐾 , S𝑉𝑅𝑂𝑀 lets F𝑉𝑅𝑂 send the same

message to the adversary, asking it to provide a response (Init, 𝑠𝑖𝑑, Prove, vk). Note
that at this point S𝑉𝑅𝑂𝑀 does not know the identity of the party which sent the

initialization message to F𝑇𝑍𝐾 . S𝑉𝑅𝑂𝑀 then sends (Init, 𝑠𝑖𝑑, vk) to F𝑇𝑍𝐾 . S𝑉𝑅𝑂𝑀 is

then asked by F𝑇𝑍𝐾 to deliver the response to the initialization request while learning

the identity P of the requesting party. It lets F𝑉𝑅𝑂 simulate a delayed delivery for

the message (Key, 𝑠𝑖𝑑, vk) and allows F𝑇𝑍𝐾 to deliver it whenever the adversary does

so.

• Upon receiving a message (Prove, 𝑠𝑖𝑑,P, 𝑥) from F𝑇𝑍𝐾 , S𝑉𝑅𝑂𝑀 simulates a proof by

running S𝐹 on input (𝑥,P). Once S𝐹 creates output 𝜋 = (com𝑖, ch𝑖, resp𝑖, 𝜋𝑖), this
occurs once the adversary has delivered the answers to all the (real and faux) proof
queries by S𝐹 to F𝑉𝑅𝑂 , S𝑉𝑅𝑂𝑀 sends (Proof, 𝑠𝑖𝑑,P, 𝑥, 𝜋) to F𝑇𝑍𝐾 . If instead S𝐹 has
output abort, S𝑉𝑅𝑂𝑀 outputs abort and halts. When asked by F𝑇𝑍𝐾 to deliver 𝜋 , it

does so immediately.

• Upon receiving a message (Verify, 𝑠𝑖𝑑,V, 𝑥, 𝜋) from F𝑇𝑍𝐾 , S𝑉𝑅𝑂𝑀 checks whether

𝜋 is a valid proof for 𝑥 with respect to the current state of F𝑉𝑅𝑂 and vk (as in

the description of F𝑇𝑍𝐾 , we assume that vk has been set). If it is not, reply with

(Verification, 𝑠𝑖𝑑,V, 𝑥, 𝜋, 0). Else, run the VROM extractor Ext on 𝑥 , 𝜋 and the

set Q of all hash queries made to F𝑉𝑅𝑂 . Let 𝑤 be the output of Ext. S𝑉𝑅𝑂𝑀 sends

(Witness, 𝑠𝑖𝑑,𝑤) to F𝑇𝑍𝐾 .

84

4.2. The Fischlin Transformation

• Upon receiving a message (WrongKey, 𝑠𝑖𝑑,V, 𝑥, 𝜋, vk′) from F𝑇𝑍𝐾 , return
(WrongKey, 𝑠𝑖𝑑,V, 𝑥, 𝜋, vk′, 𝑏) where 𝑏 is the result of running the honest verifier on

(𝑥, 𝜋), with verification key vk′ and with access to F𝑉𝑅𝑂 .

To shorten the proof we only mention the differences to the proof for 𝜋𝑅𝑂𝑀 here.

Interaction with the Adversary In 𝜋𝑅𝑂𝑀 , initialization requests were answered immedi-

ately. With 𝜋𝑉𝑅𝑂𝑀 , however, the initialization involves retrieval of the verification key vk
from F𝑉𝑅𝑂 and this retrieval can be delayed by the adversary. The simulator’s simulation is

perfect in this case, S𝑉𝑅𝑂𝑀 allows F𝑇𝑍𝐾 to deliver the key only once the simulated party has

successfully executed what looks to the adversary like the honest initialization algorithm

in 𝜋𝑉𝑅𝑂𝑀 .

In 𝜋𝑅𝑂𝑀 , both proof generation as well as verification were totally independent of the

adversary. As such,S𝑅𝑂𝑀 was able to immediately deliver proofs as well as provide answers

to WrongKey messages without having to consult the adversary. In 𝜋𝑉𝑅𝑂𝑀 , generation of

proofs involves a (random) number of hash queries to F𝑉𝑅𝑂 which involve the adversary

and verification of proofs does as well (in our current setting only when the verification

key contained in the request is incorrect). We have previously shown that S𝐹 in the

VROM simulates a correctly distributed number of hash queries. Again, S𝑉𝑅𝑂𝑀 only allows

F𝑇𝑍𝐾 to deliver a proof 𝜋 once the receiving party has successfully output a proof in the

simulation.

Proof. The general structure of the proof is then identical to the proof for 𝜋𝑅𝑂𝑀 . First,

honestly generated proofs are replaced by simulated proofs. Again this can be reduced

to the zero-knowledge property of Π𝑉𝑅𝑂𝑀 . Here it is important that the zero-knowledge

distinguisher is given the adversary interface of F𝑉𝑅𝑂 . Only then can the distinguisher

which is built for the reduction adequately emulate the view of the distinguishing en-

vironment that it is simulating. We remark that this does not yet require F𝑉𝑅𝑂 to have

unique proofs. Second, verification of proofs is replaced by extraction. This is the step

of the proof where the uniqueness of proofs is required. To reduce the simulation-sound

online-extractability of Π𝑉𝑅𝑂𝑀 to that of Π𝑅𝑂𝑀 it has to be shown that the additional

F𝑉𝑅𝑂-proofs contained in the simulated proofs do not help the adversary A. The condi-

tion that the proof output by A has to be fresh adds an additional case to be considered.

Namely, the proof 𝜋 = (com𝑖, ch𝑖, resp𝑖, 𝜋𝑖)𝑖=1,2,...,𝑟 could differ from some previous proof

𝜋 ′ = (com′𝑖, ch
′
𝑖, resp

′
𝑖, 𝜋
′
𝑖)𝑖=1,2,...,𝑟 only in a single F𝑉𝑅𝑂-proof 𝜋 𝑗 ≠ 𝜋 ′𝑗 . As long as 𝜋 ′𝑗 is still

accepted by F𝑉𝑅𝑂 as a valid proof for input (𝑞, 0𝑏, vk) where 𝑞 = (𝑥, ®com, 𝑗, ch 𝑗 , resp 𝑗). But
due to the uniqueness of proofs, such a case can not occur.

The remaining part of the reduction is then straightforward. F𝑉𝑅𝑂 is simulated honestly,

except that the hashes are set using queries to the external random oracle and proofs are

simulated by augmenting the proofs received from the external oracle with honest proofs

by F𝑉𝑅𝑂 . Finally, the proof returned by the adversary is stripped from its F𝑉𝑅𝑂-proofs.
This concludes our outline of the proof.

We have thereby shown the following theorem.

Theorem 4.2.22. The protocol 𝜋𝑉𝑅𝑂𝑀 UC-realizes F𝑇𝑍𝐾 in der F𝑉𝑅𝑂-hybrid model where
F𝑉𝑅𝑂 is required to have unique proofs.

85

4. Applications

4.2.7. Removing the Need for Unique Proofs

The result from the last section is quite unsatisfactory. Unique proofs are a strong require-

ment and we would like to achieve the same result without them. One possibility is that

instead of making a change to F𝑉𝑅𝑂 in the form of unique proofs, we could make some

changes to the Fischlin transform itself and thereby reinstate it resulting in UC TZKs when

instantiated with F𝑉𝑅𝑂 .
Concretely, this would involve some way of adding non-malleability to proofs. One

promising building block are strong one-time signatures (OTS), i.e. signature schemes for

which an adversary is allowed to make one signing query𝑚 and wins if it can forge either

a (fresh) signature for𝑚 or a new message𝑚′. This primitive has been used in the past, e.g.

in [81, 51, 63], to achieve similar goals to ours. The specific technique we use is, however,

different.

As we have identified above, the problem with adding F𝑉𝑅𝑂 -proofs is that they are not in-
cluded in hash querieswhichwould protect their integrity. Let𝜋 = (com𝑖, ch𝑖, resp𝑖, 𝜋𝑖)𝑖=1,2,...,𝑟

be proof as output by the current prover of Π𝑉𝑅𝑂𝑀 and let OTS = (Gen, Sign,Verify) be an
OTS. The idea is to augment 𝜋 with a signature 𝜎 ← OTS.Sign(sk, 𝜋) and the verification

key vk. The verifier then in addition checks that 𝜎 is valid. Of course, this change alone

would be totally insecure. The verification key vk and signature 𝜎 contained in the proof

are not bound to 𝜋 and so could be easily recomputed by an adversary. Below, we will fix

this issue by making 𝜋 itself depend on vk in a way that forging a valid proof 𝜋∗ either
implies breaking OTS or Π𝑉𝑅𝑂𝑀 . Details follow.

The Augmented Protocol We make the above intuition formal and define an alternative

randomized Fischlin transform Π∗
𝑉𝑅𝑂𝑀

= (P,V). First, we describe the prover P. On input

(𝑥,𝑤), P:

• First generates an OTS key-pair (vk, sk) ← OTS.Gen(1𝜆).

• Then, P executes the prover of Π𝑉𝑅𝑂𝑀 , except that vk is added as a prefix to all hash

queries it makes.

• Let 𝜋 be the resulting proof which we will call the inner proof from now on. It signs

𝜋 and obtains a signature 𝜎 ← OTS.Sign(sk, 𝜋).

• Finally, it outputs 𝜋 ′ = (𝜋, 𝜎, vk).

To verify a proof (𝜋, 𝜎, vk), the verifierV:

• First checks that OTS.Verify(vk, 𝜎, 𝜋) = 1.

• After that, it executes the verifier from Π𝑉𝑅𝑂𝑀 , except that vk is used as a prefix while
verifying the F𝑉𝑅𝑂-proofs contained in 𝜋 .

• It accepts if and only if both verifications succeed.

86

4.2. The Fischlin Transformation

Security First, it is clear that this transformation is still secure in the sense of our zero-

knowledge definition. The simulator from Π𝑉𝑅𝑂𝑀 additionally samples an OTS key-pair
(vk, sk). When programming F𝑉𝑅𝑂 , vk is added as a prefix to all inputs. It then signs the

simulated proof and includes the signature 𝜎 and vk in the final proof. Similarly, online

extractability is essentially unchanged. After removing the signature, the OTS verification

key, the F𝑉𝑅𝑂-proofs, and the vk-prefix from all hash queries, the ordinary extractor can

be used. This works because any valid augmented proof contains a valid non-augmented

proof.

But what we are mainly interested in is showing simulation-sound online-extractability

of Π∗
𝑉𝑅𝑂𝑀

. Let A be an adversary and (𝑥, 𝜋) be its output with 𝜋 = (𝜋 ′, 𝜎, vk). Let further
forgeOTS be the event that vk is contained in one of the simulated proofs which were

previously received by A. An adversary B on the security of OTS with an advantage

Adv1−seuf−cma

B,OTS (𝜆) = 1

𝑄
Pr

[
forgeOTS

]
can be constructed in the obvious way and where 𝑄 is a polynomial upper bound on the

number of simulated proofs requested byA. It provides a simulation oracle toA and uses

the verification key vk∗ and single-use signing oracle it is provided with by its challenger

to answer a randomly chosen query. Whenever A outputs a proof containing a forgery

for vk∗, B outputs it to its challenger. By the assumed security of OTS, this implies that

Pr
[
forgeOTS

]
≤ 𝑄 Adv1−euf−cma

B,OTS (𝜆) ≤ negl(𝜆)

for some negligible function negl(𝜆). Conditioned on forgeOTS, we thus have that vk is

not contained in any previously received proofs. But vk is a prefix of every relevant

hash query checked during the verification of 𝜋 . We then claim that also the inner proof

𝜋 ′ = (com𝑖, ch𝑖, resp𝑖, 𝜋𝑖)𝑖=1,2,...,𝑟 contained in 𝜋 is different from all simulated inner proofs

𝜋 𝑗 = (com 𝑗,𝑖, ch𝑖, 𝑗 , resp𝑖, 𝑗 , 𝜋𝑖, 𝑗)𝑖=1,2,...,𝑟

where 𝑗 ∈ [𝑄], at least with overwhelming probability. For this not to be the case and

indeed 𝜋 ′ = 𝜋𝑘 for some 𝑘 ∈ [𝑄], the adversary would have to have chosen its vk such

that replacing it for the verification key vk𝑘 contained in the 𝑘’th simulated proof still

yields a valid inner proof. Specifically, this requires simultaneously altering 𝑟 inputs such

that they still hash to 0
𝑏
. But the chance for this is 2

−𝑟𝑏
for each try and so the probability

of A succeeding in this task is upper-bounded by 𝑄 2
−𝑟𝑏

which is negligible due to the

requirement 𝑏𝑟 ∈ 𝜔 (log 𝜆) placed on the parameters. Conditioning also on this event, call

it hash, not occurring, the inner proof 𝜋 ′ is fresh. Additionally, as the 𝜋𝑖 are not inputs
to the hash queries, 𝜋 ′′ = (com𝑖, ch𝑖, resp𝑖)𝑖=1,2,...,𝑟 has to differ from the corresponding

parts of the simulated proofs. From an attack of this kind by A, an adversary C on the

simulation-sound online extractability of Π𝑅𝑂𝑀 can be constructed.

C behaves as follows:

• It simulates a copy of A and provides it with access to a session of F𝑉𝑅𝑂 including

the adversary interface as well as an oracle for simulation of proofs.

87

4. Applications

• The simulation of F𝑉𝑅𝑂 is provided as follows. For some input (vk, 𝑥, ®com, 𝑖, ch𝑖, resp𝑖)
for 𝑖 ∈ [𝑟], C determines the hash by submitting (𝑥, ®com, 𝑖, ch𝑖, resp𝑖) to its external

random oracle and using the obtained value ℎ. All other aspects of the simulation

are honest.

• Proofs for input (𝑥,𝑤) are simulated by first inputting (𝑥,𝑤) in the external simula-

tion oracle. This yields a proof 𝜋 = (com𝑖, ch𝑖, resp𝑖)𝑖=1,2,...,𝑟 .This proof is then used

by the simulator for Π∗
𝑉𝑅𝑂𝑀

described above. In detail, a key-pair (vk, sk) for OTS is

sampled, queries to F𝑉𝑅𝑂 for (vk, ®com, 𝑖, ch𝑖, resp𝑖) are simulated, a correctly simu-

lated number of faux hash queries is simulated, and finally a proof 𝜋 ′ is computed

from the resulting data in the obvious way.

• Once A outputs some pair (𝑥∗, 𝜋∗), C parses 𝜋∗ = (com𝑖, ch𝑖, resp𝑖, 𝜋𝑖)𝑖=1,2,...,𝑟 , con-

structs 𝜋 ′ = (com𝑖, ch𝑖, resp𝑖)𝑖=1,2,...,𝑟 , and returns (𝑥, 𝜋 ′) to its challenger.

Due to the fact that inputs to the random oracle are truncated before their submission to

the external oracle, the hash queries to (vk, ®com, 𝑖, ch𝑖, resp𝑖) are already programmed to

return 0
𝑏
by the external simulator. For the same reason as well as the perfect unforgeability

properties provided by F𝑉𝑅𝑂 , the proof which is finally output by C to its challenger is also

valid. Conditioned on the event forgeOTS∧hash, this proof will differ from all the previous

simulated proofs received by C and so it will allow C to win with the same probability as

A. As we have shown that C has only a negligible chance of winning, the same is true for

this remaining event in which A wins its game. By summing the advantages of A in the

three exhaustive cases in which A wins and observing that their sum is negligible, we

have shown the following theorem.

Theorem 4.2.23. Let Π be a Σ-protocol in the ROM satisfying the requirements of the
randomized Fischlin transform and let OTS be a strongly secure one-time signature scheme.
Then the protocol Π∗

𝑉𝑅𝑂𝑀
obtained by the transformation described above is simulation-sound

online extractable.

As this was the only step in the proof in Section 4.2.6 where we used the uniqueness

of proofs generated by F𝑉𝑅𝑂 , we obtain the following corollary if we let 𝜋∗
𝑉𝑅𝑂𝑀

be the

UC-protocol in the multi-prover setting obtained from Π∗
𝑉𝑅𝑂𝑀

in the same manner as

described at the beginning of Section 4.2.5.

Corollary 4.2.24. The protocol 𝜋∗
𝑉𝑅𝑂𝑀

UC-realizes F𝑇𝑍𝐾 in the F𝑉𝑅𝑂 -hybrid model.

4.2.8. Final Thoughts

Completeness, online extractability, and zero-knowledge followed immediately from the

correctness and unforgeability properties of F𝑉𝑅𝑂 by slightly adapting the online extractor

and zero-knowledge simulator used in the ROM. Proving that the randomized Fischlin

transform produces UC TZKs was more involved due to the inherent malleability of the

proofs output by F𝑉𝑅𝑂 . We showed two ways to alleviate this issue. First, by demanding

unique proofs from F𝑉𝑅𝑂 . This allowed us to use the previously defined Fischlin transform

in the VROM as-is but seems to greatly restrict the protocols realizing this version of

88

4.2. The Fischlin Transformation

F𝑉𝑅𝑂 . We then showed how to lift this demand by making some small changes to the

Fischlin transform. The main cost of the adaptation lay in the extra assumption of a strong

one-time signature scheme.

89

5. VRO Instantiations

In this chapter, we will investigate different instantiations of F𝑉𝑅𝑂 . We start with an

instantiation in the ROM and then show two instantiations that involve a single trusted

party and do not require the ROM. Afterward, we build up to and finally give a construction

involving multiple servers, some of which may be maliciously corrupted. We then analyze

ways to relax F𝑉𝑅𝑂 and what effect these changes have on possible instantiations. A

special kind of instantiation, called a hybrid instantiation, which is secure under a stronger

corruption model, is defined in Section 5.7 and a concrete hybrid instantiation is given. At

the end of the chapter, we show how F𝑉𝑅𝑂 can be realized using generic MPC.

5.1. ROM Instantiation

There is a natural instantiation of F𝑉𝑅𝑂 using a random oracle F𝑅𝑂 with the same domain

and codomain as the VRO. For technical reasons, we have to assume that the codomain

has super-polynomial cardinality. Briefly, proofs are empty and hash queries as well as

verification queries involve a hash query to F𝑅𝑂 . In more detail, we define a protocol 𝜋𝑅𝑂
in the F𝑅𝑂-hybrid protocol. For a definition of F𝑅𝑂 , see Section 2.4.2. A party P running

𝜋𝑅𝑂 behaves as follows:

• On input (Init, 𝑠𝑖𝑑), return (Key,⊥).

• On input (Hash, 𝑠𝑖𝑑, 𝑞), send (Query, 𝑠𝑖𝑑, 𝑞) to F𝑅𝑂 . Upon receiving an answer

(Answer, 𝑠𝑖𝑑, 𝑞, ℎ), output (HashProof, 𝑠𝑖𝑑, 𝑞, ℎ,⊥).

• On input (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk), if either vk ≠ ⊥ or 𝜋 ≠ ⊥ hold, return

(Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk, 0). Else, send (Query, 𝑠𝑖𝑑, 𝑞) to F𝑅𝑂 . Upon receiving an

answer (Answer, 𝑠𝑖𝑑, 𝑞, ℎ′), if ℎ ≠ ℎ′ set 𝑏 = 0. Else, set 𝑏 = 1. In any case, return

(Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk, 𝑏).

To prove the security of 𝜋𝑅𝑂 , we describe a simulator S for the dummy adversary D.

S behaves as follows:

• Upon receiving (Init, 𝑠𝑖𝑑) from F𝑉𝑅𝑂 , S sets vk = ⊥ and Prove as returning ⊥ on

every input (𝑞, ℎ, 𝑠). It sends (Init, 𝑠𝑖𝑑, Prove, vk) back to F𝑉𝑅𝑂 .

• Upon receiving (Hashing, 𝑠𝑖𝑑,P, 𝑙) from F𝑉𝑅𝑂 , S immediately sets 𝑠 = ⊥ and re-

sponds with the message (SimInfo, 𝑠𝑖𝑑,P, 𝑠).

• Upon receiving (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′) from F𝑉𝑅𝑂 , S responds with the message

(Verified, 𝑠𝑖𝑑, 0).

91

5. VRO Instantiations

• The simulation of F𝑅𝑂 is provided as follows. Whenever a corrupted party sends a

message (Query, 𝑠𝑖𝑑, 𝑞) and this is not the first query for 𝑞, S answers consistently.

Else, S sends (Hash, 𝑠𝑖𝑑, 𝑞) to F𝑉𝑅𝑂 , answers the Hashing message as before, allows

the response (HashProof, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋) to be delivered and sets ℎ as the hash for 𝑞.

• All outputs generated by F𝑉𝑅𝑂 are delivered immediately.

It is easy to see that the only difference between simulation and the real interaction

lies in the way verification queries are answered. In the real interaction, whenever ℎ is

the correct hash for 𝑞 an empty proof 𝜋 = ⊥ is accepted for the empty verification key

vk = ⊥, independent of whether 𝑞 was previously hashed. In the ideal interaction, due to

the unforgeability condition which is part of the verification procedure, no proof 𝜋 for

no hash ℎ will be accepted for the correct verification key vk if 𝑞 has not been previously

hashed. As long as hashes are unpredictable, i.e. the codomain is super-polynomially large,

this difference is unobservable with overwhelming probability, not even for an unbounded

adversary (restricted to polynomially many verification queries).
1

Due to this restriction, it is not quite valid to speak of F𝑅𝑂 as an idealized version of

F𝑉𝑅𝑂 . We note, however, that this could be remedied, and F𝑅𝑂 be used to instantiate F𝑉𝑅𝑂
for all potential codomains if we make the following change to how proofs are verified

within F𝑉𝑅𝑂 . The idea is to allow the adversary to forge a proof 𝜋 for some not previously

queried 𝑞, but only for the correct hash ℎ. The task of deciding whether to accept such

a proof would again be given to the simulator as it does in the current version of F𝑉𝑅𝑂
when an alternative proof or a proof for a wrong verification key is submitted.

We have chosen not to incorporate this change into F𝑉𝑅𝑂 as it would further increase

the complexity of its description. It also seems to be an artifact of 𝜋𝑅𝑂 having empty proofs

as well as no verification key. In particular, all further instantiations presented in the

following sections do not require restricting the codomain to be of super-polynomial size.

5.1.1. Small Codomains Using Truncation

There exists an alternative construction different from the intuitive way of instantiating

F𝑉𝑅𝑂 using an instance of F𝑅𝑂 we have just seen. In contrast to the construction above,

no restrictions on the cardinality of the codomain have to be made. One drawback is,

however, that proofs will no longer be empty strings and so the scheme will be less efficient.

Combined with the fact that the above construction already works for super-polynomial

codomains, the result from this section can be seen as a further mostly theoretical justi-

fication for the intuitively true fact that random oracles are idealized verifiable random

oracles.

The Construction So let H be a codomain with |H | ∈ O(poly(𝜆)). For simplicity, we

will in the following description restrict ourselves to strings of a constant length 𝑐 , i.e.

H = {0, 1}𝑐 . Our goal is to construct an instance of F𝑉𝑅𝑂 with arbitrary domain X and

codomainH . To achieve this we will use an instance of F𝑅𝑂 with equal domain D, but

1
We note that, thus, this instantiation as a whole is secure against unbounded adversaries.

92

5.1. ROM Instantiation

codomain H ′ with H ⊂ H ′ and |H ′| ∈ 𝜔 (poly(𝜆)). Again for simplicity, we will let

H ′ = {0, 1}𝜆 consist of strings of length 𝜆.
We define a protocol 𝜋 ′

𝑅𝑂
. To generate a proof for some input 𝑞, a party running 𝜋 ′

𝑅𝑂

still sends a query for 𝑞 to F𝑅𝑂 , receiving output ℎ′ ∈ {0, 1}𝑘 . Instead of letting all of

ℎ′ be the hash associated with 𝑞, ℎ′ is first truncated to its first 𝑐 bits, i.e. ℎ′ = ℎ | |ℎ∗ for
ℎ ∈ {0, 1}𝑐 and some ℎ∗ ∈ {0, 1}𝑘−𝑐 . As noted before, proofs will no longer be empty, but

will instead consist of the remaining portion ℎ∗, i.e. 𝜋 = ℎ∗. To verify a proof (𝑞, ℎ, 𝜋), 𝑞 is

again queried to F𝑅𝑂 , obtaining some ℎ′. The decision of whether to accept or reject is

then the result of the check ℎ | |𝜋 = ℎ′.
The security of this scheme follows immediately from the original construction above.

All we have done is we have shifted some of the hash into the proof. The simulator is

adapted as follows:

• When asked to provide Prove and vk, S sets vk = ⊥ as before, but Prove(𝑞, ℎ, 𝑠)
applies a PRF : K × X → {0, 1}𝑘−𝑐 to 𝑞 for some hard-coded key 𝑘 ∈ K . It outputs
𝜋 = PRF(𝑘, 𝑞) instead of outputting 𝜋 = ⊥ on all inputs. All responses to Init are

delivered immediately.

• Upon receiving (Hashing, 𝑠𝑖𝑑,P, 𝑙), S responds with (SimInfo, 𝑠𝑖𝑑,P,⊥). When

asked by F𝑉𝑅𝑂 to deliver the proof, S does so.

• Queries to F𝑅𝑂 for some fresh input 𝑞 are answered by first making a hash query for

𝑞 to F𝑉𝑅𝑂 . Upon receiving the output ℎ′ and proof 𝜋 , S sets ℎ = ℎ′| |𝜋 and returns ℎ.

• When asked by F𝑉𝑅𝑂 to determine the validity of some input (𝑞, ℎ, 𝜋, vk), S rejects

the proof.

Note that our requirement on Prove to be stateless prohibits the use of true randomness

to determine proofs. We are also unable to shift the responsibility of determining proofs

onto S as the information within the SimInfo message can only depend on the length of 𝑞.

We forego rigorously proving the validity of S, but note that after replacing PRF
with a random function there remains no essential difference between the real and ideal

interactions. We further note that the efficiency of the scheme can be increased. Instead of

choosingH ′ to be exponentially large, any super-polynomial cardinality will be sufficient.

Taken together, the results from Sections 5.1 and 5.1.1 establish the following theorem.

Theorem 5.1.1. For any domain X and codomainH , there unconditionally exits a protocol
𝜋 in the F𝑅𝑂 -hybrid model which UC-realizes F𝑉𝑅𝑂 .

By applying the Universal-Composition Theorem (cf. Theorem 2.4.3), we are able to prove

the following corollary which shows that F𝑉𝑅𝑂 can truly be interpreted as a relaxation of

F𝑅𝑂 , which we set out to do.

Corollary 5.1.2. Let 𝜉 be a protocol UC-realizing a functionality F in the F𝑉𝑅𝑂 ,G-hybrid
model where G is any set of ideal functionalities. Then 𝜉 F𝑉𝑅𝑂→𝜋 , where 𝜋 is the protocol
whose existence is asserted by Theorem 5.1.1, UC-realizes F in the F𝑅𝑂 ,G-hybrid model.

93

5. VRO Instantiations

5.2. Trusted Party Instantiation

In this section, we assume the existence of a single trusted party T and give protocols

realizing F𝑉𝑅𝑂 based on different cryptographic primitives. Note that this is different from

the ROM instantiation in the sense that, due to the required non-interactiveness of F𝑉𝑅𝑂
verification requests, any secure, i.e. interactive, instantiation of F𝑅𝑂 would not realize

F𝑉𝑅𝑂 while an instantiation using T may achieve truly non-interactive verification.

Simulatable VRF At first sight, it seems like T could run an instance of a VRF VRF. It
would generate a key-pair (ek, vk) ← VRF.Gen(1𝜆) and publish vk. Whenever a party P
requested a proof for some input 𝑞, T would return (ℎ, 𝜋) ← VRF.Eval(ek, 𝑞). Verification
of (𝑞, ℎ, 𝜋) with respect to the verification key vk would return 𝑏 = VRF.Verify(vk, 𝑞, ℎ, 𝜋).
This approach, however, does not work. By the properties of VRF, vk acts as a perfectly
binding commitment to a PRF key, for every 𝑞 there is exactly one ℎ such that there exists

a proof 𝜋 which Verify will accept with respect to vk. And while a PRF can be replaced by

a truly random function, as long as the key 𝑘 remains unknown, the same is not possible

for a VRF, as long as the verification key has been made public. Any simulator S has to be

able to program the outputs of T , i.e. generate valid proofs for any pair (𝑞, ℎ), as in the

ideal world the ℎ are chosen by F𝑉𝑅𝑂 independently for each 𝑞.

Programmability can be achieved by instead using a simulatable VRF sVRF. Using
SimProve, the simulator can generate valid proofs for any pair (𝑞, ℎ). One drawback of

using sVRF lies in the fact that it requires a CRS to later give the simulator the advantage

of knowing a backdoor to it. There are two ways of distributing it. Either we can use an

ideal functionality F𝐶𝑅𝑆 external to T which essentially makes the CRS available to every

party without possible interference by the adversary, or we can let T itself generate and

distribute it. Of course, in the latter case, even in the real world a simulated CRS might

be used and this would be indistinguishable to users. But as we have assumed T to be

trusted this is not an immediate issue. For simplicity we let T generate the CRS in the

description that follows. As we will see below, it can give some additional security in the

case of a corrupted T if we instead use F𝐶𝑅𝑆 to distribute the CRS.

We can now describe the protocol, which we call 𝜋sVRF, in detail by describing the

actions of both T and any other parties P𝑖 wishing to either hash inputs and generate

proofs or verify them.

Whenever party P receives an Init message, if it is the first of its kind, T is contacted

to retrieve the verification key vk′ as well as the CRS 𝜎 . As verification key vk, the pair
(vk′, 𝜎) is returned. When P is asked to generate a proof for input 𝑞, it sends 𝑞 to T and

receives a hash ℎ and proof 𝜋 which T computes using sVRF.Eval. Both are returned.

A verification request for (𝑞, ℎ, 𝜋, vk′) is answered by first parsing vk′ as (vk∗, 𝜎∗) and
returning sVRF.Verify(𝜎∗, vk∗, 𝑞, ℎ, 𝜋). A detailed description is given in Figure 5.1. We

assume that the identity of T is encoded in session identifier 𝑠𝑖𝑑 . For the communication

network, we assume secure channels as modeled by F𝑆𝑀𝑇 , i.e. the adversary sees the

length of the messages and is tasked with delivering them.

Having defined the protocol, we have to prove that it UC-realizes F𝑉𝑅𝑂 . We give a

simulator S for the dummy adversary D and show that for each admissible environment

94

5.2. Trusted Party Instantiation

On input (Init, 𝑠𝑖𝑑)
1 : (T , 𝑠𝑖𝑑 ′) = parse(𝑠𝑖𝑑)
2 : if vk′ = ⊥ ∧ 𝜎 = ⊥ do
3 : (Init, 𝑠𝑖𝑑) → T
4 : (Key, 𝑠𝑖𝑑, vk′, 𝜎) ← T
5 : fi
6 : vk = (vk′, 𝜎)
7 : return (Key, 𝑠𝑖𝑑, vk)

On input (Hash, 𝑠𝑖𝑑, 𝑞)
1 : (T , 𝑠𝑖𝑑 ′) = parse(𝑠𝑖𝑑)
2 : (Hash, 𝑠𝑖𝑑, 𝑞) → T
3 : (HashProof, 𝑞, ℎ, 𝜋) ← T
4 : return (HashProof, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋)

On input (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′)
1 : (vk∗, 𝜎∗) = parse(vk′)
2 : 𝑏 = sVRF.Verify(𝜎∗, vk∗, 𝑞, ℎ, 𝜋)
3 : return (Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, 𝑏)

Figure 5.1.: The algorithms run by a party P.

On input (Init, sid)
1 : if vk = ⊥ ∧ 𝜎 = ⊥ do

2 : 𝜎 ← sVRF.Setup(1𝜆)
3 : (vk, ek) ← sVRF.Gen(1𝜆, 𝜎)
4 : fi
5 : return (Key, 𝑠𝑖𝑑, vk, 𝜎)
6 :

On input (Hash, 𝑠𝑖𝑑, 𝑞)
1 : // Assume an Init message occurred

2 : // Else do initialization now.

3 : (ℎ, 𝜋) ← sVRF.Eval(𝜎, ek, 𝑞)
4 : return (HashProof, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋)

Figure 5.2.: The algorithms run by the trusted party T .

95

5. VRO Instantiations

Z the output distributions for interactions with either D and a session of the above

protocol or S and an instance of F𝑉𝑅𝑂 are indistinguishable.

The simulator S has to

• answer the (Init, 𝑠𝑖𝑑) message from F𝑉𝑅𝑂 .

• deliver public or private delayed outputs by F𝑉𝑅𝑂 .

• answer messages of the form (Hashing, 𝑠𝑖𝑑,P, 𝑙), indicating a hash query by party

P.

• answer messages of the form (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′), indicating a proof 𝜋 for some

correct pair (𝑞, ℎ), but which was not output by F𝑉𝑅𝑂 itself.

• simulate T towards D/Z during initialization and hash queries by honest and

corrupted parties.

S behaves as follows:

• S runs a simulation of D and relays information between it andZ. It also simulates

T as well as any honest parties P participating in the protocol.

• When S receives a message (Init, 𝑠𝑖𝑑) from F𝑉𝑅𝑂 , if it has not yet had to run

sVRF.SimSetup(1𝜆) during the simulation of an initialization message, it does so

and obtains a CRS 𝜎 with corresponding simulation backdoor 𝜏 . S in this case also

runs sVRF.SimGen(1𝜆, 𝜎, 𝜏) to obtain an evaluation key ek and verification key vk.
As Prove algorithm it sets sVRF.SimEval(𝜎, 𝜏, ek, ·, ·), i.e. Prove upon input (𝑞, ℎ, 𝑠)
(where 𝑠 is ignored) returns a simulated proof 𝜋 . The verification key vk is set to

(vk, 𝜎). S immediately
2
responds with the message (Init, 𝑠𝑖𝑑, Prove, vk).

• When S is asked to deliver a Init response by F𝑉𝑅𝑂 to some (honest) party P, S
lets the simulated copy of P initiate the honest initialization protocol between it and

T . Only when P generates output, indicating that D has delivered all necessary

messages, does S allow the delivery.

• Upon receiving a message (Hashing, 𝑠𝑖𝑑,P, 𝑙) for an honest party P, indicating a

Hash message by P to F𝑉𝑅𝑂 , S lets the simulated copy of P behave as follows. It

executes the honest protocol for this case, but instead of including 𝑞 in its message

to T , it includes 0
𝑙
. S immediately responds with a message (SimInfo, 𝑠𝑖𝑑,P,⊥), but

when asked to deliver the corresponding HashProof message it only does so once

the simulated P has generated its output.

• Upon receiving amessage (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′) fromF𝑉𝑅𝑂 ,S parses vk′ as (vk∗, 𝜎∗)
and computes 𝑏 = sVRF.Verify(𝜎∗, vk∗, 𝑞, ℎ, 𝜋). It then sends a message

(Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′, 𝑏) back to F𝑉𝑅𝑂 .
2
Recall that this means in the same activation.

96

5.2. Trusted Party Instantiation

• When the simulatedT receives amessage (Init, 𝑠𝑖𝑑) from some corrupted partyP,S
runs sVRF.SimSetup(1𝜆) and sVRF.SimGen(1𝜆, 𝜎, 𝜏), if not already done previously,

and responds with the obtained (Key, 𝑠𝑖𝑑, vk, 𝜎).

• When the simulated T receives a message (Hash, 𝑠𝑖𝑑, 𝑞) from some corrupted party

P, S forwards the message to F𝑉𝑅𝑂 on behalf of the real P. S answers the generated

Hashingmessage with 𝑠 = ⊥ and instructs F𝑉𝑅𝑂 to deliver the output. Upon receiving

a response (HashProof, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋) from F𝑉𝑅𝑂 it lets T forward this message to the

simulated P.

Indistinguishability This concludes the description of S. It follows the analysis of the
validity of S as a simulator for D. We observe that the differences between the real and

ideal interactions lie in the distribution of the CRS, whether proofs are generated by Eval
or SimProve, and in the rejection of all forged proofs by F𝑉𝑅𝑂 . This allows us to reduce to

the security of sVRF in two game-hops.

Unforgeability First, we use the perfect unforgeability of sVRF when an honestly

generated 𝜎 is used. Formally, we move from the real interaction to an intermediate

interaction where honest verifiers behave slightly differently. Upon receiving input

(Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk) where vk is the correct verification key, reject 𝜋 if either: (1) no

hash query for 𝑞 was previously received by T or (2) ℎ ≠ ℎ′ where ℎ′ is the first component

of sVRF.Eval(𝜎, ek, 𝑞).
The second case is impossible as there only exist valid proofs for the correct ℎ. For

the first case, assume that a verifying proof 𝜋 was submitted for a pair (𝑞, ℎ), but where
𝑞 was not previously queried. If there existed an adversary which was able to produce

such proofs with non-negligible probability, then it could break the pseudo-randomness of

the PRF portion of sVRF as finding a valid proof for (𝑞, ℎ) guarantees that ℎ is the correct

output for 𝑞 again by the perfect unforgeability property.

Simulate Proofs In a second step, we move from the intermediate interaction to the

ideal world and reduce to the simulatability of sVRF. Assume thatZ is an environment

that is able to distinguish between the intermediate and the ideal interaction. We build a

successful adversary B on the security of sVRF from the successful distinguisher A for

outputs ofZ which we are assured exists.

B behaves as follows. It has black-box access to an instance ofZ and also simulates an

instance of F𝑉𝑅𝑂 and the simulator S with some small modifications. Instead of generating

a simulated CRS 𝜎 by running SimSetup and key-pair using SimGen, S uses the 𝜎 and

vk which B receives from its challenger. Also, F𝑉𝑅𝑂 answers Init queries by returning

the verification key vk′ = (vk, 𝜎). F𝑉𝑅𝑂 generates its hashes and proofs for input 𝑞 not

by running the algorithm provided by S, but by querying the Eval oracle provided to B
on input 𝑞. WhenZ generates output it is given as input to A. B outputs whatever A
outputs.

When B is given simulated 𝜎 and vk and Eval is given as sVRF.SimProve it is clear that
the view provided toZ is identical to an ideal interaction. On the other hand, if 𝜎 and vk
were generated honestly and Eval is the honest sVRF.Eval, then S in its simulation lets

97

5. VRO Instantiations

all honest parties including T behave as in the honest interaction and consistent with

the outputs generated by F𝑉𝑅𝑂 . Hence, the view of Z, in this case, is identical to the

intermediate interaction.

The distinguishing advantage of B is identical to the advantage ofA. By the assumption

on the security of sVRF the advantage of B is negligible which is in contradiction with

the assumed success of A in distinguishing outputs ofZ.

This proves the following theorem.

Theorem 5.2.1. The protocol 𝜋sVRF UC-realizes F𝑉𝑅𝑂 in the F𝑆𝑀𝑇 -hybrid model.

Using Signatures There is another simple way to instantiate F𝑉𝑅𝑂 using a trusted party

T . T simply uses either a PRF or lazy sampling to assign hashes ℎ to inputs 𝑞 and then

signs (𝑞, ℎ) using some EUF-CMA-secure signature scheme SIG. Verification consists in

verifying the signature making up the proof.

We will not prove the security of this instantiation in the same detail as above. Never-

theless, the following theorem holds if we call this protocol 𝜋SIG.

Theorem 5.2.2. The protocol 𝜋SIG UC-realizes F𝑉𝑅𝑂 in the F𝑆𝑀𝑇 -hybrid model.

Programming is possible as T is free to sign any hash ℎ as long as its distribution is

computationally indistinguishable from uniform. Unforgeability holds as a forged proof

immediately yields a forged signature under the verification key published by T .
Remark 5.2.3. Note that this is essentially using the additive and positive signature accu-
mulator [9] to represent either the set{

(𝑞𝑖, PRF(𝑘, 𝑞𝑖)) | 1 ≤ 𝑖 ≤ 𝑛q(𝑡)
}

which grows over time 𝑡 and where 𝑛q(𝑡) is the number of past queries at time 𝑡 , or

alternatively the static (but infinite) set

{(𝑞, PRF(𝑘, 𝑞)) | 𝑞 ∈ X} .

Variants In the signature-based construction, (computationally) unique proofs could be

achieved by using an sEUF-CMA secure signature scheme, caching the signature generated

upon the first query for a value 𝑞, and returning it on all subsequent queries for the same 𝑞.

While there then may exist many proofs which would lead to a successful verification, it

would be infeasible for any polynomially bounded adversary to find a second valid proof.

The scheme could again be made to require O(𝜆) space instead of space proportional to

the number of past queries by deriving the randomness used by the signing algorithm

from the input 𝑞 using a PRF with independent key 𝑘 .

Differences There are some differences between the two protocols above which are not

captured by the fact that they both UC-realize F𝑉𝑅𝑂 . In the signature-based construction,

if T were to be corrupted instead of honest, it could completely break any guarantees

provided by F𝑉𝑅𝑂 . In particular, the adversary could forge valid proofs for any pair (𝑞, ℎ).

98

5.3. Allowing Corruption

The construction using sVRF, on the other hand, is better behaved in this scenario
3
. For

every 𝑞, only for a single ℎ can a valid proof be efficiently found. The adversary can let T
not respond to any Hash messages, but this power was already possessed by the adversary

before. The main security degradation lies in the fact that now the adversary learns all

inputs and hashes. As we have seen, this is already enough to break the security of the

Fischlin transform.

5.3. Allowing Corruption

In this section, we build up to an instantiation of F𝑉𝑅𝑂 involving multiple servers, some of

which may be statically and maliciously corrupted. We begin by investigating generic con-

structions to distribute protocols for a single trusted party. Then we review a construction

from [35] which we show to be insufficient to UC-realize F𝑉𝑅𝑂 , but which serves as an

intermediate step for the main contribution contained in this chapter.

5.3.1. Distributing Protocols for Trusted Parties

One way of constructing a protocol resilient under some amount of corruption is by taking

a protocol 𝜋 which is secure in the setting of a single trusted party T and distributing the

functionality offered by T onto a set of 𝑛 servers S1 up to S𝑛 such that any subset of 𝑡 < 𝑛

corrupted servers is unable to break the security guarantees of the underlying primitive.

This approach of distributing a primitive is generally known under the name threshold
cryptography [34].

Let Prim be a cryptographic primitive which receives as input a secret key sk← Gen(1𝜆)
as well as some other data 𝑑 and outputs 𝑜 ← Prim(sk, 𝑑). To distribute Prim, an algorithm

Share is introduced which takes in a key sk as generated by Gen and outputs 𝑛 shares

sk
1
, . . . , sk𝑛 which are given to the S𝑛 . If Gen also outputs a public key pk, then this key

is given to all of the servers. Evaluating Prim in a distributed manner in its most general

form involves an interactive computation among the servers and where server S𝑖 has
input consisting of its share sk𝑖 of the secret key, the public key pk, and the common

input 𝑑 . At the end of the computation, each server is in possession of an output share

𝑜𝑖 . For a protocol secure under 𝑡 corruptions, at least 𝑡 + 1 servers have to partake in

the computation and combine their shares of the output using an algorithm Combine to
obtain the final result.

Based on the protocols from Section 5.2, the primitives we would wish to distribute are

(simulatable) VRFs or PRFs and signature schemes. For the former, the resulting primitive

is then generally called a distributed VRF (DVRF) in the literature [40, 38, 50]. There are,

however, various security definitions for threshold systems. These range from game-based

over standalone simulatability to UC simulatability.
4
Given that we are working within

3
If we for a moment assume that the CRS is given externally by some functionality F𝐶𝑅𝑆 . Otherwise, if T
is already corrupted at the beginning of the session it can generate a CRS with a backdoor and again

simulate proofs for arbitrary pairs (𝑞, ℎ).
4
We note that a UC-secure DVRF would necessarily be simulatable. The simulator receives a randomly

chosen output from the ideal functionality and has to simulate a view towards the corrupted parties that

is consistent with their shares of the secret key and this output.

99

5. VRO Instantiations

the UC framework, only the latter kind of definition is sufficient. Furthermore, as we have

said above, 𝑑 is generally assumed to be a common input to all servers. As F𝑉𝑅𝑂 requires

the inputs to remain largely hidden from the adversary, DVRFs do not immediately yield

protocols realizing F𝑉𝑅𝑂 . We will, however, in Section 5.5 look at relaxed variants of F𝑉𝑅𝑂
where we will be able to directly use tools from threshold cryptography.

5.3.2. The PRF Construction

As hinted at in the introduction, one step on the way to finding an instantiation if F𝑉𝑅𝑂
allowing for some malicious corruption is the PRF construction introduced in [35]. For sake

of being self-contained, we first repeat the protocol here while casting it as a protocol 𝜋𝑃𝑅𝐹
in the UC framework. We have incorporated some of the efficiency measures mentioned

in [35] as well as slightly altered the initialization procedure such that 𝜋𝑃𝑅𝐹 has the same

interface as F𝑉𝑅𝑂 . We then show how it fails to UC-realize F𝑉𝑅𝑂 . Later, in Section 5.5.1,

we will show that 𝜋𝑃𝑅𝐹 does UC-realize a relaxed formulation of F𝑉𝑅𝑂 .
The Protocol The protocol is formulated in a client and server setting. Let X be the

domain andH the codomain and let PRF : K ×X → H be a PRF. In its most simple form,

the basic idea of 𝜋𝑃𝑅𝐹 is to evaluate functions of the form

RF : X → H

𝑞 ↦→ ℎ =

4⊕
𝑗=1

PRF(𝑘 𝑗 , 𝑞)

for random keys 𝑘𝑖 ←$ K in a distributed manner. For this, each of four servers S𝑖 is
in possession of three keys 𝑘 𝑗 , 𝑗 ≠ 𝑖 . A client C sends its input 𝑞 to each of the servers

which reply with partial hashes ℎ𝑖 = PRF(𝑘𝑖, 𝑞) for all keys they possess. To accommodate

for one of the servers potentially misbehaving due to being corrupted, each of the ℎ𝑖 is

determined by computing the majority over the three received candidate values. As long

as at most one server is corrupted, every honest client is guaranteed to be able to compute

the correct result.

Verifiability is added by assigning to each serverS𝑖 a key-pair (vk𝑖, sk𝑖) for an EUF-CMA-
secure signature scheme SIG. The verification keys vk𝑖 are made publicly available. The

distributed computation of RF is then augmented as follows: In addition to computing

ℎ 𝑗 = PRF(𝑘 𝑗 , 𝑞) for 𝑗 ≠ 𝑖 , server S𝑖 signs the message (𝑞, ℎ 𝑗 , 𝑗). The obtained signatures 𝜎 𝑗
are returned to the client. The client’s task is augmented by computing a proof 𝜋 consisting

of the four partial hashes ℎ𝑖 obtained as shown above as well as all signatures obtained

from all servers.

The full protocol is shown in Figures 5.3 and 5.4. The initialization algorithm Initialize
is executed by the servers upon their first invocation. F𝑏𝑏𝑜𝑎𝑟𝑑 is an ideal bulletin-board

functionality providing public storage. It is shown in Figure 5.6 and allows any party

to post and retrieve messages. MPC is a UC-secure MPC protocol and SIGKeyGen and

PRFKeyGen are protocols shown in Figure 5.8 We will not need exact semantics for it at

this point. Intuitively, each server obtains a key-pair for SIG, the verification keys for

the other servers as well as three PRF keys. It then posts the verification key to a public

location.

100

5.3. Allowing Corruption

On input (Hash, 𝑠𝑖𝑑, 𝑞)
1 : for 𝑖 ∈ {1, 2, 3, 4} do
2 : (Hash, 𝑠𝑖𝑑, 𝑞) → S𝑖
3 : (ℎ𝑖, 𝑗 , 𝜎𝑖, 𝑗) 𝑗∈[4]\{𝑖 } ← S𝑖
4 : endfor
5 : for 𝑖 ∈ {1, 2, 3, 4} do
6 : ℎ𝑖 = arg max

ℎ∈H

��{ℎ = ℎ 𝑗,𝑖 | 𝑗 ∈ [4] \ {𝑖}
}��

7 : endfor

8 : ℎ =
⊕

4

𝑖=1
ℎ𝑖

9 : Σ = (𝜎𝑖, 𝑗)1≤𝑖, 𝑗≤4,𝑖≠𝑗

10 : 𝜋 = (ℎ1, ℎ2, ℎ3, ℎ4, Σ)
11 : return (HashProof, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋)

On input (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′)
1 : (vk1, vk2, vk3, vk4) = parse(vk′)
2 : (ℎ1, ℎ2, ℎ3, ℎ3, Σ) = parse(𝜋)
3 : if ℎ ≠

⊕
4

𝑖=1
ℎ𝑖 do

4 : return (Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′, 0)
5 : fi
6 : for 𝑖 ∈ {1, 2, 3, 4} do
7 : 𝑚 = (𝑞, ℎ𝑖 , 𝑖)
8 : if |{𝜎 𝑗,𝑖 | 𝑗 ∈ [4] \ {𝑖},
9 : SIG.Verify(vk𝑗 ,𝑚, 𝜎 𝑗,𝑖 = 1)}| < 2 do
10 : return (Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′, 0)
11 : fi
12 : endfor
13 : return (Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′, 1)

On input (Init, 𝑠𝑖𝑑)
1 : if vk ≠ ⊥ do
2 : return (Key, 𝑠𝑖𝑑, vk)
3 : fi
4 : for 𝑖 ∈ {1, 2, 3, 4} do
5 : (Retrieve, 𝑠𝑖𝑑,S𝑖) → F𝑏𝑏𝑜𝑎𝑟𝑑
6 : (Stored, 𝑠𝑖𝑑,S𝑖 , vk𝑖) ← F𝑏𝑏𝑜𝑎𝑟𝑑
7 : if vk𝑖 = ⊥ do
8 : abort
9 : endfor
10 : vk = (vk1, vk2, vk3, vk4)
11 : return (Key, 𝑠𝑖𝑑, vk)

Figure 5.3.: The client algorithms of 𝜋𝑃𝑅𝐹

101

5. VRO Instantiations

On input (Hash, 𝑠𝑖𝑑, 𝑞)
1 : for 𝑖 ∈ {1, 2, 3, 4} \ {𝑛} do
2 : ℎ𝑖 = PRF(𝑘𝑖 , 𝑞)
3 : 𝜎𝑖 = SIG.Sign(sk, (𝑞, ℎ𝑖 , 𝑖))
4 : endfor
5 : return (ℎ𝑖 , 𝜎𝑖)𝑖∈[4],𝑖≠𝑛

Initialize(S1,S2,S3,S4)
1 : S = {S1,S2,S3,S4}
2 : out← MPC(SIGKeyGen,S)
3 : (sk𝑛, vk1, vk2, vk2, vk3, vk4) = parse(out)
4 : for 𝑖 ∈ {1, 2, 3, 4} \ {𝑛} do
5 : 𝑘𝑖 ← MPC(PRFKeyGen,S \ {S𝑖})
6 : endfor (Store, 𝑠𝑖𝑑, vk𝑛) → F𝑏𝑏𝑜𝑎𝑟𝑑
7 :

Figure 5.4.: The server algorithms of 𝜋𝑃𝑅𝐹 from the perspective of server S𝑛

Remark 5.3.1. We have fixed a small error in the protocol. In their proof of weak unforge-
ability, [35] implicitly assume that elements of a proof can not be reordered or copied. To

fix this problem we bind signatures 𝜎 , which in the original protocol would have been for

a message (𝑞, ℎ𝑖), to the index 𝑖 by also including 𝑖 as the third component in each signed

message. This way, reordering or copying will cause a mismatch between the index a

verifying party will use to check the correctness of the signature and the index contained

in the message which was actually signed.

Evaluation We evaluate 𝜋𝑃𝑅𝐹 with respect to F𝑉𝑅𝑂 . As stated in [35], the goal of 𝜋𝑃𝑅𝐹 is

to allow the set of honest servers to collectively program the random function RF in such

a way that the adversary controlling the remaining party is oblivious to this being the

case. This lead to the requirement that no single party or collection of dishonest parties as

a whole have to be able to compute the “true” hash ℎ for some input 𝑞 by themselves. The

input, on the other hand, was allowed to be obtained by the adversary and is in fact given

to every single server. This level of privacy guaranteed to honest clients is insufficient as

we have seen in our application of F𝑉𝑅𝑂 to the randomized Fischlin transform.

5.4. Adding Privacy Using FHE-Encryption

Building upon the protocol 𝜋𝑃𝑅𝐹 defined in the previous section, in this section we augment

𝜋𝑃𝑅𝐹 using FHE to achieve the strong hiding properties which are required by F𝑉𝑅𝑂 . We

begin by stating the goals we are trying to achieve and motivating our use of the FHE

primitive. Having done so, we describe all the building blocks we need. For definitions, we

refer the reader back to Chapter 2. Then we give the actual protocol 𝜋𝐹𝐻𝐸 , both a textual

overview as well as a formal algorithmic description. We proceed with the proof that our

protocol UC-realizes F𝑉𝑅𝑂 . After that, we give a more detailed discussion of some aspects

of 𝜋𝐹𝐻𝐸 and its security proof. We also discuss several variations as well as address the

efficiency of the protocol.

102

5.4. Adding Privacy Using FHE-Encryption

5.4.1. Goals

Beside UC-realizing F𝑉𝑅𝑂 , we wish to achieve several goals. First, as F𝑉𝑅𝑂 is intended to

be a relaxation of F𝑅𝑂 and by the fact that we have already shown that F𝑅𝑂 alone can be

used to realize F𝑉𝑅𝑂 , we want to avoid using F𝑅𝑂 within the protocol. Second, we wish to

retain the non-interactivity among servers from 𝜋𝑃𝑅𝐹 , except again during an initialization

phase at the beginning of each session. Third, we wish to retain the security for a single

statically and maliciously corrupted server. Fourth, we wish to protect honest servers from

corrupted clients, a concern that did not come up in 𝜋𝑃𝑅𝐹 as there correct behavior by the

client could trivially be enforced by the servers by rejecting all inputs which do not lie in

the domain. Lastly, we avoid the use of outright NIZK proofs of knowledge.

Remark 5.4.1. We note that with security for a single corrupted server we, as for 𝜋𝑃𝑅𝐹 ,

mean that one of the servers must be able to respond with values that arbitrarily deviate

from the correct protocol while still allowing honest parties to obtain correct proofs.

5.4.2. Rationale for FHE

There are multiple techniques that allow a client interacting with a set of 𝑛 servers to give

input 𝑞 to the servers in such a way that no coalition of 𝑡 < 𝑛 corrupted servers can jointly

compute 𝑞, but still allows all 𝑛 servers to execute a computation depending on 𝑞. The clas-

sical approach to this task is the use of (threshold) secret sharing schemes such as Shamir’s

polynomial-based scheme [83] with reconstruction parameter 𝑟 > 𝑡 . In the present context,

to guard servers against receiving inconsistent shares from a corrupted client, an aug-

mented primitive, a so-called verifiable secret sharing, e.g. Feldman’s scheme [43], would

have to be employed. This secret-sharing approach is often used in general MPC protocols.

A major drawback, however, is that when using an information-theoretic scheme—which

Shamir’s scheme is—every single share 𝑞𝑖 received by an individual server contains no

information about 𝑞. As such, to be able to do some computation that functionally depends

on 𝑞, the servers have to communicate.

As we have stated above, one of our goals is minimizing the interaction between

the servers. By replacing the secret sharing of the input 𝑞 with an encryption 𝑐 =

FHE.Enc(pk, 𝑞) of 𝑞 under some key pk not known to the adversary, we are able to

eliminate all of the interaction between the servers by allowing each individual server to

do computation on 𝑞 in isolation.
5

5.4.3. Building Blocks

To be able to describe our protocol 𝜋𝐹𝐻𝐸 for F𝑉𝑅𝑂 where F𝑉𝑅𝑂 is parametrized with domain

X and codomainH , we require the following primitives:

• An FHE scheme FHE which is semi-honestly statistically circuit private and has a

full ciphertext space.

• An EUF-CMA signature scheme SIG with message spaceM = X × H × Z4 and

arbitrary signature space.

5
At least during hash queries, there may be interaction during an initialization phase.

103

5. VRO Instantiations

• A pseudo-random function PRF : X → H .

• UC-secure zero-knowledge proofs/arguments of knowledge in the form of an ideal

functionality F𝑍𝐾 (shown in Figure 5.5), i.e. we work in the F𝑍𝐾 -hybrid model.

• An extractable non-interactive witness-indistinguishable argument system NIWI in
the CRS model and for a relation described below.

6

• Public storage in the form of an ideal bulletin-board functionality F𝑏𝑏𝑜𝑎𝑟𝑑 (shown in

Figure 5.6).

• A protocol MPC allowing for UC-secure function evaluation.

• Secure (and authentic) channels in the form of the previously introduced secure

message-transfer functionality F𝑆𝑀𝑇 .

We describe some of the primitives more closely.

FHE As defined in Section 2.5.3, we abstract away from the low-level representation of

ciphertexts for FHE. Messages might be encrypted bit-by-bit or in larger chunks depending

on the algebraic setting. In any case, we will write 𝑐 for a ciphertext (vector) for message

𝑚, independent of the length of𝑚.

As the size of circuits we will have to evaluate using FHE may be fixed depending on

whether the domainX is finite or infinite, we may only require a leveled fully-homomorphic
encryption scheme where leveled means that the key-generation algorithm expects to

receive a level 𝑑 and only circuits C of depth at most 𝑑 can be evaluated using such a key.

This would allow us to get rid of the circular security assumption going into the security

of all currently known non-leveled FHE schemes, albeit at the cost of having the size of

public keys depend on 𝑑 .

Zero-Knowledge Proofs For simplicity, we let F R
𝑍𝐾

be single-prover and single-proof, i.e.

a single session of F R
𝑍𝐾

may only be used by a single prover P to prove a single statement

𝑥 each to a single verifierV with respect to some parametrizing relation R. To facilitate

either multiple proofs between a fixed pair (P,V) of parties or between multiple, possibly

disjoint, pairs of parties, different sessions of F R
𝑍𝐾

have to be used. To guarantee global

uniqueness of session identifiers 𝑠𝑖𝑑 , these will generally be prefixed with both the prover

and verifier identities, i.e. be of the form 𝑠𝑖𝑑 = (P,V, 𝑠𝑖𝑑′) for some 𝑠𝑖𝑑′. Only a different

𝑠𝑖𝑑′ has then to be chosen by a prover P for different proofs made towards the same
verifierV .

We use one instance of F R
𝑍𝐾

parametrized by a relation RFHE which is given as

RFHE =

{
(𝑥,𝑤)

����� 𝑥 = pk,𝑤 = (sk, 𝑟),
(pk, sk) = FHE.Gen(1𝜆; 𝑟)

}
(5.1)

This means we may let parties prove knowledge of FHE secret keys.

6
We will denote the CRS as 𝑐𝑟𝑠 instead of 𝜎 in the present context to avoid confusion with signatures.

104

5.4. Adding Privacy Using FHE-Encryption

The F R
𝑍𝐾

functionality
Parametrized by an NP-relation R.

Prove Upon receiving (Prove, 𝑠𝑖𝑑,V, 𝑥,𝑤) from some party P, if R(𝑥,𝑤), send
(Prove, 𝑠𝑖𝑑,P,V, 𝑥) to the adversary. Upon receiving ok, send (Proven, 𝑠𝑖𝑑,P, 𝑥)
toV .

Figure 5.5.: The UC Zero-Knowledge functionality.

Extractable NIWI We require an extractable non-interactive witness-indistinguishable

argument NIWI. For convenience, we will speak of proofs instead of arguments even if

only the latter are used. The language for which we require NIWI to prove statements

consists of pairs (vk,𝑚) where vk itself consists of three verification keys vk𝑖 for SIG and

𝑚 ∈ M is an arbitrary message. Witnesses consist of two signatures 𝜎1, 𝜎2 for the message

𝑚 and valid under two different verification keys among the vk𝑖 .
Concretely, we define RSIG to be the relation

RSIG =

(𝑥,𝑤)
�������
𝑥 = (vk1, vk2, vk3,𝑚),𝑤 = (𝜎1, 𝜎2),
𝑚 = (𝑞, ℎ, 𝑖) ∈ X ×H × Z4, ∃𝑖, 𝑗 ∈ {1, 2, 3}, 𝑖 ≠ 𝑗 :

SIG.Verify(vk𝑖,𝑚, 𝜎1) = 1, SIG.Verify(vk 𝑗 ,𝑚, 𝜎2) = 1

 (5.2)

where vk𝑖, 𝑖 ∈ [3], are any well-formed verification keys generated by SIG.Gen.
The NIWI we employ makes use of a CRS which has to be available to all parties

generating or verifying proofs. We will, however, not be working in a hybrid model where

each party automatically has access to such a CRS. Instead, we will let a small number

of servers compute the CRS using the (general) MPC protocolMPC. The CRS will then
be distributed together with the F𝑉𝑅𝑂 verification key and as such be available during

verification.

Public Storage We make use of public storage represented by an ideal bulletin-board

functionality F𝑏𝑏𝑜𝑎𝑟𝑑 (taken from [23]) to which parties can post information using Store

messages and other parties can retrieve this information using Retrieve messages. For

simplicity, we assume that each party can only post a single message within a single

session of F𝑏𝑏𝑜𝑎𝑟𝑑 and that this information can not later be deleted, not even by the party

which originally posted it.

5.4.4. The Protocol

Within any session of 𝜋𝐹𝐻𝐸 , there are four distinguished servers P1 to P4 (the identities

of which could for example be encoded in the session identifier) as well as other non-

distinguished parties which we name callers. The number of callers does not have to

be a priori bounded. We aim to provide security as long as at most one of the servers is

105

5. VRO Instantiations

The F𝑏𝑏𝑜𝑎𝑟𝑑 functionality

Store Upon receiving (Store, 𝑠𝑖𝑑,𝑚) from some party P, send (Store, 𝑠𝑖𝑑,P,𝑚) to
the adversary. Upon receiving ok from the adversary, and if this is the first

request from P, record the pair (P,𝑚). Otherwise, ignore the message.

Retrieve Upon receiving (Retrieve, 𝑠𝑖𝑑,R) from some party P, if there is a stored
tuple (R,𝑚), set 𝑣 = 𝑚. Else set 𝑣 = ⊥. Send public delayed output

(Stored, 𝑠𝑖𝑑,R, 𝑣) to P.

Figure 5.6.: The UC Bulletin-Board functionality.

maliciously and statically corrupted, any number of callers may be corrupted. Without

loss of generality, we will later let P1 be the corrupted server.

There are several sub-protocols executed by different parties over the course of a session

of 𝜋𝐹𝐻𝐸 . An initialization phase is executed by the servers upon their first invocation.

At the end of this phase and if the adversary allowed delivery of the relevant messages,

the servers will have computed their private keys as well as posted their share of the

verification key to public storage. Other parties can then retrieve this verification key

using another sub-protocol. To create a proof, i.e. execute a Hash query, a caller C and all

four servers P𝑖 are involved. Verification of proofs only involves the single party receiving

the proof.

Server Initialization Server initialization is described by a function Initialize (see Figure
5.8) which is executed as soon as the servers P𝑖 start running. The servers engage in several
rounds of MPC. First, they execute the protocol SIGKeyGen which honestly samples a

key-pair (vk𝑆𝑖𝑔,𝑖, sk𝑆𝑖𝑔,𝑖) for SIG for each server, and outputs sk𝑖 as well as all verification
keys vk = (vk𝑆𝑖𝑔, 𝑗) 𝑗∈[4] to P𝑖 . Then, a CRS 𝑐𝑟𝑠 is computed using NIWI.Setup. Last, for
each subset of three servers, a PRF key 𝑘 is sampled from K and output to each server.

Honest servers will, if and once all the previous protocols have terminated successfully,

post the verification keys and the CRS, i.e. (𝑐𝑟𝑠, vk), to F𝑏𝑏𝑜𝑎𝑟𝑑 .

Remark 5.4.2. We can exploit the two-thirds honest majority setting we are working in

and use MPC protocols that are specifically tailored to this purpose, see [49]. For example

can the joint generation of PRF keys, which are usually represented by random bit-strings,

be done efficiently using the protocol for realizing F𝑐𝑜𝑖𝑛 described in [49].

Caller Init Whenever a party receives input (Init, 𝑠𝑖𝑑) it retrieves the stored data for

each of the P𝑖 , 𝑖 ∈ [4], from F𝑏𝑏𝑜𝑎𝑟𝑑 , obtaining (𝑐𝑟𝑠𝑖, vk𝑖). It constructs a verification key

vk = ((vk𝑆𝑖𝑔,𝑖)𝑖∈[4], 𝑐𝑟𝑠) from the vk𝑖 as well as from the 𝑐𝑟𝑠𝑖 by taking the majority of the

received values (only one of them may be wrong) and returns (Key, 𝑠𝑖𝑑, vk). Note that to
facilitate the consistency of Init tasks required by F𝑉𝑅𝑂 , output is only generated if none

of the retrieved values are equal to ⊥. Notice that we could be slightly more lenient here

106

5.4. Adding Privacy Using FHE-Encryption

and only require that there are two equal values for each of the four signature verification

keys as well as the CRS. At least one of them must be the honest value.

Caller Hash (1/2) Whenever a party P receives input (Hash, 𝑠𝑖𝑑, 𝑞) it proceeds as follows.
If it does not yet know the verification key vk it retrieves the individual keys from F𝑏𝑏𝑜𝑎𝑟𝑑 in
the same way as if it had received input (Init, 𝑠𝑖𝑑). Once this has concluded7, there are two
possibilities. Either⊥was returned when trying to retrieve the stored value for some server,

in which case the current query aborts. Or vk has been successfully set, in which case the

party proceeds as follows. It generates an FHE key-pair (pk𝐹𝐻𝐸, sk𝐹𝐻𝐸) ← FHE.Gen(1𝜆; 𝑟)
and encrypts 𝑞 under pk𝐹𝐻𝐸 obtaining a ciphertext 𝑐 . For each of the servers P𝑖 , the party
first proves the statement 𝑥 = pk𝐹𝐻𝐸 . The witness 𝑤 consists of sk𝐹𝐻𝐸 as well as the

randomness 𝑟 . To do this, P sends the message (Prove, (P,P𝑖, 𝑠𝑖𝑑, 𝑖),P𝑖, 𝑥,𝑤) to F RFHE𝑍𝐾

where 𝑖 is the number of past queries executed by P. For a definition of RFHE see (5.1). It

then sends the message (Hash, 𝑠𝑖𝑑, 𝑐) to P𝑖 .

Server Hash To stay chronological, we interject with the actions of a server upon receiv-

ing 𝑐 . A server only reacts to (Hash, 𝑠𝑖𝑑, 𝑐) messages if it was successfully initialized. This

includes having posted a message to F𝑏𝑏𝑜𝑎𝑟𝑑 (which in turn requires having received the

output of SIGKeyGen and NIWI.Setup) and having received all PRF keys 𝑘𝑖 for which it

partook in the generation protocol. Then, if indeed a Proved message containing some

pk𝐹𝐻𝐸 was received prior to receiving 𝑐 , the server continues, otherwise, we ignore the

request.
8
If all is well, the server for each of its known PRF keys 𝑘𝑖 evaluates the function

𝑥 ↦→ PRF(𝑘𝑖, 𝑥) homomorphically on 𝑐 using pk𝐹𝐻𝐸 , obtaining ciphertexts 𝑐𝑖 . It then

homomorphically evaluates 𝑥 ↦→ SIG.Sign(sk𝑆𝑖𝑔, 𝑥) on each tuple (𝑐, 𝑐𝑖, 𝑐𝑡) with 𝑐𝑡 being
an encryption of 𝑖 . After obtaining the resulting encrypted signatures 𝑐𝜎,𝑖 , all the 𝑐𝑖 and

𝑐𝜎,𝑖 are returned to the caller.

Caller Hash (2/2) Once responses by each of the four servers are received, the caller

decrypts all the received ciphertexts 𝑐𝑖, 𝑗 and 𝑐𝜎,𝑖, 𝑗 using sk𝐹𝐻𝐸 to obtain partial hashes ℎ𝑖, 𝑗
as well as purported signatures 𝜎𝑖, 𝑗 . Each of the signatures is checked for validity using

the keys contained in vk. For each 𝑖 ∈ [4], ℎ𝑖 is computed as the majority over ℎ𝑖, 𝑗 with

𝑗 ∈ [4] and 𝑖 ≠ 𝑗 . Two different valid signatures 𝜎1 and 𝜎2 under two different verification

keys and for the message (𝑞, ℎ𝑖, 𝑖) are selected as input to NIWI.Prove, yielding a proof 𝜋𝑖 .

The full proof 𝜋 then consists of all the ℎ𝑖 and 𝜋𝑖 .

Remark 5.4.3. Strictly speaking, Sig.Sign expects a message 𝑚 as its second input and

thus we have to provide a ciphertext 𝑐𝑚 of𝑚 as input to FHE.Eval, but we are providing
(𝑐, 𝑐𝑖, 𝑐𝑡). Thus 𝑐 , 𝑐𝑖 , and 𝑐𝑡 would first have to be homomorphically evaluated to a ciphertext

𝑐 containing the actual message we want to have signed. We note that mere concatenation

is not sufficient as tuples have to be encoded in a way that allows them to be efficiently

parseable.

7
With this we mean once responses by F𝑏𝑏𝑜𝑎𝑟𝑑 for all four servers have been received. Of course, this may

hang indefinitely in which case the current task will also hang indefinitely.

8
This may also occur for honest callers if the adversary chooses to deliver 𝑐 before the Proved message.

107

5. VRO Instantiations

Verification To verify a proof 𝜋 = (ℎ1, . . . , ℎ4, 𝜋1, . . . , 𝜋4) for (𝑞, ℎ), a verifier checks that
𝜋 contains four values ℎ𝑖 which sum to ℎ =

⊕
4

𝑖=0
ℎ𝑖 and that, for each 𝑖 ∈ [4], 𝜋𝑖 is valid

NIWI proof for the statement 𝑥𝑖 containing the three verification keys {vk𝑆𝑖𝑔, 𝑗 } 𝑗∈[4]\{𝑖},
and the message (𝑞, ℎ𝑖, 𝑖).

We give additional remarks about this protocol in Section A.3.1 of the appendix. There

we discuss, among other things, the possibility of using key registration instead of letting

callers prove knowledge of their secret key for each query and why we have to let callers

wait for responses from all four servers before being allowed to output a proof.

5.4.5. Proof of Security

In this section, we prove the security of the above protocol.

5.4.5.1. The Simulator

LetD be the dummy adversary. We give a simulator S for it. Again let P1 be the corrupted

server and C1 to C𝑘 be the identities of corrupted callers. The servers P2 to P4 as well as

any other parties not among the C𝑖 are honest.
The simulator has four main tasks:

• Answer the initialization message by F𝑉𝑅𝑂 .

• Simulate D, all honest parties, as well as the functionalities F RFHE
𝑍𝐾

and F𝑏𝑏𝑜𝑎𝑟𝑑 .

• Handle hash queries by honest callers.

• Handle hash queries by corrupted callers.

• Handle (a subset of the) verification queries by honest callers.

Simulation S simulates a copy ofD and relays all messages fromZ toD and vice versa.

It simulates all honest parties and gives Z (through D) the control it expects over the

corrupted parties as well as the length of all messages delivered through the network and

control over their delivery.

Server Initialization The simulator behaves honestly on behalf of the honest servers

during Initialization and also simulates F𝑏𝑏𝑜𝑎𝑟𝑑 honestly. For the invocations ofMPC for

SIGKeyGen and PRFKeyGen, S samples the outputs honestly. For the computation of

NIWI.Setup, NIWI.SimSetup is used instead. S delivers outputs to the honest parties once

this has been allowed by the adversary. Independent of any actions of the adversary, S is

in possession of the following data:

• SIG key-pairs (vk𝑆𝑖𝑔,𝑖, sk𝑆𝑖𝑔,𝑖) for all the servers

• all four PRF keys 𝑘1 to 𝑘4

• the simulated NIWI reference string 𝑐𝑟𝑠 and its extraction trapdoor 𝜏 .

108

5.4. Adding Privacy Using FHE-Encryption

On input (Hash, 𝑠𝑖𝑑, 𝑞)
1 : if vk = ⊥ do
2 : ⟳ (Init, 𝑠𝑖𝑑)
3 : fi
4 : ((vk𝑆𝑖𝑔,𝑖)𝑖∈[4], 𝑐𝑟𝑠) = parse(vk)
5 : (pk𝐹𝐻𝐸, sk𝐹𝐻𝐸) ← FHE.Gen(1𝜆 ; 𝑟)
6 : 𝑐 ← FHE.Enc(pk, 𝑞)
7 : for 𝑖 ∈ {1, 2, 3, 4} do
8 : 𝑠𝑖𝑑 ′ = (P,P𝑖 , 𝑠𝑖𝑑, 𝑝𝑖)
9 : 𝑝𝑖 = 𝑝𝑖 + 1

10 : (Prove, 𝑠𝑖𝑑 ′,P𝑖 , pk𝐹𝐻𝐸, (sk𝐹𝐻𝐸, 𝑟)) → F
RFHE
𝑍𝐾

11 : (Hash, 𝑠𝑖𝑑, 𝑐) → P𝑖
12 : (𝑐𝑖, 𝑗 , 𝑐𝜎,𝑖, 𝑗) ← P𝑖
13 : endfor
14 : for (𝑖, 𝑗) ∈ {1, 2, 3, 4}2, 𝑖 ≠ 𝑗 do
15 : ℎ𝑖, 𝑗 = FHE.Dec(sk𝐹𝐻𝐸, 𝑐𝑖, 𝑗)
16 : 𝜎𝑖, 𝑗 = FHE.Dec(sk𝐹𝐻𝐸, 𝑐𝜎,𝑖, 𝑗)
17 : endfor
18 : for 𝑖 ∈ {1, 2, 3, 4} do
19 : ℎ𝑖 = arg max

ℎ∈H

��{ℎ = ℎ 𝑗,𝑖 | 𝑗 ∈ 4 \ {𝑖}
}��

20 : endfor

21 : ℎ =
⊕

4

𝑖=1
ℎ𝑖

22 : for 𝑗 ∈ {1, 2, 3, 4} do
23 : Σ =

{
𝜎𝑖, 𝑗 | 𝑖 ∈ [4] \ { 𝑗}, 𝜎𝑖, 𝑗 ≠ ⊥

24 : SIG.Verify(vk𝑆𝑖𝑔,𝑖 , (𝑞, ℎ 𝑗 , 𝑗), 𝜎𝑖, 𝑗) = 1

}
25 : if |Σ| < 2 do
26 : abort
27 : fi
28 : {𝜎1, 𝜎2} ←$ Σ

29 : vk𝑗 = (vk𝑖)𝑖∈[4]\{ 𝑗 }
30 : 𝑥 = (vk𝑗 , (𝑞, ℎ 𝑗 , 𝑗))
31 : 𝑤 = (𝜎1, 𝜎2)
32 : 𝜋 𝑗 = NIWI.Prove(𝑐𝑟𝑠, 𝑥,𝑤)
33 : endfor
34 : 𝜋 = (ℎ1, ℎ2, ℎ3, ℎ4, 𝜋1, 𝜋2, 𝜋3, 𝜋4)
35 : return (HashProof, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋)
36 :

On input (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk)
1 : (vk1, vk2, vk3, vk4, 𝑐𝑟𝑠) = parse(vk)
2 : (ℎ1, ℎ2, ℎ3, ℎ4, 𝜋1, 𝜋2, 𝜋3, 𝜋4) = parse(𝜋)
3 : if ℎ ≠

⊕
4

𝑖=1
ℎ𝑖 do

4 : return (Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk, 0)
5 : fi
6 : for 𝑖 ∈ {1, 2, 3, 4} do
7 : vk𝑖 = (vk𝑗) 𝑗∈[4]\{𝑖 }
8 : 𝑥 = (vk𝑖 , (𝑞, ℎ𝑖 , 𝑖))
9 : if NIWI.Verify(𝑐𝑟𝑠, 𝑥, 𝜋𝑖) = 0 do
10 : return (Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk, 0)
11 : fi
12 : endfor
13 : return (Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk, 1)

On input (Init, 𝑠𝑖𝑑)
1 : for 𝑖 ∈ {1, 2, 3, 4} do
2 : (Retrieve, 𝑠𝑖𝑑,P𝑖) → F𝑏𝑏𝑜𝑎𝑟𝑑
3 : (Stored, 𝑠𝑖𝑑,P𝑖 , (𝑐𝑟𝑠𝑖 , vk𝑖)) ← F𝑏𝑏𝑜𝑎𝑟𝑑
4 : if (vk𝑖 , 𝑐𝑟𝑠𝑖) = ⊥ do
5 : abort
6 : fi
7 : (vk𝑖, 𝑗) 𝑗∈[4] = parse(vk𝑖)
8 : endfor
9 : for 𝑖 ∈ {1, 2, 3, 4} do
10 : vk𝑆𝑖𝑔,𝑖 = arg max

vk′
|{vk′ = vk𝑖, 𝑗 | 𝑗 ∈ [4]}|

11 : fi
12 : 𝑐𝑟𝑠 = arg max

𝑐𝑟𝑠′
|{𝑐𝑟𝑠′ = 𝑐𝑟𝑠𝑖 | 𝑖 ∈ [4]}|

13 : vk = (vk𝑆𝑖𝑔,1, vk𝑆𝑖𝑔,2, vk𝑆𝑖𝑔,3, vk𝑆𝑖𝑔,4, 𝑐𝑟𝑠)
14 : return (Key, 𝑠𝑖𝑑, vk)
15 :

Figure 5.7.: The client algorithms for 𝜋𝐹𝐻𝐸 from the perspective of a party P.

109

5. VRO Instantiations

On input (Hash, 𝑠𝑖𝑑, 𝑐)
1 : (Proved,P, pk𝐹𝐻𝐸) ← F

RFHE
𝑍𝐾

2 : 𝑐sk ← FHE.Enc(pk𝐹𝐻𝐸, sk𝑆𝑖𝑔)
3 : 𝐶1 = PRF(·, ·)
4 : 𝐶2 = SIG.Sign(·, ·; ·)
5 : for 𝑖 ∈ {1, 2, 3, 4} \ {𝑛} do
6 : 𝑐𝑘,𝑖 ← FHE.Enc(pk𝐹𝐻𝐸, 𝑘𝑖)
7 : 𝑐𝑖 ← FHE.Eval(pk𝐹𝐻𝐸,𝐶1, (𝑐𝑘,𝑖 , 𝑐))
8 : 𝑟 ← SIG.R
9 : 𝑐𝑟 ← FHE.Enc(pk𝐹𝐻𝐸, 𝑟)
10 : 𝑐𝑡 ← FHE.Enc(pk𝐹𝐻𝐸, 𝑖)
11 : 𝑐𝑎𝑟𝑔 = (𝑐sk, (𝑐, 𝑐𝑖 , 𝑐𝑡), 𝑐𝑟)
12 : 𝑐𝜎,𝑖 ← FHE.Eval(pk𝐹𝐻𝐸,𝐶2, 𝑐𝑎𝑟𝑔)
13 : endfor
14 : return {(𝑐𝑖 , 𝑐𝜎,𝑖)}𝑖∈[4]\{𝑛}

Initialize(P1,P2,P3,P4)
1 : S = {P1,P2,P3,P4}
2 : out← MPC(SIGKeyGen,S)
3 : (sk𝑆𝑖𝑔, vk) = parse(out)
4 : 𝑐𝑟𝑠 ← MPC(NIWI.Setup,S)
5 : for 𝑖 ∈ {1, 2, 3, 4} \ {𝑛} do
6 : 𝑘𝑖 ← MPC(PRFKeyGen,S \ {P𝑖})
7 : endfor
8 : (Store, 𝑠𝑖𝑑, (𝑐𝑟𝑠, vk)) → F𝑏𝑏𝑜𝑎𝑟𝑑
9 :

SIGKeyGen

1 : for 𝑖 ∈ {1, 2, 3, 4} do
2 : (vk𝑖 , sk𝑖) ← SIG.Gen(1𝜆)
3 : endfor
4 : vk = (vk𝑖)𝑖∈[4]
5 : for 𝑖 ∈ {1, 2, 3, 4} do
6 : out𝑖 = (sk𝑖 , vk)
7 : endfor
8 : return (out𝑖)𝑖∈[4]

PRFKeyGen

1 : 𝑘 ←$ K
2 : return (𝑘, 𝑘, 𝑘)

Figure 5.8.: The server algorithms for 𝜋𝐹𝐻𝐸 from the perspective of server P𝑛 .

110

5.4. Adding Privacy Using FHE-Encryption

VRO Initialization Upon receiving the message (Init, 𝑠𝑖𝑑) from F𝑉𝑅𝑂 , S collects the

individual verification keys vk𝑆𝑖𝑔,𝑖 into a single key vk. Let then Prove be defined as shown
in Figure 5.9. Essentially, the output of the PRF under the first key 𝑘1 which is unknown

to the corrupted server P1 is changed in such a way that the sum of all four PRF outputs

matches the hash ℎ chosen by F𝑉𝑅𝑂 . Prove has the verification keys vk𝑆𝑖𝑔,𝑖 of all servers as
well as the PRF keys 𝑘2 to 𝑘4 hard-coded. The 𝑠 provided by the simulator in its SimInfo

messages does not contain any information for this instantiation and is thus ignored by

Prove. Finally, but in the same activation as receiving the Init message, S sends the

message (Init, 𝑠𝑖𝑑, Prove, vk) to F𝑉𝑅𝑂 .

Caller Initialization Whenever S is asked to deliver a Init message to some honest

party P, it lets the simulated version of P initiate the honest protocol for obtaining the

verification keys of SIG as well as the NIWI CRS 𝑐𝑟𝑠 by simulating queries to F𝑏𝑏𝑜𝑎𝑟𝑑 .
Once the simulated P generates an output of the form (Key, 𝑠𝑖𝑑, vk), i.e. indicating that in

the corresponding real interaction the initialization would have succeeded because the

adversary has allowed the delivery of all responses by F𝑏𝑏𝑜𝑎𝑟𝑑 and so forth, S allows F𝑉𝑅𝑂
to deliver the response to the initialization request by the real P.

Honest Hashing The occurrence of a hash query by an honest caller P is made known

to S via a message (Hashing, 𝑠𝑖𝑑,P, 𝑙) where 𝑙 is the length of the input 𝑞. S now has to

simulate the view of the corrupted server P1 forD as well as any network communication.

The exact steps taken are shown in Figure 5.9. Intuitively, S, instead of generating a key-

pair for FHE, proving knowledge of the secret key using F RFHE
𝑍𝐾

, encrypting 𝑞 and sending

the ciphertext 𝑐 to the servers, does the following: It does the first step of generating a

key-pair, but then S delivers a Proved message to P1 without receiving a secret key and

encrypts a string of zeroes of the correct length 𝑙—it does not know 𝑞. The ciphertext

containing only zeroes is sent to P1. S then sends the message (SimInfo, 𝑠𝑖𝑑,P,⊥) back
to F𝑉𝑅𝑂 . Note that this does not yet allow F𝑉𝑅𝑂 to deliver any response to P.
For the communication with the honest servers, S simulates messages of the correct

length and lets D decide when to deliver them. Only once all messages to the servers

as well as responses by the servers have been delivered in addition to the response by

the corrupted server, S allows F𝑉𝑅𝑂 to deliver the delayable HashProof response for this

query to P. This is consistent with the fact that an honest caller only outputs a proof once

it receives responses from all four servers. We note that the honest servers only reply if

they have been initialized at the time of this query.

Dishonest Hashing Whenever D initiates a hash query on behalf of a corrupted party C𝑗
for some 𝑗 , S has to extract the input 𝑞. This has to be possible, however, only when the

real protocol would not have aborted the interaction given the same inputs. A real server

aborts a query when it does not receive a Proved message including some FHE public key

pk𝐹𝐻𝐸 . As S is the party providing F RFHE
𝑍𝐾

, it can either extract a corresponding secret key

sk𝐹𝐻𝐸 or it can let the simulated server abort the query. This happens independently for

each honest server.

For each P𝑖 2 ≤ 𝑖 ≤ 4 and if no abort occurs for that server, S can use the respective

extracted sk𝐹𝐻𝐸,𝑖 to decrypt 𝑐𝑖 obtaining some 𝑞𝑖 . It sends a message (Hash, 𝑠𝑖𝑑, 𝑞𝑖) to F𝑉𝑅𝑂

111

5. VRO Instantiations

On input (Hashing, 𝑠𝑖𝑑,P, 𝑙)
1 : (pk, sk) ← FHE.Gen(1𝜆)
2 : 𝑐 ← FHE.Enc(pk, 0𝑙)

3 : F RFHE
𝑍𝐾

(Proven,𝑠𝑖𝑑,P,pk)
−−−−−−−−−−−−−→ P1

4 : P
(Hash,𝑠𝑖𝑑,𝑐)
−−−−−−−−−→ P1

5 : Simulate messages
6 : from P to P2,P3,P4

7 : P
{𝑐𝑖 ,𝑐𝜎,𝑖 }𝑖=2,3,4←−−−−−−−−−− P1

8 : (SimInfo, 𝑠𝑖𝑑,P,⊥) → F𝑉𝑅𝑂

Prove(𝑞, ℎ, 𝑠)
1 : // Prove knows 𝑐𝑟𝑠 , all vk𝑗 , and all 𝑘𝑖 and sk𝑖 for 𝑖 > 1

2 : for 𝑖 ∈ {2, 3, 4} do
3 : ℎ𝑖 = PRF(𝑘𝑖 , 𝑞)
4 : endfor
5 : ℎ1 = ℎ ⊕

⊕
4

𝑖=2
ℎ𝑖

6 : for 𝑖 ∈ {2, 3, 4} do
7 : for 𝑗 ∈ {1, 2, 3, 4}, 𝑖 ≠ 𝑗 do
8 : 𝜎𝑖, 𝑗 ← SIG.Sign(sk𝑖 , (𝑞, ℎ 𝑗 , 𝑗))
9 : endfor
10 : endfor
11 : for 𝑖 ∈ {1, 2, 3, 4} do
12 : { 𝑗1, 𝑗2} ⊆ {1, 2, 3, 4} \ {1, 𝑖}
13 : vk𝑖 = (vk𝑗) 𝑗∈[4]\{𝑖 }
14 : 𝜋𝑖 ← NIWI.Prove(𝑐𝑟𝑠, (vk𝑖 , (𝑞, ℎ𝑖 , 𝑖)), (𝜎 𝑗1,𝑖 , 𝜎 𝑗2,𝑖))
15 : endfor
16 : 𝜋 = (ℎ1, ℎ2, ℎ3, ℎ4, 𝜋1, 𝜋2, 𝜋3, 𝜋4)
17 : return 𝜋

Figure 5.9.: The algorithms used by the simulator.

on behalf of C𝑗 . After receiving the Hashing notification and answering with a SimInfo-

message with 𝑠 = ⊥, it receives output (HashProof, 𝑠𝑖𝑑, 𝑞𝑖, ℎ𝑖, 𝜋𝑖). Now S has to compute a

response on behalf of P𝑖 which makes it congruent with the full hash for 𝑞𝑖 being ℎ𝑖 . To

achieve this, it changes the output of PRF(𝑘1, 𝑞𝑖) such that the sum

⊕
4

𝑛=1
PRF(𝑘𝑛, 𝑞𝑖) is

equal to ℎ𝑖 , i.e. letting it equal ℎ𝑖 ⊕
⊕

4

𝑛=2
PRF(𝑘𝑛, 𝑞𝑖). Observe that this is only possible

because S knows all the PRF keys.

For 𝑛 ∈ {2, 3, 4} \ {𝑖}, all evaluations of PRF(𝑘𝑛, ·) and subsequent signatures are done

as before. For 𝑘1, however, first ℎ
𝑖
1
= PRF(𝑘1, 𝑞𝑖) is computed in the clear. Then, a

simulated evaluated ciphertext 𝑐𝑖
1
← Sim(pk, ℎ𝑖

1
) is computed. This 𝑐𝑖

1
is then used in the

homomorphic evaluation of SIG.Sign in stead of FHE.Eval(pk, PRF(𝑘1, ·), 𝑐𝑖).

Verification Upon receiving a message (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′) from F𝑉𝑅𝑂 , S behaves

like an honest party on the same input. Let 𝑏 be the last component of the resulting output.

S sends the message (Verified, 𝑠𝑖𝑑, 𝑏) back to F𝑉𝑅𝑂 .

5.4.5.2. Indistinguishability

Having given the simulation strategy S we now proceed to prove that S is indeed a valid

simulator for the dummy adversary D. To show this, we have to prove that for every PPT

environment Z it holds that the ensembles of probability distributions REAL𝜋,D,Z and

112

5.4. Adding Privacy Using FHE-Encryption

IDEALF𝑉𝑅𝑂 ,S,Z are computationally indistinguishable. First, we give informal justification

for why indistinguishability holds. Afterward, we provide a formal proof.

Honest Hashing It has to be argued that proofs output by F𝑉𝑅𝑂 to honest parties are

distributed correctly. We begin with the NIWI proofs. In the real interaction, witness

signatures by all four servers are used and chosen at random if more than the two which

are required are available. On the other hand, Prove always uses signatures by the honest

servers as witnesses. This difference will be reduced to the witness-indistinguishability

property of NIWI.
Then to the partial hashes ℎ𝑖 for 𝑖 ∈ [4]. For ℎ2 up to ℎ4, the distributions are identical

in both cases. For ℎ1, in a real protocol execution they are produced according to the

distribution of ℎ1 = PRF(𝑘1, 𝑞) for a randomly and independently chosen key 𝑘1 and

input 𝑞, while in the ideal protocol they are produced as ℎ1 = ℎ ⊕
⊕

4

𝑗=2
PRF(𝑘 𝑗 , 𝑞) for ℎ

chosen uniformly at random and independently for each 𝑞. By the properties of ⊕ this also

implies that the ℎ1 are chosen according to the uniform distribution and are independent

of each other. By the defining properties of pseudo-random functions, these two cases

are indistinguishable when the probability is taken over the choice of 𝑘1 and what can be

described as the random function RF with which F𝑉𝑅𝑂 assigns ℎ’s to 𝑞’s.

At last, it has to be shown that the input 𝑞 remains hidden from the adversary, i.e. that

the view of a corrupted server is indistinguishable between the real and ideal interactions.

This will follow from the semantic security of FHE.

Dishonest Hashing We have to show that the view of the simulated corrupted caller is

indistinguishable from what it would have seen if it had behaved equally in a real protocol

execution. As all interactions with honest servers are independent, we consider a single

one.

First, by the soundness properties of F RFHE
𝑍𝐾

, both the real and simulated honest server

abort the interaction if the caller does not know and provide the correct sk𝐹𝐻𝐸 . This means

that, conditioned on not aborting, S can extract the correct secret key. Then S can decrypt

𝑞, give it to F𝑉𝑅𝑂 , and receive the correct hash ℎ and a proof 𝜋 .

As we assume that FHE is circuit private, the simulated responses are computationally

indistinguishable from the responses in a real protocol execution with the exception of

PRF(𝑘1, ·) being replaced with a truly random function. Because the adversary at no point

has access to 𝑘1, this is indistinguishable over the random choice of 𝑘1.

Verification First proofs, output by honest parties in the real interaction are always

accepted by the completeness of SIG and NIWI. Inputs whose validity is determined by S
in the ideal interaction are answered identically asS uses the honest verification algorithm.

This leaves proofs that trigger the unforgeability clause of F𝑉𝑅𝑂 . We will show that this

case occurs with negligible probability by reducing to the extractability of NIWI and the

EUF-CMA security of SIG.

After this informal reasoning for why the protocol realizes F𝑉𝑅𝑂 , let us now provide a

formal proof. We proceed as in the proof in Section 4.2.5.1 by a sequence of interactions

in which we gradually move from the real interaction involving an environmentZ, the

dummy adversary D and a session of 𝜋𝐹𝐻𝐸 to the ideal interaction withZ, the simulator

113

5. VRO Instantiations

S and the ideal functionality F𝑉𝑅𝑂 . We prove that each step changes the distribution of

outputs ofZ only in a computationally indistinguishable manner.

As in the proof in Section 4.2.5.1 we first introduce a challenger C whichwill be the entity

acting on behalf of all honest parties and functionalities in the intermediate interactions.

We again let INT𝑖,C,Z,D denote the ensemble of random variables representing the outputs

ofZ in interaction 𝑖 . Note that for all ensembles we suppress the superscript indicating

the hybrid model we are working within.

Interaction 1: C executes an instance ofZ (with the appropriate auxiliary input) and

D. It executes 𝜋𝐹𝐻𝐸 honestly on behalf of all honest parties which are activated byZ
over the course of the interaction. All ideal functionalities are simulated honestly.

Lemma 5.4.4. The distribution of outputs ofZ is identically distributed in the real interaction
and Interaction 1, formally

REAL𝜋𝐹𝐻𝐸 ,Z,D = INT1,C,Z,D

In the next step, we prepare the behavior of honest parties during hash queries for a

later step. We do this by removing the proofs performed by honest parties using F RFHE
𝑍𝐾

.

This is necessary to later be able to reduce to the semantic security of FHE as there our

reduction will not possess the necessary secret key.

Interaction 2: C behaves as in Interaction 1, except that honest parties no longer

provide witnesses to F RFHE
𝑍𝐾

, but C still delivers Proved messages as if witnesses had

been received.

Lemma 5.4.5. The distribution of outputs ofZ is identically distributed between Interaction
1 and Interaction 2, formally

INT1,C,Z,D = INT2,C,Z,D

Proof. This follows by the unobservability of messages sent by honest parties to ideal

functionalities. We are using the perfect simulatability provided by F RFHE
𝑍𝐾

which may

degrade to computational simulatability when instantiating F RFHE
𝑍𝐾

.

Next, we further reduce the reliance of honest callers to know the secret key sk for the

public key pk which they use to encrypt the messages to the servers. Instead of computing

proofs from the responses of the honest servers, callers recompute what is contained in

the responses themselves.

Interaction 3: C behaves as in Interaction 2, except that it lets honest callers ignore
the responses by honest servers and compute the values which are contained therein

according to the honest protocol using the PRF keys 𝑘𝑖 and signing keys sk𝑆𝑖𝑔,𝑖 of the
honest servers.

114

5.4. Adding Privacy Using FHE-Encryption

Lemma 5.4.6. The distribution of outputs ofZ is identically distributed between Interaction
2 and Interaction 3, formally

INT2,C,Z,D = INT3,C,Z,D

Proof. The ℎ𝑖 contained in the responses can be perfectly recomputed using 𝑘𝑖 . For the

signatures, the honest servers honestly compute signatures using fresh randomness. The

callers in Interaction 3 do the same and so the final proofs are identically distributed.

Now we alter the interaction between corrupted callers and honest servers. To then be

able to use the security of PRF we replace the fully-homomorphic evaluation of PRF(𝑘1, ·)
by a computation in the clear followed by a use of the circuit privacy simulator Sim for

FHE. This is necessary as (1) a truly random function does not have a sufficiently succinct

representation that would allow for homomorphic evaluation, (2) even then, a non-circuit

private FHE scheme may allow a corrupted caller to differentiate between a ciphertext

which was the result of evaluating PRF as opposed to the random function.

Interaction 4: C behaves as in Interaction 3, except that it lets honest servers
when interacting with a corrupted caller P, instead of homomorphically evaluating

PRF(𝑘1, ·) on the received ciphertext 𝑐 , do the following. First, they use the sk which

corresponds to the pk contained in the Provedmessage which they have received from

F R
𝑍𝐾

and which is extracted from the message by P to F R
𝑍𝐾

to compute the plaintext

𝑞 = FHE.Dec(sk, 𝑐). Then they evaluate PRF(𝑘1, ·) on 𝑞 in the clear to obtain ℎ1. Lastly,

they then simulate an evaluated ciphertext 𝑐1 as 𝑐1 ← Sim(pk, ℎ1). This 𝑐1 replaces the

result of FHE.Eval(pk, PRF(𝑘1, ·), 𝑐) in the subsequent computation and in the response

to P.

Lemma 5.4.7. The distribution of outputs ofZ in Interaction 3 is statistically close to the
distribution in Interaction 4, formally

Δ
(
INT3,C,Z,D, INT4,C,Z,D

)
≤ negl(𝜆)

for some negligible function negl(𝜆).

Proof. We use the statistical semi-honest circuit privacy we have assumed of FHE. For this,
let 𝑝 be a polynomial upper bound on the number of hash queries initiated byZ on behalf

of corrupted callers. Then 3𝑝 is an upper bound on the number of executions of Sim in

Interaction 4. The factor 3 stems from the fact that each of the three honest servers runs

Sim once during each query.
9

If we were working with computational circuit privacy, we would be stuck now as we

are using indistinguishability not of a single pair of distributions, but of 𝑝 distributions of

the form

{Sim(pk, PRF(𝑘1, 𝑞𝑖))}
𝑐≈ {FHE.Eval(pk, PRF(𝑘1, ·), 𝑐𝑖)}

9
While all of them are on the same input, running Sim only once and using the same result for each honest

server would trivially be detectable.

115

5. VRO Instantiations

for (pk, sk) ← FHE.Gen(1𝜆) some inputs 𝑞𝑖 and 𝑐𝑖 ← FHE.Enc(pk, 𝑞𝑖). This would

require us to make a polynomial number of hybrid-steps without being able to reduce

to the indistinguishability of a single pair of distributions as required for the standard

hybrid-argument. Luckily, our definition of circuit privacy is statistical and so we do

not encounter any such complications. Going from Interaction 3 to Interaction 4, we
gradually replace invocations of Eval by those of Sim.

For each block of three evaluations of PRF(𝑘1, ·) in Interaction 3, let the first be executed
by P2, the second by P3 and the third by P4. For 𝑗 ∈ [3𝑝] let G 𝑗 be the intermediate

interaction where the first 𝑗 evaluations

Eval
(
pk 𝑗 , PRF(𝑘1, ·), 𝑐 𝑗

)
(5.3)

where pk 𝑗 is the public key sent by the caller in the 𝑗 ’th hash query by a corrupted caller

and 𝑐 𝑗 is the sent ciphertext are replaced by

Sim
(
1
𝜆, pk 𝑗 , PRF(𝑘1, 𝑞 𝑗)

)
(5.4)

where 𝑞 𝑗 = Dec(sk 𝑗 , 𝑐 𝑗) for the extracted secret key sk 𝑗 . Note that we can assume 𝑞 𝑗 ≠ ⊥
due to our assumption regarding FHE having a full ciphertext space.

Clearly, G0 is identical to Interaction 3 while G3𝑝 is identical to Interaction 4. Fur-
thermore, using a sample which has either been generated according to (5.3) or (5.4) allows

simulating an interaction ofZ which is either distributed according to G𝑘 (if (5.4) is used)
or G𝑘−1 (if (5.3) is used). By the properties of statistical distances, the statistical distance

between the output ofZ between G𝑘 and G𝑘−1 is then bounded by the statistical distance

between the two distributions (5.3) and (5.4), which is negligible with bound negl(𝜆) by
the statistical circuit privacy of FHE. We can thus upper bound the statistical distance

between G0 and G3𝑝 as

Δ(G0,G3𝑝 ≤ 3𝑝 negl(𝜆) ≤ negl(𝜆)′

for some additional negligible function negl(𝜆)′.
What remains to be argued is why it was justified to use the semi-honest circuit privacy

in our malicious context. The reason for this is two-fold. First, by letting callers prove

knowledge of the secret key for the public key they send to servers ensures that the public

key is well-formed. The second difference between semi-honest and malicious circuit

privacy concerns well-formed ciphertexts. As per the discussion in Chapter 2, forego

this problem by assuming that the ciphertext space is full, valid ciphertexts are efficiently

recognizable and so invalid ciphertexts will be rejected also in the real interaction.

Remark 5.4.8. If the protocol is instantiated with FHE having the property that evaluated

ciphertexts are statistically close to fresh encryptions of the contained value, then the

present step becomes trivial. In particular, no simulator has to be used.

We can now finally use the security of PRF by replacing the instance using the key 𝑘1

not known to the adversary by a random function RF.

116

5.4. Adding Privacy Using FHE-Encryption

Interaction 5: C behaves as in Interaction 4, except that all occurrences of PRF(𝑘1, ·),
i.e. as arguments to Sim, are replaced with RF(·) for a common random function RF.

Lemma 5.4.9. The distribution of outputs ofZ in Interaction 4 is computationally indis-
tinguishable from the distribution in Interaction 5, formally

INT4,C,Z,D
𝑐≈ INT5,C,Z,D

Proof. We reduce to the security of PRF by constructing an adversaryB on the PRF security

of PRF from any distinguisherA for the output distributions ofZ produced in Interaction
4 and Interaction 5.
B runs a simulation ofZ andD. It uses its oracle O, which is either given by a random

function RF or by PRF(𝑘, ·) for 𝑘 drawn uniformly at random from the key-space of PRF,
to replace all occurrences of PRF(𝑘1, ·). All other actions of honest parties are according
to Interaction 4. WhenZ produces its output and halts, the output is given as input to

the distinguisherA. WhenA produces its decision 𝑏, B gives it to its own challenger and

halts.

When O is given by PRF(𝑘, ·) the simulation by B is of Interaction 4 and when O is

given by RF it is a simulation of Interaction 5. For the advantages Advprf

B,PRF(𝜆) of B and

Advdist

A,INT
4,C,Z,D ,INT5,C,Z,D

(𝜆) of A it holds that

Advdist

A,INT
4,C,Z,D ,INT5,C,Z,D

(𝜆) ≤ Advprf

B,PRF(𝜆) (5.5)

But by assumption on the security of PRF

Advprf

B,PRF(𝜆) = negl(𝜆) (5.6)

for some negligible function negl(𝜆). Taken together, Equation (5.5) and Equation (5.6) as

well as the fact that the above construction works for any PPT machine A, imply that for

any PPT distinguisher E there exists a negligible function negl(𝜆)′ such that

Advdist

E,INT
4,C,Z,D ,INT5,C,Z,D

(𝜆) ≤ negl(𝜆)′ (5.7)

This shows the lemma.

Next, we make the proof produced by honest parties fully independent of the responses

they receive from the corrupted caller. While so far the selection of which valid signatures

to use to compute NIWI proofs was made randomly (or equivalently using some fixed

deterministic process), we now only consider signatures returned by the honest servers.

Indistinguishability will follow from the witness-indistinguishability of NIWI where we
have to use a hybrid-argument as there may be polynomially many proofs requested

from honest parties. As WI is an indistinguishability notion, this easily follows from the

definition for a single proof.

117

5. VRO Instantiations

Interaction 6: C behaves as in Interaction 5, except that honest parties, upon
receiving input (Hash, 𝑠𝑖𝑑, 𝑞), execute the protocol as in Interaction 5 until they are

supposed to compute proofs using NIWI.Prove. They exclude the signatures they have
received from P1 from the sets Σ of valid signatures, i.e. only use signatures under

the verification keys belonging to honest servers (and which they already compute by

themselves). As there are three signatures valid under such keys for (𝑞, ℎ1, 1) which
may be used as witnesses, but only two are required, those valid under vk𝑆𝑖𝑔,2 and
vk𝑆𝑖𝑔,3 are used.

Lemma 5.4.10. The distribution of outputs of Z in Interaction 5 is computationally
indistinguishable from the distribution in Interaction 6, formally

INT5,C,Z,D
𝑐≈ INT6,C,Z,D

Proof. We reduce to the witness-indistinguishability of NIWI by constructing a successful

adversary B on the witness-indistinguishability ofNIWI from any successful distinguisher

A for the output distributions ofZ produced in Interaction 5 or Interaction 6. As stated
above, there are potentially polynomially many proofs by honest callers which have to be

simulated, but an attacker on the witness-indistinguishability of NIWI is only allowed to

request a single proof. We employ a standard hybrid-argument.

B runs a simulation ofZ and D. It chooses uniformly at random an index 𝑖 ≤ 4 𝑝 (𝜆)
where 𝑝 is a polynomial upper bound on the number of hash queries for honest callers

made byZ. The factor 4 is required because each proof contains four NIWI proofs which
have to be replaced incrementally.

When B is asked to simulate the 𝑗 ’th NIWI proof which occurs in the ⌊ 𝑗/4⌋’th hash

query by an honest caller on some input 𝑞, B simulates an honest caller according to

Interaction 5, but whenever aNIWI proof 𝜋 for some statement 𝑥 is required, it computes

it as follows:

• If 𝑗 < 𝑖: Run NIWI.Prove with a witness according to Interaction 5

• If 𝑗 = 𝑖: Let 𝑤1 be a witness according to Interaction 5 and 𝑤2 a witness

according to Interaction 6. Give (𝑥,𝑤1,𝑤2) to the WI challenger and use the

received proof 𝜋 .

• If 𝑗 > 𝑖: Run NIWI.Prove with a witness according to Interaction 6.

At the end of the simulation, any output produced by Z is given as input to the

distinguisher A. Finally, B gives the output bit of A to its challenger.

LetG𝑖 be the gamewhere the first 𝑖 NIWI proofs contained in proofs by honest callers are
generated according to Interaction 5 and the remaining proofs are generated according

to Interaction 6. Clearly G0 is identical to Interaction 5 and G4𝑝 (𝜆 is identical to

118

5.4. Adding Privacy Using FHE-Encryption

Interaction 6. Also, depending on the challenge bit 𝑏 in the witness-indistinguishability

game and the index 𝑖 randomly chosen by B, an instance of G𝑖−𝑏 is simulated.

We may now apply the standard hybrid-argument to show that

Advdist

A,INT
5,C,Z,D ,INT6,C,Z,D

(𝜆) ≤ 4 𝑝 (𝜆) Advwit−ind

B,NIWI (𝜆) (5.8)

But by the assumption on the security of NIWI

Advwit−ind

B,NIWI (𝜆) = negl(𝜆) (5.9)

for some negligible function negl(𝜆). Taken together, Equation (5.8) and Equation (5.9) as

well as the fact that the above construction works for any PPT machine A, imply that for

any PPT distinguisher E there exist negligible functions negl′(𝜆) and negl′′(𝜆) such that

Advdist

E,INT
5,C,Z,D ,INT6,C,Z,D

(𝜆) ≤ 4 𝑝 (𝜆) negl′(𝜆) ≤ negl′′(𝜆) (5.10)

This proves the lemma.

The next step again concerns how honest callers behave. This time we wish to show

that the corrupted server has no information on 𝑞 except its length ∥𝑞∥ as is required by

the definition of F𝑉𝑅𝑂 . We achieve this by using the semantic security of FHE, i.e. instead
of sending an encryption of 𝑞 we send an encryption of the fixed value 0

∥𝑞∥
, and this will

go undetected with overwhelming probability. As the simulator only has to simulate the

view of the corrupted server when it is interacting with an honest caller, only their code

has to be changed.

Interaction 7: C behaves as in Interaction 6, except that honest callers on in-

put 𝑞 compute the ciphertext 𝑐 which they send to the corrupted server P1 as

𝑐 ← FHE.Enc(pk, 0∥𝑞∥) instead of 𝑐 ← FHE.Enc(pk, 𝑞).

Lemma 5.4.11. The distribution of outputs of Z in Interaction 6 is computationally
indistinguishable from the distribution in Interaction 7, formally

INT6,C,Z,D
𝑐≈ INT7,C,Z,D

Proof. We reduce to the IND-CPA security of FHE.
Again we are given a PPT distinguisher A for the distributions of the outputs of Z

produced when engaged either in a random execution of Interaction 6 or Interaction
7 and construct from it an adversary B for the IND-CPA game for FHE. We use the

“real-or-zero” formulation of the notion where the adversary is given an oracle O, which
on input a message𝑚 returns either an encryption of𝑚 or an encryption of 0

∥𝑚∥
.

B is given a public key pk by its challenger C. It then runs a simulation ofZ and D
according to Interaction 6. As B may be asked to simulate up to polynomially many

119

5. VRO Instantiations

hash queries by honest callers, we again have to invoke a hybrid-argument and thus let

B choose an index 1 ≤ 𝑖 ≤ 𝑝 (𝜆) where 𝑝 is a polynomial upper bound on the number of

hash queries for honest callers made byZ.

When B is asked to simulate the 𝑗 ’th hash query by an honest caller on input 𝑞, B
creates the ciphertext 𝑐 and the FHE public key pk with which it engages with P1 as

follows:

• If 𝑗 < 𝑖: (pk, sk) ← FHE.Gen(1𝜆), 𝑐 ← FHE.Enc(pk, 0∥𝑞∥)

• If 𝑗 = 𝑖: Use the pk from the IND-CPA challenger and request an encryption 𝑐 of

𝑞 from the encryption oracle

• If 𝑗 > 𝑖: (pk, sk) ← FHE.Gen(1𝜆), 𝑐 ← FHE.Enc(pk, 𝑞)

The proof 𝜋 is produced as in Interaction 6, i.e. only based on signatures by honest

servers and the correct PRF and RF outputs, and hence independently of any ciphertext

contained in the response by P1. In particular, knowledge of sk is not required for any

index 𝑗 and is indeed unknown to B for 𝑗 = 𝑖 .

In any case, the output produced byZ is given as input to the distinguisher A. Finally,

B gives the output bit of A to its challenger.

Let G𝑖 be the game where for the first 𝑖 queries an encryption of 0
∥𝑞∥

is used and the

rest of the queries use an encryption of 𝑞. Clearly G0 is identical to Interaction 6 and

G𝑝 (𝜆 is identical to Interaction 7. Also, depending on the challenge bit 𝑏 in the IND-CPA
game and for index 𝑖 chosen randomly by B, an instance of G𝑖−𝑏 is simulated.

We may now apply the standard hybrid-argument to show that

Advdist

A,INT
6,C,Z,D ,INT7,C,Z,D

(𝜆) ≤ 𝑝 (𝜆) Advroz

B,FHE(𝜆) (5.11)

But by assumption on the security of FHE

Advroz

B,FHE(𝜆) = negl(𝜆) (5.12)

for some negligible function negl(𝜆). Taken together, Equation (5.11) and Equation (5.12)

as well as the fact that the above construction works for any PPT machine A, imply that

for any PPT distinguisher E there exist negligible functions negl′(𝜆) and negl′′(𝜆) such
that

Advdist

E,INT
6,C,Z,D ,INT7,C,Z,D

(𝜆) ≤ 𝑝 (𝜆) negl′(𝜆) = negl′′(𝜆) (5.13)

This proves the lemma.

120

5.4. Adding Privacy Using FHE-Encryption

So far, we have not altered the initialization phase of the servers, i.e. it has remained

totally honest as in the real interaction. However, to be able to use the extractability of

NIWI, we now exchange the honestly generated CRS 𝑐𝑟𝑠 using NIWI.Setup for a CRS 𝑐𝑟𝑠′

with accompanying backdoor 𝜏 as produced by NIWI.ExtSetup.

Interaction 8: C behaves as in Interaction 7, except that during the initialization
phase by the servers, instead of sampling the CRS 𝑐𝑟𝑠 output to all servers using

NIWI.Setup computes (𝑐𝑟𝑠, 𝜏) ← NIWI.ExtSetup(1𝜆) and outputs 𝑐𝑟𝑠 to all servers

while keeping 𝜏 hidden.

Lemma 5.4.12. The distribution of outputs of Z in Interaction 7 is computationally
indistinguishable from the distribution in Interaction 8, formally

INT7,C,Z,D
𝑐≈ INT8,C,Z,D

Proof. This immediately follows from the first requirement of the extractability condition

as stated in Definition 2.5.13.

Having given C access to the extraction backdoor 𝜏 in the last step, we are now able to

make use of it to reduce to the unforgeability of SIG. Intuitively, we wish to show that to

produce a forged proof a signature had to be forged. Showing this is complicated by the

fact that proofs do not contain plain signatures, but NIWI proofs instead. Supposedly it

is difficult for the adversary to produce such a proof without forging a signature for one

of the honest servers, but a reduction has to actually reconstruct this forgery in full. We

show that this can be done using 𝜏 .

Interaction 9: C behaves as in Interaction 8, except that honest parties, upon
receiving input (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk) (i.e. for the correct vk), reject this proof if
either 𝑞 was never before queried or ℎ ≠ RF(𝑞) ⊕

⊕
4

𝑖=2
PRF(𝑘𝑖, 𝑞) by responding with

(Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk, 0). The set Q of queried inputs contains all those 𝑞 such that

either an honest caller received input (Hash, 𝑠𝑖𝑑, 𝑞) from the environment one of the

honest servers received a ciphertext 𝑐 decrypting to 𝑞 under the secret key sk sent to

F R
𝑍𝐾

as input from some corrupted caller and generated a response (i.e. the server was

initialized, the caller performed a valid proof using F R
𝑍𝐾

).

Lemma 5.4.13. The distribution of outputs of Z in Interaction 8 is computationally
indistinguishable from the distribution in Interaction 9, formally

INT8,C,Z,D
𝑐≈ INT9,C,Z,D

Proof. We reduce to the EUF-CMA security of SIG by constructing an adversary B on the

EUF-CMA-security fromZ.

B receives a verification key vk from its challenger and is provided with an oracle Sign
which on input a message 𝑚 responds with a signature 𝜎 for 𝑚. It runs a simulation

121

5. VRO Instantiations

of Z and D. As B is faced with having to generate signatures for three different key-

pairs, it randomly chooses 𝑖 ←$ {2, 3, 4} and sets vk as the verification key for party P𝑖
during initialization. It generates two SIG key-pairs for the remaining servers. Any time a

signature for party P𝑖 on message𝑚 is required, B obtains it from its oracle. Otherwise,

the servers and honest callers are simulated consistently with Interaction 8.
Now, whenever Z submits a valid proof (𝑞, ℎ, 𝜋) for verification to an honest party

(together with the correct verification key vk, other verification queries are answered as

before), B does the following, using its knowledge of the trapdoor 𝜏 :

• (ℎ1, ℎ2, ℎ3, ℎ4, 𝜋1, 𝜋2, 𝜋3, 𝜋4) = parse(𝜋)

• For 𝑗 ∈ {1, 2, 3, 4} do:

– vk 𝑗 = (vk𝑘)𝑘∈[4]\{𝑖}
– 𝑥 = (vk 𝑗 , (𝑞, ℎ 𝑗 , 𝑗))
– (𝜎1, 𝜎2) = NIWI.Extract(𝜏, 𝑥, 𝜋)
– For 𝑚 ∈ {1, 2}, if SIG.Verify(vk𝑖, 𝜎𝑚, (𝑞, ℎ 𝑗 , 𝑗)) = 1 and B never submit-

ted (𝑞, ℎ 𝑗 , 𝑗) to its signing oracle, return ((𝑞, ℎ 𝑗 , 𝑗), 𝜎𝑚) to the EUF-CMA
challenger.

– For 𝑚 ∈ {1, 2} and 𝑛 ∈ {2, 3, 4}, if SIG.Verify(vk𝑛, 𝜎𝑚, (𝑞, ℎ 𝑗 , 𝑗)) = 1 and

B never signed (𝑞, ℎ 𝑗 , 𝑗) using sk𝑆𝑖𝑔,𝑛 , B aborts the simulation and halts

without output.

In short, B extracts a witness from every proof submitted for verification and checks

whether it contains a signature valid under vk = vk𝑆𝑖𝑔,𝑖 and for a message which was

never submitted to the signing oracle. Should such a signature be found it is returned

to the challenger and B wins the EUF-CMA game and halts, thereby also halting the

simulation. Each extracted signature is also checked for validity under the honest servers

verification keys apart from vk𝑆𝑖𝑔,𝑖 and B halts without output in that case. As long as no

such signature is found the simulation continues.

WhenZ produces output and halts, B halts without any output. Conditioned on the

fact that the simulation ends with Z producing output and is not prematurely aborted

by B, the view of the interaction forZ is identical to Interaction 8. We also claim that,

as long as B does not abort the simulation, the change made to the protocol when going

from Interaction 8 to Interaction 9 is not visible toZ and so the view is also consistent

with Interaction 9.
To prove (the contrapositive of) this claim we have to show that when some proof is

rejected according to Interaction 0 when it would have been valid in Interaction 8 (i.e.

when Interaction 8 and Interaction 9 differ), B does abort the simulation, i.e. finds a

forgery under either the verification key it received from its challenger or under one of

the other honest servers keys.

122

5.4. Adding Privacy Using FHE-Encryption

A proof (𝑞, ℎ, 𝜋) is rejected when either (1) ℎ is the wrong hash for 𝑞 with respect to the

{𝑘𝑖}2≤𝑖≤4, and RF(𝑞) or (2) 𝑞 was never queried before we have defined 𝑞 as having been

queried if it was either queried through an honest party or the ciphertext 𝑐 provided by a

corrupted caller to one of the servers decrypts to 𝑞 using the decryption key provided to

F RFHE
𝑍𝐾

.

We begin with (1). If ℎ is the “wrong” hash, then at least one of the ℎ𝑖 contained in 𝜋 is

not equal to either RF(𝑞), if 𝑖 = 1, or PRF(𝑘𝑖, 𝑞), if 𝑖 > 1. In either case, no honest party ever

signed (𝑞, ℎ𝑖, 𝑖) using some sk𝑆𝑖𝑔, 𝑗 for 𝑗 > 1. On the other hand, any valid witness 𝑤 for

the statement 𝑥 = ((vk 𝑗) 𝑗∈[4]\{𝑖}, (𝑞, ℎ𝑖, 𝑖)) corresponding to 𝜋𝑖 , i.e. such that (𝑥,𝑤) ∈ RSIG
(see (5.2)), will have to contain at least one valid signature for (𝑞, ℎ𝑖, 𝑖) under such a signing

key (at most one can come from the corrupted server). Thus, B will extract this signature

and halt the simulation in this case.

The way we define when an input 𝑞 was queried, (2) means that no honest party ever

signed a message with the first part equal to 𝑞 and so for any 𝑖 ∈ {1, 2, 3, 4}, from 𝜋𝑖
a signature valid under an honest parties verification key for message (𝑞, ℎ𝑖, 𝑖) can be

extracted. Again this will lead to B halting the simulation. Together this proves the claim.

By the EUF-CMA-security of SIG it holds that

Adveuf−cma

B,SIG (𝜆) = negl(𝜆) (5.14)

for a negligible function negl(𝜆). AsB also terminates the simulation whenever a signature

for another honest server is forged, but the choice of server for which vk is used is

information-theoretically hidden fromZ, the probability of a simulation being terminated

is at most 3 · negl(𝜆). Together with the above reasoning we see that the view of Z in

Interaction 8 and Interaction 9 only differs with negligible probability which provides

an upper bound for the distinguishing advantage of any potential distinguisher A for the

output distributions ofZ in these two interactions by the difference lemma.

At this point, we could in theory switch back from a simulated CRS to an honestly

generated CRS. The reason for this is that only the reduction from Interaction 8 to

Interaction 9 was required to make use of the extraction trapdoor, but C can execute

either interaction without knowledge of it. This would have allowed us to let S behave

totally honestly with respect to the initialization of the servers. As it saves us a step

and still yields a valid simulator, we do not do this. Instead, we observe the remaining

differences between Interaction 8 and the ideal interaction. These are mostly cosmetic if

we observe that C in Interaction 9 essentially executes Prove as provided by S in the

ideal interaction to generate proofs and lets honest parties verify proofs as done by F𝑉𝑅𝑂 .

Lemma 5.4.14. The distribution of outputs of Z in Interaction 9 is computationally
indistinguishable from the ideal interaction, formally

INT9,C,Z,D
𝑐≈ IDEALF𝑉𝑘𝑒𝑟𝑛−1𝑝𝑡𝑅𝑂 ,Z,S

Proof. We first consider inputs (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′). If vk′ ≠ vk, in both Interaction 9
and the ideal interaction the same honest verification algorithm as in the real interaction

is used to determine the result. Let us thus from now on assume vk′ = vk. In the ideal

123

5. VRO Instantiations

interaction, if 𝜋 was previously output by F𝑉𝑅𝑂 , it will always verify later. The same is

true in Interaction 9 by the perfect completeness of SIG and NIWI. For proofs not output
by F𝑉𝑅𝑂 , in both cases these are rejected if either 𝑞 was never hashed before or ℎ is not the

correct hash for 𝑞. The set Q of previously hashed 𝑞 in the ideal interaction is identical

to how we have defined it in Interaction 9 for the following reason. On the one hand,

hash queries to honest parties in Interaction 9 immediately map onto hash queries made

to F𝑉𝑅𝑂 in the ideal interaction. On the other hand, interactions by honest servers with

corrupted callers on input 𝑐 decrypting to 𝑞 lead to a hash query for 𝑞 made by S on behalf

of the corrupted caller. Hence these sets are equal and proofs for inputs outside of Q or in

Q but the proof is for the wrong hash are rejected in both cases. In the remaining cases,

the honest verification algorithm is used in both interactions.

Switching to hash queries and considering corrupted callers first, we observe that the

only difference consists in howℎ1 is computed. In Interaction 9 it is computed as RF(𝑞) for
a truly random function RF while in the ideal interaction it is computed by first choosing

an independent random ℎ and then setting ℎ1 = ℎ ⊕
⊕

4

𝑖=2
, but these two distributions are

identical. Thus the views of corrupted callers are identical in both games.

The distributions of proofs are also identical in both cases. Having already established

that the ℎ𝑖 are identically distributed, we consider the NIWI proofs 𝜋𝑖 . First, the selection
of servers from which witness signatures are selected is deterministic and identical in

both games, and Prove as well as an honest caller in Interaction 9 both generate fresh

signatures using uniform randomness using the respective signing keys of the honest

servers. Thus also these distributions are identical.

This leaves the view of the corrupted server when interacting with an honest caller.

In both cases, it first receives a Proved message from FRFHE
𝑍𝐾

containing some public FHE
key pk as well as an encryption of zeroes of equal length. These distributions are hence

identical also.

Remark 5.4.15. We have silently ignored the case where F𝑉𝑅𝑂 is unable to produce a proof

𝜋 for input 𝑞 with hash ℎ, because 𝜋 has already been marked as invalid for (𝑞, ℎ). In the

present situation, for this to be the case the environment would have to have predicted 𝜋

and tried to verify (𝑞, ℎ, 𝜋) before making the first hash query for 𝑞. By the extractability

of NIWI, this requires forging a signature and so occurs with negligible probability. We

could have incorporated this into the proof by doing another step where we reduce to the

security of SIG.

Collecting these lemmas, we have shown that all of these finitely many steps result in

computationally indistinguishable output distributions for an arbitrary environmentZ.

By the properties of computational indistinguishability, this means that also the extremal

distributions are indistinguishable. This proves the following theorem.

Theorem 5.4.16. The protocol 𝜋𝐹𝐻𝐸 UC-realizes F𝑉𝑅𝑂 under static corruption of a single
server and static corruption of an arbitrary number of callers in the (F𝑏𝑏𝑜𝑎𝑟𝑑 , F RFHE𝑍𝐾

, F𝑆𝑀𝑇)-
hybrid model.

124

5.4. Adding Privacy Using FHE-Encryption

5.4.6. Reducing to Semantic Security

At first sight, the use of NIWI seems to be unnecessary and expensive. Why is it not

enough to include the raw signatures in proofs? In the following, we explain why the use

of NIWI was required and what problem it solves. We also give an alternative solution

that does allow proofs to consist of signatures themselves. We begin by motivating the

problem. Then we give two possible categories of solutions. In the end, we also describe

how our approach using NIWI can be implemented efficiently.

Problem and Solution To keep things brief, the full rationale with all the technical details

can be found in Appendix A.6. Let 𝜋∗
𝐹𝐻𝐸

be the protocol which is obtained from 𝜋𝐹𝐻𝐸 by

removing NIWI and instead including the witnesses𝑤𝑖 used to compute the 𝜋𝑖 . In 𝜋
∗
𝐹𝐻𝐸

(and 𝜋𝐹𝐻𝐸), the corrupted server is free to return any ciphertext 𝑐∗ which may not have

been evaluated correctly. The caller will then decrypt 𝑐∗. By observing the subsequent

behavior of the caller, the adversary may obtain some (or possibly all) information about

the plaintext to which 𝑐∗ decrypts. Now, if during the security proof of 𝜋∗
𝐹𝐻𝐸

we wish to

reduce to the semantic security of FHE to argue that the adversary does not learn anything

about the input 𝑞, the reduction does not have a decryption oracle. Hence, this step of the

proof must fail.

We have identified two possible solutions:

• Let the servers prove that they executed their evaluation correctly using NIZKPoKs.

• Make the distribution of proofs independent of the behavior of the corrupted server.

This way we can during the security proof remove the dependence of proofs on the

response by the corrupted server and subsequently reduce to the semantic security

of FHE as we no longer have to decrypt.

We analyze both solutions in detail in the appendix.

Efficiency As using NIWI proofs is the option we have finally opted for, it is worth

discussing how this approach can be made efficient as the efficiency of the resulting VRO

instantiation crucially hinges on the efficiency of the NIWI scheme.

One of the most efficient (extractable) NIWI proof systems which are currently known

are Groth-Sahai (GS) proofs [64]. These work well in conjunction with structure preserving
signatures (SPS) [1] or [79]. GS proofs themselves are efficient NIWI protocols for propo-

sitions about so-called pairing-product equations (PPE) in the setting of bilinear groups,

i.e. groups with an efficiently computable, non-degenerate, bilinear form [69]. SPS are

signature schemes specifically tailored to be used with GS proofs. Some of their distin-

guishing properties are that all data structures, i.e. messages, signatures, and verification

keys, are themselves group elements, as well as the fact that verifying a signature involves

checking a system of PPE. This allows to efficiently proof knowledge of (1) a signature

for some message under some verification key, (2) a message for which some signature is

valid under some key, and other such relations.

125

5. VRO Instantiations

5.4.7. Using Singly-Homomorphic Encryption

We may potentially get away without FHE and instead use an encryption scheme that

is only homomorphic with respect to a single operation. There are signature schemes

such as the one described in [14] where signing of encrypted messages only requires one

homomorphic operation. If the same was possible also for the PRF evaluation then this

could substantially increase the efficiency of the scheme. The important fact to note is that

even with singly-homomorphic encryption schemes, a second operation can be applied if
only one operand is only known in encrypted form. If one of the operands is known to the

evaluator, then the operation can be performed.

The authors of [14] use the SPS scheme in [62] together with a variant of El’Gamal

encryption [42] to homomorphically sign encrypted messages. As we have seen above,

these are the same kind of signatures that are amenable to GS NIWI proofs. We are,

however, currently unaware of the existence of any PRF which allows homomorphic

evaluation through the same encryption scheme.

5.4.8. Relying on Preprocessing

Instead of distributing the verification key by letting the servers post their shares of it

to F𝑏𝑏𝑜𝑎𝑟𝑑 , we could instead work in a preprocessing model in which some information

is initially provided to all parties and the delivery of which can not be prevented by the

adversary. In the simplest case, all parties receive the same output, i.e. this is exactly the

common reference string model, but the received output may also depend on the identity

of the receiving party.

In our case, we could let the preprocessing stage generate the four key-pairs for SIG and

the CRS for NIWI. Each server could then be given its signing key and all parties receive

the CRS as well as all four verification keys.

By working in such a model, the resulting protocol 𝜋 ′
𝐹𝐻𝐸

would realize a version of

F𝑉𝑅𝑂 for which either retrieval of the verification key was guaranteed to succeed or there

would not be any verification key altogether. Looking at applications, this would allow

key generation of FDH-VROM to remain non-interactive and similarly for verification of

proofs produced by F𝑇𝑍𝐾 (or rather it would allow us to realize F𝑁𝐼𝑍𝐾 where there exist

no verification keys instead).

5.4.9. Eliminating Secure Channels

As all transmitted protocol messages in 𝜋𝐹𝐻𝐸 are encrypted under the caller’s key, we can

indeed only require authenticated channels. The simulator has to be slightly adapted to

produce (simulated) messages which are correctly distributed. For the communication

between honest callers and honest servers, encryptions of zeroes are used just as in the

message which is sent to the corrupted server and which the adversary was able to see

already when using secure channels. As in the honest protocol, the same message is sent

to all servers.

126

5.4. Adding Privacy Using FHE-Encryption

The indistinguishability proof is adapted accordingly. In the step where we reduce to the

semantic security of FHE, the ciphertext obtained from the single query to the encryption

oracle is now used as a message to all servers.

5.4.10. Analyzing Efficiency

In this section, we gauge the efficiency of the protocol 𝜋𝐹𝐻𝐸 . We go over the different

building blocks in turn and describe the costs for modern ways of instantiating them.

FHE Due to its relative novelty, this primitive is quite expensive. In the original scheme

due to Gentry [53], evaluating each multiplication gate required executing a bootstrapping

step, i.e. a homomorphic evaluation of the scheme’s own decryption circuit, and was

therefore computationally very demanding. Subsequent works such as [54, 13, 41] have

reduced the overhead by, among others, eliminating the need for bootstrapping, moving

to other algebraic settings, or allowing evaluation of the same circuit on multiple data

items. In our setting, the latter would allow each server to evaluate all three PRF instances

at the same time and similarly for the signature generation.

Even after these advances, FHE is still a very active area of research. This includes the

formation of the Homomorphic Encryption Standardization consortium10
which contains

members from industry, government, and academia such as Microsoft, Intel, IBM, and

NIST. To make the homomorphic evaluation more efficient, there is an ongoing effort to

develop hardware accelerators and improvements at the software level for this task as part

of the Data Protection in Virtual Environments11 (DPRIVE) program by DARPA.

NIWI and Signatures Expanding on what we have already stated at the end of Section

5.4.6, we describe some further efficiency optimizations. First, by using randomizable
SPS [28] the necessary GS proofs can be simplified. Randomizable SPS allow publicly

transforming a concrete signature 𝜎 for a message𝑚 under a key vk into a signature 𝜎′

which has the same distribution as fresh signatures for𝑚. In [28] it is described how this

can be used in the context of proving knowledge of a signature. Concretely, it allows

including a message-independent portion 𝑅 of the signature in the clear as part of the

statement to be proved. This in turn may allow reducing the number of PPE which have

to be verified.

Furthermore, we observe that the message𝑚 for which knowledge of two signatures has

to be proven is public at the time of the verification. This allows us to rely only on a subset

of the full privacy-enabling capabilities provided by SPS. In particular, the requirement for

SPS message spaces to be of the formM = G𝑛 for some group G which is the first source

group of the associated pairing

𝑒 : G × G′→ G𝑡
enables the following.

12
It for example allows some party to either prove knowledge of

a message𝑚 such that a public signature 𝜎 is valid for𝑚 under some public verification

key vk, or to prove knowledge of a signature for a message 𝑚 contained in a public

10https://www.homomorphicencryption.org (accessed: 20.09.2022)
11https://www.darpa.mil/program/data-protection-in-virtual-environments (accessed: 20.09.2022)
12
We remark that some schemes also allow message spaces of the formM = G𝑛1 × G′𝑛2

.

127

https://www.homomorphicencryption.org
https://www.darpa.mil/program/data-protection-in-virtual-environments

5. VRO Instantiations

commitment COM(𝑚; 𝑟). The standard techniques of first applying a collision-resistant

hash-function (CRHF) 𝐻 :M → G𝑛 is insufficient in particular in the second case as the

prover would have to both prove knowledge of a signature for the hash 𝐻 (𝑚) contained
in the commitments as well as knowledge of the pre-image under 𝐻 of this value. For a

general domainM of 𝐻 we can not expect to do so efficiently, i.e. using GS proofs.

In our case, however, we do not require to keep the message hidden or within a com-

mitment. As such we can employ an SPS scheme SPS with the simple message space G
and transform it into a signature scheme SPS∗ with message space equal to the domain X
of F𝑉𝑅𝑂 by using the hash-then-sign paradigm. SPS∗ then still allows efficient proofs of

knowledge of a signature 𝜎 for 𝑞 ∈ X by giving a proof of knowledge of a signature for

𝐻 (𝑞) ∈ G.
We may then incorporate 𝐻 into 𝜋𝐹𝐻𝐸 in the following way. While we can not let the

client apply 𝐻 to its input 𝑞 before encrypting it as we have to retain the ability for the

simulator to extract 𝑞 and not merely𝐻 (𝑞) from corrupted callers, we can allow the servers

to do this. Before evaluating PRF and SIG, servers would first compute

𝑐∗ ← FHE.Eval(pk, 𝐻 (·), 𝑐)

where pk is the current FHE public key and 𝑐 is the encryption of 𝑞 under pk. All further
evaluations are then applied to 𝑐∗ instead of 𝑐 . A proof 𝜋 = (ℎ𝑖, 𝜋𝑖)𝑖∈[4] for a pair (𝑞, ℎ)
now contains NIWI proofs for the relation

R =

(𝑥,𝑤)
�������
𝑥 = ((vk𝑆𝑖𝑔, 𝑗) 𝑗∈[4]\{𝑖}, 𝑔),𝑤 = (𝜎1, 𝜎2),
∃𝑖1, 𝑖2 ∈ [4] \ {𝑖}, 𝑖1 ≠ 𝑖2 ∀𝑘 ∈ {1, 2} :

SPS.Verify(vk𝑆𝑖𝑔,𝑖𝑘 , 𝑔, 𝜎𝑘) = 1


where the verifier first computes the 𝑔 for which the 𝜋𝑖 must be valid proofs as 𝐻 (𝑞).

The security of this scheme can be reduced to the collision-resistance of𝐻 . The structure

of the proof has to be changed as follows. As a first step, one moves to an interaction

where the adversary loses if it is able to produce a collision for 𝐻 . All subsequent steps

are essentially identical to those in Section 5.4.5.2.

Remark 5.4.17. We have ignored the fact that in 𝜋𝐹𝐻𝐸 not 𝑞 itself is signed, but (𝑞, ℎ, 𝑖)
for ℎ ∈ H and 𝑖 ∈ [4]. This can be solved by letting SPS have the message space G3

and hashing ℎ into a second group element and using the third group element as a tag

by having it contain one of four elements 𝑔𝑖, 𝑖 ∈ [4] which are fixed at the start of the

protocol.

5.4.11. Analyzing Scalability

As 𝜋𝐹𝐻𝐸 has the same underlying structure as the PRF construction from [35], the number

of servers can be increased in the same way as described therein. Concretely, to allow 𝑡

corrupted servers at least 2𝑡 + 1 total servers are required. Instead of being given as

ℎ =

4⊕
𝑖=0

PRF(𝑘𝑖, 𝑞)

128

5.5. Relaxing the VRO

for four PRF keys 𝑘𝑖 , hashes are computed as

ℎ =

𝑚⊕
𝑖=0

PRF(𝑘𝑖, 𝑞)

for some number𝑚 of PRF keys. To prevent the adversary from being able to predict hash

values and to allow the simulator to replace some PRF(𝑘 𝑗 , ·) with a random function, at

least one of the 𝑘𝑖 has to be unknown to the adversary. As the adversary may control

any 𝑡-element subset of servers, there must always exist a key that is not known to any

server in such a set. Unfortunately and as shown in [35], this requires choosing𝑚 to be

exponential in 𝑡 .

5.5. Relaxing the VRO

In this section, we look at relaxed formulations of F𝑉𝑅𝑂 where the adversary is allowed

to see the input 𝑞 and/or the output ℎ for each hash query. We then investigate whether

the original PRF construction UC-realizes this relaxed functionality. In particular, this

would show that hiding the input is at the heart of what makes it difficult to realize the

full version of F𝑉𝑅𝑂 .
To this end, we define three functionalities F 𝑞,ℎ

𝑉𝑅𝑂
, F 𝑞

𝑉𝑅𝑂
, and F ℎ

𝑉𝑅𝑂
where the superscript

𝑞 means the input of each hash query is leaked to the adversary and correspondingly for ℎ

and the sampled hash. In more detail, superscript 𝑞 means the Hashing messages sent to

the adversary are augmented by 𝑞 and similarly for ℎ. Of course, if we include 𝑞, ∥𝑞∥ can
be excluded.

First, we observe that as soon as the input 𝑞 is leaked to the adversary, the adversary

can just execute a hash query for 𝑞 to obtain the hash ℎ. The same is possible for the

simulator. As such, F 𝑞
𝑉𝑅𝑂

and F 𝑞,ℎ
𝑉𝑅𝑂

are largely equivalent functionalities. Furthermore,

we note that F 𝑞,ℎ
𝑉𝑅𝑂

is equivalent to a functionality F where the adversary is not asked to

initially provide an algorithm Prove but is instead allowed to fully determine all proofs.

The reason for this is that in this case the adversary receives all inputs to Prove. It can
then let Prove always output its third input 𝑠 which is fully controlled by the adversary

and can thus contain the selected proof.

5.5.1. Revisiting the PRF Construction

We claim that the PRF construction (as defined in Section 5.3.2) UC-realizes both F 𝑞,ℎ
𝑉𝑅𝑂

and

F 𝑞
𝑉𝑅𝑂

. To this end, we give a simulator S for the dummy adversary D. Clearly, it suffices

to show that F 𝑞
𝑉𝑅𝑂

is realized. We note that we do not make use of the “equivalence” of

F 𝑞
𝑉𝑅𝑂

and F 𝑞,ℎ
𝑉𝑅𝑂

as it is unclear to us whether this equivalence formally holds in the UC

framework with respect to the capabilities given to the environment to gather knowledge

about currently corrupted parties.
13

13
The problem we see is the following. For the equivalence to hold, the simulator has to query F𝑉𝑅𝑂 in the

name of some corrupted party. Depending on the exact information available to the environment, it may

not be able to do so without being detected in certain circumstances.

129

5. VRO Instantiations

The Simulator S behaves as follows:

• The only difference between the initialization procedures in 𝜋𝑃𝑅𝐹 and 𝜋𝐹𝐻𝐸 is that in

𝜋𝐹𝐻𝐸 , a CRS for NIWI is computed among the servers. As such, S handles initializa-

tion as before. For SIGKeyGen, S samples four key-pairs (vk𝑖, sk𝑖) ← SIG.Gen(1𝜆)
and allows the adversary to deliver the outputs to the S𝑖 . It behaves analogously
during PRFKeyGen. F𝑏𝑏𝑜𝑎𝑟𝑑 is provided honestly.

• As S can pre-compute all the values in its very first activation, S is able to answer

the Init message it at some point receives from F 𝑞
𝑉𝑅𝑂

as follows. First, S sets

vk = (vk𝑖)𝑖∈[4] . It further sets Prove to the algorithm shown in Figure 5.10. Prove, on
input (𝑞, ℎ, 𝑠), Prove parses 𝑠 into three signatures (𝜎1,2, 𝜎1,3, 𝜎1,3). It then completes

𝑠 into a proof 𝜋 for (𝑞, ℎ) by computing signatures under the signing keys of the

honest servers as in the honest protocol, except that PRF(𝑘1, 𝑞) is exchanged for the

value ℎ ⊕
⊕

4

𝑖=2
ℎ𝑖 .

• Whenever F 𝑞
𝑉𝑅𝑂

asks S to deliver a response to a Init query to party P, S lets the

simulated P execute the honest protocol and allows the delivery once the simulated

P generates output.

• Upon receiving a message (Hashing, 𝑠𝑖𝑑,P, 𝑞), S executes the following steps. First,

it lets the simulated copy of P execute the honest protocol on input (Hash, 𝑠𝑖𝑑, 𝑞).
This includes letting the honest servers execute the honest protocol as well (note

that they will use 𝑘1 to compute ℎ1 instead of computing it as Prove does, but this
is unobservable by the adversary). Once P obtains a response (ℎ2, ℎ3, ℎ4, 𝜎2, 𝜎3, 𝜎4)
from S1, S sets 𝑠 = (𝜎2, 𝜎3, 𝜎4) and sends the message (SimInfo, 𝑠𝑖𝑑,P, 𝑠) to F 𝑞

𝑉𝑅𝑂
.

Only once the simulated P generates output, S allows the delivery of the proof.

• WheneverD initiates a hash query on behalf of a corrupted caller C𝑘 by sending one
of the honest servers P𝑗 a message of the form (Hash, 𝑠𝑖𝑑, 𝑞), S sends the message

(Hash, 𝑠𝑖𝑑, 𝑞) to F 𝑞
𝑉𝑅𝑂

on behalf of C𝑘 and answers the Hashing message with 𝑠 = ⊥.
After receiving the response (HashProof, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋),S extracts from 𝜋 the signatures

belonging to S𝑗 as well as the ℎ𝑙 for 𝑙 ∈ [4] \ {𝑖} and sends them to C𝑘 .

• Upon receiving a message (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′) from F 𝑔
𝑉𝑅𝑂

, S executed the honest

verification protocol on the same input, obtaining a bit 𝑏. It immediately responds

with the message (Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′, 𝑏).

Indistinguishability To show indistinguishability, we proceed by defining several hybrids

as follows:

• G0: The real interaction betweenZ, D and a session of 𝜋𝑃𝑅𝐹 .

• G1: Like G0, but whenever an honest server is supposed to evaluate the function

PRF(𝑘1, ·), a truly random function RF is used instead.

130

5.5. Relaxing the VRO

Prove(𝑞, ℎ, 𝑠)
1 : (𝜎1,2, 𝜎1,3, 𝜎1,4) = parse(𝑠)
2 : for 𝑖 ∈ {2, 3, 4} do
3 : ℎ𝑖 = PRF(𝑘𝑖 , 𝑞)
4 : endfor

5 : ℎ1 = ℎ ⊕
⊕

4

𝑖=2
ℎ𝑖

6 : for 2 ≤ 𝑖 ≤ 4, 1 ≤ 𝑗 ≤ 4, 𝑖 ≠ 𝑗 do
7 : 𝜎𝑖, 𝑗 ← SIG.Sign(sk𝑖 , (𝑞, ℎ𝑖 , 𝑖))
8 : endfor
9 : 𝜋 = (ℎ1, ℎ2, ℎ3, ℎ4, {𝜎𝑖, 𝑗 | 1 ≤ 𝑖, 𝑗 ≤ 4, 𝑖 ≠ 𝑗})
10 : return 𝜋

Figure 5.10.: The Prove algorithm sent by the simulator.

• G2: Like G1, but whenever an honest verifier receives a valid proof (𝑞, ℎ, 𝜋, vk)
such that either no honest server ever received a message (Hash, 𝑠𝑖𝑑, 𝑞) or ℎ ≠

RF(𝑞) ⊕
⊕

4

𝑖=2
PRF(𝑘𝑖, 𝑞), it rejects it by returning (Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk, 0).

• G3: The ideal interaction betweenZ, S and F 𝑞
𝑉𝑅𝑂

.

Remark 5.5.1. As the proof is relatively short compared to the proof for 𝜋𝐹𝐻𝐸 we have

chosen to deviate from presenting the different games incrementally and motivating them

as they are essentially simpler versions of steps in the proof for 𝜋𝐹𝐻𝐸 .

We step through the different games and prove that the outputs of any environmentZ
remain computationally indistinguishable in each step.

Step 1: G0 → G1

We reduce to the security of PRF by constructing an adversary B on the PRF security of

PRF from any distinguisher A for the output distributions of Z produced in games G0

and G1.

This step is identical to the one from G3 to G4 in Section 5.4.5.2 and so we omit it here

for brevity.

Step 2: G1 → G2

We reduce to the EUF-CMA-security of SIG by showing that a proof leading to rejection

in G2 when it would have been accepted in G1 necessarily contains a forgery for SIG.
The reduction consists in constructing an adversary B playing the EUF-CMA-game for

SIG from any distinguisher A for the output distributions ofZ in G1 and G2 respectively.

B receives a SIG verification key vk. It runs a simulation of Z and D and provides

simulations of all honest parties according to G1. As there are three honest parties for

131

5. VRO Instantiations

which signatures have to be produced, B samples an index 𝑖 ←$ {2, 3, 4} and uses vk as
the verification key for party P𝑖 . B generates SIG key-pairs for the other two parties (and

the corrupted server) as usual. Whenever P𝑖 is supposed to sign a message𝑚, B makes

a Sign query for𝑚 to its oracle. Verification queries to honest parties are handled as in

G1, except for the fact that valid proofs are searched for valid signatures (𝑚,𝜎) under
an honest party P𝑗 ’s key, but where this party never signed𝑚. In that case B halts the

simulation and, if 𝑖 = 𝑗 , outputs (𝑚,𝜎) to its challenger.

Conditioned on the fact that the simulation is not prematurely aborted, the view ofZ
in the above simulation is consistent with G1. Below we will argue that it is also identical

to G2 and that abortion occurs only with negligible probability.

We start by arguing the former and have to show that a rejection as introduced by G2

leads to B aborting the simulation as this is the only case where G1 and G2 differ.
14
Let

thus (𝑞, ℎ, 𝜋) with 𝜋 = (ℎ1, ℎ2, ℎ3, ℎ4, . . .) be a query which is rejected and we proceed by

analyzing both cases.

If 𝑞 was never the input contained in any query to an honest server, then no honest

server ever signed a triple with the first component equal to 𝑞. Together with the fact that

a valid proof has to contain valid signatures by at least two different parties, this means

that a forgery has to be contained in the proof.

In the other case, i.e. when ℎ ≠ RF(𝑞) ⊕
⊕

4

𝑗=2
PRF(𝑘 𝑗 , 𝑞), then either ℎ1 ≠ RF(𝑞) or

ℎ 𝑗 ≠ PRF(𝑘 𝑗 , 𝑞) for 2 ≤ 𝑗 ≤ 4. Let 𝑘 be one of the differing indices. Then no honest party

ever signed (𝑞, ℎ𝑘 , 𝑘), but an accepting proof must contain at least one signature by an

honest party for this message and so again a forgery has to be contained.

This shows that as long as the simulation is running, the view of Z is identical to a

view in both G1 and G2. It remains to be shown that the simulation is aborted only with

negligible probability. By the EUF-CMA-security of SIG it holds that

Adveuf−cma

B,SIG (𝜆) = negl(𝜆) (5.15)

for a negligible function negl(𝜆). As B terminates the simulation whenever a rejection

occurs for any of the three honest parties, but only a forgery for P𝑖 leads to B winning,

and the fact that 𝑖 is information-theoretically hidden fromZ, imply that the probability

of a simulation being terminated is at most 3 · negl(𝜆). Together with the above reasoning,

we see that the view ofZ in games G1 and G2 only differs with negligible probability. This

provides an upper bound for the distinguishing advantage of any potential distinguisher

A for the output distributions ofZ in these two games by the difference lemma.

Step 3: G2 → G3

We observe the remaining differences between G2 and G3. First, we note that the distribu-

tion of hashes is uniform in both cases. Furthermore, in both games ℎ2 to ℎ4 are computed

by applying PRF to the input for uniformly chosen keys and ℎ1 is chosen uniformly at

random. This shows that proofs output by F 𝑞
𝑉𝑅𝑂

and those output by honest parties in G2

are identically distributed. Then, verification of proofs for wrong verification keys vk′ ≠ vk
has not been changed with respect to G0 and also the simulator in G3 uses the honest

verification procedure in this case. For the correct verification key vk, honest parties in G2

14
That is to say we argue by contraposition.

132

5.6. Strengthening the VRO

use the honest verification algorithm, but in addition reject a proof (𝑞, ℎ, 𝜋) if either no
honest server ever received a message (Hash, 𝑞) or ℎ ≠ RF(𝑞) ⊕

⊕
4

𝑖=2
PRF(𝑘𝑖, 𝑞). We show

that the latter corresponds to the unforgeability clause in the verification code of F 𝑞
𝑉𝑅𝑂

.

We first show that the set Q containing inputs 𝑞 for which there has been a previous

hash query is determined in both games. In G3, the set of Q of past queries to F 𝑞
𝑉𝑅𝑂

contains two types of elements. On the one hand, elements that were added because an

honest party P executed a hash query. On the other hand, queries by S on behalf of some

corrupted party C which, by the description of S, occur because the simulation of C sent

a message (Hash, 𝑠𝑖𝑑, 𝑞) to the simulation of one of the honest servers. But this is identical

to how Q is determined in G2 as honest parties will always contact the honest servers.

As such, in both games verification queries for inputs not in Q are rejected in the same

manner. For elements in 𝑞 ∈ Q and with ℎ the correct hash for 𝑞, proofs 𝜋 previously

output by F 𝑞
𝑉𝑅𝑂

are always accepted. The same is true for G2 and proofs output by honest

parties by the completeness of SIG. For proofs that were not previously output by F𝑉𝑅𝑂 ,
S is asked to decide whether to accept or reject. For that, it uses the honest verification

algorithm. The same is true in G2, for inputs in 𝑞 the honest verification algorithm is

always used. This leaves the case where ℎ is not the correct hash for 𝑞, but all proofs for

such inputs are rejected in both games.

One small thing we are left to consider is the case where F 𝑞
𝑉𝑅𝑂

aborts during a hash

query for 𝑞 with hash ℎ, because the proof 𝜋 output by Prove is already marked as invalid.

Such an event can only occur, if S at some point answered a Verify message by F 𝑞
𝑉𝑅𝑂

for

(𝑞, ℎ, 𝜋, vk) with rejecting 𝜋 . As S uses the honest verification algorithm to answer such

messages, this would contradict the completeness of Prove.

This shows the following theorem.

Theorem 5.5.2. The protocol 𝜋𝑃𝑅𝐹 UC-realizes F 𝑞𝑉𝑅𝑂 and thus also F 𝑞,ℎ
𝑉𝑅𝑂

in the F𝑆𝑀𝑇 -hybrid
model.

Due to space concerns we have moved the remaining portion of this section into the

Appendix A.4. There we go into more depth about how the additional information afforded

to the simulator in the different relaxations for F𝑉𝑅𝑂 allows for more efficient protocols.

5.6. Strengthening the VRO

We also investigate some stronger variants of F𝑉𝑅𝑂 . We evaluate the instantiations we

have seen so far with respect to these variants as well as in some cases propose changes

with which they could be made to achieve them if they do not yet do so.

5.6.1. Stronger Proofs

The first additional property we are interested in is with regards to proof strength or

malleability of proofs. In F𝑉𝑅𝑂 and all of the above variants we only forbid the adversary to

forge valid proofs for new 𝑞 or for a wrong hash ℎ for a given 𝑞. This means an adversary

may alter a proof 𝜋 for (𝑞, ℎ) into a proof 𝜋 ′ ≠ 𝜋 which is also valid for (𝑞, ℎ). Some

133

5. VRO Instantiations

applications, however, require stronger non-malleability properties. We have for example

seen this in Section 4.2.6 where the inclusion of F𝑉𝑅𝑂 proofs in protocol messages destroy

the required non-malleability.

Two potential strengthenings are

• Unique Proofs: For every (𝑞, ℎ) ∈ X ×H there exists at most one valid proof 𝜋 .

• Strong Proofs: For a computationally bounded adversary A it is infeasible

to produce a valid proof 𝜋 for (𝑞, ℎ) ∈ D × H that was not produced by the

functionality.

The second notion on its own seems to be less useful as any party can just request fresh

proofs at any time. Of course, this requires the party holding a proof 𝜋 to also hold the

corresponding input 𝑞 and there may be applications where a proof is not necessarily

always accompanied by the input to which it belongs. For example, a pair (ℎ, 𝜋) could be

employed in conjunction with a proof of knowledge of some 𝑞 such that 𝜋 is correct with

respect to (𝑞, ℎ). For this to be useful it may be necessary to require that proofs are hiding

the input (and/or hash) for which they were generated as that is not guaranteed by F𝑉𝑅𝑂 .
Prove receives both 𝑞 and ℎ as input and is not prevented from leaking them in its output,

see Section 5.6.2.

These complications could be circumvented wholly by requiring that F𝑉𝑅𝑂 always output

the same proof for some input 𝑞. If this was guaranteed, then the only difference between

strong and unique proofs is the class of adversaries, efficient or unbounded, against which

security holds. In a setting with a single party, always outputting the same proof seems

feasible. As soon as multiple servers are involved, however, it seems much more difficult

to guarantee. A corrupted server can not be made to restrain itself voluntarily and so the

inability to create multiple different proofs for the same input has to be inherent to the

information known to the adversary.

Evaluating Instantiations In the trusted party case, both of these notions are (easily)

attainable by using the protocol in Section 5.2 with signature schemes which are either

unique [72], or strong. For both variants of the ROM instantiation presented in Section 5.1,

unique proofs are produced. In the protocol for large codomains, this holds as proofs are

empty and non-empty proofs are rejected. In the protocol for polynomial codomains, a

proof 𝜋 for (𝑞, ℎ) is the unique suffix of the output of F𝑅𝑂 on input 𝑞 after removing ℎ.

While the PRF construction from Section 5.3.2 does not UC-realize F𝑉𝑅𝑂 itself, we can

nonetheless analyze the strength of its proofs. Due to the fact that the set of signatures

which has to be contained in a valid proof is not fixed, the inclusion or exclusion of

signatures by the adversary trivially allows it to modify a proof in such a way that it

remains valid. At first sight, the changes to the proof structure we have made within our

FHE construction in Section 5.4 are more amenable towards stronger proofs. A proof 𝜋

always included four NIWI proofs 𝜋1 up to 𝜋4, independent of the behavior of the corrupted

server. Nonetheless, by using a corrupted caller, the adversary can gain access to valid

134

5.7. Hybrid Instantiations

signatures by the honest servers and can thus compute fresh valid proofs. We note that

neither requiring stronger signatures nor some notion of non-malleability for the NIWIs

is of any help.

5.6.2. Hiding Proofs

As hinted at above, our formulation of F𝑉𝑅𝑂 does not prevent proofs 𝜋 from leaking

both the input 𝑞 and hash ℎ. Again this may be undesirable in some applications. Using

techniques from [19], we can formalize independence of 𝜋 from 𝑞 and ℎ as follows. Instead

of providing the real 𝑞 and ℎ as input to Prove, we would give random aliases 𝑟𝑞 and 𝑟ℎ
instead. These aliases are only known to F𝑉𝑅𝑂 and their association with inputs and hash

values is fixed within a single session. The verification procedure remains unchanged.

Evaluating Instantiations As in the previous section, both instantiations based on F𝑅𝑂
possess this property. In the protocol for large codomains, empty proofs clearly do not

contain any information about either 𝑞 or ℎ. For small codomains, the proof consists of a

uniformly random value that is independent of the hash ℎ and also of 𝑞 by the properties

of F𝑅𝑂 . Again, no information is thus leaked by the proof. Continuing to the trusted party

instantiations, proofs by the sVRF-based protocol are generated by running the SimProve
algorithm which receives both 𝑞 and ℎ as input. As such there can not be a generic

argument for any provided hiding properties. Specific schemes may, however, provide it.

In the signature-based protocol, requiring the signature scheme to be confidential [33] or
indistinguishable [46] in the sense that an adversary receiving a signature 𝜎 without the

corresponding message𝑚 is unable to compute𝑚,
15
hides both 𝑞 and ℎ. The protocol in

Section 5.4 does not hide ℎ as each proof contains shares ℎ𝑖 summing to ℎ, but using a

signature scheme that is again confidential would hide 𝑞.

5.7. Hybrid Instantiations

In this section, we want to investigate a type of instantiation which possess a special kind

of corruption resistance and which make use of a hash-function H. On the surface, we

still consider protocols realizing F𝑉𝑅𝑂 . Their security, however, involves two cases. In the

first, H is assumed to be a function having some standard model properties, e.g. collision

resistance, and the protocol has to realize F𝑉𝑅𝑂 given that the number of corrupted servers

is below some threshold 𝑡 . In the other case, H is modeled as a random oracle and we

allow all servers to be corrupted. We wish to retain most of the properties of F𝑉𝑅𝑂 , but
allow the adversary to obtain the full input.

Using a hybrid instantiation in the real world where necessarily H is not a random

oracle can be seen as a kind of insurance. The protocol is fully secure and UC-realizes

F𝑉𝑅𝑂 as long as the associated corruption threshold is not reached, and remains at least

heuristically secure even if more than the threshold up to all parties are corrupted with

the slight degradation in security of leaking all inputs.

15
We remark that this is only intended to provide some intuition. The actual definitions are more subtle. In

particular, messages are required to have high entropy. Otherwise, a full search over the message space

using the verification algorithm reveals the message.

135

5. VRO Instantiations

In the full corruption case, it is clear that something like a random oracle that is outside

of the control of the adversary is necessary. Otherwise, the combined private state of the

servers necessarily allows at least the prediction of hashes when given to the environment

while the random oracle has to be explicitly queried by the adversary and this can be

programmed by the simulator and thus be made consistent with F𝑉𝑅𝑂 .
Remark 5.7.1. Hiding also the input all but necessitates the use of (fully-homomorphic)

encryption as secret sharing can not help when all receivers of shares are corrupted.

Additionally, we have to require proof of correct evaluation from the server as in the case

of full corruption the technique using witness-indistinguishable proofs or other ways of

making proofs independent of answers by corrupted parties are not applicable. As hybrid

instantiations are intended as a last resort, i.e. when the corruption is larger than intended,

we think that slightly reducing the afforded security is appropriate.

The Idea Consider the instantiation using a sVRF described in Section 5.2. If the reference

string generation can be guaranteed to be independent and honest, then, in the face of the

server being corrupted, this instantiation remains secure in the sense that no proofs can

be forged and hashes remain pseudo-random, but it would be predictable using the secret

key. It also leaks inputs and hashes. The idea is to thwart predictability by computing

hashes as

ℎ = H(𝑞) ⊕ sVRF.Eval(𝜎, ek, 𝑞)
instead of

ℎ = sVRF.Eval(𝜎, ek, 𝑞).
This works if the simulator can gain access to ek, i.e. we would have to let the party prove

knowledge of ek corresponding to the public vk to some authority or have it be provided

by some honest party at the start of the protocol.

The Protocol We define a protocol 𝜋𝐻𝑦𝑏 . First, recall that sVRF consists of the algorithms

(Gen, Eval, Prove,Verify, Setup,) and (SimGen, SimSetup, SimProve). Let T be the trusted

party. It executes the same protocol as in 𝜋sVRF except that both the CRS 𝜎 and key-pair

(vk, ek) ← sVRF.Gen(1𝜆) are provided to it by some authority. The algorithms executed

by the clients are altered as shown in Figure 5.11 and where H is either a local function

evaluation or a call to a random oracle. The correct verification key vk can be retrieved

from the authority which initially provided it to T .
The changes made to clients with respect to 𝜋sVRF are:

1. Clients check whether the proof 𝜋 which they obtain from T is valid. This is

necessary to prevent clients from outputting non-verifying proofs in the case where

T is corrupted.

2. Clients add H(𝑞) to the partial hash ℎ1 they obtain from T to compute the final hash

ℎ.

Let us now take a closer look at the simulators S1 for (1), the case where H is a standard

function and T is a trusted honest party, and S2 for (2) where it is replaced by a random

oracle and T is corrupted.

136

5.7. Hybrid Instantiations

On input (Hash, 𝑠𝑖𝑑, 𝑞)
1 : // Assume the sVRF verification key vk is known

2 : // as well as the CRS 𝜎

3 : (ℎ1, 𝜋
′) ← T (Hash, 𝑠𝑖𝑑, 𝑞)

4 : if sVRF.Verify(𝜎, vk, 𝑞, ℎ1, 𝜋) = 0 do
5 : abort
6 : fi
7 : ℎ2 = H(𝑞)
8 : ℎ = ℎ1 ⊕ ℎ2

9 : 𝜋 = (𝜋 ′, ℎ1)
10 : return (HashProof, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋)

On input (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk)
1 : (𝜋 ′, ℎ1) ← parse(𝜋)
2 : if sVRF.Verify(𝜎, vk, 𝑞, ℎ1, 𝜋

′) = 0 do
3 : return (Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, 0)
4 : fi
5 : if H(𝑞) ≠ ℎ ⊕ ℎ1 do
6 : return (Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, 0)
7 : fi
8 : return (Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, 1)

Figure 5.11.: The client algorithms for 𝜋𝐻𝑦𝑏 .

The First Simulator S1 behaves as follows:

• S simulates a reference string 𝜎 with backdoor 𝜏 by running SimSetup(1𝜆). It

also generates a simulated key-pair (vk, ek) by running SimGen(1𝜆, 𝜎, 𝜏). Upon

receiving a message (Init, 𝑠𝑖𝑑) from F𝑉𝑅𝑂 , S1 sets Prove to the following algorithm.

On input (𝑞, ℎ, 𝑠), Prove computes ℎ′ = 𝐻 (𝑞) and then simulates a proof 𝜋 ←
sVRF.SimProve(𝜎, 𝜏, ek, 𝑞, ℎ ⊕ ℎ′). The last input 𝑠 is ignored by Prove. S1 sends the

message (Init, 𝑠𝑖𝑑, Prove, vk) back to F𝑉𝑅𝑂 .

• Upon being asked to deliver the verification key to an honest party P, S1 lets the

simulated P try and retrieve the key and allows F𝑉𝑅𝑂 to deliver its response upon

this succeeding.

• Upon receiving (Hashing, 𝑠𝑖𝑑,P, 𝑙) from F𝑉𝑅𝑂 , S1 simulates an honest hash query

by P and allows F𝑉𝑅𝑂 to deliver the proof once P outputs a proof. The SimInfo

message is sent with 𝑠 = ⊥ immediately.

• Whenever T receives a message (Hash, 𝑠𝑖𝑑, 𝑞) from some corrupted party C, S1

makes a hash query for 𝑞 to F𝑉𝑅𝑂 on behalf of C and receives output (ℎ, 𝜋). It

computes ℎ′ = 𝑞 ⊕ ℎ and sends ℎ′ and 𝜋 to C.

• Upon receiving (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′) from F𝑉𝑅𝑂 , S1 computes the response bit as

𝑏 using the honest verification algorithm.

Indistinguishability Indistinguishability immediately follows from the security of 𝜋sVRF
and the collision resistance of H. The strategy of S1 is essentially the same as for the

𝜋sVRF-simulator. The only changes are the addition of a number of evaluations of H at

appropriate places. This shows that the simulation itself is still valid, we only have to

argue that the introduction of H did not make forging proofs noticeably easier.

137

5. VRO Instantiations

This follows by a standard reduction. In detail, we first switch from the real interaction

to an interaction where honest verifiers reject all (otherwise valid) queries for some

(𝑞, ℎ, 𝜋, vk) such that 𝑞 has the same hash under H as some previous hash query made to

T . A distinguishing environmentZ for the real and intermediate interaction immediately

yields a successful adversary on the collision-resistance of H in an obvious manner.

All that is left to argue is that distinguishing the intermediate from the ideal interaction

reduces to the security of 𝜋sVRF. But this follows from the fact that we can efficiently

switch between the two protocols by adding H(𝑞) at appropriate places. This allows us to
build a distinguishing environmentZ∗ for 𝜋𝐹𝐻𝐸 from a distinguishing environmentZ′
between the intermediate and real interaction in the present protocol. This crucially relies

on having excluded the case whereZ′ wins by finding aH collision.

Remark 5.7.2. In the above, we have silently ignored that H has to remain secure in the

face of non-uniform adversaries. Such hash functions are necessarily keyed. This can

easily be remedied by making the key for H part of the verification key.

The Second Simulator We now switch to the case where H is given as a random oracle.

As we no longer try to hide the inputs from the adversary, we show that S2 is a simulator

for 𝜋𝐻𝑦𝑏 and F 𝑞𝑉𝑅𝑂 instead of for F𝑉𝑅𝑂 . S2 behaves as follows:
16

• S2 generates the CRS 𝜎 honestly using sVRF.Setup and also generates an honest

key-pair (vk, ek) using sVRF.Gen. All data is given to T when requested.

• Upon receiving amessage (Init, 𝑠𝑖𝑑) fromF𝑉𝑅𝑂 ,S2 respondswith (Init, 𝑠𝑖𝑑, Prove, vk)
where vk is the sVRF verification key and Prove simply outputs its third input 𝑠 .17

• Upon receiving (Hashing, 𝑠𝑖𝑑,P, 𝑞) from F 𝑞
𝑉𝑅𝑂

, S2 simulates an honest hash query by

P for 𝑞. Let (𝜋.ℎ∗) be the value received from T . If sVRF.Verify(𝜎, vk, 𝑞, ℎ∗, 𝜋) = 0,

do not consider this request further. Else, send the message (SimInfo, 𝑠𝑖𝑑,P, (𝜋,ℎ∗))
back to F 𝑞

𝑉𝑅𝑂
.

• Upon receiving (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk′) from F 𝑞
𝑉𝑅𝑂

, S2 executes the honest verifica-

tion algorithm to obtain a bit 𝑏 and returns (Verified, 𝑠𝑖𝑑, 𝑏) to F 𝑞
𝑉𝑅𝑂

.

• This may entail queries to H. All such queries as well as any other random oracle

queries for some 𝑞 are answered as follows. If this is not the first query for 𝑞, answer

consistently. Else, S2 makes a hash query for 𝑞 to F 𝑞
𝑉𝑅𝑂

to obtain hash ℎ (the proof

is ignored). It then computes ℎ′ as the first component of sVRF.Eval(𝜎, ek, 𝑞), sets
ℎ∗ = ℎ ⊕ ℎ′ and returns ℎ∗.

Indistinguishability The analysis of this protocol is essentially a combination of the

analysis of the pure random oracle instantiation 𝜋𝑅𝑂 as well as 𝜋sVRF. The simulation of H
is perfect by adding a constant to the hash ℎ obtained from F 𝑞

𝑉𝑅𝑂
. Proofs output by honest

parties are also identically distributed by S2 executing the honest querying algorithm

16
We only consider the case where T is corrupted, in the other case S2 simply lets T behave honestly and

programs H using queries to F𝑉𝑅𝑂 in an obvious way.

17
As noted at the start of Section 5.5, this strategy is always possible when realizing F 𝑞

𝑉𝑅𝑂
.

138

5.8. Multiple Sessions

inside the simulation and forwarding the obtained proof. Unforgeabilty follows by the

same arguments as for 𝜋sVRF because for some input (𝑞, ℎ, (ℎ′, 𝜋)) and by the programming

of H
H(𝑞) = ℎ ⊕ ℎ′ ⇐⇒ 𝜋1(sVRF.Eval(𝜎, ek, 𝑞)) = ℎ′

where 𝜋1 is the projection to the first component. This forces 𝜋 to be a valid proof for the

correct evaluation of sVRF at input 𝑞 yielding unforgeability.

A General Transformation Let us call verification algorithms where for each 𝑞 there is

at most one ℎ such that there exists a valid proof 𝜋 as having unique verification.18 The
same procedure of adding the random oracle output seems to also work for any protocol

which has unique verification. The addition of H(𝑞) reestablishes programmability—given

that the simulator can extract all the private keying material from the corrupted parties to

program correctly. As a slight relaxation, requiring that for well-formed verification keys

it is computationally infeasible to produce valid proofs for wrong hashes, even knowing

the secret key, seems to suffice as well.

For the PRF construction, nothing prevents fully corrupted servers from signing arbitrary

values and thus creating valid proofs for any hash value, i.e. it does not have unique

verification, so this transformation is not directly applicable. Replacing PRF and signature

scheme with an sVRF makes it applicable, again at the cost of requiring honest reference

string generation.

Other Constructions Apart from adding H(𝑞) to compute the final hash, we wonder how

else a random oracle could be useful. First, it is clear that oracle queries have to be part

of the verification process, else the adversary could just “lie” about oracle values during

proof generation, effectively nullifying any security gains. They also have to be involved

in the derivation of hashes.

One way for H to influence hash values we have already seen. Another way would be

to let ℎ itself be the output under H of some input 𝑥 which is a function of 𝑞. To be able to

program when H is a random oracle, the simulator would have to be able to derive 𝑥 from

𝑞 using its knowledge of the adversaries’ keys. When H is a function, on the other hand,

outputs have to also be programmable, but this time without being able to program the

oracle. This seems to require inverting H and being able to bias whatever computation

occurs before the application of H to a matching pre-image. We have not investigated this

further.

5.8. Multiple Sessions

In the UC framework, if some protocol 𝜋 wants to make use of multiple instances of some

ideal functionality F , then these copies of F have to be totally independent of each other.

This means that if some protocol 𝜉 UC-realizing F , in turn, makes use of some expensive

resource, such as a common reference string, every session of 𝜉 used in a session of 𝜋 has

to receive a fresh string. One way to make more efficient use of the expensive resource is

18
Note that this notion differs from unique proofs as defined in Section 5.6.1. Unique verification allows

multiple proofs to exist, but only for the correct hash.

139

5. VRO Instantiations

by defining some protocol 𝜉′ of which a single session realizes multiple sessions of 𝜉 , but

using fewer resources than independent copies of 𝜉 .

The expensive resources in our case may be servers or the aforementioned common

reference strings. A simple way to let one instance of F𝑉𝑅𝑂 (with domain {0, 1}∗) realize
multiple sessions of F𝑉𝑅𝑂 (with domains {D𝑖}𝑖∈𝐼 for some index set 𝐼) is by employing

domain separation. To query 𝑞 in some sub-session with identifier 𝑠𝑠𝑖𝑑 and main session

with identifier 𝑠𝑖𝑑 , an instance of F𝑉𝑅𝑂 within session 𝑠𝑖𝑑 is queried with input Enc(𝑠𝑠𝑖𝑑, 𝑞)
where

Enc : {0, 1}∗ × ∪𝑖∈𝐼D𝑖 → {0, 1}∗

is an (efficiently computable) encoding function such that for all 𝑠𝑠𝑖𝑑1, 𝑠𝑠𝑖𝑑2 ∈ {0, 1}∗, it
holds that

𝑠𝑠𝑖𝑑1 ≠ 𝑠𝑠𝑖𝑑2 ⇒ Im(Enc(𝑠𝑠𝑖𝑑1,∪𝑖∈𝐼D𝑖)) ∩ Im(Enc(𝑠𝑠𝑖𝑑2,∪𝑖∈𝐼D𝑖))) = ∅,

that is, different sub-sessions have disjoint domains. Depending on the space from which

session identifiers are taken, the domain of the single instance of F𝑉𝑅𝑂 may be chosen

smaller. Regarding different codomains {H𝑗 } 𝑗∈𝐽 , if we assume that they are all efficiently

(and possibly invertibly) samplable, the single instance of F𝑉𝑅𝑂 may produce enough

random bits to sample an element from theH𝑗 requiring the most random bits to sample.

For the others, using a coherent prefix of the bits would suffice.

5.9. Semi-Honest Adversaries

So far we have only considered security against malicious adversaries. Restricting ad-

versaries to follow the honest protocol greatly simplifies the design of secure protocols.

If we can be sure that each caller behaves honestly, we can for example be sure that a

purported ciphertext 𝑐 contains the same value as some UC-commitment 𝑐𝑜𝑚 without

having to require some proof of this fact. On the server, side we can also replace primitives,

e.g. actively secure MPC protocols used during initialization, with variants that are only

passively secure. Assuming that callers are semi-honest seems to be overly optimistic.

For this reason, we will restrict ourselves to considering protocols where the servers act

according to their specification.

Properties that still have to hold even when restricting to semi-honest servers are the

following:

• Unpredictability: Using information known to the corrupted servers, the adversary

can not predict outputs.

• Hiding: Using information sent to the corrupted servers by honest callers during a

query, the adversary can not compute the input/output of the query.

• Unforgeability: Using information known to the corrupted server, the adversary

can not forge proofs for never queried values or modify existing proofs for previously

queried inputs while changing the hash value.

140

5.10. General MPC

It is clear that for the third point, the servers being semi-honest does not make a

difference as in both cases the environment has the same information. For this reason, in

our setting the difference between actively secure protocols and protocols secure against

semi-honest adversaries may not differ as greatly. In Appendix A.7 we detail how 𝜋𝐹𝐻𝐸
can be simplified if we assume semi-honest servers.

5.10. General MPC

One generic way to realize F𝑉𝑅𝑂 is by utilizing the wide feasibility results for UC-realizing

essentially any PPT functionality by a non-trivial protocol. The downside of this approach

is the usually high communication complexity which for most protocols is proportional to

parameters such as the number 𝑛mult of multiplication gates within the evaluated circuit𝐶

or the depth 𝑑 of the circuit.

Restrictions apply, however. Most results assume that the functionality F is well-formed
for some notion of this term. [25] define the term as follows:

Definition 5.10.1 (Well-Formed Functionalities). A well-formed functionality F consists

of a shell and a core. The core is an arbitrary PPT algorithm. The shell acts as an inter-

mediary between incoming messages and the core. Messages informing the functionality

of corruptions are held back by the shell and not forwarded to the core. Messages from

the core are delivered as intended. In addition, well-formed functionalities are required to

allow the simulator to individually deliver all responses by F to honest (dummy) parties

and vice versa.

The first restriction of the set of allowed functionalities is necessary as otherwise there

exist functionalities that use their knowledge of the set of corrupted parties in such a

way as to prevent any real protocol from realizing them. In [25] an example of such a

functionality is the functionality that sends to all parties the set of corrupted parties. A

successful attack on any protocol trying to realize this functionality lets the adversary

corrupt a single randomly chosen party but lets the party follow the protocol. In the real

world, the honest parties have no way of finding out the identity of the corrupted party,

but in the ideal world they will gain this knowledge from the functionality.

Regarding the second restriction, if the functionality was allowed to accept input 𝑥 from

a party P1 and immediately generate and deliver some output 𝑦 = 𝑓 (𝑥) to second party

P2, then again such a functionality would not be realizable by any protocol.

On the positive side, feasibility results guarantee the existence of non-trivial protocols
for realizing any functionality for which these two restrictions hold. By requiring F to

allow the simulator to not deliver any messages, the trivial protocol which ignores all

inputs and never generates any outputs UC-realizes any well-formed functionality. A

non-trivial protocol 𝜋 for F , however, still UC-realizes F if the real adversary delivers all

messages and does not corrupt any party, then the simulator does the same.

Having defined these two terms, we can state a version of the feasibility theorem from

[25].

141

5. VRO Instantiations

Theorem 5.10.2. Assuming that enhanced trapdoor permutations exist. Then, for any well-
formed multi-party ideal functionality F , there exists a non-trivial protocol that UC-realizes
F in the F𝐶𝑅𝑆 -hybrid model in the presence of malicious, static adversaries.

5.10.1. Client-Server Protocols

One general pattern would then be the following. We can select any well-formed (allowed

to be reactive) functionality F and have it be executed by some set of 𝑛 servers S =

{S1, . . . ,S𝑛}. A subset Corr ⊂ S with |Corr| < 𝑛 is corrupted, the remaining servers, i.e.

those in the set Hon = S \ Corr follow the protocol honestly. A honest caller C, receiving
some input 𝑞, first does some local computation Split on 𝑞 and generates a vector m of 𝑛

messages as

m = (𝑚1, . . . ,𝑚𝑛) ← Split(𝑞).

The vector m is distributed among the servers in S via the assignment𝑚𝑖 → S𝑖 . The
servers engage in a multi-party computation by sending values {𝑚̂𝑖}𝑛𝑖=0

to F . All honest
servers S𝑖 ∈ Hon will provide 𝑚̂𝑖 = 𝑚𝑖 whereas corrupted servers S𝑗 ∈ Corr are free to
provide any value 𝑚̂ 𝑗 ≠𝑚 𝑗 . Depending on the form of F , an output 𝑜𝑖 is returned to S𝑖 . In
the most simple case, each server receives output once all servers have provided their input.

A subset R ⊆ S then returns values {𝑜𝑖}𝑖∈R to C where again corrupted servers may return

a different value than the one they received from F . Finally, the caller assembles from

these responses its output (ℎ, 𝜋) using a combination algorithm Combine(𝑜1, 𝑜2, . . . , 𝑜𝑛).
Combine may either be defined only for fully-defined inputs, i.e. 𝑜𝑖 ≠ ⊥ for all 𝑖 ∈ [𝑛], or
it may require more than a threshold 𝑡 ≤ 𝑛 of inputs to be ≠ ⊥.19

As C will not receive the 𝑜𝑖 at the same time, a rule has to be established for when to run

Combine on the response received so far. Which rule to use will depend on the structure

of Combine. In case Combine is only defined for full inputs, C waits until all 𝑛 servers

have replied (and hangs indefinitely until this occurs). If Combine is able to be run once 𝑡

responses have been received, there are several sensible rules. C may for example wait

for the first 𝑡 responses it receives and runs Combine on these. The execution of a single

hash query is visualized in Figure 5.12. More general communication patterns involving

multiple rounds are possible, but this two-message exchange between the caller and each

server suffices for our purposes.

A Simple Realization There are several natural candidates for F and the surrounding

protocol executed between caller and servers. We show one of them which seems to use

particularly simple as it essentially distributes the protocol 𝜋SIG from Section 5.2. The

caller first shares its input 𝑞 additively as 𝑞 =
⊕𝑛

𝑖=1
𝑞𝑖 and sends 𝑞𝑖 to server S𝑖 . F has

the following form: During initialization, a PRF key 𝑘 is generated and additive shares 𝑘𝑖
are distributed among the servers. The same is done for the signing key sk of a signature

scheme SIG while the verification key vk is sent in one piece to all the servers. During a

hash query, after having received input from each of the servers, first, 𝑞 is reassembled.

Then ℎ = PRF(𝑘, 𝑞) is computed and finally (𝑞, ℎ) is signed using sk, obtaining a signature

19
We allow Combine to output ⊥ in which case C either aborts the current query or runs Combine on a

different set of inputs in the hope of generating valid output.

142

5.10. General MPC

C
...

S1

S2

...

S𝑛

...

F
...

S1

S2

...

S𝑛

...

C
𝑞

𝑚1

𝑚2

𝑚𝑛

𝑚̂1

𝑚̂2

𝑚̂𝑛

𝑜1

𝑜2

𝑜𝑛

𝑜1

𝑜2

𝑜𝑛

(ℎ, 𝜋)

Figure 5.12.: Visualization of the typical flow of messages for a hash query by a caller C
on input 𝑞 with servers S1, . . . ,S𝑛 and ideal functionality F . Time advances

from left to right.

𝜎 . For both ℎ and 𝜎 , only additive shares ℎ =
⊕𝑛

𝑖=1
ℎ𝑖 and 𝜎 =

⊕𝑛

𝑖=1
𝜎𝑖 are returned to the

servers which are then returned to the caller. The caller re-assembles ℎ and 𝜎 . The hash

is given by ℎ and 𝜋 = 𝜎 is the proof. To verify a proof 𝜋 for (𝑞, ℎ) using vk, it is simply

checked that 𝜋 is a valid signature for (𝑞, ℎ) under vk. The key vk has been previously

obtained during an Init request by contacting each of the servers and outputting anything

if and only if the same value has been received from all servers (in particular, a message

has to be received from all servers). This has to be done to ensure that even 𝑛− 1 corrupted

servers can not make an honest party obtain a wrong verification key.

Remark 5.10.3. Of course, the corrupted servers may not partake in the multi-party com-

putation using the share 𝑞𝑖 which they have initially received. But doing so will lead to

the servers computing ℎ′ = PRF(𝑘, 𝑞′) for some reconstructed 𝑞′ ≠ 𝑞 and also a signature

for (𝑞′, ℎ′) instead. Having clients output such signatures 𝜎 is prevented by letting clients

check that 𝜎 is valid for the message (𝑞, ℎ′) and only outputting it when it is. Another po-

tential problem is introduced by the possibility of having corrupted servers input different

shares 𝑘′𝑖 than the one they have received initially. F would thus further check that the

employed shares are indeed the correct ones.

Remark 5.10.4. The fact that the adversary is allowed to make some honest servers obtain

output and others not is non-problematic. If any honest party does not receive its output

during initialization, no honest party will ever obtain output trying to obtain the verifica-

tion key or execute a hash query as there will be some server that does not respond. This
is allowed by the definition of F𝑉𝑅𝑂 as only having an honest party output some wrong

verification key or invalid proof has to be prevented.

It is then not difficult to show that this protocol does indeed UC-realize F𝑉𝑅𝑂 , albeit
requiring extensive interaction between the servers when compared to our FHE-based

protocol and being more reliant on the correct behavior of all of the corrupted servers. The

randomness guarantees follow by replacing the PRFwith a random function. Unforgeability

follows by the security of the signature scheme. Extraction of the input is possible by

reconstructing it from the shares. If we assume that causing a server to misbehave is easier

143

5. VRO Instantiations

for the adversary to achieve than stopping the delivery of a network message between

honest parties, then this protocol is more susceptible to denial-of-service attacks.

We can allow some corrupted servers to deviate from correctly following the protocol

by using other forms of secret sharing, i.e. (𝑡, 𝑛) verifiable secret sharing. We then require

that at most 𝑡 servers are corrupted, but can cope with the fact that these may arbitrarily

deviate from the protocol while still allowing an honest caller to generate a proof (assuming

enough messages have been delivered of course).

5.10.2. General Multi-Party Protocols

If we are willing to fix the set of parties P1,P2, . . . ,P𝑛 participating in a session of F𝑉𝑅𝑂
from the start of the execution, then we could also let these parties compute arbitrary

𝑛-party functionalities between themselves and without having to interact with some

fixed set of servers. If 𝑛 is small this may be an acceptable, but note that as 𝑛 grows the

total amount of interaction generally grows much faster when compared to client-server

protocols.

First, each client-server protocol immediately yields a protocol of this type by treating all

parties as servers and assuming the protocol can be efficiently scaled to contain 𝑛 servers.

Going in the other direction, each protocol for 𝑛 parties can be made into a protocol for 𝑛

servers and additional clients by letting clients execute the code which was previously

executed by any party wishing to query F𝑉𝑅𝑂 and with these 𝑛 servers.

144

6. Related Primitives

In this chapter, we compare our definition of F𝑉𝑅𝑂 to some other functionalities, not

necessarily in the UC framework, which try to achieve similar goals. We begin comparing

our definition of a verifiable random oracle to the definition thereof in the previous master’s

thesis [35] in which they were originally defined. While we have already proved that the

relaxed variant F 𝑞
𝑉𝑅𝑂

of F𝑉𝑅𝑂 in which we allow the simulator to learn the input 𝑞 to each

hash query is UC-realized by the main construction in [35], in this section we compare our

two definitions directly. In the second part of the chapter, we compare F𝑉𝑅𝑂 to a primitive

oblivious pseudo-random function evaluation and augmentations thereof.

6.1. Comparing VRO Definitions

In this section, we compare our definition of F𝑉𝑅𝑂 to the VRO definition contained in [35].

We begin by recalling the syntax used and then restate the game-based security offered by

the definition in [35] (call this definition game-based VRO, or in short, gVRO). Then, we

show that our definition is stronger, i.e. any protocol 𝜋 UC-realizing F𝑉𝑅𝑂 is a gVRO.

6.1.1. Syntax

According to [35], an𝑛-party VROVRO for domainD and codomainH is a tuple (𝓈,𝓆,ℋ,𝓋)
where

𝓈 : N→ PK × SK𝑛

is setup algorithm which, on input the security parameter 𝜆, outputs a public key pk ∈ PK
and 𝑛 secret keys sk = (sk𝑖)𝑖∈[𝑛] ∈ SKn

. Keys come from arbitrary sets PK and SK (which

may depend on 𝜆). After running 𝓈 at the onset of the protocol, pk is made publicly known

to all protocol parties while the sk𝑖 are given to distinguished parties P𝑖 which will later

implement the VRO.

𝓆 : PK × D→ H × PROOF

is a public interactive PPT algorithmwhich, on input a public key pk and an element 𝑞 from

the domain D, outputs a hash ℎ from H as well as a proof 𝜋 in PROOF. The component

H = Hpk,sk is itself is a tuple (𝒽1

pk,sk
1

,𝒽2

pk,sk
2

, . . . ,𝒽𝑛
pk,sk𝑛
) of interactive PPT algorithms

with 𝒽
𝑖
pk,sk𝑖

being run by party P𝑖 .1 Finally,

𝓋 : PK × D × H × PROOF→ {0, 1}
1
Think of each 𝒽

𝑖
pk,sk𝑖

as an instance of an ITM in the UC framework.

145

6. Related Primitives

is the verification procedure that receives as input a tuple (pk, 𝑞, ℎ, 𝜋) from its domain and

decides whether 𝜋 is a valid proof under pk attesting to the fact that ℎ is the correct hash

for 𝑞. We write

(ℎ, 𝜋) ← ⟨𝓆,ℋpk,sk⟩(pk′, 𝑞)
for the result of 𝓆 running with input (pk′, 𝑞) while interacting withℋpk,sk. Corruption is

modeled as giving the adversary control over a subset Corr ⊆ {1, 2, . . . , 𝑛} of the 𝒽𝑖
pk,sk𝑖

,

thereby also gaining access to the sk𝑖 as well as all queries 𝑞.

6.1.2. Security

Having defined the syntax, letVRO = (𝓈,𝓆,ℋ,𝓋) now be a VROwith domainD, codomain

H and other associated spaces as in Section 6.1.1. We recall the security definitions from

[35].

Definition 6.1.1. VRO is called a game-based VRO (gVRO), if and only if the following

conditions hold.

• Completeness: Proofs output by 𝓆 are always accepted by 𝓋. Formally, for all

𝜆 ∈ N and all (pk, sk) ← 𝓈(1𝜆) it holds that
∀(ℎ, 𝜋) ← ⟨𝓆,ℋpk,sk⟩(pk, ℎ) : 𝓋(𝑞, ℎ, 𝜋) = 1

• Pseudo-Determinism: Hash values output by𝓆 for the same input 𝑞 are consistent

across invocations. Formally, for all 𝜆 ∈ N and all (pk, sk) ← 𝓈(1𝜆), it holds that
∀(ℎ1, 𝜋1) ← ⟨𝓆,ℋpk,sk⟩(pk, ℎ) ∀(ℎ2, 𝜋2) ← ⟨𝓆,ℋpk,sk⟩(pk, ℎ) : ℎ1 = ℎ2

• Pseudorandomness: Hash values output by 𝓆 are pseudo-random. For any PPT

adversary A, the probability

Pr[PR(A, 𝜆) = 1]
is negligible in 𝜆 where the game PR is the one shown in Figure 6.1.

• Weak Unforgeability: Proofs are unforgeable in a sense similar to the EUF-CMA
definition for signature schemes. For any PPT adversary A, the probability

Pr[wUF(A, 𝜆) = 1]
is negligible in 𝜆 where the game wUF is the one shown in Figure 6.2.

Programming An addition to Definition 6.1.1 is made in the form of a programming
interface to allow reductions to choose the output of a gVRO at some specified input. In [35],

this is done by introducing 𝑛 + 1 further algorithms/interfaces prgmpk and PRGMpk,sk =

(prgm𝑖
pk,sk𝑖
)𝑖∈[𝑛] where prgmpk is run by another party P and prgm𝑖

pk,sk𝑖
is an interface

provided to P by P𝑖 . Informally, these interfaces allow P to alter hash values. This may,

however, lead to the properties of Definition 6.1.1 no longer holding. For this reason,

the concept of a suitable programming interface is introduced. It is defined in a context-

dependent way, i.e. in [35] it is used in the context of the simulation-sound extractability of

the Fiat-Shamir transform, but it roughly means that programming can not be recognized

by the adversary.

146

6.1. Comparing VRO Definitions

PR(A, 𝜆)
1 : (pk, sk) ← 𝓈(1𝜆)
2 : 𝑀 = ∅
3 : (𝑞, state) ← AHash(·) (1𝜆)
4 : (ℎ0, 𝜋0) ← ⟨𝓆,ℋpk,sk⟩(pk, 𝑞)
5 : ℎ1 ← H

6 : 𝑏 ←$ {0, 1}
7 : 𝑏′ ← A(1𝜆, state, ℎ𝑏)
8 : return 𝑏′ = 𝑏 ∧ 𝑥 ∉ 𝑀

Hash(𝑞)
1 : 𝑀 = 𝑀 ∪ {𝑞}
2 : (ℎ, 𝜋) ← ⟨𝓆,ℋpk,sk⟩(𝑞)
3 : return (ℎ, 𝜋)

Verify(𝑞, ℎ, 𝜋)
1 : 𝑏 = 𝓋(pk, 𝑞, ℎ, 𝜋)
2 : return 𝑏

Figure 6.1.: The Pseudorandomness game for a gVRO.

wUF(A, 𝜆)
1 : (pk, sk) ← 𝓈(1𝜆)
2 : 𝑀 = ∅
3 : (𝑞, ℎ, 𝜋) ← AHash(·) (1𝜆, pk)

4 : return 𝓋(pk, 𝑞, ℎ, 𝜋) ?

= 1 ∧ (𝑞, ℎ) ∉ 𝑀

Hash(𝑞)
1 : 𝑀 = 𝑀 ∪ {𝑞}
2 : (ℎ, 𝜋) ← ⟨𝓆,ℋpk,sk⟩(pk, 𝑞)
3 : return (ℎ, 𝜋)

Figure 6.2.: The Weak Unforgeability game for a gVRO.

6.1.3. Comparison

We compare our definition of F𝑉𝑅𝑂 to the above definition for a gVRO. To be able to do

this we assume that in the setting with F𝑉𝑅𝑂 the adversary is given the adversary interface

and in particular provides vk and Prove.

Completeness A gVRO is required to be perfectly complete. The same is true if we

consider proofs 𝜋 which were output by F𝑉𝑅𝑂 , these will always verify. But even if we

ignore proofs that are not delivered by the adversary (which seems sensible as gVRO

does not consider network adversaries), there is one circumstance in which no proof is

produced. This situation occurs for some input 𝑞 with hash ℎ, if the proof 𝜋 output by

Prove, is already marked as invalid by an existing record (ver, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋, vk, 0) where vk
is the correct verification key. Hence, depending on whether we allow the adversary not

only to initialize F𝑉𝑅𝑂 , the completeness provided by F𝑉𝑅𝑂 may be slightly weaker.
2

Pseudo-Determinism Both definitions guarantee perfect consistency. After having been

randomly selected upon the first hash query for 𝑞, the same ℎ is returned by F𝑉𝑅𝑂 in all

subsequent queries. For F𝑉𝑅𝑂 , we again have to restrict to the case where output is indeed

generated.

2
If we do not allow the adversary to make verification queries and require proofs to be delivered, then a

valid proof will always be received.

147

6. Related Primitives

Pseudorandomness First, the ideal functionality F𝑉𝑅𝑂 associates hashes ℎ to inputs 𝑞

uniformly using real randomness while PR only guarantees pseudo-randomness. This,

however, only makes a difference when interacting with super-polynomial adversaries.

Further, in the game PR, the adversary is not given the public key pk and so can not use

it to break pseudo-randomness. An entity interacting with F𝑉𝑅𝑂 can freely retrieve the

verification key vk and use it within its attack.

Weak Unforgeability The unforgeability guarantees provided by F𝑉𝑅𝑂 are perfect. No

adversary is able to produce a valid proof 𝜋 under the correct key vk and for some pair

(𝑞, ℎ) such that either ℎ is not the correct hash for 𝑞 or 𝑞 has not been hashed before. The

same is true in a computational sense for any adversary in the wUF game. The adversary

only wins by providing a valid proof 𝜋 for some (𝑞, ℎ) such that (𝑞, ℎ) is not in the set𝑀

of input-hash pairs given and received by A.

Programming A simulator for a protocol 𝜉 in the F𝑉𝑅𝑂-hybrid model is able to freely

program the hashes generated by F𝑉𝑅𝑂 as long as the resulting distribution is indistin-

guishable from uniform to the environment, i.e. either truly random, pseudo-random, or

otherwise. As long as this holds, programming is undetectable to the adversary in any

context.

6.1.4. Other Differences

In this section, we discuss some more differences between a gVRO and F𝑉𝑅𝑂 . These mostly

arise due to differences between the ad hoc definitions of interactive protocols made in

[35] and the UC framework.

Wrong Key FromDefinition 6.1.1 it is not clear what should happen upon executing𝓋with

input some pk′ ≠ pk. This seems to implicitly mean that no guarantees are made in such a

case. Essentially, this kind of behavior is made explicit by having F𝑉𝑅𝑂 let the simulator

choose which proofs to accept or reject in such cases. One small difference, however, is

that even for wrong keys F𝑉𝑅𝑂 guarantees consistency. There is some justification for

ignoring this issue as all honest parties receive the correct public key pk as output by 𝓈 at

the onset of the protocol and so are under little threat of executing 𝓋 on a different key.

Leakage In [35], it is not clearly defined what information the adversary is supposed

to maximally learn. The adversary is the entity providing the subset Corr of the 𝒽𝑖
pk,sk𝑖

,

but the information exchanged by 𝓆 and the algorithms inℋ is not defined and depends

on the specific protocol. Considering the PRF construction, the adversary is able to learn

all of 𝑞, but only an additive share of ℎ (if we disregard the adversary itself querying 𝑞).3

With F𝑉𝑅𝑂 , the information leaked to the adversary is clearly defined as being the identity

of the party making the request as well as the length ∥𝑞∥ of the input 𝑞.

3
It supposedly also obtains the identity of the party making the query.

148

6.2. Comparing VRO and OPRF Variations

Corruption The definition of a gVRO does not consider the possibility of having corrupted

callers, i.e. only the correct execution of 𝓆 is considered in Definition 6.1.1. Depending

on the protocol, this can make a large difference. While in the PRF construction, the

correct behavior of the caller is easily checkable, i.e. that the sent value belongs to the

domain D, the same is not true in e.g. the 𝜋𝐹𝐻𝐸 protocol. If callers were assumed to be

only semi-honest, the proof of knowledge of the secret FHE key could be removed among

other simplifications.

Input Hashing In [35], it is noted that most instantiations can be optimized by first

computing a collision-resistant hash ℎ = CRHF(𝑞) from the input 𝑞 before sending it to

the servers. As the input 𝑞 has to be straight-line extractable for the simulator for any

protocol UC-realizing F𝑉𝑅𝑂 , this technique can in general not be used.
4
It could be used

if for example ℎ was accompanied by some UC-commitment com on 𝑞 and a proof of

consistency 𝜋 , but the added cost seems to greatly outweigh the potential benefits of being

able to do all subsequent computations on the shorter ℎ.

We note that if it was possible for a protocol for F𝑉𝑅𝑂 to hash all inputs before sending

them to the servers, then this would almost achieve the necessary input-hiding property.

Only almost as it would leak the hash of the input which can of course not be computed

by the simulator from the length of the input alone.

Simulatability Building on the last point, there are also general differences regarding

the level of simulatability and hence composability. While game-based definitions such as

Definition 6.1.1 do not in general compose, any protocol UC-realizing F𝑉𝑅𝑂 will compose

with itself and arbitrary other protocols in any manner. It was this UC simulatability that

for example necessitated our use of NIWI in the protocol 𝜋𝐹𝐻𝐸 .

6.2. Comparing VRO and OPRF Variations

In this section, we compare our definition F𝑉𝑅𝑂 to another related primitive called oblivious
pseudo-random function evaluation (OPRF). We begin by introducing the many variants

and definitions for OPRF. Afterward, we investigate how certain strong variants of these

can be used to generically instantiate F𝑉𝑅𝑂 . Last, we show the close relation between

OPRF variants and F𝑉𝑅𝑂 by constructing OPRF protocols using F𝑉𝑅𝑂 . In particular, we

show that a special class of protocols UC-realizing F𝑉𝑅𝑂 are in direct correspondence with

protocols for a particular OPRF ideal functionality.

6.2.1. OPRF Variations

Informally, an OPRF protocol for a PRF PRF : K × X → Y allows two parties, a client

holding some input 𝑥 ∈ X and a server holding some key 𝑘 ∈ K , to compute the function-

ality

𝑓PRF(𝑥, 𝑘) = (PRF(𝑥, 𝑘),⊥).
4
One might ask whether the simulator must make hash queries to F𝑉𝑅𝑂 on behalf of corrupted parties, but

this is indeed true to ensure that the environment is able to later verify the obtained proof by giving it to

an honest verifier.

149

6. Related Primitives

This means the client ends up with the result of applying PRF to (𝑥, 𝑘) and the server

learns nothing (this property is called obliviousness).
As this is a form of MPC, security of an OPRF protocol can be required to hold in

either the stand-alone or the UC setting and with either party being allowed to be either

semi-honest or maliciously corrupted. The security guarantee of the client involves the

server learning nothing about its input and output and likewise, the guarantee for the

server consists of the client learning nothing but the output, i.e. it gains no information on

the key. Security might also be defined in a game-based fashion. For concrete definitions,

see for example [26].

It is not quite sensible to directly compare variants of OPRF protocols to an ideal

functionality like F𝑉𝑅𝑂 . The former is explicitly a two-party protocol with mutual security

requirements and the latter involves only the honest or corrupted clients as physical

parties interacting with the ideal F𝑉𝑅𝑂 . A protocol for realizing F𝑉𝑅𝑂 might, however,

involve clients and servers. As such, we can draw comparisons on the level of potential

protocols for F𝑉𝑅𝑂 and investigate which properties commonly found in OPRF protocols

are achieved by them.

Motivation As amotivating example, consider a protocol𝜋 where a distinguished (trusted)

party S acts as the server in a (UC-secure) OPRF protocol with other parties P𝑖 and always
inputs a fixed key 𝑘 . This protocol realizes F𝑉𝑅𝑂 (with interactive verification, assume for

a moment that we allow this), but as the server is already guaranteed to be honest this is

no different from S just being sent the inputs in the clear, evaluating PRF and returning

the results. The only required property, i.e. that no (corrupted) client learns 𝑘 , does still

hold in this case.

If one considers a notion of security for a protocol realizing F𝑉𝑅𝑂 where we allow full

corruption of all servers and still want to retain some form of security, then using an OPRF

protocol could be useful. It could prevent the corrupted server from learning the inputs

of honest clients. On the other hand, the clients can no longer be assured that what they

receive was indeed computed using the same key 𝑘 , a guarantee like this lies outside what

an (even UC-secure) OPRF protocol provides.

Randomness Guarantees Another difference in OPRF definitions is exemplified by the

two UC-functionalities shown in Figures 6.3 and 6.4. For simplicity, both of these are for

the case of a single client C and a single server S, but a single session 𝑠𝑖𝑑 allows multiple

evaluations. In Figure 6.3, the functionality evaluates a different random function for each

key 𝑘 input by the server. The functionality in Figure 6.4, on the other hand, evaluates

an underlying PRF 𝐹 in an oblivious manner. Using the former in particular does not

even allow the (honest) server itself to predict outputs. To take care of the fact that a

corrupted server can simply run the protocol for an honest client, the simulator receives

the additional ability to freely evaluate the function whenever the server is corrupted.

Think for example of a protocol where the final output is set as the output of F𝑅𝑂 (which is

commonly the case for protocols realizing this kind of functionality). Then the adversary

can freely query F𝑉𝑅𝑂 and outputs to these queries have to be made consistent with

whatever is output by F𝑂𝑃𝑅𝐹 .

150

6.2. Comparing VRO and OPRF Variations

Parametrized by a domain X and codomain Y. Let 𝐹 : K × X → Y be a family of

random functions.

Client Eval Upon receiving (Eval, 𝑠𝑖𝑑, 𝑒𝑖𝑑, 𝑥) from some party C, check that 𝑠𝑖𝑑 =

(C,S, 𝑠𝑖𝑑′) for some 𝑠𝑖𝑑′. If it is not, ignore the message. Else, store (Eval, 𝑒𝑖𝑑, 𝑥)
and send (Eval, 𝑠𝑖𝑑, 𝑒𝑖𝑑) to the adversary. If there is a record (Key, 𝑒𝑖𝑑, 𝑘), send
private delayed output (Answer, 𝑠𝑖𝑑, 𝑒𝑖𝑑, 𝑥, 𝐹 (𝑘,𝑦)) to C.

Server Eval Upon receiving (Key, 𝑠𝑖𝑑, 𝑒𝑖𝑑, 𝑘) from some party S, check that 𝑠𝑖𝑑 =

(C,S, 𝑠𝑖𝑑′) for some 𝑠𝑖𝑑′. If it is not, ignore the message. Else, store (Key, 𝑒𝑖𝑑, 𝑘)
and send (Key, 𝑠𝑖𝑑, 𝑒𝑖𝑑) to the adversary. If there is a record (Eval, 𝑒𝑖𝑑, 𝑥), send
private delayed output (Answer, 𝑠𝑖𝑑, 𝑒𝑖𝑑, 𝑥, 𝐹 (𝑘, 𝑥)) to C.

Corrupted Server Upon receiving (Predict, 𝑠𝑖𝑑, 𝑘, 𝑥) from the adversary and S is

corrupted, send a message (Predicted, 𝑠𝑖𝑑, 𝑘, 𝑥, 𝐹 (𝑘,𝑦)) back to the adversary.

Figure 6.3.: An ideal OPRF functionality for evaluating a random function.

Parametrized by a PRF 𝐹 : K × X → Y.

Client Eval Upon receiving (Eval, 𝑠𝑖𝑑, 𝑒𝑖𝑑, 𝑥) from some party C, check that 𝑠𝑖𝑑 =

(C,S, 𝑠𝑖𝑑′) for some 𝑠𝑖𝑑′. If it is not, ignore the message. Else, store (Eval, 𝑒𝑖𝑑, 𝑥)
and send (Eval, 𝑠𝑖𝑑, 𝑒𝑖𝑑) to the adversary. If there is a record (Key, 𝑒𝑖𝑑, 𝑘), send
private delayed output (Answer, 𝑠𝑖𝑑, 𝑒𝑖𝑑, 𝑥, 𝐹 (𝑘,𝑦)) to C.

Server Eval Upon receiving (Key, 𝑠𝑖𝑑, 𝑒𝑖𝑑, 𝑘) from some party S, check that 𝑠𝑖𝑑 =

(C,S, 𝑠𝑖𝑑′) for some 𝑠𝑖𝑑′. If it is not, ignore the message. Else, store (Key, 𝑒𝑖𝑑, 𝑘)
and send (Key, 𝑠𝑖𝑑, 𝑒𝑖𝑑) to the adversary. If there is a record (Eval, 𝑒𝑖𝑑, 𝑥), send
private delayed output (Answer, 𝑠𝑖𝑑, 𝑒𝑖𝑑, 𝑥, 𝐹 (𝑘, 𝑥)) to C.

Figure 6.4.: An ideal OPRF functionality parametrized by a PRF 𝐹 which it evaluates.

151

6. Related Primitives

Augmented OPRF Notions There exist augmentations and additional properties which

OPRF protocols may possess. For an overview see again [26]. The at first sight most

promising properties for our application are verifiability and being distributed or threshold
protocols. The latter two essentially mean that the key, instead of being held by a single

server, is shared among a set of 𝑛 servers. In the distributed case, to successfully complete

an evaluation, all 𝑛 servers need to act honestly with respect to their share of the key

for output to be produced. In the threshold case, on the other hand, there is a threshold

parameter 𝑡 and at least 𝑡 + 1 servers are required to behave correctly during evaluation.

There are several differing formulations in terms of UC-functionalities for threshold OPRF

protocols, e.g. in [68]. In most of these functionalities and also in the one contained in [68],

the correctness of the result is only guaranteed if all 𝑡 + 1 contacted servers are honest.

Otherwise, the adversary may select a random function (a label identifying a function,

but whose values are sampled randomly by the functionality) using which the result is

computed.

Adding Verifiability Verifiability is a similarly broad term. In the literature on OPRFs,

the modifier verifiable usually means that the client is able to verify that it received the

correct output corresponding to its input 𝑥 and some key 𝑘 input by the server, i.e. that the

client receives PRF(𝑘, 𝑥). It may also be guaranteed that the same 𝑘 is used for successive

interactions, see F𝐴
𝑉𝑂𝑃𝑅𝐹

shown in Figure 6.5 and taken from [2]. This usually involves some

initial commitment by the server on its key and with respect to which correct evaluation

is proven by the server. This commitment might be transferable between parties and thus

allow multiple parties or the same party to be sure that all outputs are correct with respect

to a single fixed key. We, on the other hand, require public verifiability where a client

inputting 𝑥 receives both a purported output 𝑦 as well as a proof of correct evaluation 𝜋 .

Using 𝑥 , 𝑦, and 𝜋 as well as some verification key vk, any other party can then later be

convinced that indeed 𝑦 = PRF(𝑘,𝑦) for some key 𝑘 (to which vk acts as a commitment).

Note that this is strictly stronger than the intermediate notion. Proofs of correct evaluation

by the server in the intermediate notion might involve interaction while public verifiability

requires non-interactive verifiability long after the evaluation has concluded.

The weakest kind of verifiability is already achieved by using an actively secure OPRF

protocol of which there exist multiple for different underlying PRFs. For the intermedi-

ate notion there are multiple UC-functionalities in the literature. For example does the

functionality F 𝐽

𝑉𝑂𝑃𝑅𝐹
in [66] (shown in Figure 6.6) allow for the explicit transfer of commit-

ments to PRF keys while F𝐴
𝑉𝑂𝑃𝑅𝐹

in [2] only allows a single client to verify that the same

key is used in sequential evaluations. Note that F𝐴
𝑉𝑂𝑃𝑅𝐹

is formulated with instantiations

not relying on authenticated channels in mind which complicates the description.

Publicly verifiable OPRF protocols are essentially protocols for obliviously evaluating

VRFs and can sometimes be obtained from the intermediate kind by making the server’s

zero-knowledge proofs non-interactive (of course this comes at the cost of requiring

the ROM or some other setup, but many UC-secure OPRF protocols already use PRFs

such as 2HashDH5
which use random oracles). Alternatively, any VRF can generically be

evaluated obliviously using FHE and letting the server prove correct evaluation. Depending

5
This function is essentially given by 𝐻 (𝑥, 𝐻 ′ (𝑥)𝑘) for 𝐻 and 𝐻 ′ modeled as random oracles.

152

6.2. Comparing VRO and OPRF Variations

The F𝐴
𝑉𝑂𝑃𝑅𝐹

functionality
This is a two-party functionality between a server S and a client C. We assume there

is a fixed PRF function defined by 𝐹𝑘 (𝑥).

Init-S On input init from S, the functionality waits for an input 𝑘 from the server.

If S returns abort, then the functionality aborts. Otherwise, the functionality

stores the value 𝑘 if it is a valid keya and aborts if not.

Init-C On input of init from a client C, the functionality will return abort if the init
procedure for the server has not successfully completed.

Query On input of (query, 𝑥) from a client C, if 𝑥 ≠ ⊥, then the functionality waits

for an input from party S. If S returns deliver, then the functionality sends

𝑦 = 𝐹𝑘 (𝑥) to party C. If S returns abort, then the functionality aborts.

a
From some distribution which parametrizes the functionality.

Figure 6.5.: An ideal VOPRF functionality (taken from [2], figure 1).

on the randomness guarantees one wishes to achieve, care has to be taken that the VRF is

simulatable. Otherwise, the VRF verification key already commits the server to a fixed

function and even the ability of the simulator to simulate the proofs of correct evaluation

(of the server’s computation) does not allow it to program.

Explicit descriptions of publicly verifiable OPRF functionalities as we have described

them are quite rare in the literature. The reason for this is that instantiating them always

relies on some form of authentication to ensure that honest parties are able to retrieve an

authentic copy of the correct verification key vk associated with some server S with which

they wish to engage in an evaluation. Assuming infrastructure to provide this authenti-

cation, i.e. a public-key infrastructure, is oftentimes unnecessary for the applications in

which verifiable OPRF protocols are used. Most protocols realizing a functionality such as

F 𝐽

𝑉𝑂𝑃𝑅𝐹
can, however, be adapted to be publicly verifiable in our stronger sense by adding

authentication and non-interactive proofs.

In a first step, we may upgrade F 𝐽

𝑉𝑂𝑃𝑅𝐹
to be publicly verifiable with interactive verifica-

tion. Concretely, servers execute the Key Generation task of F 𝐽

𝑉𝑂𝑃𝑅𝐹
and publicize their

received token 𝜋 during an initialization step. A client wishing to evaluate the function

associated with S first retrieves the token 𝜋 . It then engages in the V-OPRF Evaluation
task, thereby obtaining output as well as a second token 𝜋 ′. Output is generated by the

client if and only if 𝜋 = 𝜋 ′. Public verification is possible by executing an evaluation and

comparing the resulting output and tokens as before. All communication in this protocol

is assumed to be authenticated. Depending on the specific protocol, verifiability may then

be upgraded to be non-interactive by making the zero-knowledge proofs performed by

the server non-interactive in an appropriate manner.

153

6. Related Primitives

The F 𝐽

𝑉𝑂𝑃𝑅𝐹
functionality

Key Generation On message (KeyGen, 𝑠𝑖𝑑) from S, forward (KeyGen, 𝑠𝑖𝑑,S) to the

adversary. On message (Parameter, 𝑠𝑖𝑑,S, 𝜋, 𝑀) from the adversary, ignore this

call if param(S) is already defined. Otherwise, set param(S) = ⟨𝜋⟩ and ini-

tialize tickets(𝜋) = 0, and hist(𝜋) to the empty string. If S is honest send

(Parameter, 𝑠𝑖𝑑, 𝜋) to party S, else parse 𝑀 as a circuit with 𝑙-bit output and

insert (𝜋,𝑀) in CorParams.

V-OPRF Evaluation On message (Eval, 𝑠𝑖𝑑,S, 𝑥) from party U for sender S,
record (U, 𝑥) and forward (Eval, 𝑠𝑖𝑑,U,S) to the adversary. On mes-

sage (SenderComplete, 𝑠𝑖𝑑,S) from the adversary for some honest S, output
(SenderComplete, 𝑠𝑖𝑑) to party S and set tickets(𝜋) = tickets(𝜋) + 1 for 𝜋 s.t.

⟨𝜋⟩ = param(S). Onmessage (UserComplete, 𝑠𝑖𝑑,U, 𝜋, flag) from the adversary,

recover (U, 𝑥) and:

• If flag = ⊤ and ⟨𝜋⟩ = param(S) for an honest S then: If tickets(𝜋) ≤ 0

ignore the UserComplete request of the adversary. Otherwise: (1) if hist(𝜋)
includes a pair ⟨𝑥, 𝜌′⟩, set 𝜌 = 𝜌′, else sample 𝜌 at random from {0, 1}𝑙
and enter ⟨𝑥, 𝜌⟩ into hist(𝜋); (2) Set tickets(𝜋) = tickets(𝜋) − 1 and output

(Eval, 𝑠𝑖𝑑, 𝜌) to partyU.

• Else, if flag = ⊥ then return (Eval, 𝜋,⊥) toU.

• Else, if flag = ⊤ and 𝜋 is such that (𝜋,𝑀) ∈ CorParams for some circuit𝑀 ,

compute 𝜌 = 𝑀 (𝑥), enter ⟨𝑥, 𝜌⟩ in hist(𝜋), output (Eval, 𝑠𝑖𝑑, 𝜌) to partyU.

Figure 6.6.: A second ideal VOPRF functionality (taken from [66], figure 2).

154

6.2. Comparing VRO and OPRF Variations

Adding Commitments Committed inputs and/or outputs are a modification of OPRFs

such that the server, instead of obtaining no output, obtains commitments on the input

and/or the output of the client. These commitments can later be used to ensure that the

client uses the output in some specified way. We might for example use this to first let the

client obtain the hash ℎ for input 𝑞 and then blindly signs the message (𝑞, ℎ). Enforcing
that the correct message is being signed could be ensured using the commitments on 𝑞

and ℎ; although at that point it might be easier to use a publicly verifiable scheme.

Some further remarks and explanations can be found in Section A.3.2 of the appendix.

6.2.2. Comparison

Armed with the knowledge on OPRF variants and ideal functionalities, we now compare

them to F𝑉𝑅𝑂 . As we have pointed out there is a multitude of definitions and so this

comparison can only be broad in nature.

• All OPRF functionalities explicitly involve one or more (in the threshold setting)

servers while F𝑉𝑅𝑂 does not. This also means that the OPRF functionality may behave

differently based on whether the server is corrupted or not, i.e. some guarantees may

be broken
6
, while protocols for F𝑉𝑅𝑂 have to be able to handle corruption without

compromising security.

• Relating to the last point, one major goal of ours was to find protocols for F𝑉𝑅𝑂 which

allow the maximal number of corrupted servers. The same question does not arise

when considering protocols realizing OPRF functionalities. F𝑉𝑅𝑂 thus differs from

most OPRF functionalities in terms of the type of protocols we wish to construct for

them.

• Most OPRF functionalities fully hide the client’s input from the server and the

adversary while F𝑉𝑅𝑂 leaks the length of the input. This minor difference mostly

stems from the fact that we did not outright prohibit the possibility of F𝑉𝑅𝑂 having

{0, 1}∗ as the domain. One could easily define a functionality F ′
𝑉𝑅𝑂

which does not

leak the length and all of our protocols from Chapter 5 immediately UC-realize also

this functionality for finite domains.
7

• Some OPRF functionalities are parametrized by and evaluate an underlying function

for which the server inputs a key 𝑘 while others have the functionality evaluate a

random function. F𝑉𝑅𝑂 uses the second mechanism to generate hashes.

• There are many notions of verifiability for OPRF protocols with public verifiability

and non-interactive verification being the strongest notion. This latter notion is the

one employed by F𝑉𝑅𝑂 , but is very rare among OPRF protocols. There, the most

6
Observe for example that a corrupted server interacting with F 𝐽

𝑉𝑂𝑃𝑅𝐹
may register an arbitrary𝑀 using

which outputs are computed.

7
If the length of inputs is non-constant, some padding to a common length may have to be applied by the

client.

155

6. Related Primitives

common notion is the one of having keys vk committing the server to some key 𝑘 ,

but using it to only ensure that the same key is used across different evaluations

(possibly by different users by transferring vk).

• In relation to the last point as well as the first and second points, allowing multiple

servers in protocols not only allows protocols for F𝑉𝑅𝑂 to potentially cope with a

number of servers being corrupted, it also may allow using weaker primitives to

achieve public verifiability.

• Some OPRF functionalities do not require inputs by corrupted parties to be efficiently

extractable by relying on ticketing mechanisms while F𝑉𝑅𝑂 does require this to be

possible.

6.2.3. Evaluating the FHE Construction

We briefly evaluate the protocol 𝜋𝐹𝐻𝐸 from Chapter 5 with respect to it achieving properties

that are characteristic of OPRF protocols.

In 𝜋𝐹𝐻𝐸 , one might think that we were constructing a publicly verifiable OPRF using

an FHE scheme, signatures, and a PRF, and running three instances of it between the

caller and any of the four servers. This is not the case. In fact, what we constructed is

not verifiable in the sense that even a malicious server holding a key can not produce a

valid proof for a wrong pair (𝑞, ℎ), i.e. is committed to some function. A server could just

encrypt and sign wrong PRF outputs. We achieved verifiability by relying on the responses

from honest servers to cross-check and discard potentially wrong results by the corrupted

server. In that sense, we do not require full public verifiability against malicious servers,

but only against semi-honest servers.

In fact, we explicitly refrained from constructing a full publicly verifiable OPRF protocol

for efficiency reasons. As stated previously, as an alternative to NIWI proofs we could

have let servers prove the correctness of their FHE evaluations of the PRF and the signing

algorithm (after also having the servers publish commitments to their PRF keys with

respect to which this proof is then constructed). This would essentially mean that we

would be using the generic protocol for obliviously evaluating a PRF using FHE, but even

in that case, nothing prevents the corrupted server from signing wrong pairs (𝑞, ℎ).
To summarize, the sub-protocol of 𝜋𝐹𝐻𝐸 between the client and a single server possesses

only some of the properties which are required of a publicly verifiable OPRF protocol and

overall public verifiability is achieved only by running multiple copies of this protocol

with a collection of servers where three out of four of the servers are known to be honest.

6.3. Generic Constructions from OPRF

In this section, we sketch some generic constructions of protocols for F𝑉𝑅𝑂 based on

OPRF protocols. We chose to present these here and not in Chapter 5 for the following

reason. Many protocols for the kind of OPRF variants which we use below are either in the

F𝑅𝑂-hybrid model and/or employ NIZKPoKs. As our protocol 𝜋𝐹𝐻𝐸 does require neither

of these primitives and it was a stated goal not to use them, we consider 𝜋𝐹𝐻𝐸 to be the

156

6.3. Generic Constructions from OPRF

main protocol and present the current section merely to show that certain kinds of OPRF

protocols are themselves sufficient (but not necessary) to construct instantiations of F𝑉𝑅𝑂 .

Single Party Another kind of primitive that essentially immediately gives a single party

instantiation (where this party is allowed to be corrupted) are the publicly verifiable OPRFs

mentioned above and where the functionality evaluates a random function as in Figure

6.3. Obliviousness ensures that not even a corrupted server learns the input 𝑞 and hash ℎ.

The fact that a random function is evaluated ensures that the simulator can bias results to

the ℎ it receives from F𝑉𝑅𝑂 . Lastly, public verifiability provides publicly, non-interactively

verifiable proofs of correct evaluation.

Multiple Parties To distribute this simple protocol there are several ways, each of them

achieving a different kind of distributedness and robustness.

Notions of Distributedness Call a protocol for computing some (non-interactive) prim-

itive P (or UC-functionality representing an instance of P) a threshold protocol if it allows
setting parameters (𝑡, 𝑛) where 𝑛 is the total number of servers and 𝑡 is the corruption

threshold. Call it a distributed protocol if it is a threshold protocol, but only allows setting

𝑡 = 𝑛 − 1, i.e. all but one party may be corrupted before the adversary is able to evaluate P
using the obtained secret state. Observe that for threshold protocols it is possible to set

2𝑡 + 1 < 𝑛, i.e. have > 𝑡 + 1 honest servers which in principle can evaluate P on their own.

In that case (and assuming a fully robust protocol allowing verification of individual shares

returned by the servers) an honest client is able to evaluate P by querying all 𝑛 servers

and assuming that the adversary delivers at least 𝑡 + 1 of the honest server’s responses.

The same is not true for a distributed protocol. For that reason, it is often much easier

to come up with distributed protocols as opposed to ones allowing arbitrary thresholds.

As all shares have to be valid, it is enough to have them be an additive sharing of the

result as opposed to some (𝑡, 𝑛) secret sharing. The former does not have to involve any

coordination between the servers.

For example, it is relatively easy to distribute a PRF using a VRF (or another way of

proving to the client that the server behaved honestly, this does not necessarily require

public verifiability) than to construct a distributed threshold PRF. The client simply interacts

with 𝑛 servers, each holding a different key, on the same input 𝑥 and obtains both outputs

𝑦𝑖 and proofs 𝜋𝑖 for 𝑖 ∈ [𝑛], and aborts if one of the results is incorrect. The output is

then the sum 𝑦 =
⊕𝑛

𝑖=1
𝑦𝑖 of the individual outputs. On the other hand, it is much more

involved to give a threshold protocol for a PRF.

The Constructions We give both a fully distributed as well as a threshold protocol. For

both of them, it is sufficient for the OPRF protocol to evaluate a PRF instead of a random

function. They are, however, required to be fully input-extractable and so can for example

not be of the same type as F 𝐽

𝑉𝑂𝑃𝑅𝐹
.

• Distributed: Each server is associated with a single session of a publicly verifiable

OPRF. The total verification key vk is the collection of the 𝑛 individual keys vk𝑖 .
Proofs for input 𝑞 are generated by having the caller engage in protocol executions

157

6. Related Primitives

with each of the 𝑛 servers, thereby obtaining outputs (ℎ𝑖, 𝜋𝑖)𝑖∈[𝑛] . Only once all 𝑛 of

these values have been obtained, the final hash ℎ =
⊕𝑛

𝑖=1
ℎ𝑖 is computed and the

proof 𝜋 is constructed as

𝜋 = (ℎ1, 𝜋1, ℎ2, 𝜋2, . . . , ℎ𝑛, 𝜋𝑛).

To verify some (𝑞, ℎ, 𝜋), it is checked that the ℎ𝑖 contained in 𝜋 sum to ℎ, and the 𝜋𝑖
are valid under the respective key vk𝑖 . Security follows by the fact that the simulator

will be able to evaluate the functions associated with the corrupted servers. It can

then change the outputs corresponding to one of the honest parties such that the

sum of this output and the predicted outputs by the other servers matches the value

obtained from F𝑉𝑅𝑂 . Security follows by replacing the PRF used by this honest

parties’ ideal functionality with a random function and observing that the result of a

sum is uniform as long as at least one summand is uniform. Security crucially hinges

on the fact that even corrupted servers are bound to either produce consistent values

or not respond at all.

• Threshold: By distributing equal keys among parties as in 𝜋𝐹𝐻𝐸 , strong robustness

can be achieved. Each subset of three of the four servers is assigned a key 𝑘1. On input

𝑞, a caller engages in three oblivious evaluations with each server. An interaction

with one of the servers is considered to have succeeded only once all three evaluations

have successfully concluded. As soon as at least three of the four interactions have

succeeded, the hash ℎ is computed in the obvious way (all partial hashes obtained

from successful interactions are guaranteed to be correct, so the caller may select

and sum one of them for each 𝑘𝑖). All partial proofs are included in the final proof

𝜋 . Valid proofs must contain at least two valid partial proofs for each of the four

keys as well as partial hashes summing to ℎ. Security follows by arguments similar

to those proving the security of 𝜋𝐹𝐻𝐸 . In contrast to 𝜋𝐹𝐻𝐸 , however, this protocol

can cope with having a client receive responses from only three of the four servers

whereas a caller in 𝜋𝐹𝐻𝐸 always had to wait until a message had been received from

all four servers.

Starting from Weaker OPRF Variants So far, we have constructed protocols for F𝑉𝑅𝑂 from

one of the strongest forms of OPRF protocol, i.e. publicly verifiable ones. It seems difficult

to make black-box use of weaker forms of OPRF protocols for the following reasons. As

F𝑉𝑅𝑂 itself is publicly verifiable, we somehow have to add this property to the OPRF

protocol. If we were to use an ordinary OPRF protocol, we would have to overcome the

following problems. First, if we begin by letting the client evaluate the OPRF on its input

𝑞, thereby obtaining the hash ℎ, how do we force it to keep using ℎ in the subsequent

computation of the proof? If we do not do this, then a corrupted client can replace ℎ with

some different value ℎ′ and potentially obtain a valid proof for the pair (𝑞, ℎ′). This breaks
unforgeability. Second, how do we enforce servers using the same key 𝑘 across different

evaluations and make this verifiable not only to the party doing the evaluation but also to

any verifier? Again it seems like we have to let servers publish commitments to their keys

and require them to prove that they keep using the same key across different evaluations

in a publicly verifiable manner. The latter strategy essentially leads us back to publicly

verifiable OPRF protocols.

158

6.4. Using a Concrete OPRF

6.3.1. Relation between OPRF and Hybrid Instantiations

We can also generically construct a hybrid instantiation (see Section 5.7 for what this

means) generically using a publicly verifiable OPRF. These will have even better properties

than the construction given in Section 5.7 as they also hide the input in the full corruption

case. The core idea is identical. Instead of directly outputting the output ℎ′ generated by

the OPRF protocol, the client first hashes the input 𝑞 and adds the result ℎ∗ = H to ℎ′ to
obtain the final hash ℎ.

In case the server is not corrupted and H is only collision resistant, security follows by

reducing to the collision-resistance of H. If the server is corrupted, on the other hand, the

simulator can evaluate the function to which the server has committed itself (and which

may not be pseudo-random) and can program H correctly.

Again, the reason why we have chosen not to present this construction in Section 5.7 is

the fact that it uses the very strong primitive of a publicly verifiable OPRF protocol. While

this yields hiding of inputs even in the full corruption case, doing so comes at a cost (which

can be seen by the fact that all efficient such protocols make use of random oracles and

we explicitly wish to eliminate them in the case where H is modeled as a standard-model

function).

6.4. Using a Concrete OPRF

Having looked at generic ways of constructing protocols UC-realizing F𝑉𝑅𝑂 using any

publicly verifiable OPRF protocol, we will now be more concrete. As stated before, one

motivation for not presenting the generic construction above in Chapter 5 was the fact

that many protocols of this type use random oracles and NIZKPoKs. In [66], a protocol for

evaluating the Naor-Reingold (NR) PRF [75] is given which does not use random oracles.

We will be evaluating the generic threshold construction above when instantiated with

this protocol and compare it to 𝜋𝐹𝐻𝐸 .

The Naor-Reingold PRF The setting for the NR PRF PRF𝑁𝑅 are cyclic groups G of prime

order 𝑞. Let X = {0, 1}𝑙 be the desired domain. The key-space K then consists of 𝑙 + 1-

tuples in Z𝑞 , i.e. K = Z𝑙+1𝑞 . To evaluate PRF𝑁𝑅 on some input 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑙) and key

𝑎 = (𝑎0, 𝑎1, . . . , 𝑎𝑙), one computes

PRF𝑁𝑅 (𝑎, 𝑥) = 𝑔𝑎0

∏𝑙
𝑗=1
𝑎
𝑥 𝑗

𝑗 .

To show the pseudo-randomness of this family of functions one relies on the Decisional
Diffie-Hellman (DDH) assumption.

Oblivious Evaluation of the NR PRF We briefly describe the protocol for evaluating PRF𝑁𝑅
in an oblivious and verifiable manner. As it is given in [66], this protocol is not fully

publicly verifiable. It is only verifiable in the intermediate notion defined in Section 6.2.1

where parties holding a verification key vk can be sure that the correct function is used

in subsequent evaluations. However, it can be made publicly verifiable by making the

interactive proofs used in the protocol non-interactive and forming a proof 𝜋 them.

159

6. Related Primitives

Intuitively, the protocol is based on the following protocol for obliviously evaluating

PRF𝑁𝑅 (missing verifiability and with 𝑎0 = 1 being fixed). On input 𝑥 = (𝑥1, . . . , 𝑥𝑙), the
client and server engage in 𝑙 oblivious-transfers (OT) where in the 𝑖’th invocation the

client inputs 𝑥𝑖 and the server inputs 𝑎𝑖𝑟𝑖 and 𝑟𝑖 where 𝑟1, . . . , 𝑟𝑙 are random exponents.

The server also sends 𝐴 = 𝑔1/𝑟1 ...𝑟𝑘
. Clearly, the obtained information allows the client to

compute PRF𝑁𝑅 (𝑎, 𝑥).
Making this protocol verifiable, the verification key vk consists of the 𝑙+1 group elements

𝑔𝑎0, . . . , 𝑔𝑎𝑙 . The generic OT protocol is replaced by a specific protocol. Concretely, the client

constructs 𝑙 ciphertexts containing either (0, 1) or (1, 0), depending on the 𝑙 ’th bit of the

input, under a key-pair (pk, sk) generated by the client. The encryption scheme is required

to be (singly) homomorphic.
8
The server transforms these ciphertexts homomorphically

into ciphertexts of (𝑟𝑖, 0) and (0, 𝑎𝑖𝑟𝑖). By decrypting these evaluated ciphertexts, the client
is able to compute the output.

During all of the interaction, both parties use various Σ-protocols which have been

strengthened using techniques from [51] to prove that they are behaving correctly.
9
These

could be made non-interactive in an efficient manner by using the Fiat-Shamir transform.

We, however, wish to evaluate the viability of a construction for F𝑉𝑅𝑂 using this protocol.

By working in the ROM, this evaluation would become meaningless as we have a much

more efficient protocol at our disposal in this case. Thus, making the proofs non-interactive

may incur expensive reductions to NP-complete languages.

Conclusion We compare 𝜋𝐹𝐻𝐸 and the generic threshold construction from Section 6.3

using the protocol just described.

• Proof size: Instantiating 𝜋𝐹𝐻𝐸 with SPS and GS-proofs as laid out in Section 5.4.10,

proofs consist of four NIWI proofs 𝜋𝑖 . Each of these can be represented by a small

constant number of group elements. On the other hand, the type of statements

involved in the protocol for evaluating PRF𝑁𝑅 seem to be much larger yielding larger

proofs.

• Assumptions: As we have already noted, making the above protocol non-interactive

requires the full capabilities of NIZK while 𝜋𝐹𝐻𝐸 requires the (slightly) weaker notion

of NIWI proofs.

• Interaction: Both protocols do not require any interaction between the servers dur-

ing hash queries. Similar amounts of interaction are required during the initialization

phase.

• Computational Overhead: It is quite difficult to compare this aspect due to the

genericity of 𝜋𝐹𝐻𝐸 and us not having specified how to make the protocol for evaluat-

ing PRF𝑁𝑅 publicly verifiable. If we are only concerned with the efficiency of the

verifier (in practice, these will most likely be the entities with the least computational

resources), then again due to the smaller proof sizes, 𝜋𝐹𝐻𝐸 seems to have an edge in

this regard.

8
In [66], Paillier encryption is used.

9
This requires using a common reference string.

160

6.5. VOPRF from VRO

6.5. VOPRF from VRO

In this section, we investigate whether F𝑉𝑅𝑂 may be used to UC-realize some (publicly

verifiable) F𝑉𝑂𝑃𝑅𝐹 with domain X and codomain Y.

6.5.1. Naive Approach

We begin by showing that a naive protocol does not work. At first sight, F𝑉𝑅𝑂 is already
a publicly verifiable F𝑉𝑂𝑃𝑅𝐹 . A client, on input 𝑞, makes a hash query for 𝑞 to F𝑉𝑅𝑂 and

obtains a hash ℎ and proof 𝜋 . To later verify 𝜋 , a verification query is made (after having

obtained the verification key vk). The problem with this approach is that all OPRF variants

guarantee that the client on its own can not evaluate the function without the server

agreeing for this to occur. If we consider the corresponding protocol in the F𝑅𝑂-hybrid
model obtained by applying Theorem 5.1.1, we see that this would lead to a protocol where

the client simply evaluates F𝑅𝑂 , i.e. a local function, and this clearly does not involve any

server.
10

If, on the other hand, we think about our protocol 𝜋𝐹𝐻𝐸 from Section 5.4, we

see that the insufficiency of this protocol can also be partially explained by our modeling

choice of not explicitly including the servers as physical parties in the description of

F𝑉𝑅𝑂 .11 In 𝜋𝐹𝐻𝐸 , no client can successfully complete a hash query without interacting

with at least some of the servers. But letting the F𝑉𝑂𝑃𝑅𝐹 server be the entity providing

the functionality of all the 𝜋𝐹𝐻𝐸 servers neither solves all of the problems. In this new

situation, a corrupted server would be free to choose arbitrary hashes as the consistency

property for 𝜋𝐹𝐻𝐸 requires three of the four servers to be honest. Indeed, this is what we

mentioned above regarding us not having constructed a publicly verifiable OPRF using

FHE and signatures, but relying on the honest servers to correct potential deviations by

the corrupted server.

The full situation is thus the following. There are protocols 𝜉 which UC-realize F𝑉𝑅𝑂
in a client-server model with a single server and which at the same time UC-realize a

publicly verifiable variant of F𝑉𝑂𝑃𝑅𝐹 with the same distribution of roles. These protocols

𝜉 are essentially the protocols for single parties described in Section 6.3. When they are

considered as protocols for F𝑉𝑅𝑂 , while they only UC-realize F𝑉𝑅𝑂 when the server is

honest, some properties such as obliviousness and unforgeability of proofs are retained

even if the server is corrupted. Taken together, these two results establish a kind of

equivalence between protocols for a publicly verifiable F𝑉𝑂𝑃𝑅𝐹 and for F𝑉𝑅𝑂 in the specific

model of a single server and where obliviousness and unforgeability of proofs hold also

for a corrupted server.

There is not quite an exact equivalence between protocols for F𝑉𝑅𝑂 with a single server

and publicly verifiable OPRF protocols due to the fact that, as we have seen, there are

other types of protocols for F𝑉𝑅𝑂 which make use of a trusted server and which thus do

not yield OPRF protocols as they do not have to hide inputs.

10
It would indeed be publicly verifiable, however.

11
Which was deliberate as we are modeling F𝑉𝑅𝑂 as providing a public random function, i.e. an abstract

service, to the other protocol parties and wish to abstract from the physical form this may take in any

concrete instantiation.

161

6. Related Primitives

6.5.2. Arguments Against an Unconditional Construction

In the last paragraph, we have only shown that the protocol which simply evaluates F𝑉𝑅𝑂
does not work. We now show that it is unlikely that there unconditionally exists a protocol

𝜉 in the F𝑉𝑅𝑂-hybrid model which yields a publicly verifiable F𝑉𝑂𝑃𝑅𝐹 . Again by the fact

that F𝑅𝑂 can be seen as an idealized version of F𝑅𝑂 , 𝜉 would immediately yield a protocol

𝜉′ for F𝑉𝑂𝑃𝑅𝐹 in the F𝑅𝑂 -hybrid model. Translating this into simpler terms, it would yield a

protocol where both client and server have access to a hash function modeled as a random

oracle for verifiably and obliviously evaluating a PRF. It is thus sufficient to argue that

even in the F𝑅𝑂-hybrid model there can not exist such a 𝜉′.
The arguments against such a protocol are the following:

• If 𝜉′ has non-trivial verification keys vk ≠ ⊥, then computing from these the secret

key 𝑘 held by the server would have to be infeasible, i.e. computing vk from 𝑘 would

have to be a one-way function.

• If 𝜉′, on the other hand, has trivial verification keys vk = ⊥, then the correct evalua-

tion of the function represented by a session of F𝑉𝑂𝑃𝑅𝐹 must be verifiable using only

access to F𝑅𝑂 and making queries which are efficiently derivable from the pair (𝑞, ℎ)
to be verified.

6.5.3. Relying on Computational Assumptions

One possibility for circumventing the results of the last section is to rely on computational

intractability assumptions in constructing a protocol. Similarly to the applications, we

considered in Chapter 4, this would entail adapting an existing (or new) protocol in the

F𝑅𝑂-model to the F𝑉𝑅𝑂-hybrid model and showing that the resulting protocol remains

sound. We argue that this is generally the case in Section A.8 of the appendix.

162

7. Future Work

In this chapter, we take a look at what may be interesting venues for future research on

the topic of VROs.

7.1. Adaptive Adversaries

Within this thesis, we have only considered static adversaries where the set of corrupted

parties is fixed at the start and known to the simulator. As a stronger notion of corruption,

adaptive adversaries choose the parties which they corrupt dynamically over the course

of protocol execution. Depending on whether erasures are allowed, the adversary learns

either only the current internal state of the party at the time of corruption or is given

access to all past states.

Briefly considering an adaptive adversary attacking our protocol 𝜋𝐹𝐻𝐸 , we see that the

simulation strategy crucially hinges on the fact that the simulator is able to choose the PRF

key 𝑘 for which to replace the PRF with a random function such that the corrupted server

does not know 𝑘 . It thus seems reasonable to assume that there is no valid simulator for

an adaptive adversary and so finding a protocol secure against adaptive adversaries, either

with erasures or without, is left for future work.

7.2. Standalone Security

It might be interesting to consider instantiations of F𝑉𝑅𝑂 when considering it as a function-

ality in the stand-alone model of security. The main difference is that there environment

and adversary are not allowed to communicate during the execution of the protocol. Only

after the execution has ended, which for reactive functionalities happens by choice of the

environment, the view of the adversary is given to the environment which based on this

information makes its decision between real and ideal interaction.

In particular, this allows the simulator to rewind its black-box simulation of the adversary.

Only the final view has to be correctly distributed. One way this manifests itself is a

simplification of 𝜋𝐹𝐻𝐸 where the UC-secure ideal functionalities for zero-knowledge as

well as the MPC protocol used during initialization of the servers are replaced by their

stand-alone counterparts. Apart from these changes, there may exist other protocols which

are overall more simple.

163

7. Future Work

7.3. More Tasks

Some more variations and extensions of F𝑉𝑅𝑂 may be investigated. One may for example

add further tasks to F𝑉𝑅𝑂 which allow things such as batch queries, i.e. hash queries

containing multiple inputs (𝑞1, 𝑞2, . . . , 𝑞𝑛), batch verification, or proof aggregation, i.e.
proofs 𝜋𝑖 attesting to the correctness of pairs (𝑞𝑖, ℎ𝑖) may be combined into a single proof

𝜋 which can then be verified using a separate task.

One may also investigate other types of proofs than those of correct evaluation. An

example for this are range-type proofs which assert that the hash ℎ for some input 𝑞 lies

in a subset S ⊂ H of the full codomainH . A special kind of such proofs arise when S is

equal toH \ {ℎ} for some element ℎ ∈ H . Using such proofs, a party would be able to

show that the hash for some input 𝑞 is not equal to ℎ, but is otherwise unconstrained.

7.4. Weaker Randomness Guarantees

The current formulation of F𝑉𝑅𝑂 requires hash values to be computationally indistinguish-

able from uniform as well as independent for every single input. It does not matter whether

the queried inputs are themselves related. A common relaxation of this requirement, e.g.

seen in weak PRFs [31] or deterministic PKE [4], is that the entropy of hashes is related

to the entropy of inputs, i.e. highly correlated inputs are allowed to have similar hashes

associated to them.

This would at the same time be a modeling task of expressing such a requirement in

the UC framework. As one can no longer allow the environment to freely and adaptively

choose inputs, the hash query task would have to be appropriately adapted.

7.5. Global VRO

The generalized UC framework (GUC) [24] allows the definition of global functionalities

which are able to be used not only by parties within a single session of some protocol 𝜉 ,

but are globally available. It may be interesting to define a global version G𝑉𝑅𝑂 of F𝑉𝑅𝑂
and consider its limitations. In particular, a comparison with variants of the global random

oracle functionality G𝑅𝑂 , e.g. as defined in [15], may be done.

7.6. More Efficient Instantiations

As we have noted before, the protocol we defined in Section 5.4 is quite inefficient based

on our use of both FHE and NIWI. Eliminating both of these primitives and thus coming

up with a practically efficient instantiation is an open question. Another aspect is the

scalability with respect to the number of corrupted parties. By being based on the PRF

construction from [35] we inherited the same scalability issues mentioned there.

164

8. Conclusion

In this thesis, we have explored the concept of verifiable random oracles as a way to replace

the heuristic security provided by the random oracle methodology with provable security.

In this chapter, we summarize our results.

Verifiable Random Oracles We began by motivating and defining an ideal functionality

F𝑉𝑅𝑂 in the UC framework. Compared to the random oracle functionality F𝑅𝑂 , this
functionality allows the creation and verification of proofs of correct evaluation. This was

motivated by an analysis of how random oracles are commonly used within protocols

to check that some other party correctly computed a hash value. The definition we

made allows protocols realizing F𝑉𝑅𝑂 to have interactive generation of proofs, but forces

verification of proofs to be non-interactive.

Applications We then applied our model to two ROM applications, FDH signatures

and the Fischlin transform. We showed that both of these can be transferred soundly

into the VROM while utilizing the ability to non-interactively verify proofs to retain

the non-interactive verifiability of FDH signatures and proofs of Fischlin-transformed

zero-knowledge proofs.

Instantiations Having shown the applicability of our definition, we proceeded to show

that there are protocols that satisfy it. First, we showed an instantiation based on random

oracles, thereby proving that our definition is a relaxation of random oracles. Second,

we gave two instantiations where a single trusted party provides the VRO. Last, we gave

an instantiation where multiple servers jointly provide a VRO and where a subset of the

servers may be statically and maliciously corrupted. It is based on fully-homomorphic

encryption.

Related Definitions In Chapter 6, we first contrasted our definition in the UC framework

with the game-based definition from [35]. We showed that our definition is stronger once

we take the necessary relaxations by working in the UC framework, such as having to give

the adversary the ability to delay the delivery of proofs, into account. We also compared it

to (variations of) definitions for OPRF protocols.

165

Bibliography

[1] Masayuki Abe et al. “Structure-preserving signatures and commitments to group

elements”. In: Annual Cryptology Conference. Springer. 2010, pp. 209–236.

[2] Martin R. Albrecht et al. “Round-optimal verifiable oblivious pseudorandom func-

tions from ideal lattices”. In: IACR International Conference on Public-Key Cryptogra-
phy. Springer. 2021, pp. 261–289.

[3] Matilda Backendal et al. “The Fiat-Shamir zoo: relating the security of different

signature variants”. In: Nordic Conference on Secure IT Systems. Springer. 2018,
pp. 154–170.

[4] Mihir Bellare, Alexandra Boldyreva, and AdamO’Neill. “Deterministic and efficiently

searchable encryption”. In: Annual International Cryptology Conference. Springer.
2007, pp. 535–552.

[5] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. “Instantiating random

oracles via UCEs”. In: Annual Cryptology Conference. Springer. 2013, pp. 398–415.

[6] Mihir Bellare and Phillip Rogaway. “Optimal asymmetric encryption”. In: Workshop
on the Theory and Application of of Cryptographic Techniques. Springer. 1994, pp. 92–
111.

[7] Mihir Bellare and Phillip Rogaway. “Random oracles are practical: A paradigm for

designing efficient protocols”. In: Proceedings of the 1st ACM Conference on Computer
and Communications Security. 1993, pp. 62–73.

[8] Mihir Bellare and Phillip Rogaway. “The exact security of digital signatures-How to

sign with RSA and Rabin”. In: International conference on the theory and applications
of cryptographic techniques. Springer. 1996, pp. 399–416.

[9] Josh Benaloh and Michael de Mare. “One-way accumulators: A decentralized al-

ternative to digital signatures”. In: Workshop on the Theory and Application of of
Cryptographic Techniques. Springer. 1993, pp. 274–285.

[10] M BLUM. “How to generate cryptographically strong sequences of pseudo-random

bits”. In: SIAM J. Comput. 13 (1984), pp. 850–864.

[11] Dan Boneh and Xavier Boyen. “Efficient selective-ID secure identity-based encryp-

tion without random oracles”. In: International conference on the theory and applica-
tions of cryptographic techniques. Springer. 2004, pp. 223–238.

[12] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short signatures from theWeil pairing”.

In: International conference on the theory and application of cryptology and information
security. Springer. 2001, pp. 514–532.

167

Bibliography

[13] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) fully homo-

morphic encryption without bootstrapping”. In: ACM Transactions on Computation
Theory (TOCT) 6.3 (2014), pp. 1–36.

[14] Jan Camenisch and Anja Lehmann. “Privacy-preserving user-auditable pseudonym

systems”. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE. 2017, pp. 269–284.

[15] Jan Camenisch et al. “The wonderful world of global random oracles”. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2018, pp. 280–312.

[16] Jan Camenisch et al. “Universal composition with responsive environments”. In:

International Conference on the Theory and Application of Cryptology and Information
Security. Springer. 2016, pp. 807–840.

[17] Ran Canetti. “Towards realizing random oracles: Hash functions that hide all partial

information”. In:Annual International Cryptology Conference. Springer. 1997, pp. 455–
469.

[18] Ran Canetti. “Universally composable security: A new paradigm for cryptographic

protocols”. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science.
IEEE. 2001, pp. 136–145.

[19] Ran Canetti. “Universally composable signature, certification, and authentication”.

In: Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004. IEEE. 2004,
pp. 219–233.

[20] Ran Canetti, Yilei Chen, and Leonid Reyzin. “On the correlation intractability of

obfuscated pseudorandom functions”. In: Theory of cryptography conference. Springer.
2016, pp. 389–415.

[21] Ran Canetti and Marc Fischlin. “Universally composable commitments”. In: Annual
International Cryptology Conference. Springer. 2001, pp. 19–40.

[22] Ran Canetti, Oded Goldreich, and Shai Halevi. “The random oracle methodology,

revisited”. In: Journal of the ACM (JACM) 51.4 (2004), pp. 557–594.

[23] Ran Canetti, Daniel Shahaf, and Margarita Vald. “Universally composable authenti-

cation and key-exchange with global PKI”. In: Public-Key Cryptography–PKC 2016.
Springer. 2016, pp. 265–296.

[24] Ran Canetti et al. “Universally composable security with global setup”. In: Theory of
Cryptography Conference. Springer. 2007, pp. 61–85.

[25] Ran Canetti et al. “Universally composable two-party and multi-party secure com-

putation”. In: Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing. 2002, pp. 494–503.

[26] Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. “SoK: Oblivious Pseudorandom

Functions”. In: Cryptology ePrint Archive (2022).

[27] Melissa Chase and Anna Lysyanskaya. “Simulatable VRFs with applications to multi-

theorem NIZK”. In: Annual International Cryptology Conference. Springer. 2007,
pp. 303–322.

168

[28] Sanjit Chatterjee andAlfredMenezes. “Type 2 structure-preserving signature schemes

revisited”. In: International Conference on the Theory and Application of Cryptology
and Information Security. Springer. 2015, pp. 286–310.

[29] Ran Cohen, Abhi Shelat, and Daniel Wichs. “Adaptively secure MPC with sublin-

ear communication complexity”. In: Annual International Cryptology Conference.
Springer. 2019, pp. 30–60.

[30] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. “Proofs of partial knowl-

edge and simplified design of witness hiding protocols”. In: Annual International
Cryptology Conference. Springer. 1994, pp. 174–187.

[31] Ivan Damgåard and Jesper Buus Nielsen. “Expanding pseudorandom functions; or:

From known-plaintext security to chosen-plaintext security”. In: Annual Interna-
tional Cryptology Conference. Springer. 2002, pp. 449–464.

[32] I Damgård. On Sigma-Protocols. http://www.daimi.au.dk/~ivan/Sigma.pdf.

[33] Alexander W Dent et al. “Confidential signatures and deterministic signcryption”.

In: International Workshop on Public Key Cryptography. Springer. 2010, pp. 462–479.

[34] Yvo G Desmedt. “Threshold cryptography”. In: European Transactions on Telecom-
munications 5.4 (1994), pp. 449–458.

[35] Karsten Diekhoff. “Verifiable Random Oracles”. MA thesis. Karlsruher Institut für

Technologie (KIT), 2021. doi: 10.5445/IR/1000135426.

[36] Whitfield Diffie and Martin E. Hellman. “New directions in cryptography”. In: IEEE
Trans. Information Theory 22.6 (1976), pp. 644–654. doi: 10.1109/TIT.1976.1055638.

url: https://doi.org/10.1109/TIT.1976.1055638.

[37] Marten van Dijk et al. “Fully homomorphic encryption over the integers”. In: Annual
international conference on the theory and applications of cryptographic techniques.
Springer. 2010, pp. 24–43.

[38] Yevgeniy Dodis. “Efficient construction of (distributed) verifiable random functions”.

In: International Workshop on Public Key Cryptography. Springer. 2003, pp. 1–17.

[39] Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak. “On the generic insecurity

of the full domain hash”. In: Annual International Cryptology Conference. Springer.
2005, pp. 449–466.

[40] Yevgeniy Dodis and Aleksandr Yampolskiy. “A verifiable random function with short

proofs and keys”. In: International Workshop on Public Key Cryptography. Springer.
2005, pp. 416–431.

[41] Léo Ducas and Daniele Micciancio. “FHEW: bootstrapping homomorphic encryp-

tion in less than a second”. In: Annual international conference on the theory and
applications of cryptographic techniques. Springer. 2015, pp. 617–640.

[42] Taher ElGamal. “A public key cryptosystem and a signature scheme based on discrete

logarithms”. In: IEEE transactions on information theory 31.4 (1985), pp. 469–472.

169

http://www.daimi.au.dk/~ivan/Sigma.pdf
https://doi.org/10.5445/IR/1000135426
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638

Bibliography

[43] Paul Feldman. “A practical scheme for non-interactive verifiable secret sharing”. In:

28th Annual Symposium on Foundations of Computer Science (sfcs 1987). IEEE. 1987,
pp. 427–438.

[44] Amos Fiat and Adi Shamir. “How to prove yourself: Practical solutions to identi-

fication and signature problems”. In: Conference on the theory and application of
cryptographic techniques. Springer. 1986, pp. 186–194.

[45] Marc Fischlin. “Communication-efficient non-interactive proofs of knowledge with

online extractors”. In: Annual International Cryptology Conference. Springer. 2005,
pp. 152–168.

[46] Nils Fleischhacker et al. “Pseudorandom signatures”. In: Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and communications security. 2013,
pp. 107–118.

[47] Eduarda SV Freire, Julia Hesse, and Dennis Hofheinz. “Universally composable non-

interactive key exchange”. In: International Conference on Security and Cryptography
for Networks. Springer. 2014, pp. 1–20.

[48] Georg Fuchsbauer and Michele Orrù. “Non-interactive zaps of knowledge”. In:

International Conference on Applied Cryptography and Network Security. Springer.
2018, pp. 44–62.

[49] Jun Furukawa and Yehuda Lindell. “Two-thirds honest-majority MPC for malicious

adversaries at almost the cost of semi-honest”. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. 2019, pp. 1557–1571.

[50] David Galindo et al. “Fully distributed verifiable random functions and their ap-

plication to decentralised random beacons”. In: 2021 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE. 2021, pp. 88–102.

[51] Juan A Garay, Philip MacKenzie, and Ke Yang. “Strengthening zero-knowledge pro-

tocols using signatures”. In: International Conference on the Theory and Applications
of Cryptographic Techniques. Springer. 2003, pp. 177–194.

[52] Rosario Gennaro et al. “Secure distributed key generation for discrete-log based

cryptosystems”. In: Journal of Cryptology 20.1 (2007), pp. 51–83.

[53] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. 2009, pp. 169–178.

[54] Craig Gentry, Shai Halevi, and Nigel P Smart. “Fully homomorphic encryption with

polylog overhead”. In:Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer. 2012, pp. 465–482.

[55] Craig Gentry, Amit Sahai, and Brent Waters. “Homomorphic encryption from learn-

ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based”. In:

Annual Cryptology Conference. Springer. 2013, pp. 75–92.

[56] Craig Gentry and Alice Silverberg. “Hierarchical ID-based cryptography”. In: In-
ternational conference on the theory and application of cryptology and information
security. Springer. 2002, pp. 548–566.

170

[57] Oded Goldreich. Foundations of Cryptography, Volume 2. Cambridge university press

Cambridge, 2004.

[58] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to construct random

functions”. In: 25th Annual Symposium onFoundations of Computer Science, 1984.
IEEE. 1984, pp. 464–479.

[59] Oded Goldreich and Yair Oren. “Definitions and properties of zero-knowledge proof

systems”. In: Journal of Cryptology 7.1 (1994), pp. 1–32.

[60] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The knowledge complexity of

interactive proof systems”. In: SIAM Journal on computing 18.1 (1989), pp. 186–208.

[61] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. “A digital signature scheme

secure against adaptive chosen-message attacks”. In: SIAM Journal on computing
17.2 (1988), pp. 281–308.

[62] Jens Groth. “Efficient fully structure-preserving signatures for large messages”. In:

International Conference on the Theory and Application of Cryptology and Information
Security. Springer. 2015, pp. 239–259.

[63] Jens Groth. “Simulation-sound NIZK proofs for a practical language and constant

size group signatures”. In: International Conference on the Theory and Application of
Cryptology and Information Security. Springer. 2006, pp. 444–459.

[64] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “New techniques for noninteractive

zero-knowledge”. In: Journal of the ACM (JACM) 59.3 (2012), pp. 1–35.

[65] Susan Hohenberger and Brent Waters. “Short and stateless signatures from the

RSA assumption”. In: Annual International Cryptology Conference. Springer. 2009,
pp. 654–670.

[66] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. “Round-optimal password-

protected secret sharing and T-PAKE in the password-only model”. In: International
Conference on the Theory and Application of Cryptology and Information Security.
Springer. 2014, pp. 233–253.

[67] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. “OPAQUE: an asymmetric PAKE

protocol secure against pre-computation attacks”. In:Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer. 2018, pp. 456–
486.

[68] Stanisław Jarecki et al. “TOPPSS: cost-minimal password-protected secret sharing

based on threshold OPRF”. In: International Conference on Applied Cryptography and
Network Security. Springer. 2017, pp. 39–58.

[69] Antoine Joux. “A one round protocol for tripartite Diffie–Hellman”. In: International
algorithmic number theory symposium. Springer. 2000, pp. 385–393.

[70] Neal Koblitz and Alfred J Menezes. “The random oracle model: a twenty-year retro-

spective”. In: Designs, Codes and Cryptography 77.2 (2015), pp. 587–610.

[71] Yashvanth Kondi et al. “Improved Straight-Line Extraction in the Random Oracle

Model With Applications to Signature Aggregation”. In: Cryptology ePrint Archive
(2022).

171

Bibliography

[72] Anna Lysyanskaya. “Unique signatures and verifiable random functions from the

DH-DDH separation”. In: Annual International Cryptology Conference. Springer.
2002, pp. 597–612.

[73] Blum Manuel. “Coin flipping by telephone”. In: IEEE Workshop on Communications
Securit, A Report on CRYPTO’81. 1981, pp. 11–15.

[74] Silvio Micali, Michael Rabin, and Salil Vadhan. “Verifiable random functions”. In:

40th annual symposium on foundations of computer science (cat. No. 99CB37039). IEEE.
1999, pp. 120–130.

[75] Moni Naor and Omer Reingold. “Number-theoretic constructions of efficient pseudo-

random functions”. In: Journal of the ACM (JACM) 51.2 (2004), pp. 231–262.

[76] Moni Naor and Moti Yung. “Universal one-way hash functions and their crypto-

graphic applications”. In: Proceedings of the twenty-first annual ACM symposium on
Theory of computing. 1989, pp. 33–43.

[77] Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. “Ma-

liciously circuit-private FHE”. In: Annual Cryptology Conference. Springer. 2014,
pp. 536–553.

[78] Pascal Paillier. “Public-key cryptosystems based on composite degree residuosity

classes”. In: International conference on the theory and applications of cryptographic
techniques. Springer. 1999, pp. 223–238.

[79] David Pointcheval and Olivier Sanders. “Short randomizable signatures”. In: Cryp-
tographers’ Track at the RSA Conference. Springer. 2016, pp. 111–126.

[80] David Pointcheval and Jacques Stern. “Security arguments for digital signatures and

blind signatures”. In: Journal of cryptology 13.3 (2000), pp. 361–396.

[81] Alfredo De Santis et al. “Robust non-interactive zero knowledge”. In: Annual Inter-
national Cryptology Conference. Springer. 2001, pp. 566–598.

[82] Claus-Peter Schnorr. “Efficient identification and signatures for smart cards”. In:

Conference on the Theory and Application of Cryptology. Springer. 1989, pp. 239–252.

[83] Adi Shamir. “How to share a secret”. In: Communications of the ACM 22.11 (1979),

pp. 612–613.

[84] Nigel P Smart and Frederik Vercauteren. “Fully homomorphic encryption with

relatively small key and ciphertext sizes”. In: International Workshop on Public Key
Cryptography. Springer. 2010, pp. 420–443.

172

A. Appendix

A.1. Standard Definitions

We recall standard definitions for cryptographic primitives.

A.1.1. Pseudo-Random Functions

One of the classical cryptographic primitives are pseudo-random functions (PRF) [58]. A
PRF PRF with key-space K , domain X, and codomain Y is a function PRF : K × X → Y
such that no PPT algorithm A can distinguish between Gprf

A,PRF(𝜆, 0) and Gprf

A,PRF(𝜆, 1)
shown in Figure A.1, except with negligible probability. A is given access to an oracle

O𝑏 which is either given as PRF(𝑘, ·) for a randomly sampled key 𝑘 or by a truly random

function RF, implemented below via lazy sampling.

We define the advantage Advprf

A,PRF(𝜆) of A to be

Advprf

A,PRF(𝜆) = | Pr
[
Gprf

A,PRF(𝜆, 0) = 1

]
− Pr

[
Gprf

A,PRF(𝜆, 1) = 1

]
| (A.1)

DefinitionA.1.1 (Pseudo-Random Function). PRF is a secure PRF iff for all PPT algorithms

A, Advprf

A,PRF(𝜆) is a negligible function in 𝜆.

A.1.2. Trapdoor One-Way Permutations

A trapdoor one-way permutation (TDOWP) consists of a PPT algorithm Gen which, on

input the security parameter 1
𝜆
, outputs descriptions of two functions 𝑓 , 𝑓 −1

. Both 𝑓 and

𝑓 −1
are permutations on domain X𝑓 . For all 𝑥 ∈ X𝑓 , it holds that

𝑓 −1 ◦ 𝑓 (𝑥) = 𝑓 ◦ 𝑓 −1(𝑥) = 𝑥

i.e. 𝑓 and 𝑓 −1
are inverses of each other. As indicated by the subscript, we allow X𝑓

to depend on the specific permutation but require X𝑓 to be efficiently recognizable and

samplable when given 𝑓 . We will later drop the dependence on 𝑓 and only write X.
Security is defined by the usual definition for one-way functions where we fix the

distribution from which pre-images are sampled to be the uniform distribution. The

challenger generates some function key 𝑓 using Gen and samples a random element 𝑥

from the domain. It hands 𝑓 and 𝑥 to the adversaryA and the adversary wins if it outputs

𝑥 . Note that due to the fact that 𝑓 is a permutation, there are no other elements 𝑥′ with
𝑓 (𝑥′) = 𝑓 (𝑥) and so the exact element sampled by the challenger has to be found.

173

A. Appendix

Gprf

A,PRF(𝜆, 0)
𝑘 ←$ K
return AO (1𝜆)

O0(𝑥)
return PRF(𝑘, 𝑥)

Gprf

A,PRF(𝜆, 1)
𝐿[·] ← ⊥
return AO (1𝜆)

O1(𝑥)
if 𝐿[𝑥] ≠ ⊥ do

return 𝐿[𝑥]
fi
𝑦 ←$ Y
𝐿[𝑥] = 𝑦
return 𝑦

Figure A.1.: The PRF security game.

Gtd−owp

A,Gen (𝜆)
(𝑓 , 𝑓 −1) ← Gen(1𝜆)
𝑥 ← X𝑓
𝑦 = 𝑓 (𝑥)
𝑥 ′ ← A(1𝜆, 𝑓 , 𝑦)

return 𝑥 ?

= 𝑥 ′

Figure A.2.: The TDOWP security game.

Definition A.1.2 (Trapdoor One-Way Permutation). A PPT algorithm Gen defines a

TDOWP, if for every PPT adversary A and the game Gtd−owp

A,Gen shown in Figure A.2

Pr
[
Gtd−owp

A,Gen (𝜆) = 1

]
is negligible is 𝜆.

Example One example of a trapdoor permutation is the RSA function. There, Gen on

input 1
𝜆
first samples two random 𝜆-bit primes 𝑃 and 𝑄 . It then computes 𝑁 = 𝑃𝑄 and

𝜙 (𝑁) = (𝑃 − 1) (𝑄 − 1). An element 𝑒 with gcd(𝜙 (𝑁), 𝑒) is selected and 𝑑 with 𝑑𝑒 ≡ 1 (
mod 𝑁) is computed using the extended euclidean algorithm. The function key 𝑓 then

consists of (𝑁, 𝑒) and 𝑓 −1
contains (𝑁,𝑑). To apply 𝑓 to an element 𝑥 from the domain

X𝑓 = Z𝑁 , 𝑦 = 𝑥𝑒 mod 𝑁 is computed. To apply 𝑓 −1
to 𝑦, compute 𝑥 as 𝑥 = 𝑦𝑑 mod 𝑁 .

The RSA function is a TDOWP under the RSA assumption.

A.1.3. Digital Signature Schemes

Like ordinary signatures, digital signatures [36] can be used to prove both the integrity

and authenticity of messages originating from some sender. A digital signature scheme

SIG with message spaceM is a three-tuple of algorithms (Gen, Sign,Verify). We will now

describe the purpose of each algorithm in turn and then define the correctness and security

of signature schemes.

The algorithm Gen, on input the unary security parameter, outputs a pair (vk, sk)
consisting of a verification key vk and a signing key sk. The second algorithm Sign
receives the signing key sk as well as a message𝑚 ∈ M and outputs a signature string 𝜎 .

Finally, the verification algorithm Verify takes in the verification key vk, a message𝑚 and

the purported signature 𝜎 for𝑚, and outputs a bit 𝑏 ∈ {0, 1} which represents the decision

as to whether 𝜎 is a valid signature for𝑚. A signature scheme SIG is called correct, if

174

A.1. Standard Definitions

sEUF-CMA(A, 𝜆)
𝑄 ← ∅
(sk, vk) ← Gen(1𝜆)
(𝑚∗, 𝜎∗) ← ASign(·) (1𝜆, vk)

return Verify(vk, 𝜎∗,𝑚∗) ?

= 1

∧ (𝑚∗, 𝜎∗) ∉ 𝑄

Sign(𝑚)
𝜎 ← Sign(sk,𝑚)
𝑄 = 𝑄 ∪ {(𝑚,𝜎)}
return 𝜎

Figure A.3.: The sEUF-CMA security game.

∀ (sk, vk) ← Gen(1𝜆) ∀𝑚 ∈ M∀𝜎 ← Sign(sk,𝑚) : Verify(vk, 𝜎,𝑚) = 1 (A.2)

Security For the definition of security of a signature scheme SIGwe employ the notion(s)

of (strong) existential unforgeability under chosen message attacks ((s)EUF-CMA) [61]. The
definition is via a game, shown in Figure A.3, where an adversary A interacts with a

challenger C. C begins by generating a key-pair (sk, vk) and giving vk toA. An oracle Sign
is made accessible to A and which on input a message𝑚 returns an honestly generated

signature 𝜎 using sk. Oracle queries are allowed to be adaptive, i.e. they may depend on

previously received signatures by the oracle. When A decides to end the game it outputs

a pair (𝑚∗, 𝜎∗) and wins if 𝜎∗ is a valid signature for𝑚∗.

Definition A.1.3 (Digital Signature Scheme). SIG is sEUF-CMA-secure iff for all PPT

adversaries A the probability

Adveuf−cma

A,SIG (𝜆) := Pr[sEUF-CMA(A, 𝜆) = 1]

is negligible in 𝜆. SIG is EUF-CMA-secure iff the probability is negligible in the altered

game where the check (𝑚∗, 𝜎∗) ∉ 𝑄 is replaced by the check that𝑚∗ is not among the first

components of elements in Q.

175

A. Appendix

A.2. An Ideal VRO Functionality with Algorithmic Verification

In this section, we define an alternative version of F𝑉𝑅𝑂 where the adversary not only

supplies an algorithm Prove for the generation of proofs, but also a second algorithm

Verify to verify proofs without in some cases having to contact the adversary to do so.

We first compare the differences between the two versions. Then we show some

problems which exist for this conceptually simpler definition and how they can be solved.

Finally, we argue why we chose to define F𝑉𝑅𝑂 the way we did.

Differences Let us call the alternative functionality F 𝑎𝑙𝑡
𝑉𝑅𝑂

. It is shown fully in Figure A.4

and is based on the 2005 version of Canetti’s signature functionality [18]
1
. The differences

between F𝑉𝑅𝑂 and F 𝑎𝑙𝑡
𝑉𝑅𝑂

are as follows.

• During initialization, instead of providing one algorithm Prove and an arbitrary

string vk, two algorithms (Prove,Verify) are asked to be provided. Verify is required

to be stateless and deterministic. The code of Verify is returned instead of vk to any

party sending an Init message.

• There are no longer any ver tuples that have to be stored to ensure consistency (of

verification queries). Only pairs of the form (𝑞, ℎ) have to be stored to ensure the

consistency (of hashing queries).

• Whenever a proof is generated using Prove it is checked using Verify. If the proof is
rejected then F 𝑎𝑙𝑡

𝑉𝑅𝑂
halts and outputs a (Completeness error).

• Verification queries have to include an algorithm Verify′ the decision whether to

accept or reject a verification query (𝑞, ℎ, 𝜋,Verify′) is always determined by simply

running Verify′ on (𝑞, ℎ, 𝜋), conditioned on the fact that a no forgery occurs. In case

of a forgery, which is determined to have occurred when the provided Verify′ is
equal to the correct Verify and 1 is returned despite ℎ not being set as the hash of 𝑞,

a (Unforgeability error) is output and F 𝑎𝑙𝑡
𝑉𝑅𝑂

halts.

Applying these changes arguably makes the functionality simpler to state, more sym-

metric between the different types of queries as well as more private with respect to

verification queries. There is, however, also a cost that has to be paid and which we

describe next.

Problems In this alternative formulation of F𝑉𝑅𝑂 , Verify has to be a plain algorithm such

that it can be executed within F𝑉𝑅𝑂 . This in particular means that there can be no accesses

to functionalities such as a random oracle functionality F𝑅𝑂 within Verify although we

can easily imagine protocols where this is the case. It is important to note that such calls

to ideal functionalities do not conflict with the non-interactivity of verification requests

in F𝑉𝑅𝑂 , i.e. that the simulator can not delay answers to such requests, as calls to ideal

functionalities are only interactive if they, in turn, allow the adversary to delay the delivery

of responses.

1
The 2005 version can be found here: https://eprint.iacr.org/archive/2000/067/20051214:064128

176

https://eprint.iacr.org/archive/2000/067/20051214:064128

A.2. An Ideal VRO Functionality with Algorithmic Verification

Solutions There are two solutions to this problem, see also the discussion in Section

3.1 of [15]. One is the solution we have opted for in F𝑉𝑅𝑂 , i.e. letting the adversary only

choose a verification key vk and having verification of proofs partially involve interaction

with the adversary. Another is to let Verify contain special instructions denoting a call

to some external functionality, e.g. a random oracle. F𝑉𝑅𝑂 would then implement these

instructions by supplying the correct result after making a query to obtain it. For F𝑉𝑅𝑂
to be able to obtain these results it is necessary to restrict to global functionalities. Such
functionalities exist in both the real as well as the ideal world and are directly accessible

to the environment
2
. This solution is quite unsatisfactory as it is relatively non-standard

and requires the use of global functionalities which may not always suffice.

Conclusion To conclude, we have opted not to choose this conceptually simpler version

and thereby give up the total obliviousness of the adversary to verification requests. The

reason for this choice lies in the main reason which led us to define F𝑉𝑅𝑂 in the first

place. As a relaxation of a random oracle. Only by allowing the verification procedure in a

protocol for F𝑉𝑅𝑂 to access ideal functionalities do we allow the protocol where both hash

and verification queries are implemented as calls to the ideal random oracle functionality

F𝑅𝑂 to UC-realize F𝑉𝑅𝑂 . Only in that case do we feel like we are able to claim that we have

achieved our goal.

2
Technically this is the case only within the EUC framework as opposed to the GUC framework [24], but

both frameworks are ultimately equivalent as proven in [24] (in the sense that the granted security is

equivalent, there exist protocols which can only be expressed in the GUC framework).

177

A. Appendix

The F 𝑎𝑙𝑡
𝑉𝑅𝑂

functionality

Initialization Upon receiving a value (Init, 𝑠𝑖𝑑) from party P, if this is the first

time that (Init, 𝑠𝑖𝑑) was received, send (Init, 𝑠𝑖𝑑) to the adversary. Wait for

an answer (Init, 𝑠𝑖𝑑, Prove,Verify) where Prove is the description of a stateless

PPT TM and Verify is the description of a stateless deterministic TM, store these

machines. Send public delayed output with either the just received or stored

Verify as (Key, 𝑠𝑖𝑑,Verify) to P.

Hashing Upon receiving a value (Hash, 𝑠𝑖𝑑, 𝑞) from party P, if there is no stored

(𝑞, ℎ) for some ℎ, let ℎ ← H . In either case proceed to send the adversary a

message (Hashing, 𝑠𝑖𝑑,P, ∥𝑞∥) and wait for an answer (SimInfo, 𝑠𝑖𝑑,P, 𝑠). Let
𝜋 ← Prove(𝑞, ℎ, 𝑠) and verify that Verify(𝑞, ℎ, 𝜋) = 1. If so, then send private

delayed output (HashProof, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋) to P and store (𝑞, ℎ). Else, output an error
message (Completeness error) to P and halt.

Verification Upon receiving a value (Verify, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋,Verify′) from some partyV ,

do the following: If Verify = Verify′, Verify(𝑞, ℎ, 𝜋) = 1 and no entry (𝑞, ℎ) is
recorded, then output an error message (Unforgeability error) to V and halt.

Else output (Verified, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜋,Verify′(𝑞, ℎ, 𝜋)) toV .

Figure A.4.: An alternative variant of the F𝑉𝑅𝑂 functionality where proofs are verified

algorithmically.

178

A.3. Additional Remarks

A.3. Additional Remarks

This section contains further remarks and technical asides referenced in the main part of

the thesis.

A.3.1. Remarks about the FHE Protocol

Remarks about the protocol 𝜋𝐹𝐻𝐸 defined in Section 5.4.4.

Infinite Domains If the domain in which the 𝑞 lie is finite, e.g. {0, 1}𝑝 (𝜆) for some

polynomial 𝑝 , fixed (in the security parameter 𝜆) circuits for computing PRF(𝑘𝑖, ·) and
SIG.Sign(sk, ·) may be generated after initialization and used for each query. If this is

not the case, generating new circuits upon encountering an input 𝑞 which has a new size

may be necessary. Depending on the specifics of the FHE scheme it may also be possible

to evaluate a circuit C𝑅 representing the round-function of a hash-function repeatedly

on parts of some large ciphertext 𝑐 , finally obtaining a ciphertext 𝑐′ containing the same

plaintext as would have been the result of evaluating some larger circuit representing the

whole hash-function (suitably unrolled) on 𝑐 .

Partial Hashes and Proof Structure Instead of including the four partial hashes {ℎ𝑖}𝑖∈[4]
and letting the verifier check whether ℎ =

⊕
4

𝑖=1
we may safe some space by only including

{ℎ𝑖}𝑖∈[3] (say) and letting verifiers compute ℎ4 = ℎ ⊕
⊕

3

𝑖=1
. The rest of the verification pro-

cess would remain unchanged. It is easy to see that these two formulations are essentially

equivalent, but including all four ℎ 𝑗 yields a slightly nicer presentation.

Letting Callers Register Keys Proving knowledge of the secret key by the caller could be

replaced by using a key-registration functionality F𝐾𝑅 (shown in Figure A.5 and taken in

slightly adapted form from [47]) which allows parties to register keys, but requires proving

knowledge of the corresponding secret key to do so successfully. The caller would then

only send a ciphertext 𝑐 of 𝑞 under its personal and static secret key and a server would

look up the public key for the calling party and from then on proceed as before. This

change increases efficiency by reducing the number of proofs each party has to perform

and verify (as well as the number of keys that have to be generated). It would further

simplify the communication pattern between the caller and one of the servers towards a

simple two-message interaction with one message being sent by each party. The downside

is of course the introduction of an additional trusted party.

Responses by All Four Servers It is unfortunate that we have to rely on receiving responses

by all four servers. Intuitively, as long as the responses contain at least two valid signatures

for each (𝑞, ℎ𝑖, 𝑖), a proof could be created. Later during simulation, however, we can not

rely on the response by the corrupted server (see Section 5.4.6)
3
To seewhy this requirement

implies that also honest parties in the real world have to wait until they have received

some response by all four servers, consider the following scenario. Let C be an honest

3
Briefly, the simulator is not allowed to decrypt the response by the corrupted server as this would provide

something akin to a decryption oracle to the adversary and would thus require a form of active security

from FHE. As FHE is inherently malleable, this can not be added as an additional assumption.

179

A. Appendix

party wishing to create a proof. Consider the case where D delivers the responses by the

honest servers, but not by the corrupted server; a proof has to be returned. Also consider

a second query where D lets the corrupted server either behave honestly or dishonestly

and in addition delivers two responses by honest servers. As long as the identity of the

corrupted server is unknown, and this is the case in the real interaction, and D lets it

behave honestly, this interaction is indistinguishable from the first and so a valid proof has

to be produced. On the other hand, if D lets the server behave dishonestly, no valid proof

could and would be produced from the remaining two honest responses. A real party can

distinguish these two cases by decrypting all received ciphertexts, but the simulator can

not do so and hence can not distinguish. Thus, this case has to be explicitly excluded by

the protocol.

Letting Servers Generate Their Own Keys We would wish to allow the servers to generate

and publish their own SIG key-pairs, especially since we do not require the simulator to

know the signing key of the corrupted server in order to simulate successfully. Unfortu-

nately, this is prohibited by our modeling of F𝑉𝑅𝑂 . Concretely, F𝑉𝑅𝑂 requires the simulator

to provide the correct verification key vk on the Init query by any party.
4
Furthermore,

the simulator has to answer immediately, i.e. in the same activation in which it receives

the request to do so. For this reason, the simulator can not wait until the adversary lets the

corrupted server select and post some SIG verification key to F𝑏𝑏𝑜𝑎𝑟𝑑 before answering.
Due to the fact that verifying a proof is a non-interactive task, we can not simply relax

the requirement on the simulator to answer immediately. We can do so, however, if we

further change the behavior of F𝑉𝑅𝑂 upon being asked to verify a proof. The solution is to

make the behavior of this task depend on whether vk has already been initialized. If not,

all proofs (that means for any contained verification key) are rejected as invalid. Having

made this change, we can change 𝜋𝐹𝐻𝐸 such that each party only posts its own verification

key to F𝑏𝑏𝑜𝑎𝑟𝑑 . If the simulator is then asked to provide Prove and vk, it waits until all
servers have successfully posted their keys to F𝑏𝑏𝑜𝑎𝑟𝑑 and constructs vk (and Prove, which
depends on vk) from these.

We have to make a small additional change to 𝜋𝐹𝐻𝐸 for it to realize this altered version

of F𝑉𝑅𝑂 . The problem we have to solve lies in the fact that the adversary may execute the

following distinguishing attack. First, the adversary waits until all honest servers have

posted their SIG verification keys to F𝑏𝑏𝑜𝑎𝑟𝑑 and retrieves them. Second, it selects some SIG
verification key which it will later post to F𝑏𝑏𝑜𝑎𝑟𝑑 , but does not yet do so. The adversary is

not able to form the key vk which will later become the public correct verification key.

Using this key, it computes a proof 𝜋 for some input 𝑞 by contacting the honest servers as

prescribed by 𝜋𝐹𝐻𝐸 . In the real world, this proof will be verifiable, but in the ideal world

it will be rejected as vk is still undefined within F𝑉𝑅𝑂 . To prevent this attack, we let the
honest servers themselves retrieve the portions of vk by the other servers from F𝑏𝑏𝑜𝑎𝑟𝑑
and refuse to communicate with any caller until they have been able to do so. By doing so,

the adversary will (with overwhelming probability) not be able to compute a proof that is

valid in the real world before having let the corrupted server publicize its portion of vk.
And once it does so, the simulator is able to initialize F𝑉𝑅𝑂 properly.

4
We note that such a query is also triggered if the first query made to F𝑉𝑅𝑂 is a hash or proof verification

query as these refer to the correct verification key.

180

A.3. Additional Remarks

The F𝐾𝑅 functionality

Registration Upon receiving (Register, 𝑠𝑖𝑑, pk, sk) from some party P, send
(Register, 𝑠𝑖𝑑,P) to the adversary. Upon receiving (Output, 𝑠𝑖𝑑,P) from the

adversary, check that pk is the public key for the secret key sk. If the check

succeeds, store (P, pk) and output (Registered, 𝑠𝑖𝑑,P, pk) to P.

Retrieval Upon receiving (Retrieve, 𝑠𝑖𝑑,P𝑖) from some party P𝑗 , if there is a pair
(P𝑖, pk) stored, return (Key, 𝑠𝑖𝑑,P𝑖, pk). Else return (Key, 𝑠𝑖𝑑,P𝑖,⊥).

Figure A.5.: The UC Key-Registration functionality.

Weaker Guarantees with Corruption The protocol in 𝜋𝐹𝐻𝐸 has a property akin to guar-
anteed output delivery (GOD). In the stand-alone definition of simulation-based security,

GOD means that the honest parties are guaranteed to generate some output at the end of

a computation which is consistent with the true inputs of all honest parties as well as some
input by the corrupted parties (there may not be a well-defined true input of a corrupted
party).

In the UC framework, the real-world adversary is generally given control over message

delivery and can thus cause a protocol that involves communication between parties to

execute to fail. Thus the ability to prevent the ideal functionality from generating output

also has to be given to the simulator (for tasks that are not required to consist only of local

computation such as verifying a signature). To prevent any protocol which does not react

to inputs from realizing any functionality for which the simulator can prevent delivery of

all outputs, [25] introduce non-trivial protocols for which the simulator does not corrupt

any parties and allows all output delivery to happen if the real-world adversary does not

corrupt any parties and delivers all messages.

Remark A.3.1. In previous versions of the UC framework, the simulator was automatically

granted the ability to deliver all messages between dummy parties and the ideal function-

ality while observing some public header information but keeping the private content of
each message hidden.

This would allow our protocol to abort without output once it observes misbehavior by

one of the servers or if one of the servers otherwise shows signs of deviation from the

protocol, e.g. during the initialization phase to the honest servers by deviating from the

MPC protocol (if we assume identifiable abort, i.e. that the identity of some party deviating

from the protocol is known to all honest parties upon aborting). Our protocol, however,

even generates a valid proof if the corrupted server misbehaves (in the sense of replying

with garbage values) but all honest responses are delivered. Both of these are clear signs

of interference by the adversary and thus would allow aborting the current task or the

whole protocol.

It may be possible to find a simpler protocol that does not have these “unnecessary”

additional guarantees with respect to generating output for honest parties.

181

A. Appendix

A.3.2. Remarks About OPRF Variants

Further remarks about OPRF variants investigated in Section 6.2.1.

Evaluating a Random Function There seems to be a general necessity to use random

oracles or similar assumptions to realize functionalities in the spirit of Figure 6.3 where a

random function is evaluated, i.e. that not even the honest server can evaluate the function

on its own. We have already seen a similar requirement for protocols realizing F𝑉𝑅𝑂 . There,
it has to be impossible for the environment to offline predict hash values. And also in

that case we have seen that predictions by way of random oracle queries are allowed, e.g.

when instantiating F𝑉𝑅𝑂 using a single random oracle and with empty proofs, as then

the simulator can make the responses congruent with those by F𝑉𝑅𝑂 . Our FHE-based
protocol circumvented this by guaranteeing that some portion of the key determining the

function for the current session is kept hidden from the adversary and can thus be used

by the simulator to (undetectably) program outputs as required by the outputs randomly

sampled within F𝑉𝑅𝑂 . As noted in [67], achieving this in the setting where there is only a

single server (which is allowed to be corrupted), seems to require the use of non-black-box

assumptions such as assuming the ROM.

The Use of Ticketing Mechanisms A quick note about the tickets used by F 𝐽

𝑉𝑂𝑃𝑅𝐹
. These

are introduced to allow for more efficient instantiations by alleviating the simulator from

the task of having to extract the true input from corrupted clients. Such a requirement

can often only be satisfied by adding expensive zero-knowledge proofs by the client.

Tickets circumvent this by letting the simulator act in the following way upon noticing an

attempted evaluation by some corrupted party C with server S in its simulation: Instead

of extracting the input and sending an Eval message to F 𝐽

𝑉𝑂𝑃𝑅𝐹
, the simulator sends a

SenderComplete message for S, thereby increasing the tickets counter of S by one and

letting S acknowledge that an evaluation has occurred by outputting a receipt. Note that

this does not mean that the simulator never has to extract the input from a corrupted

client, only that this is shifted to a later part of the evaluation procedure. For example, the

final output might be produced from a query to a random oracle where the original input

is part of the oracle input. The simulator can then at this point extract the input, make an

Eval query for it on behalf of the corrupted client, and use up the ticket it created earlier

to obtain the output and use it to program the random oracle.

We note that, generally, protocols that only realize such a ticketing functionality can be

upgraded to be fully input-extractable by adding appropriate proofs of knowledge to the

messages sent to the server.

182

A.4. Relaxing the VRO (Continued)

A.4. Relaxing the VRO (Continued)

This section is a continuation of Section 5.5 in the main body.

A.4.1. Leaking Only the Hash

This is the weakest form of additional leakage. As hashes are random values from the

codomain, this knowledge essentially only allows the adversary to link queries by honest

callers (with overwhelming probability if we assume a super-polynomial codomain). It

seems difficult to use this information to simplify 𝜋𝐹𝐻𝐸 . As we still have to hide 𝑞, how

might this hidden 𝑞 be used by the servers in a computation revealing ℎ?

The servers could operate on a secret sharing of 𝑞, engage in a protocol to recognize

whether the currently shared value has been queried already, and, if necessary, jointly

generate a fresh hash ℎ (this can be done through multi-party coin-flipping as we do not

have to hide the hash). Each server could then sign (𝑞𝑖, ℎ) where 𝑞𝑖 is its share of the input
and a valid proof for (𝑞, ℎ) would have to contain shares 𝑞𝑖 which reconstruct to 𝑞 and

signatures 𝜎𝑖 for (𝑞𝑖, ℎ) from different servers.

This naive construction does not yet guarantee unforgeability, shares 𝑞𝑖 and signatures

𝜎𝑖 can be taken from different honest proofs and puzzled together in a different way which

is still valid for the above verification procedure. To prevent this, the signed messages for

a single query have to either be bound to 𝑞 or to each other. Keeping track of a counter 𝑐

of answered queries and always including 𝑐 in the signed messages may already prevent

this kind of mix-and-match attack. Keeping such a counter is possible for a simulator.

Another way might be to use a verifiable secret sharing, letting servers agree that they

all received the same verification information, and including this verification information

in the signed message. As this commits to the input, no mixing of different proofs would

be possible.

If Shamir’s secret sharing scheme is used to share 𝑞 then recognizing whether two

sharings {𝑞𝑖}𝑛𝑖=1
, {𝑞𝑖}𝑛𝑖=1

are for the same secret may be possible by using the homomorphic

properties and check whether {𝑞𝑖 − 𝑞𝑖}𝑛𝑖=1
is a sharing of 0.

One drawback of this scheme is that it requires storage as well as communication

proportional to the number of past queries. Also, the protocol sketched above leaks exactly

which past query is equal to the current one and this may not be simulatable for a simulator

that only receives the hash, at least if the codomain is polynomial. Depending on the

number of expected queries, this may, however, still yield a more efficient protocol than

𝜋𝐹𝐻𝐸 . Furthermore, the resilience to corruption only depends on the chosen secret sharing

and will thus be generally larger than for 𝜋𝐹𝐻𝐸 .

A.4.2. Leaking Both Input and Hash

This is the strongest form of additional leakage. If we allow the adversary to learn both

every query input 𝑞 as well as the corresponding hash value ℎ, then one way to reduce

trust in single servers is to distribute our instantiations from Section 5.2 using a single

trusted server by using tools from threshold cryptography. We previously attempted to

183

A. Appendix

do this in Section 5.3.1 but were stumped by requiring to hide the input from corrupted

servers. This is no longer the case in the current setting.

Threshold Signing We first describe protocols based on a threshold signature protocol

for 𝑛 parties with threshold 𝑡 and for a signature scheme SIG. For these, to compute a

signature 𝜎 on a message 𝑞, at least 𝑡 + 1 servers must honestly participate in the protocol.

Each server holds a share sk𝑖 of a signing key sk as well as the full verification key vk.
These are obtained during some initialization phase, e.g. by a distributed key-generation

algorithm in the discrete logarithm setting [52]. If we assume a non-interactive scheme,

to sign 𝑞, each server executes a partial signing algorithm PartSign(sk𝑖, 𝑞) and obtains a

partial signature 𝜎𝑖 . We assume a robust combination algorithm Combine which receives

as input at least 𝑡 + 1 partial signatures 𝜎1, 𝜎2, . . . , 𝜎𝑙 , 𝑙 ≥ 𝑡 + 1, and outputs a valid signature

𝜎 for 𝑞 under vk.
As we wish to output a signature for (𝑞, ℎ), the servers first have to compute the hash

ℎ. The simplest way to achieve this is by using a general MPC protocol for the function

𝑞 ↦→ PRF(𝑘, 𝑞). Again we can not allow the adversary to possess knowledge of all of 𝑘

and thus have to secret share it.

The full protocol 𝜉 is thus as follows. The caller C, receiving input (Hash, 𝑠𝑖𝑑, 𝑞) simply

forwards 𝑞 to all 𝑛 servers. On receiving 𝑞, each of the servers behaves as follows:

• Let
ˆ𝑘 be the share of the PRF key 𝑘 and

ˆsk the share of the SIG signing key sk.

• Compute ℎ = PRF(𝑘, 𝑞) in a distributed manner.

• Compute 𝜎̂ ← PartSign(ˆsk, 𝑞).

• Return (ℎ, 𝜎̂) to C.

Upon receiving ((ℎ1, 𝜎1), . . . , (ℎ𝑛, 𝜎𝑛)) from the servers and if at least 𝑡 + 1 of these are

not equal to ⊥, C computes ℎ as majority value over the ℎ𝑖 and uses Combine to compute

either a signature 𝜎 for (𝑞, ℎ) which is valid under vk or ⊥. Only in the former case does

C output (HashProof, 𝑠𝑖𝑑, 𝑞, ℎ, 𝜎).
The security of this protocol is clear if we assume that both the distributed evaluation of

PRF as well as the threshold signing protocol are UC-secure. In this case, the simulator can

replace PRF by a random function RF and thus appropriately bias hashes. The security of

the threshold signing protocol ensures that the adversary will be unable to forge signatures

even after observing the views of the corrupted servers as well as the views of corrupted

clients in polynomially many interactions.

One advantage of this construction over the PRF construction is that it has better

scalability, the number of PRF instances remains one, independent of the total number

of servers. The size of proofs also remains at a single signature 𝜎 (although signature

aggregation can be used to reduce the number of signatures included in each proof for the

PRF construction as well).

If we do not want to employ threshold signatures we can also allow each server to sign

(𝑞, ℎ) directly using a separate signing key and a valid proof has to contain more valid

signatures than there may be corrupted servers. This theoretically supports arbitrarily

184

A.4. Relaxing the VRO (Continued)

many corrupted servers, but at the cost of having to allow “trivial” denial-of-service

attacks/aborts by having some corrupted server not respond. Aggregation may help in

keeping proof sizes relatively small, although aggregation would have to be possible for

different public keys.
5

Instead of doing general MPC, there may exist more simple protocols for distributed

evaluation of a random function. Such a protocol essentially would realize a variant of the

ideal random oracle functionality F𝑅𝑂 where the delivery of outputs can be delayed by the

adversary and the input 𝑞 and hash ℎ are leaked to the adversary upon each hash query.

Looking through the literature on distributed PRF protocols, very few of them are fully

UC-simulatable.

Distributed VRF Similarly, the servers may evaluate a (simulatable) VRF in a distributed

manner. Again, this protocol has to be UC-secure to allow the simulator to determine

hashes as prescribed by F𝑉𝑅𝑂 . We do not go into details.

Stateful Version There is a much simpler protocol if we allow storage proportional to

the number of past queries as well as interaction. The basic task on input 𝑞 is to

• Recognize whether 𝑞 has been queried before.

• If yes, look up what the hash ℎ for 𝑞 is and give the same answer as before.

• Else, use a multi-party coin-tossing functionality F𝑀𝑃𝐶𝑇 to generate an independent

ℎ and store (𝑞, ℎ).

• Sign (𝑞, ℎ) and return it.

A valid proof for (𝑞, ℎ) again consists either of a threshold signature for (𝑞, ℎ) or of a
majority of valid signatures for (𝑞, ℎ) under independent keys associated with each server.

Programmability is given by programming F𝑀𝑃𝐶𝑇 .
One way to implement F𝑀𝑃𝐶𝑇 is by having each party broadcast a UC-commitment [21]

to a random value and then have all parties de-commit (essentially [73]) although care

has to be taken with respect to parties which don’t de-commit. As such behavior clearly

identifies the offending server as corrupted, repeating the protocol may be a solution. If

we assume all parties de-commit for a given execution, the simulator can bias the result to

a specific value 𝑟 by extracting the values committed to by the corrupted parties and later

opening the commitment by one of the honest parties such that the sum of all values is 𝑟

using the equivocality of the UC-commitment scheme.

This is essentially using the lazy sampling interpretation of random oracles to build a

random function instead of requiring a physical key that already determines all hashes.

5
This is for example possible for BLS signatures, but they require the ROM. We are unaware of any such

schemes in the standard model.

185

A. Appendix

A.4.3. Leaking Only the Input

This form of leakage is considerably stronger than only leaking the hash, but only slightly

weaker than leaking both input and hash as in the last section. Knowing𝑞, the servers could

still execute the first part of the proposed protocol 𝜉 in the next section. They, however,

would not be allowed to publicly reconstruct the PRF output and create signatures for (𝑞, ℎ)
directly. Signing shares (𝑞, ℎ𝑖) and including a counter 𝑐 may again facilitate unforgeability.

186

A.5. An Attack on the Randomized Fischlin Transform

A.5. An Attack on the Randomized Fischlin Transform

In this section we describe an attack on the zero-knowledge property of the randomized

Fischlin transform as defined in [71]. Note that this means we are for the moment not

using our definition of zero-knowledge but the notion defined in [45] which only allows a

single proof to be requested by the simulator. The attack crucially depends on restricting

the length 𝑙 of challenges to be in O(log 𝜆).
To state the attack, we first make the following observation regarding Σ-protocols. Let
A be in possession of some (𝑥,𝑤) ∈ R. Let (com, ch, resp) be a valid transcript for 𝑥 ,

but which was generated by some party B ≠ A. Then there exists a Σ-protocol Σ which

satisfies the requirements of the randomized Fischlin transform and for which A can

compute valid transcripts (com, ch𝑖, resp𝑖) for all challenges ch𝑖 from the challenge space

of Σ. Note that this insofar intuitively surprising as the name commitment for the first
message sent by the prover suggests that the contained value should remain hidden from

any other party not in possession of the randomness used to generate it.
6

We show that this is generally not the case when the party receiving a valid transcript

containing the independently generated commitment has access to a witness. Recall the

structure of Schnorr’s Σ-protocol for proving knowledge of a discrete logarithm. The

prover has access to (𝑔,𝑋 = 𝑔𝑥 , 𝑥) with 𝑔 the generator of some group G of prime order

𝑞 and 𝑥 ∈ Z𝑞 while the verifier only knows 𝑔 and 𝑋 . The first message by the prover

consists of a random element of the group G, generated as 𝑧 ←$ Z𝑞, com = 𝑔𝑟 . The verifier

responds with a random challenge ch←$ Z𝑞 . From this challenge ch, the randomness 𝑧,

as well as the witness 𝑥 , the prover computes a response res = 𝑧 + 𝑥ch. Finally, the verifier
checks that

𝑔resp = com𝑋 ch
(A.3)

and rejects or accepts accordingly.

Passing to the compiled protocol, consider a single accepting transcript

(com, ch, resp) = (𝑔𝑧, ch, resp)

for the statement 𝑋 = 𝑔𝑥 , i.e. such that Equation (A.3) holds. As we have stated above, we

assume that the adversary A has access to 𝑥 , but not to 𝑧. Nonetheless, if we consider a

challenge ch∗ ∈ Z𝑞 with ch∗ ≠ ch, an accepting transcript

(com, ch∗, resp∗)

can be computed as follows. First, define

Δ = ch∗ − ch mod 𝑞

and notice that

6
In other words, the commitment should be hiding.

187

A. Appendix

resp∗ ≡𝑞 𝑧 + ch∗𝑥
≡𝑞 𝑧 + (ch + Δ)𝑥
≡𝑞 𝑧 + ch𝑥 + Δ𝑥
≡𝑞 resp + Δ𝑥 .

Looking at the first and last term in this chain of equalities and observing that A has

access to all of the information to evaluate the last term, we see that resp∗ can be computed

by A. That this leads to a valid transcript can be seen by the chain

𝑔resp
∗ ≡𝑞 𝑔resp+Δ𝑥

≡𝑞 𝑔resp + 𝑔Δ𝑥

≡𝑞 com𝑋 ch + 𝑔Δ𝑥

≡𝑞 com𝑋 ch + 𝑋Δ

≡𝑞 com𝑋 ch∗

as the last term shows by comparing it to Equation (A.3).

We notice that this is immediately applicable to the wider class of Σ-protocols where
knowledge of a pre-image under a group-homomorphism

Φ : G′→ G

such that

∀𝑔1, 𝑔2 ∈ G′ : Φ(𝑔1 ∗′ 𝑔2) = Φ(𝑔1) ∗ Φ(𝑔2).

The Attack Let A be the algorithm which, on input a transcript 𝑡 = (com, ch, resp)
for statement (𝑔,𝑔𝑥), the witness 𝑥 , and another challenge ch∗, outputs the transcript

𝑡∗ = (com, ch∗, resp∗) where resp∗ was computed as above. Let further Π = (P,V) be
the Schnorr protocol after being transformed using the randomized Fischlin transform

as originally described in [71] and let S be the zero-knowledge simulator also described

therein. We describe an adversary B on the S, i.e. a distinguisher between interacting

with an oracle for P and an honest random oracle 𝐻 or an oracle for S and a simulated

random oracle 𝐻S .
Before describing B, let 𝑋 be a random variable distributed according to the binomial

distribution Bin(𝑞, 2−𝑏), i.e. with𝑛 = 𝑞 samples and 𝑝 = 2
−𝑏

being the associated probability,

and 𝑌 = 1 + 𝑌 ′ with 𝑌 ′ distributed according to Bin(𝑞 − 1, 2−𝑏). We need that for some

𝑘 ∈ [𝑞], the probabilities Pr[𝑋 = 𝑘] and Pr[𝑌 = 𝑘] can be efficiently computed as long as

𝑞 ∈ O(poly(𝜆)), which is what we assume.

B behaves as follows:

• Generate a random statement by sampling 𝑥 ←$ Z𝑞 and computing 𝑋 = 𝑔𝑥 .

• Give (𝑋, 𝑥) to the proof generation oracle and receive a proof𝜋 = (com𝑖, ch𝑖, resp𝑖)𝑖=1,2,...,𝑟 .

188

A.5. An Attack on the Randomized Fischlin Transform

• If 𝜋 = ⊥, output 0.

• Initialize a variable count = 0 and set ®com = (com1, com2, . . . , com𝑟).

• For ch∗ ∈ Z𝑞

– Let 𝑡 = (com1, ch1, resp1
).

– Let (com1, ch∗, resp∗) = A(𝑡, 𝑥, ch∗).

– Query (𝑋, ®com, 1, ch∗, resp∗) to the random oracle and let ℎ be the result.

– If ℎ = 0
𝑏
, increment count.

• Compute 𝑝1 = Pr[𝑋 = count] and 𝑝2 = Pr[𝑌 = count].

• If 𝑝1 > 𝑝2, output 0.

• Else, if 𝑝1 < 𝑝2, output 1.

• Else, if 𝑝1 = 𝑝2, output 0 or 1, each with probability 1/2.

We analyze the distinguishing advantage of B. First, we observe that if interacting with
the honest 𝐻 , count has the same distribution as 𝑋 while in the simulated case it has the

distribution of 𝑌 . By the test we are employing, the distinguishing advantage of B is equal

to the statistical distance Δ(𝑋,𝑌). All that is left to do is analyze Δ(𝑋,𝑌) and show that it

is non-negligible.

We begin by observing that for 0 < 𝑘 ≤ 𝑞

Pr[𝑌 = 𝑘] = 𝑘

𝑞
Pr[𝑋 = 𝑘] + 𝑞 − (𝑘 − 1)

𝑞
Pr[𝑋 = 𝑘 − 1]

while of course

Pr[𝑌 = 0] = 0.

This can be seen as follows. 𝑌 can be seen to be the number of heads that are observed

in a sequence of 𝑞 coin tosses with a coin with 𝑝 = 2
−𝑏

and where after sampling the 𝑞

coins a random coin is selected and set to head, independent of whether it was already

heads before. As such, the probability for observing 𝑘 ≥ 1 heads in the final sequence is

composed of two cases. In the first, 𝑘 heads were already contained in the initial sequence

and the randomly selected coin which was switched to head was among these 𝑘 coins.

This occurs with probability
𝑘
𝑞
Pr[𝑋 = 𝑘]. In the second, 𝑘 − 1 heads were in the initial

sequence and one of the remaining 𝑞 − (𝑘 − 1) coins was flipped to head which gives the

second term.

189

A. Appendix

Using this alternate formulation, the statistical distance Δ(𝑋,𝑌) can be written as

Δ(𝑋,𝑌) = 1

2

𝑞∑︁
𝑖=0

|Pr[𝑋 = 𝑖] − Pr[𝑌 = 𝑖] |

=
1

2

(
Pr[𝑋 = 0] +

𝑞∑︁
𝑖=1

|Pr[𝑋 = 𝑖] − Pr[𝑌 = 𝑖] |
)

=
1

2

(
Pr[𝑋 = 0] +

𝑞∑︁
𝑖=1

����Pr[𝑋 = 𝑖] − 𝑖
𝑞
Pr[𝑋 = 𝑖] − 𝑞 − (𝑖 − 1)

𝑞
Pr[𝑋 = 𝑖 − 1]

����)
=

1

2

(
Pr[𝑋 = 0] +

𝑞∑︁
𝑖=1

����𝑞 − 𝑖𝑞 Pr[𝑋 = 𝑖] − 𝑞 − (𝑖 − 1)
𝑞

Pr[𝑋 = 𝑖 − 1]
����) .

Now, for any 1 ≤ 𝑚 ≤ 𝑞 (which we will determine later), we have that

Δ(𝑋,𝑌) ≥ 1

2

(
Pr[𝑋 = 0] +

𝑚∑︁
𝑖=1

����𝑞 − 𝑖𝑞 Pr[𝑋 = 𝑖] − 𝑞 − (𝑖 − 1)
𝑞

Pr[𝑋 = 𝑖 − 1]
����)

≥ 1

2

(
Pr[𝑋 = 0] +

𝑚∑︁
𝑖=1

𝑞 − 𝑖
𝑞

Pr[𝑋 = 𝑖] − 𝑞 − (𝑖 − 1)
𝑞

Pr[𝑋 = 𝑖 − 1]
)

≥ 1

2

(
Pr[𝑋 = 0] + 𝑞 −𝑚

𝑞
Pr[𝑋 =𝑚] − Pr[𝑋 = 0]

)
=

1

2

𝑞 −𝑚
𝑞

Pr[𝑋 =𝑚] (A.4)

by |𝑎 − 𝑏 | ≥ 𝑎 − 𝑏 for any 𝑎, 𝑏 ∈ R and by telescoping the resulting sum.

Next, as we only have to show that the distinguisher works for some infinite sequence

(𝑞𝑖)𝑖∈N, we may restrict ourselves to only working with such parameters that

E[𝑋] = 𝑞2
−𝑏 ∈ N

for infinitely many values of 𝜆. Such parameters exist. We may for example set
7

𝑏 (𝜆) = ⌊log 𝜆⌋
𝑞(𝜆) = 2

𝑏𝑞′(𝜆)

for some function 𝑞′ : N→ N such that

𝑞 ∈ O(poly(𝜆))

and simultaneously

2
log(𝑞)−𝑏 ∈ 𝜔 (log 𝜆)

7
The number 𝑟 of repetitions can be set to any admissible value.

190

A.5. An Attack on the Randomized Fischlin Transform

as is required for the transform to be applicable. This is clearly possible. We may then

even assume for all 𝜆 ∈ N that 𝑞2
−𝑏 ∈ N. All that is left to do to derive a lower bound for

Δ(𝑋,𝑌) is to observe the following.

For the expected value E[𝑋] = 𝜇, it holds that

Pr[𝑋 = 𝜇] ≥ 1

𝑞 + 1

(A.5)

by the fact that the support Supp(𝑋) has cardinality 𝑞 + 1 and 𝜇 is an integer and in our

case always equal to the mode, i.e. most likely expression, of the distribution. As 𝑞 is

polynomial this is noticeable and in particular non-negligible. Then, by choosing𝑚 = 𝜇

in (A.4) (which we are allowed to do as 𝑞 grows much faster than 2
−𝑏

and thus 𝜇 ≥ 1

eventually) we get

Δ(𝑋,𝑌) ≥ 𝑞 − 𝜇
2𝑞

Pr[𝑋 = 𝜇]

≥ 𝑞 − 𝜇
2𝑞

1

𝑞 + 1

≥ 𝑞(1 − 2
−𝑏)

2𝑞(𝑞 + 1)

=
1 − 2

−𝑏

2(𝑞 + 1)

≥ 1

4(𝑞 + 1)

which is non-negligible (even noticeable) as 𝑞 is polynomial.

To summarize, by restricting the challenge space to be polynomial, the transformation

described in [71] succumbs to an exhaustive search that exploits the non-negligible statis-

tical distance introduced by having the simulator program using a fixed value instead of a

pseudo-random one.

191

A. Appendix

A.6. Reducing to Semantic Security

This section contains the technical details for why the protocol 𝜋𝐹𝐻𝐸 from Section 5.4

makes use of the NIWI proof system NIWI.

Motivation Consider a variation of 𝜋𝐹𝐻𝐸 where callers, instead of computing four NIWI
proofs 𝜋𝑖 , include the (valid) signatures used to compute them. This protocol suffers from

a problem related to the security guarantees afforded by the semantic security of FHE. As
we have seen, a common use case for FHE is the following:

1. A client C generates a FHE key-pair (pk, sk)

2. uses pk to encrypt some data 𝑑 , obtaining a ciphertext 𝑐

3. sends 𝑐 to some server S

4. and receives a response 𝑐′ which it expects to be equal to FHE.Eval(pk,𝐶, 𝑐, 𝑐∗) where
𝐶 is a circuit known to the client and 𝑐∗ is some encrypted, secret data belonging to

S.

The insecurity of this plain protocol for outsourcing some computation on a known

circuit 𝐶 , but involving private data by the party doing the actual computation, stems

from the fact that S does not have to respond with a correctly evaluated ciphertext 𝑐′. It
may respond with some arbitrary ciphertext 𝑐′′ instead.8 S may have received 𝑐′′ from
some arbitrary source. As such, S may not be aware of the plaintext contained in 𝑐′′. By
observing the subsequent behavior of the client after receiving 𝑐′′, the server may then

acquire information about this plaintext. In the worst case, the client leaks the complete

plaintext, i.e. the server may use the client as a decryption oracle. As we know, such a

decryption oracle is not afforded to an adversary on the semantic security of an encryption

scheme. The situation is even worse in the FHE case as all FHE schemes are inherently

malleable and thus can not be IND-CCA2-secure; which makes adding this as an additional

assumption not possible.

In our case, however, things seem to be slightly different at first sight. The response by

the server is not decrypted and then indiscriminately output to the environment. Instead,

it is checked for correctness by comparing it to the responses by the other servers which

guarantees correct evaluation of the PRF as well as the correctness of the signature with

respect to the server’s verification key. Hence, the only information that an adversary

should be able to gain by replying with some dishonestly generated ciphertext 𝑐′′ is
whether it for example decrypts to PRF(𝑘2, 𝑞) or contains a valid signature for the message

(𝑞, PRF(𝑘2, 𝑞)) under its own signing key. Note that all of these plaintexts are already

computable by the corrupted server itself using for example the known 𝑘2 and its own

signing key.

Unfortunately, this information is already enough to render the protocol insecure (if

only in the strong sense of UC). To see that the simulator may not at all rely on the

information obtained by decrypting the response of the corrupted server—although it

8
With the restriction of having the same length.

192

A.6. Reducing to Semantic Security

knows the decryption key of every honest party—we observe what happens if we try to

reduce to the semantic security of the FHE scheme. In the reduction for such a game-hop

we obtain a public key pk as well as an oracle which either returns an encryption of a

message𝑚 or an encryption of 0
∥𝑚∥

. This key is then used as the key of some honest

caller C. It is then unclear how the reduction is supposed to produce the proof in the

interaction where pk is used. Either the corrupted server behaved honestly, in which case

a proof could contain signatures from all four servers, or the corrupted server sent some

bogus response, in which case the proof has to contain only signatures by the three honest

servers. Without access to the decryption key or a decryption oracle, the reduction has no

way to produce correctly distributed proofs. Hence the reduction does not succeed.

The general problem is that the simulator can not detect whether the simulated corrupted

server behaved honestly (and include or exclude signatures by the corrupted server from

the produced proof based on this information) if it is not allowed to decrypt the response

(and in the general case not even then as there may be private input by the server), and it

is not allowed to decrypt the response in order to be able to argue that the server does not

learn the input 𝑞. The environment, on the other hand, knows whether it instructed the

adversary to execute either a correct or an incorrect evaluation and can compare this to

the signatures contained in the produced proof.

Two solutions for this problem come to mind:

1. Make the servers prove that they evaluated correctly.

2. Make proofs independent of the response by the corrupted server.

We investigate both approaches in more detail.

Proving Correct Evaluation If servers were required to prove correct evaluation and

honest callers were to discard responses accompanied by incorrect proofs, then the proof

strategy would be as follows: In the game-hop before we want to utilize semantic security,

the proof generation by an honest caller is made independent of the ciphertext returned

by the corrupted server. If the proof of correct evaluation verifies, the witness is extracted

from the message to the zero-knowledge functionality itself. This witness contains the

randomness the server used when performing the homomorphic signature generation (on

message 0
∥𝑞∥

). The caller then uses this randomness 𝑟𝑖 as well as the signing key sk to

recreate the signature

𝜎𝑖 = SIG.Sign(sk, (𝑞, ℎ𝑖, 𝑖); 𝑟𝑖)
which the corrupted server would have created if it had received an encryption of 𝑞.

This approach would be highly impractical, however. Fully-homomorphic computations

themselves are already computationally expensive and the involved statements to be

proven are represented by large circuits. It also requires the three honest servers to do

this much work just to catch misbehavior by the corrupted server even though we could
cope with wrong answers by a single server by way of cross-checking the answers between

the servers.

If we were to use this approach we could also use a much simpler basic protocol. Each

server P𝑖 would publicly commit to a PRF key 𝑘𝑖 and on input a ciphertext 𝑐 and public key

193

A. Appendix

pk would execute the current server protocol (with a single PRF instance) augmented with

a proof of correctness of the resulting ciphertexts (𝑐∗
1
, 𝑐∗

2
) with respect to the commitment

as well as the evaluation randomness used. The caller would only output a proof once

it received valid proofs from all servers. Note that this requires all servers to do their

evaluations correctly, but in principle allows for all but one server to be statically and

maliciously corrupted. Programmability is possible if the commitments are extractable

by the simulator, e.g. by using UC-commitments, such that one of the uncorrupted PRF

instances can be programmed appropriately.

Independent Proofs If proofs were independent of the response by the corrupted server,

then, before the game-hop utilizing the semantic security of FHE, we may move to a hybrid

where the proofs returned by honest callers are generated solely based on the responses

by honest servers. We may then subsequently move to a hybrid where the corrupted

server receives an encryption of zeroes because we no longer require the decryption key

to simulate the final proof and thus can successfully reduce to the semantic security of

FHE.
But achieving this kind of independence seems to come at the price of some primitive

such as non-interactive witness-indistinguishable arguments (NIWI) which, while not as

strong as NIZK, nonetheless is more expensive than including a number of signatures. The

specific NIWI relations which would be required are those used in 𝜋𝐹𝐻𝐸 where knowledge

of at least two valid signatures for each PRF instance is proved.

Sole witness-indistinguishability is, however, not enough. We also require (an inter-

mediate version of) the simulator to be able to extract witnesses from proofs that come

from the adversary/environment. This means we can not rely on rewinding but have to be

able to extract in a straight-line manner. To see why this is (was) necessary, imagine the

following. At some point during the proof, we want to reduce unforgeability of F𝑉𝑅𝑂 (i.e.

that the unforgeability clause is only hit with negligible probability) to the security of the

signature scheme. In essence, this means that we have to be able to build an adversary on

the EUF-CMA-security of the signature scheme which produces a forged signature from a

forged F𝑉𝑅𝑂 proof with some non-negligible probability.

As long as a proof consists of signatures themselves, there is no obstacle to extracting

forged signatures. But by replacing signatures with NIWI proofs, this easy extractability

of forged signatures from forged proofs is lost. Hence we have (had) to reintroduce it by

using some form of extractable NIWI proof. Now, because when using a NIWI in the plain

model there is no advantage for the simulator, i.e. by knowing the extraction trapdoor

to some CRS, straight-line extraction can not exist (otherwise we might use the scheme

in [48]). We thus have to proceed differently than just having parties use a NIWI proof

system formulated in the plain model.

Instead, a CRS would have to be either

• globally available, i.e. we work in a model where all parties have access to some

functionality F𝐶𝑅𝑆 which distributes the CRS.

• constructed by the servers utilizing some form of MPC and the fact that we have

a 3/4 super-majority and then (1) given to each caller making a query and (2) also

hard-coded into the verification algorithm Verify and distributed with it.

194

A.6. Reducing to Semantic Security

From a practical point of view, the latter seems to be more appealing which is why

ended up choosing this option. It means that verifiers only have to trust the verification

key whose integrity is already guaranteed by any protocol realizing F𝑉𝑅𝑂 .9 Especially

the fact that we have a two-thirds honest majority allows for very efficient computation

involving only the servers, see [49], while any instantiation of a global CRS functionality

involving all parties can not rely on this fact (and in general is not possible without any

other setup if there is no honest majority).

9
If it was retrieved using the intended mechanism.

195

A. Appendix

A.7. Simplifying the FHE Construction for Semi-Honest
Adversaries

The protocol in Section 5.4 can be simplified in several ways if one is willing to assume that

the corrupted server behaves in a semi-honest manner. We briefly describe each potential

change.

Eliminating Public Storage We are able to eliminate the use of public storage as provided

by F𝑏𝑏𝑜𝑎𝑟𝑑 . Using it was required to ensure consistency of verification keys by honest

parties. Letting partial verification keys be obtained directly from the servers, a malicious

server may answer with different keys.

Eliminating NIWI In Section 5.4.6 we gave the rationale for our use of NIWI proofs. This

rationale is directly related to the fact that the corrupted server may deviate from its

prescribed protocol and respond with an arbitrary ciphertext. As an alternative solution,

we showed that we could have required servers to provide proofs of correct evaluation. In

the semi-honest setting, we get these proofs essentially for free and can therefore go back

to including signatures in the clear.

To still enable Prove to simulate proofs, it then has to produce valid signatures under

the verification key of the corrupted servers. Including the signatures obtained from the

corrupted server in the simulation in the SimInfomessage is insufficient as it is a signature

on a string of zeroes instead of the correct input. Luckily, even in its current version the

simulator for 𝜋𝐹𝐻𝐸 has access to the corrupted server’s signing key and may include it in

the description of Prove.10

A slight quirk is the following. Even if the server can be assured to do the homomorphic

evaluation correctly, it may still (although now honestly) sample randomness for use in

the evaluation of the signature scheme, if this is probabilistic, which would remain hidden

from callers. As in general the used randomness is not extractable from a signature, we

have to use a deterministic scheme. This is a minor restriction.

Optimizing Initialization As we have seen in the last paragraph, the simulator now

requires access to the signing key of the corrupted server. In consequence, we can not

switch to a simplified initialization protocol where each server chooses its own key. A slight

optimization of this portion of the protocol is possible by switching from a maliciously

secure MPC protocol to one that is secure only against semi-honest adversaries.

This concludes our optimizations for semi-honest servers.

10
This key is currently unused. We could, however, not allow the corrupted server to generate its own

key-pair due to the simulator requiring immediate access to the full verification key vk to initialize F𝑉𝑅𝑂 .

196

A.8. Using VROs in OPRF Protocols

A.8. Using VROs in OPRF Protocols

In this section, we argue that, in general, the use of F𝑅𝑂 within protocols for F𝑉𝑂𝑃𝑅𝐹 can
be replaced by F𝑉𝑅𝑂 . The reasoning goes as follows:

• If we assume that retrieving the F𝑉𝑂𝑃𝑅𝐹 verification key is delayable, we can augment

it with the key obtained from F𝑉𝑅𝑂 .

• As OPRF evaluations always involve interaction between the client and the server,

we may replace queries to F𝑅𝑂 during it with (delayable) hash queries to F𝑉𝑅𝑂 .

• The adversary already learns the identity of honest clients doing OPRF evaluations.

• Depending on the domain of the evaluated PRF, leaking the length of hash queries

to the adversary can be simulated.

• Queries to F𝑅𝑂 during the verification process can generally be replaced with verifi-

cation queries to F𝑉𝑅𝑂 and letting clients include the necessary F𝑉𝑅𝑂-proofs within
F𝑉𝑂𝑃𝑅𝐹 -proofs.

• Soundness of the last step follows by the perfect unforgeability of F𝑉𝑅𝑂 and if we

assume that F𝑉𝑂𝑃𝑅𝐹 -proofs possess the same malleability properties as F𝑉𝑅𝑂 .

We briefly describe the transformation by looking at a protocol 𝜉 for publicly and

verifiably evaluating the aforementioned function 2HashDH. 𝜉 is essentially the protocol

2HashDH-NIZK from [66], except that we have made it fully publicly verifiable (instead of

only UC-realizing F 𝐽

𝑉𝑂𝑃𝑅𝐹
) according to our notion thereof and also upgraded it to possess

full input-extractability. The function 2HashDH to be evaluated is given as

2HashDH : X → Y
𝑥 ↦→ 𝐻 (𝑥, 𝐻 ′(𝑥)𝑘)

where 𝐻 and 𝐻 ′ are hash functions

𝐻 : X × G→ Y
𝐻 ′ : X → G

and whereG is a group of prime order 𝑞 having 𝜆 bits and which are modeled as random

oracles via calls to F𝑅𝑂 .11 The security of the usual blinding-based protocol for evaluating

2HashDH relies on the One-More Diffie-Hellman assumption (OMDH).
12
In it, the client, on

input 𝑞, samples 𝑟 ← Z𝑞 , computes 𝑥 = 𝐻 ′(𝑞)𝑟 and sends 𝑥 to the server. The server, using

11
A single session suffices by a domain separation argument.

12
Briefly, this requires that no adversary having access to a challenge oracle outputting random elements

𝑔←$ G as well as a DLog oracle 𝑥 = O(𝑔𝑥) is able to answer all 𝑞 of its challenges by making < 𝑞 queries

to the DLog oracle.

197

A. Appendix

his key 𝑘 ∈ Z𝑞 , computes 𝑦 = 𝑥𝑘 and returns it to the client. Finally, the client unblinds 𝑦

as ℎ′ = 𝑦
1

𝑟 and computes the final output ℎ = 𝐻 (𝑥, ℎ′). It is easy to see that

ℎ = 𝐻 (𝑞, ℎ′)
= 𝐻 (𝑞,𝑦 1

𝑟)
= 𝐻 (𝑞, 𝑥𝑘 1

𝑟)
= 𝐻 (𝑞, 𝐻 ′(𝑞)𝑘𝑟 1

𝑟)
= 𝐻 (𝑞, 𝐻 ′(𝑞)𝑘)
= 2HashDH(𝑘, 𝑞)

We will not prove the security of this protocol, but observe that every response by the

server determines some effective key 𝑘∗ and so no additional measures to protect from

a misbehaving server have to be taken.
13

We first make this protocol publicly verifiable.

For this, we let the server publish a verification key vk = 𝑔𝑘 at the start of the protocol to

a bulletin-board F𝑏𝑏𝑜𝑎𝑟𝑑 . The first message by the client additionally contains a proof of

knowledge for 𝑟 . The server checks this proof and, if it is correct, augments its response

with a NIZKPoK 𝜋̃ , generated by the functionality F𝑁𝐼𝑍𝐾 , attesting to the equality of

discrete logarithms
14

log𝑔 (vk) = log𝑔 (𝑦) = log𝑔 (𝑥𝑘) = 𝑘.
The client’s output is augmented to in addition include

𝜋 = (𝜋̃, 𝑟 , 𝑦).

To verify some input (𝑞, ℎ, 𝜋) with 𝜋 = (𝜋̃, 𝑟 , 𝑦), a verifier computes and checks the

following

𝑥 = 𝐻 ′(𝑞)𝑟

Verify(𝜋̃, 𝑔, vk, 𝑥,𝑦) ?

= 1

𝐻 (𝑞,𝑦 1

𝑟) ?

= ℎ

where we denote by Verify the proof verification interface by F𝑁𝐼𝑍𝐾 . By the properties of

𝜋̃ , if the verification succeeds, it holds that

𝑦 = 𝑥𝑘 = 𝐻 ′(𝑞)𝑟𝑘

and hence that

𝑦
1

𝑟 = 𝐻 ′(𝑞)𝑘 .
13
Recall that the server may use different keys in different evaluations, but consistency has to hold for the

same key.

14
We note that there exists a Σ-protocol for this relation to which then the Fischlin transform from Chapter

4 can be applied to obtain non-interactive proofs.

198

A.8. Using VROs in OPRF Protocols

Thus, the last check will only succeed if ℎ = 2HashDH(𝑘, 𝑞). This sketches public
verifiability under the OMDH assumption. For a detailed proof see [66].

To argue input extractability, we observe that the simulator can extract 𝑟 from a cor-

rupted client’s first message. Given the fact that 𝐻 ′ has super-polynomial codomain, the

corrupted client will not be able to compute a valid proof unless it knows a pre-image of

𝑥
1

𝑟 under 𝐻 ′, i.e. has indeed obtained 𝑥
1

𝑟 by querying 𝑞. This 𝑞 can thus be extracted by the

simulator and input into F𝑉𝑂𝑃𝑅𝐹 which thus does not have to use the ticketing mechanism

from F 𝐽

𝑉𝑂𝑃𝑅𝐹
.

Moving to the VROM We argue that this protocol remains secure when F𝑅𝑂 is replaced by

F𝑉𝑅𝑂 , F𝑁𝐼𝑍𝐾 is replaced by F𝑇𝑍𝐾 and proofs 𝜋 are augmented with the proof 𝜋∗ which was

returned to the client upon computing 𝐻 (𝑞, 𝐻 ′(𝑞)𝑘). The proof 𝜋∗ is then instead checked

by verifiers in the last check above. Lastly, the verification key vk, which so far consisted

of 𝑔𝑘 , is augmented by the verification key vk𝑇𝑍𝐾 output by F𝑇𝑍𝐾 and vk𝑉𝑅𝑂 output by

F𝑉𝑅𝑂 .15
We again argue informally that this is sound. First, the fact that both answers to hash

queries made to F𝑉𝑅𝑂 and proof generation requests to F𝑇𝑍𝐾 are delayable is allowed by

the fact that F𝑉𝑂𝑃𝑅𝐹 evaluation queries are delayable. The same is true for the retrieval

of vk𝑇𝑍𝐾 and vk𝑉𝑅𝑂 . Similarly, verification of proofs remains non-interactive by the non-

interactiveness of these tasks in both F𝑇𝑍𝐾 and F𝑉𝑅𝑂 . Furthermore, if we allow the same

malleability for proofs by F𝑉𝑂𝑃𝑅𝐹 as for F𝑉𝑅𝑂 , then the inclusion 𝜋∗ in 𝜋 is sound. Last, the

perfect unforgeability of F𝑉𝑅𝑂 shows that F𝑉𝑂𝑃𝑅𝐹 remains as unforgeable as before. This

concludes the sketch.

15
A single instance of F𝑉𝑅𝑂 is again sufficient by employing domain separation.

199

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Goal
	Technical Overview
	The Ideal Functionality
	Applications
	Challenges
	Instantiations

	Related Work
	Contribution
	Organization

	Preliminaries
	Definitions and Notation
	The Random Oracle Model
	Multi-Party Computation
	The Universal Composability Framework
	The Universal-Composition Theorem and Hybrid Models
	Some Ideal Functionalities and Notation

	Cryptographic Primitives
	Verifiable Random Functions
	Simulatable Verifiable Random Functions
	Fully-Homomorphic Encryption
	Proof Systems and Related Notions
	Extractable Non-Interactive Witness-Indistinguishable Arguments
	Sigma Protocols

	The Verifiable Random Oracle Model
	The Ideal VRO Functionality
	The Actual Functionality
	Comparison with Existing Functionalities
	Design Decisions

	The VROM
	Comparing Random Oracles to Verifiable Random Oracles
	An Alternative Version

	Applications
	Full-Domain Hash
	Definition of Security
	FDH in the ROM
	FDH in the VROM
	Proof of Security
	Final Thoughts

	The Fischlin Transformation
	Definition of Security
	The Fischlin Transformation in the ROM
	The Fischlin Transformation in the VROM
	Proof of Security
	Universally Composable Transferable Zero-Knowledge
	In the VROM
	Removing the Need for Unique Proofs
	Final Thoughts

	VRO Instantiations
	ROM Instantiation
	Small Codomains Using Truncation

	Trusted Party Instantiation
	Allowing Corruption
	Distributing Protocols for Trusted Parties
	The PRF Construction

	Adding Privacy Using FHE-Encryption
	Goals
	Rationale for FHE
	Building Blocks
	The Protocol
	Proof of Security
	Reducing to Semantic Security
	Using Singly-Homomorphic Encryption
	Relying on Preprocessing
	Eliminating Secure Channels
	Analyzing Efficiency
	Analyzing Scalability

	Relaxing the VRO
	Revisiting the PRF Construction

	Strengthening the VRO
	Stronger Proofs
	Hiding Proofs

	Hybrid Instantiations
	Multiple Sessions
	Semi-Honest Adversaries
	General MPC
	Client-Server Protocols
	General Multi-Party Protocols

	Related Primitives
	Comparing VRO Definitions
	Syntax
	Security
	Comparison
	Other Differences

	Comparing VRO and OPRF Variations
	OPRF Variations
	Comparison
	Evaluating the FHE Construction

	Generic Constructions from OPRF
	Relation between OPRF and Hybrid Instantiations

	Using a Concrete OPRF
	VOPRF from VRO
	Naive Approach
	Arguments Against an Unconditional Construction
	Relying on Computational Assumptions

	Future Work
	Adaptive Adversaries
	Standalone Security
	More Tasks
	Weaker Randomness Guarantees
	Global VRO
	More Efficient Instantiations

	Conclusion
	Bibliography
	Appendix
	Standard Definitions
	Pseudo-Random Functions
	Trapdoor One-Way Permutations
	Digital Signature Schemes

	An Ideal VRO Functionality with Algorithmic Verification
	Additional Remarks
	Remarks about the FHE Protocol
	Remarks About OPRF Variants

	Relaxing the VRO (Continued)
	Leaking Only the Hash
	Leaking Both Input and Hash
	Leaking Only the Input

	An Attack on the Randomized Fischlin Transform
	Reducing to Semantic Security
	Simplifying the FHE Construction for Semi-Honest Adversaries
	Using VROs in OPRF Protocols

