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Bulk morphology of porous materials at submicrometer scale studied
by dark-field x-ray imaging with Hartmann masks
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We present the quantitative investigation of the submicron structure in the bulk of porous graphite by using
the dark-field x-ray imaging with Hartmann masks. By scanning the correlation length and measuring the mask
visibility reduction, we obtain the average pore size, relative pore fraction, fractal dimension, and Hurst exponent
of the structure in a simple and flexible setup with relaxed requirements on beam coherence. Profiting from
the dimensionality of the mask, we obtain scattering signals in two orthogonal directions, which reveals the
anisotropy of pore sizes.
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I. INTRODUCTION

Porous materials are challenging objects for characteri-
zation: they typically exhibit a wide range of pore sizes,
solid material opacity, possible anisotropy of the pores, and
structure inhomogeneity in the bulk. Many conventional mi-
croscopic techniques have a limited field of view, which often
makes the characterization they offer confined and incompre-
hensive. Excellent penetrating capabilities of x-ray radiation
enable it to study otherwise opaque materials in a nonde-
structive way. Phase-contrast and dark-field x-ray imaging
can offer a large field of view and provide different types of
information retrieved from the projection of the sample (or a
set thereof) [1–3].

Many x-ray imaging methods are based on the analysis
of the changes in wave front modulation relative to a ref-
erence image [1–3]. The reference image records the initial
wave front modulated by a chosen periodic optical ele-
ment, such as a phase grating in grating-based interferometry
[1,4], a speckle filter [5,6], a Fresnel zone plate [7], a lens
array [8–10], or an x-ray absorption mask, including two-
dimensional periodic arrays also reported as a Hartmann mask
[11,12]. Being especially two-dimensional antigrids (pillar ar-
rays), Hartmann masks facilitate wave front characterization,
which can also be applied for characterizing the object under
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investigation. This can be done by comparing the changes
in the wave front with the so-called flat-field image with no
object in the beam path. The disturbances in the wave front
modulation introduced by a chosen object are analyzed and at-
tributed to its properties. The general decrease in the intensity
is related to transmission contrast, the shift of the modulation
to the differential phase contrast, and the dampening of the
projected modulation to the scattering contrast. The latter
arises from an ultrasmall-angle scattering of x rays on the fine
inhomogeneities in the sample, and the phase signal below the
resolution limit of the imaging setup [4,13,14].

The scattering signal (also commonly known as the dark
field analogous to microscopy) can be evaluated in vari-
ous ways, depending on the imaging method. The visibility
reduction analysis is commonly used in grating-based x-
ray interferometry, where the projected grating pattern is
not directly resolved [1,4], and the stepping curve is an-
alyzed to retrieve the decrease in visibility. This approach
can also be applied in the case of the resolved pro-
jected pattern if the projected grating period is larger than
the pixel size (here, we call them masks for distinction).
Other approaches, which can be applied when the detec-
tor can resolve the mask period, include the broadening
of an individual modulation peak [2,8] and the change
in the first-order harmonic in the Fourier domain [3,13].
These methods offer an opportunity to probe structures at
the sub-μm scale and retrieve information on their mi-
croscopic textural properties while performing macroscopic
imaging.

Quantitative characterization of scattering contrast has
been performed for surface analysis with x-ray grating inter-
ferometry with one-dimensional line gratings in a grazing-
incidence configuration [15]. More recently, the volumetric
porous samples were studied [16]; however, poor sampling

2469-9950/2022/106(14)/144204(9) 144204-1 Published by the American Physical Society

https://orcid.org/0000-0001-8457-5749
https://orcid.org/0000-0003-2754-8220
https://orcid.org/0000-0002-8405-6540
https://orcid.org/0000-0002-6290-9303
https://orcid.org/0000-0001-6500-7201
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.144204&domain=pdf&date_stamp=2022-10-18
https://doi.org/10.1103/PhysRevB.106.144204
https://creativecommons.org/licenses/by/4.0/


MARGARITA ZAKHAROVA et al. PHYSICAL REVIEW B 106, 144204 (2022)

and high noise of the retrieved dark-field signal did not allow
for quantitative interpretation of the autocorrelation values.

Hartmann masks are essentially arrays of high-absorbing
structures alternated by areas of high x-ray transmission. They
can also be viewed as two-dimensional gratings with pro-
jected periods larger than the detector pixel size. The two
main designs are an array of holes (conventional Hartmann
mask) and an array of absorbing pillars (inverted Hartmann
mask) [17]. Phase-contrast and dark-field x-ray imaging with
Hartmann masks offers the advantages of setup robustness,
relaxed requirements on the beam coherence, and versatility
of the setup in the positioning of mask and sample. Hartmann
masks can be fabricated by UV lithography combined with
gold electroplating and scaled to the required field of view
[18].

We used Hartmann masks of both designs to study the bulk
morphology of porous graphite by analyzing the scattering
contrast. Scattering contrast arises from the autocorrelation
of electron density distribution, which peaks at a specific
correlation length [19]. The specific probed peak correlation
length ξ depends on the setup parameters [13,19,20]. For a
fixed setup where the periodic optical element is placed before
the object, it is defined as follows:

ξ = λL

P
, (1)

where λ is the wavelength of the x-ray radiation, P is the
period of the wave front modulation at the detector plane, and
L is the distance from the object to the detector. By varying
any of the values in Eq. (1), one can perform a scan of the
correlation length and infer the autocorrelation function for
the object under study [20–22].

Imaging with Hartmann masks has no restrictions on the
positioning of the object; therefore, it provides fine scanning
of the correlation length in the sub-μm range through the
variation of L. By analyzing the visibility reduction, we can
retrieve quantitative structural parameters of graphite using its
real-space correlation function. This method can be applied to
study textural properties of various complex microstructure
systems, including in situ and operando measurements, and
can be extended to laboratory setups.

II. THEORY

Visibility of the periodic modulation is a convolution of
the modulation function and the scattering function. The mod-
ulation function is determined by the mask geometry and
instrument resolution. When the visibility of the pattern de-
creases, it indicates stronger scattering by the object. The
relationship between the decrease in visibility and the autocor-
relation function of the electron density was defined elsewhere
[23]. From this, we can determine the scattering intensity S as
[4,21]

S = − ln

(
Vξ

V0

)
= σ t[1 − G(ξ )], (2)

where V0 is the visibility of the projected mask pattern at
no scattering (ξ = 0), Vξ is the visibility of the projected
mask pattern at the correlation length ξ , σ is the macroscopic
scattering cross section, t is the sample thickness, and G(ξ ) is

the real-space autocorrelation function of electron density at
the correlation length ξ [Eq. (1)].

The autocorrelation function depends on the structural
properties of the object under study. For the dense but
disordered structures such as graphite, the real-space auto-
correlation function derived for random self-affine density
distributions can be used [24–27],

G(ξ ) = 2

�(H + 1/2)

(
ξ

2a

)H+1/2

KH+1/2

(
ξ

a

)
, (3)

where a is the characteristic size parameter, KH+1/2(x) the
modified Bessel function of the second kind of real order
(H + 1/2), and � the Gamma function. H is the so-called
Hurst exponent (0 < H < 1) related to the dimensionality of
the structure, namely to the interface roughness between the
two phases of the material.

The Hurst exponent H from Eq. (3) is determined by the
space-filling capacity of the structure and defines its frac-
tal dimension D = DE + 1 − H , where DE is the Euclidean
dimension of the scattering structure: 1 for filamentous, 2
for sheetlike, and 3 for bulk scatterers [27,28]. From this
relation, one can see that the value of the Hurst exponent
reflects the fractal dimension of the structure. The value of the
Hurst exponent also describes the interconnection between the
pores and the specific surface area of porous material. Two
domains are usually discussed: H > 1/2, indicating that the
density distribution is persistent (long-range correlations)
with smoother and more interconnected pores, and H < 1/2,
which corresponds to antipersistent distributions with smaller
and more confined pores and low permeability [29]. The char-
acteristic size of the structure d for random two-phase media
can be understood as the average pore size and is derived from
the size parameter a and the Hurst exponent H as follows [26]:

d = 2
√

πa�(H + 1/2)

�(H )
. (4)

In our work, we also applied a simplified phenomenolog-
ical fitting function [25,30] for the analysis of the pore size
anisotropy

G(ξ ) = exp

[
−

(
ξ

d

)α]
, (5)

where α = DE/2 + H . Since 0 < H < 1, the allowed range
of values for α will depend on the Hurst exponent and the Eu-
clidean dimension [24,27]. The allowed ranges of α will lie in
the bounds 0.5 < α1 < 1.5, 1 < α2 < 2, and 1.5 < α3 < 2.5
[27] for DE = (1, 2, 3), respectively. The value of α is related
to the phase boundary and interface roughness [25,30,31].

III. EXPERIMENTAL DETAILS

A. Hartmann mask fabrication on graphite

Scattering contrast is usually determined through the de-
crease in the visibility of the projected mask pattern. This
small-angle scattering-induced blurring is a relatively weak
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signal, which can be mixed with setup-specific blurring due to
the detector response and source characteristics. Thus, it is not
possible to decipher quantitative values in the absolute single-
distance measurement and requires high initial mask visibility
to distinguish it from noise. To ensure the increased visibility
of the mask pattern, minimize possible noise, and demonstrate
the capabilities of the method, we fabricated Hartmann masks
directly on the porous material. Nevertheless, such measure-
ments can also be performed with a setup where the Hartmann
mask is manufactured on a separate low-absorbing wafer, for
example, polyimide [32], although extra care should be taken
to eliminate the input from the substrate to the signal.

The wafers purchased from Ohio Carbon Blank, Inc., were
synthetic graphite labeled “angstrofine” with a porous struc-
ture and an average grain size of 1 μm as reported by the
supplier (supplier identifier EDM-AF5). The separate wafers
with a 4-inch diameter were cut out of the large graphite plate.
Subsequently, the wafers were polished on both sides and
rinsed in isopropanol. The final thickness of the wafers after
processing was 500 μm.

The apparent density of the EDM-AF grade graphite ma-
terial is reported to be 1.8 g/cm3. Since the apparent density
measurements include the pore volume in the calculation and
the theoretical density of graphite is 2.26 g/cm3, the pore
fraction of graphite is at least 20%. The average pore size
for the graphite with an apparent density of 1.8 g/cm3 is
750 ± 150 nm, as observed by mercury porosimetry [33].
The distribution of pore sizes for EDM-AF grade graphite
is narrow compared to conventional graphite, with reported
nominal pore size rating from 0.2 to 0.8 μm [33].

The Hartmann masks were manufactured in a cleanroom
environment using UV lithography, gold electroplating, and
resist stripping [17]. Inverted and conventional Hartmann
masks of various periods (30, 40, 60, and 80 μm) with the
gold height of about 30 μm have been fabricated on the
same substrate [34]. Additionally, a large-area (5 cm×5 cm)
inverted Hartmann mask was produced on a different wafer
from the same graphite plate. The masks will be further re-
ferred to as “mask type–period”, e.g., iHM-30 for the inverted
Hartmann mask of period 30 μm and HM-30 for conventional
Hartmann mask of period 30 μm.

Based on a set of SEM images [Figs. 1(a), 1(b)], we per-
formed surface pore size analysis. We identified the pores on
the images by thresholding. Then, we estimated their Feret
diameter (the longest distance between any two points along
the selection boundary) to obtain the pore size distribution
histogram [Fig. 1(c)]. The histogram follows a log-normal dis-
tribution with the peak at 550 nm. One can see that more than
60% of the pores are below 800 nm, which is in agreement
with the nominal pore size rating reported for graphite wafers
of EDM-AF grade [33].

B. Experimental setup

Visibility measurements have been carried out at the IPS
imaging cluster of the KIT synchrotron facility [35]. Af-
ter passing through beam-shaping slits, a Be window, and
a double-multilayer monochromator, a quasi-monochromatic
beam with an energy of 17 keV and an energy bandwidth
of 2% was incident on a Hartmann mask and graphite wafer

FIG. 1. The surface structure of graphite: SEM image of graphite
surface (a) with a close-up view (b) outlining the pores in red;
(c) surface pore size distributions histogram (green) and cumulative
pore number (gray) versus Feret diameter based on the SEM image
analysis.

behind it. Detection of the x-rays was performed by an An-
dor Neo 5.5 camera imaging an x-ray scintillator (LuAG) by
lens coupling (magnification of 2.73) to achieve an effective
pixel size of 2.4 μm. Detector size 2568×2161 pixels enabled
the field of view of about 6 mm×5 mm. The beam size at
the sample was about 15 mm (horizontal)×5 mm (vertical),
thus substantially covering the field of view of the detector
(6.16 mm×5.2 mm). However, as the beam has a Gaussian
shape, the intensity decreased toward the edge of the detector
in the vertical direction. Due to this, we have used a cropped
area of the projection, accounting for about 4.2 mm×3.4 mm.
The cropped areas slightly varied (within 60 μm) in order to
accommodate the integer amount of unit cells of the mask. For
Fourier analysis, the analyzed projections were cropped to a
square, resulting in area of 3.4 mm×3.4 mm on average.

The experimental setup is shown in Fig. 2. For masks of
40, 60, and 80 μm periods, sets of measurements for each
mask separately were conducted. For different masks, the
field of view was adjusted simply by moving the graphite
wafer laterally (in X-Y planes) to a position of the mask, en-
abling identical imaging conditions for different masks. After
placing the beam on the mask of interest, mask projections
at different mask-detector distances were recorded, profiting
from a linear stage movement range of 300 mm. In this way,
we obtained the dependence of visibility on the position of
the mask (distance to the detector). For the iHM of 50 μm
period, the measurements were performed in identical beam
conditions, only by exchanging the graphite wafer on which
the mask was manufactured. The masks were moved from
95 mm to 395 mm to the detector in 30 steps (step size
10 mm). An additional projection of the iHM-50 at a distance
of 1120 mm from the detector was acquired.

The changes in the visibility were attributed to the
ultrasmall-angle scattering in graphite, which was ana-
lyzed using the autocorrelation function for a random
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FIG. 2. Experimental setup for visibility measurements (c) with
examples of patterns for inverted and conventional Hartmann masks
in (a) and (b), respectively. Monochromatic x rays were incident
on the mask, which was moving toward the detector with steps of
10 mm. The measurements were done with inverted and conventional
Hartmann masks of different periods produced on porous graphite.
For each step, a projection was recorded from which the visibility
map was plotted: (d) and (e) show the projections and visibility maps
for distances of 395 and 95 mm. Note how the mask projection gets
sharper at shorter mask-detector distances [see the inset in (d) and
(e); the dashed red square shows the unit cell of the mask]. The Sup-
plemental Material contains detailed information on setup conditions
and mask period sampling [34].

inhomogeneous two-phase media according to Eq. (3). The
instrument resolution (source size) was much higher than the
mask period; therefore, the change of the modulation function
with distance is neglected [34]. The measurement conditions
(e.g., detector, beam conditions, and stage) were identical;
thus, the change in visibility was entirely attributed to the
sample properties.

FIG. 3. Visibility reduction analysis scheme. The set of projec-
tions acquired at different distances to the detector was recorded for
each mask. Then, for each unit cell of the mask, the value of visibility
was calculated, taking local intensity minimum and maximum. The
mean values Vi and standard deviations of visibility maps were then
plotted for respective correlation lengths ξi in order to infer the value
of visibility at no scattering V0. These values were then used to
calculate the scattering intensity and obtain the structural parameters
from the fit.

IV. DARK-FIELD INTENSITY ANALYSIS

A. Visibility reduction

Visibility reduction analysis was conducted as outlined in
Fig. 3. The set of projections acquired at different distances to
the detector was recorded for each mask. Then, for each unit
cell of the mask (region of projected mask period), the value of
visibility was calculated taking local intensity minimum Imin

and maximum Imax as follows:

V = Imax − Imin

Imax + Imin
, (6)

where Imax is the maximum and Imin the minimum intensity
within a beamlet zone.

The raw projections were cropped to the central area of
the detector, where the illumination was homogeneous. Mean
visibilities were calculated as mean values of the visibility
maps in the analyzed area. In Figs. 4(a) and 4(b), the mean
values of the visibility maps are plotted for the different masks
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FIG. 4. Mean visibilities [(a), (b)] and scattering intensities
[(c), (d)] [Eq. (2)] for (a), (c) inverted and (b), (d) conventional Hart-
mann masks on graphite, obtained for correlation lengths ξ scanned
in the experiment. The error bars are the standard deviations of the
obtained signal.

with error bars representing the standard deviation. The mean
visibility values were then plotted for respective correlation
lengths ξi. Under parallel beam geometry, the visibility de-
creases as the correlation length value gets larger due to the
dampening of the mask contrast at the larger mask-to-detector
distances.

To determine the scattering intensity [Eq. (2)] we need to
know the mean visibility V0 at no scattering such that ξ = 0
(equivalent to the mean of the modulation function). In a
typical imaging setting, this would be the visibility of the
reference image without the object. In our case, to determine
V0 we used the set of mean visibility Vi for each mask acquired
at different correlation lengths ξi with i = 1, 2, . . . , 30. We
performed a fit for the mean visibility values normalized by
visibility at the smallest probed scattering length ξmin for each
mask according to

Vi

Vξmin

= exp {σ t[G(ξi ) − G(ξmin)]}, (7)

where G(ξ ) is the projection of autocorrelation function at the
correlation length ξ [Eq. (3)]. The obtained fitting parameters
were plugged into the following equation,

V0 = Vξi

exp {σ t[G(ξi ) − 1]} , (8)

to obtain the mean visibility values at no scattering V0 for
each mask, which are depicted in Figs. 4(a) and 4(b). These
values were then used to obtain the scattering intensity Si and
we concatenated the data sets for different mask periods. In
this way, fine sampling of the scattering intensity from 90
to 980 nm was achieved, which allowed for fitting using the
autocorrelation function of electron density for dense disor-
dered structure and retrieval of structural parameters with high
precision.

The fit was performed using Eq. (2) and Eq. (3), and the
fitting parameters σ t , a, H were obtained. To check whether
the fit correctly predicts the value of scattering intensity at
correlation lengths larger than 1 μm, we used the projection
image for iHM-50 at the distance of 1120 mm from the de-
tector, corresponding to the correlation length ξ = 1.6 μm.
Note that the extra point acquired for the iHM-50 represents
1% of the data, and its influence on the fitting function can be
neglected. As shown in Fig. 4(c), the value of the extra data
point is well predicted by the fitting function.

The average pore size d was calculated as a function of
the parameters a and H according to Eq. (4). The relative
pore fraction φp under the spherical pore assumption can be
calculated using the total scattering cross section σ t according
to the equation [19,26]

σ t = 3π2

λ2
d|	χ |2φpφst, (9)

where |	χ | is the difference in complex refractive index
between graphite and air, d is the average pore size, φs is a
relative fraction of solid graphite, and t is the sample thick-
ness. From the calculations for both mask types, we obtained
the value of pore volume fraction φp = 22%. The parameters
obtained from the fit and the calculated values of the aver-
age pore size and the relative pore fractions are presented in
Table I.

An important parameter for porous material is its fractal
dimension, which indicates how the pores are structured under
fractal theory approximation [29,36]. The fractal dimension is
defined by its Euclidean dimension DE as well as the value of
the Hurst exponent. Knowing that the phase boundary param-
eter α can be determined as α = H + DE/2, we can define
the Euclidean dimension of the pore structure in graphite by
performing a simplified fit according to Eq. (5) on the same
data set. The fitting result indicated α = 1.46 ± 0.02 for iHM
and α = 1.52 ± 0.03 for HM. From this, we can estimate
the Euclidean dimension of the scatterers to be DE = 2. The
fractal dimension then is D = DE + 1 − H ≈ 2.48 ± 0.06, at-
tributed to fractal structures like Apollonian sphere packing
(D = 2.4739465 [37]).

One can see from Table I that the error in fit parameters
a and H , which are used to calculate the average pore size
d [Eq. (4)], for inverted Hartmann masks is noticeably lower
than that for the conventional Hartmann masks. The error for
average pore size 	d was calculated as the error of indirect
measurements using partial derivatives of Eq. (4) (Table I).
The higher 	d might be caused by the fact that the area of
the inverted Hartmann mask covered with gold is 25% of the
total field of view of the sample; hence the scattering signal is
formed from a larger object area compared to the conventional
Hartmann mask. The total amount of scattering centers con-
tributing to the signal is larger, making the obtained results
more representative of the bulk structure. The advantage of
having a higher signal-to-noise ratio when using the inverted
Hartmann mask design for differential phase contrast imaging
has been reported before [17].

The obtained values of average pore size and Hurst expo-
nent can help to predict the pore size distribution. Practically
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TABLE I. Parameters derived from the visibility measurements. Macroscopic cross section σ t , characteristic parameter a, and Hurst
exponent H are determined from the fit of experimental data. Average pore size d and relative pore fraction φp were calculated using the values
of a, H , and σ t .

Mask type σ t a (nm) H d (nm) [Eq. (4)] φp [Eq. (9)]

iHM 0.93 ± 0.02 326 ± 15 0.58 ± 0.05 730 ± 50 22.5 ± 0.4%
HM 0.92 ± 0.03 437 ± 32 0.58 ± 0.06 970 ± 100 22.1 ± 0.6%

important information about the pore size distribution is the
peak (mode) of the distribution that indicates the most rep-
resented pore size, average (mean) pore size, and the width
of the distribution—the range which contains most of the
pores.

If we assume that pore sizes X are following a log-normal
distribution, the expected value of the ln(X ) will be μ =
ln(d ), with d being the median of the pore size distribution.
This value we obtain as characteristic pore size d . In the case
of log-normal distribution, the median equals a multiplicative
mean, which is in agreement with the typical pore structuring:
smaller pores cluster and form larger pores, such that the
cluster size grows proportionally to the size of the individual
pore.

The Hurst exponent characterizes the deviation of the elec-
tron density distribution from the mean value (or “roughness
of the distribution”). If we assume it to serve as an esti-
mate of the standard deviation of the random variable ln(X ),
the geometric standard deviation factor will be eH . Using
the values of average pore size d and Hurst exponent H ,
we can evaluate the pore size range containing 2/3 of all
pores as the scatter intervals of the distribution from d/eH =
400 nm to d×eH = 1340 nm. We can simulate the log-normal
distribution of a random variable X based on the data obtained
by the scattering contrast [Fig. 5(a)]. Therefore, the peak of
the distribution of pore sizes X is

Mode|X | = exp [ln (d ) − H2] ≈ 520 nm. (10)

In Fig. 5, we compare the simulated bulk pore size distribu-
tion to the surface pore size distribution obtained from the set
of SEM images. Note that the distribution obtained from SEM

FIG. 5. Comparison of the pore size distributions: (a) simulated
bulk pore size distribution based on the scattering data, (b) surface
pore size distribution obtained from a set of SEM images. Modes of
the distributions are indicated by the dashed lines and the medians
by the solid lines. The gray-filled area represents the scatter intervals
of the distributions containing 2/3 of all pores.

images is not comprehensive and is only valid for a restricted
field of view (hence with limited pore size statistics) on the
graphite surface. Nevertheless, it is a valuable benchmark to
see if the simulated distribution is realistic. Figure 5 shows
that, although the distributions differ in shape, the mode of the
simulated distribution [dashed line at 520 nm in Fig. 5(a)] is
close to the mode of the surface pore size distribution [shown
as the dashed line at 540 nm in Fig. 5(b)]. The median of the
simulated distribution (730 nm) is different from the median
of the measured one (600 nm); we can see that the fit for the
measured SEM distribution does not approximate the larger
pores in the range from 900 nm to 1500 nm. Accounting for
these pore clusters would make the distribution wider, shifting
the median toward larger values.

B. Spatial harmonic analysis

One of the advantages of using the Hartmann mask is that
it offers periodic modulation in two directions, which enables
the separation of the horizontal and vertical components of
the scattering signal. The visibility map analysis, while being
easy and fast to implement, does not provide directional infor-
mation about the scattering function [1,4]. To profit from that,
we applied discrete Fourier transform to analyze the spatial
beam modulation provided by the mask, as reported elsewhere
[3,13].

The spatial frequency spectrum of the Hartmann mask
projection contains a strong primary peak around zero spatial
frequency and several sharp peaks separated by the 2π/P
distance, where P is the period of the mask. In such a set-
ting, S01 and S10 are attributed to scattering intensities in the
horizontal and vertical directions, respectively. The scattering
signals S01 or S10 are obtained from the first-order spatial
harmonics and are linearized to the thickness of the sample
as follows:

Smn = − ln

[F−1{Imn}/F−1
(
I ref
mn

)
T

]
, (11)

where mn are equal to (01) or (10) for horizontal and ver-
tical directions, respectively, F−1 denotes the inverse fast
Fourier transform of the spatial harmonic Imn or Ire f

mn for ref-
erence projection, in this case, either I01 or I10, and T is the
transmission of the sample, obtained from the decrease of
the zeroth harmonic. As we did not obtain a scattering-free
reference image in our measurements (the mask was manu-
factured directly on the graphite), we used the projection at
the shortest mask-detector distance as a reference image. This
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FIG. 6. Directional analysis of scattering contrast is repre-
sented by an overlay of the Fourier amplitudes S01 in horizontal
(green) and S10 in vertical direction (red) for iHM50. The two-
dimensional scattering intensity distribution maps for correlation
lengths ξ = 153 nm and ξ = 1634 nm are shown on the right as
pseudocolor images. The inset in the graph shows the shape of an
average pore.

means that we analyzed only the change in scattering inten-
sity relative to the signal at the smallest correlation length.
Another consequence of this limitation is that we cannot con-
catenate data sets to achieve fine sampling over the whole
range of correlation lengths probed with visibility analysis.
For that reason, we chose the iHM50 mask, which was im-
aged at a long mask-detector distance, and thus can provide
information on scattering intensities at larger correlation
lengths.

Since S01 and S10 are defined for each effective pixel of
the imaging system, we obtained the scattering distribution
maps in two dimensions for each correlation length ξ . Ex-
amples of such maps for correlation lengths ξ = 153 nm and
ξ = 1634 nm are shown in Fig. 6. One can see the directional
distribution of scatterers in horizontal (green) and vertical
(red) directions through the non-even distribution of red and
green in the pseudocolor images. The mean values of S01 and
S10 for different correlation lengths represented by the data
points show that the scattering is mostly isotropic for pores
smaller than 580 nm. As the length scale increases up to
1600 nm, the horizontal scattering starts to dominate.

For the data in Fig. 6 we applied the simplified fit according
to Eq. (5) with 1 < α < 2. We determined the characteristic
pore size in horizontal and vertical directions to be dhor =
890 ± 60 nm and dvert = 580 ± 20 nm, and the average of
the two being 735 nm, which is in agreement with the av-
erage pore size obtained by the visibility map analysis. The
average pore size in the horizontal direction is larger than in
the vertical, indicating the elliptical shape of the characteristic
pores (Fig. 3). Note that relative scattering signal measure-
ments cannot correctly predict the pore fraction and Hurst
exponent.

Another limitation of such an approach is a strong depen-
dence on the x-ray absorption cross section of the object. For
thick or highly absorbing specimens, special care has to be
taken to eliminate the impact of spurious signal coming from

the cross talk between the absorption and scattering channels
[9,38]. For low-absorbing and thin graphite, this effect is not
pronounced, as was confirmed by the negligible change in
the zeroth-order harmonic intensity for projections acquired
at different distances.

V. CONCLUSIONS

This paper studied the morphology of bulk pore struc-
ture in fine graphite with the scattering contrast available
through multimodal x-ray imaging with Hartmann and in-
verted Hartmann masks. We scanned the correlation length
to study the real-space autocorrelation function of electron
density by analyzing the mask visibility reduction. Moreover,
we observed the pore size anisotropy by evaluating the relative
change in the first-order spatial harmonics using Fourier
analysis.

Based on the presented results, we have determined
the pore volume fraction φp = 22% and the characteristic
pore size d = 730 ± 50 nm for measurements with inverted
Hartmann masks and d = 970 ± 100 nm for conventional
Hartmann masks. Both pore fraction and the average pore
size values are in close agreement with the values reported
for “angstrofine” grade graphite [33].

In addition to the visibility reduction analysis, we have
applied the spatial harmonic approach to discriminate be-
tween horizontal and vertical scattering relative intensities.
The pore sizes obtained with this approach are in agreement
with the values obtained with visibility reduction analysis
and additionally indicate that the pores are likely to be ellipti-
cal.

Given that the Hurst exponent H = 0.5 is characteristic
for a perfectly random inhomogeneous solid, the obtained
H = 0.58 suggests that the distributions of inhomogeneities
in graphite are predominantly random with a slight inclina-
tion to being persistent. The fractal dimension of D = 2.48
implies that the pore structure of graphite can be represented
by the spheres of different size cotangent to each other [39].
Considering the obtained results and calculated errors, we
note that the inverted Hartmann mask design may be ben-
eficial for x-ray scattering measurements due to the larger
interaction volume contributing to the contrast formation: for
the inverted mask 75% of the illuminated sample volume
contributes to the signal, while for the conventional mask
it is only 25%. This implies that the scattering signal ob-
tained with conventional Hartmann masks is weaker and more
susceptible to noise. To get more reliable pore size values,
we would recommend using an inverted Hartmann mask.
However, as conventional Hartmann masks are essentially
absorbing grids, they might be more readily available and
easier to manufacture. For measurement with the conventional
Hartmann masks, we would recommend either ensuring a
high photon count or longer exposure time or displacing the
mask over the unit cell in horizontal and vertical directions
to provide a large sample volume that has contributed to the
signal.

We see our approach as a valuable addition to comple-
mentary techniques such as microscopy and tomography.
We hope to bridge and complement them with information
about scattering structures ranging from tens of nanometers to
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micrometers. We expect such a versatile and straightforward
technique to impact research devoted to studying complex
structures like porous materials, colloids [40], or powders.
Apart from the immediate profit for the development and char-
acterization of porous catalytic materials, numerous medical
applications related to early-stage cancer diagnostics [27] and
lung diseases [21,41] can profit from the information on mor-
phology and fractal dimensions of complex interconnected
structures.
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