KIT | KIT-Bibliothek | Impressum | Datenschutz

Improving customer segmentation via classification of key accounts as outliers

Spoor, Jan Michael 1
1 Institut für Informationsmanagement im Ingenieurwesen (IMI), Karlsruher Institut für Technologie (KIT)

Abstract:

Customer segmentation and key account management are important use cases for clustering algorithms. Here, a data set of a Portuguese wholesaler for food and household supplies is used as an exemplary application. To increase the quality of the analysis, a two-stage approach is proposed. First, key accounts are filtered by a density-based outlier detection. Second, a Gaussian Mixture Model (GMM) is applied to cluster smaller customers. This two-stage approach is aligned with the business implications of key accounts as outstanding and very differently behaving customers as well as with the core idea of an ABC analysis. Also, the exclusion of key accounts corresponds to the definition of outliers as the results of a different underlying mechanism. Using this two-stage approach shows better clustering results compared to using a one-stage approach applying only a GMM. Therefore, it is concluded that density-based detection of key accounts followed by a clustering using a GMM is beneficial for customer segmentation within B2B applications.


Verlagsausgabe §
DOI: 10.5445/IR/1000151820
Veröffentlicht am 04.11.2022
Originalveröffentlichung
DOI: 10.1057/s41270-022-00185-4
Scopus
Zitationen: 5
Dimensions
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationsmanagement im Ingenieurwesen (IMI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2023
Sprache Englisch
Identifikator ISSN: 2050-3318, 2050-3326
KITopen-ID: 1000151820
Erschienen in Journal of Marketing Analytics
Verlag Palgrave Macmillan
Band 11
Heft 4
Seiten 747–760
Vorab online veröffentlicht am 30.09.2022
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page