
ARCHI4MOM: Using Tracing
Information to Extract the Architecture

of Microservice-Based Systems
from Message-Oriented Middleware

Snigdha Singh(B), Dominik Werle , and Anne Koziolek

KASTEL – Institute of Information Security and Dependability,
Karlsruhe Institute of Technology, Karlsruhe, Germany
{snigdha.singh,dominik.werle,koziolek}@kit.edu

https://mcse.kastel.kit.edu

Abstract. Microservice architectures that useMessage-orientedMiddle-
ware (MOM) have recently seen considerable evolution regarding extensi-
bility, re-usability and maintainability. Of particular interest are systems
that are distributed and deployed with mixed-technologies. On the one
hand, such MOM-based microservice systems improve flexibility through
their messaging middleware. On the other hand, configuration for the
above systems has to quickly adapt to required changes because of the con-
tinuous development process. Architecture reconstruction methods from
dynamic data can keep architecture documentation and models in syn-
chrony with the implemented architecture for such systems. However, the
existing dynamic analysis methods for architecture reconstruction do not
support the extraction for MOM-based microservice systems. The main
challenge here is to understand and capture the asynchronous sender-
receiver communication via the messaging middleware and to reconstruct
the architecture model from it. In our work, we provide the ARCHI4MOM
approach to automate the architecture extraction process. We instrument
the sender-receiver and messaging services, collect run time data, analyse
the trace data and construct the model from it. Architects can use the
extracted architecture model for system refactoring and analysis of MOM-
based systems. Thus, it reduces the cost and time required for manual
architecture extraction process. We evaluate the accuracy of the approach
by comparing the extractedmodel components to amanually crafted base-
line model for a case study system.

Keywords: MOM-based system · Reverse Engineering · Architecture
Extraction · Performance Prediction · Dynamic Analysis

1 Introduction and Motivation

Today’s software systems are extensively using Message-oriented Middleware
(MOM) to communicate in distributed microservice environments [9]. MOM



enables message-based communication between the components in order to
achieve loosely-coupled and asynchronous communication. This provides ben-
efits in terms of service maintainability and extendability, since microservices
can be tested and deployed separately. MOM provides an intermediate layer
between the message sender and receiver to decouple them from each other. In
order to meet various requirements, there exists technologies like RabbitMQ1,
Kafka2 to enable MOM-based communication. Such technologies use MQTT3 or
AMQP4 protocols for message exchange between the messaging middleware.

During the continuous software development process, the architecture of
MOM changes when the system changes. When a new requirement demands the
addition of new components, the system’s developers have to understand how it
will change the architecture of the system, for example, by requiring changes in the
configuration of the MOM or the introduction of additional communication chan-
nels. This continuous development, evolution, and software maintenance creates
the problem of architecture erosion in the existing software when the knowledge
of the system’s architecture is not adapted after changes to the system [14].

The loss of architecture knowledge makes it difficult for the system architect
of software systems to understand and refactor the system. At the same time, the
refactoring process is time-consuming and costly. One solution to this general
problem of erosion is the approach of architecture reconstruction through reverse
engineering (RE) of an existing software system. Despite the importance of archi-
tecture knowledge recovery for MOM-based systems, only few studies exist on
RE for architecture recovery in MOM-based microservice systems [1,13].

To build the component-based architecture model, we have to identify the
components and their communication behaviour. Static analysis approaches for
RE make it possible to extract the models from the existing source code [11].
Such techniques sometimes fail to provide all the required information about
the components. Hence, it is good to collect data during run time to gather the
information not covered via static analysis.

In case of synchronous HTTP communication, there is a direct communica-
tion (i.e., messages are sent directly to a specific receiver) where all the microser-
vices have to be available during their message exchange. In such communication,
the sender microservice has information about the receiver microservice because
HTTP follows the send and acknowledgement principle. In case of MOM-based
microservice system, microservices (components) communicate via messaging
middleware asynchronously. Unlike HTTP communication, sender and receiver
components do not know each other. Often, this information is hard to collect
from the available architecture documents.

The first problem is to identify the sender and the receiver components. The
second challenge is to understand and capture these components and model the

1 HTTPs://www.rabbitmq.com/.
2 HTTPs://www.confluent.io/Kafka-summit-lon19/Kafka-vs-integration-middle
ware/.

3 https://mqtt.org/.
4 https://www.amqp.org/.



system’s architecture. However, the state-of-the art approaches do not support
the architecture reconstruction of the asynchronous MOM-based communication
which is typically found in modern microservice systems [6,17].

To handle the above problem, we propose the method ARCHI4MOM, which
supports the architecture extraction of modern MOM-based microservice sys-
tems. With our work, we present an approach for the automatic extraction of
architectural models from MOM-based microservice applications based on trac-
ing information. We introduce an implementation of these concepts on the basis
of a flexible and extensible architecture. An overview of the steps of the approach
is shown in Fig. 1.

We leverage existing frameworks and library standards for OpenTracing,
which is a method for the distributed tracing of data preparation and process-
ing [5]. For our work, we re-use parts of the existing builder pattern architecture
of Performance Model Extractor (PMX) [8,17] allowing the extraction of archi-
tecture models that are instances of the Palladio Component Model (PCM) [2].
To evaluate the approach, we use a community example system, flowing retail5,
which implements a system where microservices communicate with each other
via MOM. We analyse the extracted model elements and compare them with a
manually created model to evaluate the accuracy of our approach.

The rest of the paper is organized as follows: Sect. 2, gives the foundations,
Sect. 3, describes the complete architecture design of ARCHI4MOM, Sect. 4,
presents the technical details of the architecture recovery approach along with
the implementation methods. In Sect. 5, we evaluate our approach with the case
study scenario. Section 6, classifies our work with respect to the state-of-the art
literature. Section 7, provides the concluding remark with possible future ideas.

Fig. 1. Overview of the Approach.

2 Foundation

First, we introduce different concepts and techniques our approach uses
and highlight the specific challenges of MOM-based systems for architecture
reconstruction.
5 HTTPs://github.com/berndruecker/flowing-retail.



2.1 PMX

In the proposed ARCHI4MOM approach, we extract architecture models for
MOM-based microservice applications from tracing data by extending the PMX
approach. PMX is used to collect and analyse [17] tracing data and extract a
PCM architecture model out of it.

We discuss existing PMX challenges and our motivation to extend it fur-
ther [15]. First, the current implementation of PMX only considers synchronous
communication between microservices. It does not support the architecture
extraction of MOM-based microservices, where an asynchronous sender-receiver
communication happens. Second, PMX depends on the monitoring tool Kieker
for tracing data collection. Kieker does not comply with current standards in
the field of distributed tracing, and therefore PMX cannot analyse data col-
lected from modern MOM-based systems. Third, PMX extracts PCM models
that do not contain concepts for modelling messaging communication via mid-
dleware. To meet the above limitations, we extend parts of PMX as shown in
Fig. 2 and make it compatible for MOM-based systems. We discuss the extension
in details in Sect. 3.1.

Fig. 2. Extension of PMX for ARCHI4MOM.

2.2 Palladio Component Model (PCM)

PCM is an architectural model that supports to explore the quality of the soft-
ware systems at design and run time. PCM allows modelling components of the
system, and these models of components are reusable. It consists of different
views of the system, the Repository model, System model, Resource Environ-
ment model, Allocation model and Usage model. In our architecture extraction
approach, we extract the Repository model and the System model from the trace
information. The Repository model, contains data types, components, and inter-
faces. Each component provides at least one ProvidedInterface and an arbitrary
number of RequiredInterfaces. The ProvidedInterfaces define the services pro-
vided by the component, the RequiredInterfaces define the services required to
operate. This happens with ProvidedRole and RequiredRole.



PMX uses PCM modelling language for generation of architecture model.
These PCM model elements do not model asynchronous message-based commu-
nication. Therefore, the existing PMX fails to support the architecture extraction
of MOM-based microservice systems. We integrate new PCM modelling elements
into ARCHI4MOM to enable the extraction for the MOM-based systems.

2.3 Message-Oriented Middleware (MOM)

To understand model extraction, it is required to recognize different possible
communication types in MOM-based systems and represent it in the model. We
focus the message exchange mechanism via “topics” which facilitates publish-
subscribe method. The messages are published to the “topics” and then the
subscribers receive all the messages published to the topics they subscribed to.
Figure4 shows the example application that shows how the “topics” connect to
a MOM middleware. The sender microservice (component A) sends messages to
Topic T and the topic forwards the message to the receiver microservice (compo-
nent B) subscribed to the MOM. The existing architecture extraction methods
including PMX do not consider the extraction of sender-receiver communication
via the messaging middleware as explained here.

2.4 Flowing Retail Case Study System

We use Flowing-Retail (FL) as our case-study system, which simulates a produc-
tion process where goods are retrieved, fetched and shipped after being ordered
and paid by the customer. In this application, the microservices communicate
through an asynchronous messaging method. For our purpose, we use the vari-
ant of the system that is based on Kafka messaging middleware with the Spring
messaging framework. The system consists of six microservices: Checkout, Order,
Payment, Inventory, Shipping, Monitor and one “topic” flowing-retail to com-
municate between these microservices. The internal communications between the
microservices, take place via message channel. For external communication, with
other microservices and third party libraries, FL uses an external Kafka messag-
ing broker to store and forward external messages to all subscribed services. We
only focus on the communication between microservices using the Kafka message
broker and ignore the internal asynchronous communication at the moment.

3 ARCHI4MOM Structure

ARCHI4MOM is mainly guided by the following research question: How to gen-
erate the architecture model for MOM-based microservice systems from traced
information, which is collected dynamically by instrumenting the source code
of a software system? ARCHI4MOM provides a generic framework for describ-
ing asynchronous communication and implementations for specific frameworks.
These frameworks are implemented by concrete classes who handle the details
of the chosen standard or language. We show the parts we extend in existing



PMX in order to support the architecture extraction in ARCHI4MOM. This
overcomes the challenges of existing PMX described earlier. In the following, we
describe the different parts of the approach shown in Fig. 2.

Fig. 3. Comparison of Traces Structure between Asynchronous ARCHI4MOM old Syn-
chronous PMX.

3.1 PMXController

PMXController is the first entry point for the extraction process, which enables
the extraction process to start independently and allows the easy integration of
the process to the continuous development pipeline.

3.2 Data Preparation

Before starting the extraction, a preparation of its input is necessary. In this
step, we instrument the source code with the Jaeger6 tracing tool and collect
tracing data. We use the OpenTracing API which supports Kafka-based mes-
saging systems. The use of the OpenTracing standards solve the first limitation
of existing PMX and extend the usability to support modern MOM-based sys-
tems. This dependency enables the auto-instrumentation of systems with Spring
and Kafka. We add the dependency to all microservices to generate the trace in
each service. The trace data consists of several spans composed of tags, logs and
other information. The asynchronous trace data introduces a set of new informa-
tion for MOM-based asynchronous microservices from OpenTracing which is not
present earlier. We transform the Trace, Span collected from OpenTracing, to
the internal trace structure of ARCHI4MOM, which are called ExecutionTrace,
MessagingExecution. Like wise, other important mappings are represented in
Table 1. We map the information to recognizes the messaging spans from nor-
mal spans. We later use it in the traceReconstructionService. The next step after
instrumentation is the collection of tracing data. We collect them in the form
of JavaScript Object Notation (JSON) files. This becomes the input to Data
Processing phase.

6 https://www.jaegertracing.io/.



Table 1. Mapping of new OpenTracing data to ARCHI4MOM structure.

OpenTracing ARCHI4MOM

Span MessagingExecution

Trace ExecutionTrace

Operation MessagingOperation

TraceID+SessionID TraceInformation

AsynchronousCall AsynchronousCallMessage

AsynchronousCallReply AsynchronousReplyMessage

3.3 Data Processing

In the Data Processing phase, we analyse the structure of the traces. In syn-
chronous methods, the sender and receiver are present in one span, which makes
it easier to track the behaviour. In asynchronous communication, the informa-
tion is not present in the same span because they communicate through the
middleware. Therefore, the execution of methods in different components needs
to match based on the tagged information. We require finding this information
from the trace span and collect them for data analysis. This is the novelty in
our approach.

With the span reference relationships, we extract the communication pat-
tern. We determine the nature of the current span for synchronous or asyn-
chronous communication. For our work, we focus on the tags and logs since this
provides relevant information about the communication. For example, in case
of synchronous communication it is CHILD-OF and in case of asynchronous
communication it is FOLLOWS-FROM. Figure 3 shows the difference in the
communication traces collected from old PMX with synchronous Spring-based
application in comparison with the asynchronous MOM-based application in
case of FL. We notice that the structure of the trace widely varies in both types
of communication. This result is because of changing the communication type
from synchronous to asynchronous.

After the trace reconstruction, we find all the spans of send operation do not
have information about the topics, they send to or receive from. Often, this infor-
mation is missing in collected spans. From the traces, we manually search for
the topic name. Then, we iterate over all the sending spans with a FOLLOWS-
FROM or message-bus relation tag and add the topic name to all the receiving
spans from a given sending span, that have no topic set in their tags or logs.
Thereby, we identify the message type that has been sent to the receiver. For
example, the message-bus tag is used for identification of topic names in case
of Spring-Kafka messaging middleware. Asynchronous MOM-based applications
have more operation-related data which we identify in this step and integrate in
architecture extraction step, for example identification of the topic name, compo-
nents and corresponding interfaces. In ARCHI4MOM, all these new information
about asynchronous communication is integrated into PMX, which handles the
existing issues. We use this information later to generate DataInterfaces.



3.4 Architecture Extraction

In order to extract the complete PCM architecture model that supports the
messaging behaviour of MOM-based systems, we require new model elements.
For this reason, we combine recent additions to the PCM which support asyn-
chronous communication. It introduces7 additional model elements for represent-
ing asynchronous communication and also provides a simulation for this type of
communication. We integrate new model elements to existing PMX and enable
the PCM to represent messaging middleware and sender-receiver relation. These
new components are:

– DataChannel responsible for data transfer providing a DataSinkRole and
requiring a DataSourceRole.

– DataInterface determines the type of data transfer and has exactly one sig-
nature.

– DataSinkRole is a ProvidedRole and describes which data is received by the
DataChannel.

– DataSourceRole is a RequiredRole and describes which data is send to the
DataChannel.

3.5 Model Builder

In the Model Builder phase, we use the extracted data to create a model instance.
There is no logic available in PMX to construct the model for asynchronous
communication. We introduce the logic to generate the new PCM model elements
to support model building for messaging communication.

We illustrate the extended implementation logic, we adapt to build the PCM
model, with an example. Assuming microservice C communicates with a Dat-
aChannel D through two different DataSinkRole, we require two DataInterfaces
DI1, DI2 and two DataSinkRoles R1 and R2 with the respective DataInterfaces
D1-R1 and DI2-R2 to architect the communication. With two different roles, C
can process the messages received from D differently, depending on DataInter-
face. We transform the knowledge into model generation.

FL case study component Monitor microservice always receives messages. So
it has several DataSinkRoles depending on the DataInterfaces. This relation is
represented in the architecture construction logic. For a sending operation, the
corresponding component has a DataSourceRole and for a receiving operation,
the component has a DataSinkRole. The number of sink roles of DataChannel
depends on the number of different types of messages it receives, and hence on the
number of DataInterfaces. Sender microservice components send the messages
via DataSourceRole to the DataChannel and receiver microservice consumes the
message via DataSinkRole from the DataChannel.

7 HTTPs://github.com/PalladioSimulator/Palladio-Addons-Indirections/tree/maste
r/bundles/org.palladiosimulator.indirections/model.



As a result, in the case of the DataChannel, we have two possibilities to rep-
resent the sending roles. Both are illustrated in Fig. 5. In the first case, we see a
single source role for each DataInterfaces in the DataChannel, where the message
is sent several times from the DataChannel and received by all the components in
the DataChannel. In the second, we see several source roles for a single DataInter-
face in a DataChannel. In our work we choose the second alternative, because in
FL case study every message is sent simultaneously to at least two other microser-
vice components, which is easily captured by the second possibility.

<<Component>>
A

send

<<Component>>
A

send

<<Component>>
B

receive

<<Component>>
B

receive

<<Channel>>
T

send

<<Channel>>
T

receive

Fig. 4. Message Communication with Topic T.

4 Implementation of ARCHI4MOM

In this section, we discuss the implementation of our approach with reference
to the FL case study. Our description is structured according to Sect. 3. We
adjust the OpenTracing structure, by adding logic for new tags and logs pairs,
discussed in Sect. 3.3. ARCHI4MOM adds new logs which not only supports
and recognizes messaging spans but also adjusts them before and after the trace
reconstruction.

In the case of FL system, all the microservices are subscribed to the “topic”
flowing-retail. When a microservice sends a message, all other microservice com-
ponents except Checkout receive it. However, not all microservices process it
further. All microservices communicate through Kafka messaging, which makes
it difficult to figure out the behaviour of the communication. The communication
between the sender and receive is hard to capture since they do not talk directly.

We face the problem in identifying the data type and hence the DataInterface
to transform it into model elements from the trace information. In order to
tackle this, we consider the microservice that processes a given message further
is a DataInterface and put it in the architecture model. Thereby, we extract
6 DataInterfaces in FL case study. Considering the messaging communication
from sender to Kafka middleware and Kafka middleware to receiver, we model
the Kafka middleware as aDataChannel.

When a component sends a message to the other component, the message
goes through a messaging middleware. It looks like two sending operations: first,



sending from the component to the messaging middleware and then from the
message broker to the receiving component. For example, we have an operation
O, where a component A sends a message M to a component B through topic
T, we will then have two operations O1 and O2. O1 is then a sending operation
from A to T and O2 from T to B. But, in our observation, each message sending
operation is represented by two spans, a sending span and a receiving span. In
each sending span, we extract three spans, the first span is the sending of a
message from a component to a message broker, the second is the receiving of
that message by the messaging middleware and the third is the sending of the
message from the messaging middleware to the receiving component. In order to
avoid consistency problems, we assign the new tags FOLLOW-FROM discussed
earlier, and the third span gets the identifier of the original span. The receiving
spans refers to the third sending span and connects the sending operation. This
process is illustrated in Fig. 4.

DataChannel DataSourceRole DataSinkRole Microservice
Component

DI-R

Several Roles per DataInterface One Role per DataInterface

Fig. 5. Roles per DataInterfaces.

We process the spans and transform them in the ARCHI4MOM internal
structure. For example, the microservice Order-Camunda from the case study FL
sends a message to another microservice. The first span is the sending operation
from the Order-Camunda service followed by the receiving operation from the
“topic” flowing-retail. We use this analysis to extract the control flow of the
architecture model extraction.

The next step is the creation of an architecture model. In our case, Dat-
aChannels and DataInterfaces are created as a part of PCM repository model to
represent the MOM-based communication. In PCM, every component obtains a
corresponding interface to communicate with each other. As already discussed,
we model source and sink roles, which are characterized by a DataInterface
to represent the data type. We can realize the above implementation in the
extracted architecture of FL case study described in evaluation section.



Fig. 6. Excerpts of Extracted and Manual Model.

5 Evaluation

In order to evaluate the extracted model, we compare it to a baseline (man-
ual) model. We use the available reference architecture description of FL8 and
create the PCM baseline model from it. In order to ensure the ground truth,
we validated the manual model by 3 developers. The manual PCM model con-
siders new model elements described in Sect. 3.4, in order to support modelling
of asynchronous message-based communication. The manual model contains 6
microservice components, 1 topic, 17 DataSourceRoles, 17 DataSinkRoles model
elements [4].

We collect the traces after 20 iterations. We collect the traces for Order cre-
ation, Payment and successful Delivery. The longest trace we collect have 116
traces with all the services. We use Jaeger UI in order to view and collect the
traces. We ensure to include all 6 services of FL in our evaluation. We search
and locate the model elements in the extracted architecture model. The actual
extracted model contains 18 DataSourceRoles, 14 DataSinkRoles, 6 DataInter-
faces and 1 DataChannel. We observe, ARCHI4MOM identifies 1 more Data-
Source which we cannot identify from the architecture description. Also, there
are 3 less DataSinkRoles compared to manual model. This is because, in the
System model, 4 DataSourceRoles use only 1 DataSinkRole. We can observe the
difference between the extracted model elements and manual model elemnts in
the last row of the Table 3. The first number 18 represents the extracted model
element and second number 17 represents the corresponding manual model ele-
ments in 18/17 notation. We share all the relevant diagrams and source code9.

8 https://github.com/berndruecker/flowing-retail/tree/master/kafka/java.
9 https://doi.org/10.5281/zenodo.6778977.



Since the full model is too large to discuss in this article, we explain the main
ideas of the extraction using an excerpt of the model, as shown in Fig. 6. The
excerpt shows the Inventory component and the components it communicates
with. We show the baseline model on the left with the DataSinkRole to Inventory-
Monitor component (SI-IM) and DataSourceRole to Order-Monitor (SO-OM)
component. We use SI for SinkRole and SO for SourceRole here. As we see on
the right of Fig. 6, ARCHI4MOM extracts the DataSinkRole and DataSourceRole
correctly. In addition, ARCHI4MOM extracts “topic” as flowing-retail and Kafka
messaging as DataChannel.

Using only the source code of FL, it is not easy to identify the above-
mentioned model elements, but ARCHI4MOM automatically extracts 38 model
elements from the tracing data.

To verify the achievement of this objective, we structure the evaluation using
a Goal Question Metric (GQM) plan as described by [16], which is presented in
Table 2. For all model elements that are relevant for the asynchronous commu-
nication, we observe the model elements created by the extraction approach and
in the baseline by the expert. Both sets are compared using Precision, Recall
and F1 score. Overall, the results of the evaluation show that the extraction of
MOM-based microservices based on dynamic tracing data is possible for systems
communicating asynchronously to achieve (100%)Precision, (95.65%)Recall and
(97.8%)F1-score and is shown in Table 3.

5.1 Threats to Validity

In this section, we address threats to validity for case-study-based research in
software engineering.

Internal Validity. Addresses whether all implementation possibilities of asyn-
chronous communication have been considered. In our case study, we analysed
publish-subscribe based communication with Kafka and extracted the architec-
ture for the same. We evaluated the results with the baseline model. One factor
that is hard to eliminate is the expertise of the person modelling the case study
architecture. We consider this factor by creating a baseline that is as accurate
as possible to avoid unfairness in our evaluation approach.

External Validity. Addresses whether the findings of the case study can be
generalized to other cases of interest. We can not say, at this point, if the app-
roach can be successfully applied to the industrial set up with more than 100
microservices. We aim to increase the external validity by focusing on a case
description that comes from the research community. Furthermore, we consider
the case study system which is used by most researcher and uses popular mid-
dleware for MOM like Kafka and RabbitMQ.



Table 2. The GQM-Plan for Evaluation.

Goal Purpose Achieve

Issue Complete extraction

Object Architecture extraction of MOM-based microservices

Viewpoint Software architects

Questions Q Are all DataSourceRole, DataSinkRole, DataInterfaces are extracted?

Metrics M1 Precision

M2 Recall

M3 F1-score

6 Related Work

In our observation, we categorize the state-of-the-art literature for architecture
extraction of MOM-based systems into three main categories. First, based on the
type of input used by several approaches. If the input used by the approaches are
the artefacts, documents, and source code of the system, we categorize it as static
analysis for architecture extraction. Otherwise, if the approach use inputs such as
logs, spans, traces collected dynamically from the system for architecture extrac-
tion, we categorize it as dynamic analysis. There exists some approaches which
combine both the approaches for more accurate architecture extraction, and we
categorize it as hybrid approach. Second classification is based on what kind of
microservice systems are taken into consideration for the architecture extraction.
For example, whether the microservice systems communicating synchronously
with each other or they communicate asynchronously via messaging middleware.
Third, whether the outcome of the approaches focuses on architecture extraction,
behavioural extraction or performance model extraction. Based on the discussed
categorization of the state-of-the-art literature, we place our work in the category
of dynamic analysis for architecture extraction for the microservice systems which
communicate explicitly via messaging middleware. Therefore, we narrow down
our discussion focusing to the related work relevant to our work.

Table 3. Extracted model elements for Flowing-retail.

Microservices DataSourceRole DataSinkRole DataInterface

Checkout 1 1 1

Order-Camunda 8 5 1

Payment 2 1 1

Inventory 1 1 1

Shipping 1 1 1

Monitor 5 5 1

Total 6\6 18\17 14\17 6\6



Granchelli et al. [7] present an approach (MicroART) which takes system’s
service descriptor as input for static analysis and container communication logs
for dynamic analysis to generates the model for messaging systems. The main
limitation of MicroART approach is manual refinement of the generated model.
It needs a software architect to manually resolve the sender-to-message bro-
ker and message broker-to-receiver interactions into sender-receiver interactions
before the final architecture is generated, which makes the recovery process slow
and prone to error. In our approach, we automatically extract the relation for
message-based systems and transform it into an architecture model.

Alshuqayran et al. [1] propose the MiSAR approach for architecture recovery
of microservices systems with hybrid approach. This approach provides man-
ual mapping rules to identify the microservices as an infrastructure component
and hence not as a component for modelling the basic messaging behaviour.
The approach lacks to capture the asynchronous dependencies between sender-
receiver communication via messaging middleware, which is the main focus in
our approach.

Kleehaus et al. present Microlyze [10], which analyses the system statically
and dynamically to extract the architecture semiautomatically. The Microlyze
discovers the microservices using the service discovery Eureka, and then it finds
the communication between the microservices using distributed tracing technol-
ogy Zipkin. However, the discovery process ignores the detection of microservices
and the communication among each other and with the messaging middleware.
Therefore, the architecture is not suitable for MOM-based microservice systems.

Brosig et al. [3] propose a method to automatically extract the architecture
and performance models of distributed microservices. Their approach uses run-
time monitoring data in order to extract system’s architecture and performance
model parameters. Their work is based only on Enterprise Java Beans, Servlets,
Java Server Pages, therefore fails to support microservice communication via
messaging middleware.

Mayer and Weinreich [12] aim to recover the architecture of REST-based
microservice systems. The approach combines a hybrid approach to automati-
cally extract relevant information from the system and recover the architecture
from the information. The metamodel of this approach only supports REST-
based systems, but not asynchronous MOM-based microservice systems.

7 Conclusion and Future Work

In our work, we capture the asynchronous communication related information
between MOM components and other components in MOM-based microser-
vice systems and transfer them into an architecture model. We mainly focus
on the sender-receiver message exchange via state-of-the art messaging middle-
ware. ARCHI4MOM approach introduces an automated and flexible architec-
ture extraction method to support modern mixed-technology systems. In order
to precisely fit the extracted architecture models to MOM-based systems, we
build upon the data model of OpenTracing standards and libraries. In addition,



our data preparation phase provides an extension point to import data from dif-
ferent tracing standards other than OpenTracing. This adds necessary flexibility
for the model preparation and generation phase.

In the future work, we plan to test our approach with other middleware sys-
tems communicating with more topics. Currently, we extract the repository and
part of system model and hence plan to extract the usage model for complete
performance model extraction. We evaluated our approach with an academic-
oriented case study, but in reality there could exist systems which use the asyn-
chronous as well as synchronous communication between its components. Con-
sidering this, we think that it is important in the future to merge our imple-
mentation with the extraction’s approach for synchronous communication to be
able to model such mixed-technology microservice systems. Although we have
successfully applied our approach to MOM-based microservice application and
extracted the architecture, we want to further extend our approach with the
above-mentioned variations to make it more general and useful for the user.

Acknowledgement. This work was supported by the German Research Foundation
(DFG) Research Training Group GRK 2153: Energy Status Data - Informatics Methods
for its Collection, Analysis and Exploitation and by KASTEL Security Research Labs.
We thank Fatma Chebbi for implementing and evaluating the approach as a part of
her Bachelor’s thesis [4].

References

1. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microser-
vice architecture. In: 2016 IEEE 9th International Conference on Service-oriented
Computing and Applications (SOCA), pp. 44–51. IEEE (2016)

2. Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-
driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009)

3. Brosig, F., Huber, N., Kounev, S.: Automated extraction of architecture-level
performance models of distributed component-based systems. In: 2011 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2011), pp. 183–192. IEEE (2011)

4. Chebbi, F.: Architecture extraction for message-based systems from dynamic anal-
ysis. Bachelor’s thesis, Department of Informatics, Karlsruhe Institute of Technol-
ogy (KIT) (2021)

5. Cinque, M., Della Corte, R., Pecchia, A.: Advancing monitoring in microservices
systems. In: 2019 IEEE International Symposium on Software Reliability Engi-
neering Workshops (ISSREW), pp. 122–123. IEEE (2019)

6. Di Francesco, P., Malavolta, I., Lago, P.: Research on architecting microservices:
trends, focus, and potential for industrial adoption. In: 2017 IEEE International
Conference on Software Architecture (ICSA), pp. 21–30. IEEE (2017)

7. Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta, I., Iovino, L., Di Salle,
A.: Microart: a software architecture recovery tool for maintaining microservice-
based systems. In: 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW), pp. 298–302. IEEE (2017)

8. Heinrich, R.: Architectural runtime models for integrating runtime observations
and component-based models. J. Syst. Softw. 169, 110722 (2020)



9. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Professional, Boston (2004)

10. Kleehaus, M., Uludağ, Ö., Schäfer, P., Matthes, F.: MICROLYZE: a framework
for recovering the software architecture in microservice-based environments. In:
Mendling, J., Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol. 317, pp. 148–162.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92901-9 14

11. Krogmann, K.: Reconstruction of Software Component Architectures and
Behaviour Models Using Static and Dynamic Analysis, vol. 4. KIT Scientific Pub-
lishing, Amsterdam (2012)

12. Mayer, B., Weinreich, R.: An approach to extract the architecture of microservice-
based software systems. In: 2018 IEEE Symposium on Service-oriented System
Engineering (SOSE), pp. 21–30. IEEE (2018)

13. Singh, S., Kirschner, Y.R., Koziolek, A.: Towards extraction of message-based com-
munication in mixed-technology architectures for performance model. In: Compan-
ion of the ACM/SPEC International Conference on Performance Engineering, pp.
133–138 (2021)

14. Terra, R., Valente, M.T., Czarnecki, K., Bigonha, R.S.: Recommending refactorings
to reverse software architecture erosion. In: 2012 16th European Conference on
Software Maintenance and Reengineering, pp. 335–340. IEEE (2012)

15. Treyer, P.: Extraction of Performance Models fromMicroservice Applications based
on Tracing Information. Master’s thesis, Department of Informatics, Karlsruhe
Institute of Technology (KIT) (2020)

16. Van Solingen, R., Basili, V., Caldiera, G., Rombach, H.D.: Goal question metric
(GQM) approach. Encyclopedia of software engineering (2002)

17. Walter, J., Stier, C., Koziolek, H., Kounev, S.: An expandable extraction framework
for architectural performance models. In: Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering Companion, pp. 165–170
(2017)


	ARCHI4MOM: Using Tracing Information to Extract the Architecture of Microservice-Based Systems from Message-Oriented Middleware
	1 Introduction and Motivation
	2 Foundation
	2.1 PMX
	2.2 Palladio Component Model (PCM)
	2.3 Message-Oriented Middleware (MOM)
	2.4 Flowing Retail Case Study System

	3 ARCHI4MOM Structure
	3.1 PMXController
	3.2 Data Preparation
	3.3 Data Processing
	3.4 Architecture Extraction
	3.5 Model Builder

	4 Implementation of ARCHI4MOM
	5 Evaluation
	5.1 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	References




