KIT | KIT-Bibliothek | Impressum | Datenschutz

Accuracy, realism and general applicability of European forest models

Mahnken, Mats ; Cailleret, Maxime; Collalti, Alessio; Trotta, Carlo; Biondo, Corrado; D'Andrea, Ettore; Dalmonech, Daniela; Marano, Gina; Mäkelä, Annikki; Minunno, Francesco; Peltoniemi, Mikko; Trotsiuk, Volodymyr; Nadal-Sala, Daniel 1; Sabaté, Santiago; Vallet, Patrick; Aussenac, Raphaël; Cameron, David R.; Bohn, Friedrich J.; Grote, Rüdiger ORCID iD icon 1; ... mehr

Abstract:

Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state-of-the-art, stand-scale forest models against field measurements of forest structure and eddy-covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models' performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000151649
Veröffentlicht am 20.10.2022
Originalveröffentlichung
DOI: 10.1111/gcb.16384
Scopus
Zitationen: 19
Web of Science
Zitationen: 19
Dimensions
Zitationen: 30
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1354-1013, 1365-2486
KITopen-ID: 1000151649
HGF-Programm 12.11.24 (POF IV, LK 01) Adaptation of natural landscapes to climate change
Erschienen in Global Change Biology
Verlag John Wiley and Sons
Band 28
Heft 23
Seiten 6921-6943
Vorab online veröffentlicht am 19.09.2022
Schlagwörter eddy-covariance, gap model, model ensemble, model evaluation, process-based modeling, terrestrial carbon dynamics
Nachgewiesen in Web of Science
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 13 – Maßnahmen zum Klimaschutz
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page