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Abstract
We develop new methods for computing the precise
Dehn functions of coabelian subgroups of direct prod-
ucts of groups, that is, subgroups which arise as kernels
of homomorphisms from the direct product onto a free
abelian group. These improve and generalise previous
results by Carter and Forester on Dehn functions of
level sets in products of simply connected cube com-
plexes, by Bridson on Dehn functions of cocyclic groups
and by Dison on Dehn functions of coabelian groups.
We then provide several applications of our meth-
ods to subgroups of direct products of free groups, to
groups with interesting geometric finiteness properties
and to subgroups of direct products of right-angled
Artin groups.
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1 INTRODUCTION

The properties of groups arising as kernels of maps onto ℤ have attracted a lot of attention in
various areas of group theory. In particular, this concerns their finiteness properties (for example,
[3, 4, 29]). A quantitative approach to understanding the finiteness properties of groups is to study
how difficult it is to detect if loops (or, more generally, spheres) in a 𝐾(𝐺, 1) of a group 𝐺 are
null-homotopic. For loops, this is measured by the Dehn function 𝛿𝐺(𝑛) of the group 𝐺, which is
defined as the maximal area that a minimal filling disc of a loop of length at most 𝑛 can have. The
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2 KROPHOLLER and LLOSA ISENRICH

Dehn function constitutes an important asymptotic invariant with connections to fundamental
problems in various areas, including in geometry in the form of isoperimetric functions and in
combinatorial group theory in the form of the solvability of the word problem.
The connection between finiteness properties and Dehn functions makes it particularly tempt-

ing to study the Dehn functions of groups with interesting finiteness properties. We say that a
group 𝐺 is of finiteness type 𝑘 if it admits a 𝐾(𝐺, 1) which is a CW-complex with finitely many
cells of dimension ⩽ 𝑘. Historically, the first examples of groups of type 𝑘−1 and not 𝑘 for all
𝑘 ⩾ 3, were the Stallings–Bieri groups 𝑆𝐵𝑘 which arise as kernels 𝑆𝐵𝑘 = ker(𝐹2 ×⋯ × 𝐹2 → ℤ)

of homomorphisms from products of 𝑘 free groups onto ℤ [4, 29]. Determining their precise
Dehn functions turned out to be a challenging problem [2, 8, 19, 21] that was only resolved in
full generality very recently by Carter and Forester [14].
These results raise the question if one can also understand the Dehn functions and finite-

ness properties of more general subgroups 𝐾 ⩽ 𝐺1 ×⋯ × 𝐺𝑛 of direct products of groups and in
particular of coabelian subgroups (of corank 𝑙) arising as kernel of a surjective homomorphism
𝜙 ∶ 𝐺1 ×⋯ × 𝐺𝑛 → ℤ𝑙. The finiteness properties of such subgroups have been studied by various
authors [10, 11, 24, 25]. They are now well understood when the 𝐺𝑖 are non-abelian limit groups
and 𝐾 is coabelian. A first general study of Dehn functions of subgroups of direct products of
groups was performed by Bridson [9] in the cocyclic case and by Dison [17] in the coabelian case.
Other results in this area include the ones mentioned in the previous paragraph, as well as [27].
However, we are still far from a complete description of the Dehn functions that can arise, even
if we assume that the 𝐺𝑖 are free groups and that 𝐾 is coabelian. Indeed, the only such examples
for which the precise Dehn function is known are the ones which are virtually a direct product of
Stallings–Bieri groups and free groups.
The goal of this work is to develop new methods for computing the precise Dehn functions of

coabelian subgroups of direct products of groups in terms of the Dehn functions of the factors.
To obtain them, we translate the main result of [14] to an algebraic setting and then generalise
it in two different ways. We will then provide several applications of our methods to subgroups
of direct products of free groups (SPFs), to 1-ended irreducible groups with interesting finiteness
properties, and to subgroups of direct products of right-angled Artin groups. The application to
SPFs is one of themainmotivations for our work. In particular, we can now determine the precise
Dehn functions for a large family of such groups considered in [17].

1.1 Dehn functions of coabelian subgroups of direct products of
groups

In their work, Carter and Forester [14] provide upper bounds on Dehn functions of level sets of
ℝ-valued height functions on direct products of simply connected cube complexes. To obtain their
bounds, they introduce a cell structure induced by subdivision of the cube complex along the level
sets of the height function. They then deduce area bounds in terms of the combinatorial area of
edge loops in this cell structure. Related approaches have beenused for estimating filling functions
in horospheres in symmetric spaces with a product structure (see Gromov [22] and Drutu [20]).
We generalise the methods in [14] and translate them into an algebraic setting. Roughly speak-

ing our generalisation consists of replacing height maps to ℝ by ‘multi-dimensional’ height maps
to ℝ𝑚 which admit a splitting. In algebraic terms, this equates to split epimorphisms onto ℤ𝑚.
This formulation in algebraic terms allows us to prove our results for arbitrary groups that do not
need to admit an action on a simply connected cube complex. As a consequence, we can compute
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DEHN FUNCTIONS OF COABELIAN SUBGROUPS OF DIRECT PRODUCTS OF GROUPS 3

the precise Dehn function of many kernels of homomorphisms from direct products of at least
three groups onto free abelian groups.

Theorem 3.2. For 1 ⩽ 𝑖 ⩽ 3, let 𝐺𝑖 be finitely presented groups and let 1 → 𝑁𝑖 → 𝐺𝑖
𝜙𝑖
��→ ℤ𝑚 →

1 be right-split short exact sequences. Let 𝜙∶ 𝐺1 × 𝐺2 × 𝐺3 → ℤ𝑚 be defined by 𝜙(g1, g2, g3) =∑3
𝑖=1 𝜙𝑖(g𝑖). Let 𝑓 be the superadditive closure of the Dehn function 𝑓 of 𝐺1 × 𝐺2 × 𝐺3. Then 𝐾 ∶=

ker(𝜙) is finitely presented and itsDehn function satisfies𝑓(𝑛) ≼ 𝛿𝐾(𝑛) ≼ 𝑓(𝑛) ⋅ 𝑙𝑜g(𝑛). If,moreover,
𝑓(𝑛)

𝑛
is superadditive, then 𝑓(𝑛) ≍ 𝛿𝐾(𝑛).

Here the superadditive closure of 𝑓 ∶ ℕ>0 → ℝ>0 is the smallest function 𝑓(𝑛), which is
bounded below by 𝑓(𝑛) and satisfies 𝑓(𝑛 + 𝑚) ⩾ 𝑓(𝑛) + 𝑓(𝑚) for 𝑛,𝑚 > 0. The moreover-part
of our result is particularly interesting, because we are not aware of any non-linear Dehn function
of a finitely presented group for which 𝑓(𝑛)∕𝑛 is not superadditive (see also [23]). In particular,
every function of the form 𝑛 ↦ 𝑛𝑎, with 𝑎 ⩾ 2, and 𝑛 ↦ 𝑒𝑛 has this property.
As a direct consequence, we obtain the following improvement of a result of Bridson:

Corollary 1.1. Let 𝜙 ∶ 𝐺1 × 𝐺2 × 𝐺3 → ℤ be a homomorphism whose restriction to each of the𝐺𝑖 is
surjective and let 𝑓(𝑛) be the Dehn function of𝐺1 × 𝐺2 × 𝐺3. Then the Dehn function of𝐾 ∶= ker(𝜙)

satisfies 𝑓(𝑛) ≼ 𝛿𝐾(𝑛) ≼ 𝑓(𝑛) ⋅ 𝑙𝑜g(𝑛).

Bridson [9, Theorem 0.3] showed that 𝛿𝐾(𝑛) ≼ 𝑛 ⋅ 𝛿𝐺1×𝐺2(𝑛) + 𝛿𝐺3(𝑛).
Replacing splittings by a more general concept, which we call 𝑃-splitting (see Definition 4.1),

allows us to prove a variation of Theorem 3.2.

Theorem 4.2. Let 𝐺1,… , 𝐺4 be finitely presented groups and let 1 → 𝑁𝑖 → 𝐺𝑖
𝜙𝑖
��→ ℤ𝑚 → 1 be short

exact sequences. Suppose that there is a 𝑃 such that each of these sequences 𝑃-splits. Let 𝜙∶ 𝐺1 ×

𝐺2 × 𝐺3 × 𝐺4 → ℤ𝑚 be defined by 𝜙(g1, g2, g3, g4) =
∑4

𝑖=1 𝜙𝑖(g𝑖) and let 𝑓(𝑛) be the Dehn function
of𝐺1 ×⋯ × 𝐺4. Then𝐾 = ker(𝜙) is finitely presented and itsDehn function satisfies𝑓(𝑛) ≼ 𝛿𝐾(𝑛) ≼

𝑓(𝑛) ⋅ 𝑙𝑜g(𝑛). If, moreover, 𝑓(𝑛)
𝑛

is superadditive, then 𝑓(𝑛) ≍ 𝛿𝐾(𝑛).

In a similar vein to Corollary 1.1, we can now make a statement about kernels of maps to ℤ2.

Corollary 1.2. Let 𝜙 ∶ 𝐺1 × 𝐺2 × 𝐺3 × 𝐺4 → ℤ2 be a homomorphism whose restriction to each of
the 𝐺𝑖 is surjective and let 𝑓(𝑛) be the Dehn function of 𝐺1 × 𝐺2 × 𝐺3 × 𝐺4. Then the Dehn function
of 𝐾 ∶= ker(𝜙) satisfies 𝑓(𝑛) ≼ 𝛿𝐾(𝑛) ≼ 𝑓(𝑛) ⋅ 𝑙𝑜g(𝑛).

The number of factors here cannot be reduced. Indeed, the kernel of the homomorphism
𝜙∶ 𝐹2 × 𝐹2 × 𝐹2 → ℤ2 defined by abelianisation on the factors satisfies a cubic lower bound on
its Dehn function [18].

Remark 1.3. Our proofs provide a constructive way of filling a loop with a disk. One can
apply a similar construction for the homological finite presentations from [5] to bound the
homological Dehn function when each 𝐺𝑖 is of type 𝐹𝑃2. More precisely, if in Theorem 3.2 or
Theorem 4.2 we assume that each 𝐺𝑖 is of type 𝐹𝑃2 (rather than finitely presented), then 𝐾 is of
type 𝐹𝑃2 and 𝑓(𝑛) ≼ 𝛿𝐾(𝑛) ≼ 𝑓(𝑛) ⋅ 𝑙𝑜g(𝑛), where 𝑓 is the homological Dehn function of

∏
𝑖 𝐺𝑖 .
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4 KROPHOLLER and LLOSA ISENRICH

For the upper bound, one uses that homological Dehn functions are always superadditive [5,
Proposition 2.20].

Remark 1.4. As a further application of Theorem 4.2, we will improve a result of Dison [17,
Theorem 11.3 (4)], which provides upper bounds on Dehn functions of kernels of certain homo-
morphisms fromdirect products of finitely presented groups ontoℤ𝑙 (see Theorem 5.4 for a precise
statement). In particular, we can compute their precise Dehn functions if 𝑓(𝑛)∕𝑛 is superadditive,
where 𝑓(𝑛) is defined as in Theorem 4.2.

We will provide several applications of Theorems 3.2 and 4.2. They will also show that the two
results have partially complementary applications.

1.2 Dehn functions of subgroups of products of free groups

Our first application is to coabelian subgroups of direct products of free groups. They provide a
natural generalisation of the Stallings–Bieri groups.With the exception of groups that are virtually
direct products of free groups, all SPFs have interesting finiteness properties [10, 11]. This makes
it natural to pose the question how wild the Dehn functions of SPFs can be. It was first raised by
Dison:

Question 1 (Dison [17, Question 1]). Does every finitely presented SPF have a polynomially
bounded Dehn function?

Dison also posed the stronger version of Question 1 whether the class of Dehn functions of
SPFs satisfies a uniform polynomial upper bound. While Tessera and the second author gave a
negative answer to the uniform version of Dison’s question, their examples are not (virtually)
coabelian [27]. This raises the following question:

Question 2 [27, Question 4]. Is there a polynomial 𝑝(𝑛) such that 𝛿𝐺(𝑛) ≼ 𝑝(𝑛) for all coabelian
SPFs 𝐺?

A natural approach to these questions is to develop methods that provide us with good upper
bounds on the Dehn functions of SPFs. This approach was pursued by Dison [17]. Roughly
speaking, he showed that coabelian SPFs that satisfy strong enough finiteness properties admit
polynomially bounded Dehn functions, providing evidence towards a positive answer to Ques-
tion 1. Moreover, Dison showed that under even stronger assumptions one can obtain a uniform
polynomial bound.
More precisely, for 𝑚 ⩾ 𝑙 and 𝑟 ⩾ 3, Dison defines the group 𝐾𝑟

𝑚(𝑙) as kernel of a homo-
morphism 𝜙 ∶ 𝐹×𝑟𝑚 = 𝐹𝑚 ×⋯ × 𝐹𝑚 → ℤ𝑙 where every factor surjects onto ℤ𝑙 and proves that
𝛿𝐾𝑟

𝑚(𝑙)
(𝑛) ≼ 𝑛5 if 2𝑙 ⩽ 𝑟. While a priori there are different homomorphisms with this property,

they are the same up to an automorphism of 𝐹×𝑟𝑚 ; in particular, up to this automorphism, 𝐾𝑟
𝑚(𝑙)

does not depend on the choice of homomorphism 𝜙 [17, Lemma 13.1], explaining the notation.
As an application of Theorem 4.2, we can compute the precise Dehn functions for this family

of examples.

Theorem 1.5. For 𝑟 ⩾ 4 and ⌈ 𝑙
2
⌉ ⩽ 𝑟

4
, the group 𝐾𝑟

𝑚(𝑙) has quadratic Dehn function.

 14697750, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12682 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [19/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DEHN FUNCTIONS OF COABELIAN SUBGROUPS OF DIRECT PRODUCTS OF GROUPS 5

Note that this result is optimal in 𝑟 for the subfamily 𝐾𝑟
2
(2), 𝑟 ⩾ 3, since 𝐾3

2
(2) satisfies a cubic

lower bound on its Dehn function [18]. Theorem 1.5 will follow from the computation of the
precise Dehn function for a more general class of coabelian SPFs (see Theorem 5.1).
While our results do not extend the family of SPFs for which we know that their Dehn function

satisfies a uniform polynomial upper bound, they do suggest that the current upper bounds on
Dehn functions of SPFs in the literature might still be far from optimal. This provides further
impetus to trying to improve these bounds and thereby to making further progress on Questions
1 and 2. Moreover, our result also significantly extends the class of SPFs for which we know their
precise Dehn function.

1.3 Groups with interesting finiteness properties and prescribed
Dehn function

We call an infinite group 𝐺 irreducible, if it does not have a finite index subgroup of the form
𝐻1 × 𝐻2 with𝐻1 and𝐻2 infinite.
In [14, Corollary 1.1], Carter and Forester observe that a consequence of their results is the

existence of groups of type 𝑛−1 and not 𝑛 with quadratic Dehn function. Finiteness properties
are preserved when taking free products and direct products with groups of type ∞. Putting
these two results together shows that for every function 𝑓(𝑛) ≽ 𝑛2 which can be realised as Dehn
function of a group 𝐺 of type ∞ there is a group of type 𝑛−1 and not 𝑛 with the same Dehn
function. Indeed, the direct product 𝐺 × SB𝑛 has Dehn function 𝑓(𝑛). We also note that the free
product 𝐺 ∗ SB𝑛 has Dehn function 𝑓(𝑛). Observe that the groups obtained via direct products
are 1-ended, but not irreducible, while the groups obtained via free products are irreducible, but
not 1-ended.
As a consequence, one obtains that for non-hyperbolic groups Dehn functions do not impose

any restrictions on their finiteness properties.Apriori thismight change if one imposes additional
group theoretic constraints. Here we show:

Theorem 5.5. Let 𝑓(𝑛) ≽ 𝑛2 be a function which can be realised as Dehn function of a group
𝐺 of type ∞ and let 𝑘 ⩾ 3. Then there is a 1-ended irreducible group 𝐾 of type 𝑘−1 and not 𝑘
whose Dehn function satisfies 𝑓(𝑛) ≼ 𝛿𝐾(𝑛) ≼ 𝑙𝑜g(𝑛) ⋅ 𝑓(𝑛) for 𝑓 the superadditive closure of 𝑓. If,
moreover, 𝑓(𝑛)

𝑛
is superadditive, then 𝑓(𝑛) ≍ 𝛿𝐾(𝑛).

It is worth recalling here that to our knowledge all known Dehn functions with 𝑓(𝑛) ≽ 𝑛2 sat-
isfy that 𝑓(𝑛)

𝑛
is superadditive and can be realised as Dehn function of a group of type ∞. Thus,

in all known cases, the assumption that the group is simultaneously 1-ended and irreducible does
not impose any additional constraints.

Notation

For monotonely increasing functions 𝑓, g ∶ ℝ>0 → ℝ, we write 𝑓 ≼ g if there is a constant 𝐶 > 0

such that 𝑓(𝑛) ⩽ 𝐶g(𝐶𝑛 + 𝐶) + 𝐶𝑛 + 𝐶 for all 𝑛 ∈ ℝ>0 and 𝑓 ≍ g if 𝑓 ≼ g ≼ 𝑓. If 𝑓 ≍ g , we say
that 𝑓 and g are asymptotically equivalent.

 14697750, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12682 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [19/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 KROPHOLLER and LLOSA ISENRICH

Throughout this article by a word in a set 𝑋 we will mean an element of the free monoid with
generating set 𝑋 ⊔ 𝑋−1. For a group 𝐺 and a subset 𝑋 ⊂ 𝐺, we say that ℎ ∈ 𝐺 is obtained from
g ∈ 𝐺 by applying elements of 𝑋 to g if there is a word 𝑤(𝑋) in 𝑋 such that ℎ = g ⋅ 𝑤(𝑋) in 𝐺;
equivalently ℎ ∈ g ⋅ ⟨𝑋⟩.
For a word 𝑤(𝑋) = 𝑥1 ⋅ ⋯ ⋅ 𝑥𝑛 with 𝑥𝑖 ∈ 𝑋 ⊔ 𝑋−1, we will denote by |𝑤| ∶= 𝑛 its word length.

Moreover, for group elements g , ℎ ∈ 𝐺 = ⟨𝑋⟩ we will denote by 𝑑(g , ℎ)(= 𝑑𝐺,𝑋(g , ℎ)) their dis-
tance in the word metric on the Cayley graph Cay(𝐺, 𝑋) of 𝐺 with respect to the generating set
𝑋.

Structure

In Section 2, we provide some background on Dehn functions, superadditivity and filling pairs.
In Section 3, we prove Theorem 3.2. In Section 4, we prove Theorem 4.2. In Section 5.1, we apply
Theorem 4.2 to study Dehn functions of SPFs and prove Theorem 1.5. The proof of Theorem 5.5 is
contained in Section 5.2. Finally, in Section 5.3, we will provide some straightforward applications
of our results to Dehn functions of coabelian subgroups of right-angled Artin groups.

2 DEHN FUNCTIONS, SUPERADDITIVITY AND FILLING PAIRS

Definition 2.1. Let 𝐺 be a group given by a finite presentation ⟨𝑋 ∣ 𝑅⟩. Let 𝑤 be a word in 𝑋

which represents the trivial element of 𝐺. We define the area of 𝑤 as

Area(𝑤) = min

{
𝑙 ∣ 𝑤 =

𝑙∏
𝑖=1

𝑤𝑖𝑟𝑖𝑤
−1
𝑖 , 𝑤𝑖 ∈ 𝐹(𝑋), 𝑟𝑖 ∈ 𝑅±1

}
.

We define the Dehn function of 𝐺, 𝛿𝐺 ∶ ℕ → ℕ by

𝛿𝐺(𝑛) = max{Area(𝑤) ∣ |𝑤| ⩽ 𝑛}.

A priori the definition depends on the choice of finite presentation for 𝐺. However, it is well
known that its asymptotic equivalence class does not. This explains the omission of the finite
presentation in the notation 𝛿𝐺 for the Dehn function.
Recall the following well-known result (see [7]).

Lemma 2.2. Let 𝐺,𝐻 be finitely presented groups. Suppose that 𝐺 → 𝐻 is a retraction. Then
𝛿𝐻 ≼ 𝛿𝐺 .

Throughout we will be interested in Dehn functions of products of groups. They are described
by the following

Lemma 2.3. For 𝑘 ⩾ 2, let 𝐺1,… , 𝐺𝑘 be infinite finitely presented groups and denote by 𝛿𝑖 the Dehn
function of 𝐺𝑖 . Then the Dehn function of 𝐺 =

∏
𝑖 𝐺𝑖 is equivalent tomax{𝑛2, 𝛿𝑖, 1 ⩽ 𝑖 ⩽ 𝑘}.
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DEHN FUNCTIONS OF COABELIAN SUBGROUPS OF DIRECT PRODUCTS OF GROUPS 7

Proof. There are retractions 𝐺 → 𝐺𝑖 for each 𝑖, thus 𝛿𝐺 is bounded below by 𝛿𝑖 . Since the 𝐺𝑖 are
infinite, 𝐺 is not hyperbolic and thus 𝛿𝐺 is also bounded below by 𝑛2. For the upper bound, see
[7, Proposition 2.1]. □

Various of the arguments used will require superadditivity of functions:

Definition 2.4. A function 𝑓∶ ℕ → ℝ>0 is called superadditive if 𝑓(𝑛 + 𝑚) ⩾ 𝑓(𝑚) + 𝑓(𝑛). The
superadditive closure 𝑓 of 𝑓 is the smallest superadditive function with 𝑓(𝑛) ⩾ 𝑓(𝑛).

It is currently an open conjecture that every Dehn function is equivalent to its superadditive
closure [23, Conjecture 1]. The following straightforward observation provides evidence:

Lemma 2.5. Let 𝑓∶ ℕ → ℝ>0 be a function that satisfies that
𝑓(𝑛)

𝑛
is non-decreasing in 𝑛. Then 𝑓

is superadditive.

Herewewill be interested in a stronger condition than superadditivity. Namely, wewill be inter-
ested in non-decreasing functions 𝑓∶ ℕ → ℝ>0 with the property that 𝑛 ↦

𝑓(𝑛)

𝑛
is superadditive.

Note that neither superadditivity nor this property need to be preserved by asymptotic equivalence
of functions. However, we have:

Lemma 2.6. Let 𝑓 ∶ ℕ → ℝ>0 be non-decreasing such that 𝑓 ≍ g ≽ 𝑛2 for a function g ∶ ℕ → ℝ>0

with g ′(𝑛) ∶= g(𝑛)

𝑛
superadditive. Let 𝑓

′
(𝑛) be the superadditive closure of 𝑓′(𝑛) ∶= 𝑓(𝑛)

𝑛
and let

𝑓(𝑛) ∶= 𝑛 ⋅ 𝑓
′
(𝑛). Then 𝑓 ≍ g and 𝑓 ⩾ 𝑓.

Proof. By definition, 𝑓(𝑛) ⩾ 𝑓(𝑛) and thus 𝑓 ≽ g . Conversely, g ≽ 𝑓 implies that there is 𝐶 ⩾ 1

such that 𝑓(𝑛) ⩽ 𝐶g(𝐶𝑛 + 𝐶) + 𝐶𝑛 + 𝐶 for all 𝑛 ∈ ℕ. Let 𝑛 ∈ ℕ and let 𝑛 = 𝑛1 +⋯ + 𝑛𝑘 be a
partition realising 𝑓

′
(𝑛). Then:

𝑓(𝑛) = 𝑛 ⋅
𝑘∑
𝑖=1

𝑓′(𝑛𝑖) ⩽ 𝑛 ⋅
𝑘∑
𝑖=1

𝐶g(𝐶𝑛𝑖 + 𝐶) + 𝐶𝑛𝑖 + 𝐶

𝑛𝑖

= 𝑛 ⋅
𝑘∑
𝑖=1

𝐶(𝐶𝑛𝑖 + 𝐶)g ′(𝐶𝑛𝑖 + 𝐶) + 𝐶𝑛𝑖 + 𝐶

𝑛𝑖

⩽ 𝐶 ⋅ 𝑛 ⋅

(
𝑘∑
𝑖=1

2𝐶g ′(𝐶𝑛𝑖 + 𝐶)

)
+ 𝑛 ⋅ (2𝐶𝑘)

⩽ 2𝐶2 ⋅ 𝑛 ⋅ g ′(𝐶(𝑛 + 𝑘)) + 𝑛 ⋅ (2𝐶𝑘)

⩽ 2𝐶g(𝑛 + 𝑘) + 2𝐶(𝑛 + 𝑘)2

⩽ 2𝐶g(2𝑛) + 2𝐶(2𝑛)2.

Since g ≽ 𝑛2, this completes the proof. □
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8 KROPHOLLER and LLOSA ISENRICH

The following is an immediate consequence of the observation that superadditivity of 𝑓(𝑛)∕𝑛
implies superadditivity of 𝑓.

Remark 2.7. Let 𝑓 ∶ ℕ → ℝ>0 be a non-decreasing function. Let 𝑓 be its superadditive closure and
let g(𝑛) ∶= 𝑛 ⋅ 𝑓

′
(𝑛) for 𝑓

′
(𝑛) the superadditive closure of 𝑓(𝑛)∕𝑛. Then 𝑓 ⩽ 𝑓 ⩽ g .

Our methods will also provide upper bounds on the filling diameters of our fillings and thus
provide us with filling pairs. Here we summarise the properties of filling diameters and pairs that
we will require.
We define the (extrinsic) filling diameter of a filling 𝑤(𝑋) =

∏𝑛
𝑖=1 𝑣𝑖(𝑋) ⋅ 𝑟

±1
𝑖

⋅ 𝑣𝑖(𝑋)
−1 of a null-

homotopic word 𝑤(𝑋) in 𝐺 = ⟨𝑋 ∣ 𝑅⟩ as the maximal distance max1⩽𝑖⩽𝑛{𝑑𝐺(1, 𝑣𝑖(𝑋))} of the
conjugators from 1 ∈ 𝐺 in 𝐶𝑎𝑦(𝐺, 𝑋).
For functions 𝑓, g ∶ ℕ → ℝ > 0, we call (𝑓, g) an (extrinsic) filling pair for 𝐺 if every null-

homotopic word 𝑤(𝑋) of length ⩽ 𝑛 admits a filling of area ⩽ 𝑓(𝑛) and diameter ⩽ g(𝑛). The
following is well known and it follows easily from the proof of the upper bound on the Dehn
function of a direct product of groups given in [7].

Lemma 2.8. Let 𝐺1,… , 𝐺𝑘 be finitely presented groups with filling pairs (𝑓𝑖, g𝑖). Then

(𝑓(𝑛), g(𝑛)) ∶=
(
𝑛2 + max

1⩽𝑖⩽𝑘
{𝑓𝑖(𝑛)}, 𝑛 + max

1⩽𝑖⩽𝑘
{g𝑖(𝑛)}

)

is a filling pair for
∏𝑘

𝑖=1 𝐺𝑖 .

Remark 2.9. One can also define the intrinsic filling diameter of a filling of a null-homotopic word,
as the diameter of a corresponding vanKampen diagram, and correspondingly define intrinsic fill-
ing pairs. Using that in [7] Brick constructs explicit van Kampen diagrams satisfying the asserted
upper area bounds, one observes that Lemma 2.8 also holds for intrinsic filling pairs. In particular,
one readily checks that all of our results about extrinsic filling pairs remain true for intrinsic fill-
ing pairs by carefully going through their proofs and observing that the fillings we construct are
obtained by gluing together vanKampen diagramswhose distance to the base point is bounded by
a uniform multiple of the length of the word we fill. However, note that in general the functions
𝐸𝐷𝑖𝑎𝑚(𝑛), respectively, 𝐼𝐷𝑖𝑎𝑚(𝑛), defined as the maximum over all minimal extrinsic, respec-
tively intrinsic, filling diameters of null-homotopic words of length ⩽ 𝑛 are not equivalent [6, 12].
For simplicity in the sequel, wewill thus stick to extrinsic filling diameters and pairs. In particular,
the terms ‘filling diameter’ and ‘filling pair’ will always be referring to their extrinsic version.

3 ALGEBRAIC TRIANGLEMETHOD

In [14], a method is developed to study the Dehn function of a kernel of a homomorphism 𝐺1 ×

𝐺2 × 𝐺3 → ℤ. For three cube complexes 𝑋𝑖 equipped with height functions ℎ𝑖 ∶ 𝑋𝑖 → ℝ, that is,
functions that restrict to linearmaps on cubes andmap edges onto intervals of the form [𝑛, 𝑛 + 1],
it provides an upper bound on the Dehn function of the zero-level set of the sum of the ℎ𝑖 .

Theorem 3.1 [14, Theorem 4.2]. Suppose 𝑎 ⩾ 2 and let 𝑋1, 𝑋2 and 𝑋3 be simply connected cube
complexes with height functions ℎ𝑖 ∶ 𝑋𝑖 → ℝ such that each 𝑋𝑖 is admissible and has Dehn func-
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DEHN FUNCTIONS OF COABELIAN SUBGROUPS OF DIRECT PRODUCTS OF GROUPS 9

tion ≼ 𝑛𝑎 . Then the zero level set [𝑋1 × 𝑋2 × 𝑋3]0 of ℎ =
∑3

𝑖=1 ℎ𝑖 is simply connected and has Dehn
function ≼ 𝑛𝑎 .

Here a cube complex 𝑋𝑖 is admissible if each vertex is contained in a monotone line, where a
monotone line is a subcomplex 𝐿𝑖 of 𝑋𝑖 such that ℎ𝑖|𝐿𝑖 is a homeomorphism. The proof in [14]
exploits that the cubical structure on the factors induces a sliced cell structure on certain level
sets, enabling the authors to derive upper bounds on the Dehn function via area estimates with
respect to a cellular structure.
The first goal of this work is a generalisation of this result. A natural strategy for obtaining such

an extension is to generalise the notion of height functions. A first step in this direction would be
to consider maps ℎ𝑖 ∶ 𝑋𝑖 → ℝ𝑚 which restrict to linear maps on cubes, map vertices of𝑋𝑖 into the
integer lattice of ℤ𝑚 and are Lipschitz. This approach has the advantage that one can still exploit
the combinatorial structure of the cube complex by inducing a generalised version of the sliced
cell-structures used in [14] on the level sets of ℎ. However, it turns out that one can evade the use
of a combinatorial structure altogether and thereby even drop the condition that the 𝑋𝑖 are cube
complexes. Geometrically one can do so by extending the definition of height function to Lipschitz
maps ℎ𝑖 ∶ 𝑋𝑖 → ℝ𝑚 for some 𝑛, where the 𝑋𝑖 are suitable locally compact and locally connected
length spaces (for instance, direct products of Cayley graphs of finitely presented groups). One
can then define monotone planes to be subspaces of the 𝑋𝑖 such that ℎ𝑖 restricts to a bilipschitz
homeomorphism onto ℝ𝑚 and formulate a result similar to Theorem 3.1 in this setting.
However, we shall pursue a different purely algebraic approach which avoids some of the

geometric subtleties that one encounters in the aforementioned approach via Lipschitz height
maps.

Theorem 3.2. For 1 ⩽ 𝑖 ⩽ 3, let 𝐺𝑖 be finitely presented groups and let 1 → 𝑁𝑖 → 𝐺𝑖
𝜙𝑖
��→ ℤ𝑚 →

1 be right-split short exact sequences. Let 𝜙∶ 𝐺1 × 𝐺2 × 𝐺3 → ℤ𝑚 be defined by 𝜙(g1, g2, g3) =∑3
𝑖=1 𝜙𝑖(g𝑖). Let 𝑓 be the superadditive closure of the Dehn function 𝑓 of 𝐺1 × 𝐺2 × 𝐺3. Then 𝐾 ∶=

ker(𝜙) is finitely presented and itsDehn function satisfies𝑓(𝑛) ≼ 𝛿𝐾(𝑛) ≼ 𝑓(𝑛) ⋅ 𝑙𝑜g(𝑛). If,moreover,
𝑓(𝑛)

𝑛
is superadditive, then 𝑓(𝑛) ≍ 𝛿𝐾(𝑛).

While the condition that 𝑓(𝑛)
𝑛

is superadditive might seem restrictive on first sight, we are not
aware of any non-hyperbolic group that does not satisfy it. Lemma 2.5 implies:

Corollary 3.3. If in Theorem 3.2 𝑓(𝑛)

𝑛2
is non-decreasing, then ker(𝜙) is finitely presented and has

Dehn function 𝑓.

We also obtain the following estimate on filling pairs:

Corollary 3.4. If (𝑓𝑖, g𝑖) is a filling pair for 𝐺𝑖 , then the proof of Theorem 3.2 shows that 𝐾
admits a filling pair of the form (𝑙𝑜g(𝑛) ⋅ 𝑓(𝑛), g(𝑛)), with 𝑓 the super-additive closure of 𝑓(𝑛) ≍
𝑛2 +

∑3
𝑖=1 𝑓𝑖(𝑛) and g(𝑛) ≍ 𝑛 +

∑3
𝑖=1 g𝑖(𝑛).

We will now fix specific generating sets for the groups 𝐺𝑖 which are compatible with the
splittings 𝑠𝑖 as follows. Fix generating sets 𝑍 = {𝑧1, … , 𝑧𝑚} for ℤ𝑚 and 𝑉𝑖 for 𝐺𝑖 . Let 𝑍𝑖 =
{𝑠𝑖(𝑧1), … , 𝑠𝑖(𝑧𝑚)} and 𝑌𝑖 = {𝑣𝑠𝑖(𝜙𝑖(𝑣))

−1 ∣ 𝑣 ∈ 𝑉𝑖} ⊂ ker(𝜙𝑖). Then 𝑌𝑖 ∪ 𝑍𝑖 is a generating set for
𝐺𝑖 .

 14697750, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12682 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [19/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 KROPHOLLER and LLOSA ISENRICH

In the sequel, we will use various sets that generate subgroups of𝐺1 × 𝐺2 × 𝐺3 defined in terms
of these generating sets as laid out in the following lemma.

Lemma 3.5. Let 𝐺𝑖, 𝑌𝑖, 𝑍𝑖, 𝑍 and 𝜙 be as above. Define the following subsets of 𝐺1 × 𝐺2 × 𝐺3.

∙ 𝑇1 = {(𝑠1(𝑧), 𝑠2(𝑧)
−1, 𝑒) ∣ 𝑧 ∈ 𝑍}.

∙ 𝑇2 = {(𝑒, 𝑠2(𝑧), 𝑠3(𝑧)
−1) ∣ 𝑧 ∈ 𝑍}.

∙ 𝑇3 = {(𝑠1(𝑧)
−1, 𝑒, 𝑠3(𝑧)) ∣ 𝑧 ∈ 𝑍}.

∙ 𝑈1 = {(𝑦, 𝑒, 𝑒) ∣ 𝑦 ∈ 𝑌1}.
∙ 𝑈2 = {(𝑒, 𝑦, 𝑒) ∣ 𝑦 ∈ 𝑌2}.
∙ 𝑈3 = {(𝑒, 𝑒, 𝑦) ∣ 𝑦 ∈ 𝑌3}.

Let 𝑇 = ∪𝑖𝑇𝑖 and𝑈 = ∪𝑖𝑈𝑖 . Then the following hold.

∙ ⟨𝑈 ∪ 𝑇⟩ = ker(𝜙).
∙ ⟨𝑇⟩ ≅ ℤ2𝑚.
∙ ⟨𝑈𝑖 ∪ 𝑇𝑖⟩ ≅ 𝐺𝑖 .
∙ ⟨𝑈𝑖 ∪ 𝑇⟩ ≅ 𝐺𝑖 × ℤ𝑚.
∙ ⟨𝑈𝑖 ∪ 𝑈𝑗 ∪ 𝑇⟩ ≅ 𝐺𝑖 × 𝐺𝑗 , for 𝑖 ≠ 𝑗.

Proof. Wewill prove the first and last statements. The others can be deduced via similar reasoning.
Let 𝐾 ∶= ker(𝜙). We will begin with the first statement. It is clear that 𝑈 ∪ 𝑇 ⊂ 𝐾. Thus we must
prove that any element of𝐾 can bewritten as aword in these generators. Let (g1, g2, g3) ∈ 𝐾. Mod-
ulo an element of ⟨𝑈1 ∪ 𝑈2 ∪ 𝑇2 ∪ 𝑇3⟩, we can reduce to an element of the form (𝑒, 𝑒, ℎ). Applying
elements from𝑈3 ∪ 𝑇2, we can obtain an element of the form (𝑒, (𝑠2(𝜙3(ℎ)))

−1, 𝑒). However, since
(𝑒, 𝑒, ℎ) ∈ 𝐾 we see that 𝜙3(ℎ) = 0 and we are done.
For the last statement, we may assume 𝑖 = 1, 𝑗 = 2. Let 𝐻 = ⟨𝑈1 ∪ 𝑈2 ∪ 𝑇⟩. Consider the pro-

jection𝐻 → 𝐺1 × 𝐺2. It is easy to see that it is surjective. Indeed, for (g1, g2) ∈ 𝐺1 × 𝐺2, there is an
element of ⟨𝑈1 ∪ 𝑈2 ∪ 𝑇2 ∪ 𝑇3⟩ of the form (g1, g2, 𝑠3(𝜙1(g1) + 𝜙2(g2))−1). However, any two such
elements of𝐻 differ by an element of the form (𝑒, 𝑒, 𝑠3(𝑧)) ∈ 𝐾 for some 𝑧 ∈ ℤ𝑚. This implies that
the projection map is injective and thus an isomorphism. □

We fix finite presentations for all groups in Lemma 3.5 (except ker(𝜙)) and for 𝐺1 × 𝐺2 × 𝐺3
with respect to the given generating sets. By Lemmas 2.3 and 2.6, we may assume that the Dehn
functions of all of the groups ℤ2𝑚, 𝐺𝑖 × ℤ𝑚, 𝐺𝑖 × 𝐺𝑗 and 𝐺1 × 𝐺2 × 𝐺3 are bounded above by the
function 𝑓 from Theorem 3.2 (after possibly making 𝑓 larger in its equivalence class).
We now provide a filling of a null-homotopic word in the generating set 𝑈 ∪ 𝑇 of 𝐾. We first

construct fillings for triangles spanned by three elements of 𝐺1 × 𝐺2 × 𝐺3 as in Figure 1 by gluing
together fillings in subgroups generated by subsets of 𝑈 ∪ 𝑇 as in Lemma 3.5. We then fill an
arbitrary loop by tiling it by triangles as in Figure 3. The connection to the geometric approach
from [14] is that if there are geometric actions of 𝐺𝑖 ↷ 𝑋𝑖 on length spaces and admissible lines
𝐿𝑖 through every point in 𝑋𝑖 , then our subgroups act geometrically on 0-level sets of products of
the 𝑋𝑖 and the 𝐿𝑖 .

3.1 A spanning triangle

Throughout this section, 𝐾 will always be equipped with the generating set 𝑈 ∪ 𝑇. Let 𝔞 =
(𝔞1, 𝔞2, 𝔞3), 𝔟 = (𝔟1, 𝔟2, 𝔟3) and 𝔠 = (𝔠1, 𝔠2, 𝔠3) be elements of𝐾. Wewill construct a triangular loop
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DEHN FUNCTIONS OF COABELIAN SUBGROUPS OF DIRECT PRODUCTS OF GROUPS 11

F IGURE 1 An algebraic spanning triangle

in the Cayley graph of 𝐾 with these three elements as vertices. It will arise as boundary loop of a
subdivided triangle as in Figure 1 whose edges will be labelled by words in the generating sets of
the adjacent bounded regions. Where two bounded regions are adjacent to an edge, note that one
generating set is contained in the other and the edge will be labelled by a word in the smaller one
of the generating sets. Throughout this section by an edge we will be referring to an edge in the
1-skeleton of the triangle (as opposed to an edge of the Cayley graph).
As a consequence, wewill be able to control the filling area of the boundaryword of the triangle

in terms of filling areas of words in the subgroups labelling the bounded regions. By carefully
controlling the lengths of the words labelling each of the edges throughout our construction, we
will thus be able to obtain bounds on the area of the boundary word of the triangle in terms of the
Dehn functions of the groups labelling the bounded regions and thus in terms of 𝑓.
We will now describe the construction of the words labelling the edges of the triangle. We keep

track of upper bounds on their lengths in Figure 2. Note that due to symmetries it will be sufficient
to focus on the edges ①–④.
We start by constructing a path in the Cayley graph labelling the three edges between 𝔞 and 𝔟.
First, by applying generators from 𝑈2 ∪ 𝑇, we can construct a path from (𝔞1, 𝔞2, 𝔞3) to a vertex

of the form (𝔞′
1
, 𝔟2, 𝔞3), where 𝔞1 and 𝔞′1 differ by an element of 𝑠1(ℤ

𝑚). The corresponding word
in 𝑈2 ∪ 𝑇 provides the label for the edge ①.
Next we use generators from 𝑈3 ∪ 𝑇 to construct a path from the element (𝔞′

1
, 𝔟2, 𝔞3) to an

element of the form (𝔞1, 𝔟
′
2
, 𝔟3); this is possible since 𝔞1 ⋅ (𝔞′1)

−1 ∈ 𝑠1(ℤ
𝑚). Similar as above, we

see that 𝔟2 ⋅ (𝔟′2)
−1 ∈ 𝑠2(ℤ

𝑚).
Finally, since 𝔟2 ⋅ (𝔟′2)

−1 ∈ 𝑠2(ℤ
𝑚), we can construct a path from (𝔞1, 𝔟

′
2
, 𝔟3) to (𝔟1, 𝔟2, 𝔟3) using

elements from 𝑈1 ∪ 𝑇.
A similar construction provides paths labelling the edges from 𝔞 to 𝔠 and from 𝔟 to 𝔠.
We now describe the construction of the three interior vertices in Figure 1 and the

corresponding edges.
Applying generators from 𝑈3 ∪ 𝑇 to (𝔞′1, 𝔟2, 𝔞3) we can construct a path to a vertex of the form

(𝔞′′′
1
, 𝔟2, 𝔠3). As before 𝔞′1(𝔞

′′′
1
)−1 ∈ 𝑠1(ℤ

𝑚). Similarly we can apply generators from 𝑈2 ∪ 𝑇 to the
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12 KROPHOLLER and LLOSA ISENRICH

F IGURE 2 Length bounds on the words labelling the edges of the algebraic spanning triangle in Figure 1

element (𝔞′′
1
, 𝔞2, 𝔠3) to construct a path to a vertex of the form (𝔞1, 𝔟2, 𝔠3) with 𝔞′′1 ⋅ 𝔞−11 ∈ 𝑠1(ℤ

𝑚).
A priori we could have 𝔞′′′

1
≠ 𝔞1 in which case we could not close the loop. However, recalling

that 𝔞1(𝔞′1)
−1, 𝔞1(𝔞

′′
1
)−1 ∈ 𝑠1(ℤ

𝑚) ≅ ℤ𝑚, we obtain 𝔞′′′
1

⋅ 𝔞−11 ∈ 𝑠1(ℤ
𝑚) and thus (𝔞′′′

1
⋅ 𝔞−11 , 𝑒, 𝑒) =

(𝔞′′′
1
, 𝔟2, 𝔠3) ⋅ (𝔞1, 𝔟2, 𝔠3)

−1 ∈ 𝐾 ∩ 𝑠1(ℤ
𝑚) = {(𝑒, 𝑒, 𝑒)}.

Similar arguments allow us to obtain vertices (𝔞1, 𝔟′′′2 , 𝔠3) and (𝔞1, 𝔟2, 𝔠
′′′
3
) with 𝔟2 ⋅ (𝔟′′′2 )

−1 ∈

𝑠2(ℤ) and 𝔠3 ⋅ (𝔠′′′3 )
−1 ∈ 𝑠3(ℤ

𝑚) together with words labelling the corresponding edges.
Finally, we can construct a path from (𝔞′′′

1
, 𝔟2, 𝔠3) to a vertex of the form (𝔞1, 𝔟2, 𝔠3)

labelled by a word in the elements of 𝑇. In particular 𝔟2 ⋅ 𝔟
−1

2 ∈ 𝑠2(ℤ
𝑚), which implies that

also 𝔟2 ⋅ (𝔟′′′2 )
−1 ∈ 𝑠2(ℤ

𝑚). Hence, (𝑒, 𝔟2 ⋅ (𝔟′′′2 )
−1, 𝑒) = (𝔞1, 𝔟2, 𝔠3) ⋅ (𝔞1, 𝔟

′′′
2
, 𝔠3)

−1 ∈ 𝐾 ∩ 𝑠2(ℤ
𝑚) =

{(𝑒, 𝑒, 𝑒)} and therefore (𝔞1, 𝔟2, 𝔠3) = (𝔞1, 𝔟
′′′
3
, 𝔠3). This provides a word in 𝑇 labelling the edge ④.

Analogous arguments allow us to construct words in T labelling the other two edges of the
interior triangle.
It remains to bound above the lengths of the edges labelled①–④with the other bounds following

by symmetries.
Denote by 𝑑𝑖 the word metric on 𝐺𝑖 with respect to the generating set 𝑌𝑖 ∪ 𝑍𝑖 and by 𝑑ℤ𝑚 the

word metric on ℤ𝑚 with respect to the generating set 𝑍. Note that the bijection 𝑍 → 𝑍𝑖 of gen-
erating sets induces an isometric embedding 𝑠𝑖(ℤ𝑚) ⩽ 𝐺𝑖 and that the projection 𝜙𝑖 ∶ 𝐺𝑖 → ℤ𝑚 is
length non-increasing. We will frequently use this without further mention.
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DEHN FUNCTIONS OF COABELIAN SUBGROUPS OF DIRECT PRODUCTS OF GROUPS 13

The minimal length of a word labelling ① is exactly 𝑑2(𝔞2, 𝔟2). To see this, let 𝑤2 = 𝑥
𝜖1
1
…𝑥

𝜖𝑘
𝑘

with 𝜖𝑖 ∈ {±1} be a word of minimal length representing 𝔞−1
2
𝔟2 in the generators 𝑌2 ∪ 𝑍2 of 𝐺𝑖

and their inverses. For 1 ⩽ 𝑖 ⩽ 𝑘, we either have that (𝑠1(𝜙2(𝑥𝑖))−1, 𝑥𝑖, 𝑒) is in 𝑇1, if 𝑥𝑖 ∈ 𝑍2, or in
𝑈2, if 𝑥𝑖 ∈ 𝑌2. The word (𝑠1(𝜙2(𝑥1))−1, 𝑥1, 𝑒) … (𝑠1(𝜙2(𝑥𝑘))

−1, 𝑥𝑘, 𝑒) has length 𝑑2(𝔞2, 𝔟2) and the
corresponding path connects the endpoints of ①. This provides the desired upper bound. For the
lower bound, observe that we can project any path in the level set to the second factor to get a path
in 𝐺2 from 𝔞2 to 𝔟2 in the generators 𝑌2 ∪ 𝑍2.
The edge ② is labelled by a geodesic word in 𝑈3 ∪ 𝑇. Using 𝑑3(𝔞3, 𝔟3) generators, we can

obtain a vertex of the form (𝔞′
1
, 𝔟2, 𝔟3) for some 𝔟2 ∈ 𝐺2. Since 𝔞1 ⋅ (𝔞′1)

−1 ∈ 𝑠1(ℤ
𝑚), we can now

apply 𝑑ℤ𝑚(𝜙1(𝔞1), 𝜙1(𝔞′1)) = 𝑑1(𝔞1, 𝔞
′
1
) generators from 𝑇1 to obtain the vertex (𝔞1, 𝔟′′2 , 𝔟3). Since

𝔞′
1
was obtained from 𝔞1 via the path labelling the edge ①, we see that 𝑑ℤ𝑚(𝜙1(𝔞1), 𝜙1(𝔞′1)) =

𝑑ℤ𝑚(𝜙2(𝔞2), 𝜙2(𝔟2)) ⩽ 𝑑2(𝔞2, 𝔟2). Thus the length of the path labelling the edge② is bounded above
by 𝑑3(𝔞3, 𝔟3) + 𝑑2(𝔞2, 𝔟2).
The edge ③ is labelled by a geodesic word in the elements of 𝑈3 ∪ 𝑇3 and thus of length

𝑑3(𝔞3, 𝔠3).
Finally, the edge ④ is labelled by a geodesic path in the elements of 𝑇. Its length is bounded by

the number of letters from 𝑇 in the words labelling the other three edges of the bounded region
with label ⟨𝑈3 ∪ 𝑇⟩. Thus, it is bounded above by 𝑑3(𝔞3, 𝔟3) + 𝑑2(𝔞2, 𝔟2) + 𝑑3(𝔞3, 𝔠3) + 𝑑3(𝔟3, 𝔠3).
Let 𝑟𝔞𝔟 = max𝑖{𝑑𝑖(𝔞𝑖, 𝔟𝑖)}, 𝑟𝔟𝔠 = max𝑖{𝑑𝑖(𝔟𝑖, 𝔠𝑖)} and 𝑟𝔞𝔠 = max𝑖{𝑑𝑖(𝔞𝑖, 𝔠𝑖)}. We denote 𝐶 ∶=

𝑟𝔞𝔟 + 𝑟𝔟𝔠 + 𝑟𝔞𝔠 and observe that 𝐶 is bounded above by 𝐷 = 𝑑(𝔞, 𝔟) + 𝑑(𝔞, 𝔠) + 𝑑(𝔟, 𝔠), where 𝑑
denotes the product metric on 𝐺1 × 𝐺2 × 𝐺3. We will refer to 𝐷 as the perimeter of the triangle.
This will permit us to bound the area of our triangle purely in terms of 𝐷. Indeed, all edges of the
triangle have length bounded by 3𝐶. Thus, the boundary of each region has length at most 12𝐶.
In particular, we can obtain a filling of area bounded by 𝑓(12𝐶) for each of the null-homotopic
words labelling the bounded regions.
We deduce that the area of the triangle in 𝐾 is bounded above by 7𝑓(12𝐶) ⩽ 7𝑓(12𝐷).

Remark 3.6. Suppose that 𝔞 and 𝔟 differ by a single generator of 𝑈 ∪ 𝑇. Then the path between
them in Figure 1 has length at most 2. To see this, note that the length of the path is bounded by
𝑑1(𝔞1, 𝔟1) + 2 ⋅ 𝑑2(𝔞2, 𝔟2) + 𝑑3(𝔞3, 𝔟3). At least two of these quantities vanish. Thus we obtain the
desired bound.

We can now turn to the remainder of the proof of Theorem 3.2. The rest of the argument
proceeds similarly to that of [14].

Proof of Theorem 3.2. Let𝑤 be a null-homotopicword in𝐾 = ⟨𝑈 ∪ 𝑇⟩ of length𝑛 ⩾ 3 and let 𝑘 ∈ ℤ

be such that 3 ⋅ 2𝑘−1 ⩽ 𝑛 ⩽ 3 ⋅ 2𝑘. Let 𝛾 ∶ [0, 𝑛] → 𝐶𝑎𝑦(𝐾,𝑈 ∪ 𝑇) be the loop corresponding to 𝑤
in the Cayley graph of 𝐾 parametrised by length and based at the identity. We can extend 𝛾 to a
loop 𝛾 ∶ [0, 3 ⋅ 2𝑘] → 𝐶𝑎𝑦(𝐾,𝑈 ∪ 𝑇) by adding a constant path to the end. Note that 𝛾 maps all
integers in [𝑛, 3 ⋅ 2𝑘] to the vertex corresponding to the trivial element. Since we have appended
a trivial path, 𝛾 and 𝛾̂ have the same area. We will show that 𝛾 has area ≼ 𝑓(𝑛).
Let 𝐷 be the disk shown in Figure 3. It has 𝑙 vertices on the boundary, 𝑙 bigons adjacent

to the boundary and 3 ⋅ 2𝑘 − 2 triangles. Each triangle has a depth, the central triangle is at
depth 0 and its neighbours are at depth 1 and so on. For 𝑘 ⩾ 𝑖 ⩾ 1, there are 3 ⋅ 2𝑖−1 triangles of
depth 𝑖.
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14 KROPHOLLER and LLOSA ISENRICH

F IGURE 3 A loop subdivided into bigons and triangles

There is a labelling of the vertices of Figure 3 by the set {𝔞, 𝔟, 𝔠} such that the boundary of each
triangle reads 𝔞, 𝔟, 𝔠 or 𝔠, 𝔟, 𝔞. To obtain such a labelling, we proceed as follows. Each edge is in
exactly two triangles, pick a labelling on the central triangle such that the boundary reads 𝔞, 𝔟, 𝔠.
Label the vertices of all triangles of level 𝑖 by reflecting the labelling of a triangle of level 𝑖 − 1

along the edge joining them.
Each triangle cannowbe filledwith the spanning trianglewith the given three boundary points.

The reflection technique used for the labelling allows us to choose the paths in the spanning
triangles so that they agree on edges in their intersection.
Give each edge a depth by declaring it to be the minimum depth of triangles adjacent to the

edge. Observe that the boundary vertices of an edge of depth 𝑖 are at distance ⩽ 2𝑘−𝑖 .
The perimeter of the central triangle is bounded by 3 ⋅ 2𝑘, and, for each 𝑘 ⩾ 𝑖 ⩾ 1, the perimeter

of a triangle of depth 𝑖 is bounded by 2𝑘−𝑖+1 + 2 ⋅ 2𝑘−𝑖 = 2𝑘−𝑖+2. Thus it follows from the previous
section that the central spanning triangle has area ⩽ 7𝑓(12 ⋅ 3 ⋅ 2𝑘) and each spanning triangle of
depth 𝑖 has area ⩽ 7𝑓(12 ⋅ 2𝑘−𝑖+2).
Also, by Remark 3.6, we see that each bigon has perimeter ⩽ 4 implying that there is a uniform

bound 𝐵 > 0 on the area of all bigons appearing in our fillings.

 14697750, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12682 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [19/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DEHN FUNCTIONS OF COABELIAN SUBGROUPS OF DIRECT PRODUCTS OF GROUPS 15

We deduce that the area enclosed by 𝛾 is

⩽ 7𝑓(12 ⋅ 3 ⋅ 2𝑘) +
𝑘∑
𝑖=1

7 ⋅ 3 ⋅ 2𝑖−1 ⋅ 𝑓(12 ⋅ 2𝑘−𝑖+2) + 3 ⋅ 2𝑘 ⋅ 𝐵.

Define 𝑓′ ∶ ℕ → ℝ>0 by 𝑓′(𝑛) ∶= 𝑓(𝑛)∕𝑛 and assume that 𝑓′ is superadditive. We obtain the
following estimates

𝑘∑
𝑖=1

7 ⋅ 3 ⋅ 2𝑖−1𝑓(12 ⋅ 2𝑘−𝑖+2) =
𝑘∑
𝑖=1

7 ⋅ 3 ⋅ 2𝑖−1 ⋅ 12 ⋅ 2𝑘−𝑖+2𝑓′(12 ⋅ 2𝑘−𝑖+2)

⩽ 7 ⋅ 3 ⋅ 12 ⋅ 2𝑘+1
𝑘∑
𝑖=1

𝑓′(12 ⋅ 2𝑘−𝑖+2)

⩽ 7 ⋅ 3 ⋅ 12 ⋅ 2𝑘+1𝑓′
(

𝑘∑
𝑖=1

12 ⋅ 2𝑘−𝑖+2
)

⩽ 7 ⋅ 3 ⋅ 12 ⋅ 2𝑘+2𝑓′(12 ⋅ 2𝑘+2)

= 7 ⋅ 3 ⋅ 𝑓(12 ⋅ 2𝑘+2).

Thus we see that 𝛾 has area bounded by

7𝑓(12 ⋅ 3 ⋅ 2𝑘) + 7 ⋅ 3 ⋅ 𝑓(12 ⋅ 4 ⋅ 2𝑘) + 3 ⋅ 2𝑘 ⋅ 𝐵 ⩽ 7 ⋅ 4 ⋅ 𝑓(12 ⋅ 4 ⋅ 2𝑘) + 3 ⋅ 2𝑘 ⋅ 𝐵

⩽ 28 ⋅ 𝑓(12 ⋅ 4 ⋅ 𝑛) + 3 ⋅ 𝑛 ⋅ 𝐵 ≼ 𝑓(𝑛),

where for the last line we use that 𝑛 ⩾ 2𝑘. This provides us with the desired upper bound.
To obtain the lower bound, note that there are retractions𝐾 → 𝐺𝑖 × 𝐺𝑗 for each choice of 𝑖 ≠ 𝑗.

Also byLemma2.3,we obtain that themaximumof theDehn functions of the𝐺𝑖 × 𝐺𝑗 is equivalent
to that of 𝐺1 × 𝐺2 × 𝐺3 and is also equivalent to 𝑓. Thus we can conclude that the Dehn function
of 𝐾 is equivalent to 𝑓
In the case that 𝑓(𝑛)∕𝑛 is not superadditive, we proceed as follows. Once again, we see that the

area enclosed by 𝛾 is

⩽ 7𝑓(12 ⋅ 3 ⋅ 2𝑘) +
𝑘∑
𝑖=1

7 ⋅ 3 ⋅ 2𝑖−1 ⋅ 𝑓(12 ⋅ 2𝑘−𝑖+2) + 3 ⋅ 2𝑘 ⋅ 𝐵.

Let 𝑓 be the superadditive closure of 𝑓. We now get the following inequalities:

𝑘∑
𝑖=1

7 ⋅ 3 ⋅ 2𝑖−1𝑓(12 ⋅ 2𝑘−𝑖+2) ⩽
𝑘∑
𝑖=1

7 ⋅ 3 ⋅ 2𝑖−1𝑓(12 ⋅ 2𝑘−𝑖+2)

⩽

𝑘∑
𝑖=1

7 ⋅ 3𝑓(12 ⋅ 2𝑘−1)

⩽ 7 ⋅ 𝑘 ⋅ 𝑓(3 ⋅ 12 ⋅ 2𝑘).
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16 KROPHOLLER and LLOSA ISENRICH

Thus we see that 𝛾 has area bounded by

7𝑓(12 ⋅ 3 ⋅ 2𝑘) + 7 ⋅ 𝑘 ⋅ 𝑓(3 ⋅ 12 ⋅ 2𝑘) + 3 ⋅ 2𝑘 ⋅ 𝐵 ⩽ 7(𝑘 + 1)𝑓(3 ⋅ 12 ⋅ 2𝑘) + 3 ⋅ 2𝑘 ⋅ 𝐵

⩽ 7(log 𝑛 + 1)𝑓(3 ⋅ 12 ⋅ 𝑛) + 3 ⋅ 2𝑛 ⋅ 𝐵

≼ log 𝑛 ⋅ 𝑓(𝑛). □

Proof of Corollary 3.4. For a null-homotopic word 𝑤(𝑋) of length ⩽ 𝑛 with corresponding edge
loop 𝛾 in Cay(𝐾,𝑈 ∪ 𝑇), our method provides us with a filling which is a product of conjugates
of fillings for the boundary words of triangles and bigons as in Figure 3 by subwords of𝑤(𝑋). The
same arguments as above show that we can construct fillings for the triangles such that the total
area of the filling of 𝛾 is≼ 𝑙𝑜g(𝑛) ⋅ 𝑓(𝑛), wherewemay now choose the fillings of the regions of the
triangle so that their filling diameter is ⩽ g(12 ⋅ 3 ⋅ 2𝑘) ≼ g(𝑛). Indeed, the length of the boundary
loop of every region of a triangle is bounded above by the length of the boundary loop of the
triangle of depth 0, which is ⩽ 12 ⋅ 3 ⋅ 2𝑘, thus the filling diameter for every triangle is ≼ g(𝑛).
Since all triangles and bigons have a vertex on 𝛾, the filling diameter of our filling for 𝑤(𝑋) is

≼ 𝑛 + g(𝑛) ≍ g(𝑛). We deduce that (𝑙𝑜g(𝑛) ⋅ 𝑓(𝑛), g(𝑛)) is a filling pair for 𝐾. □

4 ALGEBRAIC SQUAREMETHOD

To prove Theorem 3.2, we required that all three of the short exact sequences split. We now prove
a theorem where we can relax the condition of splitting to the following:

Definition 4.1. We say that 𝑃 = {𝐴, 𝐵} is a factoring of ℤ𝑚 if 𝐴, 𝐵 ⩽ ℤ𝑚 and ℤ𝑚 = 𝐴⊕ 𝐵.

Let 1 → 𝑁 → 𝐺
𝜙
�→ ℤ𝑚 → 1 be a short exact sequence. Given a factoring 𝑃, we say that the short

exact sequence 𝑃-splits if there are maps

𝑠1 ∶ 𝐴 → 𝐺,

𝑠2 ∶ 𝐵 → 𝐺,

such that 𝜙 ◦ 𝑠𝑖 = 𝐼𝑑.

It is clear that if a short exact sequence splits, then it 𝑃-splits for any 𝑃. The abelianisation map
𝐹2 → ℤ2 provides an example which does not split, but 𝑃-splits for certain 𝑃. Indeed it 𝑃-splits
precisely if 𝐴 and 𝐵 are both non-trivial. With this terminology we can state the main result of
this section.

Theorem 4.2. Let 𝐺1,… , 𝐺4 be finitely presented groups and let 1 → 𝑁𝑖 → 𝐺𝑖
𝜙𝑖
��→ ℤ𝑚 → 1 be short

exact sequences. Suppose that there is a 𝑃 such that each of these sequences 𝑃-splits. Let 𝜙∶ 𝐺1 ×

𝐺2 × 𝐺3 × 𝐺4 → ℤ𝑚 be defined by 𝜙(g1, g2, g3, g4) =
∑4

𝑖=1 𝜙𝑖(g𝑖) and let 𝑓(𝑛) be the Dehn function
of𝐺1 ×⋯ × 𝐺4. Then𝐾 = ker(𝜙) is finitely presented and itsDehn function satisfies𝑓(𝑛) ≼ 𝛿𝐾(𝑛) ≼

𝑓(𝑛) ⋅ 𝑙𝑜g(𝑛). If, moreover, 𝑓(𝑛)
𝑛

is superadditive, then 𝑓(𝑛) ≍ 𝛿𝐾(𝑛).

In analogy to Corollaries 3.3 and 3.4, we deduce from Theorem 4.2 and its proof:
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DEHN FUNCTIONS OF COABELIAN SUBGROUPS OF DIRECT PRODUCTS OF GROUPS 17

Corollary 4.3. If in Theorem 4.2 𝑓(𝑛)

𝑛2
is non-decreasing, then ker(𝜙) is finitely presented and has

Dehn function 𝑓.

Corollary 4.4. If (𝑓𝑖, g𝑖) is a filling pair for 𝐺𝑖 , then the proof of Theorem 4.2 shows that 𝐾
admits a filling pair of the form (𝑙𝑜g(𝑛) ⋅ 𝑓(𝑛), g(𝑛)), with 𝑓 the super-additive closure of 𝑓(𝑛) ≍
𝑛2 +

∑4
𝑖=1 𝑓𝑖(𝑛) and g(𝑛) ≍ 𝑛 +

∑4
𝑖=1 g𝑖(𝑛).

The general strategy will be the same as in the triangle method, except that we will replace
triangles by squares and produce a different kind of filling for these squares. Given a loop in the
Cayley graph labelled by a null-homotopic word with respect to a particular generating set for 𝐾,
we start by subdividing its set of vertices into suitable subsets of 4-tuples. We will then construct
spanning squares for these 4-tuples and glue them together to obtain a filling for our loop. As
before each square will come with a decomposition into regions, such that their boundary words
will be of length controlled by the perimeter of the square and lie in a group of the form ℤ𝑚,𝐺𝑖 ×

ℤ𝑙, 𝐺𝑖 × ℤ𝑘 or𝐺𝑖 × 𝐺𝑗 . Piecing these fillings togetherwill thus allowus to obtain the desired bound
on the Dehn function.
The key innovation of this section is to take any four points 𝔞 = (𝔞1, 𝔞2, 𝔞3, 𝔞4), 𝔟 =

(𝔟1, 𝔟2, 𝔟3, 𝔟4), 𝔠 = (𝔠1, 𝔠2, 𝔠3, 𝔠4) and 𝔡 = (𝔡1, 𝔡2, 𝔡3, 𝔡4) in 𝐾 and construct from them a square
as in Figure 4 whose perimeter is controlled by 𝑑(𝔞, 𝔟), 𝑑(𝔟, 𝔠), 𝑑(𝔠, 𝔡) and 𝑑(𝔞, 𝔡), where 𝑑 is the
productmetric on𝐺1 × 𝐺2 × 𝐺3 × 𝐺4. To do so, wewill make fundamental use of the fact that each
of the sequences in Theorem 4.2 𝑃-splits. Once we have produced such a filling, the remainder of
the argument will be similar to the argument given in Section 3 and [14].
As before the groups labelling the bounded regions in Figure 4 are given via explicit generating

sets and the edges on their boundaries will be labelled by words in these generating sets. As in
Section 3, we thus begin by defining these generating sets.
Let 𝑊𝑖 be a generating set for 𝐺𝑖 . Let 𝑃 = {𝐴, 𝐵} and 𝑠1

𝑖
, 𝑠2
𝑖
be maps defining the 𝑃-

splitting of 𝐺𝑖 → ℤ𝑚, where 𝐴 ≅ ℤ𝑘 and 𝐵 ≅ ℤ𝑙. Let  = {𝑎1, … , 𝑎𝑘} be a basis for 𝐴 and  =

{𝑏1, … , 𝑏𝑙} be a basis for 𝐵. Note that  ∪  is a basis for ℤ𝑚. We then fix a finite gener-
ating set 𝑌𝑖 ∪ 𝑍1𝑖 ∪ 𝑍

2
𝑖
of 𝐺𝑖 , by choosing 𝑍1

𝑖
= {𝑠1

𝑖
(𝑎1), … , 𝑠1

𝑖
(𝑎𝑘)}, 𝑍2𝑖 = {𝑠2

𝑖
(𝑏1), … , 𝑠2

𝑖
(𝑏𝑙)} and

𝑌𝑖 = {𝑥𝑠1
𝑖
(𝑝𝐴(𝜙𝑖(𝑥)))

−1𝑠2
𝑖
(𝑝𝐵(𝜙𝑖(𝑥)))

−1 ∣ 𝑥 ∈ 𝑊𝑖} ⊂ ker(𝜙𝑖), where𝑝𝐴 ∶ ℤ𝑚 → 𝐴 and𝑝𝐵 ∶ ℤ𝑚 →

𝐵 are the canonical projections.

Notation. In Lemma 4.5, we will define 14 sets which collectively generate 𝐾. The reader should
have the following in mind while looking at this notation:
𝑇𝑖𝑗 is a set which generates the kernel of 𝜙 restricted to 𝑠1

𝑖
(ℤ𝑘) × 𝑠1

𝑗
(ℤ𝑘). Similarly, 𝑈𝑖𝑗 is a

set which generates the kernel of 𝜙 restricted to 𝑠2
𝑖
(ℤ𝑙) × 𝑠2

𝑗
(ℤ𝑙). Finally, 𝑉𝑖 is the image of 𝑌𝑖

in 𝐾.

We recommend that during a first reading the reader only skims the following technical lemma,
where we define all of the generating sets and various subgroups generated by their unions, and
only refers back to it as needed during the construction of the spanning square.

Lemma 4.5. Let 𝑌𝑖, 𝑍
𝑗

𝑖
be as above. Define the following subsets of 𝐺1 × 𝐺2 × 𝐺3 × 𝐺4.

∙ 𝑇12 = {(𝑠1
1
(𝑎), 𝑠1

2
(𝑎)−1, 𝑒, 𝑒) ∣ 𝑎 ∈ }.

∙ 𝑇13 = {(𝑠1
1
(𝑎), 𝑒, 𝑠1

3
(𝑎)−1, 𝑒) ∣ 𝑎 ∈ }.

∙ 𝑇14 = {(𝑠1
1
(𝑎), 𝑒, 𝑒, 𝑠1

4
(𝑎)−1) ∣ 𝑎 ∈ }.
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18 KROPHOLLER and LLOSA ISENRICH

F IGURE 4 A diagram of the spanning square. The regions of the square are labeled by the groups generated
by elements used to traverse the perimeter.

∙ 𝑇23 = {(𝑒, 𝑠1
2
(𝑎), 𝑠1

3
(𝑎)−1, 𝑒) ∣ 𝑎 ∈ }.

∙ 𝑇24 = {(𝑒, 𝑠1
2
(𝑎), 𝑒, 𝑠1

4
(𝑎)−1) ∣ 𝑎 ∈ }.

∙ 𝑇34 = {(𝑒, 𝑒, 𝑠1
3
(𝑎), 𝑠1

4
(𝑎)−1) ∣ 𝑎 ∈ }.

∙ 𝑈12 = {(𝑠2
1
(𝑏), 𝑠2

2
(𝑏)−1, 𝑒, 𝑒) ∣ 𝑏 ∈ }.

∙ 𝑈13 = {(𝑠2
1
(𝑏), 𝑒, 𝑠2

3
(𝑏)−1, 𝑒) ∣ 𝑏 ∈ }.

∙ 𝑈14 = {(𝑠2
1
(𝑏), 𝑒, 𝑒, 𝑠2

4
(𝑏)−1) ∣ 𝑏 ∈ }.

∙ 𝑈23 = {(𝑒, 𝑠2
2
(𝑏), 𝑠2

3
(𝑏)−1, 𝑒) ∣ 𝑏 ∈ }.

∙ 𝑈24 = {(𝑒, 𝑠2
2
(𝑏), 𝑒, 𝑠2

4
(𝑏)−1) ∣ 𝑏 ∈ }.

∙ 𝑈34 = {(𝑒, 𝑒, 𝑠2
3
(𝑏), 𝑠2

4
(𝑏)−1) ∣ 𝑏 ∈ }.

∙ 𝑉1 = {(𝑦, 𝑒, 𝑒, 𝑒) ∣ 𝑦 ∈ 𝑌1}.
∙ 𝑉2 = {(𝑒, 𝑦, 𝑒, 𝑒) ∣ 𝑦 ∈ 𝑌2}.
∙ 𝑉3 = {(𝑒, 𝑒, 𝑦, 𝑒) ∣ 𝑦 ∈ 𝑌3}.
∙ 𝑉4 = {(𝑒, 𝑒, 𝑒, 𝑦) ∣ 𝑦 ∈ 𝑌4}.
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DEHN FUNCTIONS OF COABELIAN SUBGROUPS OF DIRECT PRODUCTS OF GROUPS 19

Let 𝑇𝑖𝑗𝑘 = 𝑇𝑖𝑗 ∪ 𝑇𝑗𝑘 ∪ 𝑇𝑖𝑘 and 𝑈𝑖𝑗𝑘 = 𝑈𝑖𝑗 ∪ 𝑈𝑗𝑘 ∪ 𝑈𝑖𝑘 . Let 𝑇 = ∪𝑖,𝑗𝑇𝑖𝑗 , 𝑈 = ∪𝑖,𝑗𝑈𝑖𝑗 , 𝑉 = ∪𝑖𝑉𝑖 .
Then the following hold.

∙ ⟨𝑇 ∪ 𝑈 ∪ 𝑉⟩ = ker(𝜙).
∙ ⟨𝑇134 ∪ 𝑈234 ∪ 𝑉3 ∪ 𝑉4⟩ ≅ 𝐺3 × 𝐺4.
∙ ⟨𝑇123 ∪ 𝑈234 ∪ 𝑉2 ∪ 𝑉3⟩ ≅ 𝐺2 × 𝐺3.
∙ ⟨𝑇123 ∪ 𝑈124 ∪ 𝑉1 ∪ 𝑉2⟩ ≅ 𝐺1 × 𝐺2.
∙ ⟨𝑇124 ∪ 𝑈234 ∪ 𝑉2 ∪ 𝑉4⟩ ≅ 𝐺2 × 𝐺4.
∙ ⟨𝑇124 ∪ 𝑈123 ∪ 𝑉1 ∪ 𝑉2⟩ ≅ 𝐺1 × 𝐺2.
∙ ⟨𝑇124 ∪ 𝑈134 ∪ 𝑉1 ∪ 𝑉4⟩ ≅ 𝐺1 × 𝐺4.
∙ ⟨𝑇234 ∪ 𝑈134 ∪ 𝑉3 ∪ 𝑉4⟩ ≅ 𝐺3 × 𝐺4.
∙ ⟨𝑇123 ∪ 𝑈134 ∪ 𝑉1 ∪ 𝑉3⟩ ≅ 𝐺1 × 𝐺3.
∙ ⟨𝑇12 ∪ 𝑈234 ∪ 𝑉2⟩ ≅ 𝐺2 × ℤ𝑙 .
∙ ⟨𝑇124 ∪ 𝑈34 ∪ 𝑉4⟩ ≅ 𝐺4 × ℤ𝑘 .
∙ ⟨𝑇12 ∪ 𝑈134 ∪ 𝑉1⟩ ≅ 𝐺1 × ℤ𝑙 .
∙ ⟨𝑇123 ∪ 𝑈34 ∪ 𝑉3⟩ ≅ 𝐺3 × ℤ𝑘 .
∙ ⟨𝑇12 ∪ 𝑈34⟩ ≅ ℤ𝑚.

Proof. For the first isomorphism, observe that 𝑇 ∪ 𝑈 ∪ 𝑉 ⊂ 𝐾 by definition. Thus, let
(g1, g2, g3, g4) ∈ 𝐾. Applying elements from 𝑇 ∪ 𝑈 ∪ 𝑉, we obtain an element of the form
(𝑒, 𝑒, 𝑒, ℎ). Using elements from 𝑇24 ∪ 𝑈34 ∪ 𝑉4, we then get an element of the form
(𝑒, (𝑠1

2
(𝑝𝐴(𝜙4(ℎ)))

−1, (𝑠2
3
(𝑝𝐵(𝜙4(ℎ)))

−1, 𝑒) = (𝑒, 𝑒, 𝑒, 𝑒), since 𝜙4(ℎ) = 𝑒.
For the others a similar strategy can be employed. For instance, looking at the second one, let

𝐻 = ⟨𝑇134 ∪ 𝑈234 ∪ 𝑉3 ∪ 𝑉4⟩. The natural projection𝐻 → 𝐺3 × 𝐺4 is surjective. The kernel of this
surjection is {(g1, g2, g3, g4) ∈ 𝐻 ∣ g3 = g4 = 𝑒}. However, we see that if (g1, g2, g3, g4) ∈ 𝐻, then
g1 = 𝑠1

1
(𝑝𝐴(𝜙3(g3)) + 𝑝𝐴(𝜙4(g4)))−1 and g2 = 𝑠2

2
(𝑝𝐵(𝜙3(g3)) + 𝑝𝐵(𝜙4(g4)))−1. Thus if g3 = g4 = 𝑒,

then also g1 = g2 = 𝑒, implying that the projection𝐻 → 𝐺3 × 𝐺4 is an isomorphism.
By projecting to appropriate factors, the same reasoning can be applied to obtain the other

12 isomorphisms. To give two examples, for ⟨𝑇12 ∪ 𝑈234 ∪ 𝑉2⟩ we can consider the projection to
𝐺2 × 𝐺3, while for ⟨𝑇12 ∪ 𝑈34⟩ we can consider the projection to 𝐺1 × 𝐺3. □

As in Section 3, we may assume that 𝑓 is chosen in its equivalence class such that it satisfies
the conditions in Theorem 4.2 and bounds from above the Dehn functions of the groups 𝐺𝑖 × 𝐺𝑗 ,
ℤ𝑚, 𝐺𝑖 × ℤ𝑙, 𝐺𝑖 × ℤ𝑘 and 𝐺1 × 𝐺2 × 𝐺3 × 𝐺4 with respect to fixed choices of presentations for the
given generating sets.

4.1 Constructing spanning Squares

We shall start by giving the construction of the square shaped loops in 𝐾 which we will use in the
proof of Theorem 4.2, postponing the remainder of the argument until later.
Let 𝔞 = (𝔞1, 𝔞2, 𝔞3, 𝔞4), 𝔟 = (𝔟1, 𝔟2, 𝔟3, 𝔟4), 𝔠 = (𝔠1, 𝔠2, 𝔠3, 𝔠4) and 𝔡 = (𝔡1, 𝔡2, 𝔡3, 𝔡4) be four ele-

ments of 𝐾.
Figure 4 provides a depiction of the square that we will construct to fill our loops. It consists

of 17 different regions. All of these regions will be contained in subgroups of 𝐾 obtained by using
the generating sets from Lemma 4.5, which were induced by the 𝑃-splittings of the factors. In
particular, each region will be isomorphic to a group of the form 𝐺𝑖 × 𝐺𝑗, 𝐺𝑖 × ℤ𝑘, 𝐺𝑖 × ℤ𝑙 or ℤ𝑚.
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20 KROPHOLLER and LLOSA ISENRICH

This will allow us to bound the area of each region from above by 𝑓(𝑛), where 𝑛 is the perimeter
of the region. Thus it will be crucial to construct all edges in Figure 4 in a way that allows us to
control their length.Moreover, our constructionwill take care of the fact that edges will be chosen
so that they lie in both adjacent regions. For all of them their length will be linearly bounded in
terms of the ‘perimeter’ of the big boundary square.

Remark 4.6. For many vertices we will label two entries by ⋅ together with a subscript. These
vertices represent points which differ from the original vertices by elements of 𝑠1

𝑖
(ℤ𝑘) or 𝑠2

𝑖
(ℤ𝑙).

The subscripts on the vertex are to keep track of which part of the splitting they belong to. For
instance, (⋅1, ⋅2, 𝔟3, 𝔞4) denotes the unique point in 𝐾 where the first coordinate is in 𝔞1𝑠

1
1
(ℤ𝑘),

the second in 𝔞2𝑠22(ℤ
𝑙), the third is 𝔟3 and the fourth is 𝔞4. Wherever we use this notation, the

elements will be unique and their existence will be guaranteed; both will always follow from the
fact that 𝑃 is a factoring.

Wewill nowprovide a detailed construction of the square in Figure 4.We start by observing that
there is a natural action of the dihedral group on the unlabelled square. If two edges are in the same
orbit, we can bound their lengths using the same reasoning. We thus reduce to a fundamental
domain for this action and focus on the vertices and edges in Figure 5. We will denote by 𝑑𝑖 the
word metric on 𝐺𝑖 with respect to the generating sets 𝑌𝑖 ∪ 𝑍1𝑖 ∪ 𝑍

2
𝑖
for 1 ⩽ 𝑖 ⩽ 4.

We begin with the edge between the vertices labelled (𝔡1, 𝔡2, 𝔡3, 𝔡4) and (𝔡1, 𝔠2, ⋅1, ⋅2) =
(𝔡1, 𝔠2, 𝔡

′
3
, 𝔡′

4
). To obtain it, we change the second coordinate as required by applying 𝑑2(𝔠2, 𝔡2)

generators from 𝑉2 ∪ 𝑇23 ∪ 𝑈24. Since the only generators that change the third coordinate are
from𝑇23, we see that 𝔡3 ⋅ (𝔡′3)

−1 ∈ 𝑠1
3
(ℤ𝑘) and this element has distance⩽ 𝑑2(𝔠2, 𝔡2) from the iden-

tity for the generators 𝑍1
3
. Similarly, 𝔡4 ⋅ (𝔡′4)

−1 ∈ 𝑠2
4
(ℤ𝑙) has distance ⩽ 𝑑2(𝔠2, 𝔡2) from the identity

for the generators 𝑍2
4
.

Similarly, we can find suitable paths of length 𝑑1(𝔞1, 𝔡1) between (𝔡1, 𝔡2, 𝔡3, 𝔡4) and
(𝔞1, 𝔡2, ⋅1, ⋅2), of length 𝑑1(𝔞1, 𝔡1) between (𝔡1, 𝔠2, ⋅1, ⋅2) and (𝔞1, 𝔠2, ⋅1, ⋅2), and of length 𝑑2(𝔠2, 𝔡2)
between (𝔞1, 𝔡2, ⋅1, ⋅2) and (𝔞1, 𝔠2, ⋅1, ⋅2). These are in the respective generating sets𝑉2 ∪ 𝑇23 ∪ 𝑈24,
𝑉1 ∪ 𝑇13 ∪ 𝑈14 and 𝑉1 ∪ 𝑇13 ∪ 𝑈14. Due to the uniqueness of the third and fourth coordinate in
terms of the first two coordinates (see Remark 4.6), this completes the square labelled ⟨𝑇123 ∪
𝑈124 ∪ 𝑉1 ∪ 𝑉2⟩.
Now consider the vertices labelled (𝔡1, 𝔠2, ⋅1, ⋅2) = (𝔡1, 𝔠2, 𝔡

′
3
, 𝔡′

4
) and (𝔡1, ⋅1, 𝔠3, ⋅2). Using gen-

erators from 𝑉3 ∪ 𝑈34 ∪ 𝑇23, we obtain a path of length 𝑑3(𝔠3, 𝔡
′
3
) between them. Using the

triangle inequality, we see that this requires at most 𝑑3(𝔠3, 𝔡3) + 𝑑3(𝔡3, 𝔡
′
3
) generators. By the

above we have that 𝑑3(𝔡3, 𝔡′3) ⩽ 𝑑2(𝔠2, 𝔡2). Thus the length of the path labelling this edge is
⩽ 𝑑3(𝔠3, 𝔡3) + 𝑑2(𝔠2, 𝔡2).
Similar reasoning shows that (𝔞1, 𝔡2, ⋅1, ⋅2) and (⋅1, 𝔡2, 𝔞3, ⋅2) are connected by a path of length

⩽ 𝑑1(𝔞1, 𝔡1) + 𝑑3(𝔞3, 𝔡3) in 𝑉3 ∪ 𝑈34 ∪ 𝑇13.
Next we construct the edge between (𝔡1, ⋅1, 𝔠3, ⋅2) and (𝔞1, ⋅1, 𝔟3, ⋅2). For this we use genera-

tors from 𝑉1 ∪ 𝑉3 ∪ 𝑇123 ∪ 𝑈134. To change the first coordinate, we require 𝑑1(𝔞1, 𝔡1) generators
from 𝑉1 ∪ 𝑇12 ∪ 𝑈14 and to change the third coordinate we require 𝑑3(𝔟3, 𝔠3) generators from
𝑉3 ∪ 𝑇13 ∪ 𝑈34. Thus, our path between the two vertices uses 𝑑1(𝔞1, 𝔡1) + 𝑑3(𝔟3, 𝔠3) generators.
Similar reasoning shows that the vertices (⋅1, 𝔡2, 𝔞3, ⋅2) and (⋅1, 𝔠2, 𝔟3, ⋅2) can be connected using a
path of length 𝑑3(𝔞3, 𝔟3) + 𝑑2(𝔠2, 𝔡2) in the generators 𝑉2 ∪ 𝑉3 ∪ 𝑇123 ∪ 𝑈234.
We are now left with constructing the paths labelling the edges of the triangle in Figure 5. We

will start by considering the edge with vertices (𝔞1, 𝔠2, ⋅1, ⋅2) = (𝔞1, 𝔠2, 𝔡
′′
3
, ⋅2) and (𝔞1, ⋅1, 𝔟3, ⋅2). To
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DEHN FUNCTIONS OF COABELIAN SUBGROUPS OF DIRECT PRODUCTS OF GROUPS 21

F IGURE 5 A fundamental domain for the dihedral action on the spanning square.

move between these vertices, we use generators from 𝑉3 ∪ 𝑇23 ∪ 𝑈34. Once again, this requires
𝑑3(𝔡

′′
3
, 𝔟3) ⩽ 𝑑3(𝔟3, 𝔡3) + 𝑑3(𝔡3, 𝔡

′′
3
) generators. We obtained 𝔡′′

3
∈ 𝔡3 ⋅ 𝑠

1
3
(ℤ𝑘) from 𝔡3 by first tak-

ing a path of length 𝑑2(𝔠2, 𝔡2) from (𝔡1, 𝔡2, 𝔡3, 𝔡4) to (𝔡1, 𝔠2, ⋅1, ⋅2) and then a path of length
𝑑1(𝔞1, 𝔡1) from (𝔡1, 𝔠2, ⋅1, ⋅2) to (𝔞1, 𝔠2, ⋅1, ⋅2). Thus 𝑑3(𝔡3, 𝔡′′3 ) ⩽ 𝑑1(𝔞1, 𝔡1) + 𝑑2(𝔠2, 𝔡2).
Analogous arguments provide a path of length ⩽ 𝑑3(𝔟3, 𝔡3) + 𝑑2(𝔠2, 𝔡2) + 𝑑1(𝔞1, 𝔡1) between

(𝔞1, 𝔠2, ⋅1, ⋅2) and (⋅1, 𝔠2, 𝔟3, ⋅2) using elements from 𝑉3 ∪ 𝑇13 ∪ 𝑈34.
Finally we construct the diagonal edge of the triangle, connecting the vertices (⋅1, 𝔠2, 𝔟3, ⋅2) =

(𝔞′
1
, 𝔠2, 𝔟3, 𝔡

′′
4
) and (𝔞1, 𝔠

′
2
, 𝔟3, 𝔡

′′′
4
) = (𝔞1, ⋅1, 𝔟3, ⋅2) using generators from 𝑇12. For this, we first

observe that 𝔡′′
4
= 𝔡′′′

4
, because this coordinate is uniquely determined by the projection of 𝜙3(𝔟3)

to 𝐵 ⩽ ℤ𝑚. The only generators in𝑉3 ∪ 𝑇123 ∪ 𝑈23 that change the first and second coordinate are
from 𝑇123. Moreover, the first coordinate is uniquely determined by the second and third coordi-
nates and the second coordinate is uniquely determined by the first and third coordinates. We
deduce that there is a geodesic path in generators from 𝑍1

1
connecting 𝔞1 to 𝔞′1 and that any such

path lifts to a path in generators from 𝑇12 connecting the two vertices at the ends of the diag-
onal edge of the triangle. Its length is 2(𝑑3(𝔟3, 𝔡3) + 𝑑1(𝔞1, 𝔡1) + 𝑑2(𝔠2, 𝔡2)), since it is bounded
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22 KROPHOLLER and LLOSA ISENRICH

above by the number of generators from 𝑇123 used in the paths labelling the other two edges of
the triangle.
The construction of all other paths between vertices in Figure 4 and the upper bounds on

their lengths can be obtained by very similar arguments using the symmetries of the square. This
completes our construction of the filling square.
Let 𝑟𝔞 = max𝑖{𝑑𝑖(𝔞𝑖, 𝔟𝑖)}, 𝑟𝔟 = max𝑖{𝑑𝑖(𝔟𝑖, 𝔠𝑖)}, 𝑟𝔠 = max𝑖{𝑑𝑖(𝔠𝑖, 𝔡𝑖)} and 𝑟𝔡 = max𝑖{𝑑𝑖(𝔞𝑖, 𝔡𝑖)}.

We denote 𝐶 ∶= 𝑟𝔞 + 𝑟𝔟 + 𝑟𝔠 + 𝑟𝔡 and observe that 𝐶 is bounded above by 𝐷 = 𝑑(𝔞, 𝔟) + 𝑑(𝔟, 𝔠) +

𝑑(𝔠, 𝔡) + 𝑑(𝔞, 𝔡), which we refer to as the perimeter of the square. This will permit us to bound the
area of our square between four vertices purely in terms of their distances. Indeed, using trian-
gle inequalities in the 𝑋𝑖 , we deduce readily that all words labelling the edges of the square have
length ⩽ 4𝐶 and that each boundary loop labelling a bounded region has perimeter at most 12𝐶.
By definition of 𝑓, every region thus admits a filling of area ⩽ 𝑓(12𝐶). In particular, the square
admits a filling of area ⩽ 17 ⋅ 𝑓(12𝐶).

4.2 Tessellating a loop by squares

We now turn to the remainder of the proof of Theorem 4.2. The paths on the boundary of the
square are not chosen in a canonical way. When constructing our filling of a loop we thus need
to take care of two things: (i) that squares can be glued together and (ii) that we can complete the
filling by squares to a filling of our initial loop. (i) does not pose any issues in view of the fact that
it will be evident that we will be able to choose the same edge path on adjacent squares. To resolve
(ii), we require the following auxiliary result, where we call the path along a side of the square a
spanning path (adapting the terminology from [14]).

Lemma 4.7. If two vertices have distance 1 in 𝐾, then the spanning path between them has length
⩽ 4.

Proof. Suppose that the two vertices are 𝔞 and 𝔟. The spanning path between them has length
bounded by 2𝑑1(𝔞1, 𝔟1) + 𝑑2(𝔞2, 𝔟2) + 𝑑3(𝔞3, 𝔟3) + 2𝑑4(𝔞4, 𝔟4). Since 𝔞 and 𝔟 differ by a single gen-
erator of 𝐾, at most two summands are non-zero, in which case they are 1 or 2. This provides the
desired upper bound. □

The remainder of the proof of Theorem 4.2 is parallel to the one in Section 3, up to replacing
triangles by squares and adjusting everything else accordingly.

Proof of Theorem 4.2. Let 𝛾̂ be the a loop in the Cayley graph of𝐾 of length 𝑛 ⩾ 4, parametrised by
its length; it corresponds to a null-homotopic word in 𝑇 ∪ 𝑈 ∪ 𝑉 of the same length. We can find
a 𝑘 such that 4 ⋅ 3𝑘−1 ⩽ 𝑛 ⩽ 4 ⋅ 3𝑘. As in Section 3, let 𝛾 be the loop parametrised on the interval
[0, 𝑙], with 𝑙 = 4 ⋅ 3𝑘, obtained by adding a trivial path to the end of 𝛾̂. Since we have appended a
trivial path, 𝛾 and 𝛾̂ have the same area. We will show that 𝛾 has area ≼ 𝑓(𝑛).
Let 𝐷 be the disk shown in Figure 6. It has 𝑙 vertices on the boundary, 𝑙 bigons adjacent to the

boundary and 2 ⋅ 3𝑘 − 1 squares. To each square we assign a depth: the central square is at depth
0 and its neighbours are at depth 1 and so on. For 𝑘 ⩾ 𝑖 ⩾ 1, there are 4 ⋅ 3𝑖−1 squares of depth 𝑖.
There is a labelling of the vertices of Figure 6 by the set {𝔞, 𝔟, 𝔠, 𝔡} such that the boundary of each

square reads 𝔞, 𝔟, 𝔠, 𝔡 or 𝔡, 𝔠, 𝔟, 𝔞. To obtain such a labelling, we proceed as follows. Each edge is in
exactly two squares, pick a labelling on the central square such that the boundary reads 𝔞, 𝔟, 𝔠, 𝔡.
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DEHN FUNCTIONS OF COABELIAN SUBGROUPS OF DIRECT PRODUCTS OF GROUPS 23

F IGURE 6 A Disc tessellated by squares and bigons

Label the vertices of squares of level 𝑖 by reflecting the labelling in the squares of level 𝑖 − 1 along
the edge joining them.
Each square can now be filled with a spanning square for its four points on the boundary. The

reflection technique used for the labelling allows us to choose the paths in the spanning squares
so that they agree on edges in their intersection. More precisely, it enables us to choose the groups
labelling the bounded regions in adjacent spanning squares so that they coincide in the regions
along the shared edge. We then use that the choice of path in the Cayley graph between two ver-
tices of the spanning square, say, 𝔞 and 𝔡, only depends on 𝔞, 𝔡 and the choice of groups labelling
the adjacent bounded regions. In particular, it does not depend on 𝔟 and 𝔠.
Give each edge a depth by declaring it to be theminimum depth of squares adjacent to the edge.

If 𝑒 is an edge of depth 𝑖, then its boundary vertices are at distance ⩽ 3𝑘−𝑖 .
The central square has a perimeter bounded by 4 ⋅ 3𝑘, and, for each 𝑘 ⩾ 𝑖 ⩾ 1, the perimeter of

a square of depth 𝑖 is bounded by 3𝑘−𝑖+1 + 3 ⋅ 3𝑘−𝑖 = 2 ⋅ 3𝑘−𝑖+1.
Thus the central spanning square has area ⩽ 17𝑓(12 ⋅ 4 ⋅ 3𝑘) and spanning squares of depth 𝑖

have area ⩽ 17𝑓(12 ⋅ 2 ⋅ 3𝑘−𝑖+1).
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24 KROPHOLLER and LLOSA ISENRICH

Also by Lemma 4.7 , we see that each bigon has perimeter ⩽ 5 and as such there is a uniform
bound 𝐷 on the area of all bigons appearing in our proof.
We deduce that the area enclosed by 𝛾 is

⩽ 17𝑓(12 ⋅ 4 ⋅ 3𝑘) +
𝑘∑
𝑖=1

4 ⋅ 3𝑖−1 ⋅ 17𝑓(12 ⋅ 2 ⋅ 3𝑘−𝑖+1) + 4 ⋅ 3𝑘 ⋅ 𝐷.

Define 𝑓′ ∶ ℕ → ℝ by 𝑛 ⋅ 𝑓′(𝑛) ∶= 𝑓(𝑛)∕𝑛 and assume that it is superadditive. We deduce the
following estimates

𝑘∑
𝑖=1

4 ⋅ 3𝑖−1 ⋅ 17𝑓(12 ⋅ 2 ⋅ 3𝑘−𝑖+1) =
𝑘∑
𝑖=1

4 ⋅ 3𝑖−1 ⋅ 17 ⋅ 24 ⋅ 3𝑘−𝑖+1𝑓′(24 ⋅ 3𝑘−𝑖+1)

⩽ 4 ⋅ 17 ⋅ 24 ⋅ 3𝑘
𝑘∑
𝑖=1

𝑓′(24 ⋅ 3𝑘−𝑖+1)

⩽ 4 ⋅ 17 ⋅ 24 ⋅ 3𝑘𝑓′
(
24

𝑘∑
𝑖=1

⋅3𝑘−𝑖+1
)

⩽ 4 ⋅ 17 ⋅ 24 ⋅ 3𝑘𝑓′(24 ⋅ 3𝑘+1)

⩽ 4 ⋅ 17𝑓(72 ⋅ 3𝑘).

Thus we see that the area of 𝛾 is bounded above by

17𝑓(12 ⋅ 4 ⋅ 3𝑘) + 4 ⋅ 17𝑓(72 ⋅ 3𝑘) + 4 ⋅ 3𝑘 ⋅ 𝐷 ⩽ 85 ⋅ 𝑓(72 ⋅ 3𝑘) + 4 ⋅ 3𝑘 ⋅ 𝐷

⩽ 85𝑓(72 ⋅ 3𝑛) + 4 ⋅ 3𝑛 ⋅ 𝐷

≼ 𝑓(𝑛).

We deduce the desired upper bound. The lower bound can be obtained by retractions from 𝐾 to
the 𝐺𝑖 × 𝐺𝑗 .
The bounds on the Dehn function when 𝑓(𝑛)∕𝑛 is not super-additive can be deduced from the

above in analogy to the proof of Theorem 3.2. □

Proof of Corollary 4.4. The proof is analogous to the proof of Corollary 3.4. □

In analogy to the strategy described at the beginning of Section 3, one could also pursue a geo-
metric approach using Lipschitz height maps to prove a geometric analogue of Theorem 4.2. As
before our algebraic approach allowed us to avoid some of the subtleties that one would face in a
geometric approach.

5 APPLICATIONS

In this section, we will explore various applications of our main results. In particular, we will
prove Theorems 1.5 and 5.5.
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DEHN FUNCTIONS OF COABELIAN SUBGROUPS OF DIRECT PRODUCTS OF GROUPS 25

5.1 Subdirect products of free groups with quadratic Dehn function

As we discussed in the introduction, the class of SPFs provides a natural generalisation of the
Stallings–Bieri groups. Considering that the Stallings–Bieri groups have quadratic Dehn func-
tions, one may wonder if the same applies to SPFs. In general, this turns out to be far from true;
indeed, there are SPFs satisfying arbitrarily large polynomial lower bounds on their Dehn func-
tions [27]. However, wewill now explain that the result does remain true for SPFswith sufficiently
high regularity properties.
We fix 𝑟 ⩾ 2 and consider a finitely presented subgroup 𝐺 ⩽ 𝐹𝑛1 ×⋯ × 𝐹𝑛𝑟 of a direct product

of non-abelian free groups. We may assume that 𝐺 is full (𝐺 ∩ 𝐹𝑛𝑖 ≠ 1 for all 𝑖) and subdirect (the
projection of 𝐺 to every factor is surjective). Bridson, Howie, Miller and Short proved that if 𝐺 is
of type 𝑟 then 𝐺 is virtually a direct product of ⩽ 𝑟 free groups [10]. In particular, this means that
all interesting examples of SPFs in a direct product of 𝑟 free groups will not be of finiteness type
𝑟.
Finiteness properties play an important role even among subgroups that are not of type 𝑟, the

general idea being that the stronger the finiteness properties the more regular the group. This is,
for instance, illustrated by the fact that every subgroup of type𝑘 with 𝑘 >

𝑟

2
is virtually coabelian,

meaning that there are finite index subgroups 𝐹𝑚𝑖
⩽ 𝐹𝑛𝑖 , 𝑙 ∈ ℕ and a surjective homomorphism

𝜙 ∶ 𝐹𝑚1
×⋯ × 𝐹𝑚𝑟

→ ℤ𝑙 such that ker(𝜙) = 𝐺 ∩ (𝐹𝑚1
×⋯ × 𝐹𝑚𝑟

) ⩽ 𝐺 is a finite index subgroup
[25, Corollary 3.5]. Moreover, it is not hard to see that the coabelian corank 𝑙 of 𝐺 is an invariant,
that is, does not depend on the choice of finite index subgroups and surjective homomorphism.
One may further argue that for fixed finiteness properties regularity decreases with increasing

corank, the idea being that the larger the corank, the further the group is from being a direct
product. A concrete manifestation of this intuition is provided by the following application of our
work.

Theorem 5.1. For 𝑟 ⩾ 2, 𝑚 < 𝑟

2
, and 𝑛𝑖 ⩾ 2, 1 ⩽ 𝑖 ⩽ 𝑟, let 𝐾 ⩽ 𝐹𝑛1 ×⋯ × 𝐹𝑛𝑟 be a full subdirect

product of type𝑟−𝑚. Then𝐺 is virtually coabelian of corank 𝑙 ⩾ 0 and if ⌈ 𝑙
2
⌉ ⩽ 𝑟

4𝑚
, then 𝛿𝐺(𝑛) ≍ 𝑛2.

We recall that the bound on the corank in Theorem 5.1 is optimal: Dison proved that the kernel
of the canonical homomorphism 𝐹2 × 𝐹2 × 𝐹2 → ℤ2 induced by the abelianisation on factors sat-
isfies a cubical lower bound on its Dehn function [18], while Theorem 5.1 shows that for 𝑟 ⩾ 4 the
kernel of the canonical homomorphism 𝐹×𝑟

2
→ ℤ2 induced by the abelianisation on factors has

quadratic Dehn function.

Proof of Theorem 5.1. Since 𝑟 − 𝑚 > 𝑟

2
, [25, Corollary 3.5] implies that there is a surjective homo-

morphism 𝜙 ∶ 𝐹𝑛1 ×⋯ × 𝐹𝑛𝑟 → ℤ𝑙 such that 𝐾 = ker(𝜙) (after possibly passing to finite index

subgroups of 𝐾 and of the 𝐹𝑛𝑖 ). Since ⌈ 𝑙2⌉ ⩽ 𝑟

4𝑚
, there is a partition {1, … , 𝑟} =

⨆4⌈ 𝑙
2
⌉

𝑗=1
𝐼𝑗 into 4⌈ 𝑙2⌉

sets of size |𝐼𝑗| ⩾ 𝑚. Denoting𝐻𝑗 ∶=
∏

𝑖∈𝐼𝑗
𝐹𝑛𝑖 and using that 𝐾 is full subdirect of type 𝑟−𝑚 we

obtain that 𝜙(𝐻𝑗) =∶ 𝐴𝑗 ⩽ ℤ𝑙 is a finite index subgroup for 1 ⩽ 𝑗 ⩽ 4⌈ 𝑙
2
⌉ (see [26, Corollary 5.4]).

Thus, for 𝐴 ∶= ∩
1⩽𝑗⩽4⌈ 𝑙

2
⌉𝐴𝑖 and𝐻′

𝑗
∶= 𝜙−1(𝐴) ∩ 𝐻𝑗 , we obtain that the restriction

𝜙′ ∶ 𝐻′
1 ×⋯ × 𝐻′

4⌈ 𝑙
2
⌉ → 𝐴 = ℤ𝑙
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26 KROPHOLLER and LLOSA ISENRICH

of 𝜙 is surjective on factors (that is, 𝜙′(𝐻′
𝑗
) = 𝐴 for all 𝑗). By construction ker(𝜙′) ⩽ 𝐾 is a finite

index subgroup.
For 1 ⩽ 𝑖 ⩽ 4, define 𝐺𝑖 ∶= 𝐻′

1+(𝑖−1)⌈ 𝑙
2
⌉ ×⋯ × 𝐻′

𝑖⌈ 𝑙
2
⌉. Since 𝜙′(𝐻′

𝑖
) = 𝐴 = ℤ𝑙, we deduce that

for every factoring 𝑃 = {𝐵1, 𝐵2} of ℤ𝑙 with rkℤ(𝐵1), rkℤ(𝐵2) ⩽ ⌈ 𝑙
2
⌉ the restriction 𝜙′|𝐺𝑖 ∶ 𝐺𝑖 → 𝐴

admits a 𝑃-splitting. In particular, the homomorphism

𝜙′ ∶ 𝐺1 ×⋯ × 𝐺4 → 𝐴

satisfies the assumptions of Theorem 4.2 with 𝑓(𝑛) = 𝑛2. We deduce that ker(𝜙′) has Dehn
function 𝑛2. Thus, the same holds for its finite extension 𝐾, completing the proof. □

We observe that Dison’s groups 𝐾𝑟
𝑚(𝑙) arise as special case of Theorem 5.1. In particular, they

have Dehn function 𝑛2 proving Theorem 1.5.

Remark 5.2. Dison’s quintic upper bound on theDehn function of𝐾𝑟
𝑚(𝑙) in [17, Proposition 13.3(3)]

holds for 𝑙 ⩽ 𝑟

2
> 1. This means that Theorem 1.5 provides the precise Dehn functions for all

groups covered by [17, Proposition 13.3(3)] with the exception of a finite number of cases for every
fixed value of 𝑙. We expect that the Dehn functions in these cases are also quadratic and that we
merely needed to exclude them for technical reasons. In fact, it seems reasonable to believe that
there is a variation of our techniques that provides quadratic bounds also for these cases.

Arguing similarly as in the proof of Theorem 5.1, we also obtain the following example of groups
with quadratic Dehn function and interesting finiteness properties.

Example 5.3. Let 𝑙 ⩾ 1 and 𝑟 ⩾ 3𝑙. Let {𝑣1, … , 𝑣𝑟} ⊂ ℤ𝑙 be integer valued vectors such that for
1 ⩽ 𝑖1 < ⋯ < 𝑖𝑙 ⩽ 𝑟 the subset {𝑣𝑖1 , … , 𝑣𝑖𝑙 } ⊂ ℤ𝑙 is linearly independent. For surjective homomor-
phisms 𝜙𝑖 ∶ 𝐹2 → ℤ, 1 ⩽ 𝑖 ⩽ 𝑟, define a homomorphism 𝜙 ∶=

∑𝑟
𝑖=1 𝑣𝑖 ⋅ 𝜙𝑖 ∶ (𝐹2)

×𝑟 → ℤ𝑙. After
passing to a finite index subgroup of ℤ𝑙 we may assume that 𝜙 is surjective. By our assumptions,
the restriction of 𝜙 to any 𝑙 factors has image a finite index subgroup ofℤ𝑙. We can now argue sim-
ilar to the proof of Theorem 5.1 that, by Theorem 3.2, 𝛿𝐾(𝑛) ≍ 𝑛2. Arguing via virtual surjections
to 𝑟 − 𝑙-tuples, we can moreover show that 𝐾 is of type 𝑟−𝑙, but not of type 𝑟−𝑙+1 [24, Theorem
C].

Finally, we can provide a precise version of Remark 1.4:

Theorem5.4. Let 𝑟 ⩾ 3, let𝐺1,… , 𝐺𝑟 be finitely presented groups and let𝐾 ∶= ker(𝐺1 ×⋯ × 𝐺𝑟
𝜙
→

ℤ𝑙) be a coabelian subgroup of corank 𝑙 ⩾ 0. Denote by 𝑓 the Dehn function of𝐺1 ×⋯ × 𝐺𝑟 . If ⌈ 𝑙2⌉ ⩽
𝑟

4
and the restriction of 𝜙 to every factor is virtually surjective, then 𝑓(𝑛) ≼ 𝛿𝐾(𝑛) ≼ 𝑙𝑜g(𝑛) ⋅ 𝑓(𝑛). If,

moreover, 𝑓(𝑛)∕𝑛 is superadditive, then 𝛿𝐾(𝑛) ≍ 𝑓(𝑛).

Proof. The proof is very similar to the proof of Theorem 5.1 for𝑚 = 1. Indeed, by our assumptions
𝜙|𝐺𝑖 ∶ 𝐺𝑖 → ℤ𝑙 for 1 ⩽ 𝑖 ⩽ 𝑟 is virtually surjective andwe then argue as in the proof of Theorem 5.1
that we can apply Theorem 4.2 to obtain the desired conclusions. □

To put our result into context: Dison proved that the Dehn function of a group 𝐾 satisfy-
ing the conditions of Theorem 5.4 satisfies an upper bound of 𝑛 ⋅ 𝛽1(𝑛

2) + 𝛽2(𝑛) on its Dehn
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DEHN FUNCTIONS OF COABELIAN SUBGROUPS OF DIRECT PRODUCTS OF GROUPS 27

function, where 𝛽1(𝑛) is the Dehn function of 𝐺1 ×⋯ × 𝐺𝑟−𝑙 and 𝛽2(𝑛) is the Dehn function of
𝐺𝑟−𝑙+1 ×⋯ × 𝐺𝑟 [17, Theorem 11.3 (4)]. Thus, our result provides a significant improvement on
these bounds. The precise requirement in Dison’s result is that 𝑙 ⩽ 𝑟

2
> 1. This means that in anal-

ogy to Remark 5.2 we need to exclude a finite number of cases for every value of 𝑙when comparing
to his work. Again we believe that this is merely for technical reasons and that the result should
hold for all cases covered by [17, Theorem 11.3 (4)].

5.2 Finiteness properties and Dehn functions

Wewill now prove Theorem 5.5, showing the existence of 1-ended irreducible groups of type 𝑛−1
and not 𝑛 with prescribed Dehn function.

Theorem 5.5. Let 𝑓(𝑛) ≽ 𝑛2 be a function which can be realised as Dehn function of a group
𝐺 of type ∞ and let 𝑘 ⩾ 3. Then there is a 1-ended irreducible group 𝐾 of type 𝑘−1 and not 𝑘
whose Dehn function satisfies 𝑓(𝑛) ≼ 𝛿𝐾(𝑛) ≼ 𝑙𝑜g(𝑛) ⋅ 𝑓(𝑛) for 𝑓 the superadditive closure of 𝑓. If,
moreover, 𝑓(𝑛)

𝑛
is superadditive, then 𝑓(𝑛) ≍ 𝛿𝐾(𝑛).

Proof of Theorem 5.5. Let𝐺 be a groupwith Dehn function 𝑓(𝑛) ⩾ 𝑛2. By [23, Corollary], the Dehn
function of the free product 𝐺 ∗ 𝐹2 is the superadditive closure 𝑓 of 𝑓. Thus, the direct product
(𝐺 ∗ 𝐹2)

×𝑛 = 𝐺 ∗ 𝐹2 ×⋯ × 𝐺 ∗ 𝐹2 of 𝑛 ⩾ 3 copies of 𝐺 ∗ 𝐹2 has Dehn function 𝑓.
Let 𝜙 be the composition of the projection𝐺 ∗ 𝐹2 → 𝐹2 with a surjective homomorphism 𝐹2 →

ℤ. Let 𝜓 ∶ (𝐺 ∗ 𝐹2)
×𝑛 → ℤ be the unique homomorphism that restricts to 𝜙 on every factor and

let 𝐾 ∶= ker(𝜓). The statements about 𝛿𝐾(𝑛) are immediate consequences of Theorem 3.2.
The homomorphism 𝜓 factors through a homomorphism 𝜈 ∶ (𝐹2)

×𝑛 → ℤ which is surjective
on every factor and thus has kernel ker(𝜈) = SB𝑛 a Stallings–Bieri group. Because the canonical
projection (𝐺 ∗ 𝐹2)

×𝑛 → (𝐹2)
×𝑛 is a retraction, the same is true for its restriction to the surjective

homomorphism ker(𝜓) → ker(𝜙) = SB𝑛. Since SB𝑛 is not of type 𝑛 we deduce that the same
holds for ker(𝜓). On the other hand, the abelian case of the 𝑛 − (𝑛 + 1) − (𝑛 + 2) Conjecture [25,
Theorem 6.3] implies that ker(𝜓) is of type 𝑛−1.
The irreducibility of 𝐾 is a straightforward consequence of the irreducibility of SB𝑛.
Finally, it is not hard to prove that 𝐾 is 1-ended. Indeed, we can use the natural projections

𝑞𝑖 ∶ 𝐾 → ℤ, 1 ⩽ 𝑖 ⩽ 𝑛, induced by the maps 𝜙 on factors, to prove the existence of a path between
any two points lying in (a priori distinct) unbounded components of the complement of a compact
set in the Cayley graph for 𝐾. For this, we observe that any compact subset in the Cayley graph of
𝐾 maps to a compact subset in the Cayley graph of ℤ under all of the 𝑞𝑖 , while unbounded com-
ponents map to an unbounded subset under at least one of the 𝑞𝑖 . Given two points as above, we
can then use two of the projections 𝑞𝑖 to construct a path between them which does not intersect
the given compact set. □

5.3 Applications to right-angled Artin groups

Given a finite graph Γwith vertices𝑉(Γ) and edges𝐸(Γ) ⊂ 𝑉(Γ) × 𝑉(Γ)we define the right-angled
Artin group (short: RAAG) 𝐴Γ by

𝐴Γ ∶= ⟨𝑉(Γ) ∣ [𝑣, 𝑤] if (𝑣, 𝑤) ∈ 𝐸(Γ)⟩.
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28 KROPHOLLER and LLOSA ISENRICH

The precise finiteness properties of arbitrary coabelian subgroups of right-angled Artin groups
have been computed in [13, 28], generalising the results for Bestvina–Brady groups [3]. In contrast,
our understanding of their Dehn functions seems to be mostly limited to Bestvina–Brady groups
[1, 14–16], which are the cocyclic subgroups of RAAGs obtained by mapping all generators to the
same generator of ℤ. It would be interesting to perform a general study of the Dehn functions of
coabelian subgroups of RAAGs.
Here we provide two straightforward applications of our results to Dehn functions of coabelian

subgroups of RAAGs which admit a splitting as direct product of RAAGs. The first is obtained by
applying Theorem 4.2 and the second by applying Theorem 3.2.

Theorem 5.6. Let 𝐴Γ = 𝐻1 × 𝐻2 × 𝐻3 × 𝐻4 be a product of four right-angled Artin groups. Sup-
pose that we have 𝑃-split maps 𝜙𝑖 ∶ 𝐻𝑖 → ℤ𝑚. Let 𝜙 =

∑
𝜙𝑖 . Then 𝐾 = ker(𝜙) has quadratic

Dehn function.

Proof. This follows immediately from Theorem 4.2 and the fact that RAAGs have quadratic Dehn
function. □

Remark 5.7. Suppose that𝐻𝑖 = ℤ𝑘 ∗ ℤ𝑙, 1 ⩽ 𝑖 ⩽ 4 and that 𝜙𝑖 is the abelianisation map. Then the
maps 𝜙𝑖 are 𝑃-split if and only if 𝑃 = {ℤ𝑘, ℤ𝑙}. In particular, there are non-trivial applications of
Theorem 4.2 for all choices of factoring.

Using Theorem 3.2 instead of Theorem 4.2, we obtain:

Theorem 5.8. Let 𝐴Γ = 𝐻1 × 𝐻2 × 𝐻3 be a product of three right-angled Artin groups. Sup-
pose that we have split surjections 𝜙𝑖 ∶ 𝐻𝑖 → ℤ𝑚. Let 𝜙 =

∑
𝜙𝑖 . Then 𝐾 = ker(𝜙) has quadratic

Dehn function.

We also record the following simple existence condition for splittings and 𝑃-splittings.

Proposition 5.9. Let 𝜙∶ 𝐴Γ → ℤ𝑚 be a homomorphism. Let 𝑃 = {𝐴, 𝐵} Then 𝜙 is 𝑃-split if there
are complete subgraphs Δ1, Δ2 of Γ such that:

∙ 𝜙∶ 𝐴Δ1∪Δ2
→ ℤ𝑚 is surjective;

∙ 𝜙|𝐴Δ1 maps 𝐴Δ1
onto 𝐴 and 𝜙|𝐴Δ2 maps 𝐴Δ2

onto 𝐵.

Also, 𝜙 is split, if there is a complete graph Δ on 𝑛 vertices such that the homomorphism 𝜙∶ 𝐴Δ →

ℤ𝑚 is an isomorphism.

Its practical use is illustrated in the following application of Theorem 5.8.

Example 5.10. Let Λ be a hexagon, that is, a triangulation of 𝑆1 with six vertices and six edges.
This a bipartite graph with bipartite vertex set 𝑉1 ∪ 𝑉2. Let 𝜓∶ 𝐴Λ → ℤ2 be the map given by
mapping generators of 𝑉1 to (1,0) and generators of 𝑉2 to (0,1). By Proposition 5.9, 𝜓 is a split
surjection. Let 𝜙 ∶ 𝐴Γ = 𝐴Λ × 𝐴Λ × 𝐴Λ → ℤ2 be the homomorphism that restricts to 𝜓 on each
factor. Then ker(𝜙) has quadratic Dehn function by Theorem 5.8.
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