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Abstract

Standard approaches for adversarial patch generation lead to noisy conspicuous patterns, which are easily recognizable by
humans. Recent research has proposed several approaches to generate naturalistic patches using generative adversarial
networks (GANSs), yet only a few of them were evaluated on the object detection use case. Moreover, the state of the art
mostly focuses on suppressing a single large bounding box in input by overlapping it with the patch directly. Suppressing
objects near the patch is a different, more complex task. In this work, we have evaluated the existing approaches to generate
inconspicuous patches. We have adapted methods, originally developed for different computer vision tasks, to the object
detection use case with YOLOv3 and the COCO dataset. We have evaluated two approaches to generate naturalistic patches:
by incorporating patch generation into the GAN training process and by using the pretrained GAN. For both cases, we have
assessed a trade-off between performance and naturalistic patch appearance. Our experiments have shown, that using a
pre-trained GAN helps to gain realistic-looking patches while preserving the performance similar to conventional adversarial

patches.
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Deep neural networks (DNNs) are vulnerable to adver-
sarial attacks in which input data is deliberately modi-
fied [1]. In case of image data, adversarial noise is added
to an input sample, affecting the entire image. Another
type of attack is an adversarial patch, which can be po-
sitioned arbitrarily in a restricted region of an image.
Patches can be applied to the input images digitally as
well as in a real-world setting. But state-of-the-art re-
search focuses on creating adversarial patches which
are easily recognizable by the human eye. These are
characterized by chaotic patterns, bright colors and do
not resemble real-life objects but rather random noise
[2, 3, 4]. A much harder problem is posed by creating
inconspicuous patches as their purpose is to elude human
detection while still being a threat to DNNGs.

Recently, methods to enforce realistic appearance of
adversarial patches have been proposed [5, 6, 7]. Existing
approaches aim at deterring image classifiers or steering
models as well as object detectors. In the latter case,
however, an adversarial patch manages to attack only
one large object in an input image.

In this work, we perform extensive literature research
and identify promising approaches to generate incon-
spicuous adversarial patches. We further apply these
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Figure 1: Overview of the patches generated with the evalu-
ated methods

methods to the object detection use case. Differently
from the existing work on naturalistic patches against
object detection, the focus of our work is to affect objects
in the attacked image, which are located near the patch.
We run experiments in a digital setting in per-instance
and universal manner. We further analyse which ap-
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Figure 2: Examples of state-of-the-art conspicuous adversar-
ial patches against object detection: (a-b) applied in a digital
setting, (d-e) printed on a t-shirt

proach is the most suitable for the selected setting and
discuss the trade-off between attack success and realistic
appearance.

1. Related Work

1.1. Conspicuous Adversarial Patches

The idea of an adversarial perturbation restricted to a
specific image area was first proposed by Brown et al. [2].
The first approaches focused on the image classification
use case [8]. Later, patch-based attacks for object detec-
tion were also proposed [9, 3, 10]. A general approach
consists in either maximizing the detector loss or, in case
of an object vanishing attack, minimizing the detector
loss for the empty label [11].

To enable attacks in the real-world setting, the non-
printability loss component is usually added, which re-
stricts pixel values to the set of printable colours. Fur-
thermore, the total variation loss is usually applied in
order to make colourful patterns of the generated adver-
sarial patches appear smoother [12]. The patches then be
printed, e.g. on a t-shirt to fool object detectors Examples
of adversarial patch attacks against object detection in
the real world are [13, 14]. Recently, a dataset of printable
adversarial patches against object detection was intro-
duced in [15]. However, adversarial patches generated in
the conventional way still have a conspicuous character
(see Figure 2).

1.2. Inconspicuous Adversarial Patches

An inconspicuous adversarial patch can be enforced ei-
ther by using a specific loss function or a generative ad-
versarial network (GAN). The first group of approaches
maximizes the loss function to obtain patches that re-
semble a certain real image. adv-watermark [16], for
instance, generates adversarial patches as image water-
marks by performing a heuristic random search for the
global minimum as an adaptation of the Basin Hopping
(BH) optimization algorithm.

big. banksy. bliss.

(a) PhysGAN [6]  (b) TnT attack [7] (c) Naturalistic [5]

Figure 3: Examples of state-of-the-art inconspicuous adver-
sarial patches against object detection

Recently, approaches of the second group, which rely
on GANS, have gained popularity. We group GAN-based
approaches into two categories: (1) methods which in-
clude patch generation directly into the GAN training
process and (2) methods which generate an adversarial
patch using a pretrained GAN.

A first attempt to use GANs to generate natural adver-
sarial examples was performed by Zhao et al. [17]. Here,
a pretrained Wasserstein GAN [18] is combined with an
inverter, which maps data to the latent representation.
The experiments, however, were restricted to the image
classification on MNIST and LSUN datasets as well as on
a text generation task.

1.2.1. Combined Patch-GAN Training

PhysGAN attack [6] is one representative of the first
group of approaches. It is designed to generate patch
attacks and place them in road side video footage to deter
steering prediction models. For a given input video se-
quence, the algorithm learns a patch to be included into
every frame. The PhysGAN model includes, next to a
generator-discriminator pair, an encoder for extracting
the features out of input video frames. The encoder out-
put is then fed directly to the generator. The adversarial
road sign, computed by the generator, and a real road sign
are then sent to a discriminator. The resulting adversarial
patch is then added to each frame of the original video
sample creating an adversarial input. Finally, to obtain
the perturbation, the generator is updated over the loss
of the targeted model, calculated on the adversarial video
slice, while taking the original frames as the ground truth.
The resulting adversarial patch is indistinguishable from
the roadside poster and leads to a noticeable prediction
error.

Another approach designed to generate more realis-
tic adversarial patches is the Perceptual-Sensitive GAN
(PSGAN) [19]. It was evaluated on the traffic sign recog-
nition as well as on general image classification use cases.
It adapts existing patches, which are then placed in re-
gions of an image in order to have the highest impact on
final predictions. Similar to the Wasserstein GAN train-
ing [18], the PSGAN discriminator is updated several



times in each epoch, whereas the generator is updated
only once per epoch. Before each update, a minibatch of
images and patches is sampled. The given minibatch of
patches is fed to the generator to create the adversarial
patches. Moreover, an attention model is included to
determine a patch position that has the highest impact
on the class prediction.

Closely related to PSGAN is the Inconspicuous Adver-
sarial Patches (IAP) framework [20], which replicates the
process of patch generation in PSGAN and repeats it for a
series of generator-discriminator pairs. The goals is thus
to reduce the conspicuousness of the patch by feeding
it through the chain of GAN models. In the beginning,
the background images are analyzed and an attention
map indicating the best position for patch placement
is calculated. Each GAN pair represents a step in the
coarse-to-fine patch creation as it takes in the patch and
background image at a different scale. The GAN training
process remains the same as the generator aims to create
realistic patches while the discriminator tries to distin-
guish them from the original images. IAP-generated
patches aim to be indistinguishable from the background
and thus resemble transparent masks.

1.2.2. Using a Pretrained Generator

In the second category, no full GAN training is performed.
Instead, a pretrained GAN is used to improve patch ap-
pearance. The Naturalistic Physical Adversarial Patch At-
tack, developed by Hu et al. [5], aims to optimize for an
adversarial patch in the GAN latent space directly. First,
the patch is initialized as a noise vector. After the initial-
ization, it performs a gradient update for each epoch and
for each image, on which the patch is placed before the
attack. For each iteration, the noise is fed to the generator
to obtain the adversarial patch. The resulting patch is
then added to the current image, which is then passed
to the object detector. To perform an attack, a bounding
box with the highest objectness probability and highest
class probability is selected. The gradient descent is then
used on the resulting loss, which also contains a total
variation loss. Using the approach described above, Hu
et al. performed several digital attacks, where they exper-
imented with six different patch sizes, as well as physical
attacks.

Universal NaTuralistic adversarial paTches (TnT) at-
tack [7] is another approach relying on a pretrained GAN.
This approach aims at attacking image classifiers with
realistic universal patches. It uses Wasserstein GAN [18]
with gradient penalty, which was pretrained on a dataset
of flower images. For the background images, they used
images from the ImageNet dataset to test the effective-
ness of the attack in white-box and black-box setting. The
TnT attack with high confidence scores on the pretrained
image classifier had an up the three times higher attack

success rate than the 1aVAN patch attack [8] while test-
ing on the same image set. Finally, Doan et al. managed
to create adversarial patches that resemble flowers, thus
being less attention grabbing, but impacting the targeted
classification model.

2. Approach

We identify two major groups of GAN-based approaches
to generate inconspicuous patches and describe the pro-
posed pipelines, adapted for the object detection use case.
Our pipeline assumes using a white-box gradient-based
approach for adversarial patch generation.

2.1. Combined Patch-GAN Training

In the first approach we incorporate adversarial patch
training directly into the GAN training pipeline. This
method attempts to map the processes of PhysGAN [6]
and PSGAN [19] models from steering model prediction
and image classification respectively to the object detec-
tor attack. We thus simultaneously train a GAN model
to create a latent space of realistic-looking patches and
an adversarial patch to deter the object detector.

An overview of the training pipeline in the case of
the combined Patch-GAN attacks is presented in Figure 4.
The patch is initialized randomly in the generator input
format and undergoes two updates in each training epoch:
one after the GAN training phase and one after the loss
computation of the targeted object detector. Updating
the patch after a GAN training step aims to restrict the
patch to the latent space of realistic images developed by
the GAN model.

Update input

~ Compute adversarial perturbation

Add patch to image
E

Predict real or fake

Object
Detector

Initial input

noise Generator

Discriminator

Figure 4: Overview of the combined Patch-GAN training

We further consider two extensions to the algorithm.
First, we introduce a second generator update over the
detector loss for the adversarial predictions. It takes into
consideration the GAN loss for the generator, which gets
the current patch as an input, and the loss of the object
detector for the adversarial image. The current patch
generation approach differs from PSGAN as the GAN
loss is computed only over the patch and not over the
entire adversarial image, similar to the PhysGAN.



Second, we use two different random noise vectors
during the patch training. One noise vector is reinitial-
ized with each epoch and background image as it is used
to train the two GAN components, while the other is the
actual patch noise, initialized as before and optimized
with each epoch and background image with the goal of
reducing the loss of the object detector under attack.

2.2. Patch Generation using a Pretrained
GAN

The second approach focuses on restricting the trained
patch to the images generated by a previously trained
GAN model. Figure 5 shows the simplified pipeline for a
Pretrained GAN Patch Attack. In this approach, random
noise is fed into the generator to obtain a realistic im-
age. Similar to the combined Patch-GAN approach, the
patch is applied to a background image and the resulting
adversarial image is passed to the object detector under
attack. The patch is then optimized to change the loss
of the object detector. However, the parameters of the
generator are no longer updated during patch training
as in the previous approach.

Update input o Compute adversarial perturbation

Fake
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Initial input

noise Generator

Object
Detector

Figure 5: Overview of the patch training with a pretrained
GAN generator

Our approach differs from the Naturalistic Physical
Patch Attack [5] in the attack procedure. In particular,
we no longer target the single person class and also fo-
cus on considering all objects in the image instead of
a single object having the highest objectness and class
probabilities.

3. Experiments and Evaluation

To evaluate the feasibility of the identified GAN-based
approaches for inconspicuous patch generation for the
object detection use case, we run experiments using
YOLOv3 [21] as a model under attack.

3.1. Dataset and Models

We have performed experiments with YOLOv3
model [21], using an open source Python implementa-

(b) YOLOV3 predictions

(a) Input image

Figure 6: YOLOV3 predictions on an unattacked COCO image
for the per-instance experiments

tion', detection was performed at the resolution 416x416
pixels.

The images to be attacked come from the COCO
dataset [22]. For the per-instance attacks, we use an
exemplary COCO image (see Figure 6).

We use two GAN architectures: DCGAN [23] and Big-
GAN [24]. To train DCGAN, we have used the Flower
Recognition dataset [25]. The dataset contains 4,242
flower images of 320x240 pixels equally split into the
classes daisy, dandelion, rose, sunflower, and tulip. The
dataset was built for image classification, not for unsu-
pervised training for image generation as needed for the
GAN models. Therefore, we performed dataset cleaning
by manually removing the images containing scenarios
such as a field of flowers or humans holding flowers,
as these represent outliers from the intended GAN la-
tent space, namely single flower generation. The clean
Flowers Recognition dataset thus contains 1,385 images.

DCGAN was trained with the batch size of 64 with
the Adam optimizer and learning rate 0.0002. The gener-
ated images have a size of 64x64 pixels and are further
resized to reach the patch size. For BigGAN, we used the
open source PyTorch re-implementation?, pretrained on
Imagenet.

We use the PGD algorithm [26] for attacks. All train-
ings were performed on an NVIDIA RTX 1080 Ti GPU
with 11GB VRAM.

3.2. Conspicuous Baseline Patches

To enable a fair comparison, we have first generated
conventional adversarial patches using PGD. We have
focused on the object vanishing attack, i.e. we have ap-
plied loss maximization using empty ground truth labels
to enforce suppression of object detections.

Figure 7 demonstrates the PGD patches of different
sizes, We have experimented with various training times
and learning rates. The 100x100 pixels PGD patch re-
quires 7K epochs at learning rate 0.01 to suppress all
bounding boxes (see Figure 7a). The 80x80 pixels patch

!https://github.com/eriklindernoren/PyTorch-YOLOV3
Zhttps://github.com/huggingface/pytorch-pretrained-BigGAN
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(a) Patch size 100x100 pixels,(b) Patch size 80x80 pixels,
7K epochs, 1r=0.01 5K epochs, Ir=0.5

(c) Patch size 80x80 pixels, 15K (d) Patch size 80x80 pixels,
epochs, Ir=0.01 15K epochs, 1r=0.02

(e) Patch size 60x60 pixels, 10K (f) Patch size 60x60 pixels, 10K

epochs, Ir=0.02 epochs, Ir=0.5

Figure 7: Attacks with conventional PGD patches

only achieves the same result in 5K epochs when using
a learning rate of 0.5 as seen in Figure 7b. Training of
the 80x80 pixels patch with learning rates of 0.01 and
0.02 did not manage to suppress all bounding boxes even
after 15K epochs (see Figures 7c and 7d). Because of its
smaller attack surface, we train the 60x60 pixels patch
directly with a learning rate of 0.02. Figure 7e shows,
however, that this patch does not manage to suppress
four bounding boxes, which are placed towards the im-
age margins. Using the learning rate of 0.5 for the 60x60
pixels patch gives better results. Only one bounding box
remains in Figure 7f. The performance of the 60x60 pixels
patch stagnates and the confidence score of the remain-
ing bounding box does not decrease after 100K epochs,
at which point the training is stopped.

Overall, the conventional PGD patches are able to com-
pletely supress all detections in an input images using a
sufficiently large patch (at least 80x80x pixels, i.e. 3% of
an input). The smaller the patch, the more it profits from
a higher learning rate and longer training time.

(a) Cropping and horizontal (b) Cropping and horizontal
flipping, 2K epochs flipping, 4K epochs

(c) 2,5K epochs

(d) 5K epochs

Figure 8: Attacks with the combined PGD-GAN training
using two generator updates per epoch

3.3. Combined PGD-GAN Training

For the combined PGD-GAN approach, we used the
DCGAN architecture, while the PGD attack was imple-
mented as done for the conspicuous baseline.

Following the baseline, a model with one discriminator
and generator update per training step was first evalu-
ated. After generator and discriminator parameters are
updated at step ¢, the generator gets an updated patch at
step t + 1 and outputs a new patch. We then insert the
new patch in the COCO image and produce predictions
with the YOLOv3 object detector. After computing the
YOLOV3 loss, the patch optimizer was run in order to up-
date the current patch state. This approach led to highly
distorted patches not resembling the dataset, whereas the
patch itself had no impact on the surrounding bounding
boxes.

We have achieved better results via introducing a sec-
ond generator update. We thus updated generator twice
per epoch: first during the GAN training step and then af-
ter the patched image is evaluated and the loss of YOLOv3
is calculated. Figure 8b shows, that, the patch images
remain in the dataset distribution after 4K epochs. How-
ever, with each newly generated image, a different flower
type is created (a dandelion at 2K epochs and a daisy
at 4K epochs). At both stages the covered person is not
detected and the confidence score for the car in the back
decreases.

Figures 8c and 8d demonstrate how this version of
the algorithm performs without horizontal flipping. The
patch covers an entire cyclist, which prevents it from
being identified. Moreover the adjacent cars are identi-
fied as such only with a 0.57 and 0.68 confidence score
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Figure 9: Attack with the combined PGD-GAN training with
generator update after the discriminator and patch updates.
Results are shown after 1K epochs

respectively, which are lower than in the corresponding
clean image. However, the confidence score does not
decline linearly over the epochs. For instance, the red
bounding box in Figure 8d displays a higher confidence
score of 0.68 at epoch 5K compared to only 0.52 in epoch
2500 as shown in Figure 8c.

The last model that we have evaluated included up-
dating the generator once per epoch, after both the dis-
criminator and the patch were updated. Figure 9 shows
that the patch developed with this method manages to
suppress more bounding boxes in the neighbouring re-
gion. However, the generator obviously does not learn
the distribution of the GAN training dataset.

In summary, we could generate realistic looking ad-
versarial patches with the combined approach. The best
performing version of the algorithm included two gen-
erator updates per epoch. The attack success, however,
is worse than when conspicuous adversarial patches are
used.

3.4. Using a Pretrained Generator

Next, we evaluate the usage of a pretrained GAN gen-
erator. We have experimented with two GAN models:
DCGAN and BigGAN. DCGAN was trained for 2K epochs
on the Flowers Recognition dataset, which was prepro-
cessed as described above. For the BigGAN, we have
used the pretrained model and set the chosen class to
daisy (985). The patch optimization is the same as for the
conspicuous baseline, the weight for the total variation
is set to 0.01.

Figure 10 demonstrates the results for the experiments
with the pretrained DCGAN. We have first experimented
with patches resized from 64x64 as generated by DC-
GAN to 100x100 pixels using interpolation. As Figure 10a
shows, the patch is placed on a cyclist, which deters the
object detector from recognizing the person, the bicycle
and the car behind them after 1K epochs using a learning
rate of 0.01. Moreover, the car to the left of the patch
has the reduced confidence score of 0.53 compared to
the clean image score of 0.76. However, a major problem
here is that the patch is getting darker with each training

(a) Interpolation, augmenta-(b) Interpolation, augmenta-
tions, 1K epochs tions, 3K epochs

5K

(c) No
epochs

interpolation, 3K (d) No interpolation,

epochs

(e) With latent shift applied,(f) With patch transforma-

1K epochs tions applied, 5K epochs

Figure 10: Attacks with a pretrained DCGAN

epoch (see Figure 10b).

Experiments without patch interpolation (i.e. using
patches of size 64x64 pixels as generated by DCGAN)
also show the same darkening effect (see Figures 10c and
10d). As expected, these patches also do not suppress the
surrounding boxes as well as the previous experiment
due to their smaller attack surface, but the confidence
scores are decreased. This is also consistent with our
conspicuous baseline experiments. The adversarial patch,
generated with the pretrained generator, only covers
part of the cyclist but the object detector cannot detect
a person. In addition, the bounding boxes surrounding
the patch have a lower confidence score. Affected are the
detections of the cars to the right of the patch as well as
the bicycle below it.

To mitigate the darkening patch effect, we further eval-
uate two countermeasures. First, we apply latent shift
interpolation. For that, we initialize a patch mask of ran-
domly distributed values and then apply it to the patch
via interpolation. This procedure is repeated during each
training epoch before applying the patch to the COCO
image. Figure 10e shows results for this approach after
3K training epochs. In this case, the patch value does not



(a) Standard
epochs

7K (b) With latent shift applied,
7K epochs

training,

(c) With patch transforma-(d) With patch transforma-

tions applied, 7K epochs tions applied, 10K epochs

Figure 11: Attacks with a pretrained BigGAN

remain in the DCGAN image distribution, but resembles
noise, which diverges from the flower images, and does
not improve with longer training time. Moreover, the
patch performs worse than the previous experiments dur-
ing the evaluation. The person to the left is recognized
by the object detector albeit with a lower score than in
the clean image. The other surrounding bounding boxes
do not have a considerably reduced confidence score.

A further attempt, aiming to improve the appearance
of patches, is the usage of patch transformation, as sug-
gested in [3]. This approach aims at making patches
more robust and includes a number of transformations
applied to a patch before it is added to an input image.
In includes adding random noise to the patch as well as
random changes in patch brightness and contrast. In par-
ticular, we first multiply the patch with a contrast mask
and then add brightness and noise masks. In all cases,
masks include randomly sample values, the contrast in-
terval is restricted to [0.8, 1.2], the brightness interval is
restricted to [-0.1, 0.1], the noise mask contains values
in the interval [-0.1, 0.1]. As can be seen in Figure 10f,
the patch stays in the latent space of the DCGAN model
after 5K epochs. This, however, comes at a cost of small
rise in the confidence of object detections near the patch.

As the figures demonstrate, in our DCGAN experi-
ments we have no control over the generated flower class,
so that patches may contain various flowers during the
training.

We further repeat the experiments with the BigGAN
model. The chosen class is 985 representing daisies. The
experiments are performed with the patches of 128x128
pixels, which is the size of the original BigGAN generator

(a) No attack

(b) Attack with a conspicuous
PGD patch

(c) No attack (d) Attack with a pretrained

BigGAN with latent shift

(e) No attack (f) Attack with a pretrained
BigGAN with patch trans-

formations

(g) No attack

(h) Attack with a pretrained
BigGAN with patch trans-
formations

(i) No attack

(j) Attack with a pretrained
DCGAN with patch trans-
formations

Figure 12: Examples of universal patch attacks generated for
a subset of COCO, all trained for 1K epochs
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output. Figure 11a displays the patch attack result after
7K epochs. It turns completely black, however it still
manages to suppress the identification of the person to
the left of the patch.

Next, we assess the effect of adding the interpolation
with the latent value. Figure 11b shows the patch result-
ing from 7K epochs. In this case, only the background of
the flower images turns black while the flowers remain
clearly visible. Moreover, the patch manages to suppress
the bounding boxes of the cars above and to the right of
its position as well as the identification of the first cyclist
and the first bicycle on the left.

Finally, we apply patch transformations. This helps
to fully overcome the problem of the dark patch back-
ground, as the patch background is not longer black, but
resembles a field. As Figure 11c shows, the patch achieves
similar results to the previous BigGAN experiment from
Figure 11b. It suppresses the same bounding boxes and
shows a confidence score of 0.75 for the car bounding box
in the upper left corner of the patch. This score is higher
than in the previous BigGAN experiment but lower than
in the clean image. Moreover, by training the pretrained
BigGAN patch with transformation for 10K epochs on
one COCO image, the bounding box in the upper left
corner is suppressed as well (see Figure 11d).

In summary, the approach involving a pretrained gen-
erator leads to a significantly higher image fidelity. In a
standard setting, the patch tends to get completely black,
but the proposed latent shift and patch transformations
help to overcome the problem. As expected, BigGAN led
to significantly better patches due to larger capacity.

3.5. Universal Inconspicuous Patches

Finally, we evaluate whether the studied approaches to
generate inconspicuous patches can also be applied in
a universal manner. The goal of a universal attack is to
fool all images with a single perturbation [27].

For the experiments, we create a subset of the COCO

dataset, containing objects of classes person, car, bicycle.
The resulting subset contains 1,146 images, which are
further split according to the COCO protocol to 1,101
train and 45 test images. All universal patch training ex-
periments are run for 1K epochs over the entire training
dataset. The patch learning rate is set to 0.01 and the
GAN learning rate for the combined PGD-GAN patch
attack is set to 0.0002. The patch size during training is
set to the original size of the GAN architecture output
(i.e., 64x64 for DCGAN and 128x128 for BigGAN) to avoid
information loss through resizing. The patch placement
is fixed similar in the per-instance experiments.

Using the conventional PGD patches, we could sup-
press all bounding boxes in the test images. The univer-
sal patch generated using the pretrained BigGAN with
patch transformations for brightness and contrast was
also successful (see Figure 12). In comparison, the pre-
trained DCGAN patch attack has a reduced effect on the
object detection (see Figure 12j). However, it reduces the
confidence scores of the surrounding bounding boxes sig-
nificantly. One major difference to the previous example
is the quality of the image and of the generated object
respectively. The daisy image in this case is distorted and
no longer recognizable as a flower.

We have trained and evaluated several patches using
the same settings (see Table 1). We have also evaluated
a patch, generated using the approach by Hu et al. [5]
using the open-source code’. Following the procedure
in the paper, the training was performed on the INRIA
dataset [28] for 1K epochs. We also set the class to daisy.
Note, that direct comparison with the method by Hu et
al. [5] is not possible due a different method to add patch
to an image (see Figure 13). Instead of attacking object
of a certain class by direct overlapping with a patch, we
focus on a single patch at a fixed position in an image,
which can attacks all objects.

Every approach managed to reduce the average mAP

Shttps://github.com/aiiu-lab/Naturalistic-Adversarial-Patch
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Figure 13: A naturalistic patch, created using the framework
by Hu et al. [5], attacks objects of the class person via overlap-
ping with the clothing area

drastically, whereas the best result was obtained with
the conventional PGD attack, as expected. The patch
generated according to [5] achieves the same mAP, as
the pretrained BigGAN without transformations and the
pretrained DCGAN with transformations. This patch
also has the best results for the class person, but worst
for the class car. Finally, the pretrained BigGAN patch
with transformation scores the highest mAP for both
images, being least effective overall. In the case of one
of the pretrained BigGAN patches with patch transfor-
mations, the mAP score of 4.4% is even higher than the
black square mAP value. The patches generated with the
pretrained BigGAN demonstrate, however, the most nat-
uralistic appearance out of all universal experiments, also
compared to the results obtained with the framework by
Hu et al. [5].

4. Conclusion

In this work, we have evaluated the existing GAN-based
methods for inconspicuous patch generation on the ob-
ject detection use case. Following the analysis of the state
of the art, we have identified two groups of promising
approaches: the first method focuses on combining the
GAN training process with the training of the adversarial
patch, while the second one relies on a pretrained GAN
model during the patch training process. For each group,
we have adapted the procedure to attack the object detec-
tor and ran the experiments on YOLOv3 as a model under
attack both in per-instance and universal settings using
the COCO dataset. All attacks were performed using the
PGD algorithm. Differently from the state of the art, we
focused on suppressing objects in the direct proximity of
a patch, which is also a realistic attacks scenario.

Our experiments have demonstrated, that using the
pretrained GAN generator leads to adversarial patches
of higher visual fidelity. Better performing BigGAN led
to more realistic looking patches compared to DCGAN.
However, since BigGAN training on ImageNet is resource

consuming, we have performed the experiments on com-
bined PGD-GAN training only with a DCGAN model.
Evaluating the combined training approach with a GAN
of larger capacity might lead to even better results.

During evaluation of the universal attacks, we could
observe an evident trade-off between the patch appear-
ance and the attack performance. Our pretrained DCGAN
and combined PGD-GAN have demonstrated attack per-
formance comparable to the state-of-the-art approach by
Hu et al [5], although no direct comparison is possible
because of different patch placement approaches. The
pretrained DCGAN approach as well as the PGD GAN ap-
proach led to a better attack success than the pretrained
BigGAN method during evaluation. Overall, the perfor-
mance on the test set under attack was significantly lower
than on the clean images. Although the attack strength of
the conspicuous patches could not be reached, the stud-
ied approaches present a promising trade-off between
the attack success and naturalistic appearance.
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