KIT | KIT-Bibliothek | Impressum | Datenschutz

Separating Hate Speech and Offensive Language Classes via Adversarial Debiasing

Yuan, S. 1; Maronikolakis, A.; Schütze, H.
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Research to tackle hate speech plaguing online media has made strides in providing solutions, analyzing bias and curating data. A challenging problem is ambiguity between hate speech and offensive language, causing low performance both overall and specifically for the hate speech class. It can be argued that misclassifying actual hate speech content as merely offensive can lead to further harm against targeted groups. In our work, we mitigate this potentially harmful phenomenon by proposing an adversarial debiasing method to separate the two classes. We show that our method works for English, Arabic German and Hindi, plus in a multilingual setting, improving performance over baselines.


Verlagsausgabe §
DOI: 10.5445/IR/1000151691
Veröffentlicht am 21.10.2022
Originalveröffentlichung
DOI: 10.18653/v1/2022.woah-1.1
Scopus
Zitationen: 3
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISBN: 978-1-955917-84-1
KITopen-ID: 1000151691
Erschienen in Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH) Ed.: K. Narang
Veranstaltung 6th Workshop on Online Abuse and Harms (WOAH 2022), Seattle, WA, USA, 14.07.2022
Verlag Association for Computational Linguistics (ACL)
Seiten 1-10
Schlagwörter Computational linguistics, De-biasing, Improving performance, Offensive languages, Online medium, Performance, Speech content, Speech
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page