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Air temperature (AT) prediction can play a significant role in studies related to climate change, radiation and heat flux estimation,
and weather forecasting. *is study applied and compared the outcomes of three advanced fuzzy inference models, i.e., dynamic
evolving neural-fuzzy inference system (DENFIS), hybrid neural-fuzzy inference system (HyFIS), and adaptive neurofuzzy
inference system (ANFIS) for ATprediction. Modelling was done for three stations in North Dakota (ND), USA, i.e., Robinson,
Ada, and Hillsboro. *e results reveal that FIS type models are well suited when handling highly variable data, such as AT, which
shows a high positive correlation with average daily dew point (DP), total solar radiation (TSR), and negative correlation with
average wind speed (WS). At the Robinson station, DENFIS performed the best with a coefficient of determination (R2) of 0.96 and
a modified index of agreement (md) of 0.92, followed by ANFIS with R2 of 0.94 and md of 0.89, and HyFIS with R2 of 0.90 and md
of 0.84. A similar result was observed for the other two stations, i.e., Ada and Hillsboro stations where DENFIS performed the best
with R2: 0.953/0.960, md: 0.903/0.912, then ANFIS with R2: 0.943/0.942, md: 0.888/0.890, and HyFIS with R2: 0.908/0.905, md:
0.845/0.821, respectively. It can be concluded that all three models are capable of predicting ATwith high efficiency by only using
DP, TSR, and WS as input variables. *is makes the application of these models more reliable for a meteorological variable with
the need for the least number of input variables. *e study can be valuable for the areas where the climatological and seasonal
variations are studied and will allow providing excellent prediction results with the least error margin and without a
huge expenditure.
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1. Introduction

One of the commonly measured weather parameters is the
air temperature (AT), which measures the relative motion/
kinetic energy of the component gases that constitute air. It
increases when the molecules of a gas are moving more
quickly and vice versa. ATestimation is an important process
for several applications, such as in studying vector-borne
diseases [1, 2], weather forecasting, climate change [3–5],
epidemic forecasting [6], veterinary uses, radiation [7], and
heat flux estimation [8], estimation of water potential and
vapour pressure deficit [9, 10], ecology [11–13], wastewater
treatment [14–16], hydrology [17], urban land use, and
urban heat island [18]. *e estimation of AT is usually
conducted by weather metrological stations and is consid-
ered an essential weather parameter, which is usually
measured with high accuracy [19].

1.1. Application of Classic Machine Learning Models.
Improvement of the accuracies of various high-impact
weather prediction models using machine learning (ML)
models have been the focus of most research activities re-
cently [20–23]. *is is based on the nonreliance of ML
models on input variables’ multicollinearity; hence, they can
process numerous input variables [24]. *e development of
ML-based models for a multitude of stations is achievable
and as such, it is possible to monitor the spatial distribution
of the prediction such as AT, when the ML models are fed
with spatially continuous input parameters [25, 26]. *e
postprocessing of the hourly temperature outputs of the
Advanced Regional Prediction System (ARPS) using an
artificial neural network (ANN) has been investigated by
Marzban [27]. *e study achieved an average of 40% decline
in the mean squared error (MSE) for the validated weather
stations. Various ANN-based models for AT prediction
during winter periods have been developed by Jain et al. [28].
*e training of the developed models involved the use of
patterns that included 6-hours of previous weather infor-
mation, such as WS, relative humidity (RH), AT, time of the
day, and TSR. In another study by Jang et al. [29], the
authors predictedAT in Southern Quebec (Canada) based on
the use of the ANN model and AVHRR images. *e
employed ML model was trained using Lev-
enberg–Marquardt backpropagation (LM-BP) while the
LM-BP was improved using the early stopping method to
ensure the generalization of the learning process of the
networks. As per Smith et al. [30], the prediction perfor-
mance of ATmodels during winter periods can be improved
by incorporating seasonal information in the input pattern,
followed by an extension of the duration of previous data to
at least 24 hours. *e monthly mean AT prediction per-
formance of ANN and Support Vector Regression (SVR)
have been studied by Salcedo-Sanz et al. [31] based on the
previously measured values in New Zealand and Australia.
*e models were also used to predict the climate indices of
importance within the studied region. From the results, the
SVR model outperformed the ANN model in terms of
prediction performance. However, the authors reported that

last years of the test set do not allow the consistency of the
prediction performance of different algorithms due to the
high fluctuations. Various models, ranging from simple
correction (i.e., mean bias) to ML models (such as ANN and
random forest (RF)), have been investigated by Eccel et al.
[32] for improving the minimumATprediction performance
of two numerical models for weather prediction. *e out-
come of the comparative study showed that the RF model in
comparison to the other models achieved the best perfor-
mance in terms of being easier to automate. An establish-
ment of ANN-based models for AT prediction has been
developed by Smith et al. [33]. *e models were developed
for AT prediction throughout the year using the data col-
lected since 2005. *e ability of the polynomial neural
network to bias-correct the National Oceanic and Atmo-
spheric Administration (NOAA) mesoscale model for
hourlyATprediction has been reported by Vashani et al. [34]
while another study by Şahin [35] reported monthly mean
ATprediction using remote sensing dataset and ANN model
in 20 Turkish cities. *e performance of the developed ANN
model in monthly mean ATmodelling using remote sensing
data was reported as efficient and accurate. Moreover, de-
ciding those hyperparameters is challenging to the non-
stationary data.

1.2. Application of Hybrid Machine Learning Models. *e
trend of hybrid model application is growing year by year
as per its scientific advantages and higher robustness. *e
ANFIS and ANN models have been evaluated for effec-
tiveness in long-term monthly AT prediction at 30 Iraqi
weather stations Kisi and Shiri [36]. *e models were
trained using the monthly data of 20 weather stations while
the data for the remaining 10 stations were used for model
validation. *e models were also compared against each
other in terms of prediction performance and the outcome
showed that the ANN model performed better than the
ANFIS model in the test period. Moreover, the authors
suggested further investigations with other techniques and
data management scenarios for the generalization of the
application such as other important climatologic variables.
Besides, a couple of studies applied a hybridization of
adaptive neurofuzzy inference system with optimization
methods using mutation Salp Swarm Algorithm as well as
Grasshopper Optimization Algorithm (ANFIS-mSG) and
particle swarm optimization (ANFIS-PSO) to simulate the
soil temperature using univariate independent variables
and the high-strength concrete shear strength using
multiple independent variables [37, 38]. Both studies re-
ported marginal performance gains compared to the
performance of the ANFIS standalone model. Also, both
studies reported the hybrid model is limited to the uni-
variate, i.e., AT scenario, and needs to use more derivative
data from the primary character. *e study by Yi et al. [39]
focused on improving the AT prediction accuracy of the
Local Data Assimilation and Prediction System (LDAPS)
model used in Seoul, South Korea. *e study deployed SVR
and linear regression models for this purpose and found
that the prediction accuracy of the SVR model was higher
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than that of the linear regression model. A hybrid model
consisting of a regularized extreme learning machine
(RELM) and a global climate model has been presented by
Shin et al. [40] for seasonal prediction of field-scale daily
mean AT. *e hybrid model was found capable of per-
forming accurate long-term field-scale AT prediction. *e
authors advised examining the appropriateness of other
regression models to replace the base model. Besides, this
can be applied for long-range prediction of other meteo-
rological variables, such as solar radiation, humidity, and
rainfall, which are critical meteorological variables in ag-
ricultural management. *e use of various models (RF,
SVR, ANN, and a multimodel ensemble (MME)) to correct
the output of LDAPS models when predicting 2-day
maximum and minimum AT in South Korea has been
reported by Cho et al. [41]. From the results of the analysis,
the MMEmodel achieved the best generalization compared
to the other three single ML models. Also, the authors
suggested applying a more refined ensemble technique (i.e.,
weighted) for operational purposes. Moreover, [42] applied
DENIFS for modelling coagulant dosage rates using an
online and offline approach. *e authors selected 6 features
to perform that and found online approach stands alone as
per R (0.80).

1.3. Research Motivation. Following the reported literature
on the ATsimulation, the implementation of MLmodels has
progressed remarkably over the past decade. Yet, there is no
single generalized ML that can be applied for diverse re-
gional characteristics. Conceptually, AT phenomena high-
light stochastic and nonstationary process as it is highly
correlated with several synoptic climate features and hy-
drometeorological parameters. *e introduction of a new
ML model for AT is still an interesting topic for hydrology
and climate scientists. Investigation of new paradigms that
are reliable and robust in mimicking the AT trends is an
open research domain. *us, the current research has se-
lected three stations, i.e., Robinson, Ada, and Hillsboro
located in the USA where AT was predicted by imple-
menting three advanced fuzzy inference system models
which are ANFIS, DENFIS, and HyFIS. *e selection of
those three different meteorological stations is to test the
feasibility of the proposed more with the variant trend of AT
as those stations are located in different coordinates. Also
applying the long-range prediction of other meteorological
variables, such as solar radiation and others as a feature to
predict AT, is the necessity of the research. Worth to
mention, DENFIS and HyFIS models were modelled over
the literature for different hydrometrological parameters
and confirmed their feasibility such as pan evaporation [43],
rainfall [44, 45], evapotranspiration [46], land surface
temperature [47], crops suitability [48], and energy con-
sumption [49].

1.4. ResearchObjectives. *emain motivation of the current
research is to investigate advanced inference system models
for ATprediction. To the best of our knowledge, application
of that neurofuzzy algorithm especially DENFIS in the field

of AT of the specific location has never been used. *e
modelling procedure was adopted based on the construction
of different input combinations to predict AT.*e paper has
been divided into four sections: *e first section covers the
introduction which is followed by the methodology section
comprising data description, model concept, and statistical
analysis. *e third section covers the results and discussions
based on statistical analysis done among the models and for
three station datasets. Section four presents the conclusion
along with recommendations for future studies.

2. Materials and Methods

*is section has displayed the explanation of the simulated
dataset and the applied predictive models for the AT
prediction.

2.1. Dataset Overview. In the current research, North Da-
kota (ND) is selected as the case study site for the AT
prediction. *e climate of this region is featured by climatic
variation and land use-land cover changes due to biofuel
production. It is situated in the central northern great plain
of North America and can be distributed into our ecor-
egions, i.e., the lake of Agassiz plain, the northern glaciated
plains, the north-western glaciated plain, and the north-
western great plains [50]. As per the fourth national as-
sessment report published in 2018, the northern great plains
present a challenge for researchers because of their intense
changes in elevation throughout the area leading to geo-
logical, ecological, and climatological fluctuations. Besides,
due to the substantial increment in the temperature and
change in precipitation pattern over the last decades. *ese
climate changes may lead to an increase in temperature up to
2°F–4°F by 2050 [51]. *e study has selected daily data for
three stations at ND from 2015 to 2019. *e selected station
includes Robinson situated in the southern part of ND at
latitude 47° 8′ 35.1384″, longitude −99° 46′ 44.8644″, and an
elevation of 1829m a.s.l., the second is Ada located at lat-
itude 47° 19′ 15.96″, longitude −96° 30′ 50.04″, and an el-
evation of 910m a.s.l., and Hillsboro is at latitude 47° 21′
10.8″, longitude −96° 55′ 19.2″, and an elevation of 886m
a.s.l., as shown in Figure 1.

*e study has selected four metrological characteristics
of the selected areas for modelling which are average AT
expressed in degree Fahrenheit (°F), average dew point (DP)
expressed in °F, total solar radiation (TSR) expressed in
Langley (Ly), and average wind speed (WS) expressed in
meters per hour (mph). *e dataset used for stations has a
sample of size n� 1827 and the descriptive statistics are
presented in Table 1. Furthermore, Figure 2 presents the
correlation analysis between the variables for three stations.
As per Figure 2,ATshows a high positive correlation with DP
which is 0.98, 0.97, and 0.97 for Robinson (see Figure 2(a)),
Ada (see Figure 2(b)), and Hillsboro (see Figure 2(c)) sta-
tion, respectively. Similarly, the results show that WS is
negatively correlated, such as −0.13, −0.18, and −0.27 for
Robinson, Ada, and Hillsboro station, respectively.
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2.2.AppliedPredictiveModels. *eproposedmethodology is
displayed in the form of a flowchart and presented in
Figure 3. Figure 3 shows three interferences in fuzzy AI
predictive models. While several attempts attain to score, the
best hyperparameters for the rule-based nodes of the fuzzy
AI algorithms established the best target values. A detailed
explanation of each method is given in the following
subsections.

*e individual result analysis shows that DENFIS has the
highest R2 (0.968) values when plotted in the scattered di-
agram (see Figure 8(a)) in comparison to ANFIS (R2 0.949)
and HyFIS (R2 0.903) performance shown in Figures 8(b)
and 7 at Robinson station. In addition to that, it is worth
mentioning that Figure 8(c) shows scattered results and in

some cases far from the trend line. *e accuracy of the
models was also evaluated in terms of Nash and MD and
DENFIS performance was excellent during both the training
and validation phase (Nash: 0.968 and MD: 0.919). *is
study has used a modified version of theWillmott formula to
overcome the issues created by the presence of the outliers in
the dataset which helped the study to better evaluate the
model performance.

*us, DENFIS showed the highest fitness for the Rob-
inson station with the least prediction error (i.e., MAE) for
all the considered models. *e model error rates were near
zero with the least outliers which shows it can handle such
data with more ease than others. *e scatter plot also
supports the conclusion which shows the least variation
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Figure 1: Study area: Ada, Hillsboro, and Robinson stations, North Dakota, North America.
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from the trend line whereas the ANFIS plot is broader and
HyFIS predicted values forATwere scattered and disordered.
Even though all the three models’ training and validation
result variation is about 10%, DENFIS was able to produce a
consistent result compared to ANFIS and HyFIS.

2.2.1. Dynamic Evolving Neural-Fuzzy Inference System
(DENFIS). One of the recently developed versions of
neurofuzzy models is the dynamic evolving neural-fuzzy
inference system (DENFIS) which, according to [52], is an
extended version of the original evolving fuzzy neural
networks (EFuNN). DENFIS is one of the emerging

connectionist systems and its structural arrangement
stemmed from the original NF models in terms of the
arrangement in various layers while a block of rules made
up the main core [53]. A major attribute of DENFIS is the
use of a clustering procedure for input space partitioning,
which is done in the original NF model using various
clustering techniques, such as fuzzy c-mean clustering and
grid partition (GP), subtractive clustering, etc. DENFIS
relies on the so-called evolving clustering method (ECM)
for input space partitioning into various regions [54, 55].
Furthermore, DENFIS uses only Takagi-Sugeno-Kang for
fuzzy rule base system and triangular fuzzy membership
functions (MFs) generation [56]. A recursive clustering

Table 1: Descriptive statistical parameters for the selected variables in the applied dataset for the analytical approach for the applied models
fit.

Parameters AT DP TSR WS
Mean 40.65 32.32 13.77 9.42
Standard error 0.55 0.50 0.19 0.10
Median 43.23 32.80 12.62 8.61
Mode 60.99 58.88 6.57 5.86
Standard deviation 23.56 21.43 8.07 4.47
Sample variance 555.51 459.50 65.26 20.06
Kurtosis −0.76 −0.46 −1.17 2.31
Skewness −0.41 −0.45 0.33 1.19
Range 110.65 106.52 30.15 34.99
Minimum −27.22 −33.26 0.98 0.95
Maximum 83.43 73.26 31.12 35.94
Sum 74241.17 59017.50 25159.40 17202.90
Count 1826.00 1826.00 1826.00 1826.00
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Figure 2: Statistical analysis of the applied dataset in terms of pairs plot for (a) Robinson station; (b) Ada station; (c) Hillsboro station.
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algorithm is used to create the rule bases. *e DENFIS
model can be mathematically expressed as in (1) and (2)
[57]; thus:

Rule1: if X1isR11andX2isR12, . . . , XqisR1qthen y isf1 X1, X2, X2, . . . , Xq􏼐 􏼑, (1)

Rule2: if X1isR21andX2isR22, . . . , XqisR2qthen y isf2 X1, X2, X2, . . . , Xq􏼐 􏼑, (2)

where the predictor or input variable is represented by Xi

while y represents the model output or dependent variable;
Rij represents the fuzzy sets while the consequent aspect of
the fuzzy rules is represented [52, 54]. In the standard NF
models, there is a fixed number of fuzzy rules which does not
change during the training process, but in the DENFIS
model, the fuzzy rules are generated, meaning that only the
MFs parameters can change [52, 54]. As such, the calculation
of the output of the DENFIS model only considers an aspect
of the fuzzy rule base called activated rules [52, 54]. *e first
phase of the training process of DENFIS is the use of the
ECM to cluster the input space and build the fuzzy rules.
*is involves two major steps which are (i) the first is
formation of the antecedent part of the rules via finding the
best MFs combination that will activate the cluster centre
and improve the MFS efficiency; hence, the selection and
formation of the antecedent part are achieved; (ii) the second
part is to use the least mean estimation method to fix the
consequent part of the fuzzy rules in consideration of the
existing pattern within the cluster; hence, one cluster is used
for each rule [52, 54, 58]. *e DENFIS model involves the
following steps [59]: (i) presentation of the first N samples

and establishment of the cluster centre using the ECM, (ii)
searching and finding ni <N example for each cluster centre
Ci via closely linking to one of the cluster centers Ci, (iii)
association of the fuzzy rules to the Ci with equality
(rules� cluster), followed by creation of the antecedent
aspects of the rules, (iv) local learning approach-based
calculation of the antecedent linear parameters, (v) initiation
of the first online phase with a new pattern presentation, (vi)
updating the cluster partition using step (iii), (vii) creation of
a new rule upon the establishment of a new cluster, followed
by creation of the new consequent part, (viii) updating the
linear parameters upon creation of a new cluster, (ix) car-
rying out the required adaptation of the related parameters,
and (x) finally, reverting to step (v) for each new sample.*e
architecture of DENFIS is shown in Figure 4.

2.2.2. Adaptive Neurofuzzy Inference System (ANFIS).
Numerous computational techniques exist which combine
artificial neural networks with fuzzy systems to form new
systems that are generically referred to as neurofuzzy sys-
tems [60]. *e study by Jang [61] developed the ANFIS
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6 Complexity



model as a popular variant of the neurofuzzy system which
mimics the human way of reasoning by combining the
Takagi-Sugeno fuzzy inference systems with the RBF neural
network [62]. Neurofuzzy systems rely on decision rules and
fuzzy sets to deal with the impreciseness of input data and
domain knowledge; it also allows quick approximation of the
expected solutions [63]. Hence, these intelligent systems
perform well in function approximation, real-time appli-
cations, pattern classification, etc. [60, 64]. *e architecture
of ANFIS is shown in Figure 5.

*e fuzzification of the mode input values (x and y) is the
objective in Layer 1; this implies the conversion of a set of
numerical values into the equivalent fuzzy sets [65]. In this
layer, the output is comprised of a set of membership values
that correspond to the activation level of eachMFs of the input
variables: μA1(X), . . . , μAm(X)􏼈 􏼉 and μB1(y), . . . , μB2(y)􏼈 􏼉.

Each node in Layer 2 corresponds to the previous part of the
inference rule and depicts the likely combinations between the
MFs of the first layer. In this layer, the objective is to establish
the logical relationships between the activated MFs for the
weight (ωi) of each rule to be determined. *e activation
degree of each inference rule is calculated by applying a t-norm
operator, such as minimum or algebraic product, as captured,
respectively, in equations (1) and (2) discussed earlier. *e
objective in Layer 3 is to normalize the weights of the activated
rules using equation (3) [61, 66].

min μA(X), μB(y)􏼈 􏼉, (3)

μA(X) . μB(y), (4)

ωi �
ωi

ω1 + · · · + ωi + · · ·ωn

. (5)

A set of adaptive nodes is made up of Layer 4; these
nodes represent the inference rule’s consequents and pro-
vide each rule’s outputs. A linear function or a constant
value is used to represent each consequent. In the first case,
the parameters of the function are the crisp values of the
input variables (x and y); the computation of the output of
each Layer 4 node 4 is achieved via multiplication of the
weight of the activated rule with the consequent. Lastly,
Layer 5 aggregates the outputs of each node of Layer 4 nodes

(using equations (4) and (5)) by computing the weighted
sum; this provides the final system output as in equation (6)
[61, 67].

f � 􏽘
n

i�1
ωi . fi. (6)

2.2.3. Hybrid Neural-Fuzzy Inference System (HyFIS).
*ere are two learning phases in the HyFIS [68]. Phase one is
structure learning which involves the use of the knowledge
acquisition module to establish the rules. Phase two is the
learning of the parameters for tuning the fuzzy MFs [69] to
ensure the expected level of performance will be achieved.
*is approach is most beneficial because the fuzzy rule base
can be updated with ease when new data sets are available
[70]. A new rule is created for any new set of available data
pairs, followed by updating of the fuzzy rule base by this new
rule (see Figure 6).

*e learning phase of the neurofuzzy model in the HyFIS
employs a gradient descent learning algorithm-based MLP
network for adapting the fuzzy model parameters [71]. *e
model structure simplifies knowledge acquisition, approx-
imate reasoning, and learning from data; it allows the use of
both fuzzy rules and numerical data which brings about the
benefits of the two data sources. In the HyFIS, the proposed
neurofuzzy model is a multilayered ANN that combined
numerous fuzzy systems. As captured in Figure 6, there are
five layers in the system. In this structure, the input node is
the input state signal while the output node is the output
control/decision signal. *e MFs and the rules are repre-
sented by the nodes in the hidden layers.

*e nodes in the first layer are the inputs; their major
role is input signals transmitted to the next layer. *e second
and fourth layers have the term nodes that serve as MFs for
the input-output fuzzy linguistic variables expression. *e
fuzzy sets defined in this layer for the input-output variables
are denoted as large (L), medium (M), and small (S). For the
third layer, each of the nodes is a rule node that represents
only one fuzzy rule. *e certainty factor of the associated
rules between Layers 4 and 5 is represented by the con-
nection weights between the layers, meaning that the weight
values control the level of activation of each rule. Finally, the
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Figure 4: A schematic diagram for working flow of the DENFIS algorithm for the specific dataset.
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nodes that represent the system’s output are the nodes of the
fifth layer.

2.3. Performance Metrics. Model competence and perfor-
mance can be measured based on numerous metrics. Var-
ious performance metrics have been employed for assessing
river WQ data modelling in the past two decades [72]. To
gain more insight into the model performance, it is im-
portant to include the goodness of fit and absolute error
measures [73]. *is study applied seven commonly used
metrics which are coefficient of determination (R2), root-
mean-squared error (RMSE), Nash-Sutcliffe efficiency
(NSE), modified index of agreement (md), mean absolute
error (MAE), and mean absolute percentage error (MAPE)
[74–76] as represented in equations (7)–(12):

R
2

� 1 −
􏽐 ai − pi( 􏼁

2

􏽐 ai − μa( 􏼁
2, (7)

RMSE �

������������

1
n

􏽘

n

i�1
ai − pi( 􏼁

2

􏽶
􏽴

, (8)

NSE � 1 −
􏽐

n 􏽢ai − pi( 􏼁
2

􏽐 pi − Y( 􏼁
2 , (9)

md � 1.0 −
􏽐

n
i�1 pi − ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽐
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􏼌􏼌􏼌􏼌
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􏼌􏼌􏼌􏼌
, (10)
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1
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􏽘
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i�1
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􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (11)

MAPE � 􏽘
n

i�1
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􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 × 100÷n, (12)

where n is the total number of data: a denotes the output
values, p denotes the real values, and μa is the mean value of
the values, and n is the number of observations. In the
current research, several statistical metrics were computed to
have a more informative visualization of the applied pre-
dictive models.*is is due to the limitation of some statistics
such as RMSE which does not provide a sufficient error
distribution. Hence, investigating more than one couple of
statistical metrics can provide a more comprehensive pre-
diction evaluation.

R software has been used for building the applied models
and the statistical measurement. *e applied libraries are
caret, plyr, recipes, dplyr, hydroGOF, and zoo. *e method
CV and LOOCV have been applied. *e best values of the
hyperparameters have been selected.

3. Application Results and Analysis

3.1. Robinson Station. Each model performed differently
based on the dataset gathered from each station. Model per-
formance can be evaluated at different levels such as accuracy

or error generated by the models. As shown in Figure 7(a), the
boxplot presents the relative error (RE) produced by the three
models and it can be observed that the DENFIS result shows
median RE value nearest to zero with the least number of
outliers. On the other hand, even though ANFIS generated an
RE value closest to zero, it produced a lot of outliers in the
lower quartile area. However, in the case of HyFIS, results show
a high amount of RE, a huge deviation from zero, and extended
whiskers due to a lot of outliers. In terms of correlation and
standard deviation results, DENFIS scored the best and is thus
the nearest to the actual value as presented in Figure 7(b),
followed by ANFIS and HyFIS models. Updating the cluster
partition using step in case of DENFIS makes it stands at the
top. Furthermore, it can be concluded that DENFIS is capable
of producing fewer errors in terms of RMSE: 4.031MAE: 3.077,
and MAPE: 0.159, whereas ANFIS and HyFIS generated more
errors of RMSE: 5.142 and 7.271, MAE: 3.870 and 5.954, and
MAPE: 0.354 and 0.277, respectively (see Table 2).

3.2. Ada Station. In the Ada station, it can be observed
that the model behaviour is slightly different than the
results observed in the Robinson station. *e error
produced by the model has a huge impact on the overall
performance and as per the RMSE values, DENFIS can
produce the least error and then ANFIS and HyFIS, i.e.,
4.979, 5.502, and 7.025, respectively. Similarly, when
testing the AT predicting error, the MA error values were
highest for HyFIS and then ANFIS and lowest for
DENFIS, i.e., 5.666, 4.129, and 3.729, respectively (see
Table 3). Similarly, RE values presented as a boxplot in
Figure 9(a) show the deviation of the RE produced by the
models from the desired value, zero. Unlike the previous
model RE performance (i.e., Robinson station), all three
models generated values near zero; however, all produced
outliers in the low quartile of the sample population.
When ranked, HyFIS show higher percentage samples in
the lower quartile and similarly more outliers leading to
be ranked as last whereas sample population distribution
was more equally distributed for DENFIS, including the
outliers. *e overall model performance correlation as-
sessment can be done using Taylor diagram in Figure 9(b)
where DENFIS and ANFIS show almost the same cor-
relation and slight diffidence compared to standard de-
viation results from the actual value.

To estimate the robustness and accuracy of the model in
prediction AT, Nash metrics were estimated. As presented in
Table 3, DENFIS outperformed ANFIS andHyFIS with Nash
values of 0.952, 0.941, and 0.904, respectively. However,
Nash is sensitive to outliers; thus, it is relevant tomeasure the
model performance with other metrics such as R2 and Md.
As visualized in Figures 10(a)–10(c), DENFIS showed best-
fit values when the scatter plot was done with an R2 value of
0.953; ANFIS showed little variation from the trend line with
an R2 value of 0.943; on the contrary, the HyFIS plot was
more dispersed with an R2 value of 0.908. In the case of
DENFIS, the creation of a new rule upon the establishment
of a new cluster, followed by the creation of the new con-
sequent part, made it outperform ANFIS and HyFIS.
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It can be observed from the training and validation result
evaluation that DENFIS outperformed others, and ANFIS
performance was a little behind DENFIS; nonetheless,
HyFIS performance improved from the training to valida-
tion phase in terms of error production with MAPE de-
creased from 0.961 to 0.375 and accuracy of MD was
improved from 0.797 to 0.845. For the Ada station dataset,
DENFIS is the highest performing model and ANFIS is a
good and robust model.

3.3.Hillsboro Station. �emodel error rate for the Hillsboro
dataset for AT prediction showed a similar pattern as dis-
cussed for other stations and DENFIS and ANFIS mean

values were near zero in comparison to HyFIS. Figure 11(a)
clearly shows that HyFIS sample population distribution is
skewed and more deviated towards the lower quadrant. It
can also be observed that when dealing with this dataset the
model produced lots of outliners in both extents of the
quadrants. Furthermore, when Figure 11(b) is perceived, it is
apparent that the Taylor diagram shows that DENFIS is
exceedingly correlated with actual value, even though ANFIS
is not far behind.

In terms of accuracy, Figure 12 was able to specify the
individual performance of the model when predicting AT.
Figures 12(a) and 12(b) evaluations show that the values are
near the trend line and among all DENFIS show the best �t
with R2 of 0.960. Contrarily, HyFIS shows a more random
and disorganized pattern and is away from the trend line (see
Figure 12(c)). �is result can be supported by the evaluation
results produced by Nash and Md as in Table 4. DENFIS
accuracy was highest with Nash: 0.960 and MD: 0.912,
followed by ANFIS and HyFIS with Nash: 0.941 and 0.873
and MD: 0.890 and 821, respectively. Regarding the other
error metrics such as RMSE, MAE, and MAPE, HyFIS
generated the maximum number of errors during the
prediction with RMSE: 8.162, MAE: 6.693, andMAPE: 1.716.
On the contrary, the error caused by the DENFIS and ANFIS
was almost 50% less than HyFIS concerning MAE and
RMSE.

In the overall assessment between testing and training
runs, DENFIS and ANFIS gave similar results except for the
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Figure 7: (a) Boxplot of residual error produced by all the models at Robinson station; (b) Taylor diagram with the comparative per-
formance of the models at Robinson station.

Table 2: Performance metrics at Robinson station for AT
modelling.

Training
Models R2 RMSE MAE MAPE Nash MD
DENFIS 0.971 4.082 3.076 0.134 0.971 0.923
ANFIS 0.949 5.485 4.225 0.370 0.947 0.894
HyFIS 0.919 7.157 5.769 0.312 0.909 0.856

Testing
Models R2 RMSE MAE MAPE Nash MD
DENFIS 0.968 4.031 3.077 0.159 0.968 0.919
ANFIS 0.949 5.142 3.870 0.354 0.949 0.899
HyFIS 0.904 7.271 5.954 0.277 0.897 0.845
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MAPE value of DENFIS. MAPE was much higher in a
testing run but other errors were slightly less. DENFIS
generated RMSE: 4.596, MAE: 3.417, and MAPE: 0.734
followed by ANFIS with RMSE: 5.578, MAE: 4.161 and little
more MAP (1.707) error in comparing the other two errors
for evaluation.�e error devised by MAPE can be due to the
high forecast in this study and since MAPE has no upper
limit it can sometimes lead to di�culty in the assessment.
�e marginal uplifted value by DENFIS might be due to
updating of the linear parameters upon the creation of a new
cluster, following carrying out the required adaptation of the
related parameters.

4. Discussion and Comparative Analysis

Among all stations, the DENFIS model worked well for
Robinson and possibly applied the Willmott formula to
overcome the issues created by the presence of the outliers in
the dataset and the lower correlation in case of WS and the
marginal di�erence in case of DP and TSR. Also, it has been
observed that ANFIS worked better than HyFis in the case of
Ada and Hillsboro due to a lower correlation with WS; so an
upper than 27 in negative relationmakes ANFIS work better.
Few previous studies have been done whereATwas predicted
using other models and has been discussed in this study to

assess the possible future aspect of utilizing FIS type of
models. A study conducted by Karthika and Deka [77]
predicted AT by applying wavelet-ANFIS and ANFIS at
Bhadra station, Karnataka, India. �e result showed the
highest R2: 0.95 for Db4 Gauss wavelet-ANFIS, and ANFIS
produced poor performance, i.e., R2: 0.39. On the contrary,
in this study, DENFIS performed the best with R2:
0.953–0.968 and for ANFIS R2 was 0.942–0.949.

Similarly, another study reported the prediction of
minimum, mean, and maximum ATover southwest Asia by
applying ANFIS with genetic algorithm (GA), particle
swarm optimization (PSO), and ant colony optimization for
continuous domains (ACOR), and di�erential evolution
(DE). �e performance of these models, i.e., ANFIS, ANFIS-
ACOR, ANFIS-GA, ANFIS-DE, and ANFIS-PSO in pre-
dicting max AT in terms of R2 was 0.88, 0.95, 0.93, 0.94, and
0.90, and for min AT the R2 were 0.72, 0.93, 0.93, 0.93, and
0.93, and for mean AT R2 were 0.55, 0.88, 0.92, 0.90, and 0.91
[78]. It is evident from this hybrid ANFIS model that
performance varied between 0.88 and 0.95 and the con-
ventional ANFIS performance £uctuated between 0.55 and
0.88; at the same time, the ANFIS model in this study
performed between 0.942 and 0.949 which shows the model
accuracy was considerably improved in the current research.
In addition to that, the new model DENFIS and HyFIS also
performed well when handling di�erent datasets, i.e., R2

0.953–0.968 and 0.904–0.908, respectively. Another study set
ANFIS (R2 0.945) better than the dynamic thermal exchange
model, i.e., energy balance equation (EBE) (R2 0.743), re-
spectively, with the small size data, though this research suits
the reliable proposing DENFIS along with ANFIS and HyFIS
[79]. Moreover, [80] reported that the SVR (R2 0.95) out-
performed the ANN model too with the limited scenarios of
the applied data, where the current research �lls the gap by
performing those adequately created scenarios to set the
reliable application of the DENFIS to the real world. �ose
overcome could be possible due to several possible advan-
tages of the DENFIS algorithm such as fuzzy rules that are
generated, meaning that only the MFs parameters are
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Figure 8: Scatter plot for (a) DENFIS; (b) ANFIS; (c) HyFIS models at Robinson station.

Table 3: Performance metrics at Ada station for AT modelling.

Training
Models R2 RMSE MAE MAPE Nash MD
DENFIS 0.963 4.671 3.454 0.229 0.963 0.916
ANFIS 0.949 5.852 4.392 0.333 0.942 0.889
HyFIS 0.821 10.320 7.914 0.961 0.821 0.797

Testing
Models R2 RMSE MAE MAPE Nash MD
DENFIS 0.953 4.979 3.729 0.319 0.952 0.903
ANFIS 0.943 5.502 4.129 0.270 0.941 0.889
HyFIS 0.908 7.025 5.666 0.375 0.904 0.845
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calculated adequately and the activated rules for the fuzzy
rules with the best performance have been investigated.
Recently, [81] reported the ANFIS and DENFIS with a
marginal di�erence using short-ranged data (of soil mois-
ture) compared with the current study using long-ranged
data. �e authors also mentioned that ANFIS (step size:
0.001, membership type: Gaussian) and DENFIS (Max

iteration: 3000, Step size: 0.01) were overcome with the
HyFIS architect. Also, the Gaussian membership function of
ANFIS remains the best performer. Another study reveals
that the hybridization of DENFIS with two advanced
metaheuristic optimization algorithms (i.e., Whale Opti-
mization Algorithm (WOA) and Bat Algorithm (BA))
showed the potential predictive capacity as per the R2
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Figure 9: (a) Boxplot of residual error produced by all the models at Ada station; (b) Taylor diagram with the comparative performance of
the models at Ada station.
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0

0

30

60

30 60
Observed

Pr
ed

ic
te

d

y = 0.979x + 0.8779
R2 = 0.960

DENFIS Model

(a)

0

0

20

60

80

40

30 60
Observed

Pr
ed

ic
te

d

y = 0.9111x + 3.6787
R2 = 0.942

ANFIS Model

(b)

y = 0.8545x + 2.2145
R2 = 0.905

0

–25

0

50

75

25

30 60
Observed

Pr
ed

ic
te

d

HYFIS Model

(c)

Figure 12: Scatter plot for (a) DENFIS; (b) ANFIS; (c) HyFIS models at Hillsboro station.

Table 4: Performance metrics at Hillsboro station for AT modelling.

Training
Models R2 RMSE MAE MAPE Nash MD
DENFIS 0.964 4.672 3.457 0.217 0.964 0.917
ANFIS 0.946 5.924 4.504 0.658 0.941 0.888
HyFIS 0.917 8.373 6.760 0.338 0.883 0.831

Testing
Models R2 RMSE MAE MAPE Nash MD
DENFIS 0.960 4.596 3.417 0.734 0.960 0.912
ANFIS 0.942 5.578 4.161 1.707 0.941 0.890
HyFIS 0.905 8.162 6.693 1.716 0.873 0.821
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(0.85–0.94) against the counterpart MARS to predict the
daily scale evapotranspiration for three different coastal
locations [46].

5. Conclusion

*e current research reviewed the prediction compe-
tencies of advanced FIS type models such as DENFIS,
ANFIS, and HyFIS. *e models were able to successfully
predict AT (target variable) with high accuracy and less
error while using only three input variables, i.e., DP, TSR,
and WS. *e models were applied for three datasets ac-
quired from three stations in North Dakota, USA, i.e.,
Robinson, Ada, and Hillsboro, from 2015 to 2019. Among
the three applied models, DENFIS outperformed the
others, followed by ANFIS and HyFIS for all three sta-
tions. *e performance efficiency of DENFIS in Robinson,
Ada, and Hillsboro stations was excellent with R2: 0.97/
0.95/0.96, RMSE: 4.0/4.9/4.6, and md: 0.91/0.90/0.92,
respectively. Following DENFIS results, ANFIS also
performed well with R2: 0.95/0.94/0.94, RMSE: 5.1/5.5/5.6,
and md: 0.90/0.89/0.89, respectively. Lastly, HyFIS sim-
ilarly performed well with R2: 0.90/0.90/0.87, RMSE: 7.3/
7.0/8.2, and md: 0.84/0.79/0.82, respectively. North Da-
kota has reported significantly several AT complementary
relations with other parameters of the sciences and en-
gineering; for example, the evapotranspiration has been
increasing over the period [82], in borehole paleoclima-
tology directly linked with AT [83], and snowpack control
alteration [84], which lead many challenging to resources
management. A report says that the lower-income area
has much potential for green emission of air pollution
[85]. *e study is helpful to design the accurate decision
priory and appropriately as per the local geographical
location. Even the study applied the black box type models
which have their limitations; however, they can simplify
the assessment and prediction method when dealing with
the meteorological data which plays an imperative role in
various environmental, climatological, and meteorologi-
cal studies. One of the current burning topics in these
fields is climate change and such studies which applied ML
methods for data modelling with similar statistical
characteristics should be studied more to make a more
precise projection of the future changes which will change
the Earth environment. It is worth mentioning that more
research should be done considering different geological
conditions, diverse model types, and various diverse input
variables. Also, another different meteorological param-
eter can be used to support the sustainable water resources
and agricultural systems.

Data Availability
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