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ABSTRACT
We report an approach to treat polarization effects in a one-dimensional (1D) environment using frozen-density embedding (FDE), suitable
to compute response to electron loss or attachment as occurring in organic semiconductors during charge migration. The present work
provides two key developments: (a) Local perturbations are computed avoiding an infinite repetition thereof and (b) a first-order equation-
of-motion ansatz is used to compute polarization effects due to electron loss and attachment, ensuring an efficient calculation by avoiding
open-shell calculations. In a first step, an unperturbed 1D molecular chain is equilibrated using FDE by translation of the center molecule. In
a subsequent second step, long-range contributions are frozen and a local perturbation is introduced in the center subsystem. Freeze–thaw
iterations are used to relax the electronic wavefunction of both the center subsystem and subsystems in an active region around the center
subsystem, avoiding the need to translate the perturbation. The proposed scheme proves to be very efficient and allows for the calculation of
charged tetraazaperopyrenes in 1D chains. Due to its efficiency, the new method is capable of providing wavefunction-based reference data
relevant for electronic couplings in complex environments.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0102267

I. INTRODUCTION

The ground state of a periodic system can be described effi-
ciently by methods using periodic boundary conditions. However,
this is not the case anymore for local perturbations in such systems,
as polarization effects occur in the surrounding of these perturba-
tions. One solution to this problem is to use large supercells such that
the interaction between the local perturbation and its image in the
next supercell becomes negligible. The treatment of charged defects
is only possible with additional technical tricks, e.g., a background
charge to make the cell neutral again.

One example of charged defects is the class of organic semicon-
ductors, where a charge is transported anisotropically depending on
the relative positions of the interacting molecules and, thus, also the
crystal packing.1,2 However, charge transport in organic semicon-
ductors is challenging for traditional charge-transport descriptions
such as a band description using Bloch states or polaronic band

models, both of which break down at ambient temperatures.3 On the
other hand, charge-hopping models separate the time scale of charge
transfer and intermolecular motion. For such charge-hopping mod-
els, diabatic electronic states were found to be helpful to understand
charge transfer using electron coupling matrix elements between the
initial and final states, i.e., before and after charge transfer.4

In supermolecular calculations, the charge is often delocalized
over the whole system (adiabatic state). However, a local charge
is stabilized by orbital relaxation or even geometric changes. The
diabatic states required for charge-hopping models, however, are
not eigenfunctions of the electronic Hamiltonian of the supersys-
tem. Therefore, a mapping between supermolecular adiabatic states
and subsystem diabatic states is in many cases not straightforward.
Numerous methods have been employed to compute electronic
coupling matrix elements for both charge transfer and exciton
transfer.2,4 On the one hand, there are supermolecular calculations
providing the adiabatic states from which the diabatic coupling
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elements are extracted, for which the usual quantum chemistry
methods including wavefunction methods are available. For the
diabatic states, one has to choose not only the electronic struc-
ture method but also the method for generation of diabatic states.
Several methods have been employed to diabatize the electron-
transfer states, e.g., block diagonalization of the adiabatic electronic
Hamiltonian,5,6 generalized Mulliken–Hush method (GMH),7–13

fragment orbitals,14–16 projection methods,17,18 and constrained
density functional theory (CDFT).19–22

An alternative method to effectively yield localized charge and
spin states is given by frozen-density embedding (FDE) developed by
Wesolowski and Warshel.23–26 This method has received attention
in the past due to its reduced scaling properties and the hierar-
chy of approximations offered by different truncation steps. Besides
charge-conserving methods,27 FDE was used to model, e.g., charge
transfer reactions, diabatic couplings, or hole transfer reactions
for which the donor and acceptor molecules were treated in dif-
ferent subsystems describing inter-subsystem charge transfer.28–32

Recently, it was shown that both intra- and inter-subsystem CT exci-
tations can be described correctly using projection-based subsystem
time-dependent density functional theory (TDDFT), provided that
suitable long-range corrected functionals and basis sets of sufficient
flexibility are used.33

While the references pointed out above rely on methods based
on DFT, FDE offers the advantage that it allows us to employ
wavefunction based methods to provide an accurate description of
charge transfer problems. In order to avoid spin contamination
and to investigate higher ionic states, wavefunction methods can be
combined with response theory or the equation-of-motion (EOM)
ansatz for electron loss or electron attachment.34–38 Recently, EOM-
based methods have been combined with FDE39–41 and also with
projector-based embedding.42–44

In the present work, we combine the 1D FDE procedure devel-
oped recently41 with explicit perturbations to account for the elec-
tronic polarization, e.g., occurring during charge migration in an
organic semiconductor while keeping the long-range contributions
fixed to the unpolarized equilibration. FDE is used to separate a
charged dimer from the remaining chain, while including a dimer in
a subsystem provides adiabatic states and their properties, thereby
avoiding inter-subsystem charge transfer excitations, i.e., avoiding
diabatic states. This hybrid approach relies on efficient wavefunc-
tion methods applicable to, e.g., tetraazaperopyrene (TAPP) dimers
to avoid the calculation of coupling matrix elements for coupled
electronic states in the case of wavefunction methods.45

This article is organized as follows. In Sec. II, the proposed
scheme is given, consisting of a first step, in which the 1D peri-
odic system is equilibrated, and a second step, in which a local
perturbation is introduced without repetition, computed using a
first-order approximation. Section IV provides sample applications
for selected case studies. In Sec. IV D, the proposed method is
employed to compute energy differences of charged states relevant
for electronic coupling matrix elements. Finally, the article closes
with our conclusions in Sec. V.

II. METHODS
In the present work, local perturbations in 1D chains are treated

in two steps. In the first step, the 1D periodic system is equilibrated

without a specific nonperiodic perturbation being present, as pre-
sented in Ref. 41 and briefly reviewed in Sec. II A. In the second
step, the center subsystem, denoted as subsystem 0 in the present
work, is perturbed and the ground-state electron density of a chosen
active region of subsystems is allowed to respond to this perturba-
tion using freeze–thaw (FT) iterations, described in Sec. II B. As a
key result of the present work, only the response in a local region
around the perturbation is required, avoiding the need to translate
the perturbation.

A. Equilibration: Unperturbed 1D periodic chain
1. Frozen-density embedding for an infinite chain

In the FDE scheme, the total density resulting from an infinite
amount of subsystems can be expressed as follows:41

ρtot(r) =
+∞
∑

k=−∞
ρk(r), (1)

where k is an integer and the properties of subsystem 0 shall be deter-
mined. Similar to finite systems,23–26 the total energy Etot in such a
case is formally given as the sum of the subsystem energies Ek[ρk]

and the interaction energy Eint,

Etot[ρ0, ρ+1, ρ−1, ρ+2, ρ−2, . . .]

=

+∞
∑

k=−∞
Ek[ρk] + Eint[ρ0, ρ+1, ρ−1, ρ+2, ρ−2, . . .]. (2)

It is implied, however, that for infinite systems, such a total energy
adds up to minus infinity and is, thus, never computed. The inter-
action energy is defined as the difference of the superposition of all
densities and the individual subsystem contributions,

Eint[ρ0, ρ+1, ρ−1, ρ+2, ρ−2, . . .] = Etot[ρ0+ρ+1+ρ−1+⋅ ⋅ ⋅ ]−
+∞
∑

l=−∞
E[ρl].

(3)

Using density functional theory for the interaction term, the intra-
subsystem Coulomb contributions cancel out, leaving only kinetic
and exchange–correlation contributions, both of which require
explicit functionals in FDE. To emphasize the nonadditive character
of the terms depending on explicit functionals, the latter two terms
are termed nonadditive contributions. Thus, the interaction energy
can be written as

Eint = EES + Enadd
xc,T , (4)

EES =∑
l≠k
∫ ρl(r)v

nuc
k (r)dr +

1
2∑l≠k
∫

ρl(r)ρk(r)
∣r − r′∣

drdr′, (5)

Enadd
xc,T = Exc,T[ρ0 + ρ+1 + ρ−1 + ⋅ ⋅ ⋅ ] −

+∞
∑

l=−∞
Exc,T[ρl]. (6)

Note that the dependencies of the densities are omitted for clarity.
In FDE, the effective embedding potential to be included, e.g., in
the self-consistent field (SCF) equations, is given as the functional
derivative of the interaction energy, which can be partitioned into
an electrostatic (ES) and a nonadditive (nadd) contribution,
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vemb
=

δEint

δρ
=

δEES

δρ
+

δEnadd
xc,T

δρ
= vES

+ vnadd
xc,T . (7)

2. Periodic repetition of one subsystem
So far, the equations describe an infinite chain of general sub-

systems. For a subsystem repeated infinitely in 1D, one can rewrite
the total density as

ρtot(r) = ρ0(r) +
±∞
∑

k≠0
ρ0(r + kT)

= ρ0(r) +
+∞
∑

k≥1
(ρ0(r − kT) + ρ0(r + kT)), (8)

where T is the translation vector from one molecular center to the
molecular center of the nearest neighbor. For the construction of the
embedding potential of subsystem 0, the electrostatic contributions
can be split into a short-range contribution V and a long-range con-
tribution W, depending on the (translated) density ρ0 of the center
subsystem,

vemb
[ρ0] = v

nadd
xc,T [ρ0] + V ES

[ρ0] +W ES
[ρ0], (9)

where

V ES
[ρ0](r) =

N

∑

0<∣k∣

⎛

⎝

−∑

C∈k

ZC

∣r − (R(0)C + kT)∣
+ ∫ dr′

ρ0(r′)
∣r − (r′ + kT)∣

⎞

⎠

.

(10)

Note that N indicates the subsystem defining the border of long
range and short range. The matrix representation of the long-range
contributions is computed in an approximate scheme as follows:

⟨μ∣W ES
[ρ0]∣ν⟩ =

+∞
∑

k>N
∑

C∈k

qC

2
⟨μ∣ν⟩(

1
∣RAC − kT∣

+
1

∣RAC + kT∣

+
1

∣RBC − kT∣
+

1
∣RBC + kT∣

), (11)

where qC are the atomic charges obtained from ρ0. For details on
the computation of short-range and long-range contributions, the
reader is referred to a previous work.41 For the current work, how-
ever, it is only important to note that in the 1D equilibration step,
all contributions, i.e., vnadd

xc,T [ρ0],V ES
[ρ0],W ES

[ρ0], are updated until
convergence is reached, as they depend on the density ρ0 of the
center subsystem 0.

B. Local perturbations: Freeze–thaw iterations
In the present work, local perturbations, such as charges, are

included in a second step after having equilibrated the 1D periodic
system. This is achieved by introducing the perturbation in subsys-
tem 0 and allowing cells in close proximity to relax their ground-
state electron density due to this perturbation using FT cycles in a
state-specific manner. The region being allowed to respond to the
perturbation is termed as active region in the present work. Long-
range contributions collected in W ES, however, are kept fixed to the
values obtained in the 1D periodic equilibration.

In this perturbation-specific approach, the ground-state density
of subsystem 0 is replaced with the perturbed density 𝜚0. The total
density partitioning in the FDE scheme for the active region with
2N + 1 subsystems can thus be written as

𝜚tot(r) = 𝜚0(r) +
N

∑

∣k∣>0
ρk(r), (12)

and the energy expression becomes

Etot = E[𝜚0] +
N

∑

∣k∣>0
E[ρk] + Eint[ρ−N , . . . ,𝜚0, . . . , ρ+N]. (13)

The dependence on these densities further carries over to the
embedding potential,

vemb
[ρ−N , . . . ,𝜚0, . . . , ρ+N] = v

nadd
xc,T [ρ−N , . . . ,𝜚0, . . . , ρ+N]

+V ES
[ρ−N , . . . ,𝜚0, . . . , ρ+N] +W ES.

(14)

This notation indicates that the long-range contribution W ES does
not depend on the perturbed densities as it is frozen employing the
charges obtained in the unperturbed 1D treatment. It should also be
pointed out that only the systems −N + 1, . . . , N − 1 are updated in
the FT scheme, while the densities of systems ±N are frozen after the
1D treatment, cf. Sec. III A. However, all 2N + 1 subsystems of the
active region as well as the static long-range contributions are used to
construct the embedding potential, see Eq. (14), ensuring a smooth
transition at the border of the active region to the unperturbed 1D
region.

1. Δ approach for electron loss and attachment
Electron loss or electron attachment can be described by

removing or adding electrons from a quantum-chemical calcula-
tion, also known as the Δ approach.46,47 The Δ approach is directly
accessible when unrestricted FDE implementations are available.48

For example, in the case of self-consistent field (SCF) methods, the
density of the center subsystem 0 is computed from the charged
unrestricted reference,

𝜚0(r) =∑
μν
(Dα

μν +Dβ
μν)μ(r)ν(r), (15)

with Dα, Dβ denoting the back-transformed SCF densities,

Dσ
μν =∑

pq
Cσ

μpDσ
pqCσ

νq, (16)

where C are the molecular-orbital (MO) coefficients and σ indicates
the spin. Equation (15) together with Eq. (14) is used in the present
work to compute the polarization of the active region without the
approximate approach, to be discussed in the following.

2. EOM scheme employing excited states
The Δ approach as outlined above can lead to spin contami-

nation, and it leads always to increased computational complexity
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TABLE I. Density matrices employed for the polarization of the environment in the proposed approximate scheme based
on the configuration interaction singles (CIS) orbital-unrelaxed density matrix. Charge 0 corresponds to a charge-conserving
excitation and +1 and −1 to electron loss (IP) and electron attachment (EA), respectively. i, j and a, b denote occupied and
virtual molecular orbitals, respectively.

Charge Dij Dab

+1 [+1] D(n)ij = −
[+1] X(n)j

[+1] X(n)i —

0 [0] D(n)ij = −∑a
[0] X(n)aj

[0] X(n)ai
[0] D(n)ab = +∑i

[0] X(n)ai
[0] X(n)bi

−1 — [−1]D(n)ab = +
[−1]X(n)a

[−1]X(n)b

when unrestricted determinants are used instead of restricted deter-
minants. These problems can be circumvented using equation-of-
motion (EOM) methods as the electron change is treated similarly to
charge-conserving excitations using a closed-shell reference deter-
minant. In this approximate treatment, no explicit spin information
is contained, but spin polarization was not found to be dominating
for polarization of separated molecules.48

In general, the perturbed density can be expressed as a sum of
ground-state and excited contribution using EOM methods,

𝜚0(r) =∑
μν
(DSCF

μν +
[−1/0/+1]D(n)μν )μ(r)ν(r), (17)

where DSCF
μν and [−1/0/+1]D(n)μν denote the closed-shell back-

transformed SCF and transition densities. The fact that it is often
sufficient to treat the inter-subsystem interaction at a reduced com-
plexity when employing FDE49 motivates the use of configuration
interaction singles (CIS) and Tamm–Dancoff approximation (TDA)
schemes to polarize the environment subsystems in the FT scheme.
In these methods, excited-state vectors X are obtained in general
from an eigenvalue equation,

AX(n) = ωnX(n), (18)

where A is the response matrix and ω the eigenvalue. The index n
denotes state-dependent quantities. The response matrices relevant
for the polarization of the environment are obtained for closed-shell
systems as

[−1]Aa,b = εaδab, (19)

[0]ACIS
ia,jb = (εa − εi)δijδab + 2(ia∣g12∣jb) − (ij∣g12∣ab), (20)

[0]ATDA
ia,jb = (εa − εi)δijδab + 2(ia∣g12∣jb) − (ij∣s12∣ab) + (ia∣wxc∣jb),

(21)
[+1]Ai,j = −εiδij. (22)

In this notation, [0] corresponds to a charge-conserving excitation
and [+1], [−1] to electron loss and electron attachment, respectively,
and ε are the orbital energies. g12 is the conventional two-electron
Coulomb repulsion operator; furthermore,

(pr∣s12∣rs) = (pr∣
α + βerf(ηr12)

∣r1 − r2∣
∣rs). (23)

It should be pointed out that the proposed approximate scheme
effectively corresponds to removing one occupied orbital or adding
one virtual orbital to the ground-state density matrix in the case
of electron loss (IP) and electron attachment (EA), respectively, to
compute the polarization of the active region. As this treatment is in
agreement with adiabatic diagrammatic construction to first order
[ADC(1)], the method will be denoted as ADC(1) in the following to
highlight the first-order character. However, having solved the tar-
get eigenvalue equation, the state-specific density is computed from
the solution vector X according to Table I, to be used in Eq. (17)
and eventually in the embedding potential, Eq. (14). The results are
compared with the Δ approach, cf. Sec. II B 1.

III. COMPUTATIONAL DETAILS
All methods employed in the present work are available in

the KOALA program using git revision bdc46502cd9. Embed-
ding calculations have been carried out employing PBE50 as the
exchange–correlation functional and PW91k51 as the kinetic energy
functional for the nonadditive contributions unless stated other-
wise. Both the embedded 1D periodic and perturbed systems have
included effective potentials on all environment atoms.52

Correlated methods used were EOM-IP as well as EOM-
EA variants of the second-order algebraic diagrammatic construc-
tion scheme [ADC(2)],40,53 employing the frozen-core approxi-
mation. Uncorrelated methods—i.e., Hartree–Fock, configuration
interaction singles (CIS), ground-state density functional theory
(DFT), and excited states in the Tamm–Dancoff approximation
(TDA)—have been carried out using semi-numeric exchange,
cf. the Appendix. If not stated otherwise, the def2-SVP basis was
employed.54,55 Functionals used were B3LYP,56–59 CAMB3LYP,60,61

and ωB97.62 The ωB97 functional was implemented in a local
version of xcfun.63

The geometry of the water chain and the TAPP chains was
taken from Ref. 41. Perturbed water chain information and details
of the hydrogen chain are provided in the supplementary material.

A. Computational protocol
As outlined above, in the first step, the 1D periodic system

is equilibrated without a perturbation beyond the 1D environ-
ment being present, cf. Fig. 1. The procedure starts by computing
subsystem 0 in vacuum, from which the embedding potential is
constructed by translation of the obtained density. Using macroit-
erations, subsystem 0 is updated in the presence of the embedding

J. Chem. Phys. 157, 134109 (2022); doi: 10.1063/5.0102267 157, 134109-4

© Author(s) 2022

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0102267


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 1. Total scheme including both equilibration of the unperturbed system and perturbation. A star indicates the densities being optimized in each step. For equilibration,
first the subsystem is computed in vacuum, followed by macroiterations using the translated density. After the equilibration step, all densities are frozen and properties of
subsystem 0 can be computed using the unpolarized densities. For the perturbation step, first the perturbed target subsystem density 𝜚0 is computed in the presence of
the active region employing the equilibrated density ρ0, followed by freeze–thaw iterations for the active region, i.e., to update subsystems −N + 1 to +N − 1 including
the target density 𝜚0. After the polarization step, all densities are frozen and properties of the perturbed subsystem 0 can be computed in the presence of the polarized
densities.

potential. The so-obtained density is again translated to construct a
new embedding potential, ensuring that all subsystems are identical,
to eventually yield full self-consistency for the entire chain. In par-
ticular, FT iterations are not required in this unperturbed 1D step,
as the entire chain is fully equilibrated when the active subsystem is
converged.41

In the second step, from the entire 1D chain, an active region
is defined, consisting of target center subsystem 0 and a given num-
ber of environment subsystems to take part in the FT scheme, cf.
Fig. 1. Beyond the chosen subsystems, the long-range contributions
are included as fixed charges. The subsystems ±N are included in
the construction of the embedding potential but kept frozen at all
times, i.e., they are not updated in the polarization treatment. Using
these constraints, a usual FT scheme is applied, augmented with the
long-range charges. In the present, work 3 FT iterations are used if
not stated otherwise.

FIG. 2. Convergence of subsystem dipole moments with respect to number of FT
cycles for an ionized center water molecule. Interactions are taken into account at
the ADC(1) level of theory. The equilibrated 1D chain yields a monomeric dipole
moment of 0.906 ea0. The monomer in vacuum yields a monomeric dipole moment
of 0.802 ea0.

In order to illustrate the proposed scheme, in Fig. 2, the conver-
gence with respect to the number of FT cycles is shown for N = 3, i.e.,
a FT scheme consisting of seven water molecules, of which the cen-
ter water molecule is ionized using the ADC(1) density, cf. Sec. II B.
For this example, subsystem 0, i.e., the charged center subsystem, has
an almost constant dipole moment of about 0.2 ea0 and shows vir-
tually no back polarization. Subsystems ±1 and ±2 start in the first
FT iteration at the value obtained in the 1D chain and are polarized
significantly in the FT scheme due to the newly introduced charge.
Subsystems ±3 remain on the value of the unperturbed chain as they
are frozen in the proposed scheme.

In the present work, only total subsystem dipole moments are
addressed to estimate the influence of the local perturbation in
the target subsystem. Further details could be gained by comput-
ing, e.g., effective atomic charges, providing an atomic resolution of
the polarization effects. Atomic charges, however, are not uniquely
defined and require additional analysis. In the present work, we
avoid such discussions and rather investigate the overall strength
of the perturbation and its decay with increasing distance from
subsystem 0.

IV. RESULTS
In this section, in particular, the accuracy of the spin-free first-

order approximate scheme is assessed. It is furthermore addressed
how many subsystems must be included to describe the long-range
polarization and the behavior of close neighbors in the case of a
small active region. We begin by investigating geometry perturba-
tions employing the proposed FT scheme for an active region of the
1D chain in Sec. IV A, for which the ground-state potential can be
used. Having established the FT scheme for the active region, state-
specific embedding potentials are used to investigate the response of
the environment starting in Sec. IV B.

A. Electronic ground state
We start by investigating perturbations in subsystem 0 in the

electronic ground state for which the ground-state density is used
to construct the embedding potential, equilibrating a 1D water
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FIG. 3. View of the manipulated water chain with OH− and H3O+ in the center subsystem 0 in the left and right figure, respectively. In the FT treatment, periodic charges
obtained from the 1D FDE approach are also included (not shown in this figure).

chain as described in Sec. II A. In a second step, geometry pertur-
bations are chosen such as rotations and addition and removing
protons for a 1D chain of water molecules. Two differently perturbed
water chains, i.e., protonated (H3O+) and deprotonated (OH−), are
displayed in Fig. 3. Having defined an active region around the per-
turbation, the electron density of the corresponding molecules are
allowed to relax using FT cycles.

In Fig. 4, the ground-state MP2 dipole moment components
along the chain are displayed for both H3O+ and OH− for differ-
ent number of environment subsystems. The notation 1/2N − 2/2
denotes 1 explicitly perturbed subsystem, surrounded by 2N − 2
subsystems being allowed to relax to the perturbation, enclosed by
2 subsystems frozen at the state after equilibration of the unper-
turbed 1D chain, summing in total to an active region consisting of

2N + 1 subsystems. The entries “1/6/2” thus denote an active region
consisting of 2N + 1 = 9 subsystems, of which 2 are frozen to the
1D equilibration.

Figure 4 reveals a number of features. First, a positive or nega-
tive charge leads to a different shift in the dipole moment component
along the chain of the water molecules located on the left or right
side of the local perturbation. Second, the influence of the charge
expands over a long range, as expected for Coulomb charges, and,
even for 2N + 1 = 33 molecules, there is a visible difference of the
molecules updated (±15) and the molecules frozen at the equili-
brated 1D chain (±16). Most importantly, however, the figure in
particular shows that the closest subsystems, i.e., ±1 and ±2, show
only small deviations from a small active region to an increased
active region.

FIG. 4. Convergence of subsystem dipole moments component along the chain with respect to correlation for OH− vs H3O+.

FIG. 5. Dipole moment component along the chain of center subsystem 0 with only H3O+ (blue) and H3O+ + 2H2O (green) molecules in the center subsystem. The blue
MP2 curve without averaging corresponds to the one in Fig. 4.
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FIG. 6. Convergence of subsystem dipole moment component along the chain with respect to cells (box size 4.0 bohrs) for an excited hydrogen molecule in cell 0 in state
S1, corresponding to a distance of 4.0 bohrs in Fig. 7.

In Fig. 5, the conceptual analysis and interpretation are illus-
trated using an H3O+ center subsystem 0. Blue curves correspond
to one molecule per subsystem, while for the green curves, H3O+

+ 2H2O molecules were included in the center subsystem. While in
the case of the blue curve, every single molecule has its own response,
in the case of three molecules in one subsystem, the average dipole
moment (0.5 a0) is obtained by dividing the obtained subsystem
dipole moment (about 1.7 a0) by the number of molecules. The
choice of Hartree–Fock or MP2 does not lead to significant differ-
ences in this case as the dipole moment is dominated by the charge.
This simple example thus illustrates once more that the average
dipole value is not able to provide satisfactory insight into molec-
ular properties, while the subsystem approach offers a conceptual
understanding of the influence of local perturbations.

B. Electron-conserving excitations
In Sec. IV A, the proposed two-step approach is illustrated

for example, in which the ground-state geometry of subsystem 0
is altered. We now turn to electronic perturbations employing the
approximate approach, cf. Sec. II B, leading to state-specific embed-
ding potentials. In the following, the properties of the environment
subsystems, e.g., the dipole moment, always refer to their polarized
electronic ground state, and the properties of subsystem 0 always
refer to the electronically excited state.

In order to analyze the influence of electron-conserving excita-
tions upon the ground-state electron density of the active region, we
have chosen the simple case of a chain of hydrogen molecules, see
Fig. 6. In this figure, the molecular ground-state dipole moments for
the neighbor cells are plotted for an excited hydrogen molecule, with
the excited-state dipole moment, located in the center subsystem
0. The figure reveals that the excitation leads only to a short-range
polarization in this case. The induced dipole moments have oppo-
site signs as the excitation pushes the electron cloud symmetrically
to each side so that molecules to the left and right are polarized in
opposite directions.

In Fig. 7, the dipole moment components along the chain are
plotted for selected box sizes, corresponding to weaker interactions
of the hydrogen molecules for which the bond length 0.75 Å was
fixed. The figure reveals that with increasing box size, the polar-
ization of the environment cells decreases smoothly. The side view
(right) in Fig. 7 shows the decrease in the total amount of the
induced dipole moment.

C. Electron loss and attachment
Having illustrated the electronic polarization due to excited

states with a constant number of electrons, we now turn to the case
of electron loss and attachment. The change of electron numbers can
either be described by removing or adding electrons in the reference

FIG. 7. Convergence of subsystem
dipole moment component along the
chain with respect to box size for an
excited center hydrogen molecule (bond
length 0.75 Å) in state S1. Box sizes of
4 and 8 bohrs correspond to intermolec-
ular distances of about 1.37 and 3.48 Å,
respectively. The side view of the 3D plot
is given in the right graph, the front view
in Fig. 6.
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FIG. 8. Convergence of subsystem dipole moment component along the chain with respect to cells (box size 4.0 bohrs) for an ionized hydrogen molecule in cell 0 in the
lowest duplet state, D1.

determinant or using EOM methods. In the following, these two
approaches are compared with respect to different properties using
both the water and hydrogen chain as well as a chain H-TAPP-H
monomers and bay-CF3-TAPP-H4Cl4 dimers.

1. Hydrogen chain
The results for the hydrogen chain are shown in Fig. 8, where

one electron has been removed from the center subsystem 0. Com-
pared to the charge-conserving case, the charge introduces a sig-
nificantly more pronounced electronic polarization in the active
region. Due to the electric charge in the center subsystem 0, not
only the induced dipole moments increase significantly but also the
electronic polarization becomes more long range, extending over
several subsystems. Figure 8 reveals that the proposed approximate
closed-shell treatment yields only minor deviations with the unre-
stricted reference case. Remarkably, the first environment cells are
obtained accurately even if only three environment cells on each

side are taken into account, independent of the long-range electronic
polarization due to the charge. It must be pointed out, however,
that in such a comparison, the effect of the active region is ana-
lyzed strictly within the uncoupled FDE (FDEu) scheme employed,
in which inter-subsystem orbital interactions are not taken into
account.

In order to analyze the influence of inter-subsystem orbital
interactions, Table II shows the EOM-IP-ADC(2) values in the
hydrogen chain example for a small (4.0 a0) and a large (8.0 a0)
box size for selected active regions and molecules included in sub-
system 0. In the case of the 8 a0 box, the intermolecular electronic
coupling is weak, resulting in a red shift of 0.06 eV with respect
to the monomer value in the case of supermolecular calculations.
The FDEu treatment introduces a small blue shift of 0.03 eV for
an active monomer that is compensated when using a pentamer
as target subsystem. However, in the case of this box size, no
significant inter-subsystem orbital interactions are present and the
FDEu scheme does not introduce significant approximations.

TABLE II. EOM-IP-ADC(2) values in eV for selected hydrogen chains consisting of 1, 3, 5, 9, 13, and 17 hydrogen molecules
with box sizes of 4.0 and 8.0 a0.

4.0 a0 8.0 a0

Active Vacuum 9 H2 13 H2 17 H2 Vacuum 9 H2 13 H2 17 H2

Monomer 1/6/2 1/10/2 1/14/2 1/6/2 1/10/2 1/14/2
16.11a 14.12b 14.15b 14.17b 16.11a 16.14b 16.14b 16.14b

Trimer 3/4/2 3/8/2 3/12/2 3/4/2 3/8/2 3/12/2
13.69a 13.11b 13.14b 13.17b 16.05a 16.11b 16.11b 16.11b

Pentamer 5/2/2 5/6/2 5/10/2 5/2/2 5/6/2 5/10/2
12.95a 12.68b 12.71b 12.71b 16.05a 16.08b 16.08b 16.08b

Supermolecule ⋅ ⋅ ⋅ 12.46a 12.33a 12.27a
⋅ ⋅ ⋅ 16.05a 16.05a 16.05a

aConventional supermolecular result, with 1, 3, 5, 9, 13, or 17 hydrogen molecules.
bFDE result, equilibrated in the unperturbed 1D periodic ground state.
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FIG. 9. Convergence of averaged water molecule dipole moments with respect to distance for an ionized center subsystem. All subsystems consist of three water molecules.

In the case of the 4 a0 box size, see Table II, the inter-
molecular electronic coupling is significantly increased, leading to a
strongly lowered IP value. The coupling extends over every molecule
included in the calculation, leading to a significant shift from 16.11
to 12.95 eV for the IP when going from a monomer to a pentamer,
respectively, as well as an additional shift of about −0.68 eV in the
case of 17 hydrogen molecules. Note that increasing the system size
from 9 H2 molecules to 17 H2 still leads to a shift of −0.19 eV in
this case. Table II reveals that the embedding treatment leads to an
IP of about 14.17 eV if a monomer is used as subsystem 0. This
value is about 1.94 eV below the vacuum monomer result, but it still
exhibits a significant deviation of about 1.90 eV to the best estimate
of 12.27 eV for this box size. Employing a trimer and a pentamer
as subsystem 0, the deviation with respect to the best estimate is
reduced to ∼0.90 and 0.44 eV, respectively, revealing on the one
hand that there exists a strong influence of the polarized environ-
ment and on the other hand that even in the case of the best FDE
calculation (12.71 eV), there still exists a non-negligible deviation to
the supermolecular calculation. Furthermore, Table II reveals that
increasing the active region, however, has only little impact on the IP
in this particular example when employing FDEu, even in the case
of strongly coupled subsystems.

The reason for the remaining discrepancy of supermolecular
and FDEu results in the case of the 4.0 a0 box is rooted in the
uncoupled FDE (FDEu) approach, in which no orbital information
is shared among the subsystems, resulting in a shift that is under-
estimated with respect to the full supermolecular calculations. For
example, in the best FDEu calculation, the orbital interactions of
5 hydrogen molecules (i.e., pentamer) are included, while in the
supermolecular calculation, orbital interactions of all 17 hydrogen
molecules are taken into account. Orbital interactions can, for exam-
ple, be included in FDE in the coupled FDE (FDEc) approach,64 but
such a treatment is beyond the scope of the present work. It must be
pointed out, however, that this hydrogen example is an extreme case
with an extremely strong coupling in the 4.0 a0 box size and a vanish-
ing coupling in the 8.0 a0 box size. The other systems investigated in
the present work, such as TAPP clusters, can be considered between
these two extremes, motivating the use of FDEu, in particular when
dimers are used as subsystems.

2. Water chain
Similar to the hydrogen example, one electron can also be

removed from center subsystem 0 in the case of the water chain.
The electronic polarization of the active region in this case is shown

TABLE III. Induced H-TAPP-H monomer dipole moments due to charge −1 for subsystem 0 (N = 4).

Subsystem

PBCa FTb
−3 −2 −1 0 +1 +2 +3 1Dc

HF anion@HF–in–HF 0.208 0.383 0.843 0.000 −0.834 −0.389 −0.270 0.000
ADC(1)@HF–in–HF 0.216 0.406 0.952 0.000 −0.942 −0.412 −0.277 0.000

B3LYP anion@B3LYP–in–B3LYP 0.195 0.370 0.814 0.000 −0.807 −0.376 −0.254 0.000
ADC(1)@B3LYP–in–B3LYP 0.203 0.393 0.929 0.000 −0.920 −0.398 −0.261 0.000

CAMB3LYP anion@CAMB3LYP–in–CAMB3LYP 0.195 0.368 0.807 0.000 −0.799 −0.373 −0.253 0.000
ADC(1)@CAMB3LYP–in–CAMB3LYP 0.203 0.392 0.925 0.000 −0.916 −0.397 −0.261 0.000

aMethod employed in the 1D equilibration.
bMethods employed in freeze–thaw polarization step.
cDipole moment in the equilibrated 1D chain.
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TABLE IV. Induced H-TAPP-H monomer dipole moments due to charge +1 for subsystem 0 (N = 4).

Subsystem

PBCa FTb
−3 −2 −1 0 +1 +2 +3 1Dc

HF cation@HF–in–HF −0.291 −0.489 −0.756 −0.000 0.753 0.479 0.227 0.000
ADC(1)@HF–in–HF −0.299 −0.511 −0.853 0.000 0.848 0.501 0.234 0.000

B3LYP cation@B3LYP–in–B3LYP −0.294 −0.478 −0.725 −0.001 0.722 0.469 0.233 0.000
ADC(1)@B3LYP–in–B3LYP −0.302 −0.498 −0.820 0.000 0.816 0.489 0.241 0.000

CAMB3LYP cation@CAMB3LYP–in–CAMB3LYP −0.290 −0.473 −0.719 −0.001 0.716 0.464 0.229 0.000
ADC(1)@CAMB3LYP–in–CAMB3LYP −0.298 −0.494 −0.817 0.000 0.812 0.485 0.237 0.000

aMethod employed in the 1D equilibration.
bMethods employed in freeze–thaw polarization step.
cDipole moment in the equilibrated 1D chain.

in Fig. 9 when using three water molecules in the center subsys-
tem 0. Note that in this figure, the molecular dipole moments are
plotted, which are obtained from averaging the computed dipole
moment in the case of subsystem 0. It can be seen that in this
case, the approximate approach based on EOM, cf. Sec. II B, dif-
fers from the Δ approach serving as a reference. However, it can
be seen that the dipole moments differ only for the three molecules
contained in the center subsystem 0. Subsystems ±1 show already
only a small deviation, from which it can be concluded that the elec-
tronic polarization provided is sufficient to construct the embedding
potential. In this case, in the Δ approach, the charge is delocalized
over the three water molecules, while in the case of the approx-
imate treatment, the charge seems to be located on one water
molecule.

3. TAPP chains
Charged molecules inside complex environments are in par-

ticular interesting for organic semiconductors in which a charge
is migrating and, thereby, polarizing the neighboring molecules.
Results for the H-TAPP-H compound are collected in Tables III
and IV for an electron-attached and an electron-detached cen-
ter subsystem 0, respectively. Dimensions for subsystems and the
active region are provided in Table V. In these tables, the sub-
systems contain only one molecule each. The tables reveal that
the spin-free approximate approach based on EOM leads to sim-
ilar electronic polarization effects compared to the calculations

based on the Δ approach. For this H-TAPP-H compound, the cen-
ter subsystem dipole moment remains zero, while the molecules
to the left and right are polarized with a similar magnitude but
in different directions. While the actual numbers differ, the three
methods shown, viz., Hartree–Fock, B3LYP, and CAMB3LYP, yield
electronic polarization of the subsystems that agrees qualitatively.

Based on the results obtained for H-TAPP-H chain of
monomers, we have computed the electronic polarization of the
environment cells with the ADC(1) approach for a chain of
bay-CF3-TAPP-H4Cl4 dimers, displayed in Fig. 10, the results of
which are collected in Table VI. In this case, the center subsystem has
a nonvanishing dipole moment, which seems to be amplified slightly
due to the charge consistently for the HF, B3LYP, and CAMB3LYP
methods. In the case of the positive charge, the dipole moment of the
center subsystem 0 is even more amplified.

Having investigated the electronic polarization of the environ-
ment using the approximate scheme based on EOM, the next step is
to investigate the actual properties of the target subsystem 0 using
the wavefunction method ADC(2). For example, for a discussion
concerning the accuracy of different methods for ionization poten-
tials, see, e.g., Refs. 65 and 66. In Table VII, we have collected the
results obtained using different approaches to compute the actual
IP and EA values of molecules in a chain. For these calculations,
the same dimensions hold as reported in Table V. In this table, the
ΔSCF results were computed using the energy of the active subsys-
tem EI. The results show that in the case of electron loss and electron

TABLE V. Dimensions for the TAPP calculations displayed for each subsystem and an active region with N = 4, i.e., 1/6/2.
Despite using subsystems, the number of atoms in the active region defines, e.g., the number of ECPs and the integration
grid for the entire active region to be included in each subsystem calculation.

Subsystem Active region

System Molecules Atoms Basisa Molecules Atoms Basisa

H-TAPP-H 1 36 414 9 324 3 726
2 72 828 18 648 7 452

bay-CF3-TAPP-H4Cl4 2 84 1136 18 756 10 224
adef2-SVP orbital basis.
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FIG. 10. View of the bay-CF3-TAPP-H4Cl4 chain with effective potentials displayed
as transparent green spheres. In the calculation, periodic charges obtained from
the 1D FDE approach are also included. Earlier work41 was carried out without
effective potentials.

attachment using EOM methods, a better agreement for the low-
est ionic states with the ΔSCF methods B3LYP and CAMB3LYP is
obtained when the environment is not polarized.

D. Electronic couplings for molecular charge transfer
Finally, the possibilities offered by the approach proposed in

the present work shall be outlined briefly. Using the new method,
it becomes possible to compute charge transfer matrix elements
inside such a 1D chain for increased system sizes. For symmetric
dimers, the diabatic coupling matrix elements ∣Hab∣ can be computed
from

∣Hab∣ =
1
2

ΔE, (24)

cf. Ref. 67, where ΔE is the energy difference of two adiabatic ionized
states. This energy difference can be computed either from the exci-
tation energy ΔE = E1 − E0—where E1 is the lowest excited cationic
state and E0 is the electronic cationic ground state—in the case of
linear-response methods or from ΔE = E2 − E1—where E2 and E1
are the second and first excited states, respectively—in the case of
EOM methods. Nonsymmetric dimers require using e.g., the GMH
method,7–13 for which the dipole moments are available in the EOM
formalism.40

Statistical data of the methods used in the present work with
respect to the MRCI+Q method are given in Table VIII. Additional
information with respect to the data provided in the table is provided
in the supplementary material. A detailed analysis including geo-
metric polarization relevant for reorganization energies, however, is
beyond the scope of the present article and will be addressed in a
future work. In the present work, we demonstrate the proof of prin-
ciple that these investigations become possible in the presence of a
1D environment.

Sample results for an ethylene chain consisting of ethylene
dimers for hole transfer are collected in Table IX. The table reveals
a number of observations. First, the linear-response TDA meth-
ods significantly overestimates the coupling for unrestricted refer-
ence determinants in the case of the range-separated functionals
CAMB3LYP and ωB97. The CIS method, on the other hand, sig-
nificantly underestimates the coupling by about 200 meV. The table
furthermore reveals that the basis set has only a small influence in the
case of IP, as the triple-zeta basis shows no qualitative improvement
over the split-valence basis. CAS-CI, using an active space of seven
electrons in ten spatial orbitals, yields a deviation of about +100 to
+150 meV. The DFT results can be improved using orbital-energy
differences of the uncharged dimer. It should be highlighted again
that in such an EOM approach, the orbitals are not polarized. In the
case of the ethylene dimer, the net influence of the 1D environment
is found to be rather small for the coupling. However, for example,
in the case of CAMB3LYP, each of orbital energies is shifted by about
the same amount of 200 meV, resulting in a constant energy differ-
ence. The 1D environment thus leads to a non-negligible effect for
the individual orbitals but cancels out to a large fraction for relative
energies.

Sample results for bay-CF3-TAPP-H4Cl4 for both hole (IP)
and electron (EA) transfer are collected in Table X. Analogous

TABLE VI. Induced bay-CF3-TAPP-H4Cl4 dimer dipole moments (N = 4), cf. Fig. 10. The 1D equilibration was carried out with the corresponding method (HF, B3LYP,
CAMB3LYP).

Subsystem

Charge FTa
−3 −2 −1 0 +1 +2 +3 1Db

+1 ADC(1)@HF–in–HF −0.275 −0.673 −2.478 −3.097 1.544 0.427 0.062 −0.592
+1 ADC(1)@B3LYP–in–B3LYP −0.327 −0.700 −2.550 −2.981 1.649 0.464 0.137 −0.486
+1 ADC(1)@CAMB3LYP–in–CAMB3LYP −0.315 −0.668 −2.452 −2.944 1.579 0.440 0.127 −0.505

−1 ADC(1)@HF–in–HF 0.255 0.555 1.715 −1.145 −2.211 −0.706 −0.438 −0.592
−1 ADC(1)@B3LYP–in–B3LYP 0.230 0.586 1.819 −1.042 −2.269 −0.722 −0.389 −0.486
−1 ADC(1)@CAMB3LYP–in–CAMB3LYP 0.214 0.557 1.735 −1.043 −2.182 −0.693 −0.373 −0.505
aMethods employed in freeze–thaw polarization step.
bDipole moment in the equilibrated 1D chain.
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TABLE VII. Vertical IP and EA of H-TAPP-H monomer in eV employing different FT equilibration schemes and methods.

PBC Pol.a FT equilibrationb Method IP EA

HF
No HF–in–HF LR-ADC(2) 7.296 −1.899

Yes HF–in–HF ΔSCFc 5.798d
−1.907

ADC(1)@HF–in–HF LR-ADC(2) 6.758 −2.418

B3LYP
No HF–in–B3LYP LR-ADC(2) 7.395 −1.998

Yes B3LYP–in–B3LYP ΔSCFc 7.519 −1.762
ADC(1)@HF–in–B3LYP LR-ADC(2) 6.857 −2.517

CAMB3LYP
No HF–in–CAMB3LYP LR-ADC(2) 7.378 −1.981

Yes CAMB3LYP–in–CAMB3LYP ΔSCFc 7.760 −1.849
ADC(1)@HF–in–CAMB3LYP LR-ADC(2) 6.845 −2.495

aPolarization of the environment due to charged subsystem 0, cf. Fig. 1.
bN = 4.
cComputed from E0[𝜚0].
d
⟨S2
⟩ = 2.75.

to the ethylene dimer, DFT yields rather different results depend-
ing on the functional in the case of ΔE = E1 − E0, i.e., for the
linear-response TDA ansatz using an unrestricted reference. The
influence of the basis set, however, is not as significant, as in the
case of CAMB3LYP/SVPD, the EA is computed to be 133 meV
instead of 135 meV, obtained in the case of CAMB3LYP/SVP.
GW@PBE0/def2-TZVP yields 114 meV, see the supplementary
material. Using the orbital-energy differences of occupied and

virtual orbitals of the neutral system yields a qualitative agreement
with the EOM-IP- and EOM-EA-ADC(2) method, respectively.
Altogether, the IP values are significantly altered by the environ-
ment, while the EA values remain almost constant. It should be
pointed out, however, that the underlying orbitals are shifted by the
same amount, leading to a vanishing environment shift. Compar-
ing the energy differences, the tables reveal that EA leads to larger
energy differences compared to IP, which might indicate a stronger

TABLE VIII. Statistics of different methods for the calculation of ∣Hab∣ in meV, with respect to MRCI+Q.67 Further details are
given in the supplementary material.

Method Chargea 2∣Hab∣ = Basis MSEb MUEc MRSE/%d MRUE/%e MAXf

B3LYP 0 εHOMO − εHOMO-1
SVP −46.6 46.6 −24.1 24.1 99.7

TZVP −39.0 39.0 −17.7 17.7 94.2

CAMB3LYP 0 εHOMO − εHOMO-1
SVP −26.6 26.6 −15.3 15.3 55.2

TZVP −16.5 16.7 −6.4 6.9 44.2

ωB97 0 εHOMO − εHOMO-1
SVP −61.0 61.0 −31.0 31.0 132.2

TZVP −54.9 54.9 −26.3 26.3 127.2

RI-GW@PBE0 0 εHOMO − εHOMO-1
SVP −44.2 44.2 −23.2 23.2 92.7

TZVP −37.6 37.6 −17.9 17.9 87.2

EOM-IP-ADC(2) 0 E2 − E1
SVP −15.4 15.6 −9.2 9.3 121.6

TZVP −9.0 10.6 −1.9 4.5 112.5

NEVPT2g
+1 E1 − E0 15.6 −5.8 6.9 50.8

CC2g
+1 E1 − E0 39.5 +39.8 39.9 72.2

aCharge of the reference determinant.
bMSE: Mean signed error MSE = 1

n∑n(ycalc − yref).
cMUE: Mean unsigned error MUE = 1

n∑n∣ycalc − yref∣.
dMRSE: Mean relative signed error MRSE = 1

n∑n(ycalc − yref)/yref .
eMRUE: Mean relative unsigned error MRUE = 1

n∑n∣ycalc − yref∣/yref .
fMAX: Maximal unsigned deviation MAX = max ∣ycalc − yref∣.
gReference 67.

J. Chem. Phys. 157, 134109 (2022); doi: 10.1063/5.0102267 157, 134109-12

© Author(s) 2022

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0102267
https://www.scitation.org/doi/suppl/10.1063/5.0102267
https://www.scitation.org/doi/suppl/10.1063/5.0102267


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE IX. Electronic couplings in meV for the ethylene dimer at a distance of 3.5 Å relevant for hole transport. The reference value for the ethylene dimer using MRCI+Q in
vacuum is ∣Hab∣ = 519 meV.67

∣Hab∣ =
1
2(E1 − E0)

a
∣Hab∣ =

1
2(E2 − E1)

b

Basis TDA-CAMB3LYP TDA-ωB97 CIS CAS-CI B3LYPc CAMB3LYPc EOM-ADC(2)

Vacuum def2-SVP 985 659 302 631 420 468 531 ×

def2-TZVPP 955 647 319 678 426 475 507 ×

1D chaind def2-SVP 991 663 310 624 425 472 512c 510e

def2-TZVPP 968 656 333 665 435 485 515c 512e

aExcitation energy of the first excited state of cation.
bExcitation energy difference of the first and second EOM excited state of neutral dimer.
cNo charge polarization in the ground state.
dPBC: HF; FT equilibration: ADC(1)@HF–in–HF (N = 4); method: EOM-ADC(2).
eState-specific approach with charge polarization in the ground state.

TABLE X. ΔE in meV for the bay-CF3-TAPP-H4Cl4 dimer. IP is related to hole transport, EA to electron transport. As the
bay-CF3-TAPP-H4Cl4 dimer is not symmetric, Eq. (24) cannot be applied to extract the coupling matrix element.67

ΔE = E2 − E1
a ΔE = E1 − E0

b

B3LYP CAMB3LYP EOM-ADC(2) TDA-CAMB3LYP TDA-ωB97

Vacuum IP 50 57 60 76.2 1004.3
EA 113 135 129 269.3 862.6

1D chainc IP 83d 91d 91e

EA 114d 130d 129e

aExcitation energy difference of the first and second EOM excited state of neutral dimer.
bExcitation energy of the first excited state of cation.
cPBC: HF; FT equilibration: ADC(1)@HF–in–HF; method: EOM-ADC(2).
dNo charge polarization in the ground state.
eState-specific approach with charge polarization in the ground state.

coupling, which is in agreement with the experimental observation
that TAPP compounds are electron transport materials.

As the bay-CF3-TAPP-H4Cl4 dimer is not symmetric, Eq. (24)
cannot be applied and, thus, there is no one-to-one mapping of
the energy difference and the coupling matrix element. There-
fore, extensions to Eq. (24) must be investigated,67 preventing
further conclusions with respect to the charge transfer property
of TAPP compounds in the present work. Future work, however,
shall be concerned with an in-depth analysis of the energy dif-
ferences and the extraction of electronic couplings for general,
nonsymmetric TAPP compounds. However, the present work is a
key step toward this direction, enabling the investigation of TAPP
compounds using EOM-ADC(2) methods in 1D chains in future
applications.

V. SUMMARY AND CONCLUSIONS
In the present work, we introduce local perturbations in 1D

molecular chains using FDE. This is achieved in two decoupled
steps. In the first step, an unperturbed 1D molecular chain is equi-
librated using FDE to polarize the subsystems with respect to a 1D
environment. In the second step, an active region is defined, being
allowed to relax the electronic ground-state density with respect to

a geometric or excited-state perturbation in the center subsystem 0.
This approach enables treating local defects in otherwise periodic
molecular systems without the need to translate the perturbation.

The second main goal of the present work is to establish
a first-order approximate computation of electronic polarization
effects using restricted wavefunctions to avoid the treatment of unre-
stricted determinants, which can suffer from spin contamination
and increased computational costs. The CIS-based densities, being
in agreement with the ADC(1) level of theory, lead to induced dipole
moments that are in agreement with the induced dipole moments
obtained from unrestricted calculations.

As a third main result, the present work shows that the elec-
tronic polarization of the closest neighbor subsystems is not sensitive
to the total number of subsystems contained in the active region.
This allows for a small active region around the perturbed subsystem
0, rendering the approach particularly efficient.

For symmetric dimers, energy differences of adiabatic states
can directly be related to electronic coupling matrix elements for
diabatic states relevant to charge transfer. Unfortunately, no simple
relation of the adiabatic and diabatic picture is available in the case
of nonsymmetric dimers, and the assessment of possible approaches,
e.g., such as the generalized Mulliken–Hush method, with respect to
TAPP compounds shall be addressed in a future work. However, the

J. Chem. Phys. 157, 134109 (2022); doi: 10.1063/5.0102267 157, 134109-13

© Author(s) 2022

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

present work provides the properties relevant for such studies using
wavefunction methods in complex environments, serving as a key
step toward describing charge migration in organic semiconductors
using wavefunction-based methods.

SUPPLEMENTARY MATERIAL

See the supplementary material for more information on
molecular geometries, a numerical comparison of the implemen-
tation of the semi-numeric exchange, statistics for the accuracy of
diabatic couplings Hab, and a selection of vacuum GW results for
electronic couplings.
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APPENDIX: SEMI-NUMERIC EXCHANGE

In the semi-numeric approach, the exchange contribution is
computed as follows:68

Kμν =∑
κλ
(μκ∣s12∣νλ)Dκλ =∑

g
Xμg∑

λ
Ag

νλFλg , (A1)

where

Xμg = μ(rg)
√
wg , (A2)

Fλg =∑
κ

Dκν Xg
κ , (A3)

Ag
νλ = (ν∣

α + βerf(ηr12)

∣r − rg ∣
∣λ). (A4)

Note that α = 0.19, β = 0.46, η = 0.33 in the case of CAMB3LYP and
α = 0, β = 1, η = 0.4 in the case of ωB97. The integral in Eq. (A4)
is computed using the Obara–Saika scheme. The nuclear attraction
integrals are computed from the basic integrals,

(0A∣
1

∣r − C∣
∣0B) = 2(

ρ
π
)

1/2
(0A∣0B)Fm(T), (A5)

(0A∣
erf(ηr)
∣r − C∣

∣0B) = 2(
ρ
π
)

1/2
(0A∣0B)

¿

Á
ÁÀ

η2

η2
+ ρ

Fm(
η2

η2
+ ρ

T),

(A6)
where

ρ = ζa + ζb, (A7)

T = ρ∣P − C∣2. (A8)

Integrals for higher angular momenta are obtained from the usual
recursion relations.69
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