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We study generalized multifractality characterizing fluctuations and correlations of eigenstates in disordered
systems of symmetry classes All, D, and DIII. Both metallic phases and Anderson-localization transitions are
considered. By using the nonlinear sigma-model approach, we construct pure-scaling eigenfunction observables.
The construction is verified by numerical simulations of appropriate microscopic models, which also yield
numerical values of the corresponding exponents. In the metallic phases, the numerically obtained exponents
satisfy Weyl symmetry relations as well as generalized parabolicity (proportionality to eigenvalues of the
quadratic Casimir operator). At the same time, the generalized parabolicity is strongly violated at critical points
of metal-insulator transitions, signaling violation of local conformal invariance. Moreover, in classes D and DIII,
even the Weyl symmetry breaks down at critical points of metal-insulator transitions. This last feature is related to
a peculiarity of the sigma-model manifolds in these symmetry classes: they consist of two disjoint components.
Domain walls associated with these additional degrees of freedom are crucial for ensuring Anderson localization

and, at the same time, lead to the violation of the Weyl symmetry.

DOLI: 10.1103/PhysRevB.106.104202

I. INTRODUCTION

Anderson localization in disordered systems keeps attract-
ing much attention of researchers, both theoreticians and
experimentalists [1]. Localized and delocalized phases are
separated by critical points of Anderson transitions that have
very intriguing properties [2]. In a broader sense, Ander-
son transitions include also transitions between topologically
distinct localized phases. The interest to Anderson local-
ization has been additionally enhanced by the development
of full symmetry classification of disordered fermionic sys-
tems [3-5] and by the advent of topological insulators and
superconductors [6].

Critical states at Anderson metal-insulator transitions
exhibit a remarkable property—multifractality. When under-
stood in a narrow sense, the Anderson-transition multifrac-
tality characterizes the scaling of moments of eigenfunction
amplitudes (or, equivalently, of moments of the local den-
sity of states, LDOS) [2,7]. It has been recognized, however,
that there is a much broader class of observables (described
by gradientless composite operators in the sigma-model lan-
guage) characterizing the physics of critical eigenstates [8].
The scaling of such observables and associated correlation
functions has been termed “generalized multifractality” [9],
and is characterized by an infinite set of scaling exponents
X;, sometimes called “multifractal spectra,” where the in-
dex A labels different observables. In Refs. [8,10,11], it was
shown that the multifractal spectra x; in five out of ten sym-
metry classes satisfy a certain exact Weyl symmetry that
relates scaling exponents of seemingly unrelated multifractal
observables.
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In experimental studies of quantum transport, two-
dimensional (2D) structures play a particularly prominent
role. There is a vast variety of experimental realizations of
2D disordered electronic systems, which include interfaces in
semiconductor heterostructures, surfaces of topological insu-
lators and semiconductors, as well as 2D materials (graphene,
transition-metal dichalcogenide monolayers, etc.) Naively,
one might expect, in view of an analogy with conventional
second-order phase transitions with a continuous symme-
try, that d = 2 is the lowest critical dimension. This would
imply that 2D systems are always in the localized phase.
This is indeed true for the “most conventional” symmetry
class Al (also known as the Wigner-Dyson orthogonal class).
Remarkably, in all the remaining nine symmetry classes,
Anderson-localization critical points exist [2]. In the field-
theory language, this is related to peculiar properties of the
corresponding sigma-model manifolds: (i) supersymmetry (or
n — 0 replica limit in the replica formulation); (ii) combi-
nation of noncompact and compact degrees of freedom, with
nontrivial topologies associated with the compact coordinates.

The most well-known example of a 2D Anderson-
localization critical point is the celebrated integer quantum
Hall (QH) plateau transition that belongs to the symmetry
class A. It has counterparts in 2D disordered superconductors:
the spin quantum Hall (SQH) transition (class C) [12—18] as
well as the thermal quantum Hall transition (class D) [19-25].
For class A, the construction of eigenstate observables was
developed in Ref. [8], and the generalized multifractality at
the QH transition was studied numerically in Ref. [9]. For
class C, a detailed analytical and numerical study of the
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generalized multifractality at the SQH transition was carried
out in Refs. [9,26]. A remarkable property of the SQH critical
point is that exact analytical results for some of the critical
exponents can be obtained by means of the mapping to clas-
sical percolation [14,15]. In earlier works, several exponents
x; for the conventional multifractality were determined in
this way [16—18]. More recently, we were able to extend the
mapping to a broader subset of generalized-multifractality
exponents x; [26]. These analytical results are in excellent
agreement with results of numerical simulations [26], which
yield also exponents that cannot be found analytically. One
of important implications of the analytical and numerical re-
sults of Refs. [9,26] is that the generalized parabolicity of
the spectrum of exponents x; (proportionality to eigenvalues
of the quadratic Casimir operator) is strongly violated at the
SQH transition. At the same time, it was shown in Ref. [9]
that, if the critical theory satisfies the local conformal invari-
ance, the generalized-multifractality spectrum x; must obey
generalized parabolicity. It follows that the local conformal
invariance is violated at the SQH critical point. This striking
result puts strong constraints on the form of the fixed-point
theory of the SQH transition, excluding, in particular, models
of Wess-Zumino-Novikov-Witten class.

Investigation of the generalized multifractality provides
thus important “fingerprints” of an Anderson-transition crit-
ical point, which motivates an extension of the previous
analysis to other 2D critical points. In this paper, we con-
sider those three classes that are characterized by weak
antilocalization: AIl, D, and DIII. As a consequence, phase
diagrams of the corresponding 2D systems feature a metal-
lic phase. (In the superconducting classes D and DIII, this
phase is called “thermal metal.”) These metallic phases are
separated from the insulating phases by Anderson metal-
insulator transitions, and we will explore the generalized
multifractality at the corresponding critical points. Further-
more, while the antilocalization drives the system in the
metallic phase to the “supermetal” (infinite conductivity) fixed
point, the corresponding flow is logarithmically slow. Thus, at
any realistic length scale, the metallic systems exhibit gen-
eralized multifractality, which we will study as well in this
work.

Two-dimensional systems of all three symmetry classes
that we discuss here are of great physical interest, in particular,
in connection with topological phenomena. The symmetry
class All is the Wigner-Dyson class for systems with strong
spin-orbit interaction [27-29]. In particular, it includes 2D
structures exhibiting quantum spin Hall effect as well as sur-
faces of 3D (weak or strong) topological insulators. Class D
(already mentioned above in the context of the thermal quan-
tum Hall effect) hosts, in particular, p-wave superconductors
with broken time-reversal invariance; the corresponding ex-
citations are Majorana fermions [19-25]. Disordered systems
of class D attract attention in context of paired states in the
fractional quantum Hall effect with non-Abelian statistics of
excitations and also in connection with quantum spin liquids.
Class DIII includes topological superconductors with broken
spin symmetry (similarly to class D) but preserved time-
reversal invariance [30]. For all three classes, phase diagrams
generically contain topologically distinct (thermal) insulator
phases and a (thermal) metal phase.

The goal of this work is to address key questions related
to the generalized multifractality in classes All, D, and DIII:
How to construct the corresponding observables in terms of
wave functions? What are values of the exponents in 2D
systems? Do they satisfy the generalized parabolicity? (As ex-
plained above, this question is closely related to the presence
of absence of local conformal invariance.) Do the exponents
obey the Weyl symmetry? The paper answers all these ques-
tions; its most salient results are as follows.

(1) By using a renormalization-group (RG) analysis and
the Iwasava decomposition, we derive the pure-scaling ob-
servables in terms of sigma-model composite operators and
in terms of eigenfunction observables. We find that the eigen-
function observable construction follows one of two patterns.
If the symmetry class has a symmetry of Kramers type, i.e.,
either a time reversal symmetry 7 satisfying 7> = —1 or a
particle-hole symmetry P satisfying P> = —1, the construc-
tion is of “spinful” type, as we have derived for class C
in Ref. [26]. This is the case for classes AIl and DIII. In
the opposite case (in particular, in class D), the “spinless”
construction applies, as obtained earlier for class A [8].

(2) Using appropriate microscopic models, we confirm
numerically this construction for classes All, D, and DIII,
both in metallic phases and at the metal-insulator transition
points. (The validity of the derivation based on the sigma
model is not entirely trivial at these transition points, in view
of the importance of topological defects for localization.)
These simulations also allow us to find numerical values of
the generalized-multifractality exponents.

(3) We find that, in the metallic phases, the Weyl symmetry
and the generalized parabolicity are fulfilled (at least, within
the numerical accuracy), as expected analytically.

(4) At the metal-insulator transitions, the generalized
parabolicity is strongly violated, which also implies the vi-
olation of the local conformal invariance.

(5) Moreover, for metal-insulator transitions in classes D
and DIII, even the Weyl symmetry is violated. We attribute
this to the topology of the sigma-model manifolds in this sym-
metry classes, which contain two disconnected components,
i.e., additional Z, degrees of freedom. “Jumps” between these
two components (or, equivalently, domain walls) are respon-
sible for Anderson localization and, at the same time, lead to
the violation of the Weyl symmetry.

II. GENERAL CONSIDERATIONS

A. Nonlinear o-model and composite operators

Field theories of Anderson localization are nonlinear su-
persymmetric ¢ models [2,31-35]. Many properties of the
theory (including, in particular, the perturbative analysis and
the symmetry classification) can be equivalently understood
within a replica version of the o model [36—40]. The target
spaces of the o models are symmetric (super)spaces G/K,
see the review [2] for target spaces corresponding to all ten
symmetry classes of disordered systems.

Within the o-model field theory, observables charac-
terizing the generalized multifractality are represented by
gradientless composite operators P(Q). Here the o-model
field Q € G/K is a matrix, Q = gAg~!, where A is a
matrix that commute with all k € K (a standard choice is
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A = diag(l,,, —1I,), where the identity blocks are in the
retarded-advanced space), and g € G. Since Q does not
change when g is multiplied on the right (g — gk) by any
element k € K, the set of matrices Q realizes the symmetric
space G/K.

The pure-scaling observables P (Q) are labeled by a tuple
A =(q1,-..,qn) of numbers g;, which is the highest weight
of the corresponding irreducible representation. In general,
g; may be complex but one usually focusses on real g;. The
composite operators belonging to the representation A show
at criticality a power-law scaling characterized by an exponent
(scaling dimension) x; . There are many ways to choose a rep-
resentative P, (Q) of a given representation A. One important
choice is provided by the Iwasawa decomposition [41,42]. (In
the supersymmetric approach, we need a generalization to Lie
supergroups that was worked out in Ref. [43].) Here is a brief
description of the method in the classical setting.

Any connected noncompact semisimple Lie group G has
a global Iwasawa decomposition G = NAK, where N is a
nilpotent group, A is an Abelian group, and K is the maximal
compact subgoup of G. This factorization provides a very use-
ful parametrization of the target space G/K. Anelementa € A
is fully specified by n real numbers x;, which play the role of
radial coordinates on G/K. In terms of the radial coordinates,
the pure-scaling operators ¢; (Q) are simply “plane waves™:

$,.(Q) = ¢p(x1, x2, ..

(Note that, in the supersymmetric formulation, x; are the Iwa-
sawa radial coordinates in the boson sector.)

To construct the pure-scaling operators explicitly as combi-
nations of matrix elements of Q, we use the key fact that there
exists a choice of basis in which elements of a € A are diag-
onal matrices, while elements of n € N are upper triangular
with units on the diagonal. This has immediate consequences
for the matrix QA: since elements of K commute with A, the
Iwasawa decomposition g = nak leads to QA = na’An~'A,
which is a product of an upper triangular, a diagonal, and a
lower triangular matrices. In this form, the lower principal
minors of the advanced-advanced block of QA are simply
products of diagonal elements of a®, which are exponentials
of the radial coordinates x; on G/K. These minors are ba-
sic building blocks, which can be raised to arbitrary powers
and multiplied to produce the most general exponential func-
tions (1).

A great advantage of this choice is that the functions
¢;.(x1, X2, ..., X,) are positive (and thus can be raised to any
power) and satisfy Abelian fusion:

DD = Parnns Dor = (P 2

Furthermore, they are in direct correspondence with the
pure-scaling eigenfunction observables satisfying analogous
properties (to be discussed below). The Iwasawa decomposi-
tion was explicitly performed for class A in Ref. [8] and for
class C in Ref. [9]. In Appendix A, we provide detials of the
Iwasawa construction for classes All, D, and DIII.
Alternatively, one can use the Cartan decomposition G =
KAK, which naturally leads to a definition of K-invariant (or
K-radial) eigenfunctions P;(Q). A very convenient way to
find them is to use the one-loop RG. Details of this approach

X)) = € PR M

and the results for all ten symmetry classes are presented in
Appendix B.

B. Scaling dimensions and Weyl symmetry
1. Scaling dimensions

At the point of an Anderson transition, the observables
(P,.(Q)) exhibit a power-law scaling with the system size L,

(P.(Q)) ~ L™, 3

where we set the ultraviolet scale (lattice constant in numer-
ical simulations) to be unity. The angular brackets (...) in
Eqg. (3) denote the integration over Q with the corresponding
o-model action. In terms of eigenfunctions, the pure-scaling
observables P;[y/] are homogeneous functions of degree 2¢q
with respect to eigenfunction amplitudes, where

qg=q1+q+---+q, = Al 4

The explicit construction of P,[y] is presented in Sec. IID
below. These observable show at criticality the scaling

LYP[y]) ~ L™, Q)

where d is the spatial dimensionality and (...) denotes the
disorder averaging. (In this paper, we focus on the case of
d = 2.) The factor L% in Eq. (5) takes into account the con-
ventional metallic scaling, |2| ~ L™, so that the exponent
A, characterizes the anomalous scaling. The correspondence
between P, (Q) and Py[y], obtained earlier for class A in
Ref. [8] and for class C in Refs. [9,26], is as follows:

Pi(Q) «— VILYP Y] ©6)

The meaning of the correspondence is that the disorder aver-
ages of (products of) DL P, [v/] map to o-model correlation
functions involving (products of) the corresponding compos-
ite operators P; (Q).

The average density of states v that appears in Eq. (6)
corresponds to the representation A = (1) and thus scales with
L as

D(L) ~ L™, @)
This yields the relation between the exponents x; and A :

Xqrengn) = Digrngn) T 4X01) ®)
with g given by Eq. (4).

2. Density of states

It is worth briefly commenting on the scaling of the average
density of states v, Eq. (7). In the Wigner-Dyson classes
(including class AlI considered in this paper), v does not have
any critical behavior (i.e., is essentially a constant), so that
x@1y = 0 and x, = A,. On the other hand, for the unconven-
tional (non-Wigner-Dyson) symmetry classes—in particular,
classes D and DIII considered here—the average density of
states exhibits at criticality a power-law scaling with energy €
near € = O:

v(e) ~ |e]”. 9)

The connection between this formula and Eq. (7) is as follows.
The typical position of the nth lowest eigenstate with € > 0 is
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found from Eq. (9) by using L? f(f de v(e) = n (we set the
spatial dimensionality d to be d = 2), which yields

1
n\ T
€n = (E) " (10)
As we are interested in a system at criticality, we set n ~ 1
here and substitute the resulting €, in Eq. (9), which gives
Eq. (7) with

2K X(1)

- =2 11
T r K (11)

X(1) = .
(1 2—x(1)

3. Weyl symmetry

As was shown in Refs. [8,11], the scaling dimensions x;
in classes A, Al, All, C, and CI should be invariant under the
action of Weyl symmetry,

wew. (12)

Xy = Xy,

Here W is the Weyl group that acts in the space of weights A
and is generated by the operations of the following two types:

(1) Weyl reflections: ¢; - —c¢; — ¢g; and

(2) Weyl permutations: ¢; — q; + (¢; — ¢;)/2,
qi + (ci —¢j)/2.

In classes D and DIII, the situation is more subtle since
the o-model target space in either class consists of two parts:
the group G has two connected components, and the homo-
topy group 7o(G/K) = Z,. The corresponding domain walls
associated with jumps between the two components of the
manifold spoil the proof of the Weyl symmetry. On a tech-
nical level, the derivation of the Weyl symmetry relations
in Refs. [8,11] was based on the supersymmetric general-
ization [43] of the classical Iwasawa decomposition of the
group G, and the related Harish-Chandra integral formula and
Harish-Chandra isomorphism [41,42]. All these exist only
for connected noncompact groups, which is not the case for
classes D and DIII.

Thus the Weyl symmetry is expected to hold in classes D
and DIII only when the domain walls are suppressed, i.e., the
o-model field Q stays—at least approximately—in a single
component of the manifold. As we discuss below, this con-
dition is fulfilled in the thermal-metal phase. The constants c;
(with j = 1, 2, .. .) are determined by (the bosonic part of) the
half sum of positive roots, p, = > i CiXjs and are known for
all the symmetry classes. In particular, they read for the three
classes that are in the focus of this paper:

qj —

cj=3—4j, class All, (13)
cij=1—j, classD, (14)
¢j=2-12j, class DIIL (15)

C. Conformal invariance and generalized parabolicity

It was shown in Ref. [9] that, if the following two assump-
tions are met:

(1) the theory is invariant under local conformal transfor-
mations generated by the Virasoro algebra,

(2) there exists a set of pure-scaling operators ¢, (Q) (cov-
ering all, continuously varying, ) that are Virasoro primaries
satisfying the abelian fusion rules,

the scaling dimensions x(,, 4,,.) are quadratic functions
with respect to the set of ¢;:

x%f,qu,...) = ZAi‘Zi + ZBijQi(Jj- (16)
i ij

The assumption of the abelian fusion is explicitly verified by
the Iwasawa construction, see Sec. Il A. Thus the only re-
maining assumption behind Eq. (16) is that of local conformal
invariance, which is indicated by the superscript “CFT” (con-
formal field theory). This quadratic dependence of x(;, 4,,...)
was called in Ref. [9] “the generalized parabolicity”. In the
presence of Weyl symmetry (i.e., for classes A, Al, All, C,
and CI, as well as for classes D and DIII with suppressed
o -model domain walls), the generalized parabolicity implies a
very strong restriction on the spectrum of scaling dimensions
x;.. Specifically, the spectrum is then characterized by a single
parameter b:

X ==bY qilgi+c)=—br-(i+pp). (17

Equation (17) means, that, in the presence of Weyl sym-
metry and local conformal invariance, the generalized-
multifractality spectrum is given by x!"" = —bz;, where

=Y qiqi+ci)=x- O+ pp). (18)

are eigenvalues of the Laplace-Beltrami operator on the
o-model target space. The generalized parabolicity of the
spectrum x; represents thus a stringent test of the local con-
formal invariance of the theory. In particular, it was found
in Refs. [9,26] that the generalized parabolicity is strongly
violated at the critical point of the SQH transition, thus im-
plying a strong violation of the local conformal invariance.
The numerical simulations in this paper (see Secs. III, 1V,
and V below) allow us to test the local conformal in-
variance at metal-insulator transitions in these symmetry
classes.

D. Pure-scaling eigenfunction observables
1. Classes without (pseudo)spin degree of freedom

We consider first the symmetry classes for which the fol-
lowing conditions are met: (i) time-reversal invariance T is
either absent or satisfies 72 = 1 and (ii) particle-hole sym-
metry P is either absent or satisfies P> = 1. This means that
there is no Kramers degeneracy associated with T2 = —1 and
no Kramers-like near-degeneracy (at € — 0) associated with
P? = —1. We will thus loosely call this situation “spinless.”
This case is realized for the following five symmetry classes:
A, Al, BDI, AIll, and D.

For class A, pure-scaling eigenfunction combinations were
derived in Ref. [8]. The building blocks for the construc-
tions are the eigenfunction observables corresponding to the
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representations A = (1, 1,...,1) = (1"):
Pamy[¥] = |det (M, [¥DI* = |det(Wi(t;))msml®
Yi(r)  Pa(r) YD\ |
Yi(r2)  Ya(rz) Ym(r2)
= det : . :
wl (rm) Il/Z (rm) wm (rm)
(19)

For a generic A with n entries, A = (q1, ..., g»), the scaling
observable is obtained by raising the blocks (19) to the corre-
sponding powers and multiplying them:

P Y] = (Puny [y D! 2 (P [y NP2 - -

X e (Paoeny [ D10 (P [y D (20)

For a A with n entries, one therefore needs k& wavefunctions
¥, ..., ¥,, each evaluated at n points, ry, . ..r,. The factors
Pam[y] with m < n in Eq. (20) are understood as calculated
on the first m wavefunctions v, ..., ¥,, and at the first m
points, ry, .. .r,. For integer positive g; satisfying q; > ¢q» >
... 2 gy > 0, the observable (20) is characterized by a Young
diagram A with n rows and g; elements in the ith row. The
pure-scaling character of P[] was proven in Ref. [8] by a
mapping to the o-model, which yields a pure-scaling compos-
ite operator P, (Q). More specifically, one obtains the radial
eigenfunctions ¢, (Q) of the Iwasawa decomposition, Eq. (1).
After this, an analytical continuation permits to prove that
Eq. (20) represents a pure-scaling observable for arbitrary
complex ¢;. Note that the construction of Eq. (20) out of its
building blocks Pj=)[v] is in a clear analogy with the abelian
fusion rules (2) of the o-model functions ¢; (Q).

While the derivation sketched above is rather technical, one
can presented a transparent physical argument clarifying this
construction of eigenfunction observables. Specifically, let us
focus on the central element of the construction, Eq. (19)
for Pym[¥]. We know that amplitudes of critical eigenstates
that are nearby in energy are strongly correlated: adjacent-
in-energy eigenstates look locally almost the same. Further,
the observable P;»[y] should be a polynomial of degree 2m

J

(wi,T(rj))mxm | (wT,T(rj))mxm
(wi,l(rj))mxm | (wi,l(rj))mxm

P[] = det <

):det

It is not difficult to prove that that the Slater determi-
nant (21) is real and positive. This argumentation also applies
to classes C and CI, which possess either no T invariance
(class C) or T invariance with T2 = +1 (class CI), but are in-
stead characterized but particle-hole symmetry with P> = —1.
In this case, the partner state Py; = /7 has an energy opposite
to that of v;. However, for distances between the points r;

with respect to eigenstate amplitudes. Finally, it is the most
irrelevant out of all such observables with given m. To have a
nonzero average, each eigenfunction should enter twice (once
as ¥, and once as ¥*). With these arguments, it is clear that
P[] should involve the maximal possible antisymmetriza-
tion, i.e., a Slater determinant built on k& functions, which
implies Eq. (19). This argumentation is equally applicable to
other “spinless” symmetry classes (Al, BDI, AIlIl, and D). Out
of this group of classes, we consider in detail in this work the
class D.

In Sec. IV, we will explicitly verify, by performing nu-
merical simulations at the Anderson transition and in the
thermal-metal phase, that the Eq. (20) indeed provides the
correct form of pure-scaling observables in class D. An an-
alytical derivation of Eq. (20) proceeds by mapping to the
o-model, using the Iwasawa decomposition and establishing
a one-to-one correspondence to pure-scaling composite oper-
ators (1). This program was carried out for class A in Ref. [8].
In Appendix A, we show that the same procedure works in
class D.

2. Classes with (pseudo)spin degree of freedom

The remaining five classes—All, C, CI, DIII, and CII—
possess either time reversal symmetry with 72 = —1, or
particle-hole symmetry with P> = —1, or both. We call this
situation “spinful”: in addition to the spatial coordinate, we
necessarily have in these classes a spin-type index correspond-
ing to the space where T or P invariance acts. In particular,
both classes from this group that we consider in detail in this
paper—AIl and DIIl—are characterized by the time-reversal
symmetry with 72 = —1. This implies the Kramers degener-
acy: together with each critical state y;, we have its partner
state Tv;, which we denote for brevity by 5. A linear com-
bination of ¥; and ; is then also an eigenstate with the same
energy. Thus the physical argument in Sec. II D 1 motivating
Eqg. (19) has to be modified: instead of an eigenstate ¥/;, one
should consider a two-dimensional linear space spanned by
¥; and ;. Via the same token, the coordinate r; should be
supplemented by the spin index that takes two values 1 and | .
Then, instead of Eq. (19) of the spinless sutiation, we get in
the spinful case the following Slater determinant:

Y1,4(r1) VUm 4 (x1) | ¥ 4(r1) Vi (1)
1/fl,T'(rm) w171,7:(rm) I/IT ¢.(rm) 1/[}’7[ T.(rm)
Y1, (r1) Y,y (1) | Y1, (ry) Yin,, (r1)
Yy () Yoy (6 | U1, (T Yy (E)
2D

(

much smaller than the correlation (localization) length (which
is of the order of the system size L for eigenstates closest to
zero energy), this is immaterial, and the above argumentation
leading to Eq. (21) fully applies. Indeed, Eq. (21) has been
derived for class C in Ref. [26] by using the mapping to the
o-model and the Iwasawa decomposition of Ref. [9]. Further-
more, it was shown that the observable P, [v] with generic A
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has the same form (20) as for spinless case; one only has to
use Eq. (21) for the building blocks.

We thus argue that the construction given by Eqs. (21)
and (20) yields the pure-scaling eigenstate observables in all
five “spinful” classes, including classes AIl and DIII stud-
ied in this paper. We will verify this below by numerical
simulations in Sec. III (class AIl) and Sec. V (class DIII). Fur-
thermore, the connection (6) that was analytically established
for class C in Refs. [9,26], works for other spinful classes as
well, and we have explicitly verified this for classes AIl and
DIII, see Appendix A.

In Appendix B, we present a complementary approach to
derivation of pure-scaling observables. This is the one-loop
RG analysis for the o model, which allows us to deter-
mine K-invariant polynomial composite operators P, (Q) as
eigenfunctions of the RG. For completeness, this is done in
Appendix B for all ten symmetry classes. The results are
very instructive, as they clearly demonstrate relations between
different symmetry classes. In particular, they show that the
classes split into two groups—“spinless” and “spinful”—in
agreement with the above physical arguments based on the
presence or absence of Kramers degeneracy and Kramers-like
near-degeneracy and with the analysis based on the Iwasawa
construction (Appendix A).

E. Scaling at a metal-insulator transition

In numerical simulations below, we study eigenfunction
observables P, [{] as defined by Eq. (20) in combination with
Eq. (19) for class D or with Eq. (21) for classes AIl and
DIII. For A = (q1, ..., q,), we use n eigenstates ¥; closest
in energy to criticality (with their time-reversal partners for
classes All and DIII) and » spatial points r; that are separated
by distances ~r from each other. For minimal distances of
order of lattice spacing, r ~ 1, the correspondence (6) implies
the scaling (with spatial dimensionality d = 2)

DUL)L* (P [ ](r, L)) ~ L™, r~1. (22)

In the opposite limit of the largest possible separation, r ~
L, the wave functions at distance ~r become uncorrelated,
yielding

DILILUPY)(r, L)) ~ L5 a0 p~ [ (23)

Since the dependences on r and L are of power-law type at
criticality, we find the result for arbitrary r (1 < r < L):

DL PP (r, L)) ~ L% % ™o =X - (24)

A more formal way to obtain Eq. (24) is to use the o-model
RG analysis. We briefly sketch it. In the first step of RG,
which proceeds from the ultraviolet scale until r, the operators
P4 (Q) at each point r; are renormalized independently, with
the scaling dimensions x,). After this, they fuse to the oper-
ator P, (Q). In the second step of the renormalization, from r
to L, this composite operator is renormalized with the scaling
dimension x;.

Using Eqgs. (7) and (8), the result (24) can be rewritten as

L*(P[W]1(r, L)) ~ L™ p=Ban=Ba =R (25)

F. Scaling in the (thermal) metal regime

In addition to critical points of metal-insulator transitions,
we explore the generalized multifractality in the (thermal)

metal phase in all the three classes All, D, and DIII. In this
phase, the dimensionless conductivity g is large or, in other
words, the coupling constant + = 1/mg of the o model is
small. In the limit L — oo, the conductivity g renormalizes
to infinity due to weak antilocalization: the system becomes a
“supermetal.” However, we are interested in the behavior of a
system at a finite L, when g(L) is finite. As discussed below,
the system then is characterized by the generalized multifrac-
tality, with effective exponents proportional to (L) ~ g~ !(L).
Since the renormalization g(L) is only logarithmic, the gener-
alized multifractality remains rather significant even for large
system sizes (up to L = 1024) used in our simulations.

The one-loop RG equation for the coupling constant ¢
reads [2,20,21,32,35,44]

dint {1, All and D,
= —ut, o=

dlne 2, DIIL (26)

It is supplemented by an equation describing renormalization
of the energy € that determines the scaling of the averaged
density of states (cf. Sec. II B 2):

dlne {2+t, D and DIII,

dln¢ ~ |2, All @7
Here the term 2 is the normal dimension corresponding to
the spatial integral | d?*r. Class AII is one of conventional
(Wigner-Dyson) classes, where the energy does not exhibit
any anomalous renormalization, so that the density of states
is constant. In classes D and DIII, the energy does show a
nontrivial renormalization, implying an anomalous scaling of
the density of states.

Since ¢ is small in the (thermal) metal phase, the one-loop
RG is controllable. Furthermore, it is worth emphasizing that,
for classes D and DIII, the one-loop RG equations (26) discard
not only higher-loop contributions but also jumps between
two components of the o-model manifold. This is fully jus-
tified since such topological excitations (domain walls) are
exponentially suppressed at small 7.

Integrating Eq. (26) from the ultraviolet scale (lattice con-
stant) a to a running scale £, we get

-1
t(0) = [:01 +aln (g)] .ty =t(a). (28)

Below we seta = 1.

To obtain the scaling of averages of o-model compos-
ite operators (P, (Q)) within the RG scheme, one perturbs
the o-model action by the term CiO)P,\(Q). The elimination
of fast degrees of freedom leads to a flow of the coupling
constant C,(£) as a function of the RG scale ¢. It was
shown in Refs. [9,45,46] that the one-loop RG acts on gra-
dientless composite operators on the o-model manifold as
the Laplace-Beltrami operator (times a constant). The pure-
scaling operators P, (Q) are eigenoperators of the Laplacian
by construction. The eigenvalues of the RG describing this
flow are thus proportional to eigenvalues of the Laplacian
(quadratic Casimir invariant) z; :

dlI’lC}L
dIn¢

For class All, the value of y in Eq. (29) [with the definition
of coupling ¢ used in Eq. (26)] follows from the analysis

s (172, AmL
=vabo Y=, D and DIII.

(29)
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in Refs. [38,39], where the renormalization of polynomial
composite operators in Wigner-Dyson classes was studied up
to four-loop order. For classes D and DIII, the value y =1
can be restored from Eq. (27). Indeed, the energy couples to
the representation A = (1) and z(j, = z)' = 1.

Substituting here the running coupling (28) and integrating
Eq. (29) from the ultraviolet scale to L, we obtain

Ci(L) = (1 +atyIn L)=+C?, (30)

where C;O) is the bare value of C,. This implies the following
scaling of the averaged o-model composite operator P;(Q)
with the system size L:

(Pi(O;L)) ~ (1 + atyln L)%, 31

Setting here A = (1), we get the behavior of the averaged
density of states D(L):

D(L) ~ (1 4+ atgln L)« (32)

Equation (32) implies the known logarithmic increase of the
density of states at € — 0 in classes D and DIII [20,21,23]

1 1
vie)~1+ —-tgln—, D, (33)
2 €

1/2
v(e) ~ (1 +toIn —) , DIIL (34)
€

Using the correspondence (6), we find from Egs. (31) and (32)
the scaling of the eigenfunction observables

LRIYIL) ~ (Lt atgInL)s57E0l - (35)

where, as before, g = [A].

In analogy with the discussion of the Anderson-transition
point in Sec. IT E, we can extend Eq. (35), which is derived for
distances r ~ 1 between the points, to arbitrary r. In analogy
with the critical point, we perform the RG in two steps: first
from the ultraviolet scale till », where the fusion takes place,
and then from r till L. The result reads

LX(P,[Y](r, L)) ~ (1 + atoIn L)« 90l
x (14 afyInryel-s+ izl (36)
For a small bare coupling #,, there is an exponentially broad

range of L for which atyInL <« 1. In this situation, we can
approximate

1+ afglnL ~ oML — ot (37)

Upon this approximation, Egs. (31) and (36) take the form of
Egs. (3) and (25), with the exponents

X = —yitozn, A =—yi(z —qz0)). (38)

For a generic L, one can define running exponents

_dIn{P,(Q: 1))

o1y = - SRS (39)
dIn[L%(P, L
Ay = -4l dﬂ;g” M L) = gxan(L). 40)

Substituting here Egs. (31) and (36), we obtain
x.(L) = —yt(L)z, AuL) = —ytL)(z — qzay), (41)

where #(L) is the running coupling (28).

In the numerical analysis, we will plot L?7(P,[y](L)) as
a function of L on the log-log scale. We see that, as long as
the condition afy In L < 1 is reasonably well met, this plot is
expected to give an approximately straight line, with a slope
—A, given by Eq. (38). With increasing L, the line should
exhibit a curvature, and a slope will be given by —A,; (L),
Eq. (41). We also emphasize that the spectrum (38) satisfies
the single-parameter generalized parabolicity (17), with b =
yty. Moreover, the generalized parabolicity (17) holds also for
the running spectrum (41), with b = y¢(L). Below, we will
confront these analytical predictions with results of numerical
simulations.

III. CLASS AII
A. Model and generalities

The symmetry class All is the Wigner-Dyson class with
time-reversal invariance T satisfying T2 = 1. At variance
with classes D and DIII considered below, the density of states
is not critical in class AlL i.e., xy =0, so that x;, = A,.
Thus exploring numerically the scaling of the eigenfunction
observables (P, [¥](L)) in class AIl, we will obtain directly
the exponents x, . Another important feature of class All is the
absence of two-loop and three-loop corrections to the beta and
zeta functions [38,39],

dInt 4 dInC, 1 4

TInt — —t + O0("), Tt EZ)J + 0(t™) 42)
with t = 1/mwg. In view of this, the one-loop formulas of
Sec. ITF are expected to be especially accurate in the metallic
phase of class AL

For the numerical analysis, we use the Ando model [47]
defined by the following Hamiltonian:

H=Y e€c ciot Y VigjoClyCio- (43)
ic (i,j)o

Here the random on-site potentials €; are uniformly distributed
on the interval [—W/2, W/2] and the nearest-neighbor hop-
ping Vi s.itk.or = Vo exp(ifror) depends on the direction k =
x, y. The time-reversal symmetry acts as 0, K, where /C is the
complex conjugation. The Ando model (as well as its varia-
tion known as the SU(2) model) exhibits the metal-insulator
transition characteristic for class All, and the corresponding
phase diagram has been extensively studied [27,47-52]. We
set Vo =1 and 6, =6, = /6. It is known from previous
studies that the Anderson transition at the band center, € = 0,
takes place at disorder strength W = 5.84, and we use this
value of W to explore the system at criticality. In addition,
we perform the numerical analysis for a considerably weaker
disorder, W = 3.00, for which the system is deeply in the
metallic phase.
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FIG. 1. Numerical determination of the generalized multifractality in the metallic phase of class AIl [Ando model (43), disorder W = 3,
energy € = 0], for g = 2 (top left), ¢ = 3 (top right), ¢ = 4 (bottom left) and g = 5 (bottom right) eigenstate observables. The spinful pure-
scaling combinations (20), (21) are computed, with averaging over the system area and 10* realizations of disorder. The data are scaled with
rAat-+Am which yields an expected collapse as functions of r/L. For each A, data points corresponding to the smallest r ~ 1 are highlighted
as large dots, visualizing the L-dependence at a fixed r. The full lines are fits to these data points; the resulting exponents x™ are given in
Table 1. The dashed lines corresponds to the generalized parabolic spectrum (17) with b = 0.0273; see the column x}"™ in Table 1. The slopes
of full and dashed lines are nearly identical for all A, which means that the generalized parabolicity holds to a great accuracy in the metallic
phase.

We verify below that the construction (20) and (21) cor-
rectly yields the scaling observables. To this end, we will
consider the polynomial observables up to the order g = 5.
The Weyl symmetry, which is expected to hold exactly in class
AlL implies a number of relations between the corresponding
scaling exponents:

X(1,1) = X2,2)s  X(1,1,1) = X(2,2,1),

xX@1n =X, X32=0. (44)

The generalized parabolic spectrum (17) has in class All the
following form:

para

Xagrgny = Plad —q) + @25 —g2) +q39 —gq3) + .. 1.
(45)

As discussed above, violation of this form of the generalized-
multifractality spectrum at the metal-insulator transition
would imply that the local conformal invariance does not hold.
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TABLE I. Scaling exponents x; of the generalized multifractality in class AIl (Ando model) for polynomial eigenstate observables with
g = || < 5. The exponents xT and x are obtained numerically at the metal-insulator transition (critical disorder W = 5.84) and in the
metallic phase (W = 3), respectively. The Weyl symmetry implies the relations x( 2y = X1,1y, X2,2,1) = X(1,1,1)> X3,1) = X(2), and x32) = 0; all
of them are nicely fulfilled both at the MIT and in the metallic phase. The last column displays the exponents x}" corresponding to the
generalized parabolic spectrum (17) with a single parameter b. To check whether the generalized parabolicity holds, we choose b = 0.0273 in
the metal and b = 0.173 at the transition and show the values of x; /b. A comparison with x;"™ shows that the generalized parabolicity holds
nearly perfectly in the metallic regime but is strongly violated at the transition. In the metallic regime, the parameter b of the spectrum flows

logarithmically with scale: b = %I(L), where #(L) is the running coupling (28).

rep. A )C}L/HT x}l:/IIT / b xxlelal x;netal / b anra
qg=2 2) —0.361 £ 0.001 —2.08 + 0.01 —0.0551 £ 0.0001 —2.017 £ 0.005 —2b
(1,1) 0.489 £ 0.001 2.83 + 0.01 0.1095 £ 0.0001 4.012 + 0.005 4b
qg=3 3) —1.14 + 0.01 —6.57 £+ 0.06 —0.1659 £ 0.0004 —6.08 £+ 0.02 —6b
2,1) 0.225 £ 0.001 1.30 £ 0.01 0.0547 £ 0.0002 2.04 + 0.01 2b
(1,1,1) 1.333 + 0.001 7.70 £+ 0.01 0.3278 £ 0.0003 12.01 £ 0.01 12b
qg=4 “) —2.27 £ 0.05 —13.13 + 0.29 —0.334 £ 0.001 —12.21 £ 0.04 —12b
(3,1) —0.36 = 0.01 —2.06 + 0.06 —0.0557 £ 0.0005 —2.04 £ 0.02 —2b
(2,2) 0.493 £ 0.005 2.85 + 0.03 0.1095 £ 0.0005 4.01 £ 0.02 4b
(2,1,1) 1.111 £ 0.003 6.42 + 0.02 0.2728 £ 0.0005 9.99 + 0.02 106
1,1,1,1) 2.515 £ 0.002 14.54 £+ 0.01 0.6545 £+ 0.0003 23.97 £ 0.01 24b
qg=>5 5) —3.52 £ 0.09 —20.37 £ 0.17 —0.559 £ 0.003 —20.48 £ 0.52 —20b
4,1) —1.35 £ 0.07 —7.82 + 040 —0.223 £ 0.001 —8.16 = 0.04 —8b
(3,2) 0.02 £+ 0.02 0.08 £ 0.12 —0.0006 £ 0.0009 0.02 £ 0.03 0
(3,1,1) 0.64 £ 0.01 3.67 £ 0.06 0.1623 £ 0.0008 5.95 + 0.03 6b
(2,2,1) 1.333 £ 0.005 7.70 + 0.03 0.327 £+ 0.0008 11.97 £ 0.03 12b
(2,1,1,1) 2.316 £ 0.004 13.39 + 0.02 0.5997 £ 0.0005 21.99 £ 0.02 22b
(1,1,1,1,1) 4.031 £+ 0.004 23.30 £ 0.02 1.0895 + 0.0004 3991 £ 0.02 40b

We proceed now by presenting numerical results first for
the metallic phase (Sec. III B) and then for the metal-insulator
transition in Sec. III C.

B. Metallic phase

In Fig. 1, we show the numerical results for polynomial
observables L2 (P,[y](r, L)) with q = |A| equal to 2, 3, 4,
and 5. We take the required number (up to five) of eigenstates
closest to criticality, together with their Kramers partners,
evaluate the observables defined by Egs. (20) and (21), and
perform the averaging over all points in the sample (~L?) and
over 10* realizations of disorder. The system size is varied
from L = 32 to 1024.

The points are separated by distances ~r, with r < 10 (see
Ref. [26] for an analogous study for SQH transition). The
data are scaled by the factor r®a*-F+2u_ As expected from
Eq. (25), this leads to a collapse of the data for any given A
onto a straight line corresponding to a power-law scaling with
r/L. The slope of this line yields A, = x,. For each A, the
data points for the smallest » ~ 1 are highlighted by larger
symbols in order to visualize the L dependence at fixed small
r. These data points are used for power-law fits (full lines); the
resulting exponents x"**! are presented in Table I. The error
bars of the exponents x;, in Table I (and in the analogous tables
for classes D and DIII below) are determined using the same
method as for the SQH transition in Appendix C of Ref. [26].
As seen from the Table I, the Weyl-symmetry relations (44)
are fulfilled by the numerically found exponents x"™ with an
excellent accuracy.

In order to analyze whether the spectrum x™% satisfies
the generalized parabolicity (45), we fix the parameter b to

b = 0.0273 and present the values of x™%!/p in Table I. (We
choose the optimal value of b such that the corresponding
parabolic approximations describes in the best possible way

the exponents x{‘;‘;‘)al with n =1,2,3 and not too large g,

see below.) The values of x™? /b should be compared to
exponents x. for the strictly parabolic spectrum, Eq. (45),
that are also included in the Table. An excellent agreement
is observed, in full consistency with the analytical predic-
tion (38) for the metallic phase. The generalized parabolicity
of the spectrum xf{le‘al is illustrated also in Fig. 1, where the
dashed lines correspond to a parabolic spectrum (45) with
b = 0.0273. The slopes of full and dashed lines are essentially
indistinguishable.

Let us emphasize that we have fitted the data by power-
law dependencies (25). As discussed in Sec. IIF, this holds
approximately in the metallic phase (fy < 1), as long as the
system size is not too big, so that #y In L is sufficiently small.
Our results for the multifractality spectrum imply #, ~ 0.076,
implying that 7y In L indeed remains quite small in the whole
range of considered system sizes. This explains why the data
in Fig. 1 are fitted well by straight lines. More accurately, the
slope changes with L according to Eqgs. (41) and (28), but this
change is logarithmically slow. Indeed, a closer inspection of
the data in Fig. 1 shows the predicted reduction of the slope
with increasing L. As we have shown, the scaling in the whole
range of L should be described by Eq. (35), which yields for
class All

L*(P[Y1(L)) ~ (1 +1oInLY*/2. (46)

We have verified that a fit according to Eq. (46) withz = 0.076
indeed describes all the data excellently. We also note that
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FIG. 2. Exponents x() withn =1, ..., 5 for the metallic phase of class All (same parameters as in Fig. 1). Data points in the top panels

are numerically obtained exponents x;. In the bottom panels, the same data are shown in the form —x;, /z;, where z; is the quadratic Casimir
invariant. The red dashed lines in all panels correspond to the generalized parabolicity (45) with b = 0.0273. It is seen that the generalized
parabolicity holds to a great accuracy. At large g, deviations related to insufficient ensemble averaging are observed.

reaching the asymptotic regime, where the logarithmic term
in brackets of Eq. (46) is dominant, so that L7 (P, [y](L)) o
(InL)*/2, would require unrealistically large system sizes
(In L considerably exceeding 1/fy ~ 15).

We complement the numerical analysis of the multifrac-

tality by investigating the exponents x, for A = (g1, ..., q1)
(tuple of length n), with a continuously changing ¢; = g/n
and with n=1,2,... We use a short notation A = (¢q)

for these representations. For a given n, such exponents
x; characterize the distribution of the determinant (21). In
Fig. 2, we show the results for n =1, 2, 3, 4, and 5.
In the lower panels, the data are presented in the form
—X, /7, which is a constant b in the case of a generalized
parabolic spectrum (45). The lines correspond to the gener-
alized parabolicity (45) with b = 0.0273. We see again that
the generalized parabolicity in the metallic phase is very
well fulffilled. At high ¢, the ensemble averaging becomes
insufficient (as is always the case with numerical studies of
spectra of multifractality), which leads to observed increase
of deviations.

) L2 Pyl

L% Papan)lyl

C. Metal-insulator transition

We turn now to the numerical study of the generalized mul-
tifractality at the critical point of the metal-insulator transition
in the Ando model, W = 5.84. For an illustration of a spatial
structure of the spinful Slater determinants from Eq. (21), see
Fig. 3 which shows the scaling combinations L*P,[y]for A =
(1), A=(1/2, 1/2), and A = (1/3, 1/3, 1/3), computed for
a fixed disorder realization at the metal-insulator transition
in class AIl. The results for the scaling of the polynomial
observables with g < 5 are shown in Fig. 4 (in the same way
as the data for the metallic phase were plotted in Fig. 1, see
Sec. III B). We see again that the construction (20) and (21)
yields correctly the pure-scaling observables. For every A, the
data show nice straight lines on the log-log scale, i.e., exhibit a
power-law scaling with L, as expected at criticality. Obtained
values of the scaling exponents are presented in Table I in the
column xi/HT.

Analyzing the results for the exponents x)'T in Table 1,
we first observe that the Weyl-symmetry relations (44) are
nicely satisfied. It is worth emphasizing that the exact Weyl

L2 Pz @l

FIG. 3. Nlustration of spatial structure of building blocks of generalized multifractality, Eq. (21). Pure-scaling observables L?P;,[v/] (left
panel), LZP(II{ f) (middle panel), and L2P(1|{ ?11) (right panel) evaluated for a randomly chosen disorder realization at the metal-insulator transition

in class AL
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FIG. 4. Numerical determination of the generalized multifractality at the metal-insulator transition in class AIl [Ando model (43), energy
€ = 0, critical disorder W = 5.84], for ¢ = 2 (top left), g = 3 (top right), ¢ = 4 (bottom left) and ¢ = 5 (bottom right) eigenstate observables.
Numerical data are shown in the same way as in Fig. 1. The obtained exponents are shown in Table I in the column xMT. In the ¢ = 2 panel, the
yellow dotted line shows the generalized-parabolicity value x(; ;), with the prefactor b fixed according to b = 0.173. A large difference between
the slope of this line and that of the full yellow line (actual value of x(; 1)) demonstrates strong violation of the generalized parabolicity at the

metal-insulator transition; see also Table I and Fig. 5.

symmetry at the class-All metal-insulator transition is rather
nontrivial. As we have already pointed out in Sec. I, the Weyl
symmetry has in general a character of a hidden symmetry.
Furthermore, the conductance renormalization in a 2D sys-
tem of class All is essentially affected by vortices associated
with the homotopy group 7,(G/K) = Z, [53,54]. Moreover,
it was shown that these vortices are crucial for establishing
localization [54]. One could thus ask whether the vortices
might invalidate the proof of the Weyl symmetry based on
the o-model. The crucial point is that the symmetry of the
o model remains intact under RG also in the presence of
vortices, so that the classification of the observables and the
Weyl-symmetry relations hold also at the strong-coupling

fixed point of the Anderson transition. The G-invariance of
the RG transformation leads to the Weyl symmetry for critical
exponents [8]. Numerical verification of the Weyl-symmetry
relations, as carried out here, thus constitutes an important
confirmation of the validity of our analytical understanding
(based on the o -model field theory) of the Anderson-transition
physics.

Having verified that the Weyl symmetry holds at the crit-
ical point, we inspect whether the exponents x; satisfy the
generalized parabolicity (45). A quick inspection of Table I
tells us that this is clearly not the case. In the column x}'*
we present the corresponding ratio, with b = 0.173 chosen in
such a way that the parabolic approximation (45) optimally
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FIG. 5. Exponents Xgh) with n = 1, 2, 3 for the metal-insulator
transition in class All (same parameters as in Fig. 4). Data points in
the left panels are numerically obtained exponents x;. In the right
panels, the same data are shown in the form —ux; /z;, where z; is
the quadratic Casimir invariant. The red dashed lines in all panels
correspond to the generalized parabolicity (45) with b = 0.173. It is
seen that the generalized parabolicity is strongly violated.

describes the exponent x(,) in the range 0 < g < 1.5 (see
below discussion of these data). Comparing entries in this
column with those in the column xI™™* corresponding to a
parabolic spectrum, we see a strong (reaching a factor of
two) violation of the generalized parabolicity. As an exam-
ple, one can look at A = (1, 1), in which case the numerical

result is x?{‘}lT) /b = 2.8, which should be compared with the

value x{"}) = 4b for a generalized parabolic spectrum. This is

also illustrated by a dotted yellow line in the ¢ = 2 panel of
Fig. 4.

The strong violation of the generalized parabolicity is also
evident from Fig. 5, where we show the spectra x; for A =
(¢7) with g; = ¢g/n and and n = 1,2, 3. (The presentation
of data in this figure is analogous to Fig. 2 for the metallic
phase.) For a generalized parabolic spectrum, we would have
—x;. /7, = b, i.e., the same constant in all three right panels of
this figure. In each of these panels, we see sizable deviations

of —x;/z, from a constant, signaling a modest violation of
parabolicity of x,. For n = 1, these results are in agreement
with Refs. [28,52]. Comparing results for different n, we see
that the violation of the generalized parabolicity is in fact
strong: —x; /z, increases above 0.18 for n =1 and drops
below 0.11 for n = 3. This strong violation is also evident in
left panels of Fig. 5, where red dashed lines correspond to
Eq. (45) with b = 0.173.

We note that the properties of the generalized multifractal-
ity at the metal-insulator transition in class All studied here
are largely analogous to those at the SQH transition (class
C) explored in our recent works [9,26]: the Weyl symmetry
nicely holds, and the generalized parabolicity is strongly vio-
lated. As emphasized above, the former property confirms the
validity of the o-model approach to the problem, while the lat-
ter one implies a violation of the local conformal invariance.

IV. CLASSD

A. Model and generalities

Superconductors without further symmetries are in the
Bogolyubov-de-Gennes class D with particle-hole symmetry
P satisfying P? = 1. At variance with class AIl discussed
above in Sec. III, the beta-function has a two-loop correction
to the leading (one-loop) term:

dInt
dnt

with ¢t = 1/mg. Thus, in the metallic phase of class D, one ex-
pects larger deviations from the asymptotic one-loop formulas
of Sec. IIF than in class AIl. The one-loop zeta-functions for
scaling dimensions of the operators read [see Eq. (29)]

dlnCA
dint

Since class D is not of Wigner-Dyson type, the average
density of states is critical, i.e., x(;y # 0. To one-loop order
we have x() =1 + O(t?) [see Eq. (27)], which is Eq. (48)
for A = (1). To convert the exponents A, characterizing the
eigenfunction observables into x; , we will need the numerical
value of x(1), see Eq. (8), that should be determined separately.
This substantially reduces the accuracy of numerical determi-
nation of the exponents x; in class D (and also in class DIII
studied below) in comparison with class AIl.

In our numerical analysis, we use the Cho-Fisher
model [55], which is defined as a network model of the
Chalker-Coddington type [56,57] with the following distribu-
tion of scattering angles «; at nodes (labeled by i):

= —1 42>+ 0@?), 47)

=zt + O(t?). (48)

Plo;) = (1 — p)8(o; — &) + 2pSlai + @)
+ 3pd(ei + o — 7). (49)

The model is characterized by two parameters, o and p. For
p = 0, the network is fully regular, with the scattering angle
o. At every node, the particle turns right or left with the
amplitudes & cos o or =+ sin «, respectively. The parameter p
is the concentration of defects inserted at some nodes of the
network. A defect corresponds to the change of the scattering
angle « at anode i to —« or to m — «, with equal probabilities.
This changes signs of either both cos « or both sin « associ-
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ated with the node i and thus can be viewed as an insertion
of a pair of vortices into two plaquettes meeting at the node
i and belonging to the same sublattice (either cosine or sine).
The phase diagram of the Cho-Fisher model and the behavior
of the density of states were studied in Refs. [22,23]. The
phase diagram contains two topologically distinct insulating
phases and a metallic phase, with metal-insulator transition
lines in the a-p plane separating the metallic phase from each
of the insulating phases. The model is dual under the exchange
p < 1 — p, with p = 1/2 being the maximal disorder. Here,
we will use the Cho-Fisher model to study the generalized
multifractality at this metal-insulator transition. Specifically,
we will focus on the point sin?« = 0.19, p = 0.19, which is
known to belong to the metal-insulator transition line [22].

We also study numerically the generalized multifractality
in the thermal-metal phase of class D. One way to do this
is to consider the metallic phase of the Cho-Fisher model.
A slightly different way is to use the so-called O(1) model,
in which the sign disorder is randomly distributed over the
links of the network [22]. A defect in the O(1) model thus
inserts two vortices into the two plaquettes bordering the
corresponding link (and thus belonging to different sublat-
tices). For the maximal disorder, p = 1/2, the O(1) model and
the Cho-Fisher model were found to be equivalent [22]. (In
fact, there is a subtle difference related to the random-matrix-
theory (RMT) behavior at the lowest energies, see below.)
It is known that the O(1) model exhibits only the metallic
phase since this type of disorder suppresses jumps between the
components of the o-model manifold and thus prohibits local-
ization [19,21,22]. Similar effect occurs in one-dimensional
or quasi-one-dimensional wires in class D studied within the
scattering theory formalism in Refs. [22,58,59]. In this for-
malism, the presence of uncorrelated random m-fluxes (sign
changes of the transfer matrix) in a wire prevents localiza-
tion [22,59].

As discussed in Sec. II B, the Weyl symmetry is expected to
be violated at the metal-insulator transition of class D because
of jumps (domain walls) between the connected components
of the o model. At the same time, the Weyl symmetry is ex-
pected to be restored in the metallic phase where such jumps
are suppressed (approximately in the Cho-Fisher model and
exactly in the O(1) model), see Sec. IV B.

We show below that the construction (20) and (19)
correctly yields the scaling observables and determine the
exponents in the thermal-metal phase (Sec. IV B) and at the
metal-insulator transition (Sec. IV C). In the metallic phase,
we find that the Weyl symmetry and the single-parameter
generalized parabolicity (17) hold with a good accuracy. On
the other hand, at the metal-insulator transition, both the Weyl
symmetry and the weak form (16) of the generalized parabol-
icity are strongly violated. The nonparabolic character of the
spectrum implies that the local conformal invariance does not
hold at the class-D metal-insulator transition.

B. Metallic phase

We study numerically the polynomial observables up to the
order ¢ = 4. The Weyl symmetry, which is expected to hold
in the metallic phase of class D, implies a number of relations

D metal — DOS v(e)

o m 64

1.0r

0.5+

1078 1075 1074 0.001 0.010

FIG. 6. Average density of states 7(¢) in the thermal-metal phase
of class D [O(1) network model, with parameters @ = 7 /4 and p =
1/2]. The low-energy behavior exhibited by ¥ (€) is logarithmic, in
agreement with the analytical prediction (33). At the lowest energies,
below the level spacing at zero energy, a saturation of the density of
states is observed, which is the RMT behavior corresponding to class
BD.

between the corresponding scaling exponents:

X1y = X1,1,  Xa,1,1 =0,

X2, =X2), X3, =X3)- (50

The generalized parabolic spectrum (17) (which combines
parabolicity with the Weyl symmetry) has in class D the
following form:

para

o =b—di+ e — @)+ a2 —g)+...]. (5D
In analogy with class AlIl, we will also study numerically the
exponents x;, for A = (¢}) with g = g/nandn =1, 2, 3. The
Weyl symmetry for such exponents reads

g = XM=q0)»  Mara) = X —g1,1—q1)

Xa.q1.91) = X(1—q1.1=q1.1-q1)- (52)

As for class All, we take the required number (up to four)
of eigenstates closest to criticality, evaluate the observables
defined by Eqgs. (20) and (19), and perform the averaging over
all points in the sample (~L?) and over 10* realizations of
disorder. The system size is varied from L = 24 to 1024.

In Fig. 6, we show numerical results for the average density
of states V(e). We observe a logarithmic increase of the den-
sity of states at low energies, in agreement with the analytical
prediction (33) and with previous numerical studies [23,25].

At the lowest energies, i.e., on the scale set by the level
spacing at zero energy in a system of given spatial size, we
observe a saturation of the density of states. In the previous
work [23], where the Cho-Fisher model was studied, it was
found that the density of states shows, in the thermal-metal
phase, an oscillatory behavior in this range of energies, as
predicted by the RMT of class D [3,21]. A difference is that, in
the case of O(1) model that we consider, the number of O(1)
defects can be either even or odd. If this number is odd, the
determinant of the scattering matrix defined by the network is
—1 rather than 41, and one of its eigenvalues is strictly unity.
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FIG. 7. Numerical determination of generalized multifractality in the class-D metallic phase [O(1) model]. The spinless pure-scaling
combinations (20), (19) are computed, with averaging over the system area and over 10* disorder realizations. (Left) Data shown on a log-log
scale, with straight lines corresponding to power-law scaling (25). The corresponding slopes yield the running exponents (40). The data are

scaled with 2

+-FAm  which yields an expected collapse as functions of /L. For each A, data points corresponding to the smallest » ~ 1

are highlighted as large dots, visualizing the L dependence at a fixed r. The full lines are fits to these data points; the resulting exponents
AT are given in Table I1. The dashed lines corresponds to the generalized parabolic spectrum (17) with b = 0.283; see the column A in
Table II. The slopes of full and dashed lines are close for all A, which means that the generalized parabolicity is a good approximation in the
metallic phase. At the same time, there are pronounced deviations for A = (3) and especially for A = (4). (Right) Same data as in the left panel
(only with the smallest » ~ 1) plotted as function of 1 + #(£)In(L/€) [with £ = 180 and #(£) = 0.263] on the log-log scale, according to the

asymptotic scaling form (53) in the metallic phase.

At the level of a Hamiltonian, this corresponds to a Majorana
zero mode. From the RMT point of view, the system is said
to belong to class D for an even number of defects and to
class B for an odd number. As these two classes of network
realizations have equal probabilities, the averaged density of
states is an arithmetic mean of those for classes D and B. In
such a class BD, the RMT density of states has a constant
behavior: the oscillations characteristic for classes D and B
exactly cancel each other [21,60].

In Fig. 7, we show the data for L% (P[v]) with g =2, 3,
and 4. We do not consider all X in each order but rather restrict
ourselves to the most relevant (in the RG sense) observables
(g) (that correspond to the conventional multifractality) and
the most irrelevant (19) that serve as building blocks for all
generalized-multifractality observables, Eq. (20). Note that,
quite generally, for each order g, the statistical fluctuations
turn out to be the smallest for (19). The left panel presents
the conventional log-log plot, so that the slopes yield the
exponents AT in analogy with Fig. 1 for class AlL As a
first key observation, we notice that the numerics confirms
that Egs. (20) and (19) properly yield pure-scaling observ-
ables. In the left panel of Fig. 7, the data are shown on
the log-log scale, with straight lines corresponding to the
power-law scaling (25). The corresponding slopes yield the
running exponents (40) (i.e., effective exponents for the given
range of L). We recall that these exponents should slowly
(logarithmically) decrease with increasing L, see Sec. IIF.
The corresponding curvature is indeed noticeable in the data
for A = (2), (1,1), (1,1,1), and (1,1,1,1), which are least af-
fected by statistical fluctuations. The change of the slope in
the considered range of L is, however, not so big, so that
the power-law fit is meaningful. The corresponding exponents
ATetal are presented in Table II. To convert A, into x;, we
still need the value of x(;). A nice way to find it is to use
the Weyl symmetry relations (50) (which are expected to hold

in the metallic phase of class D, see Sec. IV A). Indeed, we
find that, if we set x(;) = —0.283, then all these symmetry
relations are well satisfied. Note that the value x(;) = —0.283
translates into the value x = —0.13 of the density-of-states
exponent, Eq. (9), which is consistent with the density-of-
states behavior, Fig. 6 (if one fits it with a power law). At the
same time, finding x;) directly from the data for the density of
states is difficult: the corresponding error turns out to be rather
large.

The thermal-metal data are not too far from the single-
parameter generalized parabolicity, Eq. (17). To illustrate this,
we include in Table II the column Ag‘e‘al/ b, where b = 0.283
in consistency with the above value of x(;). One sees that the
values of A" /p are reasonably close to AV /b=¢g—z,
(last column) corresponding to the generalized parabolic spec-
trum (17). At the same time, deviations from the generalized
parabolicity are quite substantial. In particular, they consid-
erably exceed the analogous deviations in the case of the
metallic phase in class All, see Table (I). There are two rea-
sons for this. First, in class D, there exist two-loop corrections,
while in class AIl the corrections start from the four-loop
order only. Second, the value of the resistance ¢ in the metallic
phase of class AIl is much smaller: the parameter b was
0.0273 in that case, while it is equal to 0.283 for class D.
As a result, the corrections to one-loop formulas (and thus
to the generalized parabolicity) turn out to be much larger
in class D.

In the right panel of Fig. 7, we show the same data for
L*(P,[y]) in an alternative way, corresponding to the an-
alytically predicted asymptotic behavior (35). The one-loop
formula (35) can be equivalently written as

IS4
LURIL) ~ (1+1OmF) . (3
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TABLE II. Scaling exponents of generalized multifractality in class D for eigenstate observables with ¢ = |A| < 4. The exponents A;
shown in the table are related to the exponents x; via A; = x;, — gx(1). The exponents AQ’HT are found numerically from the Cho-Fisher model
at the transition point, sino = 0.19, p = 0.19. The thermal-metal exponents ATC“‘I are obtained from the O(1) model with sin?« = 0.5,
p = 0.5. The last column displays the exponents A = b(q — z;) corresponding to the generalized parabolic spectrum, Eq. (17), with a single
parameter b. In the metallic phase, the exponents are reasonably close to the generalized parabolicity, as can be seen from the comparison of
the column AM@! /b (where b = 0.283, see text) with AP, The deviations are, however, quite substantial, which is expected since b is not so
small. The exponent x}‘}ﬁ‘“‘ as obtained from a power-law fit of the density of states is x(;) & —b = —0.283 as expected. The Weyl symmetry
relations (50) (that can be easily translated to A,;) are approximately satisfied in the metallic phase, which can be seen by inspection of
AM@l /p The column AT contains the exponents obtained by a fit of the thermal-metal data to the asymptotic form (54). It is seen that
Aretl g rather close to A™®! /b, indicating that both types of fits are quite similar in the considered range of L in the metallic phase. The
metal-insulator transition exponents AM'T, in combination with ;" = —0.85 obtained from the fit of the density of states, strongly violate the
Weyl symmetry, which is a manifestation of the effect of topological excitations (domain walls between two connected components) in the o
model.

Ametal 5
rep. A AI}YHT ATetal )2) ATetal Aiafa
qg=2 2) —1.546 + 0.004 —0.695 £+ 0.04 —2.45 + 0.14 —2.34 4+ 0.01 —2b
(1,1) 0.44 £ 0.02 0.278 £ 0.005 0.98 £ 0.02 0.955 £ 0.003 b
qg=3 3) —3.55 + 0.09 —2.11 £ 0.03 —7.44 + 0.11 —7.04 £ 0.10 —6b
2,hH —0.71 + 0.10 —0.45 £ 0.01 —1.57 + 0.04 —1.49 £+ 0.04 —b
(1,1,1) 1.18 = 0.03 0.852 £ 0.002 3.003 £ 0.007 2.988 £ 0.007 3b
qg=4 “4) —5.56 + 0.01 —3.86 + 0.07 —13.61 £ 0.25 —12.84 £ 0.22 —12b
3, —2.35 + 0.18 —1.85 £+ 0.03 —6.50 + 0.11 —6.16 =+ 0.10 —5b
(2,2) —-1.7 £ 05 —0.83 £ 0.05 —2.93 + 0.18 —-2.79 £ 0.14 —2b
2,1,1) 0.32 + 0.04 0.16 £+ 0.02 0.57 + 0.07 0.58 + 0.05 b
(1,1,1,1) 2.39 + 0.03 1.691 £ 0.004 5.96 £+ 0.01 5.93 + 0.02 6b

where we used the class-D values y =« = 1and z) = 1. In
the present case of a not so weak disorder, extrapolation of
Eq. (53) to the ultraviolet limit, £ — a, does not work, since
the resistance ¢ blows up. We thus choose ¢ roughly in the
middle of the range of system sizes that we consider. Specifi-
cally, we take £ = 180. We now choose #(£) to optimize the fit
of the data with all A to Eq. (53), which yields ¢#(¢) = 0.263.
As expected, the obtained value of 7(£) is close to b = 0.283
found from the power-law fits. Now we fix 7#(£) = 0.263 and
fit the data for each A to the form analogous to Eq. (53) but
with an exponent ATt left as a fit parameter:

A metal
—AD

L
L*(P,[¥](L)) ~ (1 +t(£)In Z) . (54)

The resulting values of Aﬁ‘e‘al are also shown in Table II. One
can see that, for all A, the values of AT”“' are rather close
to Aj\“etal /b. This shows that the two types of fits (power-law
and logarithmic) do not differ too much for the considered
metallic system in the considered range of L. Deviations of
Areal from the (integer) values g — z; (equal to AP*™ from
the last column of the Table, without factor b) is attributed to
two-loop (and higher) corrections, as discussed above.

In Fig. 8, we display the exponents x(;) withn =1,2,3
and continuously changing ¢; for the metallic phase of class
D (same parameters as in Fig. 7). In the left half of the figure,
we show exponents obtained by power-law fits analogous to
left panel of Fig. 7. We have converted A, into x; by using
xay = 0.283. To the right of each panel with x, data, we show
the same data plotted as —x; /z,. We also include lines corre-
sponding to the generalized parabolicity x; = —bz;, Eq. (51),
with b = 0.283. It is seen that the generalized parabolicity

holds to a good accuracy in the range of not too large g
considered in this figure.

In the right half of the figure, the same analysis is per-
formed by plotting the data in the form (54). We show the
corresponding exponents ¥, = A, — ¢ and, to the right of
each plot, the ratio —X,/z,. If the one-loop approximation
(yielding the generalized parabolicity) were exact, we would
have —X; /z, = 1. We see again that deviations from the gen-
eralized parabolicity are relatively small in this range of g;.
Both ways of fitting the data [power law of L and Eq. (54)]
work rather well.

It is worth commenting on the apparent singularities in the
plots for —x; /z; and —X, /z, near the points where z; = 0
(x =0forn =1and x = 0.5 for n = 2). The Weyl symmetry
predicts x; vanishing in these points such that —x;, /z, has
a finite limiting value (and similarly for —%; /z,). However,
statistical errors in x; and %, unavoidably violate this cancel-
lation, leading to a spurious singularity seen in the figure.

C. Metal-insulator transition

We turn now to the analysis of the generalized multifrac-
tality at the metal-insulator transition point in the Cho-Fisher
model (sin2 a = 0.19, p = 0.19). First, we determine the scal-
ing of the average density of states v¥(e) in order to find
the exponent x(j) relating the scaling of the wave function
observables A to the operator scaling dimensions x;. In the
upper panel of Fig. 9, we show the numerically obtained v (¢),
which is nicely fitted by a power law ¥(e) ~ €* as expected.
The slope gives the exponent k = —0.30 & 0.01, which yields
x(1y = —0.85 £ 0.03 according to Eq. (11).
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FIG. 8. (Left) Exponents x(, with n = 1, 2, 3 for the metallic phase of class D (same parameters as in Fig. 8). Data points in the left panels
are numerically obtained exponents x;. In the respective right panels, the same data are shown in the form —x; /z,, where z, is the quadratic
Casimir invariant. The red lines in all panels correspond to the generalized parabolicity (51) with b = 0.283. It is seen that the generalized
parabolicity holds to a good accuracy for not too large ¢;. (Right) Same data analyzed according to Eq. (54). Left panels show the exponents

%, = A, — g, while right panels show the ratio —%; /7.

We proceed with the numerical analysis of the scaling
of eigenfunction observables. We compute spinless combi-
nations (20) and (19), with averaging over the system area
and 10* realizations of disorder. The linear system sizes reach
from L = 24 to 512. We perform this for all Young diagrams
A with 2 < || < 4; the resulting exponents AMT are given in
Table II. The data for A = (g) and (17) are shown in the lower
panel of Fig. 9.

The numerical results confirm once again that Egs. (20)
and (19) yield properly the pure-scaling observables. This
is particularly nontrivial at the Anderson transition of class
D, since the o-model domain walls play a central role here,
as discussed above. At the same time, we did not include
the domain walls when deriving the pure-scaling combination
with the help of the Iwasawa decomposition (and also in the
alternative approach using the one-loop RG). This can be
explained in the following way.

At the intuitive physical level, the presence of domain
walls does not affect the argumentation in Sec. II D leading to
the eigenfunction pure-scaling observable construction, with

wave-function Slater determinants as building blocks. In a
more technical language, the domain walls (i.e., jumps be-
tween two connected components of the target space) respect
the symmetry of the target space. Thus they do not affect the
form of the pure-scaling observables that are determined by
this symmetry. At the same time, the domain walls affect
crucially the exponents characterizing the scaling of these
observables. In particular, they lead to a strong breakdown
of the Weyl symmetry relations. As an example, one of the
relations (50) reads x(y = x¢1,1). We find, however, x() =
—0.85 and x(1,1) = Aq,1y) + 2xq) = —1.26, implying a clear
violation of the Weyl symmetry. Even more dramatic is the
violation of the relation x(; 1,1y = 0, since we get x(i,1,1) =
Aqny + 3xgy) = —1.37.

To shed more light on these points, it is instructive
to recall the case of a quasi-one-dimensional (thick wire)
geometry, which maps onto a one-dimensional (1D) o -model.
For Wigner-Dyson classes, the 1D o-model approach was
used, in particular, to study the conductance and its vari-
ance [61,62] as well as fluctuations and spatial correlations
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FIG. 9. (Top) Density of states 7(¢) in the metal-insulator tran-
sition of class D [Cho-Fisher network model, sin’« = 0.19, p =
0.19]. The behavior exhibited by v(e) follows a power law €* as
expected. The slope yields k = —0.30, which translates into x(;, =
—0.85 by virtue of Eq. (11). (Bottom) Numerical determination of
generalized multifractality at the metal-insulator transition of class
D. The spinless pure-scaling combinations (20) and (19) are com-
puted, with averaging over the system area and 10* realizations
of disorder. The data are scaled with r®a*+2a  which yields an
expected collapse as functions of r/L. For each A, data points
corresponding to the smallest » ~ 1 are highlighted as large dots,
visualizing the L-dependence at a fixed r. The full lines are fits to
these data points; the resulting exponents AMT are given in Table IL

of eigenstates [63]. The results are expressed in terms of a
Fourier expansion over eigenfunctions of the Laplace operator
on the o-model manifold.

An extension of the calculation of the conductance to
several non-Wigner-Dyson classes, including class D, was
carried out in Ref. [64]. The eigenfunctions of the transfer-
operator on the o-model target space that enter the Fourier
expansion in Ref. [64] are, in the absence of jumps between
two components of the manifold, the spherical functions P,
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FIG. 10. Exponents x) with n =1, 2, 3 for the metal-insulator
transition of class D (same parameters as in Fig. 9). The red lines
represent the “parabolic approximations” to the data (fixed by the
derivative at g; = 0 and the root x¢;) = 0. Clearly, the curves x)
are strongly nonparabolic, implying violation of the local conformal
invariance. They also strongly violate the Weyl symmetries (52),
which is a manifestation of the effect of domain walls.

with g = il, where [ is real. The corresponding eigenvalues
(which control the exponential decay rate of the associ-
ated contribution to the conductance with the length of the
wire) are proportional to —zy = [2, satisfying the Weyl
symmetry [ — —/. Inclusion of the jumps induces a 2 x 2
structure of the transfer-operator in the space of the mani-
fold components, with off-diagonal terms proportional to the
domain wall fugacity x. This leads to a splitting of each
eigenvalue.

Importantly, the eigenfunctions remain the spherical func-
tions [64], independently of the domain-wall fugacity, which
is due to the fact that the domain-wall term reflects the sym-
metry. (Two eigenfunctions resulting from the splitting differ
by a relative sign on two components of the manifold, as for a
splitting of a degenerate two-level system.) At the same time,
the eigenvalues get modified: /> > [? £ ix[. The eigenvalues
I +ixl that correspond to symmetric eigenfunctions enter
the Fourier expansion for the conductance. This shift of the
eigenvalues implies a breakdown of the Weyl symmetry / —
—[ and is responsible for the localization in class-D wires.
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FIG. 11. (Left) Density of states D (¢) in the thermal-metal phase of class DIII (helical superconductor network model (57), at the scattering
angles @ = 0.5, & = 1.2 and the defect concentration p = 0.5). The density of states slowly increases with lowering energy, in consistency
with the analytical prediction (34). A power-law fit to (e) ~ €“ yields the running exponent x = —0.06, implying x(;, ~ —0.12. At the
lowest energies, the RMT oscillations of class DIII [3] are observed. (Right) Numerical determination of generalized multifractality in the
metallic phase of class DIII. The spinfull pure-scaling combinations (21) and (19) are computed, with averaging over the system area and
10* realizations of disorder. The data are scaled with r*a*+%m which yields an expected collapse as functions of r/L. For each A, data
points corresponding to the smallest » ~ 1 are highlighted as large dots, visualizing the L-dependence at a fixed r. The full lines are fits to
these data points; the resulting exponents x! are given in Table III. The dashed lines correspond to the generalized parabolic spectrum (17)
with b = 0.119; see the column x;** in Table IIL. The slopes of full and dashed lines are close for all A, which means that the generalized
parabolicity holds to a good accuracy in the metallic phase. Further, this value of b matches x(;, extracted from the DOS scaling very well.

Curvatures in the data are related to the fact that all exponents are in fact the running ones and reduce logarithmically with increasing L, see

Sec. IIF and Eq. (61).

The situation in the case of class-DIII wires turns out to be
very similar [64].

While a systematic analysis of the effect of domain walls
in o models of classes D and DIII in d > 1 dimensions re-
mains to be done, we expect that the above two important
statements will be inherited from the 1D analysis and can be
extended to the whole spectrum of generalized multifractality:
(i) pure-scaling observables (e.g., eigenfunctions of RG) are
independent of the domain-wall fugacity and (ii) eigenvalues
are modified by the domain walls, leading to a breakdown of
the Weyl symmetry.

InFig. 10, we show the exponents x,;) with a continuously
changing (and relatively small) g and n = 1, 2, and 3. These
plots serve as another illustration of a strong violation of the
Weyl symmetry relations (52). Furthermore, they demonstrate
a strong violation of the generalized parabolicity, even in its
weak form (assuming no Weyl symmetry) (16). Indeed, within
the general parabolicity, the dependence x4y on g, should be
parabolic, which is clearly not the case. Thus we can rule out
local conformal invariance also for this transition.

V. CLASS DIII

A. Model and generalities

Superconductors with time-reversal invariance and spin-
orbit interaction are in the Bogolyubov-de-Gennes class DIII,
which is characterized by the particle-hole symmetry P sat-

isfying P> = 1 and the time-reversal symmetry T with T2 =
—1. As in class D, the density of states is critical, so that, in
addition to determining A, we need to study the scaling of the
local density of states with energy to determine the exponent
Xqy. Similarly to class D, the beta-function has a two-loop
correction to the leading (one-loop) term:

dnt
= 2t + 21 + O(?), 55
Y +2t7 4+ 0(t) (55)

with t = 1/mwg. The one-loop zeta functions for scaling di-
mensions of the operators read [see Eq. (29)]

dlnC)\
dIn?

=zt + O(t?). (56)

As for class D, the target space of the o-model for class
DIII consists of two disjoint components. In full analogy with
the above discussion of class D, the corresponding jumps
(domain walls) are crucial for establishing localization and are
expected to violate the Weyl symmetry at the metal-insulator
transition in class DIII.

For our numerical analysis, we use the helical supercon-
ductor network model from Ref. [30]. Each link carries two
counter-propagating Majorana modes that can be identified by
their spin (helicity). The scattering matrices S and S’ at even
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TABLE III. Scaling exponents of generalized multifractality in class DIII for eigenstate observables with g = |A| < 4. The exponents A;
shown in the table are related to the exponents x; via A; = x; — gx(1). The exponents AMT are found numerically from the helical network
model at the transition point, « = 1.2, 8 = 0.5, and p = 0.175. The thermal-metal exponents A;"“‘" are obtained from the same model with
defect concentrated increased up to p = 0.5. The last column displays the exponents AM* = b(q — z;) corresponding to the generalized
parabolic spectrum, Eq. (59), with a single parameter b. In the metallic phase, the exponents are quite close to the generalized parabolicity,
as can be seen from the comparison of the column AP /b with A}™. Here b = —x{}5* = 0.119, which agrees well with the scaling of the
density of states. The Weyl symmetry relations (58) (that can be easily translated to A;) are nicely satisfied in the metallic phase, which can
be seen by inspection of A*“!/b. The metal-insulator transition exponents AY'™, in combination with x{|" = —0.44 obtained from the fit of
the density of states, substantially violate the Weyl symmetry, which is a manifestation of the effect of topological excitations (domain walls
between two connected components) in the o model.

Ametal
rep. A AMIT At *T AR
qg=2 ) —1.365 £ 0.003 —0.285 £ 0.001 —2.41 £+ 0.01 —2b
(1,1) 1.31 £ 0.02 0.238 £ 0.001 2.01 £ 0.01 2b
g=3 3) —3.097 £ 0.007 —0.949 £ 0.007 —8.02 £+ 0.06 —6b
2,1) —0.45 4+ 0.03 —0.021 £ 0.001 —0.17 £ 0.01 0
(1,1,1) 2.90 £ 0.01 0.695 £ 0.001 5.87 £ 0.01 6b
qg=4 “4) —4.93 £+ 0.01 —1.97 4+ 0.03 —16.61 £ 0.25 —12b
@A3,1) —1.97 &£ 0.04 —0.620 £ 0.007 —5.23 & 0.06 —4b
2,2) —1.16 &+ 0.07 —0.05 £+ 0.01 —0.41 £+ 0.08 0
2,1,1) 1.96 £+ 0.06 0.455 £ 0.002 3.84 £+ 0.02 4b
(1,1,1,1) 5.11 £ 0.02 1.366 + 0.001 11.53 + 0.01 126
and odd nodes read, respectively, in class DIII:
2
0 r fcos® —tsind g =b[ =@ + 22— @)+ q34 —g3) + ... ]. (59)
S = -r P O P t 51(;1'9 tcos® As for other classes, we will also study numerically the ex-
! ?OSQ —fsin 0 _Or ponents x;, for A = (¢}) with g =¢g/nandn =1, 2, and 3.
rsin —tcos r The Weyl symmetry for such exponents reads
0 —tcosf —r —tsin6 B . . .
: _ (q1) = X(=q1)> (q1,q1) = X(=q1,1=q1)>
§ = tcosf O tsinf r (57) B "
r —tsin6 0 tcos0 Xar.q1.91) = X2—q1.2—q1.2—q1)* (60)
tsin6 r —t cosf 0

The transmission and reflection amplitudes are + = sin o and
r = cos«, with the angle o drawn from the Cho-Fisher dis-
tribution (49). The angle 9 describes the coupling between
the two helical copies of the class-D Cho-Fisher network
model. (At & = 0, the copies decouple and one can study a
crossover to class-D behavior.) For the choice of parameters
a=1.2,0 =0.5 and p = 0.175, the system is at the critical
point of the metal-insulator transition [30]. When the disorder
concentration is increased up to its maximal value, p = 0.5,
the system is deeply in the thermal-metal phase. We will
study these two points in the phase diagram to investigate the
metal-insulator transition and the metallic phase, respectively.

B. Metallic phase

As for class D, we study numerically the polynomial ob-
servables up to the order ¢ = 4. The Weyl symmetry expected
to hold in the metallic phase of class DIII, implies the follow-
ing relations between the corresponding exponents:

x,0=0, xe2=x2=0, x21,n=0. (58)
The single-parameter generalized parabolic spectrum (17)
(which combines parabolicity with the Weyl symmetry) reads

In the left panel of Fig. 11, we show the numerically
determined density of states D(¢). The analytical prediction
is given by Eq. (34). In the available range of energies, the
density of states looks linear as a function of In(1/¢). This is
because the slope [i.e., the variation of ¥(€)] is rather small,
which means a small resistance 7. To observe clearly the
asymptotic In'/2(1/€) behavior, one would need to proceed
to much smaller energies, which would require unrealistically
large system sizes. In the considered range of energies, the
density of states can be also fitted very well to a power law
D(e) ~ €“ with k = —0.06, which translates into the exponent
x1y & —0.12. As has been extensively discussed above, all
exponents x; in the metallic phase are in fact running ones; we
determine their values corresponding to the available range of
system sizes.

At the lowest energies, the density of states exhibits
RMT oscillations, as expected for a metallic system of class
DIII [3]. Note that we deal here with a model of Cho-
Fisher-type, i.e., with an even number of defects, so that the
corresponding RMT ensemble is of DIII-even type [60].

The right panel of Fig. 11 displays the scaling of eigen-
function observables. We have computed the observables (21)
and (19) corresponding to the spinful situation, with averaging
over the system area and 10* realizations of disorder. As
discussed in Sec. IIF, the asymptotic behavior of the pure
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scaling observables in the thermal-metal phase of class DIII
has the form

L 3@
L*(P[Y1(L)) ~ (1 +2t(£)In Z) . (61)

As we have also discussed, for sufficiently small 7(£) and in
a restricted range of system sizes L, this can be approximated
by a power law,

L*(PIyIL) ~ L™, Ay =—t()(z —q),  (62)

which is the generalized parabolicity (59) with b = ¢(£). We
have seen in the case of class D that fits of both types (power
law and “logarithmic”) work well (see Fig. 7) and yield very
close values of the exponents (see columns AN /b and
Akme“‘l in Table II). In the DIII metallic phase, the parameter b
[determined by the running resistance #(£)] characterizing the
strength of multifractality turns out to be substantially smaller
(b = —xq1y = 0.12) than in the case of class D, where we had
b = 0.3. (Of course, we mean the specific points in the phase
diagram that we consider.) Thus the approximation of Eq. (61)
by Eq. (62) should work still better than an analogous approx-
imation in class D, and the exponents obtained in both ways
should be even closer. For this reason, we restrict ourselves
to the conventional log-log representation as shown in the
right panel of Fig. 11, with straight-line fits corresponding to
power-law dependence on L.

The numerics confirms that the spinful eigenstates com-
binations (21) and (19) are correct pure-scaling observables
for class DIII. The obtained exponents are presented in Ta-
ble III as A%l They satisfy very well the Weyl symmetry
relations (58) in agreement with analytical predictions. The
exponents are sufficiently close to the single-parameter gen-
eralized parabolic form (59) with b = —x(;, = 0.119, as can
be seen by comparing the columns A /b and AP in
Table 111, as well as full and dashed lines in the right panel of
Fig. 11. We observe, however, deviations that can be attributed
to the two-loop corrections. It is also worth mentioning that
the data points in the right panel of Fig. 11 show small but
noticeable curvature: the slopes have a tendency to become
smaller when L increases. This is in full consistency with ana-
lytical expectations: the exponents are in fact the running ones
and reduce logarithmically with increasing L, see Sec. II F and
Eq. (61).

In Fig. 12, we present the exponents x(;) with n =1, 2,3
for the metallic phase in class DIII. In the left panels, data
points are numerically obtained exponents x; ; in the right pan-
els, the same data are shown in the form —x; /z;, where z, is
the quadratic Casimir invariant. The red lines in all panels cor-
respond to the single-parameter generalized parabolicity (59)
with b = 0.119. It is seen that the Weyl symmetry (60) and,
moreover, the generalized parabolicity (59), hold to a high
accuracy.

C. Metal-insulator transition

Finally, we study the class-DIII network model at the
metal-insulator transition point. The corresponding density
of states () is shown in the left panel of Fig. 13. It ex-
hibits a power-law scaling D(e€) o €* as expected at criticality.
The numerically obtained exponent is k = —0.180 £ 0.005,

DIl metal (g4") for n=1,2,3
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FIG. 12. Numerically ~ obtained  exponents  xqr  with

n=1, 2, and3 for the metallic phase of class DIII (same
parameters as in Fig. 11). In the left panels, data points are
exponents x;; in the right panels, the same data are shown as a ratio
—X; /75, wWhere z, is the quadratic Casimir invariant. The red lines
correspond to generalized parabolicity (59) with b = 0.119. Both the
Weyl symmetry (60) and the generalized parabolicity (59) hold very
accurately. At large g, deviations related to insufficient ensemble
averaging are observed.

which yields x(;y = —0.440 £ 0.015 by virtue of Eq. (11).
In the right panel of Fig. 13, we present the data for the
eigenfunction observables corresponding to A = (g) and (17)
with ¢ = 2, 3, and 4. The extracted exponents for all poly-
nomial observables with g < 4 are presented as AT in
Table III. In addition, we show in Fig. 14 numerical results
for the exponents X withn = 1, 2, and 3 and continuously
changing ¢q;. Violation of the Weyl symmetry (60) is evident
from these data. This is expected (in full analogy with class
D), in view of the domain walls between the two connected
components of the o-model target space. At the same time,
the form of x(,,), X(g,4:)» and X(g, 4,,4,) turns out to be not
so far from a parabolic one; see parabolic fits by red lines.
We recall that, since the Weyl symmetry does not hold at
the metal-insulator transition point of class DIII, a parabolic
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FIG. 13. (Left) Density of states D(e) at the metal-insulator transition of class DIII (helical-superconductor network model (57), at
scattering angles o = 0.5 and 6 = 1.2, and defect concentration p = 0.175). The density of states exhibits a power-law scaling D(€) ox €™
with k = —0.18, which translates into x;, = —0.44 according to Eq. (11). (Right) Numerical determination of generalized multifractality at
the metal-insulator transition of class DIII. The spinfull pure-scaling combinations (20) and (21) are computed, with averaging over the system
area and 10* realizations of disorder. The data are scaled with r2a T2 which yields an expected collapse as functions of /L. For each A,
data points corresponding to the smallest » ~ 1 are highlighted as large dots, visualizing the L dependence at a fixed r. The full lines are fits to

these data points; the resulting exponents AMT are given in Table III.

spectrum may have the general, multi-parametric form (16).
Such an unrestricted parabolic fit yields the approxima-
tion xf;le = 1.27¢,(0.5829 — q1), x?;ff‘ql) =2.05¢(1.0364 —
q1), and x0" = 2.1q1(1.75 — g1). While it approximates
quite well the numerically obtained spectrum, there are sizable
deviations. They can be best seen in the right panels, where
the ratio x; /x}"™ is plotted. The deviations for the generalized
parabolicity imply violation of the conformal invariance also
at the class-DIII metal-insulator transition. It is worth notic-
ing, however, that the deviations from parabolicity are much
less dramatic than for the metal-insulator transition in class D
studied above, as can be seen by a comparison of Fig. 14 with
Fig. 10.

VI. SUMMARY

In this paper, we have studied the generalized multifrac-
tality in 2D disordered systems. While our main focus was
on the symmetry classes AIl, D, and DIII, which exhibit
2D metal-insulator transitions, some of our results are more
general, extending to all symmetry classes. Our key findings
are as follows.

(1) We have performed a derivation of pure-scaling oper-
ators in terms of the o-model field theory and their translation
to the language of observables constructed from eigenfunc-
tions of the Hamiltonian. Analyzing the composite operators
in the o-model field theories, we have used two complemen-
tary approaches: the Iwasawa decomposition (that we have
carried out for classes All, D, and DIII) and the one-loop RG
(that we have worked out for all ten symmetry classes). We
have shown that the ten symmetry classes can be subdivided

in two groups: “spinless” (A, Al, AIll, BDI, and D) and
“spinful” (All, CII, C, CI, and DIII). This subdivision is quite
transparent physically: the spinful classes are characterized
either by Kramers degeneracy due to time-reversal invariance
T with T? = —1 or by similar “near-degeneracy” due to the
particle-hole symmetry P satisfying P> = —1, or by both of
them. The eigenfunction pure-scaling observables [which are
classified according to representations A = (qy, ..., q,)] are
given in both cases (spinless and spinful) by Eq. (20). At the
same, the building blocks of this construction have two dis-
tinct forms: they are given by Eq. (19) for spinless symmetry
classes and by Eq. (21) for spinful classes.

(2) We have carried out extensive numerical simulations
of the generalized multifractality in classes All, D, DIII, using
the Ando model for class All and suitable network models for
classes D and DIII. We have studied metal-insulator transition
points as well as metallic phases in these models. The results
fully confirm that the spinful construction (20), (21) yields
properly the pure-scaling observables for classes AIl and DIII,
while the observables in class D are correctly given by the
spinless form, Eqs. (20) and (21). What adds an interesting
twist to this result is the fact that the localization in these three
classes is crucially associated with topological excitations in
the o model: vortices in class AIl and domain walls in classes
D and DIII. The situation is particularly nontrivial for classes
D and DIII, where the o-model target spaces consist of two
disjoint components. While the derivation (based on Iwasawa
decomposition or one-loop RG) does not incorporate the as-
sociated jumps between the components, these jumps do not
affect the symmetry analysis leading to Egs. (19)—(21) for the
pure-scaling eigenfunction observables.
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FIG. 14. Exponents x;) with n = 1, 2, 3 for the metal-insulator
transition of class DIII (same parameters as in Fig. 13). The Weyl
symmetry(60) is manifestly violated. At the same time, the data
are described sufficiently well by a many-parameter parabolic for-
mula (16). Still, there are clear deviations, as demonstrated in the
right panels where the ratio of x; to the parabolic fit (16) (see
parameters in the text) is shown.

(3) In the metallic phases, the scaling exponents should be
viewed as running ones; they experience a slow (logarithmic)
renormalization towards zero with increasing L, as is also
observed in the numerics. In all three classes, the numeri-
cally obtained exponents in the metallic phase satisfy well the
Weyl symmetry, as expected. Furthermore, in class All, the
exponents are described by the single-parameter generalized
parabolicity (17) with an excellent accuracy. At the same time,
in classes D and DIII, sizable deviations from the generalized
parabolicity are observed. This is in agreement with analytical
expectations: the generalized parabolicity (17) is exact on
the one-loop level but is in general violated by higher-loop
corrections. In class All, these corrections are particularly
small since they start from the four-loop order and because
of smallness of the resistance .

(4) At the metal-insulator transition in class All, the ex-
ponents nicely satisfy the Weyl symmetry, in agreement with
the analytical prediction. At the same time, the generalized
parabolicity (17) is strongly violated, which implies violation
of local conformal invariance at this critical point.

(5) At the critical points of metal-insulator transitions in
classes D and DIII, the Weyl-symmetry relations do not hold.
This result is again in agreement with analytical predictions,
since the o-model domain walls are expected to lead to a
breakdown of the Weyl symmetry. Furthermore, the numeri-
cally found generalized-multifractality exponents do not obey
the generalized parabolicity even in its weak form (16), with
deviations being especially strong in class D. This implies that
the local conformal invariance does not hold at metal-insulator
transitions in classes D and DIII as well.

The results of this work demonstrate that the violation
of the generalized parabolicity—and thus of local conformal
invariance—that was found (both analytically and numeri-
cally) for the SQH transition in our previous works [9,26]
is in fact a quite general feature shared by many localization
critical points in 2D disordered systems.

The generalized multifractality explored here is an im-
portant hallmark of quantum disordered systems, and the
corresponding set of exponents constitutes a “fingerprint” of
the critical point (or a “nearly critical point,” as in the case
of metallic phases in 2D systems). There is a broad variety
of interesting potential extensions of this work, including sys-
tems of different spatial dimensionalities, symmetry classes,
and topologies, interacting systems, as well as surfaces of
disordered systems. Before closing, we briefly discuss a few
prospective research directions.

(1) The generalized multifractality can be studied also in
2D systems of classes A, Al, C, CI in the regime of weak
localization. On the analytical side, the formulas analogous
to those in Sec. IT F will hold, with straightforward modifica-
tions corresponding to a replacement of weak antilocalization
by weak localization. An essential difference is that, in this
situation, the generalized multifractality holds only on scales
below the localization length. However, for a sufficiently
small bare resistance, the localization length is exponentially
large and cannot be realistically reached.

(2) The classification of pure-scaling observables does not
depend on the system dimensionality. In particular, our results
pave the way to an investigation of the generalized multifrac-
tality at localization transitions in three-dimensional systems.

(3) It was shown [7] that the multifractal analysis can
be a very useful tool for locating the Anderson transition,
determining the critical exponent of the localization length,
and establishing universality. An extension of such an analysis
to the generalized multifractality may be very advantageous.

(4) Three chiral classes (AIll, BDI, and CII) are special in
the sense that pure-scaling observables for them are labeled
not by a single representation A but rather by a pair (A, A).
In terms of eigenfunction observables, A should correspond
to one sublattice, and A to another one. Furthermore, in 2D
geometry, these classes possess critical-metal phases and tran-
sitions between these phases and insulating phases. Numerical
studies of the generalized multifractality in these phases and
critical points would be of much interest.
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(5) In classes AIII, DIII, and CI, there exist critical
points that emerge on surfaces of topological supercon-
ductors (or, alternatively, in models of disordered Dirac
fermions). These critical points are described by Wess-
Zumino-Novikov-Witten models and are expected to exhibit
the spectrum of generalized-multifractality exponents satisfy-
ing the single-parameter generalized parabolicity. It would be
very interesting to verify this numerically.
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APPENDIX A: THE IWASAWA CONSTRUCTION

In this Appendix, we describe the construction of pure-
scaling o-model observables P, (Q) based on the Iwasawa
decomposition. The pure-scaling observables obtained in this
way satisfy the abelian fusion. The construction explicitly
demonstrates the difference between “spinless” and “spinful”
symmetry classes. Upon “translation,” these composite opera-
tors yield pure-scaling eigenfunction observables as presented
in Sec. II D of the paper.

1. Generalities

The Iwasawa construction has already been presented for
class A by two of us and M. Zirnbauer in Ref. [8] and for class
C by the present authors and N. Charles in Ref. [9], so here we
only provide basic steps. Further details relevant to the three
symmetry classes, All, D, and DIII, studied in this paper, will
be presented in the subsequent sections.

The analysis of the generalized multifractality in class A
in Ref. [8] was done using the supersymmetry approach to
disordered systems [31,32]. It is sufficient for our purposes in
this paper to work within the bosonic sectors of the relevant o
models. For some quantities this requires to take the limitn —
0, where n is the number of bosonic replicas. The bosonic
o-model target spaces have the form Mp = G/K where G is
a real noncompact group and K is its maximal compact sub-
group. As we explained in Ref. [8], the pure-scaling operators
P,.(Q) are joint eigenfunctions of the G-invariant differential
operators on G/K, also known as the Laplace-Casimir oper-
ators. The Iwawasa decomposition allows us to construct the
desired eigenfunctions as the N-radial spherical functions on
G/K.

We begin with the Cartan decomposition

g=top (A)

of the Lie algebra of G, g = Lie(G), into a maximal com-
pact subalgebra £ and the complementary subspace p. The
two parts of the Cartan decomposition are the +1 and —1
eigenspaces of a Cartan involution (a Lie algebra automor-
phism that squares to the identity) 6. If we write an element
Zegas Z=X+Y where X €t and Y € p, then (X +
Y) =X —Y. The parts of the Cartan decomposition satisfy
the commutation relations

[(L.t]cE [EplSp, [pplCt (A2)

Then we choose a maximal Abelian subspace a C p and
consider the adjoint action of elements H € a on g. The eigen-
vectors E, of this action satisfy

[H, E,] = a(H)E, (A3)

and are called restricted root vectors, and the eigenvalues o
are called restricted roots. The dimension m,, of the restricted
root space g, = span{E,} is called the multiplicity of the
restricted root «, and can be bigger that 1. Restricted roots
are linear functions on a, and lie in the space a* dual to a. The
dimension n of both a and a* is the rank of the symmetric
space G/K. This is what we earlier called the number of
bosonic replicas. Basis elements of a will be denoted by Hj,
so that a generic element H € ais H = ) ;_, hiHy. The dual
basis in a* is defined as elements x; such that x;(H) = h;

(i=1,...,n). In terms of this basis, the restricted roots will
be of three types:
Foi; =05 —x;), i = +x;), i<,
:|:}/i = :|:2Xi. (A4)

The roots £a;; and & f;; are ordinary roots with multiplicities
m, o and m, g, respectively, while the roots &y, are long roots
with multiplicity m;. Short roots +x; will not appear in the
context of the o models that we consider. The multiplicities
of the roots are known in all ten symmetry classes, see, for
examples, the books [41,65]. In the chiral classes, there are no
B roots, so m, g = 0. In the remaining seven classes m,, =
m,, g. In what follows, we will compute these multiplicites for
the three classes All, D, and DIII that are in the main focus of
this paper. They turn out nozero, so the root system (A4) will
be C, in the usual Cartan notation.

A system of positive restricted roots is defined by choosing
some hyperplane through the origin of a*, which divides a* in
two halves, and then defining one of these halves as positive.
We will always choose «;j, B;j, and y; as the positive roots.
The Weyl vector p is defined as the half-sum of positive re-
stricted roots accounting for their multiplicities. In the replica
limit n — O, this gives

0 :%E]})%Zmaa = Zc,-x,-,

a>0 i

mo,ﬂ .
+my — my i (AS)

2
Positive restricted roots generate the nilpotent Lie algebran =
Za>0 9o The Iwasawa decomposition at the Lie algebra level
is
g=tdadn.
Exponentiation of Eq. (A6) gives the global form of the
Iwasawa decomposition

G = NAK,

(A6)

(A7)

which allows us to represent any element g € G in the form
g=nak,withn e N =¢",ac A =¢e" and k € K = ¢*. This
factorization is unique once the system of positive restricted
roots is fixed, and provides a very useful parametrization of
the target space G/K. An element a € A is fully specified by
n real numbers x;(Ina), which play the role of radial coor-
dinates on G/K. For simplicity, we will denote these radial
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coordinates simply by x;. Thus x; may now have two different
meanings: either its original meaning as a basis element in
a*, or the new one as an N-radial function x;(Ina) on G/K. It
should be clear from the context which of the two meanings
is being used.

Using the radial coordinates, the joint N-radial eigenfunc-
tions of the Laplace-Casimir operators on G/K take a very
simple exponential form

¢M(Q) — g(lHrﬂ)(ln ll)’

where a is the a factor in the Iwasawa decomposition of g in
Q0 =gAg ', and p =Y, wx; is a weight vector in a* with
arbitrary real or even complex components p;. We will also
use the notation

(A8)

A=—(+p)2, gi=—(ui+ci)/2 (A9)
in which the exponential functions (A8) become
¢)\ = ¢(q17q2v~~~"h) = exp <_2 Zqixi> . (Alo)

To construct the exponential N-radial eigenfunctions ex-
plicitly as combinations of matrix elements of Q, we use the
key fact that there exists a choice of basis in which elements
of a and a € A are diagonal matrices, while elements of n
are strictly upper triangular and elements n € N are upper
triangular with units on the diagonal. This has immediate
consequences for the matrix QA: since elements of K com-
mute with A, the Iwasawa decomposition g = nak leads to
QA = na’>An~'A, which is a product of an upper triangular,
a diagonal, and a lower triangular matrices. In this form the
lower principal minors of the advanced-advanced (AA) block
of QA are simply products of diagonal elements of a2, which
are exponentials of the radial coordinates x; on G/K. These
minors are basic N-radial spherical functions on G/K which
can be raised to arbitrary powers and multiplied to produce the
most general exponential functions (A8). A great advantage of
this construction is that is directly gives the general positive
scaling operators that can be raised to arbitrary powers and
satisfy the Abelian fusion rules.

Let us now present elements of the Iwasawa construction
that are the same for all symmetry classes. The groups G and
K will act in the space

Ch"=C’@C?’QC", (A1l)
where the factors in the tensor product correspond in this order
to advanced-retarded, spin, and replica spaces. We will use the
standard Pauli matrices o; including the identity matrix oy.
These act in either of the two first factors in Eq. (A11), and
we introduce short-hand notations for various tensor products

i=0iQ®lL, ojp=0;Qo0,

=0y QL =0; Q0 Q1. (A12)

For example, ¥o) = I, and X3p = A, the usual A matrix
from the sigma model. In symmetry classes with broken spin
symmetry, we can omit the second factor in the space (Al1),
resulting in

Cr"=C*@C". (A13)

We will use a standard notation for the matrix units: E;;
is the matrix with 1 in the ith row and jth column, all other
entries being zero. The symmetric and anti-symmetric combi-
nations of matrix units are denoted as

Ef =Ej;+Ej i<j E;=E;—Ej; i<j. (Al4)

Another common element in the constructions below is
a basis rotation in the spaces (All) or (A13). This will be
facilitated by the unitary matrix

U = (09 + io| +iop + i03)/2 (A15)

that cyclically permutes the Pauli matrices: U~ 'o;U = 041,
where the addition of one in the index is understood
modulo 3.

2. Class D

In this section, we present details of the Iwasawa con-
struction for class D which is the simplest of the three
classes considered in this paper. In class D, we have Mp =
Sp(2n, R)/U(n). Elements g € Sp(2n, R) are complex matri-
ces that act in the space (A13) and

g g=5, g'Tig=71; (A16)

[This definition is related to a more common one where g are
real matrices satisfying 87 £, = ¥, by the unitary transfor-
mation g = Uy 1 8Up with Up from Eq. (A23).] For elements
of the Lie algebra Z = In g € g, we have

Z's, +5,2=0, Z'Si+33Z=0. (A17)
In terms of n x n blocks in the replica space, we have
X Y
Z=<w XQ, (A18)

where X is skew-Hermitian and Y is symmetric. In this form,
it is very easy to identify the subalgebra u(n) as the one with
Y =0.

The Cartan involution is

0(2)=—-2" = £:2%;, (A19)

and its eigenspaces are characterised as follows: Z € ¢£if Y =
0, and Z € p if X = 0. We have two groups of generators in
both ¢ and p:

X =00®E;. X =ios®E],

vW=0®E! Y?P=0®E. (A20)
We choose the maximal Abelian subspace a C p as

a = span{Hy = 01 ® Ey = Y\ /2}. (A21)

Straightforward computations show that the system of re-
stricted roots is given by Eq. (A4) with multiplicities m, = 1
and m; = 1. The positive restricted root vectors are

By = X0 470

—v® (2)
ij Eﬂu—Xij +Y;

ij
E, =X 4+1®. (A22)

Next, we perform a unitary transformation of basis in the
space (A11) that makes the generators of a diagonal, and the
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generators of n strictly upper-triangular. Using the matrix U
in Eq. (A15), we define

Up =U ®]1,. (A23)

The unitary transformation M — UpMUy ! makes the ele-
ments of a diagonal and rotates the A matrix:

UpH UG = 03 ® Ex, UpAUS' = %,. (A24)

In this basis, the positive restricted root vectors are upper-
triangular in the retarded-advanced (RA) space. An additional
permutation 7 that reverses the order of the basis in the AA
sector accomplishes the necessary upper triangularization.
The permutation is given by

Tn4i)=2n+1—i (A25)

Let IT be the permutation matrix with elements I1;; = &, ,
then the unitary transformation

M = T"'"UpMU;'TI. (A26)

leads to

A=0,®1I, (A27)

where 7, is the n X n matrix with units on the “antidiagonal,”
that is, (Z,);j = 8i nt-1—j. It is easy to show that in the new
basis the positive restricted root vectors E are strictly upper-
triangular.

In the new basis, the positive restricted root vectors are
strictly upper-triangular, which can be visualized for n = 2 as
a schematic matrix diagram by indicating the matrix positions
where various generators have nonzero entries. For brevity,
we write o = E{), g0 = E/gz, and yk(’) = Elﬁi), with indices
suppressed since they can be inferred from the matrix grid
(uncolored cells have zero entries):

z1 a2 aaz| Bis B2 M
Ty o3| Paz Y2 iz

3 | ¥z Pz iz

e
I

(A28)
—I3 Q3 (013
—T2 (9

In the final basis, the elements of a are diagonal matrices,
while elements of n are strictly upper triangular.

Let us exploit consequences of the Iwasawa decomposition
of G and the permutation 7 for the sigma model field Q. In
the original basis, we write g = nak with n € N, a € A, and
k € K, and then

Q= QA =na’An"'A. (A29)

Here we used kAk~' = A and aAa~! = a*A, which is a
special case of second condition in Eq. (A16) for a diagonal
matrix a € G. Now we perform the permutation P,. Using the
notation (A45), we get

O =na’Ai"'A. (A30)

As should be clear from the previous discussion, the matrices
it and i~ are upper-triangular with units on the diagonals,
while a is diagonal:

a = diag(e™,...,e", e, ... e, (A31)

Conjugation by A converts /=" into A7i~'A which is lower-
triangular with units on the diagonal. This results in the
following structure of the lower-right m x m submatrix of the
AA block of the matrix O for any m < n:

1 ... =% e Pm 0 1 ... 0
A : : . : s :
AL = .o : . : : Lo
0o ... 1 0 ... e o1

(A32)

Determinants of these submatrices give the basic positive N-
radial eigenfunctions

dm = ¢(1m) = exXp (—2 Z)Ci).
i=1

We can form the most general N-radial eigenfunctions as
products

—_ J91—492 392—43 4n—1—49n 14,
¢’(ql ..... qn) _dl dz "'dn—l q

n

(A33)

(A34)

where we may take g; to be arbitrary complex numbers.

The resulting form of the Iwasawa construction for class
D as given by Eqgs. (A31)-(A34) is fully analogous to that
in class A, Ref. [8]. This demonstrates that class D is one of
“spinless” symmetry classes. Upon translation to the language
of eigenfunctions, one obtains the pure-scaling observables in
the form (19) and (20). We will see below that the situation
is different for classes DIII and AIl, for which a distinct (al-
though bearing much similarity), spinful construction emerges
out of the Iwasawa decomposition.

3. Class DIII

In this section, we present details of the Iwasawa con-
struction for class DIII. In this class we have Mp =
Sp(2n, C)/Sp(2n). The group Sp(2n, C) can be realized
as the group of complex 4n x 4n matrices that act in the
space (A11) and satisfy the following constraints:

g T0g= 230, & Zng=ITn, g Xwng= Ty (A35)

[This definition is equivalent to a more common one where 2
are 2n X 2n complex matrices acting in the space (A13) and
satisfying 87 ¥»8 = %,.] For elements of the Lie algebra Z =
Ing € g, we have

Z'%30+ 2302 =0, Z'Zy+ T3Z =0,

ZT 500 4+ £20Z = 0. (A36)
This leads to the following structure in the RA space:
X Y
7 = (Y* X*)’ (A37)
where the blocks can be split further:
o X1 X2 _ Y2 Yl
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Here all sub-blocks are complex n x n matrices: X; and Y;
skew-Hermitian and X, and Y, symmetric.
We use the Cartan involution

0(2) = —Z" = 30Z Ty, (A39)

whose eigenspaces are characterised as follows: Z € £if Y =
0, and Z € p if X = 0. This gives four groups of generators

for each eigenspace:
X-(-O) =000 ® E;, Y,;O) =01 QE},
X(l) 10'31 ®EU’ Y.(.l) = 071 ®Ei—;’

X(z) 10'02 ® ’J , Y(Z)

3
X() i033 ®El]’

o ®E;

Y =03 @ EL (A40)

We choose the maximal Abelian subspace a C p as
a= span{Hk =010 ® Exx = Yk(,?)/Z}. (A41)

Straightforward computations show that the system of re-
stricted roots is given by Eq. (A4) with multiplicities m, = 2
and m; = 2. The positive restricted root vectors are

1 _ y© ©) @ _y®@ @
Eau X" + YIJ ’ Eaij - X" + Yt/ ’
M _ ) ) @ _ y® ©)
Eﬁ,»,-—X +Yz/ , Eﬁi,»_X +Y,j ,
M _ y @M ) @ _ yv® 3)
EV =X, +Y;", ES=X;7+Y;. (A42)

The unitary transformation that makes the generators of a
diagonal and the generators of n strictly upper-triangular is

accomplished with the help of the matrix
Upi = U ® 0¢ ® I,. (A43)

We also need the permutation matrix I1; with elements
(ITy)ij = 8,¢;),j Where the permutation 7; of the basis of the

space (A11) can be described as follows: fori € 1,...,n, we
have
m@)=2i—1, mQ@n+i)=4n+2 —2i,
mn+i)=2i, m@Bn+i)=4n+1-2i. (A44)
The unitary transformation
M = 1} 'UpmM U, T, (A45)
rotates the A matrix to
A =0, @D, (A46)

makes the elements of a diagonal, and the positive restricted
root vectors E strictly upper-triangular.

The subsequent construction is almost verbatim as in class
D, except that each entry in the diagonal matrix @ € A is now
repeated twice (the doubling is a manifestation of the Kramers
degeneracy):

a = diag(e"' oy, ..., €"0p, e "0y, € 0p). (A47)
The structure of Q(zm), the lower-right 2m x 2m submatrix of
the AA block of the matrix O for any m < n is the same as
in Eq. (A32), except that now all entries are understood as

2 x 2 matrices, with the blocks on the diagonals proportional

to the identity matrix og. Determinants of Q(2 m)

positive N-radial eigenfunctions

dyy = exp (—4 Xm:x;).
i=1

We can form the most general N-radial eigenfunctions as
products

give the basic

(A48)

¢(Q1 ----- ) = déql—tlz)/zdiqz—qz)/z B .dél;;/z’ (A49)
where we may take g; to be arbitrary complex numbers. It is
easy to see that the product (A49) is the same as the expo-
nential eigenfunction (A10), while the basic function d,,, is
@(2.2...) with m twos in the subscript.

Notice that the doubling of the diagonal entries e for
each i in Eq. (A47) compelled us to take determinants of
sub-matrices of even size and raise the resulting functions to
powers written as (q; — ¢;+1)/2. In the Iwasawa formalism,
it is also possible to obtain directly the basic solutions @jn).
Using definitions above, it is straightforward to show that the
matrix Q( ’")(I ® ioy) is anti-symmetric, and that its Pfaffian
gives the basic N-radial eigenfunction

—2x;

Pm = ¢am) = exp ( 2 sz) =Pf Q(z’")(l ® ion)].
(A50)

The general N-radial functions are then obtained as products
of powers of p,,:

q2 —Lh 1=4n

Dgr.gy = P1EPTTE P T (A51)

The resulting form of the Iwasawa construction for class
DIII as given by Eqs. (A47)—(AS51) is fully analogous to that
in class C, Ref. [9]. This shows that class DIII is one of “spin-
ful” symmetry classes. Upon translation into the language of
eigenfunctions, one obtains the pure-scaling observables as
given by Egs. (20) and (21).

4. Class AIl

In this section, we present details of the Iwasawa con-
struction for class All, which is very similar to that for class
DIIT above. In class AIl, we have Mg = G/K where G =
Sp(2n, 2n), K = Sp(2n) x Sp(2n). The group Sp(2n, 2n) is
the subgroup of the complex symplectic group Sp(4n, C) that
preserves the symmetric bilinear from with the matrix sy in
the space (A11):

¢ g =Ty, & Tig=Ti. (A52)
For elements of the Lie algebra Z = In g € g, we have
Z' S0+ 20Z =0, Z'S3+ T30Z = 0. (A53)

In terms of n x n blocks in the replica space, we have the

following structure:

Zn Zi, Ziz Zis

—Zh  Zn Ziy 7

zZh,  Zl,  Zyn Zu
i

Zi, - Ly 74

, (A54)
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where Z;; and Zz3 are skew-Hermitian, Z,, and Zz4; are
complex symmetric, and Z;3 and Z;4 are arbitrary complex
matrices.

The Cartan involution is the same as in class DIII:

0(Z2) = —Z" = $30Z . (A55)

Its eigenspaces are characterised as follows: Z € ¢ if Zj3 =
Ziy=0,and Z € p if Zy) = Zyp = Z33 = Z34 = 0. The eight
groups of generators of £ are

00 __ — 30
Xl-j =00 ® Eij’ X;

i =030 ®Eij s

01 _ + 31 _ +
Xij :lO'01®Eij, Xl-j :zU31®Eij,

XP =ion®EY, X =ionQE!,

Ly

XP =ios®EY, X =ionQE];. (A56)
and the eight groups of generators of p are

Yi?O =00 ®E}, Yi}o =i010Q E;;,

Y,?l =102 Q E;;, Yi}l =on ®E],

Yi? =ion QE;, Y,}z =on®E;,

Y7 =ion ®E;, Y} =0i3QE}. (A57)

We choose the maximal Abelian subspace a C p as
a = span{H, = 02 ® Eq. = Y /2}. (AS8)

Straightforward computations show that the system of re-
stricted roots is given by Eq. (A4) with multiplicities m, = 4,

J

my = 3. The positive restricted root vectors are

(1) _ 00 20 (2) _ yO01 21
Eo, =Xij Y5, Eu =Xj +Y;,

3) _ 02 22 “4) _ 03 23
By, =Xij Y57 By =Xy + Y5

E(l) X30 10 E(z) X31 11
Bij T J +Yl} ’ By — j Yij ’
E(S) x 32 12 E(4) X33 13
By — j Yij ’ B — ij Yij ’

—yl

1) _ y31 2) _ y32 12
Eyi _Xii i Ey,- _Xii -Y;

i
3 33 13

ED =X -1/ (A59)
The upper-triangularization is accomplished with the help

of the same matrices Upp (A43) and IT; that we used in class

DIII. The unitary transformation

M = 0} 'Up i MUpi 1T (A60)

rotates the A matrix to

A =011 QIL, (A61)

makes the elements of a diagonal, and the positive restricted
root vectors E strictly upper-triangular.

We can visualize the rotated generators for n =2 as a
schematic matrix diagram by indicating the matrix positions
where various generators have nonzero entries. For brevity
we write oV = E{D, 1) = E/g’;, and yk(’) = Elﬁ?, with indices
suppressed since they can be inferred from the matrix grid
(uncolored cells have zero entries):

s
I

In the final basis, the elements of a are diagonal matrices,
while elements of n are strictly upper triangular.

Let us exploit the Iwasawa decomposition and the trans-
formation (A60) for the sigma model field Q. In the original
basis, we write g = nak with n € N, a € A, and k € K, and
then

Q= QA =na*An"'A. (A63)
Here we used kAk~' = A and aAa™" = a®>A, which is a spe-
cial case of the second condition in Eq. (A52) for a Hermitian
matrix a € G. Now we perform the transformation (A60):

T a4 423 5(23) 5(14) %12) %3)
z, ) o9 5(14) 5(23) 7;3) §12)
72 32 Y Y oY
v [ 487 500 e
— Ty a4 (23 (A62)
—1y a®) (14
—1
—1

(

O = na*Aii~"' A. As should be clear from the previous discus-
sion, the matrices 7 and 7i ! are upper-triangular with units on
the diagonals, while & is diagonal, with each entry repeated
twice:

a = diag(e oy, ..., € 09, e "0p, e M op). (A64)

Conjugation by A converts ="' into A7i~' A which is lower-
triangular with units on the diagonal. This results in the
following structure of the lower-right 2m x 2m submatrix of
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the AA block of the matrix O for any m < n:

1 ... =% e m . 0 1 ... O
Ham) : - : .. :
0 ... 1 0 ... e 1

(A65)

where all entries are understood as 2 x 2 matrices, with the
blocks on the diagonals proportional to the identity matrix
0p. Determinants of Qﬁm) give the basic positive N-radial

eigenfunctions

dom = exp (—4 Zx,-). (A66)
i=1

We can form the most general N-radial eigenfunctions as

products

—42)/2 1(ga—q3)/2 /2
¢(q1 ..... ) =d2(ql q2)/ di(h q3)/ -~~d§]n/ , (A67)

where we may take the g; to be arbitrary complex numbers.
It is easy to see that the product (A67) is the same as the
exponential eigenfunction (A10), while the basic function dy,,
iS ¢(2,2,...) with m twos in the subscript.

Notice that the doubling of the diagonal entries e~ for
each i in Eq. (A64) compelled us to take determinants of
submatrices of even size and raise the resulting functions to
powers written as (g; — gi+1)/2. In the Iwasawa formalism,
it is also possible to obtain directly the basic solutions ¢jm).
Using definitions above, it is straightforward to show that the
matrix Qﬁm)(lm ® i0y) is antisymmetric, and that its Pfaffian
gives the basic N-radial eigenfunction

Pm = ¢(1"’) = exp <_2 in> - Pf[QfAm)(Im ® iGZ)]-
i=1
(A68)

The general N-radial functions are then obtained as products
of powers of p,:

Pqrogy =PI DY TP P
Let us stress what we have achieved: the general N-radial
eigenfunctions in Eqs. (A67) and (A69) are parametrized by
arbitrary complex numbers ¢y, . . ., g, and satisfy the Abelian
fusion.

The rest of the construction is identical to that in class DIII.
Therefore, we obtain the same construction with each matrix
element of the diagonal matrix & repeated twice, yielding
Eqgs. (A47)—(AS51). In terms of eigenfunction observables, we
thus get the spinful construction, Egs. (20) and (21).

(A69)

APPENDIX B: ONE-LOOP ¢-MODEL RG AND
K-INVARIANT EIGENFUNCTIONS FOR ALL TEN
SYMMETRY CLASSES

In this Appendix, we present the one-loop RG analysis for
the o-model, which allows us to determine the K-invariant
polynomial composite operators P;(Q) as eigenfunctions of
the RG. While in the rest of the paper we focus on three
classes All, D, and DIII, here we present the results for all
ten symmetry classes. This allows us to demonstrate rela-
tions between different symmetry classes and, in particular,

their splitting in two groups (“spinless” and “spinful”), in full
agreement with physical considerations based on the presence
or absence of Kramers degeneracy and Kramers-like near-
degeneracy (see Sec. [I D) and with the Iwasawa construction
(Appendix A).

For classes A and C, this RG analysis was presented in
Ref. [9]; the corresponding main results (with some sign typos
corrected) are also collected in Appendix B of Ref. [26].
Below we use the same notations as in Refs. [9,26].

Let us first comment on the notion of K-invariant (or,
equivalently, K-radial) eigenfunctions, and their difference
from (and relation to) the N-radial eigenfunctions result-
ing from the Iwasawa decomposition. This was explained in
Ref. [8] and is brielfy reiterated here. The Q matrix is given
by O = gAg~!, with g € G. We use the Cartan decomposi-
tion, G = KAK, where A is the maximal Abelian subgroup in
G/K (the same as in the Iwasawa construction, Appendix A),
which implies that any element g of G can be presented in
the form g = kjak,, with ki, k; € K and a € A. This yields
O = kjaAa~'k;'. An operator P(Q) is called K-invariant if
it satisfies P(Q) = P(kQk~") for any k € K. Clearly, one has
then P(Q) = P(aAa™'), i.e., a K-invariant operator depends
only on the coordinates parametrizing a € A (called K-radial
coordinates). For any irreducible representation A, one can
(uniquely) construct a K-radial representative, which is done
as follows. Let P, (Q) be any function belonging to A. Then
by symmetry P, (kQk~") also belongs to A. Integrating with
the Haar measure over the group K, we obtain the sought
K-invariant function: P;(Q) = f X d /L(k)’fjx (kQk™1). (Notice
that for some choices of P;(Q) this integral over K may
vanish.) In particular, P,.(0) here can be the N-radial function
¢, (Q) resulting from the Iwasawa construction.

The K-invariant eigenfunctions P; (Q) are known as zonal
spherical functions. In the case of conventional spherical func-
tions Y}, on the sphere §? = SU(2)/U(1), these are the m = 0
spherical harmonics, which do not depend on the azimuthal
angle ¢ (Legendre polynomilas of cos ). For comparison, the
N-radial eigenfunctions (or, equivalently, the highest-weight
vectors) are in this case the m = [ harmonics.

We consider K-invariant, polynomial-in-Q functions on the
o-model target space G/K. For a given order g of the polyno-
mials, it is convenient to introduce a basis in the corresponding
linear space, with basis function labeled by integer partitions
A=(q1,...,qn) of g with q; > ... > g,, where g; are pos-
itive integers and ), ¢; = ¢. Elements of this basis have the
form

(BI)

i=1

As is clear from Eq. (B1), the integers g; here are the lengths
of n cycles of AQ-strings over which the traces are taken.
For g = 2, there are two basis operators, with A = (1, 1)
and (2). The one-loop RG conserves the order g. Since it is
a linear operation, it works as a matrix in the corresponding
two-dimensional space. To derive this matrix, it is convenient
to use the background-field formalism. The field g € G is split
into fast g, and slow g, components, g = g,gr. The fast field
isexpandedas gy = e =1— X + 1X%?+ .., with YA =
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TABLE IV. Coefficients of the matrix M, in Eq. (B3) and con-
sequently of different terms in the differential operator (B4) for all
symmetry classes.

class a b c
A 12 0 0
Al 1 1 0
Al 1 -1 0
D 1 1 2
C 1 -1 -2
DIII 2 0 2
Cl 2 0 -2
AIIT 12 0 0
BDI 1 1 1
CIl 1 -1 -1
—AX, which yields
0=gAg ' =gegrhg's,’
=Q, +2g,AXg  +2g,AX g + ..., (B2)

where Q; = g;Ag; . For the one-loop RG, the terms beyond
the A2 order are not needed. To perform the RG transfor-
mation on an operator O(Q), we expand O(Q) up to the
second order in X using Eq. (B2), O = 0© + OW[X] +
10®[X]+..., and then perform the Gaussian averaging
over the fast fields X'. The corresponding Gaussian action
S¢[X] is obtained by an expansion of the o-model action up
to the quadratic order; it depends on the symmetry class under
consideration. We denote by 8O the result of the averaging
of the contribution of second order in X over the fast mode
with the action S;[X], i.e., 8O = (OP[X])s, ). This 8O is
aresult of one-loop renormalization of the composite operator
O(Q). By construction, 8O depends on the slow field Q; we
denote this field again by Q.

The one-loop RG procedure is presented in detail in
Ref. [9] for classes A and C; the derivation proceeds in the
same way for other symmetry classes. The only difference is
in the action Sy that determines the 2 x 2 RG matrix M, (see
below), which should be derived separately for each G/K. We
omit the corresponding details and only present the results for
all ten symmetry classes.

Performing the RG for ¢ = 2 operators, we get

5 (TAQUBO) _,  (1r(A0)r(BO)
wr(AaQBQ) )~ T/ w(AQBQ) )
c 2a
M, = (1 b+ c)'
Here A and B are arbitrary fixed matrices (strictly speaking,
they should satisfy trA = trB = trAB = 0; otherwise addi-
tional, Q-independent terms appear upon RG transformation).
Setting A = B = A yields the RG flow for ¢ = 2 K-invariant
operators. The constant Iy is the one-loop integral; its value
plays no role for determination of eigenfunctions that we
are interested in. The RG matrix M, is determined by three
constants, a, b, and ¢, as shown in Eq. (B3). The values of

these parameters in different symmetry classes are presented
in Table I'V.

(B3)

We briefly comment on the origin of contributions propor-
tional to 1, a, b, and ¢ in Eq. (B3). Consider first the terms
coming from the renormalization of tr(AQ)tr(BQ). When two
X fields that enter the contraction are taken from two dif-
ferent traces, one obtains a single trace tr(AQBQ), with a
coefficient a. When both X fields are taken from the same
QO matrix, the original structure tr(AQ)tr(BQ) is reproduced
with a coefficient c. Now we turn to the terms coming from
the renormalization of a single trace tr(AQBQ). When two X
fields are taken from different Q fields, one gets the same
structure (with a coefficient b) or splits the trace into two
traces, tr(AQ)tr(BQ), with a coefficient 1. Finally, if both X
fields are taken from the same Q field, one reproduce the
original structure with a coefficient c.

Remarkably, the rules encoded in the matrix M,, Eq. (B3),
are sufficient to extend the RG onto polynomial operators of
any degree ¢, as was shown in Ref. [9]. A convenient formal-
ism to extract the action of RG on a polynomial operator of
any degree is as follows [26]. We identify K-invariant basis
operators O,, Eq. (B1), with polynomials in variables wy
in the following way. We rewrite A = (1,2, ... k™, ...)
in terms of cycle lengths k and multiplicities my. Then we
associate the monomial Wy = [, w* to O,. It is easy to
see that the degree ¢ of the operator (; is in this notations
q =Y, kmy. A generic K-invariant operator O(Q) maps onto
a linear combination W of such monomials. The action of
one-loop RG can now be presented as 6W = 2I;DW, where
D is the following differential operator:

D= Z]wtfjwjal-f-aZl]w,J”B,&J
j<i ij

bzl(l w8 +chw8,,

(B4)

with 9; = 9/0w;.

We briefly comment on the four terms in the RG operator
D (proportional to unity, a, b, and c, respectively).

(i) The first term in Eq. (B4) (proportional to unity) de-
scribes cutting a cycle of length i into two cycles of length
j and i — j. Here, the derivative removes one factor w; and
yields a factor m;, corresponding to the fact that this can
happen to any of the m; cycles of length i. The multiplication
by w;w;_; corresponds to the appearance of two cycles with
the lengths j and i — j. In total, there are i = j+ (i — j)
realizations of such a cut.

(ii) The second term (quadratic with respect to the deriva-
tives, proportional to a) describes the fusion of cycles of
length i and j into a cycle of length i + j. Here, the derivatives
remove one cycle of length i and one of length j, while the
multiplication by w;;; adds one cycle of the corresponding
length. In total, there are ij channels for this process: the first
fast field can come from each of the i Q fields in the cycle of
length i, and the second one from each of the j Q fields in the
cycle of length j.

(iii) The third term (proportional to b) originates from
contractions of fast fields coming from distinct Q fields in a
cycle of length i and preserving this cycle. This terms affects
only diagonal entries of matrices M, defined below.

(iv) Finally, the last term in Eq. (B4) (proportional to c)
results from contractions between fast fields coming from
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the same Q. It preserves the structure of the monomial W,
multiplying it by ), im; = g, i.e., by the total number of Q
fields. This term is associated with the renormalization of
the average density of states, providing a contribution gx(i)
to the exponents x;. For any given g, it yields a contribution
proportional to unit matrix to the RG matrices M, and thus
does not influence their eigenvectors (which are K-invariant
scaling operators).

Let us comment on peculiarities of three chiral classes,
Alll, BDI, and CII. Models of these classes conventionally
emerge when one studies tight-binding models with sublattice
structure (two sublattices A and B, with all nonzero matrix
elements of the Hamiltonian corresponding to hopping be-
tween them). For these classes, irreducible representations
are labeled not simply by A but rather by a pair of Young
diagrams (1, X) [66], with A corresponding to observables
on one sublattice and A on the other sublattice [67]. At
the level of polynomials W introduced above, we introduce
a second, independent set of variables w;; the operators
are now represented by a linear combination of monomi-
als Wy ({wiHWs ({wy}). The RG operator (B4) is extended
to D+ D, where D has the same structure as D, with a
replacement wy — wy. In addition, there is a contribution
to the one-loop RG operator that originates from the U(1)
sector of chiral-class o models [66]. This contribution does
not affect the eigenfunctions but shifts the eigenvalues by a
term proportional to (¢ — ¢)?, where ¢ = |A| and § = |A|.

It is easy to verify that the differential operator (B4) pre-
serves the degree ¢ = ), kmy of a composite operator. We

J

can therefore restrict it to a sector of the theory with a given
q = |A|. This yields

DY a W= a,(My) Wy, (BS)
A

Ay

with matrices M, describing the renormalization of operators
of degree g. For ¢ = 2, we are of course back to the matrix M,
given in Eq. (B3). For higher values of g (i.e., g = 3 and 4) the
matrices M, can be straightforwardly obtained numerically
for each symmetry class. If we consider (B5) as equations de-
scribing the action of the RG operators D on vectors of the
coefficients a,, this action is clearly characterized by the trans-
posed matrix MqT. Once the matrices M qT are found with this
procedure, one can determine their eigenvectors that yield the
sought K-invariant pure-scaling composite operators P (Q).
To assign the Young label A (with |A| = g) to each of the
eigenvectors, we use the fact that the corresponding eigenval-
ues are identical to the eigenvalues z, of the Laplacian on the
o -model manifold [9,45,46].

Inspecting the Table IV, we observe that the symmetry
classes split into four groups according to pairs of values
(a, b). (We recall the coefficient ¢ does not affect the eigen-
vectors.) We discuss now the results for eigenvectors in each
of these groups.

For classes A and AIIl, we have a = % and b = 0. The
results for the eigenvectors P;* = PP for g = 2, 3, and 4 are
as follows (the analysis for class A was carried out in Ref. [9]):

Phil0] 1 =3 2\ [&(AQ)(AQ)(AQ)
A _ a,1,1)
(7;1;‘;[5])=<} f)(“ﬁﬁfgﬁg?)) Pigiol | =1 0 —1]| wagaua) |.
(2) Pé)[Q] 1 3 2 tr(AQAQAQ)
7’5‘21,1,1>[Q] 1 —6 3 8 —6\ /(AQ(AQ)T(AQ(AQ)
Poanle] 1 -2 -1 0 2 tr(AQAQ)tr(AQ)tr(AQ)
Payiol |=[1 o 3 -4 o tr(AQAQ)r(AQAQ) (B6)
PA L 10] 1 2 -1 0 -2 tr(AQAQAQ)(AQ)
Pi10) 1 6 3 8 6 r(AQAQAQAQ)

Our main interest is in the first row of each of the matrices in Eq. (B6) (and of analogous matrices for other symmetry classes
below) which yields the most antysimmetrized observable (17). As we know (see Sec. I D and Appendix A), observables from
these representations serve as building blocks for the construction of generic pure-scaling observables. It can be shown [9] that
the entries in the first row of the matrices are given by (—1 Y= d, , where d,, is the number of elements in the permutation group
S, that have the cycle shape A, and /(1) is the number of cycles in A.

We turn now to the second group that includes classes D, Al, and BDI, with a = b = 1. The results for eigenvectors 73? =
PAL = PBDI read (the case of class Al was considered in Ref. [68])

D PG1l0] 1 =3 2\ [tr(AQ)tr(AQ)tr(AQ)
(o) = (1 ) (weone?) | Phjar) =1 1 =2 wwosowao) ),

@ P8 (0] 1 6 8 r(AQAQAQ)
Pgbl,l,u[Q] 1 =6 3 8 —6\ /r(AQ)U(AQ)(AQ)T(AQ)
Poanl0] 1 -1 -2 —2 4 r(AQAQ)(AQ)T(AQ)

Po,0 [=]1 2 7 -8 -2 r(AQAQ)(AQAQ) (B7)
P2 0] 15 -2 4 -8 r(AQAQAQ)(AQ)

p(lz)[Q] 1 12 12 32 48 tr(AQAQAQAQ)

Comparing Eq. (B7) with (B6), we see that the first lines determining the (17) observables are identically the same. This
demonstrates that the five classes A, Alll, D, Al, and BDI, all belong to the same “spinless” category. This is in full agreement
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with the physical arguments presented in Sec. IID and with the calculations using the Iwasawa decomposition performed for
class A in Ref. [8] and for class D in Appendix A. The pure-scaling wave-function observables for this group of classes are given
by Eqgs. (20) and (19).

We turn now to the remaining five classes (which are “spinful” as explained in Sec. I D), beginning with classes All, C,
and CII (for which a = 1, b = —1). The eigenvectors ’P)‘fﬂ = ?f = PSH of the RG transformation (and thus, the pure-scaling
operators) are now found to be (the case of class C was explored in Refs. [9,26])

All
<7’<‘Tf‘1>[QJ) (1 ) (rnomso) e W A Y

= Poplol =11 -1 =2 tr(AQAQ)r(AQ) |,
Patter) ~ r(AQAQ) PAll) 13 2 r(AQAQAQ)
A3)

PitinlQl 1 —12 12 32 —48\ /t

- - r(AQ)tr(AQ)r(AQ)tr(AQ)
PG plol 1 -5 —2 4 8 tr(AQAQ)r(AQ)(AQ)
PALIOl [=[1 —2 7 -8 2 r(AQAQ)I(AQAQ)  |. (B8)
éﬂl)[Q] 1 1 -2 -2 -4 tr(AQAQAQ)r(AQ)

It is well known that there is a duality within the pairs of classes Al <> All, C <> D, and BDI <« CII. This duality becomes
manifest if one compares Eqgs. (B7) and (BS8). Specifically, one sees that the first (second, etc.) row of the matrix (P)\C[Q])M
[Eq. (B8)] coincides with the last (respectively, second last, etc.) row of the matrix (PP[Q]),, [Eq. (B7)] multiplied by (—1)"*),
where p is the column label. This means that

(PP1Q)), = D' (P101),,. (B9)

where AT is the conjugate Young diagram (obtained from A = (g1, . .., g,) by interchanging rows with columns, i.e., by reflection
with respect to the diagonal).
Finally, for classes DIII and CI (with @ = 2 and b = 0), we obtain the following results for the eigenoperators PP = PEL:

Dlll
(PB‘EB[Q]) <1 _1) <tr(AQ)tr(AQ)) 7;2,3}1113[5]] (P32 [(rhortoxto)

= = 2tr(AQAQIr(AQ) |,
PRIQ] 1 2tr(AQAQ) PRIQ] 13 2 4tr(AQOAQAQ)
PiiLiplQ] I =6 3 8 —6\ /tr(AQ)N(AQ)(AQ)(AQ)
Po Q] 1 =2 -1 0 2 || 20(AQAQ)(AQ)(AQ)
PoSIol |=f1 0 3 -4 0 Ar(AQAQ)r(AQAQ) |. (B10)
PRIl 0] 1 2 -1 0 =2 4tr(AQAQAQ)T(AQ)
paIII[Q] 1 6 3 8 6 Str(AQAQAQAQ)

Note that we have chosen to include the factor 29~/ in the vector of basis operators in the right-hand side of Eq. (B10). This
makes the matrices in (B10) identical to those in (B6). Thus

(PP1Q), =27 (P1QI) - (B1D

For A = (19) (first lines of the matrices), this means that PDHI P(AI‘H Thus, for all five classes All, C, CII, DIII, and CI, the
(17) eigenoperators have the same form, conforming that they belong to the same “spinful” category. This is in perfect agreement
with physical arguments in Sec. II D and with the calculations using the Iwasawa decomposition performed for class C in Ref. [9]
and for classes AIl and DIII in Appendix A. The pure-scaling wave-function observables for this group of classes are given by
Egs. (20) and (21).
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