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S U M M A R Y
Full-waveform inversion (FWI) is considered as a high-resolution imaging technique to recover
the geophysical parameters of the elastic subsurface from the entire content of the seismic
signals. However, the subsurface material properties are less well estimated with elastic con-
straints, especially for the near-surface structure, which usually contains fluid contents. Since
Biot theory has provided a framework to describe seismic wave propagations in the poroelas-
tic media, in this work, we propose an algorithm for the 2-D time-domain (TD) poroelastic
FWI (PFWI) when the fluid-saturated poroelastic equations are applied to carve the physical
mechanism in the shallow subsurface. To detect the contribution of the poroelastic parameters
to shallow seismic wavefields, the scattered P-SV&SH wavefields corresponding to a single
model parameter are derived explicitly by Born approximation and shown numerically after-
ward. The Fréchet kernels are also derived and exhibited in P-SV&SH schemes to analyse
the sensitivities of the objective function to different poroelastic parameters. Furthermore, we
verify the accuracy of the derivations through model parameter reconstructions. We perform
a series of numerical tests on gradients with respect to different model parameters to fur-
ther evaluate inter-parameter trade-offs. PFWI holds potential possibilities to directly invert
fluid-related physical parameters of the shallow subsurface.

Key words: Permeability and porosity; Waveform inversion; Surface waves and free oscil-
lations; Wave scattering and diffraction.

1 I N T RO D U C T I O N

The accurate estimation of the Earth’s subsurface properties is a challenging task for seismic exploration. Since seismic waves carry the
underground structural heterogeneities information, full-waveform inversion (FWI) has become a multiparameter reconstruction technique
that can exploit the entire information contents of seismograms (Virieux & Operto 2009). In general, the main interest in seismic detection
is to extract the information of the physical material properties (e.g. lithology, porosity and fluid content) from different seismic attributes
(e.g. P- and S-wave velocities) based on rock physical relations (Butler 2005). To extend FWI into the application of seismic reservoir
characterization, Queißer & Singh (2013) employ the Gassmann model to relate P-wave velocity with CO2 saturation directly in order to
estimate CO2 storage (Gassmann 1951). Dupuy et al. (2016) adopt a two-step workflow based on acoustic FWI to estimate rock-physics
properties by inverting the effective medium properties. Hu et al. (2021) attempt to link the elastic properties with different rock-physics
models to recover fluid properties (e.g. porosity φ) through elastic FWI. However, the rock properties related to the fluid information from
the fluid-filled subsurface are still poorly considered by the elastodynamic FWI. The near-surface sediments are usually unconsolidated and
composed of solid and fluid components. How to exploit the fluid information directly from the seismic waveforms has still not attracted
enough attention.

Over the past decades, Biot’s theory (Biot 1956a, b; Biot & Willis 1957) has been widely used as a reliable model to govern the
poroelastic response since they build a framework relating poroelastic parameters to the seismic wave properties (Zhu & McMechan 1991;
Masson et al. 2006; Morency & Tromp 2008). Morency et al. (2009) present sensitivity kernels for specific parametrizations in the poroelastic
model based on adjoint methods. De Barros et al. (2010) introduce Biot’s theory into frequency-domain FWI, which is limited to utilizing
reflected waves. Yang et al. (2018) discuss the radiation patterns for different parametrizations in poroelastic media and implement several
synthetic reconstruction tests based upon frequency-domain poroelastic FWI (Yang & Malcolm 2020). However, it is still an open question
for time-domain (TD) FWI to directly employ Biot’s theory to describe the physical mechanism of the near-surface structure.

This paper aims to introduce Biot’s theory into the direct description of the shallow subsurface and make preparation for shallow-seismic
TD poroelastic FWI (TD-PFWI). In Section 2, we first outline the fluid-saturated poroelastic equations and show the shallow seismic P-SV&SH

C© The Author(s) 2022. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1803

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/232/3/1803/6767590 by Karlsruher Institut fur Technologie - KIT user on 18 N

ovem
ber 2022

http://orcid.org/0000-0003-1161-5134
mailto:tingting.liu@kit.edu


1804 T. Liu and T. Bohlen

poroelastic wavefields numerically. In Section 3, We derive the explicit scattered wavefields of different poroelastic parameters in P-SV&SH
patterns based on the high-frequency approximation (Wu & Aki 1985). The scattered wavefields corresponding to different model parameters
are simulated numerically to investigate the sensitivities of the model parameters. In Section 4, we use the classic least-squares error functional
as the objective function and derive the Fréchet kernels with respect to different poroelastic parameters (Tarantola & Valette 1982). Besides,
the Lagrangian augmented functional (Plessix 2006) is explained to derive the adjoint poroelastic wavefields. Furthermore, we present the
sensitivity kernels of different poroelastic parameters from the views of P-SV&SH, and implement a series of reconstruction tests on the
synthetic Rayleigh/Love-wave data to justify the accuracy and feasibility of PFWI. In Section 5, we take a step to analyse the inter-parameter
issues by a series of cross-comparisons on the descent directions from different gradients. Finally, we draw a brief discussion on the sensitivity
analysis of the poroelastic parameters in the conclusion part. All the wavefields are solved by the fourth-order finite-difference (FD) method.
Since the observed data for fluid components can not be obtained separately, the fluid adjoint source is not estimated for PFWI.

2 M E T H O D O L O G Y

2.1 Fluid-saturated poroelastic equations

Following the steps of Biot’s theory (Biot 1956a, b; Biot & Willis 1957), the macroscopic equations of motion (1–2) can describe the saturated
solid-fluid system across the seismic band of frequencies. Within the Biot’s characteristic frequency, the fluid flow regime is treated as
Poiseuille type, where the internal drag forces on the solid/fluid interface are negligible.

ρv̇i + ρ f ẇi = ∂ jσi j , (1)

ρ f v̇i + mẇi = −∂i P − η

κ0
wi . (2)

The dots above variables denote the time differentiation and Einstein notation is applied in the equations. vi is the solid particle velocity,
and wi = φ(v f

i − vi ) is the Darcy filtration velocity. φ is the effective porosity of the porous medium and vf is the fluid velocity. The mass
coupling coefficient m = Tρ f/φ, where the tortuosity T > 1 is a dimensionless parameter concerns pore geometry (Ghanbarian et al. 2013).
The average density ρ = (1 − φ)ρs + φρ f is comprised of the fluid density ρ f and the solid particle density ρs. η denotes the fluid viscosity
and κ0 is the hydrological permeability. The stress tensor σ ij and fluid pressure P are formatted by using Biot constitutive eqs (3) and (4)

σi j = ci jklεkl − αPδi j + si , (3)

− Ṗ = M(α∂ivi + ∂iwi ) + s f , (4)

where the Biot–Wills coefficient

α = 1 − Kd

Ks
, (5)

and the fluid storage coefficient

M =
(

φ

K f
+ α − φ

Ks

)−1

, (6)

where cijkl is the stiffness tensor and the strain

ε̇i j = 1

2
(∂ jvi + ∂iv j ). (7)

Here, i, j, k, l ∈ [1, 3], Kd = λd + 2/3μd, Ks and Kf represent the bulk modulus of the drained frame, solid and fluid, respectively. λd and
μd are the drained Lamé parameters. (For simplification, they are not mentioned specifically and represented by λ and μ respectively in the
following parts.) δij is the Kronecker delta. The external sources si and sf can be distributed in several ways: that is, only a source in the solid
phase while sf = 0; the source is distributed between the solid and fluid phase (Carcione et al. 2010). At the macroscopic scale, here, the
viscosity of the fluid and attenuation mechanism are not considered during FWI under the quasi-static condition.

2.2 Boundary conditions on the free surface

At the boundary of the air-earth, the surface is free from external stress (Aki & Richards 1980). Generally, the shallow subsurface mainly
consists of unconsolidated materials. Under this previous circumstance, the porous frame is drained and the pores in the porous medium are
connected with the air on the traction-free surface. In the absence of dissipation (η = 0), the boundary condition on the free surface can be
generalized by eqs (8) and (9) (Deresiewicz 1960)

σi j = 0, (i = {1, 2, 3} ≡ {x, y, z}, j = 3 ≡ z), (8)

P = 0. (9)
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Time-domain poroelastic FWI 1805

Figure 1. Snapshots of the shallow-seismic poroelastic P-SV&SH wavefields at 90 ms: triggered by Ricker wavelet with a centre frequency of 40 Hz. The
model parameters are listed in Table 1.

Table 1. Rock properties of the fluid-saturated porous subsurface.

Parameter Symbol Unit Value

Grain Bulk modulus Ks Pa 0.7 × 1010

Density ρs kg m−3 2650
Matrix Bulk modulus Kd Pa 5.1 × 108

Shear modulus μ Pa 3.45 × 108

Porosity φ / 0.2
Tortuosity T / 2

Fluid Bulk modulus Kf Pa 2.2 × 109

Density ρf kg m−3 1000
Viscosity η N·s m−2 0

Velocity Fast-P wave Vfp m s−1 1562.23
Slow-P wave Vsp m s−1 303.17
Shear wave Vs m s−1 394.21

Fig. 1 shows the wavefields of the shallow poroelastic subsurface by solving the eqs (1)–(9) with FDTD method. As the solid vertical
sources on the free surface, the triggered signal is Ricker wavelet with the centre frequency of 40 Hz. Typically, there are three types of
waves: the fast compressional wave, slow compressional wave and shear wave in the poroelastic wavefields. Surface waves are involved in the
shallow subsurface, such as Rayleigh wave in the P-SV scheme, and Love wave exists in the SH case, while the subsurface is inhomogeneous.
From the perspective of fluid pressure, the shear waves have vanished. The fast-P wave can not be observed easily in the shallow poroelastic
wavefields as its rapid propagation compared to other wave types. Although the slow-P wave is usually attenuated since the seismic band of
the triggered source is normally below the Biot relaxation frequency (Johnson et al. 1987), here, we only consider a non-dissipation condition
without the fluid viscosity (η = 0) as the surface waves will occupy most energies in the wavefields. It is shown in Fig. 1 that the velocities
of the slow-P and S waves could be relatively closed under non-dissipation condition.

3 S I N G L E - S C AT T E R I N G P RO B L E M

The subsurface materials can be decomposed into the background medium and the perturbations. The scattered wavefields generated by small
diffractors can give direct insight into the sensitivity of different parameters (Wu & Aki 1989). Although the wave front shapes of the scattered
wavefields can be described by the radiation patterns, which build a connection between the incident and scattering angles (Operto et al.
2013; Yang et al. 2018), the radiation patterns of surface waves also depend on the source depth and frequencies, which makes difficulties
on the analytical derivation of the radiation patterns concerns surface waves (Ben-Menahem & Harkrider 1964). Alternatively, the scattered
wavefields from diffractor points concerned with various model parameters are derived explicitly and numerically visualized from a certain
incident angle.

From the equations of motion and constitutive law for the fluid-saturated porous media (1)–(4), the reference model m0 is represented
by several individual parameters (10) and the background fields u0 (12) consist of solid phase us and fluid phase uf , which is excluded in the
SH equations.

m0
P−SV = {λ,μ, ρs, ρ f , Ks, K f , φ}, (10)
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m0
SH = {μ, ρs, ρ f , φ}, (11)

u0
P−SV = {us, uf}, (12)

u0
SH = {us

SH
}
, (13)

f : m = m0 + δm → u = u0 + δu, (14)

here f maps an element of model space m to the element of data space u. Using the Born approximation, the total fields u can be decomposed
into the primary fields u0 and scattered fields δu linearly.

f (u, m) = Lu − s = 0, (15)

LP−SV = A + B + C, (16)

LSH = M + N + P, (17)

uP−SV = (vx , v
f

x , vz, v
f

z , σxx , σzz, σxz, P)T, (18)

uSH = (vy, σxy, σzy)T, (19)

sP−SV = (sx , s f
x , sz, s f

z , sxx , szz, sxz, sp)T, (20)

sSH = (sy, sxy, szy)T, (21)

where the forward operator f (u; m) maps the relations between the poroelastic seismic wavefields u and the model parameter m. When we
only consider the isotropic medium, the differential operator L in P-SV format is given by eqs (22)–(26). LSH represents the differential
operator in SH format, which is complemented by eq. (27).

A =
[

04 D1

D2 04

]
∂x , (22)

D1 =

⎡⎢⎢⎢⎣
−Aφm 0 0 −Aρ2

A(ρ f − φm) 0 0 Aρ1

0 0 −Aφm 0
0 0 A(ρ f − φm) 0

⎤⎥⎥⎥⎦ , D2 =

⎡⎢⎢⎢⎣
−(λ + 2μ) 0 0 0

−λ 0 0 0
0 0 −μ 0

M(α − φ) Mφ 0 0

⎤⎥⎥⎥⎦ , (23)

B =
[

04 D3

D4 04

]
∂z, (24)

D3 =

⎡⎢⎢⎢⎣
0 0 −Aφm 0
0 0 A(ρ f − φm) 0
0 −Aφm 0 −Aρ2

0 A(ρ f − φm) 0 Aρ1

⎤⎥⎥⎥⎦ , D4 =

⎡⎢⎢⎢⎣
0 0 −λ 0
0 0 −(λ + 2μ) 0

−μ 0 0 0
0 0 M(α − φ) Mφ

⎤⎥⎥⎥⎦ , (25)

C =
[

I4 04

04 D

]
∂t , D =

⎡⎢⎢⎢⎣
1 0 0 α

0 1 0 α

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ , (26)

M =

⎡⎢⎣ 0 −Aφm 0
−μ 0 0
0 0 0

⎤⎥⎦ ∂x , N =

⎡⎢⎣ 0 0 −Aφm
0 0 0

−μ 0 0

⎤⎥⎦ ∂z, P = I3∂t , (27)

where A = 1/(ρ f(ρT − φρ f)). ρ1 = (1 − φ)ρs and ρ2 = φρ f are the mass per unit volume of aggregate for the solid phase and the fluid phase,
respectively. When the porosity φ = 0, the forward operator f is able to map the elastic wavefields. The symbol 0n represents the n × n zero
matrix, while In is the identity matrix.

Suppose that a corresponding first-order perturbation is applied on a random parameter of the reference model m0, the scattered
wavefields δu perturbated by single parameter are obtained by eqs (28)–(30) under the Born approximation (Appendix A). For example, if
there is a small scattered variable δλ added on the reference parameter λ, the corresponding excitation of the scattered wavefields can be
summarized as eq. (31),

Lδum = δmδsm, (28)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/232/3/1803/6767590 by Karlsruher Institut fur Technologie - KIT user on 18 N

ovem
ber 2022



Time-domain poroelastic FWI 1807

Figure 2. Shallow-seismic scattered P-SV poroelastic wavefields (solid profile in vertical direction Z) corresponding to different model parameters with
5 percent perturbations. The red star represents the location of the point diffractor.

δmP−SV ∈ {δλ, δμ, δρs, δρ f , δKs, δK f , δφ}, δmSH ∈ {δμ, δρs, δρ f , δφ}, (29)

δsP−SV
m ∈ {δsλ, δsμ, δsρs , δsρ f , δsKs , δsK f , δsφ}, δsSH

m ∈
{
δsSH

μ , δsSH
ρs

, δsSH
ρ f

, δsSH
φ

}
, (30)

δsλ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂x 0 ∂z 0 · · · 0 1

Ks
∂t

∂x 0 ∂z 0 · · · 0 1
Ks

∂t

0 · · · 0
M
Ks

∂x 0 M
Ks

∂z 0 · · · 0 M
K 2

s
∂t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

(8×8)

u0
P−SV . (31)

For instance, it shows clearly in eq. (31) that the signal of the scattering point can be calculated based on the unperturbed wavefields.
The scattered wavefields are generated from the same forward operator L and solved by the FDTD method afterward. To be noted, since
the scattering source signals are changed with various perturbed parameters, the scattering wavefields for different parameters are obtained
separately.

3.1 Analysis of scattered wavefield produced by individual model parameter perturbations

In this part, a series of scattering tests are implemented on a 45 m × 9 m poroelastic half-space to detect the effects of the model parameters on
the different wave types. The explicit expressions of the scattering point corresponding to various model parameters are shown in Appendix A.
By solving eqs (10)–(30) with the FDTD method, both the incident and scattered wavefields are simulated numerically. A Ricker wavelet
triggers the unperturbed shallow poroelastic subsurface with a centre frequency of 40 Hz on the free surface, and the scattering point (eq. 30)
is set in the middle on the free surface. Model parameters can be found in Table 1.

Here we take the wave information from the solid phase as examples. The scattered wavefields corresponding to different model
parameters are shown in Fig. 2 for the P-SV scheme and Fig. 3 for the SH scheme. Both for P-SV and SH cases, scattered waveform
comparisons from a single trace are shown in Figs 4 and 5 separately. The number of the model parameters in the SH scheme is reduced since
the main stress is not considered. The wave amplitude of the scattered wavefields in P-SV and SH schemes is shown consistently to make a
comparison.

Different wave types in the shallow P-SV&SH poroelastic wavefields have been shown in Fig. 1. As shown in Fig. 3, there are only shear
waves from the SH scheme in a homogeneous half-space, and it shows the slightest perturbation from a scattering point of the fluid density
ρ f. Shear modulus μ and solid grain density ρs take the main responsibility for the shear wave, while porosity has a relatively small effect.
When it turns to the P-SV scheme in Fig. 2, Rayleigh and compressional waves are generated in the meantime. The fast-P wave propagates
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1808 T. Liu and T. Bohlen

Figure 3. Shallow-seismic scattered SH poroelastic wavefields (Solid profile in horizontal direction Y) corresponding to different model parameters with
5 percent perturbations. The red star represents the location of the point diffractor, which is the same with the P-SV case.

Figure 4. Scattered single-trace waveform comparison from P-SV scheme: vertical-component velocity of the solid phase. The receiver is on the free surface
at offset = 10.8 m in Fig. 2, and the black line represents the unperturbed reference waveform from the homogeneous poroelastic background at the same
position.

in the fastest way with relatively small energy. Besides, the velocities of the P and S waves have a significant difference since the subsurface
is poroelastic, which is consistent with the scattered result from δφ that the porosity of the subsurface can influence body waves sensitively.
Solid bulk modulus Ks shows minor effects on the shallow poroelastic wavefields. Fluid bulk modulus Kf and fluid density ρ f take response
for shear wave slightly. Furthermore, porosity φ is quite sensitive to both shear and compressional waves. A similar analysis also can be
told from the single-trace waveform comparison in Figs 4 and 5. The results indicate the potential trade-off relations between parameters
during multiparameter FWI. Based on the physical condition in the poroelastic medium, the parameters with fewer similarities in the radiation
patterns are likely to be recovered together.
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Time-domain poroelastic FWI 1809

Figure 5. Scattered single-trace waveform comparison from SH scheme: horizontal-component velocity of the solid phase. The receiver is on the free surface
at offset = 10.8 m in Fig. 3, and the black line represents the unperturbed reference waveform from the homogeneous poroelastic background at the same
position.

4 F U L L - WAV E F O R M I N V E R S I O N F O R F LU I D - S AT U R AT E D P O RO E L A S T I C M E D I A

The elements in the model space M : m and data space U : u can be decomposed as in Section 3. FWI tries to minimize the misfit functional
J , which is normally designed in a simple least-squares format (eq. 32)

J (m) = 1

2
‖u(m) − dobs‖2 = 1

2

∑
sources

∫ T

0
dt

N∑
r=1

‖u(xr, t) − dobs(xr, t)‖2. (32)

T is the recording time and N indicates the number of receivers at the receiver position r, u is the synthetic data and dobs is the recorded data.
To solve the minimization problem, the adjoint-state method was developed in order to avoid massive computing on the high order Fréchet
derivatives (Chavent 1974; Plessix 2006).

From the perspective of Born approximation, when a perturbation δm is introduced into the reference model m0, the Fréchet derivative
of the misfit functional is

∂J (m)

∂m
=
∑

sources

∫ T

0
dt

N∑
r=1

∂δum

∂δm
(u(xr, t) − dobs(xr, t)). (33)

Assuming a differentiable function u∗ that satisfies

L∗u∗ = u − dobs, (34)

for example, for two column vectors �a and �b, �a · �b = aT b, then the Fréchet derivative of the misfit functional J is simplified as eq. (35) based
on the eq. (28).

∂J (m)

∂m
=
∑

sources

∫
T

dt(L−1δsm)T L∗u∗, (35)

while L∗ = LT and u∗ represent the backpropagating adjoint wavefields (see Appendix A for δsm and Appendix B for the Fréchet kernels
with respect to different parameters),

∂J (m)

∂m
=
∑

sources

∫
T

dt(δsm)T u∗. (36)

Alternatively, when a dual space U∗ : ũ∗ is added into the mapping f, the augmented functional L can be defined as

L(̃u, ũ∗, m) = h (̃u, m) − 〈̃u∗, f (̃u, m)〉U , (̃u ∈ U), (37)

where ũ and ũ∗ are independent of m (Plessix 2006), under the physical constraint in eq. (15),

L(u, ũ∗, m) = h(u, m) − 〈̃u∗, f (u, m)〉U = J (m), (38)

or

L(u, u∗, m) = h(u, m) − 〈u∗, f (u, m)〉U = J (m), (39)
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1810 T. Liu and T. Bohlen

Figure 6. Fréchet kernels involving Rayleigh waves in P-SV for λ, Ks and Kf: The red star is the location of the forward source, and the inverted triangle
represents the adjoint source. Both are located on the free surface.

for instance, the Lagrange multiplier for P-SV formulations

u∗ = (v∗
x , v

f
x

∗, v∗
z , v

f
z

∗, σ ∗
xx , σ

∗
zz, σ

∗
xz, P∗)T, (u∗ ∈ U∗), (40)

and (u, u∗) is the saddle point of L. From the integration by parts, in the physical spatial domain � within the time duration [0, T], we have

〈u∗, ∂t u〉T = −〈∂t u
∗, u〉T , (41)

and

〈u∗, ∂i u〉� = −〈∂i u
∗, u〉�, (i = {1, 2, 3} ≡ {x, y, z}), (42)

when u∗ = 0 as the final time condition and the physical boundary conditions are applied as well, then the adjoint equations are generalized
by

∂L(u, u∗, m)

∂ũ
= ∂J (m)

∂ũ
− L∗u∗ = 0. (43)

After expanding the residual function J near a starting point, the model update


m = −γ H−1 ∂J (m)

∂m
, (44)

which is used to approximate the real model iteratively during FWI. Here γ is the step length and H is the Hessian matrix. The problem of the
singularity of Hessian is dealt with by approximating the inverse of Hessian with different optimization methods (Nocedal & Wright 2006).

4.1 Sensitivity kernels

The effects of different model parameters on the waveforms are evaluated from the analysis of the scattering problem in Section 3.1. As
complements, the sensitivity of the various model parameters to the data space can be detected from the corresponding sensitivity kernels,
which are the hearts of the related gradients as well. The full expressions of different kernels derived from the eqs (32)–(43) are in Appendix B.
To clarify the effects of various wave types on the model parameters, the primary sensitivity kernels in a shallow poroelastic subsurface are
calculated both in P-SV and SH equations. The numerical model is a homogeneous poroelastic half-space, with a circular anomaly within
the Fresnel zone. For concerns on shallow detection, surface waves are considered. The acquisition geometry is set as the same as Section 3
within the duration time of 15 ms, and the parameters can be found in Table 1.

The kernels’ galleries in Figs 6 and 7 show the wave paths for different scattering bodies. The updates along the ray path give contributes
to the background values and source frequencies heavily affect the minor radius of the first-Fresnel zone. Unlike the traditional reflected wave
exploration which concerns more reflections beyond the ray path, surface waves will travel along the free surface and the long wavelength
parts on the fast P wave are less involved for shallow seismic detection. According to the wavelength �, here, the sequences of main wave
types are �s > �Love > �Rayleigh, and �s > �sp. Fig. 6 shows the galleries of the sensitivity kernels for λ, Ks and Kf, which are only
considered in P-SV case. It indicates λ concerns more on the Rayleigh waves compared to Ks and Kf, while Ks and Kf are more sensitive to the
compressional waves. Especially, Ks mainly gets benefits from the long wavelength components, which gives less contribution to the shallow
seismic wavefields. Kf mainly concerns the slow-P wave, which will be attenuated in a viscous porous media within the seismic band.

Fig. 7 contains the sensitivity kernels of μ, ρs, ρ f and φ in P-SV and SH profiles. The galleries of the same parameter are shown
consistently for comparison. Compared to ρ f and φ, it is clear in SH that μ and ρs are more sensitive to the shear wave components and the
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Time-domain poroelastic FWI 1811

Figure 7. Fréhet kernels in SH & P-SV for μ, ρs, ρf and φ: surface waves are involved. Geometry is the same as in Fig. 6.

Figure 8. Acquisition geometry for a shallow poroelastic inclusion model. Horizontal Y component for SH equations is considered as well.

main energy of K SH
μ distribute along the free surface. ρ f shows less effects from shear wave components, but Kρ f indicates ρ f is sensitive to

the slow-P wave modes. Similarly, K SH
φ and Kφ tell that φ takes response for shear waves but is also sensitive to P waves, especially the slow-P

wave. Since Rayleigh waves are coupled from compressional waves and shear waves in P-SV profile, φ also makes substantial contributions
to surface waves.

4.2 Synthetic examples of P-SV&SH PFWI for a shallow inclusion model

In this section, we perform reconstruction tests on a poroelastic inclusion model to validate the derived gradients (Appendix B) and give a
preliminary insight on the feasibility of PFWI for shallow seismic data. The inclusion model consists of poroelastic background media and a
circle porous anomaly in the centre. There are 10 sources and 75 receivers on the free surface. The forward wavefields are generated by Ricker
wavelet with the central frequency of 40 Hz in 0.12 s. The initial model parameters come from Table 1, and Fig. 8 shows the acquisition
geometry. A multistage strategy (10–20–40 Hz) is applied to avoid the cycle-skipping artifacts and a pre-conditioned steepest descent method
is adopted over the course of iterations. We aim to recover anomalies of every single parameter while keeping others remain the same as the
initial model, which is a homogeneous poroelastic background.

Figs 9 and 10 show a 1-D reconstruct model comparison from the middle log profile. On the basis of the derived kernels, the poroelastic
parameters are well recovered by P-SV/Rayleigh- and SH/Love-wave PFWI. In Fig. 9, Ks and Kf exhibit an over-fitting problem since they are
more sensitive to the long wavelength component, which makes less contribution to shallow seismic wavefields. Fig. 10 gives comparisons
of the recovered μ, ρs, ρ f and φ based on P-SV and SH equations. Especially, ρ f is better inverted in the P-SV profile, which demonstrates
ρ f can get extra benefits from compressional waves. Correspondingly, Fig. 11 exhibits the changes of the poroelastic inclusion model with
iterations, which show the convergence of the reconstructed model. In contrast with SH-wave data, the PFWI of Rayleigh-wave data usually
needs more iterations as the complexity of wavefields.

5 T R A D E - O F F A NA LY S I S

To prepare an approach for the multiparameter inversion in fluid-saturated poroelastic media, the similarity of the sensitivities of the data to
vary parameters needs to be investigated (Métivier et al. 2014). As derived in Section 4, the explicit expressions for kernels of the gradients
in P-SV and SH formats are given by eqs (B1)–(B11) in Appendix B. We perform a series of numerical tests on the gradients of model
parameters for the anomaly model in Fig. 8, and explore the correlations of their patterns. The acquisition and model parameters are the same
as in Section 4.2. The inclusion model parameters are changed individually, and corresponding results are exhibited in Figs 12–18.
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1812 T. Liu and T. Bohlen

Figure 9. PFWI of Rayleigh-wave data: 1-D logging profile in the middle of the true, initial and reconstructed models for λ, Ks and Kf.

Figure 10. PFWI of SH/Love- and P-SV/Rayleigh-wave data: 1-D logging profile in the middle of the true, initial and reconstructed models for μ, ρs, ρf and
φ.

According to the equations derived in Section 4, we know that the correlations between the gradients of different parameters can not
be eliminated under the assumption of Born approximation. Because the subsurface parameters are reconstructed simultaneously during the
multiparameter inversion, how to minimize the cross-talk issue and implement an applicable inversion strategy are difficult tasks. Unlike the
acoustic and elastic FWI, where fewer parameters can be handled flexibly with parametrizations, we seek to divide the poroelastic parameters
with low correlations into the same groups for multiparameter inversion. In this section, we vary the interference parameter of the anomaly
body at the same location in the inclusion model and cross-compare the corresponding influences between the gradient patterns of other
parameters. Although the values of the gradients depend on the magnitude of the related material parameters, the descent direction from the
gradients panels still can indicate the correlations. Figs 12–14 only present the correlations in P-SV, while Figs 15–18 display the comparison
results of the common parameters in P-SV and SH cases. To make clear evaluations, all the panels are scaled with their absolute maximum
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Time-domain poroelastic FWI 1813

Figure 11. Model misfit changes of the poroelastic inclusion model with iterations: corresponding to the results in Figs 9 and 10.

Figure 12. Gradient gallery in P-SV for correlation test in Section 5: {
λ, 
Ks ,
K f } → {Gλ, G Ks , G K f } involving Rayleigh waves. The model geometry
is shown in Fig. 8, and the parameters are listed in Table 1, which are the same as the followings.

values, which indicate the descent directions as well. To mitigate footprints from the sources and receivers, all the gradients are tapered by an
error function.

The location of the absolute extreme in gradient G is likely to be closer to the surface if the related parameter has more impact on the
surface waves. The key point of achieving good results by multiparameter inversion is to recover the parameters with less coherency. For
example, Fig. 12 shows a map from disturbance {
λ, 
Ks, 
Kf} in the anomaly to the gradients {Gλ, G Ks , G K f } obtained from the P-SV
poroelastic model. 
λ → G K f and 
Kf → Gλ indicate a strong coherency between λ and Kf, while the panels of 
λ → G Ks and 
Ks →
Gλ show fewer similarities. 
K f → G Ks and 
Ks → G K f are similar, but their descent directions are opposite. The results indicate that λ

and Ks will be better to be considered in a same group during multiparameter inversion, and {
λ, 
Kf} should make changes toward the
opposite direction of {
Ks} to achieve better recovery of the same anomalies.
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1814 T. Liu and T. Bohlen

Figure 13. Gradient gallery in P-SV for correlation test in Section 5: {
λ, 
Ks ,
K f } → {Gμ, Gρs , Gρ f , Gφ} involving Rayleigh waves.

Figure 14. Gradient gallery in P-SV for correlation test in Section 5: {
μ,
ρs ,
ρ f , 
φ} → {Gλ, G Ks , G K f } involving Rayleigh waves.

Figure 15. Gradient panel in SH & P-SV for cross-comparison: 
μ → {Gn, GSH
n }, n ∈ {μ, ρs , ρ f , φ}.
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Time-domain poroelastic FWI 1815

Figure 16. Gradient panel in SH & P-SV for cross-comparison: 
ρs → {Gn, GSH
n }, n ∈ {μ, ρs , ρ f , φ}.

Figure 17. Gradient panel in SH & P-SV for cross-comparison: 
ρ f → {Gn, GSH
n }, n ∈ {μ, ρs , ρ f , φ}.

Figure 18. Gradient panel in SH & P-SV for cross-comparison: 
φ → {Gn, GSH
n }, n ∈ {μ, ρs , ρ f , φ}.

Figs 13 and 14 exhibit the maps 
m → Gn, where m ∈ M and n ∈ N (M, N ⊆ {(λ, Ks, K f ), (μ, ρs, ρ f , φ)}, M �= N). By the cross-
comparison of Gn mapped from 
m, the gradients performing without concentrated descent direction at the location of the anomaly shows
fewer correlations between m and n. For instance, 
m → Gφ and 
φ → Gn indicate that porosity φ can raise cross-talk issues easily when
inverted together with m ∈ (λ, Ks, Kf). Besides, 
λ → G and 
Kf → G have similar patterns, and the result is consist with Fig. 12. Compared
to ρ f, (μ, ρs) have less coherency with (λ, Ks, Kf).

Figs 15–18 present the results of the cross comparison 
m: Gn(m, n ∈ {μ, ρs, ρ f, φ}) in both SH and P-SV cases, while Love and
Rayleigh waves exist separately. The gradient panels are shown consistently in P-SV and SH. In SH panels, 
μ → GSH

n (n ∈ {ρs, ρ f , φ}) and
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m → GSH
μ (m ∈ {ρs, ρ f , φ}) illustrate that μ is a harmless and essential parameter for multiparameter PFWI. The panels of 
ρs → Gn(n

∈ {μ, ρ f, φ}) and 
m → Gρs (m ∈ {μ, ρ f , φ}) show the correlations of gradients in P-SV are decreased compared to SH, which indicates it
is more realistic to invert ρs, μ and φ simultaneously in P-SV PFWI. Besides, Gρs and Gρ f look similar, and the descent direction of Gφ and
(Gρs , Gρ f ) is opposite. The analysis based on Figs 12–18 can provide insights into the parametrization of multiparameter PFWI.

6 C O N C LU S I O N S

We present a theoretical framework for TD poroelastic FWI, especially for shallow-seismic data. The shallow-seismic P-SV&SH poroelastic
wavefields are simulated numerically. Based upon Born approximation, we derived the single-scattering P-S&SH wave equations for the
fluid-saturated poroelastic media. The contributions of the single poroelastic parameters (P-SV: λ, μ, ρs, ρ f, Ks, Kf, φ; SH: μ, ρs, ρ f, φ) on the
shallow-seismic wavefields are discussed by comparing the corresponding scattered wavefields, respectively. With the help of the adjoint-state
method, the explicit formulations of the sensitivity kernels for different model parameters are derived by perturbation theory and Lagrange
augmented functional. The kernel galleries in P-SV&SH are used to further illustrate the sensitivities of the poroelastic parameters to different
wave components. Besides, we implement reconstruction tests on a poroelastic inclusion model to verify the accuracy of the derived kernels,
and the recovery ability of PFWI on P-SV/Rayleigh- and SH/Love-wave data is compared, respectively. As a preliminary preparation for
multiparameter FWI, we have also investigated the inter-parameter issues based on the descent direction in the P-SV&SH panels of gradients.

Similar to the elastic FWI, the results indicate that shear modulus μ and grain density ρs are mainly responsible for generating shear
waves. The fluid density ρ f, which is extracted from the overall density ρ, pays primary attention to the slow-P wave mode. λ, which also exists
in elastodynamic equations, and grain bulk modulus Ks has similar effects. In addition, fluid bulk modulus Kf and porosity φ mainly concern
with the slow-P wave mode. φ has effects on all the wave types but prefers compressional waves. According to the real subsurface condition,
it is necessary to classify the parameters with fewer correlations as a group to minimize the cross-talk issues during multiparameter PFWI.
For instance, λ and Kf are not suitable to invert together in PFWI of Rayleigh-wave data. ρs and ρ f can hardly be detected together in PFWI of
Love-wave data, but their correlation is minimized in P-SV equations. Since the effective velocities of the poroelastic subsurface are coupled
with different parameters (Appendix C), we can hardly obtain the updates on their gradients directly during the inversion. The feasibility and
reconstructability of multiparameter TD-PFWI will be discussed in subsequent publications, especially for the fluid information.
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A P P E N D I X A : F I R S T - O R D E R S C AT T E R I N G P U L S E S

The perturbated body can be treated as a point scatterer when the size of the scatterer is much smaller than the wavelength (Wu & Aki 1989).
Following the eqs (10)–(14), by using Born approximation, the explicit expressions of secondary sources δmδsm (eqs 28–29) for the remained
single perturbated parameter in the isotropic fluid-saturated porous media are given by eqs (A1)-(A6).

δsμ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2∂x 0 · · · 0 · · · 0 2

3Ks
∂t

0 0 2∂z 0 · · · 0 2
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∂z 0 ∂x 0 · · · 0
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3Ks

∂x 0 2M
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3K 2
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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δsρs = −Aρ f (1 − φ)
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δsK f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 · · · 0 φM

K 2
f
∂t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

(8×8)

u0
P−SV , (A5)

δsφ = Aρ f⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tρs∂t −Tρ f ∂t 0 · · · 0

(T − 1)ρs∂t −(T − 1)ρ f ∂t 0 · · ·
...

0 0 Tρs∂t −Tρ f ∂t 0 · · ·
0 0 (T − 1)ρs∂t −(T − 1)ρ f ∂t 0 · · · 0
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Aρ f φ

∂x 0 αM
Aρ f φ

∂z 0 · · · 0 αM
Aρ f φKs

∂t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

(8×8)

u0
P−SV . (A6)

Here, ρ1 = (1 − φ)ρs and ρ2 = φρ f represent the mass of solid and fluid per unit volume of aggregate, respectively (Biot 1956a). Besides,
the scattering sources for SH equations are also summarized as eqs (A7)–(A8).

δsSH
μ =

⎡⎢⎣∂x 0 0
∂z 0 0

⎤⎥⎦
︸ ︷︷ ︸

(3×3)

u0
SH , δsSH

φ = −Aρ f [(T − 1)ρ f − Tρs]

⎡⎢⎣∂t 0 0
⎤⎥⎦

︸ ︷︷ ︸
(3×3)

u0
SH . (A7)

δsSH
ρs

= −ATρ f (1 − φ)

⎡⎢⎣∂t 0 0
⎤⎥⎦

︸ ︷︷ ︸
(3×3)

u0
SH , δsSH

ρ f
= −A(T − 1)ρ2

⎡⎢⎣∂t 0 0
⎤⎥⎦

︸ ︷︷ ︸
(3×3)

u0
SH (A8)

A P P E N D I X B : S E N S I T I V I T Y K E R N E L S W I T H R E S P E C T T O I N D I V I D UA L
PA R A M E T E R S

Since the Fréchet or sensitivity kernels are the volumetric densities of Fréchet derivatives (Fichtner 2010), when the unknown variables in
the misfit function are the displacement differences, the explicit 2-D sensitivity kernels K in the direction δm are derived on the basis of the
eq. (33). Both the P-SV and SH equations are considered bellow.

For elastic modulus,

K λ = −
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0
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For shear modulus,

Kμ = −
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∂ux

∂x
+ ∂uz

∂z
+ 1

Ks
P

)]}
, (B2)

and

K SH
μ = −

∫ T

0
dt ATρ f

(
∂u∗

y

∂x

∂uy

∂x
+ ∂u∗

y

∂z

∂uy

∂z

)
. (B3)
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Time-domain poroelastic FWI 1819

For solid particle density,

K ρs = −
∫ T

0
dt Aρ f (1 − φ)

{
∂vx

∂t

[
T u∗

x + (T − 1)u f
x

∗]+ ∂vz

∂t

[
T u∗

z + (T − 1)u f
z

∗]} , (B4)

and

K SH
ρs

= −
∫ T

0
dt ATρ f (1 − φ)u∗

y

∂vy

∂t
. (B5)

For fluid density,

K ρ f = −
∫ T

0
dt

{
A (T − 1)

[
∂vx

∂t

(
ρ2u∗

x − ρ1u f
x

∗)+ ∂vz

∂t

(
ρ2u∗

z − ρ1u f
z

∗)]+ 1

ρ f

(
∂v f

x

∂t
u f

x
∗ + ∂v f

z

∂t
u f

z
∗
)}

, (B6)

and

K SH
ρ f

= −
∫ T

0
dt A(T − 1)ρ2u∗

y

∂vy

∂t
. (B7)

For solid bulk modulus,

K Ks =
∫ T

0
dt

1 − α

Ks

{
Aρ f P

[
T

(
∂u∗

x

∂x
+ ∂u∗

z

∂z

)
+ (T − 1)

(
∂u f ∗

x

∂x
+ ∂u f ∗

z

∂z

)]
+ M P∗

[
∂ux

∂x
+ ∂uz

∂z
+ 1 − 2α + φ

Ks (1 − α)
P

]}
. (B8)

For fluid bulk modulus,

K K f = −
∫ T

0
dt

φM

K 2
f

P P∗. (B9)

For porosity,

K φ =
∫ T

0
dt

{
−Aρ f

[(
ρ f

∂v f
x

∂t
− ρs

∂vx

∂t

) (
T u∗

x + (T − 1) u f
x

∗)+
(

ρ f
∂v f

z

∂t
− ρs

∂vz

∂t

) (
T u∗

z + (T − 1) u f
z

∗)]
− αM

φ
P∗
(

∂ux

∂x
+ ∂uz

∂z
+ 1

Ks
P

)}
, (B10)

and

K SH
φ = −

∫ T

0
dt Aρ f [(T − 1)ρ f − Tρs]u∗

y

∂vy

∂t
(B11)

Here u and u∗ represent the displacement in the forward system and adjoint system, respectively. It is worth to know that the Fréchet
kernels also depend on the model parametrization and the forward component applied in the calculation of the misfit function. Both the
components of the fluid phase in the forward and adjoint wavefields are vanished when the porosity is equal to zero, which supplies a way to
simplify the poroelastic media into an elastic and acoustic medium.

A P P E N D I X C : E F F E C T I V E V E L O C I T I E S

The parameters and formulations for the calculation of the velocities in the poroelastic media are summarized below (Biot & Willis 1957;
Dai et al. 1995). The definition of the parameters has already been explained in the main text.⎧⎪⎨⎪⎩

P = [(1 − φ)(α − φ) + φKd
K f

]M + 4
3 μ

Q = φM(α − φ)
R = φ2 M

, (C1)

⎧⎪⎨⎪⎩
A′ = T φρρ f − (−φρ f )2

B ′ = ρR + T φρ f P + 2φρ f Q
C ′ = P R − Q2

. (C2)

Then, the velocity of the fast compressional wave

V f p =
√

B ′2 + √
B ′2 − 4A′C ′

2A′ , (C3)
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1820 T. Liu and T. Bohlen

the velocity of the slow compressional wave

Vsp =
√

B ′2 − √
B ′2 − 4A′C ′

2A′ . (C4)

The fluid viscosity is absent in the non-dissipative case (η = 0) and then the shear wave velocity is (Deresiewicz 1960; Morency & Tromp
2008)

Vs =
√

μ

ρ − φρ f

T

. (C5) D
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