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Experimentally revealing 
anomalously large dipoles 
in the dielectric of a quantum 
circuit
Liuqi Yu1,2*, Shlomi Matityahu3,4, Yaniv J. Rosen5, Chih‑Chiao Hung1,2, Andrii Maksymov6, 
Alexander L. Burin6, Moshe Schechter3 & Kevin D. Osborn1,7*

Quantum two-level systems (TLSs) intrinsic to glasses induce decoherence in many modern quantum 
devices, such as superconducting qubits. Although the low-temperature physics of these TLSs is 
usually well-explained by a phenomenological standard tunneling model of independent TLSs, 
the nature of these TLSs, as well as their behavior out of equilibrium and at high energies above 1 
K, remain inconclusive. Here we measure the non-equilibrium dielectric loss of TLSs in amorphous 
silicon using a superconducting resonator, where energies of TLSs are varied in time using a swept 
electric field. Our results show the existence of two distinct ensembles of TLSs, interacting weakly and 
strongly with phonons, where the latter also possesses anomalously large electric dipole moment. 
These results may shed new light on the low temperature characteristics of amorphous solids, and 
hold implications to experiments and applications in quantum devices using time-varying electric 
fields.

Two-level system (TLS) defects are known to decohere qubits1,2. Furthermore, there is an effort to control their 
relaxation3, and understand their dephasing4 for future quantum information processors. TLSs are also inves-
tigated as the focus of single-photon studies which extract their information, including their decoherence and 
couplings to other quantum elements1,3–19. The science of TLSs has uncovered important phenomena including 
how noise is created on TLSs that are close to the frequency of qubits14. However, there is also the possibility 
that there are new opportunities20,21 or challenges ahead posed by TLSs because it is still unresolved how much 
qubit relaxation may result out of equilibrium. Specifically, the active use of a voltage gate in superconducting22, 
semiconducting23, and Majorana24 qubits could cause unexpected changes in qubit coherence because time 
variance can reveal unexpected scientific results.

The properties of dielectrics in qubits, and amorphous materials at low energies T � 1K25, are generally 
attributed to atoms or groups of atoms that can tunnel between two adjacent structural configurations. They can 
be described by a standard tunneling model (STM)26,27, which assumes the existence of independent TLSs with 
asymmetry energy � and tunneling amplitude �0 that are distributed universally, e.g., approximately describing 
all amorphous dielectrics, according to a distribution function P(�,�0) ∝ P0/�0 , where P0 is a material con-
stant. This leads to an energy independent density of states (DOS) as a function of the energy splitting 
E =

√

�2 +�2
0 26–29. This model accounts well for most of the low energy properties observed in a broad range 

of amorphous systems28–30. Within the STM the strength of the TLS-phonon coupling γ relates to the dimension-
less tunneling strength, C0 = P0γ

2/(ρν2) , where ρ is the mass density and v the acoustic velocity. While the STM 
does not specify the value of the tunneling strength, experimentally it is found to be universally small, of order 
10−3, leading to weak and remarkably universal phonon attenuation properties in amorphous solids. Recent 
studies on material density31–33, stress34 and TLS-nucleus interactions35 extend our knowledge of TLS origins. 

OPEN

1Laboratory for Physical Sciences, University of Maryland, College Park, MD 20740, USA. 2Department of Physics, 
University of Maryland, College Park, MD  20742, USA. 3Department of Physics, Ben-Gurion University of the 
Negev, Beer Sheva 84105, Israel. 4Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 
76131 Karlsruhe, Germany. 5Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. 6Department 
of Chemistry, Tulane University, New Orleans, LA 70118, USA. 7Joint Quantum Institute, University of Maryland, 
College Park, MD 20742, USA. *email: liuqi.yu.physics@gmail.com; osborn@lps.umd.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-21256-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16960  | https://doi.org/10.1038/s41598-022-21256-7

www.nature.com/scientificreports/

However, an understanding of the nature of TLSs and of the origin of low-temperature universality in the phonon 
attenuation of glasses is still lacking30,36,37.

Individual TLSs have been studied via adiabatic adjustments of electric fields, and adjustments of strain field. 
The external field changes the TLS asymmetry energy � , which in turn modifies the TLS energy splitting 
E =

√

�2 +�2
0 , while the tunneling energy �0 is fixed. Using static strain and electric fields to tune TLSs in 

qubits or resonators provides a spectroscopy method to extract energy splittings38, couplings to phonons38,39, 
dipole moments40–42, relaxation and decoherence rates43 of individual TLSs, and recently even their locations44,45. 
These experiments probe TLSs in resonance with the device in equilibrium conditions at ~ 5 GHz, corresponding 
to energies of ∼ 0.25 kB K, where kB is the Boltzmann constant. Consequently, good agreement with the STM 
predictions is found in the majority of the cases.

In a related study to this work46, TLSs were swept through resonance with a resonator and emit the energy 
afterward as a phonon. By using fast-bias rates and large bias amplitudes, this technique allows the study of TLSs 
out of equilibrium, probing TLSs which are at high energies, but are temporarily lowered to the single-photon 
energy at the resonator. For a past measurement of amorphous silicon nitride46, the bias rate dependence of the 
non-equilibrium dielectric loss is explained well by the STM and the Landau-Zener (LZ) effect47 – it describes 
the scaling of non-equilibrium loss over a range of ac-field amplitudes and (swept) bias rates. The TLS dipole 
moment is then extracted from the data during scaling. It is well known that at equilibrium (zero bias field), the 
TLS microwave absorption is saturated at high driving powers (average photon number n ≫ 1 ) and the resona-
tor loss decreases as a function of the driving power, as already shown five decades ago48. More recently, it was 
shown that a time-dependent bias electric field Eb(t) sweeps TLSs into resonance, with a rate proportional to 
Ėb

46,47. The dielectric loss increases with Ėb up to the intrinsic loss tangent tan δ0 , i.e. the loss in the equilibrium 
( ̇Eb = 0 ) and low-power limit n � 1 , where TLSs are unsaturated. It should be noted that the observations were 
made previously in silicon nitride46, but are expected to apply to all amorphous materials where the STM holds. 
A similar fast-bias technique has been used to demonstrate a defect maser based on TLS population inversion20 
and dynamical decoupling of TLSs from a resonator by multiple coherent resonant transitions21.

An application of the STM to material data generally leads to the conclusion of small interactions between 
TLSs, related to an energy independent density of states. Early work on non-equilibrium measurements of 
dielectrics revealed small amplitude relaxations49 which were understood from a small gap in the standard TLS 
density of states, formed by rare strong interactions50. Presently, modern measurements provide an opportunity 
for new discovery from the change of TLS energies at high rates. This allows fast lowering high-energy TLSs and 
they may undergo single-photon exchanges with a microwave resonator mode. This gives the opportunity to 
uncover phenomena on TLS density which is relevant to modern electric-biased quantum devices.

Here we employ the fast-bias technique of Ref.46, but a different material, amorphous silicon is studied in this 
work. At low bias rates the dielectric loss follows the theory of Ref.47 based on the STM, similar to previous meas-
urements on silicon nitride46. However, at high bias rates we observe a striking excess loss, a loss much larger than 
the intrinsic loss, for all applied driving powers in the amorphous film under study. This result contradicts the 
common understanding of the STM and provides strong evidence for another loss mechanism from high-energy 
TLSs probed out of equilibrium. We analyze our data in terms of two types of TLSs, as proposed in Ref.51, where 
the first type interacts weakly while the second interacts strongly with phonons, with their own contributions to 
the total loss. To our knowledge, our observations provide the first direct experimental evidence for the exist-
ence in amorphous solids of two types of TLSs with coupling to phonons that differ by an order of magnitude.

Results
Nonequilibrium excess loss.  As shown in Fig. 1a,b, the resonator consists of four equal bridge parallel-
plate capacitors with a total capacitance, C ( C1 = C2 = C3 = C4 = C ). A dc bias field, Eb , is applied across 
the capacitors. The bridge layout is effective to isolate the ac resonance energy from the bias field input port. 
Standard transmission measurements of S21 are performed on the resonator as a function of the average pho-
ton number, n, or microwave resonator field amplitude Eac =

√
2n�ω0/(εV) , where � is the reduced Planck 

constant, ω0 = 2π × 5.1GHz is the resonator resonance frequency, ε is the permittivity, and V = 2925 μm3 is 
the total capacitor volume. The material loss tangent tan δ , equal to the inverse resonator quality 1/Qi , is then 
extracted. Figure 1c shows the steady state loss tangent, tan δs , at zero bias field as a function of n. The reso-
nator photon power dependence arises from the saturation of TLSs, and the loss tangent tan δs is expressed 
as tan δs = tan δ0/

√
1+ n/nc

48, where tan δ0 is the intrinsic material loss measured in the single photon limit 
( n ≪ 1 ) and nc is the quantum-classical crossover photon number. The fit yields nc = 3.7 and tan δ0 = 1.6× 10−4 , 
corresponding to Qi = 6200.

When the bias field Eb is varied in time (see inset of Fig. 1e), the asymmetry energy of each TLS is modified 
as �(t) = �(0)− 2pEb(t) cos θ , where p is the TLS dipole moment and θ is the angle between p and Eb . An 
ensemble of ground-state TLSs is swept through the resonance, described by the condition 
E(t) ≡

√

�2
0 +�2(t) = �ω0 for each TLS, thereby leading to an enhanced loss. Close to resonance, the TLS 

energy changes at a rate of v = |Ė|/� ≈ v0
√

1− (�0/�ω0)2 cos θ , where v0 = (2p/�)Ėb is the maximum bias 
rate. The dynamics of each resonant passage is of the LZ type, where an adiabatic transition corresponds to the 
excitation of a TLS by absorption of a single photon (see inset of Fig. 1d). The resulting non-equilibrium loss 
was analyzed in Ref.47 and is shown to be a function of the two dimensionless parameters: the standard LZ 
parameter ξ ≡ 2v0/(π�

2
R0) and the ratio Ŵ1,m/�R0 , where �R0 = pEac/� is the maximum TLS Rabi frequency 

and Ŵ1,m is the maximum TLS relaxation rate. As plotted in Fig.  1d, in the regime of strong saturation 
Ŵ1,m/�R0 ≪ 1 , the predicted normalized loss tan δ/ tan δ0 is a universal function of ξ , approaching 1 in the 
non-adiabatic limit ξ ≫ 1 . It should be noted that the intrinsic loss is recovered at high bias rates provided that 
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the TLS DOS is energy-independent, as assumed by the STM. This is understood as a result of fast LZ passage 
time compared to 2π/�R0 , such that the swept TLSs remain unsaturated by the resonator field, as in the single-
photon limit.

Figure 1e shows the measured dielectric loss tangent tan δ as a function of Ėb/n , which is proportional to the 
dimensionless bias rate ξ = 2εV

πω0p
· (Ėb/n) . The data demonstrate two distinct loss regimes separated by tan δ0 . 

Below tan δ0 the curves show a single dependence on Ėb/n for all microwave driving powers, except for small 
deviations at small Ėb/n (or ξ � Ŵ1,m/�R0 ) due to incoherent LZ transitions46,47. The data collapse of the dif-
ferent curves is in accord with the theory of Ref.47 and agrees with previous measurements in silicon nitride46, 
suggesting that dielectric loss originates from standard TLSs. However, at higher values of Ėb/n , tan δ strikingly 
exceeds the intrinsic loss tan δ0 = 1.6× 10−4 and reaches a maximum of 5.2 × 10−4 except for the high pow-
ers, Pac > −20dBm (see Fig. 1f). The excess loss scales with Ėb/n at high driving powers, Pac > −20dBm (see 
Fig. 1e), but scales with Ėb at low driving powers, Pac < −30dBm (see Fig. 1f). These distinguished saturation 
behaviors at small and large driving powers imply that the excess loss is due to a second type of TLSs. This 
saturation occurs at much higher driving powers ( Pac ∼ −30dBm) compared to ∼ −60dBm for the saturation 

Figure 1.   Steady-state and nonequilibrium loss. (a) Optical image and (b) schematic of the 
superconducting resonator device, where the total capacitance, C, is made of a bridge of 4 equal capacitances 
( C1 = C2 = C3 = C4 = C ). Bias voltage Vb is applied across C1 and C2 (and also C3 and C4 ) in series. The 
inductor L is coupled to a coplanar waveguide for transmission measurements. (c) Steady-state loss tangent 
tan δs (red squares) plotted as a function of the average photon number n at 20 mK. The loss fits to the standard 
model of TLS loss: tan δs = tan δ0/

√
1+ n/nc (blue), where tan δ0 = 1.6× 10−4 is the intrinsic material loss 

measured at the single photon regime ( n < 1 ) and nc = 3.7 , is the quantum-classical crossover photon number. 
(d) Calculation of normalized non-equilibrium loss tan δ/ tan δ0 as a function of the dimensionless bias rate 
ξ = 2v0/(π�

2
R0) = 2εV

πω0p
· Ėb

n  , based on the STM in the regime of strong saturation ( Ŵ1,m/�R0 ≪ 1)47. Inset: 
TLS-photon energy-level diagram as a function of the TLS energy bias rate v. The states |g , nF� and |e, nF − 1� ( |g� 
and |e� are the TLS ground and excited states, and |nF� is a photon number state) are connected by an adiabatic 
transition (with an avoided crossing gap equal to the TLS Rabi frequency �R ) which may lead to single-photon 
loss; the probability for photon absorption is 1− e−π�2

R/(2v) . (e) Loss measured at various microwave source 
powers (-60 dBm to 0 dBm with 5 dBm increment as indicated by the arrow) as a function of Ėb/n (proportional 
to ξ ). A periodic triangular bias voltage is applied, as indicated by the inset, with a fixed amplitude Eb,max = 0.44
V/μm and varying modulation frequency fb , resulting in the bias rate Ėb = 4Eb,maxfb . Data collapse at medium 
bias rates occurs below the intrinsic loss tan δ0 (dashed-dotted black line), which scales according to LZ theory. 
The scaling deviates at the lowest rates, where TLS relaxation ( T1 ) processes dominate. Excess loss above tan δ0 
can be seen at Ėb/n � 10V/μm s. (f)  Electric field bias rate dependence of tan δ at selected microwave source 
powers. Excess loss above tan δ0 can be seen at fast bias rates, which reveals a data collapse at low powers 
Pac < −25dBm. At high powers Pac > −25dBm, the losses have not reached their saturated values. It is limited 
by the highest applied bias field modulation frequency.
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of standard TLSs responsible for the loss at low bias rates. It therefore suggests that the second type of TLSs has 
much higher relaxation rates. In addition, at small powers Pac < −25dBm where the second type of TLSs are 
unsaturated, the loss shows a bias rate dependence (Fig. 1f), indicating a rate-(thus energy-) dependent DOS of 
the second type of TLSs. In comparison, the non-equilibrium loss of unsaturated standard TLSs is equal to the 
intrinsic value tan δ0 , irrespective of the bias rate.

Loss from two types of TLSs.  We now analyze the data in a model which consists of two types of TLSs. 
First, we use the data at low to intermediate bias rates to calculate the loss resulting from the standard TLSs, 
tan δ1 . Figure 2a shows the loss of Fig. 1f normalized by tan δ0 , along with a numerical calculation of tan δ/ tan δ0 
based on LZ theory (see Methods and Refs.46,47 for details). The calculated loss at a given bias rate Ėb and photon 
number n depends on the dipole moment p and maximum relaxation rate Ŵ1,m which serve as fitting parameters. 
We conduct the fit in the low bias rate regime Ėb < 300V/μm s and obtain p1 = 11 D and Ŵ(1)

1,m = 5.7MHz for 

Figure 2.   Loss analysis of the first and the second types of TLSs. (a) Normalized loss tan δ/ tan δ0 (colored 
circles), where tan δ0 = 1.6× 10−4 is the intrinsic loss at low powers and zero bias rate, plotted at each driving 
power (in dBm). Colored solid curves are calculations based on LZ theory within the STM47, performed 
at low bias rates Ėb < 300V/μm s. The calculation gives p1 = 11 D ( 1D = 0.21 eÅ, where e is the electron 
charge) and a maximum relaxation rate Ŵ(1)

1,m = 5.7MHz for the standard (first) TLS type. (b) The excess loss 
tan δ2 = tan δ − tan δ1 (colored circles) is attributed to the second type of TLSs. Colored solid curves are 
theoretical calculations of tan δ2 based on an energy-dependent DOS for the second TLS type. (c) Loss data 
(colored circles) corresponding to Fig. 1f are shown together with the theoretical calculations (colored solid 
lines), which combine both types of TLS loss.
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the standard TLSs. In comparison to quasi-static tuned TLS measurements of amorphous silicon nitride40 and 
thin-film crystalline alumina42, the total average dipole moment pz is 3-4 D, leading to a total representative 
moment of approximately p = 6− 7 D. In two cases, the extracted moment seems larger. In dynamical tuned 
measurements of silicon nitride46, a single representative dipole moment was extracted as p = 7.9 D, and this 
may partially be larger due to the different technique, rather than the material difference. Additionally, in amor-
phous alumina, some very large moments of pz ∼ 10 D are observed42 and a delocalized oxygen model might 
account for these unconventionally large moments52. We thus find that the first TLS moment type extracted from 
our amorphous silicon data, p1 ≈ 11 D, to be within an expected range of standard TLSs, given large range of 
analyzed moments.

The calculations generally capture the loss well but show increasing variance with increasing Ėb , since 
the contribution of the second type of TLSs becomes increasingly significant at higher bias rates. In Fig. 2b 
we plot the net excess loss tan δ2 by subtracting the calculated standard TLS loss from the measured loss, i.e. 
tan δ2 = tan δ − tan δ1 . The single dependence on Ėb for low driving powers Pac < −25dBm then becomes 
apparent. The independence on driving power implies that the TLSs responsible for the excess loss are unsatu-
rated in this power regime, such that the observed single curve is the equivalent of the intrinsic loss tan δ0 of the 
standard TLSs, and will be denoted as tan δ2,0 . The fact that tan δ2,0 increases with Ėb points to two features of 
the DOS of the contributing TLSs. First, the DOS is an increasing function of the TLS energy, because the loss is 
determined by the number of TLSs within the energy range �ω0 < E < �ω0 + pEb,max that are swept through 
resonance. Second, Since Ėb is varied by varying the modulation frequency fb with a fixed amplitude Eb,max , the 
initial energies of the TLSs that are swept through resonance are independent of Ėb . This means that the large 
non-equilibrium DOS of these TLSs at the resonance energy �ω0 tends to restore its small equilibrium value by 
some mechanism. This mechanism becomes less effective as the sweep time reduces ( ̇Eb increases).

Such a scenario arises in a previously proposed two-TLS model, which divides TLSs into two groups, dis-
tinguished by their interactions with phonons51. As a consequence of their distinct interactions, TLSs that are 
weakly coupled to phonons are abundant at low energies below ~ 1 K and form the standard TLSs of the STM 
with an approximately energy-independent DOS ρ1 ; TLSs that are strongly coupled to phonons are character-
ized by an energy-dependent DOS ρ2(E) exhibiting a soft (power-law) gap at low energies. This soft gap is a 
result of their mutual interactions with the standard TLSs53,54, as dictated by the Efros-Shklovskii mechanism 
for long-range interacting particles in glassy systems55,56. As a result, strongly interacting (with phonons) TLSs 
are scarce at low energies, thus rarely observable in conventional measurements performed near equilibrium. 
However, in our measurement TLSs with maximum energy of �ω0 + pEb,max , where their densities are much 
larger, can be swept into resonance. Out of equilibrium, the interaction between the two types of TLSs acts to 
reform the equilibrium gap in the DOS of strongly interacting TLSs by rearrangement of the standard TLSs. 
This sets a typical time scale for the reformation of the gap, equal to a typical relaxation time of standard TLSs. 
One observes the excess loss when the bias field modulation frequency fb exceeds the standard TLS relaxation 
rate, such that the reconstruction of the gap is incomplete. The non-equilibrium DOS ρ2(E, Ėb) depends on 
energy due to the energy dependence of the equilibrium DOS ρ2,eq(E) , and also depends on Ėb due to the time-
dependent reformation of the gap. By extending the Efros-Shklovskii argument to our non-equilibrium situation 
we obtain an approximated expression for ρ2(E, Ėb) (see Methods for details). The resulting non-saturated loss 
tangent tan δ2,0(Ėb) = πp22ρ2(�ω0, Ėb)/(3ε) , where p2 is the dipole moment of the second type of TLSs, reads

with the four fitting parameters A, B, C, and D. Here A = πp22ρ2,eq(�ω0)/(3ε) is the excess loss at equi-
librium ( Ėb = 0 ), and is proportional to the equilibrium DOS ρ2,eq(�ω0) at the resonance energy. 
B = (8π/3)ρ1u ln [1+ E0/(�ω0)] , where E0 = min{Emax, �ω0 + p2Eb,max} with Emax ∼ 10 kB K being the maxi-
mum energy of standard TLSs, is proportional to the phonon-mediated interaction strength u between the two 
types of TLSs. C = ln

(

Emax/�0,min

)

 is the upper limit of the integral over the normalized tunneling amplitudes 
of the standard TLSs x = ln(�0/�0,min) , where �0,min is a minimum cutoff for tunneling amplitudes28,29. Finally, 
D = Ŵ1,m(Emax)

(

�0,min/Emax

)2
Eb,max , with De2C = Ŵ1,m(Emax)Eb,max being the characteristic bias rate above 

which standard TLSs cannot change their state in order to equilibrate the DOS of the second type of TLSs. Fitting 
the collapsed data of Fig. 2b (for Pac < −25dBm) yields A = 1.8× 10−8 , B = 1.27 , C = 7.8 and D = 7.2× 10−3

V/µm s.
At Pac ≥ −15dBm where a saturation effect is observed, we notice that the normalized excess loss 

tan δ2/ tan δ2,0 , which neutralizes the effect of energy-dependent DOS of the second TLS type, resumes a simular 
scaling with Ėb/n as the standard TLSs (Fig. 3). This provides a striking evidence for the TLS origin of the excess 
loss. We therefore repeat the numerical calculation based on LZ theory for the excess loss of Fig. 2b, similarly to 
the calculation performed for the standard TLSs in Fig. 2a. The colored solid curves shown in Fig. 2b are obtained 
for p2 = 110 D and Ŵ(2)

1,m = 800MHz for the second type of TLSs. Combining the theoretical calculations of tan δ1 
and tan δ2 from the standard and second TLS types, respectively, the total loss tan δ = tan δ1 + tan δ2 agrees well 
with measured loss over the entire domain of the driving powers and bias rates explored in the experiment, as 
shown in Fig. 2c.

Comparison to the two‑TLS model.  From the calculation of tan δ2 we can extract information that 
allows us to examine the predictions of the two-TLS model. First, the ratio Ŵ(2)

1,m/Ŵ
(1)
1,m between the relaxation 

rates of the two types of TLSs is equal to (γ2/γ1)2 , where γ1 and γ2 are the couplings of the two types of TLSs to 
phonons. Using the relaxation rates found above, we obtain γ2/γ1 ≈ 12 , which is slightly smaller than expected 
within the two TLS model51,57, but nevertheless describes distinct coupling strengths to phonons differing by an 

(1)tan δ2,0(Ėb) = A exp

[

B

∫ C

0
dx e−(D/Ėb)e

2x
]

,
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order of magnitude. Second, the ratio between the equilibrium DOS of the two types of TLSs at the resonance 
energy �ω0 ≈ 0.25 kB K can be found from A/ tan δ0 = p22ρ2,eq(�ω0)/(p

2
1ρ1) ≈ 10−4 . Together with the dipole 

moments p1 = 11 D and p2 = 110 D, we find ρ2,eq(�ω0)/ρ1 ≈ 10−6 . This is consistent with the general success 
of the STM in describing the low-temperature universality in some acoustic and thermodynamic properties of 
amorphous solids, since phonon attenuation is dominated by the standard (weakly interacting) TLSs at energies 
where γ 2

2 ρ2,eq(E) ≪ γ 2
1 ρ1 . Lastly, by estimating the largest energy of standard TLSs as Emax ≈ 10 kB K, from the 

parameter B one obtains ρ1u ≈ 4× 10−2 . According to the two-TLS model, the tunneling strength is given by 
C0 = ρ1u · (γ1/γ2) , which for γ1/γ2 ≈ 1/12 gives C0 ≈ 3× 10−3 . This agrees with the universally small value 
of C0 ∼ 10−4 − 10−3 which is experimentally found to hold across a wide range of different amorphous solids30.

Further comparison with the two-TLS model is achieved by studying the bias rate dependence of the loss at 
various bias amplitudes. This is shown in Fig. 4a for driving power of − 35 dBm. It reveals a clear bias amplitude 
dependence at high bias rates, indicating an energy-dependent DOS for the second TLS type. At the highest 
bias rates Ėb ≫ De2C , where De2C = Ŵ1,m(Emax)Eb,max ∼ 5× 104V/μm s, the gap reconstruction in the non-
equilibrium DOS ρ2(E, Ėb) is negligible. Thus ρ2(E, Ėb ≫ Ŵ1,m(Emax)Eb,max) approaches the equilibrium DOS 
ρ2,eq(E = �ω0 + p2Eb,max) at the highest energy from which TLSs are brought into resonance. The excess loss 
at the highest bias rate is therefore tan δ2,max ≈ πp22ρ2,eq(�ω0 + p2Eb,max)/(3ε) and thus proportional to the 
equilibrium DOS at this energy. Within the two-TLS model, ρ2,eq(E) is predicted to have a power-law energy 
dependence below the maximum energy of the standard TLSs Emax , followed by a logarithmic behavior at higher 
energies. The former results from interactions between the two types of TLSs, whereas the latter is a result of 
interactions among the strongly interacting TLSs50,54. With a dipole moment p2 = 110 D, and bias amplitudes 
Eb,max = 0.13V/μm, 0.32 V/μm and 0.44 V/μm, the corresponding energies �ω0 + p2Eb,max ≈ p2Eb,max are esti-
mated as 3 kB K, 8 kB K and 12 kB K. Figure 4b shows the maximum excess loss tan δ2,max as a function of p2Eb,max , 
which is a manifestation of the equilibrium DOS of the second TLS type at this energy. Our measurements are 
most likely taken in the regime where p2Eb,max is the vicinity of or outside the gap edge, namely in the logarithmic 
dependence domain. We note that the strongly interacting TLSs may also affect the loss at the absence of sweep 
bias, and lead to a different power dependence58. Here, as shown in Fig. 1c, the power dependence of the steady-
state loss is fitted well by a single -0.5 power law function, suggesting that the stead state DOS of the second TLS 
type at the probe energy of the resonator is negligible.

Figure 3.   LZ scaling for the second TLS type. LZ analysis for the normalized excess loss tan δ2/ tan δ2,0
(colored circles), where tan δ2,0 (inset) is the fit for the unsaturated excess loss at low powers Pac < −20dBm. 
The normalized excess loss at high powers (0 to −15dBm), where the second types of TLSs become saturated, 
obeys LZ scaling with the dimensionless bias rate ξ2 = 2εV

πω0p2
· (Ėb/n) , similar to the loss due to standard TLSs 

[Fig. 2a]. The numerical calculation of tan δ2/ tan δ2,0 using LZ theory (colored solid lines) yields p2 = 110 D 
and Ŵ(2)

1,m = 800MHz for the second TLS type. The LZ scaling verifies the TLS nature of the excess loss 
mechanism.
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Discussion
Using a fast-swept bias field in addition to microwave fields in a resonator, we have studied the non-equilibrium 
loss in amorphous silicon. The data suggests the existence of two types of TLSs. At low bias rates the dielectric 
loss is determined by standard TLSs, which are weakly coupled to phonons. At high bias rates the dielectric 
loss deviates from the STM predictions, but agree well with the two-TLS model used. Analysis of the bias rate 
dependent loss indicates a gap in the DOS and the fitting yields a large electric dipole moment for the second 
TLS type. Recent works59,60 have examined the broad distribution of the coupling of the TLSs to the phonons 
due to polaron effect61, and the TLS-TLS interactions could lead to the reduction of TLS DOS. However, the 
bias application cannot release TLSs suppressed by the polaron effect because the polaron bath is formed by 
phonons almost instantaneously. Furthermore, a single continuously distributed TLS DOS cannot account for 
our experimental observations explained by two moments and relaxation parameters. Technically, the fittings 
of the data for the entire domain of driving powers and bias rates contain eight parameters (see Fig. 2c). These 
include the dipole moments p1 ≈ 11 D, p2 ≈ 110 D and relaxation rates Ŵ(1)

1,m ≈ 5.7MHz, Ŵ(2)
1,m ≈ 800MHz for 

the two types of TLSs, and the four parameters A, B, C and D used to fit the unsaturated excess loss at low and 
intermediate powers. The accuracy of these parameters depends on the details of the LZ analysis and the fitting 
precision is better than 10%. Also, our main results do not depend on the preciseness of these parameters, since 
the distinct dipole moments and relaxation rates of the two kinds of TLSs result from the distinct driving power 
dependence of the two contributions to the loss, below and above the intrinsic loss tangent tan δ0 . Experimental 
data consistent with the existence of two types of TLSs, characterized by distinct couplings to phonons, was pre-
viously reported58,64. Our results here go beyond previous experiments as data attests directly to the presence of 
two types of TLSs, the bimodality of their couplings to phonons, and their electric dipole interaction strengths.

The location of the second TLS type (corresponding to p2 ) must be in the film, similar to the standard type. 
The parallel plate capacitor geometry allows for measuring loss from TLSs from the dielectric within the capaci-
tor alone, effectively eliminating TLS contributions to the loss elsewhere because electric fields are negligible 
outside of the capacitor. The second TLS type, similar to the standard TLSs, is believed to be uniformly distrib-
uted throughout the film similar to the first type, because TLSs in the bulk film have a 100% participation ratio, 

Figure 4.   Bias amplitude dependence of the maximum loss. (a) tan δ measured as a function of Ėb for different 
bias field amplitudes Eb,max . (b) The measured maximum excess loss tan δ2,max as a function of p2Eb,max , 
proportional to the equilibrium DOS of the second type of TLSs at this energy, ρ2,eq(p2Eb,max) . The blue 
line shows a (weak) logarithmic dependence of the measured tan δ2,max , which indicates that we most likely 
measured in the regime where p2Eb,max is in the vicinity of or outside the gap edge.
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whereas those residing on the metal-dielectric interface in the capacitor would have a participation ratio on the 
order of 1% (using a thickness of a few nanometers for the interface, as is standard and expected).

The dipole moment of 110 D extracted for the second type of TLSs is anomalously large and it only appears 
out of equilibrium due to a gap in its density of states. One likely candidate for this TLS is tunneling nanoclusters 
of atoms, see e.g., Ref.63. Insights of the two types of TLSs gleaned from the experiment are of general interest to 
understand TLS properties in amorphous solids, and of increasing importance due to their impact in quantum 
information science. The fast bias technique has been previously used to study the non-equilibrium loss for a 
couple different materials: silicon nitride46 and alumina21. However, we have not yet seen excess loss in these 
materials. The two-TLS model is silent with respect to the electric dipole moments of the TLSs, which can vary 
between materials. A recent study suggests that mechanical and dielectric loss in amorphous silicon originates 
from two different types of TLSs65. Our measurement here is sensitive to the size of the electric dipole moment 
of the TLSs, which is plausibly material dependent. To check the generality of the second TLS type in other 
amorphous solids, one possibility is to repeat our non-equilibrium protocol, but measure both the dielectric 
and acoustic responses, as large acoustic response out of equilibrium is expected irrespective of the value of the 
electric dipole moment. Alternatively, one could also measure the thermal conductivity, which is proportional 
to square of the TLS-phonon coupling, and compare the results with and without a rapidly varying bias field. 
Such studies would allow detailed characterization of TLSs at low and high energies. This could clearly establish 
if high-energy TLSs will appear from high sweep rates in qubits and reduce their coherence, as well as help to 
uncover an appropriate microscopic model.

Methods
Experimental setup.  The resonators are fabricated with Al/a-Si/Al trilayer films on highly resistive silicon 
substrates. The bottom aluminum layer (100 nm) and the top aluminum layer (250 nm) are sputtered via DC 
sputtering. The low-stress amorphous silicon layer (250 nm) is grown by PECVD at 100 °C. The film can have 
oxygen- and hydrogen-based impurities related to the low growth temperature and SiH4 used in the growth, 
either of which might be responsible for the moments in p1 (see discussion above). The resonator (Fig. 1a) is 
defined by photolithography and subsequent etching. It consists of four equal bridge parallel-plate capacitors 
(Fig. 1a,b), which is modified from that in ref.31. Assuming the dielectric constant for the amorphous silicon 
is 11.5, the capacitor has a total capacitance C = 1.2 pF ( C1− C4 = C ). The vias are etched by SF6 to connect 
the capacitor to the meander inductor. The resonator is inductively coupled to the coplanar transmission line 
for standard transmission measurements of S21 . The measurements were performed at the base temperature of 
the dilution refrigerator ( Tbase ≈ 20mK). A dc bias field, Eb = Vb/2d , where d = 250 nm is the thickness of the 
amorphous silicon dielectric, is applied across the capacitors. The bridge layout is effective to isolate the micro-
wave resonance energy from the bias field input port. A triangular bias voltage is applied. The time depend-
ence of the loss for a resonator when a periodic bias field is applied is studied in Ref.46. The maximum bias is 
Eb,max = 0.44V/μm, and the fastest bias frequency is fb = 4.5MHz. The resonance frequency f0 = 5.1GHz. S21 ’s 
are measured as a function of photon number, n and bias rate, Ėb . The corresponding loss tan δ , equal to the 
inverse resonator quality 1/Qi , is found from each S21 measurement. See Supplementary Information I for more 
wiring and attenuation details in the measurement setup.

Loss due to LZ transitions within the STM.  The Hamiltonian of a single TLS driven by 
the resonator electric field Eres(t) = Eac cos(ω0t) and by a time-dependent bias electric field Eb(t) is 
H = (1/2)(�(t)σz +�0σx)− p · Eac cos(ωt)σz , where σi ( i = x , y, z) are the Pauli matrices, p is the TLS dipole 
moment, �(t) = �(0)− 2p · Eb(t) is the asymmetry energy tuned by the bias field and �0 is the tunneling 
energy. In the instantaneous eigenbasis of the TLS, the corresponding Hamiltonian is

where E(t) =
√

�2(t)+�2
0 is the TLS energy splitting, assumed to be slowly varying on the time scale 2π/ω0 . 

A TLS with �0 < �ω0 can be swept through resonance at time t0 for which E(t0) = �ω0 . Near this resonance the 
energy splitting can be expanded as E(t) ≈ �ω0 + �v(t − t0)

46,47, where v = Ė(t0)/� = v0

√

1−
(

�0/�ω0

)2
cos θ 

with θ the angle between p and Eb , and v0 = (2p/�)Ėb(t0) the maximum bias rate.
The TLS absorption in the absence of the bias field can be separated into the so-called relaxation absorption, 

arising from the longitudinal term ( ∝ σz ) in the brackets of Eq. (2), and the resonant absorption resulting from 
the transverse coupling ( ∝ σx)28,29,66,67. In the regime ω0 ≫ kBT/� ≫ Ŵ1,Ŵ2 considered in this paper ( Ŵ1 and Ŵ2 
are the TLS relaxation and decoherence rates, respectively), the resonant mechanism dominates and the longitu-
dinal term in Eq. (2) can be neglected. The TLS dipole moment induced by the resonator field can therefore be 
written as �p(t)� = −p cos θ(�0/�ω0)�σx(t)� = ℜ

[

χEace
−iω0t

]

 , where χ = χ ′ + iχ ′′ is the TLS electric suscep-
tibility. The imaginary part of the susceptibility, χ ′′ , yields the imaginary part ε′′ of the dielectric constant due to 
TLSs upon averaging over the ensemble of TLSs ( χ ′ gives the shift in the real part of the dielectric constant due 
to TLSs, which is small compared to the material dielectric constant ε ). The loss tangent tan δ = ε′′/ε is thus pro-
portional to the out of phase ( ∝ sin(ω0t) ) component of 〈σx(t)〉 . To calculate this component, we transform to the 
frame of reference rotating around the z axis with frequency ω0 , using the unitary transformation UR = eiω0tσz/2 . 
Since URσxU

†
R = cos(ω0t)σx − sin(ω0t)σy , in the rotating frame of reference the relation χ ′′ = (��R/E

2
ac)�σy� 

holds67, where �R = �R0 cos θ(�0/�ω0) is the TLS Rabi frequency, with its maximum value �R0 = pEac/� . 
Moreover, application of the rotating wave approximation yields the LZ Hamiltonian

(2)H =
1

2
E(t)σz − p · Eac cos(ω0t)

(

�(t)

E(t)
σz −

�0

E(t)
σx

)

,
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governing the dynamics of a TLS resonant passage47. The probability for photon absorption in a transition is the 
famous LZ probability for an adiabatic transition from the initial state |g , n� to the final state |e, n− 1� [Fig. 1d], 
Pad = 1− e−π�2

R/(2v) . Finite TLS relaxation and decoherence rates Ŵ1 and Ŵ2 can be taken into account by means 
of the Bloch equations within the rotating frame of reference67. The Hamiltonian (3) can be written as the Ham-
iltonian of a spin-1/2 particle in a magnetic field, HLZ = −S · B , where S = �σ/2 and B = −(�R, 0, v(t − t0)/�) . 
The corresponding Bloch equations read d�S�/dt = �S� × B− (Ŵ2�Sx�,Ŵ2�Sy�,Ŵ1(�Sz� − Sz0)) , where 
Sz0 = (�/2) tanh(�ω0/2kBT) . In our calculations we neglect pure dephasing of the resonant TLSs, such that 
Ŵ2 = Ŵ1/2 . Assuming TLS relaxation into the phonon bath, one has Ŵ1(�0) = Ŵ1,m(�0/�ω0)

2 , where Ŵ1,m is 
the maximum relaxation rate for resonant TLSs with energy splitting E = �ω0 . If the bias duration is longer than 
the TLS relaxation time T1 = 1/Ŵ1 , the steady state solution depends on time via the detuning from resonance 
δE = v(t − t0) , and ε′′ can be obtained by averaging χ ′′ over the ensemble of TLSs with the distribution function 
P(E,�0) = ρE/(�0

√

E2 −�2
0) , where ρ is the TLS DOS, assumed to be energy-independent within the STM. 

The integration over energies can then be replaced by integration over time, leading to the expression

where tan δ0 = πρp2/(3ε) is the intrinsic loss tangent and the integration variables are x = �0/(�ω0) and 
y = cos θ (in terms of these variables v = v0

√
1− x2 y and �R = �R0xy ). This loss is a functionof the param-

eters ξ = 2v0/(π�
2
R0) and Ŵ1,m/�R0 , and can be calculated by a numerical integration of the Bloch equations.

In the regime Ŵ1,m/�R0 ≪ 1 , dissipation can be neglected for ξ ≫ Ŵ1,m/�R0 , and one obtains the expression 
for the dielectric loss tangent47

By performing numerical integration over x and y, one obtains the normalized loss tan δ/ tan δ0 as a function of 
the dimensionless bias rate ξ , approaching unity at ξ ≫ 1 , as shown in Fig. 1d.

Loss due to the second type of TLSs.  Let us derive the expression for the non-equilibrium DOS of the 
second type of TLSs, ρ2(E, Ėb) , under the assumption that their energy-dependent equilibrium DOS results 
from interactions between the two types of TLSs, as motivated by the Efros-Shklovskii coulomb gap55,56 and 
discussed in Refs.51,54. In equilibrium, the DOS is reduced by interaction with standard TLSs that break the 
Efros-Shklovskii stability criterion E + E′ − 2u/R3 > 0 , where E′ is the energy of the standard TLS, u/R3 is the 
mutual TLS-TLS interaction and R is the distance between the TLSs. We note that interactions exist also among 
the second type of TLSs, but since they are scarce at low energies, the dominating interactions are with the 
standard TLSs. As discussed in Refs.51,54, at higher energies interactions among the second type of TLSs lead to 
weaker logarithmic energy dependence of the DOS [see Fig. 4]; here we neglect these interactions and consider 
the gap in the DOS at low energies due to interactions between the two types of TLSs. In the non-equilibrium 
situation of our experiment, only those standard TLSs that are capable of changing their state during the sweep 
time 1/(2fb) will contribute to the reconstruction of the gap in the DOS. For fb ≪ Ŵ1 , where Ŵ1 is a typical 
relaxation rate of standard TLSs, the DOS ρ2(E, fb ≪ Ŵ1) should approach the DOS at equilibrium, ρ2,eq(E) , 
discussed in Ref.51. On the other hand, in the limit of instantaneous sweep, fb ≫ Ŵ1 , the non-equilibrium DOS 
ρ2(E, fb) should satisfy the condition ρ2(E, fb ≫ Ŵ1) ≈ ρ2,eq(E + p2Eb,max) . Taking into account the fraction 
1− e−Ŵ1/(2fb) of standard TLSs that can flip during time 1/(2fb) , where Ŵ1 = Ŵ1(E

′,�0) is the relaxation time of 
standard TLSs with energy E′ and tunneling energy �0 , we obtain the expression

where �(x) is the step function and E0 = min{Emax, �ω0 + p2Eb,max} with Emax ∼ 10 K being the maximum 
energy of standard TLSs. This expression fulfills both limiting conditions discussed above. The exponent in the 
last line of Eq. (6) gives the enhancement of the equilibrium DOS ρ2,eq(E) due to standard TLSs with relaxation 
rates Ŵ1 � fb . Using Ėb = 2fbEb,max and assuming relaxation of standard TLSs to be dominated by interaction 
with phonons, corresponding to the rate Ŵ1(E

′,�0) = Ŵ1,m(E
′)(�0/E

′)2 with Ŵ1,m(E
′) ∝ E′328, we obtain

(3)HLZ =
�

2
[v(t − t0)σz +�Rσx],

(4)
tan δ

tan δ0
= 3

∫ 1

0
dyy2

∫ 1

0

xdx√
1− x2

2v

π�R

∫ ∞

−∞
�σy(t)�dt,

(5)
tan δ

tan δ0
= 3

∫ 1

0
dyy2

∫ 1

0

xdx√
1− x2

2v

π�2
R

[

1− e−π�2
R/(2v)

]

.

(6)

ρ2(E, fb) ≈
∏

d3R

[

1− d3R

∫ E0

0
ρ1dE

′
∫ E′

�0,min

d�0

�0

�

(

2u

R3
− E − E′

)(

1− e
− Ŵ1

2fb

)]

ρ2,eq(E + p2Eb,max)

≈ exp

[

−ρ1

∫ E0

0
dE′

∫ E′

�0,min

d�0

�0

∫

d3R�

(

2u

R3
− E − E′

)(

1− e
− Ŵ1

2fb

)

]

ρ2,eq(E + p2Eb,max)

= exp

[

ρ1

∫ E0

0
dE′

∫ E′

�0,min

d�0

�0

∫

d3R�

(

2u

R3
− E − E′

)

e
− Ŵ1

2fb

]

ρ2,eq(E),

(7)ρ2(E, Ėb) = ρ2,eq(E) exp

[

8π

3
ρ1u

∫ E0

0

dE′

E + E′

∫ ln(E′/�0,min)

0
dx e−Ŵ1,m(E′)(�0,min/E

′)2(Eb,max/Ėb)e
2x
]
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where x = ln(�0/�0,min) . Since the major contribution to the integral over the tunneling amplitudes �0 comes 
from slow TLSs with small �0 , we can further simplify the last expression by replacing E′ by Emax in the last 
integral and in the upper limit. This results in the expression

At low power driving, where the second type of TLSs is non-saturated, the excess loss is 
tan δ2,0(Ėb) = πp22ρ2(�ω0, Ėb)/(3ε) and thus takes the form of Eq. (1). This loss serves as the intrinsic loss for 
the second TLS type, and is used for scaling the excess loss in Fig. 3. The LZ analysis described above is then 
carried out for the normalized excess loss tan δ2/ tan δ2,0 at all driving powers.

Data availability
The data in the main text and Supplementary Materials are available from the corresponding authors upon 
request.
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