KIT | KIT-Bibliothek | Impressum | Datenschutz

Leveraging sap flow data in a catchment-scale hybrid model to improve soil moisture and transpiration estimates

Loritz, Ralf 1; Bassiouni, Maoya; Hildebrandt, Anke 2; Hassler, Sibylle K. 1,2; Zehe, Erwin 1
1 Institut für Wasser und Gewässerentwicklung (IWG), Karlsruher Institut für Technologie (KIT)
2 Institut für Meteorologie und Klimaforschung – Atmosphärische Spurenstoffe und Fernerkundung (IMK-ASF), Karlsruher Institut für Technologie (KIT)

Abstract:

Sap flow encodes information about how plants regulate the opening and closing of stomata in response to varying soil water supply and atmospheric water demand. This study leverages this valuable information with model–data integration and deep learning to estimate canopy conductance in a hybrid catchment-scale model for more accurate hydrological simulations. Using data from three consecutive growing seasons, we first highlight that integrating canopy conductance inferred from sap flow data in a hydrological model leads to more realistic soil moisture estimates than using the conventional Jarvis–Stewart equation, particularly during drought conditions. The applicability of this first approach is, however, limited to the period where sap flow data are available. To overcome this limitation, we subsequently train a recurrent neural network (RNN) to predict catchment-averaged sap velocities based on standard hourly meteorological data. These simulated velocities are then used to estimate canopy conductance, allowing simulations for periods without sap flow data. We show that the hybrid model, which uses the canopy conductance from the machine learning (ML) approach, matches soil moisture and transpiration equally as well as model runs using observed sap flow data and has good potential for extrapolation beyond the study site. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000151854
Veröffentlicht am 24.10.2022
Originalveröffentlichung
DOI: 10.5194/hess-26-4757-2022
Scopus
Zitationen: 7
Web of Science
Zitationen: 5
Dimensions
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung – Atmosphärische Spurenstoffe und Fernerkundung (IMK-ASF)
Institut für Wasser und Gewässerentwicklung (IWG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1607-7938
KITopen-ID: 1000151854
HGF-Programm 12.11.27 (POF IV, LK 01) Stratosph. impacts on regional climate with link to ocean
Erschienen in Hydrology and Earth System Sciences
Verlag Copernicus Publications
Band 26
Heft 18
Seiten 4757–4771
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 28.09.2022
Schlagwörter stomatal conductance, canopy conductance, tree, forest, variability, hillslope, patterns, storage
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page