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ABSTRACT
This work proposes a new method for computing acceptance regions of exact multinomial tests. From
this an algorithm is derived, which finds exact p-values for tests of simple multinomial hypotheses. Using
concepts from discrete convex analysis, the method is proven to be exact for various popular test statistics,
including Pearson’s Chi-square and the log-likelihood ratio. The proposed algorithm improves greatly on
the naive approach using full enumeration of the sample space. However, its use is limited to multinomial
distributions with a small number of categories, as the runtime grows exponentially in the number of
possible outcomes. The method is applied in a simulation study, and uses of multinomial tests in forecast
evaluation are outlined. Additionally, properties of a test statistic using probability ordering, referred to as
the “exact multinomial test”by some authors, are investigated and discussed. The algorithm is implemented
in the accompanying R package ExactMultinom. Supplementary materials for this article are available
online.
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1. Introduction

Multinomial goodness-of-fit tests feature prominently in the
statistical literature and a wide range of applications. Tests rely-
ing on asymptotics have been available for a long time and
have been rigorously studied all through the 20th century. The
use of various test statistics has been investigated with Pear-
son’s Chi-square and the log-likelihood ratio statistic being vital
examples. These statistics are members of the general family
of power divergence statistics (Cressie and Read 1984). With
the widespread availability of computing power, Monte Carlo
simulations and exact methods have also gained popularity.

Tate and Hyer (1973) and Kotze and Gokhale (1980) used
the “exact multinomial test,” which orders samples by probabil-
ity, to assess the accuracy of asymptotic tests of a simple null
hypothesis against an unspecified alternative. In the words of
Cressie and Read (1989), this “has provided much confusion and
contention in the literature.” In accordance with Gibbons and
Pratt (1975) and Radlow and Alf (1975), they conclude that the
asymptotic fit of a test should be assessed using the appropriate
exact test based on the test statistic in question. Nevertheless,
the exact multinomial test is intuitively appealing, and, as Kotze
and Gokhale (1980) put it, “[i]n the absence of […] a specific
alternative, it is reasonable to assume that outcomes with smaller
probabilities under the null hypothesis offer a stronger evidence
for its rejection and should belong to the critical region.” In
Section 2, an asymptotic Chi-square approximation to the exact
multinomial test is derived, and an exemplary comparison of
popular test statistics in terms of power is provided.
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Regardless of the test statistic used, computing an exact
p-value by fully enumerating the sample space is computation-
ally challenging, as the test statistic and the probability mass
function have to be evaluated at every possible sample of which
there are

(n+m−1
m−1

) = O(nm−1) for samples of size n with m
categories. An improvement on this method has been proposed
by Bejerano, Friedman, and Tishby (2004) for the family of
power divergence statistics. Other approaches aimed at exact
Pearson’s Chi-square and log-likelihood ratio tests exist (see,
e.g., Baglivo, Olivier, and Pagano 1992; Hirji 1997; Rahmann
2003; Keich and Nagarajan 2006). In this work, a new approach
to exact multinomial tests is investigated.

The key observation underlying the proposed algorithm is
that acceptance regions at arbitrary levels contain relatively few
points, which are located in a neighborhood of the expected
value under the null hypothesis as illustrated in Figure 1, and an
acceptance region can be found by iteratively evaluating points
within a ball of increasing radius around the expected value
(w.r.t. the Manhattan distance). The algorithm uses this to com-
pute an exact p-value from the probability mass of the largest
acceptance region that does not contain the observation. If
p-values below an arbitrary threshold are not computed exactly,
the runtime of the algorithm is guaranteed to be asymptotically
faster than the approach using full enumeration as the diameter
of any acceptance region essentially grows at a rate proportional
to the square root of the sample size. This is detailed and proven
to work for various popular test statistics in Section 3.
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Figure 1. An acceptance region (black dots) at level α = 0.05 for the null π =
( 2

10 , 5
10 , 3

10 ) and samples of size n = 50 with m = 3 categories. Only points within
the ball (big dots) around the expectation (hollow dot) have to be considered to
find this region.

Furthermore, the algorithm is illustrated to work well in
applications detailed in Section 4. In particular, the algorithm’s
runtime is compared to the full enumeration method in a
simulation study, and the resulting p-values are used to assess
the fit of asymptotic Chi-square approximations and investigate
differences between several test statistics. As an application in
forecast evaluation, the use of multinomial tests for uncertainty
quantification within the so-called calibration simplex (Wilks
2013) is outlined and justified.

The R programming language (R Core Team 2020) has been
used for all computations throughout this work. An implemen-
tation of the proposed method is provided within the R package
ExactMultinom (Resin 2020).

2. A Brief Review on Testing a Simple Multinomial
Hypothesis

Consider a multinomial experiment X = (X1, . . . , Xm) summa-
rizing n ∈ N iid trials with m ∈ N possible outcomes. Let

�m−1 := {p ∈ [0, 1]m|p1 + · · · + pm = 1}
denote the unit (m − 1)-simplex or probability simplex and

�m,n = {x ∈ N
m
0 |x1 + · · · + xm = n}

the sample space, which is a regular discrete (m − 1)-simplex.
The distribution of X is characterized by a parameter p =
(p1, . . . , pm) ∈ �m−1 encoding the occurrence probabilities
of the outcomes on any trial, or X ∼ Mm(n, p) for short.
The multinomial distributionMm(n, p) is fully described by the
probability mass function (pmf)

fn,p : �m,n → [0, 1], x �→ n!
m∏

j=1

pxj
j

xj! .

Suppose that the true parameter p is unknown. Consider
the simple null hypothesis p = π for some π ∈ �m−1.

The agreement of a realization x ∈ �m,n of X with the null
hypothesis is typically quantified by means of a test statistic
T : �m,n × �m−1 → R. Given such a test statistic T and
presuming from now on that w.l.o.g. high values of T(x, π)

indicate “extreme” observations under the null distribution Pπ ,
the p-value of x is defined as the probability

pT(x, π) := Pπ (T(X, π) ≥ T(x, π)) (1)

of observing an observation that is at least as extreme under the
null hypothesis.

The family of power divergence statistics introduced by Cressie
and Read (1984) offers a variety of test statistics for multinomial
goodness-of-fit tests. It is defined as

Tλ(x, π) := 2
λ(λ + 1)

m∑
j=1

xj

(( xj

nπj

)λ

− 1

)

for λ ∈ R \ {−1, 0} (2)

and as the pointwise limit in (2) for λ ∈ {−1, 0}. Notably, this
includes Pearson’s Chi-square statistic

Tχ2
(x, π) :=

m∑
j=1

(xj − nπj)2

nπj
=

m∑
j=1

x2
j

nπj
− n = T1(x, π)

as well as the log-likelihood ratio (or G-test) statistic

TG(x, π) := 2 log
fn, x

n
(x)

fn,π (x)
= 2

m∑
j=1

xj log
xj

nπj
= T0(x, π).

Under a null hypothesis with πi > 0 for all i = 1, . . . , m,
every power divergence statistic is asymptotically Chi-square
distributed with m − 1 degrees of freedom.

A natural test statistic arises if an “extreme” observation is
simply understood to mean an unlikely one, that is, if the pmf
itself is used as test statistic. In what follows, a strictly decreasing
transformation of the pmf is used instead, which ensures that
large values of the test statistic indicate extreme observations.
Furthermore, this strictly decreasing transformation is chosen
such that the resulting test statistic is asymptotically Chi-square
distributed. To this end, let � denote the Gamma function and

f̄n,p : {x ∈ R
m≥0|x1 + · · · + xm = n} → R, x �→ �(n + 1)

m∏
j=1

pxj
j

�(xj + 1)

the continuous extension of the pmf fn,p to the convex hull of
the discrete simplex �m,n. The probability mass test statistic is
defined as

TP(x, π) := −2 log
fn,π (x)

f̄n,π (nπ)
.

Obviously, the choice of strictly decreasing transformation does
not affect the (exact) p-value given by (1) for T = TP. The
following theorem gives rise to an asymptotic approximation of
p-values derived from the probability mass test statistic, which
has not been studied previously. In the simulation study of
Section 4, the fit of this approximation is assessed empirically
using exact p-values computed with the new method for samples
of size n = 100 with m = 5 categories.
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Theorem 1. If X ∼ Mm(n, π) follows a multinomial distri-
bution with n ∈ N and π ∈ �m−1 such that πj > 0 for
j = 1, . . . , m, then TP(X, π) converges in distribution to a Chi-
square distribution χ2

m−1 with m − 1 degrees of freedom as
n → ∞.

Proof. By Lemma 8 (in Appendix A, supplementary materials),
the difference between the log-likelihood ratio and the proba-
bility mass statistic is

TP(X, π) − TG(X, π) =
m∑

j=1

(
log

Xj

nπj
+ O(1/Xj) − O(1/n)

)
.

Clearly, the bounded terms converge to zero in probability, and
the log Xj

nπj
terms converge to zero in probability by the con-

tinuous mapping theorem. Hence, the probability mass statistic
has the same asymptotic distribution as the log-likelihood ratio
statistic.

In what follows, the focus is on the Chi-square, log-likelihood
ratio and probability mass statistics.

2.1. Acceptance Regions

As outlined in the introduction, acceptance regions are of major
importance to the idea pursued in this work. Given a test statistic
T, the acceptance region at level α > 0 is defined using p-values
given by (1) as

AT
n,π (α) := {x ∈ �m,n|pT(x, π) > α}.

Equivalently, the acceptance region can be written as the sub-
level set of T(·, π) at the (1 − α)-quantile t1−α = min{t ∈
R|Pπ (T(X, π) ≤ t) ≥ 1 − α} of T(X, π) under the null
hypothesis X ∼ Mm(n, π), that is,

AT
n,π (α) = {x ∈ �m,n|T(x, π) ≤ t1−α}. (3)

As illustrated in Figure 2, the probability mass test statistic
typically yields acceptance regions that contain relatively few
points, because the regions contain the samples with the largest
null probabilities. However, as samples with equal null probabil-
ities are either all included or all excluded, smaller acceptance
regions might be feasible at some levels α. If tests are random-
ized to ensure equal level and size of the test, this property can

be refined to yield an optimality property of the probability mass
test’s critical function.

In Section 3, it is shown that acceptance regions of the Chi-
square, log-likelihood ratio and probability mass test statistic all
grow at a rate O(n

m−1
2 ), as their diameter grows at a rate O(

√
n)

if α > 0 is fixed, see Proposition 7.

2.2. Power and Bias

The power function of a test T of the null hypothesis p = π at
level α is

�m−1 → [0, 1], p �→ 1 − Pp(T(X) ∈ AT
n,π (α)),

which is the probability of rejecting the null hypothesis at level α
if the true parameter is p. The size of a test is its power at p = π .
A test T is said to be unbiased (for the null p = π at level α) if
its power is minimized at p = π .

In the case of the uniform null hypothesis, that is, π =
( 1

m , . . . , 1
m ), Cohen and Sackrowitz (1975, Theorem 2.1) proved

that the power function increases away from p = π for test
statistics of the form

T(x) =
m∑

j=1
h(xj)

if h is a convex function. They concluded that tests based on
the Chi-square and the log-likelihood ratio test statistic are
unbiased for the uniform null hypothesis. As a corollary to their
theorem, it shall be noted that this also applies to the probability
mass test statistic.

Corollary 2 (to Cohen and Sackrowitz 1975, Theorem 2.1). The
probability mass test is unbiased for the uniform null hypothesis
p = π = ( 1

m , . . . , 1
m ).

Proof. Since the probability mass statistic can be written as

TP(x, π) = 2
m∑

j=1
log �(xj + 1) − xj log πj − log

�(nπj + 1)

π
nπj
j

,

this is an immediate consequence of the fact that the Gamma
function is logarithmically convex on the positive real numbers,
which is part of a characterization given by the Bohr-Mollerup
theorem (Beals and Wong 2010, Theorem 2.4.2).

Figure 2. Acceptance regions (black) of probability mass (left), Chi-square (center) and log-likelihood ratio (right) statistics at level α = 0.05 for n = 50 and π =
( 1

10 , 7
10 , 2

10 ). The regions contain 108, 111, and 111 points, respectively (left to right). The tests are of size 0.0495, 0.0492, and 0.0481, respectively.
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Figure 3. Ternary plots indicating which randomized tests of size α = 0.05 yields the highest (left) and lowest (right) power for the uniform null hypothesis π = ( 1
3 , 1

3 , 1
3 )

(top) and π = ( 1
10 , 7

10 , 2
10 ) (bottom) for n = 50. Overlapping lines indicate nearly equal powers (difference < 10−5).

Many authors (e.g., West and Kempthorne 1972; Cressie and
Read 1984; Wakimoto, Odaka, and Kang 1987; Pérez and Pardo
2003) have conducted small sample studies to investigate the
power of Chi-square, log-likelihood ratio and other tests. When
conducting such studies, π , n, and α need to be chosen, all of
which influence the resulting power function. Furthermore, it
is frequently infeasible to assess the power function across all
alternatives, and so alternatives of interest need to be picked.
Therefore, most of these studies focused on the case of the
uniform null hypothesis. In this case, the Chi-square test has
greater power for alternatives that assign a large proportion of
the probability mass to relatively few categories, whereas the
log-likelihood ratio test has greater power for alternatives that
assign considerable probability mass to many categories (see
also Koehler and Larntz 1980).

In the ternary case, that is, if m = 3, comparisons on the full
probability simplex are visually accessible. Figure 3 illustrates,
which of the three test statistics yields the highest and lowest
power across the full ternary probability simplex. As the actual
test size, which is frequently smaller than the level α, depends
on the test statistic, the resulting power functions are difficult to
compare directly. To account for this, the tests are randomized
to ensure that their respective size matches the level. For a test

T and level α, let sn,π (T, α) = 1 − Pπ (T(X) ∈ AT
n,π (α)) denote

the actual size of the test. The critical function

φ : �m,n → [0, 1], x �→
⎧⎨
⎩

0, if T(x, π) < t1−α ,
α−sn,π (T,α)

Pπ (T(X)=t1−α)
, if T(x, π) = t1−α ,

1, if T(x, π) > t1−α ,

defines a randomized test,1 which rejects the null hypothesis
with probability φ(x) if x is observed. The power function of
the randomized version of a test T at level α is

p �→
∑

x∈�m,n

φ(x)Pp(X = x) = 1−
∑

x∈AT
n,π (α)

(1−φ(x))Pp(X = x).

With this, the probability mass test minimizes the acceptance
region in the sense that it minimizes the sum∑

x∈�m,n

(1 − φ(x))

across all randomized tests φ with
∑

x φ(x)fn,π (x) = α.

1Randomized tests like this traditionally arise in the theory of uniformly most
powerful tests, see for example, Lehmann and Romano (2005, chap. 3).
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Figure 4. Power functions of randomized tests of size α = 0.05 along alternatives given by p(pi , i), i = 1, 2, 3 with null hypothesis π = ( 1
10 , 7

10 , 2
10 ) and sample size

n = 50.

Figure 3 suggests that the probability mass test and the log-
likelihood ratio test for the uniform null hypothesis at level α =
0.05 are the same for n = 50. This is a coincidence, and for
other choices of α (e.g., α = 0.13, for which coincidentally the
probability mass statistic yields the same acceptance region as
the Chi-square statistic) the acceptance regions differ, and so do
the power functions.

Figure 4 quantitatively compares power along alternatives of
the form

p(q, i) = (q̃π1, . . . , q̃πi−1, q, q̃πi+1, . . . , q̃πm) ∈ �m−1

with q̃ = 1 − q
1 − πi

for i = 1, . . . , m and q ∈ [0, 1]. This yields parameterizations
of the lines through π and a corner of the probability simplex.
The figures illustrate that in the case n = 50, π = ( 1

10 , 7
10 , 2

10 )

and α = 0.05, the log-likelihood ratio test, arguably, does
not show any visible bias, whereas the Chi-square test shows
the most bias. The power function of the probability mass test
lies in between the other power functions across most of the
probability simplex, and so the probability mass test might serve
as a good compromise in terms of power.

3. Exact p-Values via Acceptance Regions

Throughout this section, T is a test statistic, and m, n ∈ N and
π ∈ �m−1 are fixed. To ease notation, the subscripts in the pmf
of the null distribution are omitted, that is, f = fn,π and the test
statistic T is considered as a function on the sample space only,
that is, T(·) = T(·, π). Let

d : Rm × R
m → R≥0, (x, y) �→ 1

2
‖x − y‖1 = 1

2
∑

j
|xj − yj|

be a rescaled version of the Manhattan distance and

Br(y) = {x ∈ �m,n|d(x, y) ≤ r}
the discrete ball with radius r ∈ N and center y ∈ �m,n.
Furthermore, ei = (δij)

m
j=1 denotes the ith vector of the standard

basis of Rm, where δij is the Kronecker delta.

3.1. Finding Acceptance Regions Using Discrete Convex
Analysis

As alluded to in the introduction, an acceptance region A =
AT

n,π (α) for α ∈ (0, 1) can be found without enumerating all

points of the sample space �m,n, but only considering points
in some ball around the expected value for many test statistics.
Specifically, if T is weakly quasi M-convex, that is, if for all
distinct x, y ∈ �m,n there exist indices i, j ∈ {1, . . . , m} such
that xi > yi, xj < yj and

T(x − ei + ej) ≤ T(x) or T(y + ei − ej) ≤ T(y),

the following theorem, which is proven at the end of this section,
holds.

Theorem 3. Let T be weakly quasi M-convex, and suppose y ∈
�m,n, r ∈ N and α ∈ (0, 1) are such that

∑
x∈Br(y) f (x) ≥ 1 − α.

Let t ∈ R be the smallest level such that the sublevel set A =
{x ∈ Br(y)|T(x) ≤ t} satisfies

∑
x∈A f (x) ≥ 1 − α. If A ⊆

Br−1(y), then A is the acceptance region AT
n,π (α).

Hence, an acceptance region can be found by iteratively
enumerating a ball of increasing radius with arbitrary center
until a sublevel set with enough probability mass is found and
this sublevel set remains unchanged upon further increasing the
ball, as illustrated in the introduction for an acceptance region
of the probability mass statistic, see Figure 1.

The following proposition ensures that this approach can be
applied to the Chi-square, log-likelihood ratio and probability
mass test statistics.

Proposition 4.

(a) The probability mass test statistic TP is weakly quasi M-
convex.

(b) The power divergence test statistic Tλ is weakly quasi M-
convex if λ ≥ 0.

Proof. Throughout the proof, let x, y ∈ �m,n such that x �= y,
and define the index sets

S+ := {i|xi > yi} and S− := {j|xj < yj}.

(a) Let T = TP and w.l.o.g. T(x) ≥ T(y). Then

T(y) − T(x) = −2 log
f (y)
f (x)

= −2 log

⎛
⎝ ∏

i∈S+

xi!
yi!π

yi−xi
i ·

∏
j∈S−

xj!
yj!π

yj−xj
j

⎞
⎠

= −2 log

⎛
⎝ ∏

i∈S+

xi−yi∏
k=1

yi + k
πi

·
∏

j∈S−

yj−xj∏
k=1

πj
xj + k

⎞
⎠≤ 0.
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Both double products contain an equal number of multipli-
cands (since

∑
j xj = ∑

j yj = n) and are nonempty (since
x �= y). As the entire product is at least 1, there exist indices
i ∈ S+ and j ∈ S− and natural numbers k+ ≤ xi − yi and
k− ≤ yj − xj such that the second inequality holds in

πj

xj + 1
≥ πj

xj + k− ≥ πi
yi + k+ ≥ πi

xi
.

Therefore, the inequality

T(x − ei + ej) = T(x) − 2 log
(

xi
πi

· πj

xj + 1

)
≤ T(x)

holds.
(b) See Appendix B, supplementary materials.

The rest of this section is devoted to the proof of Theorem 3,
which uses the existence of certain sequences in the sublevel
sets of weakly quasi M-convex functions given by the first part
of the following lemma. It can be shown that the existence of
such sequences characterizes a “weakly quasi M-convex set.” For
further details on weak quasi M-convexity and discrete convex
analysis in general, see Murota (2003).

Lemma 5. Let T be a weakly quasi M-convex function and L =
{x ∈ �m,n|T(x) ≤ t} be the sublevel set of T at t ∈ R.

(a) If x, y ∈ L and d = d(x, y), then there exists a sequence
x0, x1, . . . , xd ∈ L with x0 = x, xd = y and d(xi, xi+1) = 1
for all i = 0, 1, . . . , d − 1.

(b) Suppose y ∈ �m,n and r ∈ N are such that A = {x ∈
Br(y)|T(x) ≤ t} is not empty. If A ⊆ Br−1(y), then A = L is
the sublevel set of T at t.

Proof.
(a) Proof by induction on d: Let x, y ∈ L and d = d(x, y). If d =

0, then x = x0 = y satisfies the condition. If d > 0, there
exist i, j such that xi > yi, xj < yj and xd−1 = y+ ei − ej ∈ L
(or xd−1 = x − ei + ej ∈ L, in which case interchanging
x and y and i and j yields the former formula for xd−1) by
weak quasi M-convexity of T. Then d(xd−1, y) = 1 and

d(x, xd−1) = 1
2

(∑
k �=i,j

|xk − yk| + |xi − (yi + 1)|︸ ︷︷ ︸
=|xi−yi|−1

+ |xj − (yj − 1)|︸ ︷︷ ︸
=|xj−yj|−1

)

= 1
2
(‖x − y‖1 − 2) = d − 1.

By induction hypothesis, there exists a sequence
x0, x1, . . . , xd−1 ∈ L, such that x = x0, x1, . . . , xd−1, xd =
y ∈ L is the sought-after sequence.

(b) Assume there exists some b ∈ L \ A and fix a ∈ A.
By part a), the sublevel set L contains a sequence a =
x0, x1, . . . , xd = b ∈ L with d = d(a, b) and d(xi, xi+1) = 1
for i = 0, 1, . . . , d − 1. By the reverse triangle inequality
|d(xi+1, y) − d(xi, y)| ≤ 1, and, since d(a, y) < r < d(b, y),
there is an xj such that d(xj, y) = r, which yields xj ∈ A,
a contradiction (as A ⊆ Br−1(y)). Therefore, L ⊆ A, and
hence A = L.

With this, the theorem is readily proven as follows.

Proof of Theorem 3. Let t ∈ R be minimal such that A = {x ∈
Br(y)|T(x) ≤ t} has probability mass

∑
x∈A f (x) ≥ 1 − α

and A ⊆ Br−1(y). Recall that the acceptance region AT
n,π (α) is

the sublevel set (3) at t1−α , and note that t1−α ≤ t holds, as
Pπ (T(X) ≤ t) ≥ ∑

x∈A f (x) ≥ 1 − α. By Lemma 5(b), A is the
sublevel set at t, and hence A ⊇ AT

n,π (α). Since t is minimal, it
follows that t = t1−α and A = AT

n,π (α).

3.2. Computing a p-Value

As described in the previous section, an acceptance region can
be determined by taking an arbitrary point and increasing the
radius of a ball around this center point until the acceptance
region is found using the criterion provided by Theorem 3.
Obviously, the center of the ball should lie within the acceptance
region, ideally at its center, to minimize the necessary iterations
and number of points for which to evaluate the pmf and the test
statistic. The expected value EX = n · p of the multinomial dis-
tribution, which is the center of mass of all probability weighted
points in the discrete simplex, is known, and it is close to the
center of mass of the acceptance region, as the region contains
most of the mass. Therefore, a point close to the expected value
is a suitable center for the ball.

The p-value of an observation x can be found by computing
the total probability of the largest acceptance region not con-
taining the observation, as formalized by Algorithm 1 and the
following theorem.

Theorem 6. Let T be weakly quasi M-convex and r ∈ N.
Suppose x, y ∈ �m,n are such that T(y) < T(x). If A = {z ∈
Br(y)|T(z) < T(x)} satisfies A ⊆ Br−1(y), then pT(x, π) =
1 − ∑

z∈A f (z).

Proof. By Lemma 5(b), the set A is the sublevel set at t =
max{T(z)|z ∈ �m,n, T(z) < T(x)}, and hence pT(x, π) =
Pπ (T(X) ≥ T(x)) = 1 − Pπ (T(X) ≤ t) = 1 − ∑

z∈A f (z).

The condition T(y) < T(x) in Theorem 6 ensures that the
sublevel set A is not empty, as otherwise the empty set may
falsely be identified as the largest acceptance region not contain-
ing x. The case where no point y with T(x) > T(y) is known
requires special care. In this case, Algorithm 1 enumerates an
acceptance region containing the observation itself to avoid
premature termination.

To avoid enumerating unreasonably large balls, Algorithm 1
only determines exact p-values above a threshold θ and other-
wise indicates that the p-value is smaller than the threshold θ

by returning a value of 0. Figure 5 shows the points evaluated
by Algorithm 1 for an observation with p-value greater, respec-
tively, smaller than some threshold θ .

3.3. Implementation

Enumeration of the full sample space can be implemented using
a simple recursion, as in the R packages EMT (Menzel 2013) and
XNomial (Engels 2015). Whereas EMT is written purely in R,
the functionxmulti of theXNomial package uses an efficient
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Figure 5. Points (big dots) in �3,50 for which the probability mass and test statistic are evaluated given the marked observations x = (4, 40, 6) (left) and x = (10, 20, 20)

(right) under the null hypothesis π = ( 1
10 , 7

10 , 2
10 ) and T = TP . The p-values are 0.3049 (left) and less than θ = 0.0001 (right). The black region on the left is the largest

acceptance region not containing the observation x.

Algorithm 1: Compute exact p-value above some thresh-
old.

Input: Observation x ∈ �m,n, hypothesis π ∈ �m−1,
threshold 0 < θ � 1

Output: Exact p-value p ∈ [θ , 1] or 0 if the p-value is less
than θ

compute y ∈ �m,n minimizing d(y,Eπ X)

if T(x) ≤ T(y) then set y = x
initialize r = 0, SumProb = 0
repeat

add f (z) to SumProb for points z ∈ Br(y) \ Br−1(y)
with T(z) < T(x)

increment r = r + 1
set tmin = min{T(z)|d(y, z) = r}

until (T(x) ≤ tmin and T(y) < tmin) or SumProb > 1 − θ

if SumProb ≤ 1 − θ then return 1 − SumProb
else return 0

C++ subroutine for the recursion. To enumerate the samples at
a given radius r in the repeat-loop of Algorithm 1, a similar,
more complicated recursive scheme is implemented in the R
packageExactMultinom using aC++ subroutine to allow for
fast recursions.

As an alternative, Bejerano, Friedman, and Tishby (2004)
proposed a branch and bound approach to compute exact multi-
nomial p-values, as implemented by Bejerano (2006). How-
ever, the branch and bound approach does not consider the
probability mass statistic, and its implementation is limited to
the log-likelihood ratio test. In contrast, the implementation
of Algorithm 1 simultaneously computes p-values for the Chi-
square, log-likelihood ratio and probability mass test statistics,
as does xmulti. Further discussion of the branch and bound
approach and other methods is deferred to Appendix D, supple-
mentary materials, as none of these methods have been tailored
to the probability mass test and other approaches do not produce
“strictly exact” p-values (Keich and Nagarajan 2006).

The current implementation of Algorithm 1 accurately finds
p-values of order roughly as small as 10−10. Smaller p-values
often lead to negative output because of limited computational
precision in the addition of many floating point numbers. To
ensure accurate results, I recommend to choose θ no less than
10−8 with the current implementation.

During early runs of the simulation study described in Sec-
tion 4, it was noticed that the runtime of Algorithm 1 tends
to increase drastically if the null distribution contains a very
small probability πi � n−1 for some i ≤ m. In this case, the
acceptance region is very flat, containing mostly points within
a lower dimensional face of the discrete simplex, as hits in
category i are improbable under the null. Hence, the asymptotic
advantage of Algorithm 1 discussed in the next section requires
large sample size n to take effect under sparse null hypotheses.
As a heuristic, which turned out to be an effective remedy, the
implementation does not enumerate entire balls if n · πi < 1

2 ,
but only considers points z ∈ �m,n with small zi, by skipping all
points z for which Pπ (Xi ≥ zi) < θ · 10−8.

3.4. Runtime Complexity

The discrete simplex �m,n contains |�m,n| = (n+m−1
m−1

)
points,

and so the full enumeration takes O(nm−1) operations to com-
pute a p-value. In comparison, the acceptance regions at a fixed
level α > 0 only contain O(n

m−1
2 ) points, and this continues

to hold for the smallest ball centered at the expected value
containing the acceptance region, as proven by Proposition 7.
Therefore, Algorithm 1 only takes O(n

m−1
2 ) operations to deter-

mine a p-value above the threshold θ . Figure 6 shows run-
time as a function of n for m = 5. Whereas the runtime of
the full enumeration method depends only on the parameters
m and n, the runtime of the implementation of Algorithm 1
described in Section 3.3 depends on both the parameter π and
the observation x. As with the branch and bound approach,
the uniform null hypothesis results in a longer runtime than
sparse null hypotheses, but the difference is less pronounced.
Furthermore, the runtime of Algorithm 1 increases if the
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Figure 6. Mean runtime across 10 samples with p-values of about 0.001 under
null hypotheses π1 = (0.2, 0.2, 0.2, 0.2, 0.2) and π2 = (0.01, 0.19, 0.2, 0.3, 0.3),
respectively, using full enumeration, the branch and bound (B&B) approach and
Algorithm 1.

p-value of x is small, which is further investigated in the simula-
tion study of Section 4.1. As the runtime increases exponentially
in m, Algorithm 1 is only feasible if the number of categories m
is small.

Proposition 7. Let T ∈ {Tχ2 , TG, TP}, α ∈ (0, 1) and π ∈ �m−1.
Then there exists c = c(α, π) such that AT

n,π (α) ⊂ B√
nc(nπ) for

sufficiently large n.

Proof. Consider the canonical extension T̄ of T to �̄m,n = {x ∈
R

m≥0|x1 + · · · + xm = n} and let B̄n,r(y) = {x ∈ �̄m,n|d(x, y) ≤
r} denote a ball in �̄m,n with boundary ∂B̄n,r(y) = {x ∈
�̄m,n|d(x, y) = r}. Let r0 = minj πj > 0 and n0 ∈ N. If
n ≥ n0, then every x ∈ ∂B̄n,√nn0r0(nπ) can be written as
x = x(n, x0) := nπ + √nn0(x0 − π) for some x0 ∈ ∂B̄1,r0(π).

Let tn,1−α = min{t ∈ R|Pπ (Tn ≤ t) ≥ 1 − α} be the
(1 − α)-quantile of Tn = T(Xn), Xn ∼ Mm(n, π) for n ∈ N.
As Tn converges to χ2

m−1 in distribution, the sequence (tn,1−α)

of quantiles converges to the (1 − α)-quantile χ2
m−1,1−α (see,

Van der Vaart 1998, Lemma 21.2). Consequently, the maximum
t = maxn tn,1−α exists, and the set An = {x ∈ �̄m,n|T̄(x) ≤ t}
contains the acceptance region AT

n,π (α) for every n.
As T̄ is convex (by Lemma 9 in Appendix C, supplementary

materials) and thus has convex sublevel sets, it suffices to show
that n0 can be chosen such that min{T̄(x)|x ∈ ∂B̄n,√nn0r0(nπ)}
converges to a value greater t to ensure that AT

n,π (α) ⊂ An ⊂
B̄n,

√
n(

√n0r0)(nπ) for sufficiently large n.
In case T = Tχ2 , observe that

T̄(x(n, x0)) =
∑

j

(xj(n, x0) − nπj)2

nπj
=

∑
j

n0(x0,j − πj)2

πj

does not depend on n, and so the canonical extension T̄ of the
Chi-square statistic at radius √nn0r0 is bounded from below by
b(n0) = min{T̄(x)|x ∈ ∂B̄n0,r0(n0π)}. This bound becomes
arbitrarily large as n0 is increased.

In case T = TG or T = TP, if n0 is fixed, T̄(x(n, x0))
converges uniformly to T̄χ2

(x(n, x0)) for x0 ∈ ∂B̄1,r0(π) (by
Lemma 10 in Appendix C, supplementary materials). Hence,
min{T̄(x)|x ∈ ∂B̄n,√nn0r0(nπ)} converges to b(n0).

4. Application

In this section, the use of the new method is illustrated in a
simulation study. On the one hand, this serves to show the
improvements in runtime in comparison to some other meth-
ods. On the other hand, this sheds some light on the fit of the
asymptotic approximation to the probability mass test provided
by Theorem 1 for a moderate sample size (n = 100). As a
practical application in forecast evaluation, the usage of exact
multinomial tests to increase the information conveyed by the
calibration simplex (Wilks 2013), a graphical tool used to assess
ternary probability forecasts, is outlined.

4.1. Simulation Study

For the simulation study, pairs (π(1), x(1)), . . . , (π(N), x(N)) of
null hypothesis parameters and samples were generated as iid
realizations of the random quantity (P, X) with P ∼ U(�m−1)
being uniformly distributed on the unit simplex and X|P ∼
Mm(n, P). For each pair, p-values were computed using various
test statistics and algorithms. Thereby, no specific null hypothe-
sis had to be chosen and instead a wide variety was considered.
By drawing samples from the null hypotheses, p-values follow a
uniform distribution on [0, 1]. Various aspects of the tests and
algorithms in question can be examined using the resulting rich
dataset and subsets thereof.

The following results were obtained using N = 106 such
pairs with samples of size n = 100 drawn from multinomial
distributions with m = 5 categories. Exact p-values were
computed using the implementation of Algorithm 1 provided by
the accompanying R package. To illustrate the speedup achieved
by the new method in this study, the full enumeration method
provided by the xmulti function of the XNomial package
(Engels 2015) and the branch and bound approach (Bejerano,
Friedman, and Tishby 2004) were applied to the first 104 pairs.
Essentially, the computational cost of the full enumeration is
constant, independent of the null hypothesis at hand and the
resulting p-value, whereas the cost of Algorithm 1 increases as
the p-value decreases and also varies with the null hypothesis
similar to the cost of the branch and bound approach.

The implementation of Algorithm 1 took an average of 0.59
ms to compute a p-value, improving on the branch and bound
approach (1.78 ms), even though the latter only computes p-
values for the log-likelihood ratio test, and full enumeration
(29.76 ms). Perhaps surprisingly, Monte Carlo estimation (using
xmonte from XNomial, which simulates 10,000 samples by
default) took almost twice as long (53.49 ms) as the full enu-
meration. Figure 7 illustrates the connection between runtime
and size of the resulting p-values for the new method. As there
are other factors influencing the runtime and the implemen-
tation computes p-values for multiple statistics simultaneously,
samples were ordered by their mean p-value p̄T = 1

3 (pTP +
pTχ2 +pTG) and put in groups of 1000 samples with similar mean
p-value (in particular, the groups contain samples with p-values
in between the empirical ( a

1000 )- and ( a+1
1000 )-quantile for a =

0, . . . , 999). The figure shows mean runtime in each group as
well as the 5%- and 95%-quantile.

To illustrate the fit of the classical Chi-square approxima-
tion, the probability of a Chi-square distribution with m − 1
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degrees of freedom exceeding the values of the test statistics
for each pair were computed. Figure 8 shows relative errors of
the asymptotic approximations to the p-values for the three test
statistics. Given a test statistic T and asymptotic approximation
p̃T = p̃T(x, π) to the exact p-value pT = pT(x, π), the relative

Figure 7. Runtime against mean p-value in groups of 1000 samples with similar
mean p-value. The black line shows mean runtime per group, whereas the gray lines
are the 5% and 95%-quantile. The dashed line shows the mean runtime using full
enumeration.

error is the deviation from the exact value in parts of said value,
p̃T−pT

pT
. The asymptotic approximation to the Chi-square statistic

is quite accurate in most cases, but tends to underestimate
small p-values (< 0.1). The asymptotic approximation to the
log-likelihood ratio statistic tends to slightly underestimate p-
values on average. While the exact p-values are valid in that
Pπ (pT(X, π) ≤ α) ≤ α for all α ∈ [0, 1], underestimation
may result in invalid p-values. Asymptotic approximations of
Pearson’s Chi-square and the log-likelihood ratio have been
studied well, and the classical Chi-square approximations can
be improved by using moment corrections (see Cressie and
Read 1989, and references therein). Furthermore, the errors
typically increase if some category has small expectation under
the null hypothesis. The approximation to the probability mass
p-values provided by Theorem 1 produces somewhat larger
errors especially for large p-values, and it clearly overestimates
the p-values. This is emphasized by the fact that within the
simulation data only a vanishingly small number of p-values was
slightly underestimated, all of which were well over 0.9. Figure 9
illustrates how estimation errors influence the distribution of the
resulting p-values. Whereas the exact p-values appear to follow
a uniform distribution, the asymptotic p-values clearly deviate

Figure 8. Relative errors of asymptotic approximations to p-values for probability mass (Prob), Chi-square (Chisq) and log-likelihood ratio (LLR) test statistic. The plots were
obtained using the same grouping scheme as in Figure 7.

Figure 9. Histograms of asymptotic approximations to p-values for probability mass (Prob), Chi-square (Chisq), and log-likelihood ratio (LLR) test statistic in black. The gray
histograms show respective exact p-values. The rightmost bar within the left histogram is not fully shown and extends further up to over 30000 counts.
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Figure 10. Relative differences between exact p-values of probability mass (Prob), Chi-square (Chisq), and log-likelihood ratio (LLR) test statistic against mean of compared
p-values. The plots were obtained using the same grouping scheme as in Figure 7.

Table 1. Exact p-values pT and asymptotic p-values p̃T of five randomly selected pairs (x, π) with 0.01 < pTG (x, π) < 0.1.

π pTP p̃TP p
Tχ2 p̃

Tχ2 pTG p̃TG

(0.116, 0.225, 0.259, 0.002, 0.398) 0.0068 0.0092 0.0190 0.0073 0.0126 0.0172
(0.038, 0.079, 0.224, 0.387, 0.272) 0.1150 0.1268 0.1437 0.1469 0.0361 0.0307
(0.595, 0.129, 0.093, 0.064, 0.118) 0.0447 0.0495 0.0477 0.0482 0.0719 0.0665
(0.497, 0.217, 0.223, 0.057, 0.007) 0.0761 0.0994 0.0803 0.0741 0.0461 0.0498
(0.243, 0.022, 0.237, 0.373, 0.125) 0.0474 0.0566 0.0508 0.0507 0.0628 0.0568

from uniformity. For the probability mass statistic, the asymp-
totic test yields a conservative test, whereas the asymptotic log-
likelihood ratio test (and also the asymptotic Chi-square test at
small significance levels) is slightly anti-conservative.

Figure 10 shows relative differences between exact p-values
obtained with the three test statistics. Given test statistics T and
T′, the relative difference between p-values pT = pT(x, π) and
pT′ = pT(x, π) is pT−pT′

p̄T
, where p̄T = pT+pT′

2 . It can be seen that
the choice of test statistic can make quite a difference. A closer
look at the simulation data revealed that these differences tend
to be smaller if expectations for all categories are large under the
null. To provide some numerical insights, Table 1 lists exact and
asymptotic p-values.

4.2. The Calibration Simplex

Turning to an application in forecast verification, consider a
random variable X and a probabilistic forecast F for X. For an
introduction to probabilistic forecasting in general, see Gneit-
ing and Katzfuss (2014). A probabilistic forecast is said to
be calibrated if the conditional distribution of the quantity of
interest given a forecast coincides with the forecast distribution,
that is,

X|F ∼ F (4)

holds almost surely. Suppose now that X maps to one of three
distinct outcomes only. Then, a probabilistic forecast is fully
described by the probabilities it assigns to each outcome. In
this case, the calibration simplex (Wilks 2013) can be used to

graphically identify discrepancies between predicted probabili-
ties and conditional outcome frequencies. Given iid realizations
(f1, x1), . . . , (fN , xN) consisting of forecast probabilities (vectors
within the unit 2-simplex) and observed outcomes encoded 1, 2,
and 3, forecast-outcome pairs with similar forecast probabilities
are grouped according to a tessellation of the probability sim-
plex. Thereafter, calibration is assessed by comparing average
forecast and actual outcome frequencies within each group.

As illustrated in Figure 11, the calibration simplex is a graphi-
cal tool used to conduct this comparison visually. The groups are
determined by overlaying the probability simplex with a hexag-
onal grid. The circular dots correspond to nonempty groups of
forecasts given by a hexagon. The dots’ areas are proportional
to the number of forecasts per group. A dot is shifted away
from the center of the respective hexagon by a scaled version
of the difference in average forecast probabilities and outcome
frequencies. This provides valuable insight into the forecast’s
distribution and the conditional distribution of the quantity of
interest. However, it is not apparent how big the differences may
be merely by chance.

If the forecast is calibrated, then, by (4), the outcome frequen-
cies x̄ within a group of size n with mean forecast f̄ follow a
generalized multinomial distribution (the multinomial analog
of the Poisson binomial distribution), that is, a convolution of
multinomial distributions M(1, fi) with parameters f1, . . . , fn ∈
�m−1. If these parameters only deviate little from their mean
f̄ = 1

n
∑

i fi, then, presumably, the generalized multinomial
distribution should not deviate much from a multinomial distri-
bution with parameter f̄ . Under this presumption, multinomial
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Figure 11. Calibration Simplex with color-coded p-values from the log-likelihood
ratio statistic evaluating a total of 21,240 club soccer predictions by FiveThirtyEight
(https:// projects.fivethirtyeight.com/ soccer-predictions/ ) for matches from Septem-
ber 2016 until April 2019. Outcomes are encoded as 1 = “home win”, 2 = “draw”
and 3 = “away win”. Only groups containing at least 10 forecasts are shown. Blue
(b) indicates a p-value pTG > 0.1, orange (o) 0.1 > pTG ≥ 0.01, red (r) pTG < 0.01
and black (0) pTG = 0.

tests can be applied to quantify the discrepancy within each
group through a p-value. As the number of outcomes m = 3
is small, exact p-values are efficiently computed by Algorithm 1
even for large sample sizes n.

In Figure 11, p-values obtained from the log-likelihood ratio
statistic are conveyed through a coloring scheme. Note that a
p-value is exactly zero only if an outcome is forecast to have
zero probability and said outcome still realizes. Figure 11 was
generated using the R package CalSim (Resin 2021).

The calibration simplex can be seen as a generalization of
the popular reliability diagram. In light of this analogy, the
use of multinomial tests to assess the statistical significance
of differences in predicted probabilities and observed outcome
frequencies serves the same purpose as consistency bars in
reliability diagrams introduced by Bröcker and Smith (2007).
Consistency bars are constructed using Monte Carlo simulation.
To justify the above presumption, the multinomial p-values
used to construct Figure 11 were compared to p-values com-
puted from 10,000 Monte Carlo samples obtained from the
generalized multinomial distributions. To this end, the standard
deviation of the Monte Carlo p-values was estimated using the
estimated p-value in place of the true generalized multinomial
p-value. Most of the multinomial p-values were quite close
to the Monte Carlo estimates with an absolute difference less
than two standard deviations, whereas two of them deviated
on the order of 6 to 8 standard deviations from the Monte
Carlo estimates, which nonetheless resulted in a relatively small
absolute error. In particular, using the Monte Carlo estimated p-
values did not change Figure 11. As computation of the Monte
Carlo estimates from the generalized multinomial distributions
is computationally expensive, the multinomial p-values serve as
a fast and adequate alternative. Further improving uncertainty

quantification within the calibration simplex is a subject for
future work.

5. Concluding Remarks

A new method for computing exact p-values was investigated.
It has been illustrated that the new method works well when
the number m of categories is small. This results in a concrete
speedup in practical applications as illustrated through a sim-
ulation study. As a further application not discussed in this
work, the new method appears to be well suited to determine
level set confidence regions discussed in Chafai and Concordet
(2009) and Malloy, Tripathy, and Nowak (2021). When m is too
large for exact methods to be feasible, other methods may be
used to approximate exact p-values as hinted at in Appendix D,
supplementary materials. Such an approach may be added to the
ExactMultinom package in a future version.

Regarding the choice of test statistic, the “exact multinomial
test” was treated as a test statistic and the asymptotic distribution
of the resulting probability mass statistic was derived. Like most
prominent test statistics, the probability mass statistic yields
unbiased tests for the uniform null hypothesis. It was shown that
a randomized test based on the probability mass statistic can
be characterized in that it minimizes the respective (weighted)
acceptance region.

Although asymptotic approximations work well in many
use cases, there are cases, where these approximations are not
adequate, for example, when dealing with small sample sizes
or small expectations. On the other hand, there is nothing to
be said against the use of exact tests whenever feasible, and it
is recommended in the applied literature (McDonald 2009, p.
83) for samples of moderate size up to 1000. As the available
implementations of exact multinomial tests in R use full enu-
meration, the new implementation increases the scope of exact
multinomial tests for practitioners.

Supplementary Materials

Appendices: Mathematical details complementing the proofs of Theo-
rem 1, Proposition 4, and Proposition 7, and a short discussion of other
methods. (pdf)

Package ExactMultinom: R package containing the implementation
described in Section 3. (GNU zipped tar file)

Additional code: R code used for the simulation study in Section 4.
(.R file)
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