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Abstract 

In this investigation, a DEM-CFD model of an optical belt sorter is modified to become adaptive 

to varying belt speeds. For that, the positions and orientations of the nozzle bar and collecting 

containers are rearranged. Also, the duration of nozzle activation and optimal position of 

particle ejection are adjusted. For the derivation of optimal velocity-dependent parameters, a 

two-dimensional model is derived and optimized as a pre-processing step. The derived 

parameters are applied to the three-dimensional DEM-CFD model. Two optically 

distinguishable types of demolition waste materials are considered. All conveyor belt velocities 

are investigated with instantaneously and lagged activated nozzles, which represent fast and 

realistic triggered nozzle activations. The application of optimized sorting setups shows 

promising sorting results for a broad range of conveyor belt velocities. The obtained results 

are discussed in terms of their feasibility in being applied to real optical belt sorters. 
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1 Introduction 

Sensor-based sorters play an important role in material pre-treatment in the mining industry 

[1]–[3], in food processing [4]–[8] and in waste sorting [9]–[12]. The growing importance of 

sorting quality is the main driver in sorting system development today [13]. Increasing demand 

for resources, along with growing environmental awareness, contributes to that aim and 

pushes it in the vast field of waste recycling especially. The European Union aims to improve 

waste recycling and decrease waste landfilling in the next years [14]. To name two examples, 

with only roughly 46 % of demolition waste (2011, [15]) and 37 % of plastic waste in the EU 

being currently recycled (2021, [16]), there is still a great need for improvement in particular 

for development in terms of sensor-based sorting. In sensor-based sorting, properties of 

material classes are measured by a sensor, and those classes are separated based on their 

properties. Sensor types and, therefore, measured properties can be manifold, for example, 

[13] elemental composition measured by X-ray fluorescence, reflection or absorption of

infrared light, radiation measured by near-infrared spectrometry or hull detection measured via 

laser triangulation. In the present study, we focus on a sorting system that captures the particle 

color using a camera in the visible wavelength range. The principle of such an optical belt 

sorter is shown in Fig. 1. Either a line-scan camera or an area-scan camera detects the position 

and color of transported particles. The images are transferred to a data processing unit that 

controls an array of nozzles and calculates the specific nozzle, nozzle activation time and 

duration based on the particle movement by means of a sorting model. An estimation of particle 

movement is necessary, since the particle movement is unknown between the camera and 

nozzle array (see Section 3.1.2 for details). 



Fig. 1: Illustration of an optical belt sorter. Particles from different classes move on the 

conveyor belt and are either detected by a line-scan camera or an area-scan camera. Particle 

movement is tracked by the area-scan camera, or the position orthogonal to the movement is 

detected by the line-scan camera. The measurement data is then processed, and an activation 

signal is transmitted to the particular nozzle, which sorts out the reject material. The accept 

material can pass undisturbedly. 

In sorting processes today, all components of the optical belt sorters are adjusted and fixed to 

the expected operational conditions, mainly mass flow and input composition. Those 

conditions, however, can fluctuate, possibly leading to reduced sorting accuracies. This 

behavior was recently shown in an experimental investigation by [15]. Such fluctuations are 

commonly being tried to be balanced by monitoring and pre-handling of material inflows. In 

[15], the authors used a hopper for the feed material to ensure that the material stream would 

remain constant and within the limit where the sorting performance is acceptable. Another 

approach, which we present in this work, is to directly react to the fluctuations within the sorter 

operation by adjusting the sorter hardware and parameters in an adequate way. As a result, 

operation points of the sorter can be found, at which the sorting accuracy remains constant or 

even increases, despite changing inflow conditions. This can be accomplished by influencing 



the occupancy density on the conveyor belt through the conveyor belt velocity. The belt velocity 

affects the proximity of the particles on the belt, which could have a major impact on the sorting 

quality. This hypothesis is going to be investigated in this study. 

The aim of our study can be summarized as follows: We want to develop an adaptive belt 

sorter that reacts to changed input feed conditions such as the mass flow rate by adapting the 

conveyor belt velocity, so that optimal sorting performance is assured. For that, we want to find 

a method to compute optimal sorting parameters at arbitrary belt velocities as a pre-processing 

step. With those parameters, we want to show that changing the conveyor belt velocities can 

be useful for improving the sorting accuracy. Our work can be seen as the first step towards 

an adaptive belt sorter, since conveyor belt velocity and sorting parameters are not changed 

during operation, but in advance. 

To do so, a DEM-CFD model of an optical belt sorter, as depicted in Fig. 1, is utilized to identify 

the components and parameters that have to be adapted to changing conveyor belt velocities. 

These are the collecting containers’ positions and orientations as well as nozzle activation time 

and nozzle activation offset. As a next step, a framework to compute optimal sorting 

parameters at arbitrary conveyor belt velocities is introduced. This is necessary for optimization 

since a direct optimization as part of the DEM-CFD would be too computationally costly. After 

the computation of the optimal parameters at a range of belt velocities, they are applied to the 

DEM-CFD model for validation. With those optimal parameters being validated, the sorting 

behavior of the optical belt sorter is investigated in detail for four inflow scenarios. Furthermore, 

the influence of the time lag between nozzle activation and actual formation of the air jet is 

analyzed in detail, since faster moving bulk particles require a faster sorting for proper material 

separation. A slow and thereby realistic sorting system is therefore compared to a fast-sorting 

system with no lag in terms of sorting accuracy. Sorting with the obtained parameters yields 

very good sorting results up to certain belt velocities. We can show that varying belt velocities 

can be beneficial for a range of sorting scenarios. The benefit is directly connected to the speed 

of nozzle activation. 



For our study, we utilize the DEM-CFD method to model the whole sorting system. With the 

DEM, we compute the particle motion along with particle-particle and particle-wall interactions. 

The fluid phase is computed with a CFD simulation and coupled to the DEM at the area of the 

nozzles. We use unresolved DEM-CFD modeling, which means that the flow around the 

particles is not resolved in detail. The fluid force acting onto the particles is modeled by a drag 

force provided through a correlation instead. For material, we exemplarily consider two 

optically distinguishable rubble materials (brick and sand-lime brick) where the non-spherical 

particle shape is represented by clustered spheres. To perform reliable DEM-CFD simulations, 

we obtain the DEM contact parameters by an experimentally driven calibration procedure. 

Our strategy to model optical sorting by DEM-CFD is motivated by the qualities of this 

approach: While computing times are relatively small, the results yielded can be analyzed in 

detail, and large particle systems can be handled. Although being used throughout many 

industries, there is very little research concerning the numerical investigation of optical belt 

sorters [16]–[19]. The uncoupled DEM is used broadly to address pure conveying problems, 

especially to analyze wear and load [20]–[22]. Coupled DEM-CFD simulations are prominent 

in other topics, such as pneumatic conveying [23], fluidized beds [24] and many others [25]–

[27]. For a comprehensive overview of possible methods, limits as well as applications of the 

DEM-CFD, we refer the reader to [28]. 

Our article is structured as follows: The following Section 2 explains the methodology we used 

for the DEM-CFD simulations. Section 3 contains the description of our sorter model and the 

material representation in the DEM-CFD with calibration results. In Section 4, the 

consequences of changing the belt velocity for the bulk material and the affected components 

of the sorting are discussed. Section 5 presents the derivation of our optimization framework 

to operate the belt sorter at varying belt velocities and the derivation of related optimized 

parameters. In Section 6, the optimized parameters are applied to the DEM-CFD for a sorter 

operated at varying belt velocities for validation. Furthermore, real sorting scenarios with two 

different nozzle activation speeds are assessed, and corresponding results are shown. Finally, 



Section 7 draws conclusions from the findings. The calibration procedure of the DEM contact 

parameters is described in Appendix A. 

2 Methodology: DEM-CFD approach 

To describe particle movements within the DEM, we start with the second Newtonian law of 

motion governing translational motion for particle 𝑖𝑖 with the mass 𝑚𝑚𝑖𝑖 and acceleration 𝑥⃗𝑥𝚤̈𝚤 

𝑥𝑥�⃗ 𝑖̈𝑖𝑚𝑚𝑖𝑖 = 𝐹𝐹𝑖𝑖𝑐𝑐���⃗ + 𝐹𝐹𝑖𝑖
𝑔𝑔����⃗ + 𝐹𝐹𝑖𝑖

𝑓𝑓���⃗ ,  (1)

where 𝐹𝐹𝚤𝚤𝑐𝑐����⃗  are summed contact forces originating from contact with other particles and walls, 

𝐹𝐹𝚤𝚤
𝑔𝑔�����⃗  is the gravitational force, and 𝐹𝐹𝚤𝚤

𝑓𝑓�����⃗  is the force caused by interaction with the surrounding

fluid. Analogously, rotational motion is governed by 

𝐽𝐽𝑖𝑖𝜔𝜔𝚤𝚤����̇⃗ + 𝜔𝜔𝚤𝚤����⃗ × (𝐽𝐽𝑖𝑖𝜔𝜔𝚤𝚤����⃗ ) = 𝛬𝛬𝑖𝑖−1(𝑇𝑇𝑖𝑖𝑐𝑐���⃗ + 𝑇𝑇𝑖𝑖𝑟𝑟���⃗ ),   (2) 

where 𝑇𝑇𝚤𝚤𝑐𝑐����⃗  are the summed torques induced by wall and particle interactions through sliding 

friction and 𝑇𝑇𝚤𝚤𝑟𝑟����⃗  by rolling friction, 𝐽𝐽𝑖𝑖 is the mass tensor of inertia, and 𝜔𝜔𝚤𝚤����̇⃗  denotes the angular 

acceleration both in the body fixed frame. A vector e.g. a torque is transformed from the global 

frame to the body fixed frame by 𝛬𝛬𝑖𝑖−1. Note that no torques are induced by fluid interaction as 

no submodels for particle-fluid torques are applied and the fluid force 𝐹𝐹𝚤𝚤
𝑓𝑓�����⃗  causes no torques.

Adopting the approach from [19] and as also common within the DEM, the occurring contact 

forces 𝐹𝐹𝚤𝚤𝑐𝑐����⃗  are split into a normal and a tangential part for contact modelling.  

Normal contact forces 𝐹𝐹𝑛𝑛�����⃗  are described by a linear spring damper model 

𝐹𝐹𝑛𝑛����⃗ = 𝑘𝑘𝑛𝑛𝛿𝛿 𝑛𝑛�⃗ + 𝛾𝛾𝑛𝑛𝑣𝑣�⃗ 𝑟𝑟𝑟𝑟𝑟𝑟
𝑛𝑛 , (3) 

with normal spring stiffness 𝑘𝑘𝑛𝑛, virtual overlap 𝛿𝛿, normal vector 𝑛𝑛�⃗ , normal damping coefficient 

𝛾𝛾𝑛𝑛 and the relative velocity at the contact point 𝑣⃗𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛 . For the linear spring damper model, the 

spring stiffness and damping coefficient can directly be calculated from coefficients of normal 

restitution between particle–particle and particle–wall interactions and the predefined collision 

time [29]. 



The tangential force 𝐹𝐹𝑡𝑡����⃗  is calculated from a linear spring model and assumed to be limited by 

Coulomb friction  

𝐹𝐹𝑡𝑡���⃗ = min �𝑘𝑘𝑡𝑡 �𝜉𝜉𝑡𝑡��⃗ � , 𝜇𝜇𝑐𝑐�𝐹𝐹
𝑛𝑛����⃗ �� 𝑡𝑡 , (4)

where 𝑘𝑘𝑡𝑡 is the tangential spring stiffness, �𝜉𝜉𝑡𝑡���⃗ � is the absolute value of tangential displacement 

and 𝜇𝜇𝑐𝑐 is the coefficient of Coulomb friction. The tangential vector is denoted by 𝑡𝑡. 

To model rolling resistance 𝑇𝑇𝚤𝚤𝑟𝑟����⃗  in eq. (2), a model provided by [30] is adapted. The rolling torque 

can be calculated from the coefficient of rolling friction 𝜇𝜇𝑟𝑟, the normal force 𝐹𝐹𝑛𝑛�����⃗  , the rolling 

radius 𝑅𝑅𝑟𝑟 and the relative angular velocity 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟��������⃗ , 

𝑇𝑇𝑖𝑖𝑟𝑟���⃗ = −𝜇𝜇𝑟𝑟|𝐹𝐹
𝑛𝑛����⃗ |𝑅𝑅𝑟𝑟

𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟������⃗
|𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟������⃗ | . (5) 

The fluid phase as part of the nozzle jet is modeled separately for our setup and is described 

by conservation of mass (eq. (6)) 

𝜕𝜕𝜌𝜌𝑓𝑓
𝜕𝜕𝜕𝜕

+ ∇ �𝜌𝜌𝑓𝑓𝑢𝑢𝑓𝑓���⃗ � = 0 (6) 

and conservation of momentum (eq. (7)), respectively 

𝜕𝜕(𝜌𝜌𝑓𝑓𝑢𝑢𝑓𝑓���⃗ )

𝜕𝜕𝜕𝜕
+ ∇ �𝜌𝜌𝑓𝑓𝑢𝑢𝑓𝑓���⃗  𝑢𝑢𝑓𝑓���⃗ � = −∇𝑝𝑝 + ∇𝜏𝜏 + 𝜌𝜌𝑓𝑓 𝑔𝑔��⃗ . (7) 

In Eqs. (6) and (7) 𝜌𝜌𝑓𝑓 is the fluid density, 𝑢𝑢𝑓𝑓����⃗  the fluid velocity, 𝑝𝑝 the pressure, 𝑔⃗𝑔 the gravitational 

acceleration and 𝜏𝜏 the stress tensor. For turbulence modeling, we use the Reynolds-averaged 

Navier-Stokes equations, so that the stress tensor can be written as 

𝜏𝜏 = 𝜂𝜂𝑒𝑒 ��∇ 𝑢𝑢𝑓𝑓����⃗ � + �∇ 𝑢𝑢𝑓𝑓����⃗ �
−1�, (8) 

where 𝜂𝜂𝑒𝑒 is the effective viscosity which is obtained through turbulence modeling. In doing so, 

we introduce additional equations and can solve Eqs. (6) and (7). Details of the used 

turbulence model are given in Section 3.1.1. 

DEM and CFD are coupled one way, which means that the solid phase is disturbed by the 

fluid, but not vice versa. Therefore, Eqs. (6) and (7) are not considering the local fluid fraction 

𝜀𝜀𝑓𝑓, and the particle-fluid interaction force is not applied volumetrically. As a consequence, 



phenomena such as slipstream introduced by particles on other particles are not covered by 

our model. 

The fluid force 𝐹𝐹𝚤𝚤
𝑓𝑓�����⃗  onto the particles is calculated by a drag-force correlation, which is the

reason why our model is referred to as unresolved DEM-CFD. The exact flow profile around a 

particle is not computed but averaged and used to calculate an integral drag force, which acts 

at the particle centroid. We use the drag model introduced by [31], since it is applicable to 

complexly shaped particles. It is written as 

𝐹𝐹𝑖𝑖
𝑓𝑓���⃗ =  𝐹𝐹𝑖𝑖𝐷𝐷����⃗ + 𝐹𝐹𝑖𝑖

∇𝑝𝑝�����⃗ =
1
2
𝜌𝜌𝑓𝑓�𝑢𝑢𝑓𝑓���⃗ − 𝑢𝑢𝑝𝑝���⃗ �𝑐𝑐𝐷𝐷𝐴𝐴⊥𝜀𝜀𝑓𝑓

1−𝜒𝜒�𝑢𝑢𝑓𝑓���⃗ − 𝑢𝑢𝑝𝑝���⃗ �. (9) 

The acting force is the sum of the drag 𝐹𝐹𝚤𝚤𝐷𝐷�����⃗  and pressure gradient force 𝐹𝐹𝚤𝚤
∇𝑝𝑝�������⃗ . Velocities of fluid

and particles are denoted by 𝑢𝑢𝑓𝑓����⃗  and 𝑢𝑢𝑝𝑝����⃗  , respectively. 𝑐𝑐𝐷𝐷 denotes the drag coefficient of a 

particle, 𝐴𝐴⊥ the projection area perpendicular to the flow direction, and 𝜀𝜀𝑓𝑓 is the local fluid 

porosity. It holds that  0 < 𝜀𝜀𝑓𝑓 < 1 due to the solid phase in the fluid. 𝜒𝜒 is an empirical correction 

factor and depends on the particle Reynolds number 𝑅𝑅𝑅𝑅 by 

𝜒𝜒 = 3.7 − 0.65 exp �−
(1.5 − log(𝑅𝑅𝑅𝑅)2

2
� . (10) 

The Reynolds number for a particle is given by 

𝑅𝑅𝑅𝑅 =
1
𝜂𝜂𝑓𝑓
𝜀𝜀𝑓𝑓𝜌𝜌𝑓𝑓𝑑𝑑𝑝𝑝�𝑢𝑢𝑓𝑓����⃗ − 𝑢𝑢𝑝𝑝����⃗ �. (11) 

Particle diameter and fluid viscosity are denoted by the volume-equivalent quantity 𝑑𝑑𝑝𝑝 and 𝜂𝜂𝑓𝑓, 

respectively. The drag coefficient is computed from a correlation that was derived by [32] for 

non-spherical particles and is written as  

𝐶𝐶𝐷𝐷 =
8
𝑅𝑅𝑅𝑅

1

�𝜙𝜙⊥
+

16
𝑅𝑅𝑅𝑅

1

√𝜙𝜙
+

3
√𝑅𝑅𝑅𝑅

1
𝜙𝜙3/4 + 0.42 ⋅ 100.4(− log(𝜙𝜙))0.2 1

𝜙𝜙⊥
 , (12) 

where 𝜙𝜙⊥ is the ratio of the cross-sectional area of a volume equivalent sphere to the cross-

sectional area of the particle perpendicular to the flow. The ratio of the surface area of a volume 

equivalent sphere to the surface area of the particle is denoted by 𝜙𝜙. It is referred to as the 

sphericity.  



3 Considered sorting setup 

3.1 Numerical model of the optical belt sorter 

The dimensions and outline of the investigated sorting system are adapted from a laboratory-

scale real sorting system, as shown in Fig. 2 (a). The feeding system was removed, and the 

components were simplified. An overview of the sorter setup can be seen in Fig. 2 (b). The 

sorter is fed by a continuous particle inlet (1), that controls the inflowing mass flow and the 

proportion of the material mixture. A chute (2) reduces vibrations of the material and pre-

accelerates it. On the belt (3) the material is accelerated and transported to the detection stage 

(4), where image acquisition and successive data processing take place. The detection stage 

is either an area of 10 cm length (4a – 4b) for area-scan, camera-based sorting or a line (4b) 

for line-scan or ideal constant velocity sorting. If reject material that has to be sorted out is 

detected, nozzles are activated at the separation stage (5), and the particles are ejected into 

the reject container (6). The accept material can pass the separation stage without being 

deflected and is collected in the accept container (7). 

The conveyor belt is 554 mm long and 140 mm wide. The accept and reject containers and 

nozzle positions, as well as their orientations, are adjustable in x- and z-direction. The exact 

position is bulk material dependent, since its friction parameters and flow resistance vary. 

Besides the latter parameters, further crucial parameters for the sorting process are the 

activation duration of the nozzles ∆𝑡𝑡, the sorting model (see Section 3.1.2) and the nozzle time 

lag, which will be explained in Section 3.1.3. Note that all mentioned parameters are commonly 

fixed for a particular sorting operation. 

The numerical model of the experimental system was extensively compared against 

experiments in [33]. Here, we have studied the transport behavior of the bulk material on the 

conveyor belt. Additionally, the sorting accuracy of the numerical and the experimental system 

was compared for three input compositions at two different mass flows at a fixed conveyor belt 

velocity, totaling 6 scenarios. By that, not only the particle model (DEM), but also the particle-

fluid interaction (DEM-CFD) was validated. The numerical model was found to reproduce the 

transport behavior with more than 95 % accordance in the majority of cases. The sorting results  



of the simulations matched the experiments with more than 95 % in all investigated cases. For 

further details see [33]. 

Fig. 2: Model of the laboratory scale optical sorting system (a). The blue frame indicates the 

part of the system that is simplified and used for the investigations in this work (b). 

3.1.1 Model of the fluid jets 

Fig. 3 (a) shows the geometry of a typical single nozzle as it is used for optical sorters. The 

geometry was imported from the real sorting system, which was mentioned before. It consists 

of one inlet and two outlets with a diameter of 1.6 𝑚𝑚𝑚𝑚 each. The computation of the resulting 

fluid field as required for the DEM-CFD was done with Ansys Fluent 19.2. We used a stationary 

incompressible RANS with a realizable k-ε turbulence model that is well suited for free stream 

flows. Thus, eqs. (6) and (7) apply. Common model constants were used for the simulation 

[34]: A turbulence intensity of 3 % and a turbulent viscosity ratio of 8 were assumed. The inlet 

pressure was 1.5 𝑏𝑏𝑏𝑏𝑏𝑏. The converged simulation result is shown in Fig. 3 (b) as a contour plot 

of the absolute velocity magnitude. One can observe the characteristic features of a free 

stream jet, which consist of the decay of the core stream velocity and the crosswise spread of 

the velocity profile [35]. Furthermore, we can locate the so-called merging point (MP) (see Fig. 

3 (b)), which is found where the inner shear layers of the jets originating from the two outlets 

(see Fig. 3 (a)) converge. Another characteristic point, the combined point (CP), is located 

further downstream and designates the region where the profile of the dual free stream jet 

a) b)



corresponds to that of a single free stream [36]. Fig. 3 (c) shows a plane cut through the jet at 

a 3 𝑐𝑐𝑐𝑐 distance from the outlet. This distance becomes important in Section 5.1.1. 

To prepare the fluid field for coupling with DEM simulations, it was coarsened from about 5 

million cells to roughly 10,000 cells. The fine CFD resolution is not needed for unresolved 

DEM-CFD coupling and would slow down computations unnecessarily. The whole nozzle array 

with 32 nozzles was obtained by concatenating the coarsened single nozzle field 32 times. 16 

of 32 activated nozzle fields are shown in Fig. 3 (d). 

In the sorting process, 1-3 nozzles are activated to target a detected particle, depending on 

the particle size in the y-direction. A single nozzle covers a width of 5 𝑚𝑚𝑚𝑚 in the real sorting 

system [37], so that the length of the whole bar is 16 𝑐𝑐𝑐𝑐 in y-direction. Note that the air 

resistance during free flight of particles is neglected. 

Fig. 3: Geometry of a single nozzle (a), its related fluid field as a contour plot (b), a plane cut 

at 3 𝑐𝑐𝑐𝑐 from the outlet (c) and half of the resulting fluid field of the whole nozzle bar (d). 

3.1.2 Applied sorting models 

In the following, the three sorting models that were used for the present study are presented 

briefly. The purpose of the models is the prediction of a particle trajectory between the 

detection stage (camera) and the the separation stage (nozzle array). On that basis, the 

nozzles are triggered, and the activation time is computed. Note that the activation time is not 

necessarily identical to the formation of the fluid jet and depends on the time lag of the nozzle, 

which will be explained in the next Section 3.1.3. The exact location to which the sorting model 

must predict the particle movement to assure optimal separation is significant. This location 

will be optimized in Section 5.1.1. It is clear that the prediction quality of the used sorting model  

b)a) c) d)



is crucial for the overall sorting accuracy. A necessary requirement for the working principle of 

an optical sorter is therefore the optical distinction of particles by the sorting model. This 

excludes stacking material on the conveyor belt, where the lower layer of material is not visible 

and thus cannot be targeted properly, strongly reducing the accuracy of the whole sorting 

system. Such scenarios mark the operational limit of optical belt sorting and are consequently 

excluded from the investigations in this study. 

Line-scan, camera-based sorting: The particles are detected by a line-scan camera at the 

last x-position in the transport direction of the conveyor belt as close as possible to the nozzle 

array (see Fig. 4 (a)). A passing particle’s y-position can be identified in the camera image, the 

y-velocity component orthogonal to the transport direction is typically assumed to be zero. The

velocity in the x-direction is typically assumed to be constant with a predefined value because 

it is not captured by the camera. In our sorter model, the assumed velocity is chosen to be 

equal to the average particle velocity at the detection stage 𝑣̅𝑣 obtained by preliminary DEM-

CFD simulations, because slippage between particles and conveyor belt may occur, and 

therefore the conveyor belt velocity is not a suitable choice for 𝑣̅𝑣. Line-scan camera based 

sorting is the standard sorting method applied in industry-scale sorters [38]. 

Area-scan, camera-based sorting: In this prediction procedure, the particles are tracked over 

a certain belt length, see Fig. 4 (b). Thus, this method is also referred to as tracking. Multitarget 

tracking, combined with Kalman filter estimation, is utilized for positional and velocity prediction 

of the tracked particles [39]. During the tracking phase, the state of each particle is 

subsequently estimated based on the measurements and used to predict the next state. The 

final prediction for the particular nozzle at which the particle arrives and the time of the nozzle 

activation is done between the last particle measurement and nozzle array. Calculations are 

performed under the assumption that the velocity remains constant. For further details 

concerning the algorithm and performance comparisons, see [19], [40]–[43]. The tracking is 

realized as a MATLAB routine, which runs parallel to the DEM-CFD simulation and exchanges  



data with the simulation code, as shown in Fig. 4 (c). This method showed to yield improved 

sorting results compared to the standard line-scan, camera-based sorting, which, among other 

reasons, is due to a prediction of the y-velocity component of the particles. 

Ideal constant velocity: This prediction method is a numerical benchmark model applicable 

as part of the DEM-CFD. It makes use of the exact, numerically known velocity in x- and y-

direction 𝑣𝑣 at the detection stage. Nozzle ID and activation time are then calculated under the 

assumption of a constant velocity between the detection stage (camera) and separation stage 

(nozzle array), as shown in Fig. 4 (d). This model will be referred to as ideal constant velocity 

(ICV) in this work. 

Fig. 4: Employed prediction models for sorting: a) line-scan camera, b) area-scan, camera-

based sorting, c) its realization in the DEM-CFD, and d) ideal constant velocity (ICV) prediction. 

3.1.3 Nozzle operation modes 

Two operation modes of nozzle activation were considered in our DEM-CFD model, namely 

instantaneous and lagged. This is because, in reality, nozzles need a short timespan to be 

triggered and to mechanically open and close and therefore cannot be used arbitrarily fast one 

after another. The lag is caused by data processing time, electrical signal transmission time 

and nozzle valve opening or closing, respectively. Nozzles are, therefore, automatically 

operating lagged in real sorting systems. In other words, a nozzle is not activated at the desired 

time, but a short period later. The lag time depends on the type of nozzle used (see [44]). Since  
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the numerical model is not limited by mechanical or electrical delays, it is possible to study the 

influence of the lag time on the sorting accuracy, which is done in Section 6.2. In the sorter 

described in [37], lag times of around 5 𝑚𝑚𝑚𝑚 were found, which we will also use for our 

investigations. The principle of both activation modes is illustrated in Fig. 5. It shows possible 

scenarios in a series of nozzle activations for an exemplary activation duration of 10 𝑚𝑚𝑚𝑚. In 

scenario (a), we see that instantaneous nozzles can be activated arbitrarily fast due to absence 

of any lag at which it is opened or closed. The activation time is marked by the red line at the 

beginning of an activation period. When a nozzle is operated in lagged mode, the influence of 

the lag depends on the time between the points of activation. A nozzle can be activated at the 

desired point of time if there is sufficient time to account for the opening lag (b). As the 

activation times move closer together, a shortening of activation duration can occur due to the 

preceding nozzle opening (c). In the worst-case scenario (d), a whole activation period is 

blocked by preceding nozzle activation. As particle velocities increase at higher conveyor belt 

velocities, the time lag of nozzle activation will be important for sorting accuracy, which will be 

shown in Section 6.2. 



Fig. 5: Illustration of the two operation modes: Instantaneous and lagged. Outlined in four 

different scenarios with an exemplary activation duration of 10 𝑚𝑚𝑚𝑚. Active nozzles are indicated 

by blue horizontal lines, and opening and closing durations are shown as skew lines. Activation 

time is indicated by a red line. Instantaneous nozzles can be activated arbitrarily fast (a). In 

lagged mode, a nozzle needs an additional 5 𝑚𝑚𝑚𝑚 to open and close, respectively. This may be 

without influence (b), but can also lead to shortening (c) or blocking (d) of the activation period, 

depending on the temporal spacing between the activation times. 

3.2 Material model 

3.2.1 Considered materials 

For a realistic sorting scenario, brick (Fig. 6 (a)) and sand-lime brick (Fig. 6 (c)) have been 

chosen. By sieving analysis, a particle size distribution was obtained based on the smallest 

particle dimension, see Fig. 6 (b) and (d). Sizes of 3.5 𝑚𝑚𝑚𝑚 to 5.65 𝑚𝑚𝑚𝑚 were chosen for 

representation of both materials, since they account for more than 80 % of the material bulk. 

Density analysis yielded 2541 𝑘𝑘𝑘𝑘/𝑚𝑚³ for brick and 2565 𝑘𝑘𝑘𝑘/𝑚𝑚³ for sand-lime brick.  



Fig. 6: Brick material (a) and its size distribution (b) and sand-lime brick (c) and its size 

distribution (d). 

3.2.2 Particle representation for simulations 

Based on size analysis, a CT scan of a representative selection of particles was conducted. A 

clustering approach was employed since there exist faster and more robust contact detection 

algorithms for clustered shapes that cut computing time drastically. Up to 20 spheres were 

used to approximate the complex hulls by utilizing an optimization algorithm that minimizes the 

protruding sphere volume. Fig. 7 shows the CT scanned particles (a, c) and the resulting 

clusters (b, d) for two examples. In order to model the variation of particle shapes, 3 – 5 shapes 

were identified for each size class. As a result, brick is represented by 11 particle types, sand-

lime brick by 13 types. Moments of inertia of the particles were calculated according to [45]. 

The particle shape was approximated by a large number of points, with a virtual volume being 

assigned to each point. The moments of inertia were determined by the volume in the 

corresponding coordinate direction. The error introduced by the utilized drag correlation in eq. 

(12) is around 14.5 % in average, depending on the exact particle shape. Considering the

shapes of the approximated particles, the error caused by the drag correlation can be assumed 

to be around 12 %, because cylindrical or cuboid shapes are not used [32]. The authors 

additionally state that the error is likely to be less, because the experimental data used to 

calculate the error shows broad scattering. The use of a resolved DEM-CFD approach, where 

the fluid around the particles is solved in detail directly yielding the drag, would increase the 

computational cost and complexity of the simulations by several orders of magnitude, as a 

much finer time step would be required as for unresolved DEM-CFD simulations. In addition, 
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the coupling region in the area of the nozzle jets would have to be remeshed around each 

particle as they move through the fluid field. In highly loaded particle systems as investigated 

in Sec. 6, there may be present more than 20 particles at once in the coupling region. For a 

broad parameter study with a large number of simulations, such an approach (resolved DEM-

CFD) would not be realizable. 

Fig. 7: Triangular mesh from particle CT-Scan (a, c) and the same particle represented by a 

cluster of spheres (b, d) shown for two different particles. 

3.3 DEM contact parameters 

As a next step, calibration of DEM contact parameters was carried out. The general procedure 

of calibration is to conduct small-scale experiments and simulate them, while parameters of 

interest are varied until the results of simulations and experiments match, partly adapting the 

procedure of [46]. For a detailed outline of the calibration procedure, see Appendix A. The 

parameters obtained by calibration are summarized in Tab. 1. Note that parameters for the 

contact of both materials with each other were determined by averaging the values of the single 

material contacts for simplification. This is valid since both materials behaved similarly in all 

calibration experiments and contact parameters differ only marginally. Note further that all 

obtained contact parameters can be either directly applied in the DEM or, in the case of the 

COR, be used to calculate a normal stiffness 𝑘𝑘𝑛𝑛 and a damping coefficient 𝛾𝛾𝑛𝑛 (both required 

for Eq. (3)) based on a predefined time for a collision, which was set as 𝑡𝑡 = 5 ∙ 10−4 𝑠𝑠. Each 

collision was resolved by 50 steps, resulting in a simulation time step of  𝑡𝑡 = 1 ∙ 10−5 𝑠𝑠. The 

tangential stiffness 𝑘𝑘𝑡𝑡 (see Eq. (4)) is calculated as stated in [47] based on mechanical material 

properties. 
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Material Sand-lime brick Brick 

COR P-SB [-] 0.19 0.215 

COR P-B [-] 0.215 0.24 

COR P-CB [-] 0.19 0.1 

COR P-SW [-] 0.19 0.1 

Sliding friction P-SB [-] 0.19 0.18 

Sliding friction P-B [-] 0.18 0.17 

Sliding friction P-CB [-] 0.4 0.56 

Sliding friction P-SW [-] 0.4 0.56 

Rolling friction P-SB [-] 2 ∙ 10-2 1.2 ∙ 10-2 

Rolling friction P-B [-] 1.2 ∙ 10-2 3.8 ∙ 10-3 

Rolling friction P-CB [-] 7.5 ∙ 10-3 5.8 ∙ 10-3 

Rolling friction P-SW [-] 7.5 ∙ 10-3 5.8 ∙ 10-3 

Tab. 1: Final calibrated parameters for simulations. (P) refers to the contacting particle, either 

sand-lime brick or brick that comes into contact with either sand-lime brick (SB), brick (B), 

conveyor belt (CB) or sorter wall (SW) material. 

4 Sorter operation at adaptable conveyor belt velocities 

With the numerical model of the optical belt sorter, a systematic study of the sorter at various 

conveyor belt velocities was conducted. Firstly, the bulk behavior on the conveyor belt was 

investigated. No subsequent sorting was performed in the simulations. Secondly, those 

components of the sorting system were identified, which were subject to the adjustment to 

changed belt velocities. The identification was made with regard to the particle trajectory in the 

free flight phase, which is highly impacted by the belt velocity. 

4.1 Characteristics of bulk transport 

To gain insight into the bulk behavior on the conveyor belt, numerical simulations were run at 

two mass flows with a pure material stream of the respective materials. Simulations were run  



at mass flows of 100 𝑔𝑔/𝑠𝑠 and 500 𝑔𝑔/𝑠𝑠, and conveyor belt velocities of 0.9 𝑚𝑚/𝑠𝑠 to 2.9 𝑚𝑚/𝑠𝑠 varied 

in 0.2 steps. The simulations were chosen such that they coincide with the sorting simulations 

in Section 6. Fig. 8 shows the average particle velocity at the conveyor belt end in (a) and the 

occupancy density on the conveyor belt in (b). The occupancy density is defined by the fraction 

of the total belt area that is particle-covered. 

Fig. 8: (a) Mean particle velocity when entering the free flight period versus the belt velocity for 

brick and sand-lime brick at 100 𝑔𝑔/𝑠𝑠 and 500 𝑔𝑔/𝑠𝑠. (b) Occupancy density as a function of the 

belt velocity for brick and sand-lime brick at 100 𝑔𝑔/𝑠𝑠 and 500 𝑔𝑔/𝑠𝑠. Both shown evaluated at 

conveyor belt velocities of 0.9 𝑚𝑚/𝑠𝑠 to 2.9 𝑚𝑚/𝑠𝑠 varied in 0.2 steps. 

The average particle velocity along the belt increases proportionally with belt velocity up to 

1.9 𝑚𝑚/𝑠𝑠, as shown in Fig. 8 (a). At higher belt velocities, particle slip occurs, and the curve 

flattens depending on material and mass flow. This is a general phenomenon of material 

conveying and depends on the specific conditions, such as transported material and belt 

friction [48]. Sand-lime brick is accelerated less than brick due to smaller friction on the 

conveyor belt (comp. Tab. 4). At 100 𝑔𝑔/𝑠𝑠, sand-lime brick reaches a maximum velocity 

of 2.28 𝑚𝑚/𝑠𝑠 in average while brick reaches a velocity of 2.42 𝑚𝑚/𝑠𝑠 at 100 𝑔𝑔/𝑠𝑠. Furthermore 

above 1.9 𝑚𝑚/𝑠𝑠 the distribution of the particle velocity along the belt broadens (not shown here). 

In Fig. 8 (b), there is a clear trend of decreasing occupancy density for belt velocities up 

to 2.3 𝑚𝑚/𝑠𝑠. Particles are pulled apart faster from each other at increasing belt velocities, leading 
to improved singulation. This effect is much more prominent for sorting scenarios at 500 𝑔𝑔 /𝑚𝑚 ,  
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where occupancy density decreases from around 50 % to roughly 30 % from 0.9 –  2.1 𝑚𝑚/𝑠𝑠. At 

higher belt velocities it is diminished by dominating particle slip. 

These findings have some important implications for the design and operation of optical belt 

sorters and the configuration of the separation stage. Obviously, there exist conveyor belt 

velocities where slip is increasingly present. At those velocities, economic operation is not 

feasible. Such velocities should therefore be avoided. For sorting setups operated below these 

velocities, however, decreased occupancy density present at elevated belt velocities can be 

useful in order to reduce undesirable clustering of particles, leading to less densely distributed 

scenarios on the belt. When the sorting setup is arranged for a certain belt velocity, it must be 

assured that the bulk is moving with the velocity of the belt. Otherwise, the actual bulk velocity 

has to be accounted for. 

4.2 Velocity-dependent sorter components 

To adapt the sorting stage of the belt sorter to changing conveyor belt velocities, the positions 

and alignments of the components have to be chosen such that both fractions fall in the 

respective containers. Due to changed particle trajectories, the accept container must be 

moved along the x-axis. This was the only direction in which the accept container was allowed 

to be moved. For the reject material, more factors must be taken into account: Since it is 

deflected into the reject container by the fluid jet, the positions of the nozzle and reject 

container are interrelated. Thus, a movement of the nozzle affects the reject container and vice 

versa. To assure an optimal entry angle of the reject particles into the container, the alignment 

of both the nozzle and the container must also be re-adjusted. Fig. 9 shows the sorting stage 

of the sorter model in the initial positions and alignments (a) and with the adjustable 

components in a different position and alignment (b). 



Fig. 9: Close view of the sorting stage with activated nozzles. (a) Components in the initial 

configuration. The yellow dots represent the center points of the components, along which they 

were moved and rotated. Positions are measured from the edge of the belt, marked by the 

green dot. (b) The colored fluid jet deflects orange brick particles into the reject container in a 

changed configuration. White sand-lime brick particles are collected in the accept container. 

Arrows denote degrees of freedom of the sorter components. 

To bound the complexity of the problem, z-positions were kept fixed for all components. 

Furthermore, to have mobile components adjustable in only one coordinate direction simplifies 

the implementation of adaptive components into a real sorting system. The components are 

summarized with their initial position, alignment and degree of freedom in Tab. 2. 

Component Initial position Degree of freedom 

Nozzle angle 60.4 ° Rotation around y-axis 

Nozzle position 𝑥𝑥 =  8.0 𝑐𝑐𝑐𝑐 

𝑧𝑧 =  0.8 𝑐𝑐𝑐𝑐 
x-axis

Reject container angle 29.6 ° Rotation around y-axis 

Reject container 

position  

𝑥𝑥 =  3.32 𝑐𝑐𝑐𝑐 

𝑧𝑧 =  −7.74 𝑐𝑐𝑐𝑐 
x-axis
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Accept container 

position 

𝑥𝑥 =  13.27 𝑐𝑐𝑐𝑐 

𝑧𝑧 =  − 7.74 𝑐𝑐𝑐𝑐 
x-axis

Tab. 2: Adjustable components of the sorter with their initial positions and alignments. Positions 

are given from the point of origin at the edge of the conveyor belt, denoted in green in Fig. 9 

(a). Alignments are measured as depicted in Fig. 10 (a). 

While the positioning of the accept container is straightforward, the adjustment of the nozzle 

and reject container are governed by the particle-fluid interaction taking place during the flight 

through an activated nozzle. Due to the coupling of the equations and the diversity of the 

particles being ejected, a direct solution is not possible. Instead, problem reduction and 

optimization are applied to obtain optimal configurations of the sorting stage for arbitrary 

conveyor belt velocities. 

5 Adjustment of the sorting setup to arbitrary conveyor belt velocities 

5.1 Adjustment procedure 

In this Section 5.1, we present a framework that allows us to find optimal sorter parameters for 

arbitrary particle velocities. It was implemented in MATLAB. The aim of the MATLAB 

framework was to reduce the computation time of particle fluid interactions – taking place at 

the separation stage – drastically compared to the 3D DEM-CFD, while retaining its accuracy. 

By doing so, several thousand computations were run within minutes using an optimization 

algorithm that searched the parameter space for the optimal setup. The results in terms of 

operational parameters were then used for DEM-CFD simulations, which will be presented in 

Section 6. 

All assumptions that have been made to derive the simplified sorter model for optimization are 

explained in the next Section 5.1.1. Afterwards, the general optimization procedure and the 

construction of the objective function will be described. Section 5.2 presents the configuration 

parameters yielded by making use of the framework. 



5.1.1 Simplified sorter model used for optimization 

In order to make the best use of optimization methods, a fast computation of the objective 

function is needed. For our problem, the objective function is directly related to the particle 

flight through the fluid jet originating from the nozzle array. Since we want to rearrange and 

optimize the sorting setup depending on the belt velocity and the thereby resulting particle 

velocity, the trajectories must be computed readily. 

A large reduction of computing time can be achieved by reducing our problem from three to 

two dimensions in physical space. In the following, we present the assumptions we made for 

that simplification. 

1) The particles are calmed on the conveyor belt. They move with belt speed and do not move

orthogonally to the transport direction. 

2) At a certain distance from the nozzle array, the fluid field is nearly homogenous, meaning

that the third dimension (here: y) can be neglected. Obviously, this area must be downstream 

of the combined point (CP) of the twin jet field (see Fig. 3 (b)), where both jets unify. For our 

nozzle array configuration, this distance was chosen at 3 cm from the nozzle outlet see Fig. 3 

(c) and (d).

3) To calculate the drag onto the particles, we can use the drag formula for single particles as

an approximation neglecting particle orientation. The drag force is given by 𝐹𝐹𝐷𝐷 =  𝑐𝑐𝐷𝐷 ∙
𝜌𝜌
2
∙ 𝐴𝐴 ∙

𝑣𝑣2𝑟𝑟𝑟𝑟𝑟𝑟, with 𝑐𝑐𝐷𝐷 being the drag coefficient, 𝐴𝐴 the particles projection area perpendicular to the 

fluid velocity, 𝜌𝜌 the fluid density and 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 being the relative velocity between particle and fluid. 

4) The bulk material can be represented by a few representative particle shapes and sizes.

The projection areas and masses of each material were analyzed, and the six most significant 

masses with maximum and minimum projection area for each were chosen. Hence, all 

combinations of mass and projection area were covered. The use of extreme combinations of 



 mass and projection area assures that all particles hit the containers. The value ranges are          

 given in Tab. 3. 

Quantity Sand-lime brick Brick 

Projection areas 1.7 ∙ 10−5 −   5 ∙ 10−5 𝑚𝑚² 1.45 ∙ 10−5 −   8.6 ∙ 10−5 𝑚𝑚² 

Masses 1.45 ∙ 10−5 −   5.4 ∙ 10−4 𝑘𝑘𝑘𝑘 1.2 ∙ 10−5 −   8 ∙ 10−4 𝑘𝑘𝑘𝑘 

Tab. 3: Value range of projection areas and masses for both materials. 

The projection areas and masses vary in the order of five, while the drag coefficient following 

eq. (12) varies at most by 20% for all particles around a value of 1. Thus, it is held constant at 

𝑐𝑐𝐷𝐷 = 1 for optimization calculation. Force equilibrium and Newton’s law of motion yield 

𝑣̇𝑣𝑥𝑥 ∙ 𝑚𝑚 =  𝐴𝐴 ∙ 𝜌𝜌 ∙
1
2

 𝑐𝑐𝐷𝐷 ∙ 𝑣̅𝑣𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝑣𝑣𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟 , (13) 

𝑣̇𝑣𝑧𝑧 ∙ 𝑚𝑚 =  𝐴𝐴 ∙ 𝜌𝜌 ∙ 1
2

 𝑐𝑐𝐷𝐷 ∙ 𝑣̅𝑣𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝑣𝑣𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑚𝑚𝑚𝑚   (14) 

for both coordinate directions denoted by the subscripts. The particle acceleration is referred 

to as 𝑣̇𝑣, with the dot indicating the temporal derivative of 𝑣𝑣, the particle mass is 𝑚𝑚, and the 

gravitational acceleration is 𝑔𝑔. The equations are coupled by the absolute value of the relative 

velocity 𝑣̅𝑣𝑟𝑟𝑟𝑟𝑟𝑟. 

A Forward-Euler scheme with a step of 1 ∙ 10−4 𝑠𝑠 was used for time integration. For each 

conveyor belt velocity and corresponding particle velocity and material, 12 particle trajectories 

were calculated. 

5.1.2 Optimization strategy 

In addition to the already presented geometrical parameters of nozzle bar and reject container, 

two temporal parameters were introduced, which were subject to the optimization: The first 

parameter is the duration of the nozzle activation ∆t. The second parameter τ denotes the 

activation time offset between a particle reaching the area of the fluid field and the point in time 

at which the nozzle is activated. This variable is crucial because it allows the algorithm to  



activate the nozzle when the particle is near the core of the jet. Here, the fluid jet transfers the 

highest momentum to the particle and deflects it in the shortest time. In other words, through 

τ, we obtained the optimal position 𝑥𝑥𝐴𝐴, at which the nozzle had to be activated, by  𝑥𝑥𝐴𝐴 = 𝑣𝑣𝑝𝑝  ∙

τ + 𝑥𝑥𝐸𝐸, with 𝑣𝑣𝑝𝑝 being the particle velocity and 𝑥𝑥𝐸𝐸 being the edge of the fluid field. The position 

of nozzle activation 𝑥𝑥𝐴𝐴 was then used in the specific sorting model to predict the time at which 

a particle reached the nozzle at 𝑥𝑥𝐴𝐴 and thus the nozzle had to be activated. The geometric 

parameters were optimized as the deviation 𝛥𝛥 from the initial values as given in Tab. 2. 

Consequently, absolute positions and orientations are given by the initial value altered by the 

optimized 𝛥𝛥 for the respective variable. All parameters are summarized in Tab. 4. Note that a 

rotation (∆α, ∆β) is measured counterclockwise. 

Parameter 
Variable name 

in optimization 

Nozzle rotation ∆α 

Nozzle displacement ∆𝑥𝑥𝑛𝑛 

Reject container rotation ∆β 

Reject container 

displacement 
∆𝑥𝑥𝑐𝑐 

Activation duration ∆t 

Activation offset τ 

Tab. 4: Optimized parameters with the symbol used in the optimization. 

Fig. 10 (a) shows the input parameters, also referred to as optimization variables, in the 

simplified 2D simulation. Nozzle angle and container angle are shown in their initial position. 

Note that the particle trajectory is undisturbed during the time offset τ. At its end, the nozzle 

activation starts for ∆t. From there, a split up of the trajectories due to different masses and 

projection areas can be noticed. 



The conditions and the respective optimal value for the construction of the objective function 

were defined as follows: 

I. Optimal distance between particle and nozzle outlet is 3 𝑐𝑐𝑐𝑐, when the nozzle is

activated

II. Intersection of deflected particle trajectory and reject container is at the container

opening center at 𝑙𝑙𝑐𝑐 2⁄ = 2.93 𝑐𝑐𝑐𝑐  

III. The angle between the deflected trajectory and the reject container opening is 90°

IV. The activation duration of the nozzle is minimal

Condition I was chosen so that particles pass through the jet region where high velocities and 

small gradients are prominent, as stated in Section 5.1.1 before. Conditions II and III assured 

that particles with non-optimal entry angles or positions still end up in the reject container. 

Condition IV minimizes undesired deflection of accept particles and furthermore saves 

compressed air, if applied to a real sorting system. Additionally, it was assured that the reject 

container did not intersect with the undeflected trajectories and the accept container. 

Otherwise, the algorithm would move the reject container back as far as possible to the trivial 

solution of an undeflected trajectory.  Expressed in a function, the conditions yield 

f (∆α,∆β,∆𝑥𝑥𝑐𝑐 ,∆𝑥𝑥𝑛𝑛 ,∆t, τ  ) =  ∑ (𝑤𝑤1(|𝐼𝐼𝑖𝑖 − 3 𝑐𝑐𝑐𝑐|) + 𝑤𝑤2(|𝐼𝐼𝐼𝐼𝑖𝑖 −
𝑙𝑙𝑐𝑐
2

|) + 𝑤𝑤3(|𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 − 90°|) + 𝑤𝑤4𝐼𝐼𝐼𝐼𝑖𝑖𝑛𝑛
𝑖𝑖=1 . (15) 

The conditions were summed over 𝑛𝑛 = 12 trajectories per material so that they were evaluated 

for each particle. Weights 𝑤𝑤1 − 𝑤𝑤4 scaled and weighted the conditions equally. The activation 

duration ∆t and ejection delay τ were optional input variables of the objective function, which 

could also be minimized on fixed positions and orientations of eject container and nozzle: 

Either 𝑤𝑤1 − 𝑤𝑤3 or 𝑤𝑤4 could be set to zero. 

The genetic algorithm from MATLAB was used to find the optima [49]. At least 30 generations 

with populations of 300 individuals were used. The stopping criterion was set at a function 

tolerance of 1 ∙ 10−6. Sorting setups were optimized for conveyor belt velocities of 0.9 m/s to 

2.9 m/s in 0.2 m/s steps. Geometric parameter variation was simplified by using results of  



preceding velocity optimization as an initial population for the next optimization. An exemplary 

result is shown in Fig. 10 (b), plotted for a single trajectory of brick for 1.1 –  2.7 m/s in 

0.4 m/s steps. Also, conditions I-IV are depicted in the graphic. 

Fig. 10 (a): 12 trajectories of sand-lime brick through the activated nozzle with geometric and 

temporal input variables. The shown alignments are the initial ones of the container and nozzle 

(α𝑖𝑖 = 60.4 ° and β𝑖𝑖 = 29.6 °). Orange circles locate the origin of the reject container and the 

nozzle at the initial position. (b): Exemplary results of optimizations, shown for particle 

trajectories of brick for conveyor belt velocities 1.1 – 2.7 m/s in 0.4 m/s steps. Also, optimization 

conditions (I-IV) are shown. Thick blue regions of the trajectories indicate the positions at which 

the nozzle jet was acting. 

The optimization procedure was as follows: 

O.1) Optimization of 4 geometric parameters (∆α,∆β,∆𝑥𝑥𝑐𝑐 ,∆𝑥𝑥𝑛𝑛) for a setup with a continuously

operating nozzle (setting ∆t = ∞ s, τ = 0 s, w4 = 0). 

O.2) Optimization of 2 temporal parameters (∆t, τ) on fixed positions and orientations

(∆α,∆β,∆𝑥𝑥𝑐𝑐 ,∆𝑥𝑥𝑛𝑛) obtained as part of O.1 (setting 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3 = 0). 

The results of the optimizations are discussed in the next Section 5.2. 
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5.2 Adjustment results 

The results of O.1 are shown in Fig. 11. From left to right, the plots show displacements and 

rotations from the initial positions and alignments of both reject container and nozzle, 

respectively. On the x-axis, the average particle velocity at the conveyor belt end that was used 

for optimization is shown. The respective optimization variable is plotted on the y-axis. The 

parameters for brick are plotted in blue, and parameters for sand-lime brick are plotted in red. 

Obviously, the range of particle velocities is narrower (0.9 𝑚𝑚/𝑠𝑠 –  2.7 𝑚𝑚/𝑠𝑠) than the actually 

used conveyor belt velocities of 0.9 –  2.9 𝑚𝑚/𝑠𝑠 due to slip of the particles on the belt. This 

behavior was discussed in Section 4.1. The curves were interpolated piecewise between 

optimized parameters. 

The optimized reject container rotation, see Fig. 11 (a), and displacement, see Fig. 11 (b), 

show a nearly linear progression with increasing particle velocity. This can be explained by 

increasing particle inertia: the particle trajectories are prolonged in the x-direction, so the 

container must adapt accordingly. Nozzle rotation, see Fig. 11 (c), and displacement, see Fig. 

11 (d), also show a nearly constant ascent, while the curves are slightly offset for both 

materials. Several optimization runs showed that such changes in displacement directions, as 

well as oscillations in parameter curves, stem from the stochastic nature of the genetic 

algorithm. Since initial populations and following generations are chosen partly randomly, 

optimal solutions can vary between optimization runs with identical preferences [49]. In any 

case, the solutions fulfill our conditions in terms of optimality. 

a) c) d)b)



Fig. 11: (a) – (d) Displacements and rotations of reject container and nozzle array optimized 

for brick and sand-lime brick for a permanently operating nozzle (∆t = ∞ s, τ = 0 s) in 

dependence on average particle velocity. 

In Fig. 12, the optimization results of O.2 are presented. As already introduced, the temporal 

parameters were computed for an already fixed geometric arrangement of the nozzle and 

reject container at increasing conveyor belt velocities. Since the particle velocities were not 

equal for both materials, as can be seen in Fig. 8 (a), the velocities diverge towards higher 

values. In Fig. 12 (a), the activation duration ∆t is shown. Both curves show oscillations, but 

obtained values also decline with increasing particle velocity. The decline is caused by a 

shrinking angle of deflection (angle between particle trajectory before and after nozzle 

interaction) at higher particle velocities, as obtained by O.1 (see also Fig. 10 (b)). 

The activation offset (Fig. 12 (b)) decreases linearly with particle velocity for both materials. 

This happens as, due to higher velocity, the particles need less time to cover the distance 

between the fluid field edge and core. 

Fig. 12: (a) Optimized activation duration ∆t of nozzles. (b) Optimized activation offset τ in 

dependence on average particle velocity. 

a) b)



To sum up, the results show a clear tendency of moving the nozzle and containers further in 

the x-direction while increasing the nozzle and reject container rotation with increasing belt 

velocity. Due to this rearrangement, nozzle activation duration can be further reduced for faster 

particles. 

6 DEM-CFD simulation results of the optimized sorter setups 

The adjustment results corresponding to an average particle velocity aligned to that from 

Section 4.1 were applied to our DEM-CFD model of an optical belt sorter utilizing unresolved 

one-way coupling. First, it was verified that the obtained parameters were valid for a single 

component material stream. This was proven for both geometrical (O.1) as well as temporal 

parameter sets (O.2), outlined in Section 6.1. After evaluating the optimal sorting parameters, 

we moved to a sorting scenario with mixed material composition (Section 6.2). Here, sorting 

was simulated with both instantaneous and lagged nozzle activation modes, as described in 

Section 3.1.3. In doing so, the characteristics of the sorting system were assessed at various 

belt velocities. Concerning the detection stage, we inferred that no detection errors occur 

independently of the occupancy density on the belt, which is a valid assumption as 

experimental investigations with the setup in [37] have shown. 

The simulations were run for 5 𝑠𝑠 physical times, because it was observed that the sorting 

results did not change more than 1 % for the last second. Thus, the sorter reached a stationary 

operational mode. A mass flow inlet was used to provide the feed material in a quadratic 

domain of [0.1 , 0.06 , 0.23] 𝑚𝑚. The results of the simulations are plotted separately for the reject 

(negative, to sort out) and the accept fraction (positive, not to sort out). Bar charts are used to 

visualize the simulation results, where the blue bars of the reject fraction show the true negative 

rate (TNR) and the green bars of the accept fraction show the true positive rate (TPR). Both 

rates are defined as 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

and 𝑇𝑇𝑇𝑇𝑅𝑅 =

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
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6.1 Validation of derived optimal sorting parameters 

6.1.1 Geometrical parameters 

The first simulations were performed with parameters obtained in optimization runs with 

geometric variables only (optimization O.1). Nozzles were activated permanently to assess if 

all particles were ejected correctly with the optimized positions and alignments of the sorter 

components. Consequently, only reject material was considered. Fig. 13 presents the sorting 

results in bar diagrams. Blue bars indicate correctly separated particles, while yellow bars 

indicate particles that fell beside the containers. On the left side, we see brick and sand-lime 

brick sorted at 100 𝑔𝑔/𝑠𝑠. On the right side, results of sorting at 500 𝑔𝑔/𝑠𝑠 mass flow are shown. 

From all plots, a high ejection accuracy can be seen for conveyor belt velocities to 2.1 𝑚𝑚/𝑠𝑠. It 

decreases slightly for higher belt velocities when particle slip occurs. The largest single decay 

can be seen in Fig. 13 (c) at 2.9 𝑚𝑚/𝑠𝑠, where the accuracy is 84 %. 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 100 𝑔𝑔/𝑠𝑠 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 500 𝑔𝑔/𝑠𝑠 

brick  sand-lime brick  brick  sand-lime brick 

Fig. 13: Correctly separated particles (TNR, blue bars) for a continuously operating nozzle. 

The yellow bars indicate particles that missed the containers. 

6.1.2 Temporal parameters 

As a next evaluation step, the single component materials were sorted under activation and 

deactivation of nozzles. For that, the two optimized temporal variables from O.2 were used in 

this setup. It was tested if the activation duration and activation offset yielded good sorting 

results for a pure material stream. The three sorting models – line-scan, tracking and ICV – 

were compared. Again, brick and sand-lime brick were sorted at 100 𝑔𝑔 /𝑚𝑚  and 500 𝑔𝑔 /𝑚𝑚  

each.  
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Fig. 14 shows all results obtained. The rows show different scenarios sorted with a fixed sorting 

algorithm; columns compare different sorting algorithms for a fixed scenario (material and 

mass flow rate). Results of line-scan sorted material are shown in the first row, tracking 

scenarios are shown in the second row, and ideal sorted scenarios in the last row. Line-scan 

sorted runs (a-d) show good sorting results for conveyor belt velocities to 1.7 𝑚𝑚/𝑠𝑠. Here, the 

TNR decays heavily from around 90 % at 1.9 𝑚𝑚/𝑠𝑠 down to around 30 % at 2.9 𝑚𝑚/𝑠𝑠. The results 

show a direct dependence on the particle velocity distribution. Since the line-scan algorithm 

must assume a fixed particle velocity, which was chosen as the average velocity obtained in 

Section 4.1, the assumption error grows for a faster belt velocity where slip occurs, and the 

velocity distribution along the belt broadens. The tracking (e-h) performed significantly better. 

We can see TNR close to 100 % for conveyor belt velocities to 1.9 𝑚𝑚/𝑠𝑠 at all sorting scenarios. 

The TNR decays to 70 % for brick and 75 % for sand-lime brick at 2.9 𝑚𝑚/𝑠𝑠. Lastly, we compare 

the results to the benchmark algorithm that uses the exact particle velocities to predict nozzle 

activation (i-l). The results are qualitatively analogous to the tracked sorting but decay slightly 

less at occurring particle slip on the belt starting at 2.1 𝑚𝑚/𝑠𝑠. As we would expect, the exact 

particle velocity differs slightly from the predictions made by the tracking algorithm, leading to 

7% – 10 % higher accuracies at 2.9 𝑚𝑚/𝑠𝑠.  

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 100 𝑔𝑔/𝑠𝑠 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 500 𝑔𝑔/𝑠𝑠 

brick  sand-lime brick  brick  sand-lime brick 
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Fig. 14: Correctly separated particles (TNR, blue bars) for (a) – (d) line-scan, camera-based

sorting, (e) – (h) area-scan, camera-based sorting, and (i) – (l) ideal sorting for a pulsed 

operated nozzle. Red bars denote falsely sorted particles (wrong container), and yellow bars 

denote lost particles (missed both containers). 

Obviously, the optimized geometric and temporal parameters lead to very robust sorting 

setups. The sorting setups were successfully adapted to the increased conveyor belt velocities. 

6.2 Investigation of sorting accuracy of a mixed material 

After evaluating the adaption of the sorting setups to changed conveyor belt velocities, the 

sorting of mixed bulk material at those velocities was investigated. For that, the validated 

parameters were applied to the model in realistic sorting scenarios in the following. All 

scenarios were compared for the two nozzle operation modes. Because nozzles have to be 

activated in short succession at high occupancy densities and fast particle velocities, the 

reaction time to a triggered activation is crucial. We, therefore, simulated sorting at an 

instantaneous mode, where the fluid field is present immediately after activation. This 

corresponds to a fast-sorting system, which is not realizable in reality. It was compared to a 

lagged operational mode, where nozzle activation and deactivation took an additional 5 𝑚𝑚𝑚𝑚. 

That corresponds to a slow sorting system. In the system described in [37], similar lag times 

were found. In all simulations, sand-lime brick with fractions of 20 % and 50 % was sorted out 

at mass flows of 100 𝑔𝑔/𝑠𝑠 and 500 𝑔𝑔/𝑠𝑠.  

i) k) l)



6.2.1 Fast sorting system: Instantaneously activated nozzles 

The simulation results with instantaneous nozzle activation are presented in the following. In 

Fig. 15, the sorting results of the reject fraction (sand-lime brick) are plotted. The percentage 

of the correctly ejected particles (TNR) is represented by the blue bars. In general, the results 

are very similar to those of pure material sorting. The TNR of the line-scan sorted scenarios 

(a-d) deteriorates at 1.7 𝑚𝑚/𝑠𝑠 at 100 𝑔𝑔/𝑠𝑠 and at 1.9 𝑚𝑚/𝑠𝑠 at 500 𝑔𝑔/𝑠𝑠. The lowest sorting accuracy 

is achieved in the 20: 80 scenario with 500 𝑔𝑔/𝑠𝑠 mass flow at 2.9 𝑚𝑚/𝑠𝑠 with about 10 %. 

Analogous to the findings in Section 6.1, the line-scan algorithm performed worst as soon as 

the particle velocity broadened widely due to the slip between the particles and belt. In contrast, 

the tracking algorithm showed very good sorting precision. Nearly 100 % of reject material was 

sorted out for velocities up to 1.9 𝑚𝑚/𝑠𝑠. From here, a slow decline is notable for increasing belt 

velocities. Interestingly, the lowest TNR is found again at 20: 80 with 500 𝑔𝑔/𝑠𝑠 mass flow. The 

performance loss in this scenario may be linked to the sorter characteristics that depend on 

the specific operational point at which the sorter is run. This includes mainly mass flow and 

material proportions, as experimentally shown in [15]. Concerning the results of ideally sorted 

scenarios (i-l), only slight differences compared to the tracking results can be detected. The 

numerical benchmark performed 3 % −  5 % better than the tracking. 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 100 𝑔𝑔/𝑠𝑠 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 500 𝑔𝑔/𝑠𝑠 

20: 80  50: 50  20: 80  50: 50 
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Fig. 15: Correctly separated particles (TNR, blue bars) for (a) – (d) line-scan, camera-based

sorting, (e) – (h) area-scan, camera-based sorting, and (i) – (l) ideal sorting for a pulsed 

operated nozzle without activation or deactivation lag. Red bars denote falsely sorted particles 

(wrong container), and yellow bars denote lost particles (missed both containers). 

Since we considered a mixed material flow, the influence of the sorting stage on the accept 

fraction should be minimal to yield a pure sorted fraction. An indirect measure for that purity is 

the already introduced true positive rate (TPR), which is represented by the green bars in Fig. 

16. It denotes the percentage of correctly accepted particles. Red bars denote the falsely

ejected particles (by-catch), and the yellow bars particles that did not hit any container. Due to 

the significant similarity of all sorting models, we will focus on the results by tracking Fig. 16 

(e) – (h). At a 20: 80 mixture with 100 𝑔𝑔/𝑠𝑠 mass flow, there is no notable change in TPR for

belt velocities up to 2.1 𝑚𝑚/𝑠𝑠. For faster velocities, the TPR declines sharply. This is due to the 

particles that did not hit the container. Their number increases proportionally, as the yellow 

bars indicate. The cause of this increase is the spreading particle velocity at faster belt 

velocities. The accept container opening could only collect particles whose trajectories 

deviated less than 3 𝑐𝑐𝑐𝑐. As we increased the reject mass flow to 100 𝑔𝑔/𝑠𝑠, which is the case at 

20: 80 for 500 𝑔𝑔/𝑠𝑠 (comp. Fig. 16 (g)), the TPR increases slightly from 78 % to 84 % from 

0.9 𝑚𝑚/𝑠𝑠 to 2.1 𝑚𝑚/𝑠𝑠. The TPR is increased even more in the last sorting scenario (Fig. 16 (h)), 

where TPR increases from 53 % to 68 % in the same velocity range. However, the gain is  

e) f) g) h)
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based on a lower TPR level, meaning that the overall purity in this scenario is the lowest. The 

decreasing rate of falsely ejected particles, indicated by the red bars, implies that these findings 

are a result of the enlarged purity of the sorting process and cannot be explained by the accept 

particles that jump beside, since their proportion is nearly constant. Growing sorting purity, 

expressed as less by-catch, must be caused by enhanced particle singulation on the conveyor 

belt due to a faster belt velocity. The likely explanation is the decreased occupancy density 

(comp. Fig. 8 (b)). Since the occupancy density is an indirect measure of particle proximity on 

the conveyor belt, particle distances in both x- and y-direction increase, and clusters of mixed 

material are presumably less likely to form. As a result, accept material is falsely ejected less 

often. Consequently, this effect grows with the count of nozzle activations, which is directly 

proportional to the reject material mass flow. It is important to state that the increasing TPR 

comes with no loss in TNR up to 1.9 𝑚𝑚/𝑠𝑠 belt velocity (comp. Fig. 15) and only slight reduce of 

around 3 % at 2.1 𝑚𝑚/𝑠𝑠.  

These results suggest that increasing the conveyor belt velocity is beneficial until 1.9 𝑚𝑚/𝑠𝑠. 

However, instantaneous nozzle activations cannot be realized in real-world sorter applications 

yet, but increasing valve opening speed is a current field of research [44]. 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 100 𝑔𝑔/𝑠𝑠 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 500 𝑔𝑔/𝑠𝑠 
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Fig. 16: Correctly not separated particles (TPR, green bars) for (a) – (d) line-scan, camera-

based sorting, (e) – (h) area-scan, camera-based sorting, and (i) – (l) ideal sorting for a pulsed 

operated nozzle without activation or deactivation lag. Red bars denote falsely sorted particles 

(wrong container), and yellow bars denote lost particles (missed both containers). 

6.2.2 Realistic sorting system: Lagged activated nozzles 

In this simulation series, previous simulations were repeated with a nozzle lag of 5 𝑚𝑚𝑚𝑚. In real 

sorting systems, a lag is always present due to signal processing and mechanical valve 

opening. The lag becomes important if a nozzle needs to be activated in short succession. If 

such a situation occurs, a time period of 10 𝑚𝑚𝑚𝑚 exists, where a reject particle can pass the 

sorting stage without being deflected, although it was detected (see Fig. 5 and Section 3.1.3 

for details). 

The results of sorted reject material are presented in Fig. 17. Compared to Fig. 15, the line-

scan sorted scenarios (a-d) do not reach 100 % TNR at belt velocities 0.9 –  1.3 𝑚𝑚/𝑠𝑠. TNR is 

around 90 % at 100 𝑔𝑔/𝑠𝑠 for a 20: 80 composition at those velocities. Furthermore, the TNR 

declines as the reject mass flow increases. At 0.9 𝑚𝑚 /𝑚𝑚  of a 50: 50 composition with 500 

𝑔𝑔 /𝑚𝑚  (d),  
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the TNR is 66 %. The decline stems from the aforementioned effect of nozzle blocking, which 

appeared when two particles followed shortly at the same y-coordinate. This effect is more 

pronounced at higher mass flows since the possibility of two following particles increases. The 

exact probability depends on the lateral distribution of reject material on the belt and the reject 

material mass flow. 

The same trend was observed for results sorted by tracking (e-h). Here, the decline of TNR 

lies around 30 % when increasing the proportions of the reject material (sand-lime brick) at belt 

velocities up to 2.1 𝑚𝑚/𝑠𝑠. In contrast to the simulations without delayed nozzles, an increase in 

belt velocity is followed by a decrease in TNR at nearly all velocities. The performance of the 

ideal sorting model (i-l) was similar to the tracking sorting model. Sorting by tracking showed 

to be very robust even at high occupancy densities (~50 %) and fast particle movement, as 

the comparison between Figs. 17 (h) and (l) shows. 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 100 𝑔𝑔/𝑠𝑠 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 500 𝑔𝑔/𝑠𝑠 
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Fig. 17: Correctly separated particles (TNR, blue bars) for (a) – (d) line-scan, camera-based

sorting, (e) – (h) area-scan, camera-based sorting, and (i) – (l) ideal sorting for a pulsed 

operated nozzle with activation and deactivation lag. Red bars denote falsely sorted particles 

(wrong container), and yellow bars denote lost particles (missed both containers). 

Analogous to the findings in the previous Section 6.2.1, the TPRs differ only slightly if different 

sorting models are used (see Fig. 18). The decay of TPR with an increasing reject fraction 

mass flow, as it is found in Fig. 16, was gradually less pronounced if nozzles are operated in 

lagged mode. Additionally, the gain of TPR at increased belt velocities was minor: it is at most 

10 % from 0.9 𝑚𝑚/𝑠𝑠 to 2.1 𝑚𝑚/𝑠𝑠, see Fig. 18 (h). 

The increased TPR, if compared to Section 6.2.1, is a result of the delayed nozzle activation, 

which led to the nozzles being activated less frequently. During the blocked period of 10 𝑚𝑚𝑚𝑚, 

no particles were hit. Hence, the by-catch was reduced. This effect became more prominent 

as the reject mass flow, i.e., the count of activated nozzles, increased. However, there was a 

trade-off between TNR and TPR if nozzle activation was delayed by 5 𝑚𝑚𝑚𝑚. An increase in one 

quantity was connected with a decrease in the other, and vice versa. 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 100 𝑔𝑔/𝑠𝑠 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 500 𝑔𝑔/𝑠𝑠 
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Fig. 18: Correctly not separated particles (TPR, green bars) for (a) – (d) line-scan, camera-

based sorting, (e) – (h) area-scan, camera-based sorting, and (i) – (l) ideal sorting for a pulsed 

operated nozzle with activation and deactivation lag. Red bars denote falsely sorted particles 

(wrong container), and yellow bars denote lost particles (missed both containers). 

To sum up, the results of Section 6.2 show that optimized sorting stages yielded very good 

sorting outcomes in 3D DEM-CFD simulations. If applied to real sorting systems, the 

optimization is able to drastically cut the setup time for a sorting plant, as experimental 

calibration becomes nearly obsolete in terms of sorting stage arrangement. Certain bulk 

properties, such as particle mass, particle protection area or drag coefficient and details on the 

nozzle velocity field must be known in advance to apply the approach. Furthermore, it must be 

known if particles move with belt velocity or a velocity is differing from it. The configuration of 

the sorting setup is based on the particle velocity. Having discussed the application of 

optimized sorting parameters to the DEM-CFD and the simulation results, the final Section 

6.2.3 of this paper addresses the nozzle activation in further detail. 

6.2.3 Analysis of nozzle activation 

To gain further insight into the reasons for deviating sorting results between instantaneous and 

lagged operational mode, some analysis of nozzle data was conducted. In particular, the 

occurrence of the scenarios depicted in Fig. 5 was analyzed. The data was taken from 

simulations that were performed with the tracking algorithm at 1.1 𝑚𝑚/𝑠𝑠 belt velocity. For 

simplification, the four simulated scenarios are expressed in terms of the mass flow of reject 

material. The four mass flows correspond to the four scenarios shown in the columns of Fig.  



15 - Fig. 18, respectively. A mixture of 20: 80 at 100 𝑔𝑔/𝑠𝑠 mass flow corresponds to a reject 

material mass flow of 20 𝑔𝑔/𝑠𝑠, a mixture of 50: 50 at 100 𝑔𝑔/𝑠𝑠 to 50 𝑔𝑔/𝑠𝑠 and so on. Fig. 19 (a)

shows the count of nozzle activations for all reject material mass flows and both operational 

modes plotted against the simulation time. This corresponds to the scenarios (a) and (d) in Fig. 

5. As the mass flow is increased, the deviation between both modes grows: While there is no

significant difference at 20 𝑔𝑔/𝑠𝑠, nozzles are activated 25 % more often in instantaneous mode 

at 250 𝑔𝑔/𝑠𝑠 after 5 𝑠𝑠. The frequency of a nozzle being fully blocked clearly depends on the mass 

flow of material to be sorted out. 

Fig. 19: Nozzle activation count of instantaneous and lagged operated sorting (a) and nozzle 

activation durations 𝛥𝛥𝛥𝛥 in lagged operated simulations compared with a simulation in 

instantaneous activation mode (b). Blue dots represent the set activation duration, and orange 

dots denote reduced activation durations. Nozzle data is evaluated for simulations sorted by 

tracking at 1.1 𝑚𝑚/𝑠𝑠 belt velocity and plotted for all reject fraction mass flows. 

In Fig. 19 (b), the distribution of nozzle activation duration 𝛥𝛥𝛥𝛥 is presented for all mass flows in 

lagged mode. For comparison with instantaneous nozzle activation, it is also shown at 250 g/s. 

The set activation duration of 4.4 𝑚𝑚𝑚𝑚, which was obtained by optimization as shown in Fig. 12 

(a), is denoted by the blue dots. Deviating values, i.e., reductions of the ejection window, are 

presented as orange dots. In other words, each orange dot stands for a narrowed activation 

window, as illustrated in scenario (c) in Fig. 5. As expected, the number of reduced activation 

windows increased at higher reject fraction mass flows. Activation windows were narrowed 10  

a) b)



times at 20 𝑔𝑔/𝑠𝑠 and 441 times at 250 𝑔𝑔/𝑠𝑠, which correspond to 4 % and 18 % of the total 

activations, respectively. The narrowing was distributed equally between 0 and the set 

activation duration of 4.4 𝑚𝑚𝑚𝑚. In the case of instantaneously activated nozzles, no narrowing 

occurred. 

In summary, the findings showed that nozzle characteristics influenced the overall sorting 

performance drastically. Due to the time lag between signal processing and the actual 

formation of the fluid jet, two negative effects followed: Either the time window of activation 

was either narrowed, or a controlled nozzle was not activated at all. Both phenomena 

contributed to a lowered sorting accuracy, while decreasing the by-catch, as observed in 

Section 6.2.2. However, not all narrowed activation windows resulted in a reject particle being 

falsely sorted. This depended on several factors of the complex particle-fluid interaction and 

was studied thoroughly in [44]. Those factors are, for example, the particle shape, the particle 

orientation and the exact location of fluid drag on the particle surface. In any case, the speed 

of nozzle activation was the crucial limitation of the analyzed sorting system. Faster nozzles 

were able to handle higher mass flows of material to be sorted out at higher conveyor belt 

velocities. 

7 Conclusions 

We proposed a method to compute optimal sorting setups in terms of geometrical and temporal 

parameters for optical belt sorters operated at arbitrary conveyor belt velocities. As a result, 

fast computation of sorting stage arrangement for an adaption to changing conveyor belt 

velocities was feasible. The method takes advantage of calmed particles, which allows a 

reduction to a 2D problem, which then can be optimized. Optimized parameters, namely reject 

container and nozzle orientation and position as well as nozzle activation time and activation 

offset, were numerically validated in 3D DEM-CFD simulations with a non-spherical shaped 

bulk material consisting of brick and sand-lime brick. The main findings and possible next steps 

can be summarized as follows: 



• As long as no major particle slip occurred, the optimized sorting parameters yielded

excellent sorting results at increased conveyor belt velocities.

• A change in the conveyor belt velocity influenced the occupancy density on the

conveyor belt, increasing the sorting accuracy through the reduction of by-catch.

• The increase in accuracy was more pronounced with instantaneously activated nozzles

than with lagged activated nozzles. For lagged activation, this was dependent on the

reject material mass flow, since nozzle valve opening and closing in short succession

occurred more often.

• The proposed approach of adapting the sorting components is useful if the goal is to

reduce conveyor belt occupancy or by-catch.

• To address slip and the broadening of particle velocity, a different conveyor belt

material may be used to increase the friction at higher belt velocities.

• The next step to improve sorting performance and save costs for compressed air is to

calculate individual activation durations for each particle. Such an approach can

account for uncertainties in particle position measurements of real camera systems.
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List of Symbols 

Latin letters 

𝐴𝐴 [m2] projection area 



𝑐𝑐 [-] coefficient 

𝑑𝑑 [m] diameter

𝐹⃗𝐹 [N] force vector

𝐽𝐽 [kg m2]  mass inertia tensor 

k [N m-1]  spring stiffness 

𝑙𝑙 [m] length

𝑚𝑚 [kg] mass 

𝑛𝑛�⃗  [-] normal vector  

𝑛𝑛 [-] particle number 

𝑝𝑝 [N m-2] pressure 

𝑟𝑟 [m] radius

𝑅𝑅 [m] radius

𝑅𝑅𝑅𝑅 [-] Reynolds number

𝑇𝑇�⃗ [N m] torque vector

𝑡𝑡 [s] time

𝑡𝑡 [-] tangential vector

𝑢𝑢�⃗  [m s-1] velocity vector

𝑣⃗𝑣 [m s-1] velocity vector

𝑥⃗𝑥 [m] particle position vector

𝑤𝑤 [-]  summand weight

Greek letters 

𝛾𝛾 [kg s-1] damping coefficient 

𝛿𝛿 [m] overlap

∆α [°] nozzle rotation 

∆β [°] reject container rotation 

∆t [s] nozzle activation duration

∆x [m] displacement

ε [-] local voidage 

𝜂𝜂 [N s m-2] dynamic fluid viscosity 

𝛬𝛬𝑖𝑖−1 [-] rotation matrix  

µ [-] friction coefficient 



𝜉𝜉 [m] displacement vector

𝜌𝜌 [kg m-3] density

τ [N m-2]   stress tensor

τ [s] nozzle activation offset

𝜙𝜙 [-] sphericity 

𝜒𝜒 [-] correction factor  

ω��⃗  [s-1] angular velocity vector 

Sub- and Superscripts 

𝐶𝐶 Coulomb 

𝑐𝑐 contact 

𝑐𝑐 reject container 

𝐷𝐷 drag 

𝑒𝑒 effective 

𝐸𝐸 fluid field edge  

𝑓𝑓 fluid 

𝑔𝑔 gravitation 

𝑖𝑖 initial value 

𝑖𝑖 particle index 

𝑛𝑛 normal   

𝑛𝑛 nozzle 

𝑝𝑝 particle 

𝑝𝑝 pressure  

𝑟𝑟 rolling 

𝑟𝑟𝑟𝑟𝑟𝑟 relative 

𝑡𝑡 tangential  

∙ temporal derivation 

⊥ perpendicular to flow direction 

Abbreviations 

B brick 

CB conveyor belt material 



CFD computational fluid dynamics 

COR coefficient of restitution  

DEM discrete element method 

SB sand-lime brick 

SW sorter wall material 

TNR true negative rate 

TPR true positive rate 
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Appendix A: Calibration of DEM contact parameters 

The calibration of DEM parameters was performed partly adapting the procedure of [46]. We 

start with the experiment that is influenced by the least number of contact parameters, which 

leads to the following order with the initial values given in braces. 

1) Static angle of repose. Mainly influenced by particle – particle (pp) friction (0.5) and pp

rolling friction (0.01)

2) Dynamic angle of repose: Influenced by pp and particle – wall (pw) contacts. PP

parameters are taken from the preceding experiment, pw friction (0.3) and pw rolling

friction (5e-3).

3) Plate impact experiment. Friction parameters play a role; major impact is given by

coefficient of restitution (COR) of pp (0.3) and pw (0.2) contacts.

4) As a verification step, simulation runs 1) and 2) are repeated with all calibrated

parameters to ensure agreement with the experiments.

A.1 Static angle of repose

The static angle of the repose experiment is a standard investigation (see [50], [51]) to 

determine mechanical friction quantities of bulks. A bulk sample is filled into an open cylinder, 

which is then slowly pulled up. The filled material falls out and forms a characteristic pile with 

a corresponding angle of repose that depends on the material friction. To exclude the influence 

of pw parameters as well as COR, a sensitivity study was conducted as the first step, whereby 

pw friction parameters and COR were varied in a vast range. As expected, the static angle of 

the repose experiment showed to be not responsive to those quantities. Simulations with 

different parameter sets were run until the formed pile angles (Fig. A-1 right) agreed with the 

experiments (Fig. A-1 left). The resulting angles and quantity ranges are shown in Tab. A-1. 

Since friction also occurs at the plate impact (see Section A.3), final values can only be 

determined by the last experiment and must be validated again (see Section A.4). 



Fig. A-1: Static angle of repose of both materials in experiment and simulation. 

Material Experiment [°] Simulation [°] 
Sliding friction 

P-P [-]

Rolling friction 

P-P [-]

Sand-lime brick 29.0 30.7 0.13-0.20 2 ∙ 10-2 

Brick 24.2 24.3 0.15-0.22 5.8 ∙ 10-3 

Tab. A-1: Static angles of repose and determined contact parameters (sliding and rolling 

friction) for both materials. 

A.2 Dynamic angle of repose

The next set of contact parameters is calibrated by measuring the dynamic angle of repose. 

Here, a drum was filled by 30 %, and the dynamic angle of repose was measured at three 

different rotation velocities, i.e., 10, 15 and 20 rotations per minute. Experiments were repeated 

10 times for each configuration. Two different wall materials were used. To account for both 

wall materials, the drum interior was glued with conveyor belt rubber in a second step after 

investigating the sorter wall material (steel). Significant differences between the two wall 

materials were, however, not detected. Exemplary results on the dynamic angle of repose are 

shown in Fig. A-2 for both sand-lime brick and brick as obtained in the experiment and 

simulation for steel as wall material. The measured angles and friction parameters are 

summarized in Tab. A-2. 



Fig. A-2: Dynamic angle of repose of both materials in experiment and simulation, 10 rotations 

per minute for steel as wall material. 

Tab. A-2: Dynamic angles of repose and determined contact parameters (sliding and rolling 

friction) for both materials. (P) refers to either sand-lime brick or brick, (CB) to the conveyor 

belt and (SW) to the sorter wall material. 

A.3 Plate impact investigation

To determine coefficients of restitution for particle-particle and particle-wall contacts, a plate 

impact experiment was conducted (see Fig. A-3 a). The experiments were run by dropping 200 

g of material onto a 45° inclined plate, on which the contact material of interest was fixed, 

namely particles or wall material. Dropped material was collected in three containers (m1 – 

m3) and weighted for each container (see Fig. A-3 b). The experiments were repeated 10 

times. This approach was chosen due to the highly irregular-shaped particles that do not allow 

for a precise measurement of the COR in a single contact scenario, as it is common for spheres 

[52]. 

Material 

Experiment [°] Simulation [°] 
Sliding friction P-SW and P-CB  [-], 

Rolling friction P-SW and P-CB [-] 
10 

rpm 

15 

rpm 

20 

rpm 

10 

rpm 

15 

rpm 

20 

rpm 

Sand-lime 

brick 
35.9 36.6 36.7 34.0 35.7 38.2 0.50, 7.5 ∙ 10-3

Brick 37.0 35.7 36.3 35.3, 34.0 38.7 0.67, 5.8 ∙ 10-3

b)a)



Fig. A-3: Plate impact experiment setup (a) and simulated drop of brick on sorter wall material 

(b). 

Calibration was performed with respect to mass proportions in the first two boxes, m1 and m2, 

because masses in m3 were too small and fluctuating. CORs were varied, as were the friction 

parameters, because sliding also occurred between contact partners. Due to the short contact 

time of the particles in the experiment, rolling friction is neglected as a parameter. 

Tab. A-3 sums up mass proportions as well as coefficients of restitution (COR) and sliding 

friction coefficients as obtained as best fit in the simulations. Note that conveyor belt and sorter 

wall material did not differ significantly in terms of the obtained mass proportion. Therefore, 

both materials are associated with the same COR and sliding friction values. 

Material 

Experiment 

(P-CB and P-

SW) 

Experiment 

(P-SB) 

Experiment 

(P-B) 

Simulation 

(P-CB, P-

SW), COR, 

sliding 

friction 

Simulation, 

(P-SB), 

COR, 

sliding 

friction 

Simulation, 

(P-B), 

COR, 

sliding 

friction 

Sand-lime 

brick 
1.54 1.62 1.47 

1.54, 0.19, 

0.45 

1.63, 0.19, 

0.17 

1.47, 0.215, 

0.16 

Brick 1.58 1.86 1.5 
1.59, 0.1, 

0.6 

1.8, 0.215, 

0.165 

1.5, 0.24, 

0.14 



Tab. A-3: Mass proportions m1/m2 of plate impact and determined contact parameters (COR, 

sliding friction) for both materials. (P) refers to either sand-lime brick or brick, (SB) to sand-lime 

brick, (B) to brick, (CB) to the conveyor belt and (SW) to the sorter wall material. 

A.4 Verification of DEM contact parameters

To verify all determined simulation parameters, simulations for static and dynamic angle of 

repose were repeated with altered sliding friction parameters and COR calibrated with the plate 

impact experiment. In the validation simulations, we observed that slight changes in friction 

parameters that were made for plate impact calibration in addition to the adjusted values for 

COR (details on this investigation not given) still resulted in angles within the range of angle of 

repose experiments (Sections A.1 and A.2). As a result, we have successfully calibrated our 

material model. The final calibrated parameters are given in Tab. 1 in the main section of the 

manuscript. 
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