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Abstract. Early design decisions have higher potential to influence building performance
compared with the decisions made at later design stages. Performance simulation and
optimization algorithms have been integrated to assist early design in reducing carbon emissions,
improving indoor thermal comfort, etc. However, early decision making within a limited time
frame is still challenging due to the large number of design options, the lack of decision-making
guidance, and the trade-offs among various requirements. Selecting appropriate methods to
explore design space is the key to find an ideal solution. This paper reviewed the challenges and
identified the key questions to access the ability of existing decision-making methods to cope
with different challenges. It is concluded that the interactive exploration of design space could
be more effective and efficient by (1) combining the surrogate models and the automated
optimization algorithms to improve the efficiency of the building performance calculation and
the optimal design space position; and by (2) extending the optimal design space to increase the
solution diversity, and (3) filtering the near optimal design space with consideration of the
stakeholders’ preferences and values. Further integration of tools for building performance
simulation, diversity description and decision-making guidance is needed to support the decision
-making process.

Keywords: buildings, early design, design space, decision support, interactive exploration

1. Introduction

1.1. Needs for design space exploration in the early building design stage

A ‘design space’ or ‘solution space’ is a dataset of all possible design options [1]. Respectively, the
dataset of all performance indicators is the ‘performance space’ [2]. Design Space Exploration (DSE) is
the process of finding the final design solution. Exploring architectural solution based on building
performances has been recognized as an effort to reduce energy consumption and environmental impacts.
In practice, design variables, including but not limited to geometry [3], thermal conductivity [4,5],
energy efficiency of HVAC and renewable energy systems [6], constitute the design space.
Corresponding performance space consists of quantitative requirements and qualitative requirements
depending on the targets and preference of stakeholders, such as Green House Gas emission [7], life
cycle cost [8], aesthetics [9] and spatial experience. Based on the consensus that the earlier a decision is
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made, the higher potential of influence a decision has on the final building performance and costs [10],
DSE for the early building design is a key step to achieve the final targets.

However, as shown in Figure 1, the final solution might never be the ideal one because of the
complexity of design space and the capacity of the DSE methods. Identifying the challenges in early
architectural design stages and developing proper DSE methods is of significant importance.

Local space Global space Representative space Near-optimal space
exploration exploration exploration exploration

L1 Design space [ Possible solution (Not evaluated)
"3 Optimal solution set (Not identified) M Possible solution (Evaluated)
[] Optimal solution set (Identified) I%0 Ideal solution

B Final solution

Figure 1. The design spaces explored in the design process under different approaches.
(The form of the figures had been inspired by literature [41], yet the ideas are different

from it.)
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Figure 2. Keywords and their relationships
of the literature on design space exploration
in the early stage of architectural design.
(drawn by the authors)

1.2.  Previous review and gaps

Prior to this study, methods [15-19] and tools [13,14] for building performance simulation and
optimization have been reviewed comprehensively. The integration of energy simulation and
optimization engines improve the interoperability of tools; the application of surrogate models, such as
Artificial Neural Networks and Regressions, in building energy analysis accelerate the calculation speed;
the integrated parametric 3D modeling platforms, like Grasshopper, provides optimization and visual
decision-making guidance. However, the integration of building performance simulation and
optimization is not enough for DSE because of the multiple challenges in early design stages. Although
existing methods and tools had been summarized in literature [20-22], they have not been fully reviewed
from the perspective of early design challenges. This review aims to (1) identify the challenges for
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design space exploration, (2) assess the ability of existing DSE methods in response to the challenges,
and to (3) propose potential improvements for the DSE methods.

The paper is organized as follows: Section 2 presents the methodology of literature review. Section
3 analyzes the challenges for DSE in performance-oriented building design and concludes the questions
to assess the ability of DSE methods. Existing DSE methods assessment and potential improvements
are proposed in Section 4.

Table 1. Representative articles focusing on DSE

Automated : Integrated
DSE g T Performance S toaral Design-performance e : g B
Ref. method Space Explored Quantitative Objectives si tions optimization Diversity Control space infor by Decision guided by  with design
or not? tools?
[41] MF Global (4032 alternatives) Heating and cooling Cloud simulation No No PCP PCP
Representative (90% orthogonal  Life cycle carbon emissions and ~ eQuest; SimaPro, Keep the wide
(32] UE array and 10% LHS) cost Athena, excel No ranges of objectives PDF No No
Representative (Design of Heating, cooling peak of heating .. PCP, Response BIM
[13] MF Experiments) and cooling metamodels No Geometry diversity Surface, Bar Chart PCP, SA (Dynamo)
SE  Global (4032 alteratives) Pre-computed  No No Seatterplot of Scatterplot No
Objectives
[34) SE Global (4032 alternatives) Life cycle carbon emissions and.  oonted  No No Histogram of Histogram No
cost Objectives
SE Global (4032 alternatives) Pre-computed No No SA tornado diagram  SA tornado diagram. No
MF ive (MCS) Bel0:m dels No No i of inputs  SA No
ol MF Representative (MCS) Energy demand and thermal metamodels No Increase the number PCP SA pie chart, PCP No
mfort, daylight f soluti i i
MF R tative (MCS) col ylight met dels No St somticns ?CP. Histograms of R?gwnn.l SA, PCP, No
epresent remained inputs Histograms,
211 UE Local Energy consumption metamodels No AIS Point performance  No No
SE Local Energy pti del. No SA, false signal rate  SA, false signal rate No
UE Local del. No No Point per No No
SE Local metamodels No Point performance ~ Performance changes No
[20] SE Local energy demand and indoor climate metamodels No W of inputs POint performance  Performance changes No
MF Representative (random MCS) metamodels No © PCP PCP No
MF P ive(quasi-randomMCS) del No PCP PCP No
UE Local g metamodels No Point performance No No
SE___ Local Lezasie GWE tamodels No ) Point per SA No
[s0] SR near-optimal
ASPE  Near-optimal Life-cycle GWP: life-cycle cost  metamodels GA P No No
performance space
UE Local Grasshopper No Point performance  No Yes
UE Local Grasshopper No 3D model. Point performance _ No Yes
[22] SE Local 1 and energy per Grasshopper r:;dﬁ p and unknown Gradient estimation _ Yes
ASPE  Optimal metamodels objective omties unknown No Yes
optimization
[36] SE  Representative (LHS) encrgy paformance and themal g, No PDF PDF Histogramof o\ pryp No
comfort Objectivesetc.
UE Global Grassh No D 1 Point per No No
UE Representative (LHS) Grasshopper No Point performance  No No
ASPE _ Optimal Grasshopper NSGA-II No No No No
ASPE  Near-optimal Grasshopper NSGA-II performance space  Diversity filter No
[37] SE Privous data and energy per Grassh No D y Gradient estimation ~ Gradient estimation No
MF Privous data Grasshopper No i and performance space  Gradient estimation No
MF Representative (LHS) Grasshy No outlier performance space _ Clustering No
5 PCP, Gradient
MF R tat] S, metamodel: N B N
epresentative (LHS) s 0 performance space estimation 0
[8] ASPE Near-optimal Embor‘in:d carbon; Energy Use EICWPIHS: M‘,ml'_ Ium the number performance space, PCP No
Intensity; construction cost; Radiance; objective of solutions PCP
Structural and energy 3D mode,
[52] SE Representative space (LHS) performance, embodied carbon Grasshopper No Z]:la‘i'isess and Gradient estimation ~ Gradient estimation No

2. Methodology

To find out the research focus in recognized literature, the search was conducted in the Web of Science.
The search syntax was formulated using “building”, “early design”, “design space exploration” and its
synonyms. The results were limited to English language. 822 articles remained after excluding gray
literature and research in other areas. After sorting these articles by relevance, the titles and abstracts of
the top 500 articles were downloaded and analyzed through VOSviewer [23]. The keywords and their
relationships were shown in Figure 2. “Design space” has strong correlations with “early design”,
“decision support”, “building performance”, “assessment”, and “stakeholders” while the occurrence
frequency of “design space” is lower, which indicates that further study in design space exploration is
required to some extent. Then the articles were filtered based on the title and abstract. After reading the
full papers, 13 most related articles in Table 1 were reviewed.
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3. Challenges for DSE in the early building design

3.1. Challenges at early design stages
Previous reviews [11] have highlighted challenges' of building design at the early stages, which results
in difficulty in exploring design space.

Time limitation. Having a good understanding of the “design-performance space” is the key to
identify the most potential solution. However, only simulation that runs within a second or two enable
truly immersive, interactive design space exploration [9], which means that simulation with
sophisticated engines, such as EnergyPlus and Radiance, takes 20 s and 5 min for a simulation on a
standard PC is [24] too long for iterations at early design stages.

Huge design space to be explored. The curse of dimensionality arises when the number of variables
and the number of levels of each variable within a defined range are large. For example, in [25], there
are 5 design variables and the numbers of levels per variable are 5, 11, 9, 10, and 20. The size of the
global design space is 5 x 11 x 9 x 10 x 20 = 100,000. It is impossible to evaluate each option and obtain
a complete performance space. In this case, reducing the global design space to local space,
representative space, optimal or near-optimal space is critical (Figure 1).

Stricter requirements in quantitative performance. Energy and environment crisis are pushing
buildings to achieve (nearly) zero energy/carbon emission cost-effectively [26,27]. Moreover, building
users also require more comfortable and healthier living environment. In combination with the
intelligent service equipment, the requirements with regard to indoor climate [28] and air quality [29,30]
are becoming higher. Fortunately, automated optimization is capable of identifying an “optimal”
solution ? set for quantitative performance.

Diverse requirements in qualitative performance. The original difference between the terms
“building” and “architecture” implies that architectural creativity, preference and values in qualitative
aspects, such as aesthetic and layout [9], should be encouraged. Designers should reflect on and avoid
the optimization-centered building design approach.

Conflict of the requirements. Architectural design is complicated due to both quantitative and
qualitative requirements and the conflict between multiple objectives[12]. For example, achieving fewer
GHG emissions might require vast initial cost [31]. While multi-objective optimization algorithms can
balance different quantitative performance through the Pareto-Fronts, human involvement is necessary
when it comes to objectives that cannot be mathematically defined [9].

Lack of knowledge for decision making. Stakeholders, like the owners and designers, might have no
expertise in HVAC, Life Cycle Assessment, etc.. Rules of thumb are too restrictive to deal with a huge
design space [20]. Designers require straightforward decision-making tools and instructions that are
integrated into their design environment [13]. Decision making methods and tools have been developed
to assist decision making, such as Probability Density Function (PDF) [32], Parallel Coordinate Chart
(PCP) [38]. More explanations are presented in Section 4.3.5.

3.2.  Questions to assess DSE methods

Nine questions are tailored to assess the ability of DSE methods because the challenges described above
raise high requirements simultaneously on DSE methods in terms of computational speed and cost (Q1-
Q3), navigation to the ideal solution (Q4-QS5, Q8), option diversity for each decision (Q6-Q7) and tools
(Q9).

QIl. Is the performance simulation fast enough for brainstorming?

! The uncertainty of parameters and future scenarios can also affect decision making. But it is a wider field of
decision making, and should be discussed separately. It is not contained in the review.
2 From a mathematical point of view, the “optimal" solutions have the “best” quantitative performance.
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Q2. Is it fast to position the optimal or near-optimal design space for quantitative performance?
Q3. Is the workload and duration tolerable for human and computer?

Q4. Is the ideal solutions covered in the space explored?

Q5. Is the optimal or near-optimal design space covered in the space explored?

Q6. Dose the space explored preserve enough room for creativity and individual preference?
Q7. Is human-computer interaction allowed?

Q8. Is the final solution influenced by the initial option?

Q9. Are design guides and tools available or accessible for designers?

4. Assessment and potential improvements of existing DSE methods
In this section, existing DSE methods are identified and assessed. What’s more, potential improvements
in DSE are proposed.

4.1. Existing design space exploration methods

After summarizing and adapting the prior typologies defined by [20-22], this paper classified them into
5 categories, Unguided Exploration (UE), Sequential Exploration (SE), Manual Filtering (MF),
Automated Search and Post Exploration (ASPE), Human-Computer Interactive Exploration (HCIE).

A series of heuristic decisions made without guidance enable designers to explore the options flexibly
based on designers’ knowledge, preferences and even fortune, which also implies that UE method may
lead to uncertain, occasional and inefficient outcomes. This method can’t suit the huge design space.

With SE method, building performance change after one decision and guidance for next decision are
informed so that designers are navigated to a better direction sequentially. Generally, the most influential
variables are identified and specified sequentially. Decision-makers are allowed to express subjective
values during the process. However, the final solutions identified may be different due to the selection
of SA method [33], nonlinearity [1] and individual preference [21]. What’s more, this method, requiring
more than 20 steps to determine the final solution [20,21], is inefficient within the limited time
framework.

MF provides decision-makers with a design space in the form of an option dataset. The space maybe
representative space sampled by LHS(Latin hypercube sampling) [32] or MCS (Monte-Carlo simulation)
[20,32], or global space [34,35] when the whole space is small, or (near)-optimal design space [8], The
variables and corresponding performance of each option are transparent. The key is to display the
“design-performance space” more statically and explicitly so that it is easier to identify the potential
solution. Decision makers filter the preferred options according to the requirements of all stakeholders.
However, the size of spaces for MF may be so small after several filtering that additional options are
required to remedy this, which means fast calculation for the additional options is required to ensure the
continuous exploration [1,20,36].

ASPE is the most widely used method. As mentioned above, automated optimization algorithms can
create a set of optimal solutions rather than a single design. Researches and tools have been developed
by researchers [37] to explore the optimal space through MF. Specifically, presenting 3D models [38]
clustering analysis [39] or filtering with the assistance of PCP. However, the post processing is not
explained by most of research of building performance optimization. The diversity of options available
for the final selection could not fulfill qualitative design requirements.

Interactive Genetic Algorithms ensure that architectural preferences are expressed progressively
during cooperation with an algorithm [9]. Humans perform all prioritization and design synthesis while
computers are taking the advantage of automated optimization. However, the tools are still not widely
used even by researchers due to the computing cost and accessibility to people without knowledge of
profession computer science.

4.2. Results of the assessment of existing DSE methods
UE and SE is too inefficient to suit the huge design space while HCIE require professional knowledge
and techniques of computer science. MF and ASPE are most potential methods to deal with the
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challenges in early architectural design. Based on the review in Table 1, each DSE method is assessed
and the results are shown in Table 2. It is worth noting that “ ” mean that there are opportunities to
improve the DSE methodology. The results show that MF and ASPE have the most potential to be
improved or integrated. Surrogate models might be used to generate enough potential solutions instantly
and automated optimization algorithms are potential measures to speed up the process of decision
making in early design stages. Automated optimization algorithms can help arrow down the design space
to optimal space while near-optimal design space could be useful to increase solution diversity for post
manual exploration. Human intervention based on easy-to-use decision support tools are needed.

Table 2. The characteristics and the ability of DSE methods to cope with the challenges

(“x” refers to “No”, while “v* indicates “Yes”. “  ” means the answer depends on the different
scenarios. For example, if meta-model is used for energy simulation, it is fast enough to enable truly
immersive brainstorming, but the answer is “No” if EnergyPlus is used)

Challenges Capable of DSE? UE SE MF ASPE HCIE Potential Measures
Time limitation s the performance simulation « Surrogate models
fast enough for brainstorming?
Is it fast to position the optimal Automated
. , x x v v e
or near-optimal design space? optimization

Is the workload and duration

tolerable for computer and X X v v
computer?
Huge design Is the ideal solutions covered in Focus on optimal or
space the space explored? : * v near-optimal design
space
Stricter Is the optimal or near-optimal Automated
quantitative design space covered in the ) Y v v optimization
requirements space explored?
Diversity Dose the space explored Human intervention
requirements in preserve enough room for J Wy y y J
qualitative creativity and individual
performance preference?
Conflict of the Is human-computer interaction « y J J
requirements allowed?
Lack of Is the final solution influenced v J y < Choose MF, ASPE,
knowledge by the initial option? or HCIE
Are design guides and tools Develop easy-to-use
available or accessible for v v v X tools

designers?

“The solutions are covered in the explored space only if the designers have enough experience or good fortune.
But the probability is very small.

4.3. Potential improvements of DSE methods in applications

Potential measures to address the issues are proposed in Table 2, among which, meta-models can
calculate building performance instantly; automated optimization can position the optimal space fast;
near-optimal design space not only ensure the achievement of quantitative performance but also provide
more room for individual preference. Decision support tools based on the combination of meta-models,
automated optimization, and near-optimal design space, can facilitate quality design space exploration.
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4.3.1. Speed up building performance simulation with surrogate models. Researchers have made
efforts to look for potential substitutions of dynamic simulation engines. For example, quasi-steady
energy demand calculation method based on DIN V 18599 , “idealized model” bel10, PHPP (Passive
House Planning Package) excel spreadsheets were used to obtain real-time outcomes [1,24,40].
However, standard static formulations are not always available for other performance, like daylighting
and ventilation. Although advances in computer science have facilitated cloud simulations [41] and
parallel simulations [42] which break through the limitations of the PC, additional cost is caused to buy
enough computing power [43]. The most potential measure seems to be meta-models [44]. They are
surrogate models developed by Regressions [45], Artificial Neutral Networks [46], etc..They are able to
evaluate instantly ( < 0.1 s [47]), provide distribution estimates [21] of the performance space. Meta-
models have been developed to reproduce samples instantly to remedy the problem that the number of

remaining options is small after steps of filtering [1,20,21,46].

4.3.2.  Use proper optimization algorithms to position the optimal design space fast. With the
quantitative requirements, like energy consumption and GHG emissions, getting more stricter, it is
critical to first focus on optimal or at least near-optimal space. For multi-objective optimization, Si et al.
have tested the ability of several automated optimization algorithms and concluded that NSGA II
performs the best and are capable of heuristically searching the global design space and generate
“optimal” space - Pareto Frontiers. On the other hand, the speed of performance simulation determines
largely the efficiency of optimization. In this case, the combination of surrogate models and automated
optimization algorithms are preferred. Compared with exploring the global design space manually, post

exploration in the optimal space is more efficient [9].

F1 F1

d! Candidate solution space Candidate solution space

Pareto front

(a) F2 (b) F2
Figure 3. Distributions of Pareto-optimal solutions [50]
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Figure 4. The difference between true
and reference Pareto-Fronts [50]

4.3.3. Expand the optimal design space to near-optimal space for solution diversity. Comparison on
optimization algorithms conducted by Si et al. [49] showed that the size and distribution of the optimal
solution set solved by automated optimization algorithms are always affected by the parameter settings
and the inherent ability of the algorithms themselves. Figure 3 [50] shows the possible distributions of
Pareto-Fronts and Figure 4 [50] shows that it is the reference instead of true Pareto-Fronts can be solved
due to the ability and efficiency of the algorithms themselves. Hence, one should not expect too much

from so-called automated and intelligent algorithms.

To avoid numerical centered optimization and the shortage of solution diversity for post exploration,
expanding the optimal design space to near-optimal space can preserve more room for qualitative
diversity [8,9,50]. For example, Brown et al. have illustrated that 2.5% penalty for the quantitative
objective increases 86% of geometric diversity [50]. Hester et al. [21] concluded that 40% design
specification is enough to make an excellent decision if influential design variables are specified as early
as possible, which indicates that 60% design diversity for qualitative decision-making is possible. That
is to say, exercising individual creativity, preference, and values within a near-optimal space can ensure
a final solution which is excellent in both quantitative and qualitative performance.
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4.3 4. Increase human intervention while taking the advantages of computer. UE and SE methods are
inefficient because it takes more than 20 steps generally [20,21]. At the other extreme computer-aided
design technologies has directed design space exploration to an numerically optimization-centered
process. In this case, human should perform all prioritization and design synthesis while taking
advantage of the fast computing and visual feedback [9]. Integrating the advantages of ASPE in
optimization, HCIE in interaction and MF in human intervention provides more opportunities to fully
explore the global design space.

4.3.5. Visual decision support tools. Three types of visual tools for decision making have been
developed. Firstly, tools for performance description, data points [56] or distribution, after every
decision. It is self-evident that showing the change of performance distribution with PDF [32], CPD [33]
or Scatters Chart [34] is more helpful in understanding the overall change of performance space,
compared with performance data points. Secondly, tools for decision making guidance. SA [1,34] helps
decision makers focus on the influential variables firstly while Clustering Analysis (CA) [39] and 3D
models [38] are so straightforward that can help decision makers filter out unfavorable clusters/options.
Thirdly, tools for diversity description of the rest options [9] with the clusters, ranges or frequency [1]
of design variables. These tools are characterized by statistical charts as listed in Figure 5. In order to
help decision makers understand the high-dimensional “design-performance space” , three types of
tools are required, whereas they are not fully integrated. In this case, decision makers cannot fully
understand the “design-performance space” and make proper decisions. On the other hand, the tools
are mainly developed by researchers who participated in concrete construction project. Some of them,
like clustering (in Wallacei) [39] and DesignExplorer [38] have been integrated into Grasshopper, while
others are not fully integrated into design tools.

®
Pl O X —
"- —
. Ox
Probability Density Cumulative Probability Sensitivity Analysis
Function Function (Morris) Sensitivity Index
4> ‘ 4‘
- i
EL men
e TT 7 [l P [P
il ==  @e®
Clustering Clustering Parallel Coordinate Chart 3D images

Figure 5. Decision support tools/charts.(drawn by the authors)

5.  Discussion and Conclusion

DSE is a complicated design-oriented process aiming to search the final solution which is as close as to
the “ideal” solution, within a finite time frame and an “infinite” design space, where both specialists and
non-specialists are encouraged to participate. UE and SE is inefficient to suit the huge design space
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while HCIE require professional knowledge and techniques of computer science. MF and ASPE are
most potential methods to deal with the challenges in early architectural design.

To ensure a final solution which fulfills both quantitative and qualitative requirements, (1) surrogate
models are recommended to speed up performance simulation because of the advantage of fast
calculation; (2) the combination of surrogate models and automated optimization algorithms is needed
to position the optimal design space fast; (3) expanding the optimal design space to near optimal space
for manual filtering is the best interactive way to integrate stakeholders’ preference and values; (4) three
types of decision support tools should be integrated to provide better design guidance for designers.

Currently, stakeholders’ involvement in design space definition have not been highlighted although
research articles pay much attention to create decision making opportunities for all stakeholders. In
addition, tools for building performance description, diversity description and decision-making
guidance need to be further integrated to assist the process of “ideal” solution exploration.
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