KIT | KIT-Bibliothek | Impressum | Datenschutz

DeepA2: A Modular Framework for Deep Argument Analysis with Pretrained Neural Text2Text Language Models

Betz, Gregor 1; Richardson, K.
1 Institut für Technikzukünfte (ITZ), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper, we present and implement a multi-dimensional, modular framework for performing deep argument analysis (DeepA2) using current pre-trained language models (PTLMs). ArgumentAnalyst – a T5 model [Raffel et al. 2020] set up and trained within DeepA2 – reconstructs argumentative texts, which advance an informal argumentation, as valid arguments: It inserts, e.g., missing premises and conclusions, formalizes inferences, and coherently links the logical reconstruction to the source text. We create a synthetic corpus for deep argument analysis, and evaluate ArgumentAnalyst on this new dataset as well as on existing data, specifically EntailmentBank [Dalvi et al. 2021]. Our empirical findings vindicate the overall framework and highlight the advantages of a modular design, in particular its ability to emulate established heuristics (such as hermeneutic cycles), to explore the model’s uncertainty, to cope with the plurality of correct solutions (underdetermination), and to exploit higher-order evidence.


Verlagsausgabe §
DOI: 10.5445/IR/1000151687
Veröffentlicht am 20.10.2022
Originalveröffentlichung
DOI: 10.18653/v1/2022.starsem-1.2
Scopus
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technikzukünfte (ITZ)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISBN: 978-1-955917-98-8
KITopen-ID: 1000151687
Erschienen in Proceedings of the 11th Joint Conference on Lexical and Computational Semantics. Ed.: V. Nastase
Veranstaltung 11th Joint Conference on Lexical and Computational Semantics (2022), Seattle, WA, USA, 14.07.2022 – 15.07.2022
Verlag Association for Computational Linguistics (ACL)
Seiten 12-27
Schlagwörter Correct solution, Empirical findings, High-order, Higher-order, Language model, Modular designs, Modular framework, Source text, Uncertainty
Nachgewiesen in Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page