

Chemical Recycling of Plastics Waste

ProcessNet/DECHEMA Jahrestagung, Aachen, September 13, 2022

Dieter Stapf

www.kit.edu

Plastics Production and Plastics Waste Generation

[Mt/year]	EU 28+2*	Germany**	
Plastics production	61.8	19.9	
Plastics consumption	51.2	12.6	
Plastic waste	29.1	6.2	
- Landfill	7.2	< 0.1	
- Energy recovery	12.4	3.2	
- Recycling	9.4 (export 1.8)	2.9 (export: 0.6)	

Additional plastics recycling capacity demand (2030): 11 Mt / year

^{**)} Lindner, C., Schmitt, J.: Stoffstrombild Kunststoffe in Deutschland 2017, Conversio Market & Strategy GmbH, Mainaschaff (2018)

^{*)} Lindner, C. et al.: Circular Economy of Plastics 2018 EU-28+2, Conversio Market & Strategy GmbH, Mainaschaff (2019)

Plastics Production and Plastics Waste Generation

Plastics production EU28+NO/CH, 2019*

Plastics products are compounds that consist of (multiple) plastics materials and & multiple functional additives

Mineral Additives: fillers, reinforcement, stabilizers, pigments, flame retardants,

Post-Consumer Wastes, 2018*:

Mechanical Recycling		38.4 %		22 E 0/
Chemical Recycling	GER	0.2 %	EU 28+NO/CH	32.5 %
Energy recovery	5.3 Mt	60.7 %	29 Mt	42.6 %
Landfilling		0.6 %		24.9 %

EU recycling objective 2030: 55%

*) PlasticsEurope (2020)

Total Plastics Waste Development, Recycling and Recovery in Germany

Feedstock recycling

Landfilling

Material recycling
Energy recovery

Total amount

Post consumer waste

Recycling Processes for Mixed Plastics Waste and Key Products

applicable to:

> standard thermoplastics

Pure polymers

Polycondensates

➤ Mixed wastes, composite materials

Capital Investments (excerpt):

Chemical Recycling of Plastics Waste

- Enerkem, CAN
 - W2C project, Rotterdam
- Plastic Energy, UK
 - Operations @ Almeria & Sevilla, ES
- Sabic
 - Cooperation with Plastic Energy, Geleen, NL
- LyondellBasell
 - MoReTec-Pilot plant, Ferrara, IT
- BASF
 - Cooperation with Quantafuel, NOR
 - Cooperation with Pyrum, GER
 - Cooperation with Arcus Greencycling Technologies, GER

www.plasticenergy.com

Institute for Technical Chemistry

Recycling of Mixed Plastics Waste: The Pyrolysis Value Chain Example

Pretreatment

Pyrolysis

Upgrading & synthesis

Examples of Plastics Waste Produced

WEEE = Waste of Electrical and Electronic Equipment

LWP-SR = Sorting Residues from Light Weight Packaging Waste collected

ETICS = Thermal Insulation Composite System

Institute for Technical Chemistry

Zeller, M., et al.: Chemical recycling of mixed plastic wastes by pyrolysis. Chem. Ing. Tech. 2021, 93 (11), 1-9. https://doi.org/10.1002/cite.202100102

Feedstock	Fraction of C-feed found back in oily condensate	
	[wt-%]	
LWP-SR	51.1	
CW	60.0	
ETICS (XPS)	74.6	
ETICS (EPS)	72.9	
ASR	57.5	
WEEE	60.5	

Feedstock	Energy demand for heating, melting, thermal degradation, evaporation	
	[% of feedstock higher heating value]	
LWP-SR	5.1	
CW	5.2	
XPS	4.9	
ASR	5.4	
WEEE	3.7	

Upgrading of Pyrolysis Products to Secondary Petrochemical Feedstock

Upgrading of pyrolysis products

- Removal of heteroatoms (N, O, Cl, Br, S, ...)
- Fractionating (monomers, petrol refinery boiling cuts)
- Hydroprocessing (adapt HC substance group contents)

Pyrolysis Oil Characterization* and Hydrotreatment

Neuner, P. et al.: Chemical Conversion of Fischer–Tropsch Waxes and Plastic Waste Pyrolysis Condensate to Lubricating Oil and Potential Steam Cracker Feedstocks. Reactions 2022, 3, 352–373. https://doi.org/10.3390/reactions3030026

Dieter Stapf - Chemical Recycling of Plastics Waste

Pyrolysis Gas Characterization*

*) Polyolefinic waste based pyrolysis gases as petrochemical feedstock

- Thermal, non-catalytic pyrolysis of collected waste agricultural films, screw-pyrolysis @ 450°C, 30 min
- Contaminated polyolefinic waste (LDPE basis)
- Average gas composition of 2 waste samples

Case: Recycling of Light Weight Packaging Waste

Comparison of Recovery Routes

Heavy contents / Mineral residues that are landfilled

Dieter Stapf - Chemical Recycling of Plastics Waste

Residues that are used energetically

Institute for Technical Chemistry

LWP Waste Recycling Routes Compared to Primary Plastics Production of HDPE

Recycling scenario	Cost [€/kg _{Input}]	CED [MJ/kg _{Input}]	GWP [kgCO ₂ e/kg _{Input}]	Overall Carbon Recycled
Mechanical, 42% yield	-0.16	-18.1	0.2	42%
Mechanical, 22% yield	-0.08	-6.9	0.6	22%
Chemical recycling	-0.24	-15.9	0.3	59%
Combined recycling, mech. 42%	-0.29	-30.1	-0.2	74%
Combined recycling, mech. 22%	-0.25	-23.1	0.0	66%

Volk,R., et al.: Techno-economic Assessment and Comparison of Different Plastic Recycling Pathways - a German Case Study, Journal of Industrial Ecology, 2021, 1-20; https://doi.org/10.1111/jiec.13145

Technology Infrastructure of a Circular Economy of Plastics

20

Conclusions

Assessment of Combined Mechanical and Chemical Recycling

Comparison of the production of plastics from fossil raw materials with the combined mechanical / chemical recycling of mixed plastics post-consumer waste, taking into account energy recovery

Costs: Economic attractiveness of both, mechanical and chemical recycling

Dieter Stapf – Chemical Recycling of Plastics Waste

- Energy: Mechanical and chemical recycling perform similar; advantageous over crude oil based products and PtX
- CO₂ emissions: Mechanical and chemical recycling perform similar; advantegous over crude oil based products
- High recycling rates can be achieved through a combination of mechanical and chemical recycling, only
- Chemical recycling technology readiness is developping towards flexibility and efficiency: mixed plastic waste feedstocks, reactor scale-up, product upgrading, process evaluation

Acknowledgement

Waste feedstock samples supply by:

ARN B.V.

Pre Zero GmbH & Co. KG

Electrocycling GmbH

I.A.R. RWTH Aachen*

Project funding through:

*BMBF-project 033R214D KUBA: Nachhaltige Kunststoffwertschöpfungskette: Pilotfall Kunststoffe in Bauwirtschaft und Gebäuden

KIT/Conversio, 2019: "BKV-Studie" Thermal Processes for Feedstock Recycling of Plastics Waste, http://www.bkv-gmbh.de/infothek/studien.html

