KIT | KIT-Bibliothek | Impressum | Datenschutz

Tuning crystal-phase of bimetallic single-nanoparticle for catalytic hydrogenation

Liu, Shuang; Li, Yong ; Yu, Xiaojuan 1; Han, Shaobo; Zhou, Yan; Yang, Yuqi; Zhang, Hao; Jiang, Zheng ; Zhu, Chuwei; Li, Wei-Xue; Wöll, Christof 1; Wang, Yuemin 1; Shen, Wenjie
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract:

Bimetallic nanoparticles afford geometric variation and electron redistribution via strong metal-metal interactions that substantially promote the activity and selectivity in catalysis. Quantitatively describing the atomic configuration of the catalytically active sites, however, is experimentally challenged by the averaging ensemble effect that is caused by the interplay between particle size and crystal-phase at elevated temperatures and under reactive gases. Here, we report that the intrinsic activity of the body-centered cubic PdCu nanoparticle, for acetylene hydrogenation, is one order of magnitude greater than that of the face-centered cubic one. This finding is based on precisely identifying the atomic structures of the active sites over the same-sized but crystal-phase-varied single-particles. The densely-populated Pd-Cu bond on the chemically ordered nanoparticle possesses isolated Pd site with a lower coordination number and a high-lying valence d-band center, and thus greatly expedites the dissociation of H$_2$ over Pd atom and efficiently accommodates the activated H atoms on the particle top/subsurfaces.


Verlagsausgabe §
DOI: 10.5445/IR/1000151609
Veröffentlicht am 19.10.2022
Originalveröffentlichung
DOI: 10.1038/s41467-022-32274-4
Scopus
Zitationen: 40
Web of Science
Zitationen: 34
Dimensions
Zitationen: 42
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000151609
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Nature Communications
Verlag Nature Research
Band 13
Heft 1
Seiten Art.-Nr. :4559
Vorab online veröffentlicht am 05.08.2022
Schlagwörter Catalyst synthesis, Heterogeneous catalysis, Nanoparticles
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page