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Abstract
Experimental aeroacoustics is concerned with the estimation of acoustic source
power distributions, which are for instance caused by fluid structure interactions
on scaled aircraft models inside a wind tunnel, from microphone array mea-
surements of associated sound pressure fluctuations. In the frequency domain
aeroacoustic sound propagation can be modeled as a random source problem
for a convected Helmholtz equation. This article is concerned with the inverse
random source problem to recover the support of an uncorrelated aeroacoustic
source from correlations of observed pressure signals. We show that a variant
of the factorization method from inverse scattering theory can be used for this
purpose. We also discuss a surprising relation between the factorization method
and a commonly used beamforming algorithm from experimental aeroacous-
tics, which is known as Capon’s method or as the minimum variance method.
Numerical examples illustrate our theoretical findings.
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1. Introduction

In experimental aeroacoustic testing a solid object (e.g., a model of an aircraft component) is
placed inside a wind tunnel, and the fluid structure interaction between the flow field and the
object generates sound pressure fluctuations, i.e., aeroacoustic noise. The raw acoustic time
signal is recorded by an array of microphones and further post-processed to obtain correlation
data in the frequency domain. Based on these correlation data one then seeks to localize and
quantify the power distribution of the aeroacoustic sources (see, e.g., [4, 27, 34]).

In this work we restrict the discussion to subsonic homogeneous unidirectional flow fields
in free space, and we use the convected Helmholtz equation to model the propagation of time-
harmonic aeroacoustic pressure waves. These waves and the associated sources are usually
considered as random functions. Following [17] we model the aeroacoustic acoustic pressure
signal as a Hilbert space process with zero mean and a covariance operator that acts as a mul-
tiplication operator. The inverse source problem then amounts to reconstructing the source
power function from the corresponding covariance operator of the aeroacoustic pressure sig-
nal on the microphone array. In practice the latter can be estimated from microphone array
measurements by Welch’s method [36]. In our analysis we assume that the covariance opera-
tor corresponding to an idealized continuum model for the microphone array is available. It has
been shown in [17] that this inverse random source problem has a unique solution. For further
results on inverse random source problems for time-harmonic acoustic waves, which are not
directly related to aeroacoustic imaging, we refer, e.g., to [2, 3, 12, 24].

Various reconstruction procedures have been discussed for correlation based random source
identification in aeroacoustics. Covariance fitting (see, e.g., [5, 37]) estimates source powers
directly from correlation data of the observed acoustic random pressure signal by minimizing a
suitably regularized output least squares functional. A faster and therefore more popular recon-
struction technique in experimental aeroacoustics is beamforming (see, e.g., [6, 11, 30, 31, 35]).
Instead of solving the inverse source problem for all source positions at once, beamforming
estimates the source powers at individual source positions separately. In particular DAMAS
[7] and CLEAN-SC [33], which combine beamforming methods with suitable postprocessing
schemes to improve the spatial resolution of the reconstruction, have become standard tools.
Both, covariance fitting and beamforming, have recently been reviewed from a continuous
perspective in [17].

In this work we focus on the localization of extended aeroacoustic source power functions.
We show that a variant of the factorization method from inverse scattering theory can be used to
recover the support of a random source from correlations of aeroacoustic pressure fluctuations.
The factorization method has been introduced in the framework of inverse obstacle scatter-
ing [19] and inverse medium scattering [20] by Kirsch. It has subsequently been attracting a
considerable amount of attention over the past twenty-five years. We will show that the mathe-
matical structure of the covariance operator of the aeroacoustic pressure signal is closely related
to the structure of the Born approximation of the far field operator for the inverse medium
scattering problem (see, e.g., [21]). This will be used to establish the theoretical foundation
of the factorization method for the aeroacoustic inverse source problem. On the other hand,
we will see that the inf-criterion of the factorization method and also the traditional imaging
functional that is obtained from Picard’s criterion (see, e.g., [22]) is closely related to another
well-established beamforming algorithm that is known as Capon’s method or as the minimum
variance method (see, e.g., [9, 25, 26]). In particular, our results give a mathematically rigor-
ous theoretical interpretation of the reconstructions obtained by Capons’s method. We show
for the first time that (for our idealized measurement setup and in the absence of measurement
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errors) Capon’s method recovers the correct support of locally strictly positive source power
functions.

This article is organized as follows. In section 2 we briefly recall some basic facts on solu-
tions to the convected Helmholtz equation, and we introduce the stochastic model for the
aeroacoustic source problem with uncorrelated extended sources. In section 3 we establish
the main result of this work, which is a theoretical justification of the factorization method
for reconstructing the support of the source power function from the covariance operator cor-
responding to the radiated sound pressure fluctuations. In section 4 we discuss the relation
between Capon’s method and the factorization method. Some numerical results on experi-
mental data are presented in section 5.

2. The aeroacoustic inverse source problem

Let M ⊂ Σ0 := {x ∈ Rd : xd = 0} and Ω ⊂ Rd
+ := {x ∈ Rd : xd > 0}, d = 2, 3, be rela-

tively open domains such that Ω ∩ Σ0 = ∅. In the followingM represents an idealized (d − 1)-
dimensional continuous measurement array, and Ω is supposed to be a region in space that
contains all possible aeroacoustic sources.

2.1. The convected Helmholtz equation

The basic sound propagation model that is used in experimental aeroacoustics to describe time-
harmonic sound waves inside a subsonic homogeneous flow field u ∈ Rd is the convected
Helmholtz equation. Given a source term Q ∈ L2(Ω), the associated sound pressure field p
satisfies

Δp+ (k + im · ∇)2 p = −Q in R
d , (2.1)

where k :=ω/c is the wave number, ω the frequency, and c the speed of sound. Here, subsonic
means that the Mach vector m :=u/c satisfies |m| < 1. In the following we also use the notation
β :=
√

1 − |m|2. Throughout, | · | denotes the Euclidean norm on Rd .
We will assume that the convective field u is aligned with the x1-direction, i.e., that

m = (m1, 0, . . . , 0)� for some m1 = |m| ∈ [0, 1).

Solutions of the convected Helmholtz equation are linked to solutions of the standard
Helmholtz equation (i.e., (2.1) with m ≡ 0) by the Lorentz transformation.

Proposition 2.1. Let T := diag
(
1/β, 1, . . . , 1

)
∈ Rd×d, suppose that U ⊂ Rd is open, and

let Q ∈ L2(U). Then wm ∈ H1(U) is a weak solution to the convected Helmholtz equation

Δwm + (k + im · ∇)2wm = −Q in U

if and only if

w0(x) := exp

(
|m|ik
β

x1

)
wm
(
T−1x
)
, x ∈ T(U),

satisfies

Δw0(x) +
k2

β2
w0(x) = − exp

(
|m|ik
β

x1

)
Q(T−1x), x ∈ T(U),

i.e., w0 is a weak solution to a standard Helmholtz equation with wavenumber k/β.
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Proof. This may be verified by direct calculation. �

Using proposition 2.1, the Sommerfeld radiation condition, which determines outgoing
solutions to the standard Helmholtz equation on unbounded domains (see, e.g., [10, p 18]),
can be transferred to the convective Helmholtz equation. Let U ⊂ Rd be a bounded domain,
and let p ∈ C2(Rd \U) be a solution to

Δp+ (k + im · ∇)2 p = 0 in R
d \ U.

Then we call p radiating if it satisfies the radiation condition

lim
r→∞

r
d−1

2

((
∂

∂r
− i

k
β

)
exp

(
|m|ik
β

x1

)
p
(
T−1x
))

= 0, r = |x|,

uniformly with respect to all directions x/|x| ∈ Sd−1.
Similarly, using proposition 2.1 the fundamental solution of the convected Helmholtz

equation can be obtained from the fundamental solution for the standard Helmholtz equation
(see, e.g., [10, p 19 and p 89]). To simplify the notation, we define the Mach norm on Rd by

|x|m :=
√

(x · m)2 + β2|x|2, x ∈ R
d.

Therewith, the fundamental solution of the convected Helmholtz equation is given by

g(x, y) := exp

(
− ik
β2

(x− y) · m
)

·

⎧⎪⎪⎨⎪⎪⎩
i

4β
H(1)

0

(
k
β2

|x− y|m
)

if d = 2,

1
4π|x− y|m

exp

(
ik
β2

|x− y|m
)

if d = 3,
(2.2)

for x, y∈ Rd, x �= y. As usual, H(1)
0 denotes the Hankel function of the first kind of order zero.

For later reference, we note that

|g(x, y)| � C(d)|x− y|
1−d

2 for x, y∈ R
d , x �= y, (2.3)

with a constant C(d) that depends only on the spatial dimension d. Using the norm equivalence
of | · | and | · |m on Rd, this bound follows directly from (2.2) when d = 3, while for d = 2 one
uses the asymptotic behavior of the Bessel functions (see, e.g., [10, pp 89–90]).

Lemma 2.2. Let Q ∈ L2(Ω). Then, the unique radiating solution p ∈ H1
loc(R

d) of (2.1) is
given by

p(x) =

∫
Ω

Q(y)g(x, y) dy, x ∈ R
d.

Furthermore, p is real analytic in Rd \Ω.

Proof. This follows from the one-to-one correspondence between radiating solutions to the
standard Helmholtz equation and radiating solutions to the convected Helmholtz equation by
means of the Lorentz transformation. The existence and uniqueness of radiating solutions to
the corresponding source problem for the standard Helmholtz equation follows from Rellich’s
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lemma (see, e.g., [10, lemma 2.12]) and the properties of the volume potential (see, e.g., [10,
theorems 8.1–8.2]). The real analyticity of p in Rd \Ω follows from [17, proposition 3.4]. �

The next proposition gives an integration by parts formula that is a consequence of Green’s
second theorem (see, e.g., [10, p 19]). A complete proof can be found in appendix A of [29].

Proposition 2.3. Let U ⊂ Rd be a bounded domain of class C1 and let n = (n1, . . . , nd)�

denote the unit outward normal vector on the boundary ∂U. Then, for p,w ∈ C2(U) we have∫
U

p(y)
(
Δw(y) + (k + im · ∇)2w(y)

)
dy−

∫
U

(
Δp(y) + (k − im · ∇)2 p(y)

)
w(y) dy

+

∮
∂U

(
p(y)

∂w

∂n
(y) − w(y)

∂p
∂n

(y)
)

ds(y) + 2ik|m|
∮
∂U

p(y)w(y)n1(y)

× ds(y) + |m|2
∮
∂U

(
w(y)

∂p
∂y1

(y)n1(y) − p(y)
∂w

∂y1
(y)n1(y)

)
ds(y). (2.4)

Finally, we transfer the Helmholtz representation formula for radiating solutions of the stan-
dard Helmholtz equation (see, e.g., [10, theorem 2.5]) to radiating solutions of the convected
Helmholtz equation. Again a complete proof, which employs proposition 2.1, can be found in
appendix A of [29].

Proposition 2.4. Suppose that U ⊂ Rd is the open complement of an unbounded domain
of class C2 and let n = (n1, . . . , nd)� denote the unit outward normal vector on the boundary
∂U. Let p ∈ C2(Rd \U) ∩ C1(Rd \U) be a radiating solution to

Δp+ (k + im · ∇)2 p = 0 in R
d \U.

Then, for any x ∈ Rd \U, we have

p(x) =
∮
∂U

(
p(y)

∂g(x, y)
∂n(y)

− g(x, y)
∂p
∂n

(y)
)
· n ds(y)

+ |m|2
∮
∂U

(
g(x, y)

∂p
∂y1

(y) − p(y)
∂g(x, y)
∂y1

)
n1(y) ds(y)

− 2|m|ik
∮
∂U

p(y)g(x, y)n1(y) ds(y). (2.5)

2.2. The random source process

In experimental aeroacoustics sources are usually considered as random functions. Following
[17], we use a Hilbert space process, i.e., a bounded linear operator

Q : L2(Ω) → L2(X,A,P),

where (X,A,P) is the underlying probability space, to model the source problem. Then, the
associated random pressure signal is given by

p(x) = Q(g(x, · )), x ∈ R
d, (2.6)

where g is the fundamental solution from (2.2). Using (2.3) we see that g(x, ·) is square
integrable for any x ∈ M, and thus (2.6) is well-defined.

5
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The expectation of Q is the unique element E[Q] ∈ L2(Ω) such that

〈E[Q], v〉L2(Ω) = E(Qv) for all v ∈ L2(Ω),

and the covariance operator Cov[Q] : L2(Ω) → L2(Ω) is the unique self-adjoint and positive-
semidefinite operator that satisfies

〈Cov[Q]φ1,φ2〉L2(Ω) = Cov(Qφ1, Qφ2) for all φ1,φ2 ∈ L2(Ω).

It is commonly assumed in experimental aeroacoustics that the random source has zero
mean and is spatially uncorrelated.

Assumption 1. The Hilbert space process Q satisfies

(a) E[Q] = 0,
(b) And there is a q ∈ L∞(Ω), the source power function, such that Cov[Q] = Mq, where

Mq : L2(Ω) → L2(Ω) denotes the multiplication operator given by

(Mqv)(x) := q(x)v(x), x ∈ Ω.

We note that in the special case when q ≡ 1, a process Q that satisfies assumption 1 is
called a white noise process. Since Cov[Q] is symmetric and positive-semidefinite, the source
power function q is real-valued and nonnegative a.e. in Ω. For any x ∈ M, the pressure signal
p(x) is a scalar, complex random variable with E[p(x)] = 0, and the correlation between two
observation positions x, y∈ M satisfies

Cov(p(x), p(y)) = Cov(Q(g(x, ·)), Q(g(y, ·))) = 〈Cov[Q]g(x, ·), g(y, ·)〉L2(Ω)

= 〈Mqg(x, ·), g(y, ·)〉L2(Ω) =

∫
Ω

q(z)g(x, z)g(y, z) d z

=: cq(x, y).

Accordingly, the covariance operator of the aeroacoustic pressure signal C(q) : L2(M) →
L2(M) is given by

(C(q)ψ)(x) :=
∫
M

ψ(y)cq(x, y) dy, x ∈ M.

Using (2.3) it follows that, for any q ∈ L∞(Ω), the covariance operator C(q) is a
Hilbert–Schmidt operator (see [17, proposition 2.2]).

In experimental aeroacoustics finite dimensional approximations of the covariance operator
C(q) are obtained from microphone array measurements by estimating the covariance matrix
of the microphone signals. This estimation is usually carried out by Welch’s method [36]. We
are interested in the inverse source problem to reconstruct the support of the source power
function q ∈ L∞(Ω) from observations of C(q) ∈ HS(L2(M)). We note that in [17] it has been
established that in fact even q is uniquely determined by C(q). In this work we will show that
a variant of the factorization method from inverse scattering theory can be utilized to recover
the support of q from C(q).

3. The factorization method in aeroacoustic source imaging

From now on we let q ∈ L∞(Ω) with q � 0 a.e. in Ω be a fixed source power function, and
we denote by C(q) the associated covariance operator. Following [16, 23] we distinguish the

6
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support, the inner support, and the outer support of q. These notions will be used in the
characterization of the support of q in terms of C(q) below.

Definition 3.1. Let q ∈ L∞(Ω) with q � 0. We identify q with its extension to Rd by zero,
and we define

(a) The support supp(q) of q as the complement of the union of all open subsets U ⊂ Rd such
that q|U ≡ 0.

(b) The inner support innsupp(q) of q as the union of all open subsets U ⊂ Rd such that
essinf q|U > 0.

(c) The outer support outsupp(q) of q as the complement of the union of all open, connected
and unbounded subsets U ⊂ Rd such that q|U ≡ 0.

Remark 3.2. In the following we denote by D ⊂ Rd the interior of supp(q). Following [15]
we say that the source power function q is locally strictly positive on D, if for each x ∈ D there
exist εx, rx > 0 such that Brx(x) ⊂ D and

q(x) > εx for a.e. x ∈ Brx(x),

where Brx(x) denotes the ball of radius rx centered at x. If this is the case, and if Rd \supp(q)
is connected, then

innsupp(q) = supp(q) = outsupp(q)

(see [16, corollary 2.5]). In general, the outer support is basically the support plus the holes
that cannot be connected to infinity.

Our goal is to reconstruct D from the covariance operator C(q) under minimal assumptions
on q. The techniques that we use have been developed for time-harmonic inverse scattering
problems in [19–22], and we further apply ideas that have been proposed in [8, 14, 15]. We
define the operator HD : L2(D) → L2(M) by

(HDψ)(x) :=
∫

D

√
q(y)g(x, y)ψ(y) dy, x ∈ M.

Then the adjoint H∗
D : L2(M) → L2(D) of HD is given by

(H∗
Dφ)(y) =

√
q(y)
∫
M

g(x, y)φ(x) d x, y∈ D.

Therewith, the covariance operator C(q) can be decomposed as

C(q) = HDH∗
D.

The following range identities are the first ingredient of our reconstruction method.

Theorem 3.3. Suppose that q ∈ L∞(Ω), q � 0 a.e. on Ω.

(a) The covariance operator C(q) has a self-adjoint and positive-semidefinite square root
C(q)1/2, which satisfies

ran
(
C(q)1/2

)
= ran(HD). (3.1)

7



Inverse Problems 38 (2022) 115004 R Griesmaier and H-G Raumer

(b) For any φ ∈ L2(M), φ �= 0,

ran
(
C(q)1/2

)
⇐⇒ inf

{
〈ψ, C(q)ψ〉L2(M) : ψ ∈ L2(M), 〈ψ,φ〉L2(M) = 1

}
> 0.

Proof.

(a) Since C(q) is self-adjoint and positive-semidefinite, its square root is well-defined (see,
e.g., [13, p 44]). The range identity (3.1) has, e.g., been shown in [13, proposition 2.18].

(b) Observing that C(q) = C(q)1/2C(q)1/2, this follows from [22, theorem 1.16].

The second ingredient of our reconstruction method is the following characterization of the
support of the source power function in terms of the point sources g( · , z)|M, z ∈ Ω, and the
range of the operator HD.

Theorem 3.4. Suppose that q ∈ L∞(Ω), q � 0 a.e. on Ω, and let z ∈ Ω.

(a) If z ∈ innsupp(q), then g( · , z)|M ∈ ran(HD).
(b) If z ∈ Ω\outsupp(q), then g( · , z)|M /∈ ran(HD).

Remark 3.5. If the source power function q is locally strictly positive in the sense of remark
3.2, then theorem 3.4 can be used to determine whether a sampling point z ∈ Ω belongs to D
or to Ω\D.

Proof of theorem 3.4.

(a) Let z ∈ innsupp(q). Then there exists an ε > 0 such that Bε(z) ⊂ D and ess inf(q|Bε(z)) > 0.
Choose η ∈ C∞(R) with 0 � η � 1, η(s) = 0 for |s| � ε/2, and η(s) = 1 for |s| � ε. We
define w ∈ C∞(Rd) by

w(x) := η(|x− z|)g(x, z), x ∈ R
d , x �= z.

Let φ ∈ L2(D) be given by

φ :=

⎧⎨⎩−
1
√

q

(
Δw + (k + im · ∇)2w

)
in Bε(z),

0 in D\Bε(z).

Then, using (2.4), we find for any x ∈ M that

(HDφ)(x) = −
∫

Bε(z)
g(x, y)

(
Δw + (k + im · ∇)2w

)
(y) dy

= −
∫

Bε(z)

(
Δyg(x, y) + (k − im · ∇y)2g(x, y)

)
w(y) dy

−
∮
∂Bε(z)

(
g(x, y)

∂w

∂n
(y) − w(y)

∂g(x, y)
∂n(y)

)
ds(y)

− 2ik|m|
∮
∂Bε(z)

g(x, y)w(y)n1(y) ds(y)|m|2

−
∮
∂Bε(z)

(
w(y)

∂g(x, y)
∂y1

n1(y) − g(x, y)
∂w

∂y1
(y)n1(y)

)
ds(y). (3.2)

Since

Δyg(x, · ) + (k − im · ∇y)2g(x, · ) = 0 in Bε(z),

8



Inverse Problems 38 (2022) 115004 R Griesmaier and H-G Raumer

the volume integral on the right-hand side of (3.2) vanishes. Moreover, the function w
is a radiating solution of the homogeneous convected Helmholtz equation on Rd \Bε(z).
Hence, (2.5) can be applied to conclude that

(HDφ)(x) = w(x) = g(x, z), x ∈ M.

This yields the assertion.
(b) Suppose that z ∈ Ω\outsupp(q), and that g( · , z)|M ∈ ran(HD). Then there is ψ ∈ L2(D)

such that

g( · , z)|M = HDψ in M.

Since M ⊂ Σ0 is relatively open and

v(x) := g(x, z) −
∫

D

√
q(y)g(x, y)ψ(y) dy, x ∈ R

d \{z},

is real analytic in Rd \ (D ∪ {z}), we find by analytic continuation that v|Σ0 = 0. Now we
use the reflection principle and define

v̂(x) :=

{
v(x), x ∈ R

d
−,

−v(x1, . . . , xd−1,−xd), x ∈ R
d
+,

where Rd
− := {x ∈ Rd : xd < 0}. Recalling that Ω ⊂ Rd

+, we find that v̂ ∈ H1
loc(Rd) is an

entire radiating solution to the convected Helmholtz equation

Δv̂ + (k + im · ∇)2v̂ = 0 in R
d.

Thus, v̂ must vanish identically on Rd (see [10, p 28] for the corresponding result for
the standard Helmholtz equation, and use one-to-one correspondence between radiating
solutions to the standard Helmholtz equation and radiating solutions to the convected
Helmholtz equation by means of the Lorentz transformation). Therefore, v vanishes on
Rd

−, and we find by analytic continuation that v is zero on Rd \ (outsupp(q) ∪ {z}). Here
we used that Rd \outsupp(q) is connected. This means that

g(x, z) =

∫
D

√
q(y)g(x, y)ψ(y) dy, x ∈ R

d \ (out supp (q) ∪ {z}). (3.3)

However, the left-hand side of (3.3) is unbounded on B1(z) ∩ (Rd \ (outsupp(q) ∪ {z})),
while for the right-hand side we obtain that∣∣∣∣∫

D

√
q(y)g(x, y)ψ(y) dy

∣∣∣∣2 � ‖q‖L∞(Ω)‖g(x, · )‖2
L2(D)‖ψ‖

2
L2(D)

is uniformly bounded for x ∈ B1(z) ∩ (Rd \ (outsupp(q) ∪ {z})) by (2.3). This gives a con-
tradiction, and thus we have shown that g( · , z)|M /∈ ran(HD).

Combining theorems 3.3 and 3.4 gives the following result.

Corollary 3.6. Suppose that q ∈ L∞(Ω), q � 0 a.e. on Ω, and let z ∈ Ω.

(a) If z ∈ innsupp(q), then

inf
{
〈ψ, C(q)ψ〉L2(M) : ψ ∈ L2(M), 〈ψ, g( · , z)|M〉L2(M) = 1

}
> 0. (3.4)
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(b) If z ∈ Ω\outsupp(q), then the infimum in (3.4) is zero.

Since C(q) : L2(M) → L2(M) is compact, self-adjoint, and positive-semidefinite, it has a
complete orthonormal eigensystem. We assume that the (possibly finite) sequence of positive
eigenvalues (λ j) j∈N is in decreasing order such that each eigenvalue is repeated according to its
multiplicity, and we denote by (ψ j) j∈N the corresponding sequence of orthonormal eigenfunc-
tions. Accordingly, the nonzero eigenvalues and the corresponding eigenvectors of C(q)1/2 are
given by (

√
λ j) j∈N and (ψ j) j∈N, respectively.

Theorem 3.7. Suppose that q ∈ L∞(Ω), q � 0 a.e. on Ω, and assume that innsupp(q) �= ∅.
Let z ∈ Ω.

(a) If z ∈ innsup(q), then

∞∑
j=1

∣∣∣〈g( · , z),ψ j〉L2(M)

∣∣∣2
λ j

< ∞. (3.5)

(b) If z ∈ Ω\outsupp(q), then the series in (3.5) does not converge.

Proof. We first show that

g( · , y) ∈ ran(C(q)1/2) for any y∈ Ω. (3.6)

To see this, let φ ∈ ker(H∗
D), i.e.,

0 = (H∗
Dφ)(y) =

√
q(y)
∫
M

g(x, y)φ(x) d x for all y∈ D.

By assumption there is an open subset B ⊂ D such that essinf(q|B) > 0. Thus,∫
M

g(x, y)φ(x) d x = 0 for any y∈ B,

and by analytic continuation this holds even for any y∈ Ω. Accordingly,

g( · , y) ∈ ker (H∗
D)⊥ = ran(HD) for any y∈ Ω.

The range identity (3.1) gives (3.6).
Therefore, combining (3.1) and theorem 3.4, and applying Picard’s theorem (see, e.g., [10,

theorem 4.8]) yields the assertion of the theorem. �

Usually in practice, only a finite number of microphones at positions x1, . . . , xM ∈ M is
available to measure the random pressure fluctuations. A self-adjoint, positive-semidefinite cor-
relation matrix C ∈ CM×M, which approximates the covariance operator C(q), can be obtained
from these observations using Welch’s method [36]. We denote by (λ j,ψ j

)1� j�M an orthonor-
mal eigensystem of C such that the eigenvalues are in decreasing order and counted with
multiplicity. Let 0 < M0 � M be the number of positive eigenvalues. Then we define the
imaging functional I fac : Ω→ R of the factorization method by

I fac(z) :=

⎛⎜⎝ M0∑
j=1

∣∣∣〈g(z),ψ
j

〉
2

∣∣∣2
λ j

⎞⎟⎠
−1

, z ∈ Ω, (3.7)

10
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where

g(z) := [g(x1, z), . . . , g(xM , z)]�, z ∈ Ω.

Denoting by C† and (C1/2)† the pseudoinverses of C and C1/2, respectively, (3.7) can be
rewritten as

I fac(z) =
∥∥∥(C1/2)†g(z)

∥∥∥−2

2
=
(
g(z)∗C†g(z)

)−1
, z ∈ Ω. (3.8)

According to theorem 3.7, the values of I fac(z) should be much smaller for z ∈ Ω\outsupp(q)
than for z ∈ innsupp(q).

The imaging functional in (3.8) is closely related to Capon’s method [9] from seismic
imaging. In the context of correlation based aeroacoustic source mapping this method is also
known as the minimum variance method (see, e.g., [25, 26]). This relationship is quite surpris-
ing as Capon’s method was originally derived from a totally different viewpoint. In the next
subsection we discuss this observation in some more detail.

4. Capon’s method

In aeroacoustic source identification imaging functionals I : Ω→ R are usually defined on a
source region Ω ⊂ Rd as introduced at the beginning of section 2. Imaging procedures that
map focus points z ∈ Ω in the source region directly to an image value I (z) independently of
all other focus points z′ ∈ Ω, z′ �= z, are called beamforming methods. As they do not require
evaluations of the source problem, a main advantage of beamforming methods is that they are
usually very fast. On the other hand, these methods typically rely on heuristic arguments and
can only capture the main features of the source power function rather than providing an exact
reconstruction.

Following the usual presentation in the field (see, e.g., [32]) a beamforming imaging func-
tional is defined by

Iw (z) := w(z)∗Cw(z), z ∈ Ω,

with a steering vector w(z) ∈ CM that depends on the focus point z and is assumed to satisfy
the constraint

w(z)∗g(z) = 1. (4.1)

The latter is often called unit gain. A particular beamforming method is therefore fully deter-
mined by its steering vector. The steering vector of Capon’s method is given by

wCap(z) :=
C†g(z)

g(z)∗C†g(z)
, z ∈ Ω. (4.2)

This yields the imaging functional ICap : Ω→ R,

ICap(z) :=
g(z)∗C†

g(z)∗C†g(z)
C

C†g(z)

g(z)∗C†g(z)
=
(
g(z)∗C†g(z)

)−1
, z ∈ Ω, (4.3)

which coincides with the discrete imaging functional I fac of the factorization method in (3.8).

11
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In the traditional derivation of Capon’s method (see, e.g., [18, p 358]) it is assumed that the
correlation matrix C is positive-definite, and the steering vector wCap(z) is obtained, for any
z ∈ Ω, as the solution of the constrained optimization problem,

wCap(z) = argmin
w∈CM

w∗Cw subject to w∗g(z) = 1. (4.4)

If g(z) ∈ ran(C), which is always the case when C is positive-definite, then wCap(z) from (4.2)
is a solution to (4.4) (see, e.g., [28, pp 443–447]). The minimization problem (4.4) is usu-
ally motivated as follows. According to our model in section 2 the pressure signals at the
microphone positions x1, . . . , xM ∈ M are zero-mean, complex random variables. We collect
them in a vector-valued random variable p := [p(x1), . . . , p(xM)]� ∈ CM with zero mean. Then
Cov(p) = E(pp∗) = C , and considering the inner product with the steering vector w(z)∗p, one
seeks to reduce noise as well as signals coming from other focus points z′ ∈ Ω, z′ �= z, whereas
the signal originating at the focus point z should not be dampened. The latter requirement is
ensured by the unit gain constraint (4.1). The first requirement is enforced by minimizing the
variance of w(z)∗p. Therefore, Capon’s method is also known as minimum variance method.
Minimizing the variance yields

min
w∈CM

Var(w∗p) = min
w∈CM

E
(
|w∗p|2

)
= min

w∈CM
w∗

E
(

pp∗)w = min
w∈CM

w∗Cw,

which explains the cost functional in (4.4).
Finally, we note that Capon’s beamformer can equivalently be written as

ICap(z) = inf
{
w∗Cw : w ∈ C

M , w∗g(z) = 1
}

, z ∈ Ω,

whenever g(z) ∈ ran(C). This is the discrete analogue of the infimum in the inf-criterion of the
factorization method in corollary 3.6.

5. Numerical examples

We conclude our investigations with some numerical results for the factorization method on
experimental data, and we compare these reconstructions to results that are obtained using
two commonly used conventional beamforming schemes. The dataset was measured at the
cryogenic wind tunnel in Cologne (DNW-KKK) on a 1 : 9.24 scaled Dornier 728 half model
[1]. Figure 1 shows the setup of this experiment. The measurement array (on the right-hand
side of the picture) consists of 134 microphones, which are flush-mounted at the wall of the
wind tunnel. The Mach number of the flow field is |m| = 0.125 (i.e., the wind speed is |u| = 43
m s−1), the angle of attack (i.e., the inclination angle of the wing’s cross section plane) is 9◦,
and the temperature is 11 ◦C.

The raw output data of the experiment consists of time series of acoustic pressure fluctu-
ations for each microphone with a total measurement time interval of 30 s and a sampling
frequency of 120 kHz. These time series are then post-processed to obtain an estimated corre-
lation matrix C ∈ C134×134 using Welch’s method [36] with a Hann weighting window, a block
size of 1024 time samples and an overlap factor of 0.5.

We evaluate the imaging functional I fac of the factorization method from (3.7), which coin-
cides with the imaging functional of Capon’s method from (4.3), on a two-dimensional plane
Ω̃ ⊂ Ω that is aligned to the cross-section of the aircraft wing. The map size is 1.05 m × 1.45 m
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Figure 1. Photograph of the experimental setup with microphone array on the side wall
(courtesy of Ahlefeldt, DLR Göttingen).

and the grid spacing is 1 cm. We compare these results to source maps obtained using
two conventional beamformers with and without diagonal removal (cf, e.g., [32]), which are
defined by

I cbf(z) =
g(z)∗Cg(z)

|g(z)|4 , z ∈ Ω̃, (5.1)

I cbf+dr(z) =
g(z)∗Cg(z) −

∑M
j=1C jj|g(z) j|2

|g(z)|4 −
∑M

j=1|g(z) j|4
, z ∈ Ω̃. (5.2)

Diagonal removal is often used in experimental aeroacoustics to lower the effect of wind
noise due to turbulent boundary layers directly at the microphone array (see, e.g., [32]). The
imaging functionals in (5.1) and (5.2) can also be written as

I cbf(z) = argminμ∈R
∥∥C − μg(z)g(z)∗

∥∥2

F
, z ∈ Ω̃,

I cbf+dr(z) = argminμ∈R

M∑
j,�=1
j�=�

∣∣C j� − μg(z) jg(z)�
∣∣2, z ∈ Ω̃,

where ‖ · ‖F denotes the Frobenius norm.
To further reduce noise effects, the imaging outputs I ( f , z) of each imaging functional for

single frequencies f are averaged over a frequency band B, i.e., we evaluate the sum

I B(z) =
∑
f∈B

I ( f , z), z ∈ Ω̃.

Here we consider third octave bands with center frequency f1/3Oct, which are defined by

B( f 1/3Oct) =
[
2−1/6 f 1/3Oct, 21/6 f 1/3Oct

]
.
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Figure 2. Aeroacoustic source reconstructions for a Dornier-728 half-model, measured
at the cryogenic wind tunnel in Cologne (DNW-KKK) [1]. Source powers are shown on
a cross-section through the wing and normalized to [0, 1]. The Mach number is 0.125,
and the number of microphones 134.

With a frequency resolution Δ f = 120 kHz
1024 ≈ 117 Hz, the number of discrete frequencies that

are contained in a frequency band B = [ f1, f2] is given by⌊
f 2

Δ f

⌋
−
⌈

f 1

Δ f

⌉
+ 1. (5.3)
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We note that in the notation of section 2 this corresponds to ω = 2π f , i.e., to a wave number
k = 2π f/c, where c ≈ 345 m s−1 is the speed of sound. Moreover, the averaged imaging values
IB( f 1/3Oct)(z) are normalized to the interval [0, 1] for each of the three methods.

The results are shown for three third octave bands ( f1/3Oct = 8, 12, and 16 kHz) in figure 2.
According to (5.3) those frequency bands contain 16, 23, and 32 frequencies. At 8 kHz the fac-
torization method provides a significant improvement in spatial resolution when compared to
conventional beamforming with and without diagonal removal. On the other hand, the recon-
structions of the factorization method contain more low frequent artifacts in regions apart from
the wing, where no sources are to be expected (e.g. in the top left corner of the source maps).
At 12 kHz and 16 kHz only one or two dominating sources are recovered by the conven-
tional beamformers, while the factorization method reconstructs regularly spaced sources on
the leading edge of the wing and a localized source at the end of the wing flaps. All main source
mechanisms are visible in the source maps of the factorization method. The processing time
for the factorization method is comparable to that of the conventional beamformers.

Recalling the equivalence of (3.8) and (4.3) we conclude from (4.4) that the imaging func-
tional of the factorization method (or equivalently of Capon’s method) gives the smallest values
among all beamformers maintaining the unit gain constraint (4.1). This cannot be seen in
figure 2 directly, because all averaged imaging values have been normalized to the interval
[0, 1]. However, it explains the higher resolution of the factorization method at 8 kHz when
compared to the conventional beamformers from (5.1) and (5.2). Using the orthonormal eigen-
system (λ j,ψ j

)1� j�M of C and denoting by 0 < M0 � M the number of positive eigenvalues

as before, the indicator functional I cbf(z) from (5.1) can be written as

I cbf(z) =
1

|g(z)|4
M0∑
j=1

λ j

∣∣∣〈g(z),ψ
j

〉
2

∣∣∣2, z ∈ Ω̃. (5.4)

Comparing this with (3.7) shows that source components corresponding to large eigenvalues of
the correlation matrix dominate the reconstruction that is obtained by the conventional beam-
formers, while the factorization method emphasizes on source components related to smaller
eigenvalues of the correlation matrix. This, and our theoretical results from section 3, might be
used to explain the larger number of reconstructed source components that is obtained by the
factorization method in figure 2 at 12 and 16 kHz. On the other hand, small eigenvalues of the
correlation matrix do not affect the stability of the conventional beamformers, while they lead
to instability of the factorization method (without further regularization), which yields artifacts
in reconstructions from noisy data.

6. Conclusions

In this article, we have demonstrated that a variant of the factorization method from inverse
scattering theory can be used to reconstruct the support of aeroacoustic random sources from
correlations of observed pressure fluctuations. We established a rigorous characterization of
the support of the source power function in terms of the correlation data.

Moreover we have shown that the factorization method is closely related to Capon’s method,
which is a well-established beamforming method in experimental aeroacoustics. This unex-
pected relationship gives a new theoretically rigorous interpretation of the reconstructions that
are obtained by Capon’s method. Our results basically say that Capon’s method recovers the
correct support of the source power function, at least when the latter is locally strictly positive.
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