
Derivation of Subset Product Lines in FeatureIDE
Lukas Linsbauer
TU Braunschweig

Braunschweig, Germany
l.linsbauer@tu-braunschweig.de

Paul Westphal
TU Braunschweig

Braunschweig, Germany
paul.westphal@tu-braunschweig.de

Paul Maximilian Bittner
University of Ulm
Ulm, Germany

paul.bittner@uni-ulm.de

Sebastian Krieter
University of Ulm
Ulm, Germany

sebastian.krieter@uni-ulm.de

Thomas Thüm
University of Ulm
Ulm, Germany

thomas.thuem@uni-ulm.de

Ina Schaefer
Karlsruhe Institute of Technology

Karlsruhe, Germany
ina.schaefer@kit.edu

ABSTRACT
The development and configuration of software product lines can
be challenging tasks. During development, engineers often need to
focus on a particular subset of features that is relevant for them. In
such cases, it would be beneficial to hide other features and their
implementation. During product configuration, requirements of
potentially multiple stakeholders need to be considered. Therefore,
configuration often happens in stages, in which different people
contribute configuration decisions for different features. Moreover,
in some cases, stakeholders want to share a set of products rather
than a specific one. In all these cases, the necessary operation is the
same: some features from the product line are assigned a value (e.g.,
via a partial configuration) while other features remain configurable.
In this work, we propose a subset operation that takes a product line
and a partial configuration to derive a subset product line comprising
only the desired subset of features and implementation artifacts.
Furthermore, we present, evaluate, and publish our implementation
of the proposed subset operation within the FeatureIDE framework.

CCS CONCEPTS
• Software and its engineering → Software product lines.

KEYWORDS
software product line, partial configuration, subset product line
ACM Reference Format:
Lukas Linsbauer, Paul Westphal, Paul Maximilian Bittner, Sebastian Krieter,
Thomas Thüm, and Ina Schaefer. 2022. Derivation of Subset Product Lines
in FeatureIDE. In 26th ACM International Systems and Software Product Line
Conference - Volume B (SPLC ’22), September 12–16, 2022, Graz, Austria. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3503229.3547033

SPLC ’22, September 12–16, 2022, Graz, Austria
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9206-8/22/09.
https://doi.org/10.1145/3503229.3547033

1 INTRODUCTION
The development of software product lines is challenging for many
reasons. In addition to the usual source code, developers need to
deal with peculiarities of the respectively used variability mecha-
nism (e.g., a preprocessor), which adds complexity and makes code
more difficult to comprehend (e.g., due to annotations scattered
across the source code). Additionally, source code of features (and
their interactions) that are not relevant for a certain development
task further clutter the source code and make it yet more difficult
to comprehend and focus on a specific task. In such cases, it would
be beneficial to only have to deal with a subset of the entire prod-
uct line. A similar challenge concern the configuration of product
variants that meet a given set of requirements, potentially from
multiple stakeholders. Therefore, configuration often happens in
stages. This is referred to as staged configuration [8], where the
feature selection is gradually refined until it is eventually completed.
In other words, the variability of the product line is gradually re-
stricted by assigning values to an increasing number of features
until no variability remains and the product line has been reduced
to a concrete product variant. Finally, in cases where not a single
product variant, but a range of product variants is intended to be
shared (e.g., with a subcontractor that only licensed a subset of the
original features), it is makes more sense to share a subset of the
product line instead of a set of derived product variants.

In all the above scenarios, the fundamental problem is the same:
a product line shall (gradually) be reduced in complexity by making
certain configuration decisions, be it to simplify a development
task, to only leave a subset of configuration choices open for others,
or to hide the existence and implementation of certain features.
While this general topic has already been researched [4], actual tool
support is lacking as there are not many tools that actually provide
a concrete and practical implementation of such functionality for
existing and commonly used variability mechanisms.

This work is based on a bachelor’s thesis [17] and proposes a
subset operation for software product lines that takes a product
line and a partial configuration to derive a subset product line com-
prising only the desired subset of features and implementation
artifacts. This is achieved by only assigning a specific value to a
subset of the features of the product line via a partial configuration
while the other features have no value assigned and remain variable.
Specifically, this work contributes i) the concept of a subset product
line, ii) an operation for the derivation of a subset product line
from a product line given a partial configuration, and iii) a prac-
tical and publicly available implementation of the above concept

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3503229.3547033
https://doi.org/10.1145/3503229.3547033
https://creativecommons.org/licenses/by/4.0/

SPLC ’22, September 12–16, 2022, Graz, Austria Lukas Linsbauer, Paul Westphal, Paul Maximilian Bittner, Sebastian Krieter, Thomas Thüm, and Ina Schaefer

Figure 1: ATM example feature model in FeatureIDE

and operation in the tool FeatureIDE1 [14] for the Antenna2 and
FeatureHouse3 [5] composers.

2 MOTIVATING EXAMPLE
As a motivating example, we use an Automated Teller Machine
(ATM) that is implemented in Java and also included in the example
software product lines included with FeatureIDE. Figure 1 shows
the slightly simplified feature model of the ATM. It comprises 17
features in total, of which three are abstract (light gray) and 14 are
concrete (blue). An ATM requires a Currency, an Authentication
method, and at least one Language. Additionally, developers may
choose to include any of the optional features (e.g., Printer). The
feature model includes a cross-tree constraint that states that the
feature Print_Statement requires the feature Printer. The root
feature and its three mandatory features Language, Currency, and
Authentication are included in every valid configuration and
referred to as core features. An excerpt of the implementation of
the ATM product line is shown in Listing 1. It uses the Antenna
preprocessor as variability mechanism.

Let us now assume that a company A is producing this ATM
but wants to delegate parts of the development to a subcontractor
company B. However, the software product line contains source
code involving secret technology for the features Iris_Scan and
Facial_Recognition that are not needed by company B for their
assignment. Sharing these secret features with company B could
increase the risk of a leak, which company A wants to avoid and
thus only share the features really needed by company B.

3 TECHNICAL CONCEPT
In this section, we first provide definitions of a software product line
and a configuration, then explain partial configurations and subset
product lines, and finally introduce operations for the generation
of products and the derivation of subset product lines.

Definition 3.1 (Software Product Line). A software product line
𝑆 = (𝑀,𝐴) consists of a feature model𝑀 and a set of assets 𝐴.

1https://featureide.github.io/, https://github.com/FeatureIDE/FeatureIDE
2http://antenna.sourceforge.net/
3https://www.se.cs.uni-saarland.de/apel/fh/

1 public class ATM {

2 private Account acc;

3 ...

4 private void initialize(boolean fullReset) {

5 ...

6 // #if Password

7 auth = new PasswordAuthentication(scan);

8 // #elif PIN

9 auth = new PINAuthentication(scan);

10 // #elif Iris_Scan

11 auth = new IrisScan ();

12 // #elif Facial_Recognition

13 auth = new FacialRecognition ();

14 // #endif

15 acc = new Account ();

16 }

17 }

Listing 1: Excerpt of the ATM example implementation,
annotated with Antenna preprocessor directives

Definition 3.2 (Feature Model). A feature model 𝑀 = (𝐹, 𝑃) con-
sists of a set of features 𝐹 and a propositional formula 𝑃 over the
features 𝐹 that constrains the valid combinations of features. We
assume 𝑃 to be in conjunctive normal form (i.e., a conjunction of
clauses), where every clause 𝑝 ∈ 𝑃 is a disjunction of literals (i.e.,
features). We treat 𝑃 as a set of clauses, and a clause 𝑝 ∈ 𝑃 as a set
of features.

The example feature model in Figure 1 has the set of features
𝐹 = {ATM, Language, Currency, Authentication, . . . } and the for-
mula 𝑃 = (𝐴𝑇𝑀 ∧ (𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒 ⇔ 𝐴𝑇𝑀) ∧ (𝐶𝑢𝑟𝑟𝑒𝑛𝑐𝑦 ⇔ 𝐴𝑇𝑀) ∧
(𝑃𝑟𝑖𝑛𝑡𝑒𝑟 ⇒ 𝐴𝑇𝑀) ∧ . . .).

Definition 3.3 (Asset). An asset 𝑎 ∈ 𝐴 is a tuple (𝑙,𝐺), where 𝑙 is
the payload of the artifact (e.g., a line of source code) and 𝐺 is a
guard (i.e., a presence condition) which is a propositional formula
over features.

The example implementation in Listing 1 has the set of assets𝐴 =

{(Line 1,⊤), . . . , (Line 11,¬Password∧¬PIN∧Iris_Scan), . . . }.

Definition 3.4 (Configuration). A configuration𝐶 is a set of tuples
𝑐 = (𝑓 , 𝑏), where 𝑓 ∈ 𝐹 is a feature and 𝑏 ∈ {+,−, ?} determines
whether feature 𝑓 is selected (+), deselected (−), or undecided (?)
in configuration 𝐶 . Every feature 𝑓 ∈ 𝐹 must appear exactly once
in 𝐶 , i.e., ∀𝑓 ∈ 𝐹 : |{(𝑓 , 𝑏) | ∃𝑏 : (𝑓 , 𝑏) ∈ 𝐶}| = 1. We treat a
configuration 𝐶 as a propositional formula(∧

𝑓 ∈{ 𝑓 | (𝑓 ,+)∈𝐶 }
𝑓

)
∧
(∧
𝑓 ∈{ 𝑓 | (𝑓 ,−)∈𝐶 }

¬𝑓
)

Definition 3.5 (Full Configuration). A configuration𝐶 is a full (or
complete or total) configuration if every feature is either selected
or deselected (i.e., �(𝑓 , 𝑏) ∈ 𝐶 : 𝑏 =?).

Definition 3.6 (Partial Configuration). A configuration 𝐶 is a par-
tial configuration if at least one feature is undecided (i.e., ∃(𝑓 , 𝑏) ∈
𝐶 : 𝑏 =?).

Figure 2 shows a partial configuration of the feature model in
Figure 1 that explicitly selects and deselects some of the features and
leaves the remaining features undecided: {(ATM, +), (Language, +),
(English, ?), (German, ?), (French,−), . . . }. The dark gray feature

https://featureide.github.io/
https://github.com/FeatureIDE/FeatureIDE
http://antenna.sourceforge.net/
https://www.se.cs.uni-saarland.de/apel/fh/

Derivation of Subset Product Lines in FeatureIDE SPLC ’22, September 12–16, 2022, Graz, Austria

Figure 2: ATM example partial configuration in FeatureIDE

(de)selections were automatically performed by FeatureIDE via
decision propagation.

Definition 3.7 (Valid Configuration). A configuration𝐶 is valid in
a feature model𝑀 = (𝐹, 𝑃), expressed by the predicate valid(𝑀,𝐶),
iff the conjunction of 𝐶 and 𝑃 is satisfiable (i.e., 𝑆𝐴𝑇 (𝐶 ∧ 𝑃)) and
invalid otherwise.

The example feature model in Figure 1 has 350 full valid con-
figurations. The partial configuration in Figure 2 is also a valid
configuration as it does not violate the feature model. However,
it cannot be used to generate a product. Instead, it reduces the
configurable space to nine remaining full valid configurations.

Definition 3.8 (Product Generation). Given a software product
line 𝑆 = (𝑀,𝐴) with𝑀 = (𝐹, 𝑃) and a full valid configuration 𝐶 , a
product can be derived as a set of payloads

𝐿 = generate(𝑆,𝐶) = {𝑙 | (𝑙,𝐺) ∈ 𝐴 ∧𝐶 |= 𝐺}

Definition 3.9 (Subset Product Line). A software product line 𝑆 ′ =
(𝑀′, 𝐴′) with𝑀′ = (𝐹 ′, 𝑃 ′) is a subset of another product line 𝑆 =

(𝑀,𝐴) with𝑀 = (𝐹, 𝑃), denoted as 𝑆 ′ ⊆ 𝑆 , iff 𝐹 ′ ⊆ 𝐹 and ∀𝐶 ∈ {𝐶 |
valid(𝑀′,𝐶)} : valid(𝑀,𝐶) ∧ generate(𝑆,𝐶) = generate(𝑆 ′,𝐶).

Definition 3.10 (Subset Product Line Derivation). The operation
𝑠𝑢𝑏𝑠𝑒𝑡 (𝑆,𝐶) = 𝑆 ′ derives a subset product line 𝑆 ′ from a product
line 𝑆 and a partial configuration 𝐶 such that:

Features 𝑓 ∈ 𝐹 that are deselected in 𝐶 (i.e., (𝑓 ,−) ∈ 𝐶) are
not included in the set of features 𝐹 ′ in 𝑆 ′ (i.e., 𝐹 ′ = {𝑓 | 𝑓 ∈
𝐹 ∧ (𝑓 ,−) ∉ 𝐶}. Clauses 𝑝 ∈ 𝑃 in the feature model𝑀 of 𝑆 that are
implied by the configuration are not included in the set of clauses
𝑃 ′ of feature model𝑀′ of 𝑆 ′ (i.e., 𝑃 ′ = {𝑝 | 𝑝 ∈ 𝑃 ∧ ¬(𝐶 |= 𝑝)}).

Features 𝑓 ∈ 𝐹 that are selected in𝐶 (i.e., (𝑓 , +) ∈ 𝐶) become core
features in 𝑆 ′, i.e., for every selected feature 𝑓 a clause containing
only that feature is added to the set of clauses 𝑃 ′ of feature model
𝑀′ of 𝑆 ′. We deliberately decided not to remove selected features
in order to maintain feature traceability for these features, even
though they were not variable anymore.

Assets 𝑎 ∈ 𝐴 whose presence condition 𝐺 cannot be satisfied
with configuration 𝐶 (i.e., ¬SAT(𝐶 ∧ 𝐺)) are not included in the
set of assets 𝐴′ of 𝑆 ′ (i.e., 𝐴′ = {(𝑙,𝐺) | (𝑙,𝐺) ∈ 𝐴 ∧ 𝑆𝐴𝑇 (𝐺 ∧𝐶)}).

Table 1: Data Set of Five Software Product Lines
#F Number of Features, #C Number of Constraints, #PPD Number

of Preprocessor Directives, #FF Number of Feature Folders

Name #F #C Mechanism #PPD #FF

ATM 22 2 Antenna 93 -
Elevator v1.4 21 3 Antenna 109 -
Elevator v1.1 21 3 FeatureHouse - 9
GPL 38 16 FeatureHouse - 27
BerkeleyDB 119 68 FeatureHouse - 99

Every included asset 𝑎′ ∈ 𝐴′ of 𝑆 ′ has its presence condition 𝐺

simplified by removing deselected features from all its clauses.

In summary, the subset operation i) excludes deselected features,
ii) includes selected features as core features, iii) removes assets
whose presence condition is contradicted, and iv) substitutes the
value false for every deselected feature in the propositional formulas
of the feature model and the assets and then simplifies them.

4 TOOL IMPLEMENTATION
We implemented the described concept of partial configurations and
the derivation of subset product lines within the tool FeatureIDE
and released it with version 3.7.04. FeatureIDE provides a wide
range of sophisticated feature model analyses and configuration
support, as well as various different variability mechanisms (i.e.,
composers). Using our extensions, the same analysis techniques that
FeatureIDE provides for full configurations, such as checking their
validity, explaining their invalidity, and propagating configuration
decisions, can also be applied to partial configurations. Further, we
extended the composer interface of FeatureIDE and the two existing
composers Antenna and FeatureHouse with the corresponding
implementations of the subset functionality. We demonstrate the
new functionality in a publicly available online video5.

5 EVALUATION
We evaluated our implementation regarding its correctness and
scalability by applying it to a corpus of five software product lines.

Data Set. Table 1 shows for each product line its number of
features (#F), number of constraints (#C), used variability mecha-
nism (either the Antenna preprocessor or FeatureHouse), number
of preprocessor directives (#PPD) in case of Antenna, and number
of feature folders (#FF) in case of FeatureHouse. Our data set thus
covers annotative (or subtractive) variability by means of a pre-
processor and compositional (or additive) variability by means of
feature-oriented programming.

Goals. The correctness of the implementation was evaluated by
verifying that the products generated from subset product lines are
equal to the corresponding products with the same configuration
generated from the original product line. The scalability of the
implementation was evaluated by measuring the runtime of the
derivation of subset product lines.

Process. For every software product line in the data set the
following steps were performed:
4https://github.com/FeatureIDE/FeatureIDE/releases/tag/v3.7.0
5https://youtu.be/g1LGIAezvHg

https://github.com/FeatureIDE/FeatureIDE/releases/tag/v3.7.0
https://youtu.be/g1LGIAezvHg

SPLC ’22, September 12–16, 2022, Graz, Austria Lukas Linsbauer, Paul Westphal, Paul Maximilian Bittner, Sebastian Krieter, Thomas Thüm, and Ina Schaefer

(1) Generate five random valid configurations with increasing num-
ber of undecided features.

(2) Derive a subset software product line for each configuration
and measure the runtime.

(3) Generate all valid products of each subset software product line.
(4) Generate the same products (i.e., with same configuration) from

the original software product line.
(5) Compare each product of the subset product line to the corre-

sponding product of the original product line.

Results. In all cases, the products of the derived subset product
line were 100% identical to the products of the original product line.
On average, the derivation of a subset product line took between
one and two seconds for the first four product lines and 24 seconds
for BerkeleyDB, the largest product line in the data set. Note that
most of the time is spent on modifying the assets and only very
little time on modifying the feature model.

6 RELATEDWORK
Acher et al. [1] initially introduced featuremodel slicing, which aims
to remove features from feature models while preserving implicit
dependencies between the remaining features. While feature model
slicing also removes a feature literal from the feature model formula
without assigning a truth value, the subset operation introduced in
this work binds a feature literal to a truth value, which ultimately
results in different formulas. Bürdek et al. [7] specify and reason
about edits to feature models but do not cover the source code and
other artifacts of the product line.

Similar to ourwork, refactorings [2, 10, 13, 15], generalizations [2],
and refinements [6] to product lines ensure that certain edits retain
valid configurations and the external behaviour of products. The
difference is that our approach specifically reduces the set of valid
configurations instead of keeping or growing it.

Multi software product lines [12] exhibit the complexity of mul-
tiple individual software product lines. Our subset operator might
prove useful to reduce complexity, when applied to the individual
product lines. Analyses of software product lines, which analyze
the possibly exponentially many products [9], might benefit from
our subset operator by reducing the variability before performing
analyses (e.g., when only a subset of variants is of interest).

Ananieva et al. [3, 4] study tools related to managing variability
in space and time, specifically their concepts [3] and operations [4].
FeatureIDE is among the studied tools and the subset product line
operation presented in this work has already been considered in
their study. They found that a conceptually similar operation is
supported by the tools VTS [16] and ECCO [11]. The tool VTS by
Stanciulescu et al. [16] provides get and put operations for product
lines. The get operation is conceptually similar to the subset oper-
ation but does not support a feature model and thus realizes the
subset operation only for textual implementation assets annotated
with preprocessor directives. The put operation allows for the reinte-
gration of a (modified) subset product line into the original product
line. Our implementation of the subset operation in FeatureIDE
considers the feature model and supports different composers (i.e.,
variability mechanisms) beyond preprocessors. However, the rein-
tegration of a subset product line into the original product line is
not yet supported by our extension of FeatureIDE.

7 CONCLUSION AND FUTUREWORK
In this paper, we presented the derivation of a subset product line
from a product line, given a partial configuration. This operation is
useful, for example, for performing staged configuration, applying
licensing restrictions, or reducing complexity during development.
We first presented the general concept and illustrated it on a moti-
vating example and then showed a concrete implementation and
application in the tool FeatureIDE.

To complete the cycle and support even more application sce-
narios, the next step is the conception and implementation of a
union operation for product lines that enables the reintegration of
a previously derived subset product line into the original product
line. This would, for example, enable the evolution of a full product
line via simpler subset product lines.

ACKNOWLEDGMENTS
This work has been partially supported by the German Research
Foundation within the project VariantSync (TH 2387/1-1).

REFERENCES
[1] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2011.

Slicing Feature Models. In ASE. IEEE, 424–427.
[2] Vander Alves, Rohit Gheyi, Tiago Massoni, Uirá Kulesza, Paulo Borba, and Carlos

José Pereira de Lucena. 2006. Refactoring Product Lines. In GPCE. ACM, 201–210.
[3] Sofia Ananieva, Sandra Greiner, Timo Kehrer, Jacob Krüger, Thomas Kühn, Lukas

Linsbauer, Sten Grüner, Anne Koziolek, Henrik Lönn, S. Ramesh, and Ralf H.
Reussner. 2022. A Conceptual Model for Unifying Variability in Space and Time:
Rationale, Validation, and Illustrative Applications. EMSE 27, 5 (2022), 101.

[4] Sofia Ananieva, Sandra Greiner, Jacob Krüger, Lukas Linsbauer, Sten Grüner,
Timo Kehrer, Thomas Kühn, Christoph Seidl, and Ralf H. Reussner. 2022. Unified
Operations for Variability in Space and Time. In VaMoS. ACM, 7:1–7:10.

[5] Sven Apel, Christian Kästner, and Christian Lengauer. 2013. Language-
Independent and Automated Software Composition: The FeatureHouse Experi-
ence. TSE 39, 1 (2013), 63–79.

[6] Paulo Borba, Leopoldo Teixeira, and Rohit Gheyi. 2012. A Theory of Software
Product Line Refinement. TCS 455, 0 (2012), 2–30.

[7] Johannes Bürdek, Timo Kehrer, Malte Lochau, Dennis Reuling, Udo Kelter, and
Andy Schürr. 2015. Reasoning About Product-Line Evolution Using Complex
Feature Model Differences. AUSE 23, 4 (2015), 687–733.

[8] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Staged Config-
uration through Specialization and Multi-Level Configuration of Feature Models.
SPIP 10, 2 (2005), 143–169.

[9] Aleksandar S. Dimovski, Claus Brabrand, andAndrzejWąsowski. 2018. Variability
Abstractions for Lifted Analyses. SCP 159 (2018), 1–27.

[10] Wolfram Fenske, Thomas Thüm, and Gunter Saake. 2014. A Taxonomy of Soft-
ware Product Line Reengineering. In VaMoS. ACM, 4:1–4:8.

[11] Daniel Hinterreiter, Lukas Linsbauer, Herbert Prähofer, and Paul Grünbacher.
2021. Feature-Oriented Clone and Pull for Distributed Development and Evolu-
tion. In QUATIC (Communications in Computer and Information Science, Vol. 1439).
Springer, 67–81.

[12] Gerald Holl, Paul Grünbacher, and Rick Rabiser. 2012. A Systematic Review and
an Expert Survey on Capabilities Supporting Multi Product Lines. IST 54, 8 (2012),
828–852.

[13] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner,
Bruno Ferreira, Luiz Carvalho, and Baldoino Fonseca. 2018. Discipline Matters:
Refactoring of Preprocessor Directives in the #ifdef Hell. TSE 44, 5 (2018), 453–
469.

[14] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.

[15] Sandro Schulze, Thomas Thüm, Martin Kuhlemann, and Gunter Saake. 2012.
Variant-Preserving Refactoring in Feature-Oriented Software Product Lines. In
VaMoS. ACM, 73–81.

[16] Stefan Stanciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej Wasowski.
2016. Concepts, Operations, and Feasibility of a Projection-Based Variation
Control System. In ICSME. IEEE Computer Society, 323–333.

[17] Paul Westphal. 2020. Deriving Subset Software Product Lines Using Partial Config-
urations with FeatureIDE. Bachelor’s Thesis. TU Braunschweig.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Technical Concept
	4 Tool Implementation
	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

