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Abstract. Data streaming applications are an important class of data-
intensive systems and performance is an essential quality of such systems.
Current component-based performance prediction approaches are not
sufficient for modeling and predicting the performance of those systems,
because the models require elaborate manual engineering to approxi-
mate the behavior of data streaming applications that include stateful
asynchronous operations, such as windowing operations, and because the
simulations for these models do not support the metrics that are specific
to data streaming applications. In this paper, we present a modeling
language, a simulation and a case-study-based evaluation of the predic-
tion accuracy of an approach for modeling systems that contain stateful
asynchronous operations. Our approach directly represents these opera-
tions and simulates their behavior. We compare measurements of relevant
performance metrics to performance simulation results for a system that
processes smart meter readings. To assess the prediction accuracy of our
model, we vary both the configuration of the streaming application, such
as window sizes, as well as the characteristics of the input data, i.e., the
number of smart meters. Our evaluation shows that our model yields
prediction results that are competitive with a state-of-the-art baseline
model without incurring the additional manual engineering overhead.

Keywords: software performance · model-driven software engineering
· computer aided software engineering · software architecture · data
streaming · big data applications

1 Introduction

Systems that process large amounts of data from varied sources are becoming
a more and more important class of software systems in recent years, for which
numerous frameworks, middlewares and overall implementation techniques exist.
Reasons for the increased demand for this type of systems are the increasing
amount of data sources from which data is collected and a steady increase in the
number of models and methods for data analysis. One manifestation of this is
the ongoing growth in popularity for machine learning models.
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However, it is challenging for software engineers to build systems that pro-
cess large amounts of data [8]. Part of the challenge is planning how the system
will perform for future workloads that are either larger in scale or that have
different characteristics that influence how data is grouped and processed. One
approach to systematically analyze the quality of a software system are mod-
els, which allow exploring different implementation alternatives without fully
implementing and running them. They allow analyzing the performance of the
system under changing workloads without investing the resources needed for ex-
tensive load tests. Recent research to reduce the cost of automatically building
and maintaining models of software systems for which asynchronous communi-
cation is a major performance influence factor [17] has made the use of models
for these software systems a relevant alternative in comparison to building and
load-testing implementations.

In this paper, we examine whether component-based performance models
that include stateful operations can be used to predict the performance of data-
intensive software systems as accurately as the state of the art while using mod-
els that are better aligned with the systems. We call these operations stateful
asynchronous operations (SAOs). This question is relevant because our previous
research [19] indicates that some of the timing effects present in this type of
system cannot be suitably predicted with stateless models and require approx-
imations and workarounds. An example of a stateful operation is when data is
collected and emitted as a group after a specified duration has passed or after
a specified number of elements has arrived. Such stateful operations are com-
mon in data stream processing applications, for example as sliding windows that
are created on data streams [1]. We use a case study to evaluate the benefit of
models extended with SAOs. We extend our previous research in performance
modeling for data-streaming applications [19] with a generalization of the model
and simulation and with an evaluation of the resulting approach.

Derived from the presented problem, we address the following research ques-
tion: RQ1: Does explicitly modeling stateful asynchronous operations allow mod-
elers to create architecture-level performance models that are better aligned with
the system architecture without reducing the prediction accuracy of the models?

To answer RQ1, we model different configurations of a case study system
both with our approach (model with stateful asynchronous operations (MSAO)
hereafter), which includes SAOs, and with systematically created baseline models
using a state-of-the-art modeling approach (baseline (BL) hereafter), which does
not include SAOs. We discuss the process that these models are derived by and
how the models align with changes in configuration and workload. We further-
more evaluate the accuracy of these models in comparison with measurements
on an implementation of the case study system. The metric that we consider in
this evaluation is the data age after analysis, which is the time from the creation
of a data item to the point of time it is included in an analysis result. We focus
on the metric data age because a) it is suited better for asynchronous processing
than the more commonly supported metric user response time because one call
to the system interface providing one data element can imply multiple, delayed
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Fig. 1. Illustration of the case study system (Source: [18])

calls within the system, and b) it is not as well supported with current modeling
approaches. Our evaluation shows that MSAO yields prediction results that are
competitive with BL without incurring the additional manual engineering over-
head. Our evaluation investigates the usefulness of MSAO in comparison with the
state of the art and we do not intend to formally prove that current approaches
theoretically are not able to represent streaming behavior. Thus, we create a
baseline model that is as accurate as possible and explain the behavior that the
analyst has to manually represent in the baseline by calculating stochastic de-
scriptions of the behavior by hand. In contrast, our approach provides explicit
modeling constructs for the behavior. Measuring the modeling effort in a statis-
tically sound way requires a controlled experiment, which is out of scope for this
article. Thus, we use a discussion for presenting the reduced manual overhead as
clearly as possible. We plan to evaluate increases in the accuracy of the predic-
tion in future work for scenarios where the performance of the system heavily
depends on the underlying technical realization of the middleware in cases where
delays caused by scheduling on active resources dominate the performance.

We present the following contributions: C1: A simulation approach for system
models that incorporate stateful asynchronous operations. C2: A case-study
based evaluation of our modeling and simulation approach. The data and models
used in the experiment are available in the companion data set [20].

2 Running Example

For our case study, we implemented and instrumented a case study system
that we described and published in previous work [19,18]. It is based on the
grand challenge of the DEBS Conference on Distributed and Event-based Sys-
tems 2014 [10,9]. The system creates sliding windows of smart meter readings
to calculate outlier values for each house and time window. The outlier value of
a house for a window is the percentage of smart plugs in the house that have a
median reading value for the window that is above the overall average median
reading value of all plugs for this window. We chose this system since its com-
plexity is manageable for implementation and measuring with different system
setups. The case study system is illustrated in Figure 1. It is structured in five
components: Window creates groups of data elements via sliding windows. The
groups are partitioned according to plugs. The component emits one collection
of readings for each smart plug p and time window. Median takes readings,
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calculates a median of the values and emits this median value. Therefore, the
component emits one median per plug for each time window. Group collects the
medians and groups them by the house h the plugs belong to. Thus, it emits
one collection of medians for each house and window. Average calculates one
overall average of all medians for each window and emits it. Outlier joins the
medians that have been grouped per house together with the overall average of
all medians. It operates once per house and time window to calculate one outlier
per house per time window.

For our running example, the question that a software designer wants to
answer during the design of the systems are about the configuration of the op-
erations and for the behavior in different load scenarios. For example, they want
to know how a change in the windowing operator, e.g., by increasing the spacing
between windows, impacts the performance of the system, or how the system
will perform when the amount of smart meters is doubled.

3 Related Work

We see two groups of works related to the approach presented in this paper: The
first group provides modeling approaches for data-intensive applications (DIAs)
in the architectural design phase. The second group supports the implementation
of DIAs without a particular focus on the architectural design phase.

In the first group focusing on the architectural design phase, the approaches
can be divided into approaches for streaming and approaches for batch process-
ing. The work of Kroß et al. [11,12] targets stream processing. They extract
Palladio performance models [14] for the Big Data frameworks Apache Spark
and Hadoop, which they use for predicting the performance of DIAs. In con-
trast to our approach, Kroß et al. do not model stateful operations but derive
their effect based on impact factors, such as the number of partitions in data
streams, which architects have to identify first. The DICE project [5] provides
methods for modeling and simulating [7] Big Data systems. The models dis-
tinguish the platform, technology and deployment and various combinations of
these. For instance, the model supports Apache Storm topologies using different
types of bolts. The simulation of the systems is based on Petri nets. However,
the models do not consider stateful operations, to the best of our knowledge.
Maddodi et al. [13] analyze the performance of event-sourcing applications by
Layered Queuing Networks (LQNs). In contrast to our approach, they only sup-
port aggregating multiple calls but do not support other interactions of calls
including windowing or joining data. There are various other approach for batch
processing, which focus on different aspects of the analysed systems. Castiglione
et al. [6] focus on predicting metrics relevant for operating highly concurrent
applications in cloud infrastructure such as performance, number of virtual ma-
chines or energy efficiency. Aliabadi et al. [2] focus on predicting the performance
of batch applications in different Big Data analysis frameworks using Stochastic
Activity Networks. These approaches for batch processing do not support the
metrics required for stream processing, which we focus on.
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The second group of approaches does not focus on the architectural de-
sign phase, resulting in models with inappropriate abstractions for this phase.
Sachs [16] suggests a model-based approach for predicting the performance of
event-based systems based on Queueing Petri Nets. The presented Petri Net
patterns support state-based behavior, such as time windows. In contrast to our
approach, Sachs does not consider the decomposition of systems, which is es-
sential for describing software architectures. The approach furthermore does not
derive characteristics of resulting data elements and groups of elements after
processing which can be measured or used as input for subsequent behavior.
Wu et al. [21] provide an approach to formulate information needs in form of
queries on event streams and provide instructions on implementing the queries
with good performance, however not providing means of abstracting from the
actual query plan, e.g., via stochastical descriptions of the used data or the load
on the system.

4 Problem Analysis

In this section, we structure the influence factors for the performance of data-
streaming applications in more detail. The benefit of this structuring is that
we can align our modeling concepts (section 5) and our evaluation (section 7)
with the identified factors. We then introduce required capabilities of the model-
ing language and simulation to represent stateful asynchronous operations in an
architecture-level performance model. The collected factors are derived from cur-
rent state-of-the-art in component-oriented performance modeling [14] and from
work in defining operations that are used in data streaming applications (Apache
Beam, Apache Flink, Dataflow Model [1]). Overall, our analysis is aligned with
our previous work in component-oriented modeling of the performance of data
streaming applications [19]. However, we generalize the state-of-the-art to al-
low a model that is as flexible as possible regarding the type of operations that
can be represented. This is achieved by allowing the person that creates stateful
asynchronous operations to implement the behavior of an operation as code that
is included in the simulation.

4.1 Types of Delays

First, we identify different factors that influence the time it takes for a data item
from its creation to its inclusion in an analysis result.

Active Resource Delays are introduced because scheduled resources such as
CPUs are contested by different processes. Requests are scheduled and processing
time depends on the ressource’s characteristics.

Lock Delays occur when parts of the system can only be entered by one
process concurrently, resulting in wait times for other processes.

Collective Operation Delays occur when the application waits for some time
or event to further process a data. This is for example the case, when sliding
windows of incoming data are created and emitted periodically.
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4.2 Required Capabilities of the Modeling Language and Simulation

We identify the following required capabilities of the modeling language and
simulation to represent stateful asynchronous operations and motivate each of
the capabilities with a type of system behavior or with a requirement that comes
from the way systems are modeled.

Asynchronous forks and joins of calls. The modeling language has to be
able to express calls that result in multiple, parallel calls and a join of multiple,
parallel calls. Forked calls do not have to be joined but can result in different
computations in the system and can be included in different types of calculations
and results.

Metrics for collective operations need to allow tracing a data item across
different calls, e.g., a relevant metric can be the age of a data item since it has
entered the system. If data is passed between asynchronous calls, this implies
that the age has to be traced back to the entry point of the system. A data item
does not necessarily have a single origin or a single time of processing, e.g., when
a group of elements is calculated and further processed.

Characteristics of data must be representable by the modeler of the system,
if they are performance-relevant. Characteristics means that a value is associated
with the data. The value is not necessarily the payload of the data itself, but
an abstract representation of the information that performance-relevant, i.e., it
influences the observable timing of the system in some way. For example, the
number of elements that have to be processed in a group of data elements or the
characterization of the data that is used for filtering has an observable effect on
the timing. This is in line with the way current component-oriented performance
models represent characteristics [14].

References to characteristics of data must be possible in the model, i.e., the
system can be expressed in a way that depends on characteristics of data. An
example is filtering data elements by a characteristic, e.g., discarding elements
that are larger that some threshold.

Reference to internal component state. Components need to be able to have
state during execution which can influence the observable behavior for incoming
calls. An example for why internal component state is required is implementing a
maximum capacity of a queuing component that may block processes with new
data, when the capacity is surpassed. This is only possible, if the component
actively manages a queue of data elements.

Collective operations that derive characteristics. If the behavior can depend
on the characteristics of data, we need to accurately compute the characteristics
of data derived in the system. An example is when a stateful asynchronous
operation partitions data based on its characteristics. Subsequently, the number
of elements in each partition can be relevant for timing of further processing.

Stochastical behavior description is needed to define how operators and com-
ponents behave based on stochastic distributions, for example taken from mea-
surements. Stochastics are beneficial when we do not want invest the resources
to model in detail the characteristics of data that is relevant for the behavior of
the system. An example is a filtering component for which we provide a proba-
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bility for a data item to be filtered instead of modeling the data characteristic
that leads to filtering.

5 Modeling Concepts

In this section, we present and discuss the different modeling concepts for stateful
asynchronous operations, which our approach introduces. While our approach
addresses a similar problem as our previous work [19], we provide a more general
and more flexible modeling and simulation approach. We structure the required
concepts in three groups: a) stateful operations, b) (asynchronous) data-oriented
call flow, c) metrics.

Stateful operations. In principle, a stateful operation can implement any type
of behavior. Note that if the expressiveness is not constrained, we do not claim
static analysability of the models. This means that we trade unrestricted ex-
pressiveness of the state and analysis by simulation for a reduction in the static
analysability. To reduce the overall complexity, we can introduce some reusability
for parts of the specification of stateful asynchronous operations. One possibil-
ity is to do this as a reduced modeling language for operators as introduced in
our previous work [19]. While the previously described language introduces a
predefined structure for queues and operations between them, we rely on black-
box operations that can be implemented as Java code as part of the simulation.
However, we allow similar composability by code reuse, e.g., by inheritance or
composition of classes. To reduce the complexity of implementing the used SAOs
in the simulation, we provide some common patterns.

Each stateful asynchronous operation has an internal time which it is certain
has already passed. This concept is called watermarks or event time/processing
time in literature [1] and in state-of-practice implementations (Apache Beam1,
Apache Flink2). Depending on the configuration, this time can be advanced
either a) periodically to a reference clock, or b) when a new data item with
a timestamp arrives. When the clock is advanced, the stateful asynchronous
operation can decide whether it should process the current data. This is for
example the case, when the new advanced time surpasses the end of a window
that can in turn be created and emitted.

(Asynchronous) Data-oriented Call Flow. Calls through the system can be
triggered in different ways. Periodic calls that are triggered according to oper-
ator properties, e.g., because windows are emitted periodically. Calls that are
triggered because some predicate over previous calls is true, e.g., because the
maximum distance to a previous call is surpassed. Furthermore, we can differ-
entiate active data retrieval operations, where a call retrieves data from a data
source and might block if no data is available, and pushing calls that are trig-
gered as new processes in the system because data becomes available at a data
source. Apart from the initial spawning of a process, calls may need to access

1 https://beam.apache.org/documentation/basics/#watermarks
2 https://nightlies.apache.org/flink/flink-docs-stable/

https://beam.apache.org/documentation/basics/#watermarks
https://nightlies.apache.org/flink/flink-docs-stable/
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shared resources that represent a data structure, e.g., for retrieving or storing
the actual data, e.g., in some type of shared concurrent data structure.

Metrics. When we focus on data that flows through the system, the simula-
tion and model have to provide metrics that are data-oriented. Instead of inves-
tigating users that get a response from a business system, resulting in a response
time metric, the model has to provide metrics that represent the timeliness of
data elements at different points in the system. Particularly, for asynchronous
operations (data elements can be forked and joined or otherwise replicated), we
need a way to measure the time from the inception of the data (i.e., when it
is created, e.g., in a sensor or in a clickstream) to points in the execution, for
example the point of time when a data element is incorporated in an analysis
(i.e., a specific computation), or when it becomes part of the active behavior of a
stateful asynchronous operation (for example because it is discarded). Utilizing
these metrics, the system designer can evaluate whether timeliness and quality
requirements at different points in the system are met by different system de-
signs and the configuration of the processing system while also considering the
tradeoff with the characteristics of the processed data. For example, lowering
the number of elements that are waited for, grouped, and processed can reduce
the data age at the point of analysis. However, including less elements in the
processing might provide less stable results, e.g., for a smoothed average.

6 Implementation

Our approach is an extension to an existing architecture description language
designed for software quality predictions, the Palladio Component Model (PCM)
[14], and an extension to a discrete event simulation for this modeling language,
the SimuLizar [4] simulator. The components that are used in PCM to describe
entities that provide or consume services and are deployed as a unit are called
basic components. In contrast, we will call our components data channels. Basic
components provide and require services and have a service effect description
(SEFF) for each provided service. The SEFF describes the behavior of a call of
a provided service in terms of resource demands and calls to other services. The
behavior described in a SEFF (and thus a basic component) can only be triggered
by an incoming call, either by a user or another component. In contrast, our
approach includes two new types of role that a stateful asynchronous operations
can play: data source role and data sink role. A data source role means that
a component can act as a data source for a specific type of data item, i.e.,
it can emit this type of data. A data sink role means that a component can
accept this type of data. In contrast to SEFFs, the behavior description for a
stateful asynchronous operations has access to the aforementioned types of state
(see subsection 4.2) and can actively emit data that can result in additional
processing threads in the system. Our approach does not restrict the passing
of data to push behavior (actively triggering processing in another part of the
system) or pull behavior (consumers decide when they consume data from a
data source) but allows to model both. To support simulating asynchronously
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processed data and grouping of different data in the system, we also make the
chain of calls that a data item has passed through available in the simulation.

7 Evaluation

The aim of our evaluation is to show that our approach (MSAO) performs as
well as a baseline state-of-the-art modeling approach that does not incorporate
stateful asynchronous operations (BL). In this section, we will first define our
evaluation goal and derive evaluation questions and metrics from it. We then
describe the state-of-the-art baseline model without stateful asynchronous op-
erations, and the model in our approach with stateful asynchronous operations.
We then discuss how both models are calibrated. Last, we describe the space of
scenarios that the models are not calibrated for and for which we predict the
performance of the system.

7.1 Goals, Questions, Metrics

Our evaluation is structured along the Goal-Question-Metric (GQM) approach [3].
The evaluation goals are: G1: Evaluate the accuracy of MSAO in comparison
to BL for data streaming applications. G2: Evaluate the modeling overhead for
MSAO in comparison to BL for data streaming applications.

Therefore, the evaluation concerns systems using our modeling approach
(contribution C1). We derive the following evaluation questions from G1: EQ1.1:
How accurate is the prediction of the distribution of data age at the time it is
processed using BL? EQ1.2: How accurate is the prediction of the distribution
of data age at the time it is processed using MSAO?

We address these questions with the following metrics: M1: Relative error
of predicted average data age. M2: Wasserstein metric between measured and
predicted distribution of data age. We evaluate metrics M1 and M2 for all sce-
narios in our test set and also provide statistical data about the metrics (mean
and maximum). Thus, EQ1.1 and EQ1.2 are evaluated quantitatively.

We derive the following evaluation question from G2: EQ2.1: What is the
increase in complexity of modeling the system from BL to MSAO? We address
this question by elaborating on the overhead of creating BL in subsection 7.4.
Thus, EQ2.1 is evaluated qualitatively via discussion.

7.2 Evaluation Design

To evaluate G1 and G2, we create both BL and MSAO for a case-study system.
We calibrate both models using the same calibration measurements from our
real implementation (training set). However, the active resource delays are neg-
ligible in comparison with the collective operation delays in the scenarios that
we observed. For our test set, we choose different scenarios that change aspects
of the input data or configuration of the system. For each of the scenarios, we
again measure the behavior of the real implementation. We then compare the
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results of each of the models with the real measurements using M1 and M2 for
the measured data age.

7.3 Experiment Setup

We have measured all combinations of the following configuration dimensions
and values, leading to a total of 3 · 10 = 30 scenarios: i) window size/shift: 5/5,
10/10, 20/20, ii) workload: 1s1p1h, 1s2p2h, 1s4p4h, 1s8p8h, 1s10p10h, debs-2,
debs-4, debs-all-2, debs-all-4, debs-all-6 The 5 workloads with identifiers of the
form 1s2p2h describe artificial workloads that have a fixed amount of houses
and plugs. Each plug sends a power consumption measurement with a fixed
frequency. In this case, the identifier 1s2p2h means that the frequency is 1 second,
there are 2 plugs per house and 2 houses, leading to a total of 4 messages per
second. We use these as training for our calibration. For our test set, we use 5
reduced excerpts of the original DEBS data set which are filtered variants of the
first five minutes. Here, debs-n is a subset which only includes the first n houses.
debs-all-n is a subset that only includes the first n plugs of the first n households
of the first n houses. All of our measurements result in a steady state, i.e., they
do not lead to a congestion behavior that overloads the system indefinitely.

The measurements are done on a machine with an AMD Ryzen 9 3900X 12-
Core Processor running Windows 10, Version 21H1. All of the measurements are
executed in the Windows Subsystem for Linux (WSL) running Ubuntu 20.04.3
LTS. The application is executed as a Java program that runs inside one in-
stance of the Java Virtual Machine (JVM). The Java version we use is OpenJDK
11.0.11. Each component is run as one thread inside the JVM. We pin the java
executable to the first processor core using taskset -pc 0. We further allow lim-
iting the CPU usage of the process using cpulimit -b -m -l <percentage>.
For our experiments, we use a limit of 100%, i.e., to a maximum of one CPU.

7.4 Models

In this section, we describe how both BL as well as MSAO are created and how
the models are derived for the different modeling scenarios. The goal of this
section is to answer EQ2.1. The proposed benefit of creating models with first-
class entities for SAOs is twofold: i) architects do not need to create workarounds
with current techniques that only capture a specific configuration of the system,
ii) they can directly measure the metrics of interest instead of relying on proxy
metrics. In the following, we will illustrate these workarounds for BL.

We implemented an automated tool that uses measurements from the train-
ing set for calibrating the resource demands that occur in the system. Our tool
creates models for both BL and MSAO for each scenario from the test set, au-
tomatically executes the simulation and stores the simulation results. We define
which of the measurements belong to the test set and which belong to the train-
ing set and automatically derive M1 and M2.

Baseline Model. Figure 2 illustrates our generated baseline model. The model
consists of four components that represent the different parts of the system that
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incur active resource delays. The usage model of the baseline model reproduces
the windowing behavior of the first part of the processing. It contains one pe-
riodically arriving user per house that calls the system for each window, thus
arriving every window shift time units. The call to the system is parameterized
with a distribution of the number of elements contained in the window. The dif-
ferent usage scenarios for the system are generated from the workload. For this
purpose, our model generator implements the operation that is first evaluated in
the system (windowing the incoming data) and derives the characteristics from
the resulting data. The result is a distribution of the number of elements per
window for each house. The components additionally contain delays that model
the behavior of the system when waiting for new data that advances its timer.
For example, Figure 3 shows the measurements and predictions of BL and MSAO
for an artificial scenario with 4 houses with 4 plugs. In this case, the earliest time
for the first window, spanning elements from 0 to 20 time units, can be processed
at 60 time units. This is because the window is created after the first element
after the window has been received by the Median component, resulting in a de-
lay of T1 ≥ window size. The component for creating medians can immediately
process the window. The components that group the medians again for the time
window have to wait for the first group of the next window to arrive, resulting
in an additional delay of T2 = window shift. Additionally, the join has to wait
for both sides of the processing to finish and for the next group of elements to
arrive, resulting in additional delay of T3 = window shift. The overall collective
operation delay is thus at least T1+T2+T3 = window size+2 ·window shift time
units. The result that we get from the simulation of the model is a response time
for each of the users providing windows, which is equivalent to the point in time
TW that the whole window has been processed. To calculate the ages of single
data elemente, we apply a distribution that we have measured in the data: we
generate [TW − window size, TW ] measurements that are spaced by the average
interarrival time for the house this process represents. For example, for a house
for which plugs send data with an average interarrival time of 2 seconds and a
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Fig. 4. The model of the system using SAOs. Rectangles are components, rounded
rectangles are data channels.

window size of 20 seconds, a window that has finished processing at 60 seconds
results in the data age metric [40, 42, 44, . . . , 60].

Model with Stateful Asynchronous Operations. Figure 4 illustrates the model
of the system using our approach. The model separates the operations for col-
lecting and regrouping the arriving data. In summary, the components have the
following functions: – Emit : emits a sensor reading when called, – D1: emits
group of all plug readings in sliding window, – D2: partitions readings by plug
identifier and emits a collection per plug and sliding window – Median: calcu-
lates median for each plug – D3: collects all medians for a time window – D4:
duplicates data item and distributes it to both Average and D5 – D5: groups the
medians per house – Average: calculates an overall average across all medians
– D6: joins the overall average and house median groups – Outlier : calculates
one outlier per average and house median group Each of the parts of the case
study system (see Figure 1) is realized by one or more of components in MSAO:
system ingress is realized by Emit, windowing is realized by D1 and D2, Median
is realized by component Median, Average is realized by D3 and component
Average, Outlier is realized by D6 and Outlier.

Comparison of BL and MSAO. Altogether, the BL requires the performance
engineer to understand the timing behavior of the system in much detail and to
adapt the model in case of changes to the underlying system. If a wall clock with
discarding was used, the baseline would have to be modeled differently: we would
have to first create a model for the percentage that are discarded by measuring
the delay of elements before the windowing step. This percentage would then
have to be included in a second model that includes the next components to
accurately represent the discarding and the resulting characterization of the
windowed group. In case of the MSAO, the mode the component operates in
is directly associated with the data channel and can be changed as a model
parameter for the element. BL also requires the performance analyst to take the
metrics provided by the constructed model, i.e., the processing time of windows
and derive the actual metric of interest from this metric via an additional step,
which further increases the overhead of using BL in comparison with MSAO.
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7.5 Calibration

We use the measurements in the training set for the calibration of resource
demands. While there are different methods for deriving resource demands for a
performance model, we use isolated measurements of the different components in
our case study system. We measure both the time and the number of elements
for i) calculating the median value per plug, ii) calculating the overall plug
median average, iii) calculating the outlier value. We then use linear regression
to derive a parameterized resource demand value assuming an empty queue and
a processing rate of 1 per time unit. The same calibrated and parametrized
resource demands are used for both BL as well as MSAO. This means that
the resulting time behavior depends on the data characteristics that arrive at
the components, e.g., the correct characterization of the number of smart meter
readings in a sliding window, and would be the same for BL and MSAO if both
provide the same characterization.

7.6 Results

Example results of the model and MSAO and BL can be seen in Figure 5. In
our evaluation, we can see that the models can successfully approximate the
measurements of the case study system. The overall accuracy of the models is
high due to two factors: i) the active resource delays in the case study system are
small to emphasize the collective operation delays, ii) the collective operation
delay can replicate the behavior of the system.

We expect both the accuracy of MSAO as well as the accuracy of BL to reduce
with more complicated operation pipelines and with a more complex interplay
between active resource delays and collective operation delays. However, the
evaluation supports our thesis that MSAO can model the collective operation
delays that occur in our case study system at the same level as BL. Table 1
and Figure 6 show the results of our evaluation across all 30 scenarios, including
the 15 test scenarios. The difference between MSAO and BL is negligible in
both M1 (mean: 0.17 percentage points (pp), median: 0.01 pp) and M2 (mean:
0.046, median: 0.023). As a result, we see an improvement in the capabilities of
the performance modeling approach we presented while retaining the prediction
quality.

Table 1. Aggregated metrics M1 and M2 for BL and MSAO for all 30 scenarios.

Relative Error (M1) Wasserstein (M2)
Mean Median Max Mean Median Max

Training BL 0.05% 0.04% 0.12% 0.013 0.009 0.037
MSAO 0.02% 0.03% 0.05% 0.008 0.005 0.029

Test BL 0.32% 0.17% 1.66% 0.101 0.064 0.311
MSAO 0.15% 0.16% 0.35% 0.055 0.041 0.142

All BL 0.19% 0.07% 1.66% 0.057 0.024 0.311
MSAO 0.09% 0.04% 0.35% 0.031 0.021 0.142
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Fig. 5. Exemplary result for DEBS scenario debs-full-4 with window size/shift 10/10.
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Fig. 6. Aggregated metrics M1 and M2 for BL and MSAO for all 30 scenarios.

8 Threats to Validity

In this section, we address threats to validity as proposed by Runeson and
Höst [15, sec. 5.2.3] for case-study-based research in software engineering.

Internal validity. Addresses whether all influence factors on the investigated
causal relations have been considered. In our case study, we analyzed whether
including SAOs in a modeling language allows models that are better aligned
with the system architecture without reducing the prediction accuracy (RQ1).
Our focus on collective operation delays helps to minimize other influence factors
such as interaction between collective operation delays and active resource de-
lays. Furthermore, we also evaluate and present the behavior for artifical simple
scenarios in the training set to show that simple behavior is accurately predicted
without unknown influence factors. We also present the factors that influence
the alignment of our approach with the system and the baseline with the system
in a structured argumentation. One factor that is hard to eliminate is the ex-
pertise of the architect modeling the system. We mitigate this factor by creating
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a baseline that is as sophisticated and accurate as possible to avoid that our
approach has an unfair and hidden advantage in the comparison.

External validity. Addresses whether the findings of the case study can be
generalized to other cases of interest. According to Runeson and Höst [15, sec.
6.1], case studies does not need to be representative of a population. We aim to
increase the external validity by focusing on a case description that comes from
the research community. Furthermore, we derive our model elements of interest
from operations that are discussed both in the seminal work in the research area
([1]) and are also used in popular frameworks (Apache Beam, Apache Flink).

Construct validity. Addresses whether the metrics that are studied answer
the research question. We derive the evaluation goals, questions and metrics
according to the established Goal-Question-Metric (GQM) approach [3]. This
helps to make the connection between the evaluation and the presented goal
transparent. We also use metrics that are established to evaluate performance
prediction approaches.

Reliability. Addresses whether the findings depend on the specific researcher
that conducted the research. We address this threat by automating the experi-
ment pipeline, from execution and measurement of the case study system to the
analysis and derivation of our target metrics and by publishing the whole exper-
iment pipeline. Thus, it is available to other researches who can freely study the
experiment setup and also replicate or change the experiments.

9 Conclusion and Future Work

In this paper we have introduced an approach for modeling and simulating state-
ful asynchronous operations (SAOs) and have demonstrated that we can build
performance models that more explicitly represent the behavior of software sys-
tems that include SAOs while retaining the accuracy of a state-of-the-art baseline
model crafted by an expert performance engineer. The expected benefit of this
approach is that software architects are supported in making design decisions for
systems that include stateful operations, such as data-streaming systems. One
direction in need of further investigation are scenarios where a system becomes
overloaded recovers from the load in a phase with reduced load to assess whether
models can reproduce the transient behavior of the system. A second direction
of research is regarding the modeling language for SAOs. We currently do not
restrict their functionality, but there might be cases where it is beneficial to do
so to ensure that the simulation results are accurate, for example, if the effects
that are modeled rely on events that are very rare and thus are not sufficiently
captured by a simulation that only runs for a limited time frame.
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