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Abstract—This paper proposes a solution to the state esti-
mation problem in gas networks using the distributed belief
propagation (BP) algorithm. Power system identification appli-
cations require precise and robust state estimatiors as well as
various sensor information. Compared to augmenting the power
system with a very large number of sensors, a limited number
of sensors and probabilistic graphical models can be used to
infer the system state and reduce hardware investments. A novel
BP algorithm propagates the pressure quantities at nodes in the
gas network based on pressure manometer signals and applies
a correction based on the information of neighboring nodes in
the fusion step by using additional supporting sensors. Finally,
the data fusion algorithm is demonstrated for a 14-node gas
distribution network based on real data. This paper presents a
novel algorithm aimed at tackling the traditional weighted least
squares method to validate the developed novel approach in order
to highlight the advantage of the distributed inference algorithm
over traditional methods.

Index Terms—Belief propagation (BP), data fusion, distribu-
tion network, gas, probabilistic graphical model (PGM), state
estimation (SE).

I. INTRODUCTION

Almost all approaches to state estimation (SE), a data
fusion problem, still rely heavily on observability of the
distribution network. With the rise of distributed renewable
energy generation and more complex heterogeneous sensor
networks, there has been a surge of interest in data fusion and
processing strategies for monitoring global system behavior.
This increased interest in the new distributed network com-
ponent is triggering a significant change in the overall energy
infrastructure by introducing new uncertainties and new vary-
ing operating conditions. In distribution networks, especially in
medium- and low-pressure networks, measurement equipment
is almost non-existent. Current solution techniques, such as
the Newton method, require many measurement equipments at
each node in the network to ensure safe operation and observ-
ability. Moreover, the alternative weighted least squares (WLS)
method, which is a traditional solution approach for the SE
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problem, leads to instability for very sparsely distributed mea-
surement configurations and requires the regularized weighted
least squares (RWLS) approach for robust SE. A solution to
the aforementioned problems is provided by belief propagation
(BP) algorithm and is represented by probabilistic graphical
models (PGMs). Due to its robustness, the BP algorithm allows
intelligent operation with low investments and can be applied
in networks with low number of measurements. The present
paper applies factor graphs in the SE problem, which are
realized by the distributed BP algorithm. The proposed BP
algorithm allows to use different types of measurements and
shows high robustness even for ill-conditioned systems.

The SE problem is generally solved by the maximum a
posteriori method using a distributed algorithm (sum-product
or max-product algorithms) in a BP approach, as demonstrated
in [1], [2] and [3]. There are few studies that solve the
SE problem using probabilistic inference approaches in an
electric power system. In the pioneering study [2], the BP
algorithm was, for the first time, applied to the distribution
networks to estimate the system state as a stochastic variable.
To bridge the gap between the traditional energy management
system (EMS) and modern microgrids that include distributed
energy sources, a real-time state estimator based on smart and
flexible solutions was employed in [3]. Here, historical data
and loads were implemented into the model. In particular, [2]
and [3] exhibited the use of factor graphs and linearization
techniques to realize the BP through a linear approximation
of the nonlinear functions. BP was applied to real-time SE
for the DC model in [4], while in [5], an extended DC model
that contributes to the establishment of BP in decentralized
electrical networks was analyzed. The potential of the BP
framework in energy networks was further expanded in [6].
It guarantees the same accuracy as the centralized algorithm
while retaining the advantages of the BP algorithm. Fusion of
heterogeneous measurement data was performed in [7], and
associated measurement models based on the BP were applied.

In the present work, BP methods are used to solve the
SE problem of highly nonlinear gas distribution networks.
In a gas distribution system, state variables represent the
pressure variables at the network nodes. In contrast to previous
applications, where BPs were considered for SE problems in



electrical networks only, this paper applies data fusion and
SE using BP in PGM-based gas distribution networks. To
verify the performance on a case study, the resulting SEs are
applied to a small test system based on real-world data, and
the accuracies of the estimation are compared.

II. SE ALGORITHM

This Section II has been organized as follows: In the first
Section II-A, the novel BP algorithm and general character-
istics of the WLS method are explained; the Section II-B
presents a discussion on the structure of the factor graphs
and the required information as well as the calculations of
the novel Gaussian belief propagation (GaBP) algorihtm; the
concluding Section II-C details the derivation of the pressure
model, the application of the pressure model to the mea-
surement functions along the pipelines and the associated
assumptions required to solve the SE problem.

A. SE in Gas Networks

Bayesian fusion [1] is the basic theory used for the consis-
tent fusion of many uncertain data sources:

p(x|z)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(z|x) ·

Prior︷︸︸︷
p(x)

p(z)︸︷︷︸
Normalization constant

(1)

It consists of the a posteriori probability, which describes an
unknown state x, given measurements z, likelihood function,
a priori probability p(x) and normalization constant p(z).
The normalization constant for the accumulated conditional
probability of the a posteriori probability over all outcomes
of z normalizes to one.

The measurement model of a sensor describes the relation-
ship of state variables x with measurements z by a nonlinear
mapping:

z = h(x) + ϵ (2)

where vector x takes n system states as system state vector
x = [x1, . . . , xn]

T ; the measurement function is a general
nonlinear known function h(x) = [h1(x), . . . , hk(x)]

T , which
is used to denote the measurement vector z = [z1, . . . , zk]

T

for k measurements; and the zero-mean uncorrelated Gaussian
measurement error vector is represented by ϵ = [ϵ1, . . . , ϵk]

T

in the SE problem. In general, the SE problem is an overde-
termined system, leading to k > n [8]. The goal of the SE
algorithm is to find the system state vector x by using the
network topology, network parameters and measurements z to
determine the best estimate for the unknown state variable x.

Assume that a measurement dataset M of different mea-
surements z = (z1, . . . , zk)

T or Mi ∈ M is given in the
form of a measurement vector z, which is obtained from
the measurement function hi(x) and the error ϵi for i-th
measurement i ∈ k = 1, . . . , k. All system variables are
initially defined by their mean µ and variance σ2 values.
For variables that are not part of the measurement set M,
this variance is high, since no information about their actual

state is present. A solution to the WLS problem is given for
the case when the diagonal weighting matrix W is equiv-
alent to the inverse covariance matrix of the sensors, i.e.,
W = diag

(
1

σ2
z1

, . . . , 1
σ2
zk

)
!
= Σ−1 to the WLS method.

WLS is equal to the maximum likelihood estimation (MLE)
and can be expressed as follows:

x̂ = max
x

k∏
i=1

N
(
zi|x, σ2

zi

)
︸ ︷︷ ︸

MLE

= min
x

k∑
i=1

[zi − hi(x)]
2

σ2
zi︸ ︷︷ ︸

WLS

(3)

B. Factor Graphs and BP Algorithm

The SE problem can be described analogously by us-
ing factor graphs, and it can be calculated using the BP
algorithm. The goal of the BP algorithm is to efficiently
compute the marginal values in a system of random variables
x = [x1, . . . , xn]

T described by the composite probabilities
p(x|z). Assuming that the function p(x|z) can be factorized
to a product of local functions

p(x|z) =
k∏

i=1

ψi(Vi) (4)

with Vi ⊆ {x1, . . . , xn}, the estimation problem can be
solved efficiently with the BP algorithm. A factor graph is
formed in the first step, which describes a bipartite graph.
The structure of the factor graph comprises the set of fac-
tor nodes F = {f1, . . . , fk}, where each factor node fi
represents a local function ψi(Vi), and the set of variable
nodes V = {x1, . . . , xn}. The factor node fi connects to
the variable node xs only if each x ∈ Vi [9]. Hence, a factor
graph represents a graphical model that allows graph-based
representation of probability density functions.

1) Factor graph construction: For the purpose of clarity,
the important components of a factor graph model are ex-
plained subsequently. The system state variable of the gas
networks is given by x = pT . The set of factor nodes
F = {f1, . . . , fk} is defined by the set of measurements M,
which includes the measurement functions of the gas networks.
Each factor node fi ∈ F is associated with a subset of the
variable nodes xs ∈ V if and only if the state variable xs has
a probabilistic dependence on the corresponding measurement
functions hs(xs). The number of variable nodes is described
by state variables of gas networks V = {p1, . . . , pn} ≡
{x1, . . . , xn}, the values of which are to be estimated but are
not always directly available or observable. In this process,
the subset of variable nodes associated with a given factor
node fi is denoted by Vi ⊆ V [9]. Bipartite linkage patterns
of a factor graph decomposes the factorizability structure of
the whole probabilistic model, so that all factor nodes fi ∈ F
are independent of each other.

The i-th factor nodes or local functions ψi(Vi) are defined
as follows:

ψi(Vi) = Z· exp−1

2
· [(z− h(Vi))

TΣ(z− h(Vi)] (5)



This expression represents the probability of obtaining a mea-
surement vector z from the distributed sensor. The factor node
fi is a function of the set of variables involved Vi and, thus,
a subset of the total state variables V . The function is in the
form of a quadratic exponential function with a normalization
factor Z to normalize the probability distribution, the value
of which need not be calculated. The measurement zi defines
local likelihood functions N (zi|x, σ2

zi) resp. L(zi|x), which
in turn are equal to the local functions ψi(Vi) associated with
factor nodes fi. The number of variable nodes is defined by
the state variables of the gas network x = p. Consequently,
the multivariate normal distribution over all variable nodes is
the product of all factor nodes in (4).

In summary, the following three information properties are
necessary for the construction of a Gaussian factor graph: a)
the measurement functions h(Vi) that depend on the local
state variables Vi, b) the measurements z from the distributed
sensors and c) the symmetric covariance matrix Σ of the
measurements z.

2) BP algorithm: The BP algorithm efficiently computes
the marginal distribution of the state variables by passing two
types of message operations along the factor graph edges: i)
message type µxs→fi(xs) from a variable node xs ∈ V to a
factor node fi ∈ F and ii) message type µfi→xs(xs) from a
factor node fi ∈ F to a variable node xs ∈ V . Under the
assumption of Gaussian message types (consisting of mean
and variance), the algorithm is called GaBP.

Message type µxs→fi(xs) from a variable node to a factor
node can be written as:

µxs→fi(xs) =
∏

fa∈F\fi

µfa→xs(xs) (6)

and is equivalent to the product of all incoming messages
from factor nodes to variable nodes that arrive at all other
adjacent edges. It should be noted that Fs\fi describes the
set of all adjacent factor nodes of variable node xs, where
fi is excluded from the product. Moreover, each message
µfa→xs(xs) describes a function of the variable xs.
The message in (6) is proportional to a multivariate normal
distribution:

µxs→fi(xs) ∝ N (xs|zxs→fi , σ
2
xs→fi) (7)

with mean zxs→fi and variance σ2
xs→fi

calculated as:

zxs→fi =

 ∑
fa∈Fs\fi

zfa→xs

σ2
fa→xs

σ2
xs→fi (8a)

1

σ2
xs→fi

=
∑

fa∈Fs\fi

1

σ2
fa→xs

(8b)

After the variable node xs receives the messages from all adja-
cent factor nodes from the set Fs\fi, it evaluates the message
µxs→fi(xs) according to (8b) and sends the parameters of the
normal distribution to the factor node fi.

Message type µfi→xs
(xs) from a factor node fi to a variable

node xs is defined as a product of all incoming messages from

the variable node to factor node, arriving from other incident
edges, multiplied by the function ψi(Vi) associated with the
factor node fi. Marginalization over the number of connected
variable nodes L or the number of nodes connected to the
incoming messages is required as well:

µfi→xs(xs) =

∫
xl

. . .

∫
xL︸ ︷︷ ︸

Marginalization

ψi(Xi)
∏

xb∈Vi\xs

(µxb→fi(xb) · dxb)

(9)

where Vi\xs represents the set of all adjoint variable nodes
of xs, and the variable node xs is excluded from the product.
Due to the linearity of the measurement functions, closed-
form expressions for these messages are possible and follow
a normal distribution form:

µfi→xs
(xs) ∝ N (xs|zfi→xs

, σ2
fi→xs

) (10)

This message type can only be calculated if all incom-
ing variable-to-factor messages, i.e., the node pressures, are
known. That can be achieved by a synchronous scheduling of
the messages. Assuming that there are Gaussian messages in
the factor nodes, the corresponding Gaussian function of the
factor node fi is given as

N (zi|xs, xl, . . . , xL, σ2
zi) ∝

exp
{
[zi − hi(xs, xl, . . . , xL)]

2

2 · σ2
zi

}
(11)

where hi(x) represents the linear measurement functions.
Measurements are processed by linearizing the measurement
function. The message types as well as the marginalization
can be calculated according to (8b), (12b), and (15b).

Message type µfi→xs
(xs) from the factor node fi to the

variable node xs is represented by the normal distribution
function in (10). The mean zfi→xs

and the variance σ2
fi→xs

of the message type are calculated as

zfi→xs
=

1

Cxs

zi − ∑
xb∈Vi\xs

Cxb
zxb→fi

 (12a)

σ2
fi→xs

=
1

C2
xs

σ2
zi −

∑
xb∈Vi\xs

C2
xb
σ2
xb→fi

 (12b)

where coefficients Cxs
with xs ∈ Vi describe the Jacobian

elements of the measurement function associated with the
factor node fi:

Cxs
=
∂hi(xs, xl, . . . , xL)

∂xs
(13)

After the factor node fi receives the messages from all
neighboring variable nodes from the set Vi\xs, it evaluates
the message µfi→xs(xs) according to (12b) and sends the
parameters of the normal distribution to the variable node xs.

Marginal inference of the state variable can be written as

p(xs) ∝ N (xs|x̂s, σ̂2
xs
) (14)



where mean x̂s and variance σ̂2
xs

can be calculated using the
following equations:

x̂s =

 ∑
fc∈Fs

zfc→xs

σ2
fc→xs

σ2
xs

(15a)

1

σ̂2
xs

=
∑

fc∈Fs

1

σ2
fc→xs

(15b)

Finally, the mean x̂s is expressed as the estimated value of
the state variable xs, and its uncertainty is expressed by the
variance σ̂2

xs
.

C. Gas Network SE

A model for the pressure drop along a pipeline in gas
networks is derived using the Darcy–Weisbach equation.
Moreover, a measurement model based on the gas model is
derived using the measurement functions and equations of the
gas network state estimator. While the measurement function
represents the physical gas laws of the pipe hydraulics, it also
connects the measurement quantity and the state variable x.

A gas network with arbitrary topologies is given as an graph
G = (V, E) with a set of nodes V = {1, . . . , n} with n ∈
N+ and a set of edges E ⊆ V × V describes the edges E =
{1, . . . ,m} with m ∈ N+. The system state vector is given
by

x = [p1, . . . , pn]
T (16)

The pressure drop ∆pi,j along a pipeline from node i to node
j can be calculated using the Darcy–Weisbach equation given
by [10]:

|∆pij | = |pi − pj | = Rij(λ, Z) V̇
2
ij (17)

where V̇ij is the volume flow and the pipe resistance Rij

can be described by the dimensionless pipe friction coefficient
λ and the compressibility factor Z. Given the initial volume
flows V̇ij and input data for gas networks, we have sufficient
information to compute the pipe resistance [11]:

Rij(λ, Z) =
16 · λ · pn · ρn · Zm · Tm

π2 · d5 · Tn
(18)

where d is the pipe diameter, ρn is the normalized fluid density,
pn denotes the normalized pressures, Tn is the normalized
temperature, Zm represents the average compressibility factor
and Tm is the average temperature between nodes i and j.
These calculated pipe resistances are fixed parameters for the
SE problem. The pipe friction coefficient λ can be determined
using the Colebrook–White equation described in [11] and
[12]. Due to its implicit nature, it can only be solved iteratively
based on (17). First, the gas volume flow rates can be solved
using (17) as

V̇ij = sgn(pi − pj)

√
|pi − pj |
Rij

(19)

For pi ≥ pj , the edge volume flow is defined as a positive
value including zero. For pi < pj , the edge volume flow has

negative values. Equation (19) provides the fundamental basis
for the measurement function describing the measurements of
pipe flows and edge volume flows in gas networks. The gas
model includes a total of three measurement functions:

• Pressure measurement function at node i:

hpi
(·) = pi (20)

• Volume flow measurement function at edge from i to j:

hV̇ij
(·) = sgn(pi − pj) ·

√
|pi − pj |
Rij

(21)

• Volume flow injection or extraction measurement func-
tion derived using Kirchhoff’s first law at each node i:

hV̇i
(·) = −

∑
k∈Nb(i)

sgn(pi − pk) ·

√
|pi − pk|
Rik

(22)

where Nb(i) is a set of adjacent nodes of node i, and k
represents the adjacent nodes.

In conclusion, the measurement model presented in (21) and
(22) behaves nonlinearly. According to [1] and [13], this leads
to a restriction in the GaBP algorithm and, therefore, cannot
be considered in the framework of linear Gaussian laws. In
general, the nonlinear measurement function is developed in
a Taylor series and terminated after the linear term:

h̃(x) = h(x)
∣∣∣
x=xOP

+
∂h(x)

∂x

∣∣∣
x=xOP

(x− xOP) (23)

It is assumed that the nonlinear measurement function h(x)
have a continuous character at least around the operating points
xOP for suitable linearization [13]. Measurement data of the
gas model M = {MV̇ij

,MV̇i
,Mpi

} contain the edge volume
flow MV̇ij

(i, j) ∈ E and the node volume inflow or outflow
MV̇i

i ∈ V obtained from indirect pressure measurements such
as flow meters. The node pressure Mpi

i ∈ V is obtained from
direct pressure measurements such as manometers.

In the measurement model described in (2), an edge volume
flow measurement denoted by zV̇ij

flows along the pipelines,
zV̇i

is the node volume flow injection or extraction (feeding
or loads) and zpi

is the node pressure at the node. The
measurement vectors can be represented to derive the linear
measurement model as follows:zV̇ij

zV̇i

zpi


︸ ︷︷ ︸

z:=

=

HV̇ij

HV̇i

Hpi


︸ ︷︷ ︸

H:=

[
x
]
+

ϵV̇ij

ϵV̇i

ϵpi


︸ ︷︷ ︸

ϵ:=

(24)

where ϵ is the combined measurement error vector of the
different measurement equations, and the measurement matrix
H is obtained by calculating the Jacobian matrix from the
measurement functions around the operating point at x = xOP.
Due to the assumption of uncorrelated measurement errors,
the covariance matrix of measurement uncertainty Σ ∈ Rk×n

takes the form of a diagonal matrix in which only the values
of the main diagonals are non-zero.



III. SIMULATION

This section presents the simulation results for the SE of
an benchmark gas distribution network. First, the benchmark
network and the available data are described. For the evalua-
tion of the SE methods, three measurement configurations are
presented for the benchmark network. Then, an error metric
is presented to quantify the SE accuracy. Subsequently, the
SE performances are analyzed and evaluated based on the
measurement configurations.

A. Benchmark Network and Available Data

The performance of the proposed GaBP algorithm is eval-
uated based on a 14-node benchmark meshed gas distribution
network. A ground truth is computed based on the network
input data listed in [11]. Simulations of approved open-source
network calculation software packages such as pandapipes
[14] are used to provide the needed ground truth data. Since
the measurements in reality mostly consist of noisy data, the
synthetic measurement data from the simulation are perturbed
with a simulated, normally distributed measurement error of
the sensors. The results of the selected algorithm are then
compared with the ground truth value. For each network node
i, the ground truth value of the state variable is denoted by
xi,true. The system operates at low pressure (pN = 3000 Pa).

B. Measurement Setup for Benchmark Network

For the evaluation of the estimation algorithm, sensor
placement scenarios for the 14-node benchmark network are
presented in Table I. The first two scenarios contain a number
of measurements often proven in practice. This number is
equal to twice the number of unknown target variables, so the
measurement system has sufficient measurements to provide
good estimates. The third configuration represents an ill-
conditioned measurement configuration. The measurements
in the three configurations are divided into two categories
as shown in Fig. 1: direct measurement information at the
node and indirect measurement information at the node and
at the edges of the gas network. Direct measurements at the
node are associated with the virtual, direct and slack pressure
measurements at the node; these are shown with blue, green
and yellow circles, respectively. The triangles denote indirect
injection measurements at the corresponding node. The orange
triangles represent an available indirect injection measurement,
while the blue triangles represent a virtual injection measure-
ment. Futhermore, squares show volume flow measurements
at the edges as indirect measurements, with the blue squares
representing the virtual measurements and the orange ones the
available measurements.

TABLE I
OVERVIEW OF MEASUREMENT CONFIGURATION FOR SE EVALUATION

Measurement configuration 1 2 3
Direct measurements 14 7 1

Indirect measurements 14 21 16
Total 28 28 17

0 1

2

3 4 5

6

7

8

910

11

12 13

14

Pressure Measurement

Volume Flow Injection or Extraction Measurement

Volume Flow Measurement

Fig. 1. 14-node network in measurement configuration 2.

C. Performance Evaluation

The following standard deviations refer to the ground truth
values of the related variables. The standard deviations be-
tween the measurements at the node of the gas network are
given as σ1 for the pressure measurement and σ2 for the
volume flow measurement at the edges and nodes. In the gas
network, the pressure at the slack node is controlled constantly
by a pressure regulator. Hence, the pressure values are consid-
ered to be precise, leading to a very low standard deviation of
σ3. External networks represent the higher pressure network
level connection and are modeled as slack nodes in both
the SE and the pipe flow calculation. Since the amount of
smart measurement points is limited, virtual measurements are
introduced to all types of measurements, which use no prior
information and take the nominal values for pressures. The val-
ues of these measurements from the nominal operating points
at no a priori knowledge come with a large standard deviation
σ4. Randomly generated normally distributed measurement
errors are estimated with the set of standard deviations σ =
[σ1, σ2, σ3, σ4] =

{
0.012, 0.01, 0.013, 10.06

}
[p.u.] added to

the raw data, resulting in noisy measurements. The choice of
standard deviations illustrates that the true measurements are
subject to only small uncertainties. To obtain a state estimate
from the direct, indirect and virtual measurements, the loopy
GaBP algorithm from Section II-B is applied to a linear gas
model according to Section II-C. A loopy GaBP converges via
a linear model to a local fixed point [15], which is a solution
of an equivalent WLS problem according to (3) from section
II-A. To obtain different accuracies, the SE algorithms are
calculated using the mean relative estimation error per network
node i:

∆xrel =
1

n

n∑
i=1

|∆xi,se − xi,true|
xi,true

(25)

where xi,se is the SE solution and xi,true represents the ground
truth values.



D. State Estimation Results

The SE problem is solved using the GaBP algorithm in a
PGM-based gas network. The data fusion algorithm is used to
combine indirectly measured flow rates at the pipelines and
the direct measured pressure values at the nodes. This helps
obtain a pressure estimate for the gas network nodes. For the
verification of the GaBP algorithm, the conventional WLS
method is compared with the first and second measurement
configurations.
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Fig. 2. Mean relative error estimated with GaBP (blue), WLS (orange) and
RWLS (red) in measurement configurations 1, 2 and 3 (subfigures a, b and
c).

As indicated in the legend, the blue line represents the GaBP
estimated values, the orange ones the WLS estimated values,
and the red ones the RWLS estimated values. The results
show that both GaBP and WLS methods provide equivalent
results for an identical measurement configuration, which are
confirmed in theory by the common quality criteria, as evident
in Fig. 2. The mean relative error per node is ≈ 0.01%
of xi,true. An accurate estimate is obtained with a sufficient
number of measurements. The second measurement scenario
also highlights that a good solution can be obtained if the
number of measured node pressures is reduced by half. The
mean relative error per node increases to ≈ 0.50% for

the GaBP and WLS estimates. Since the number of direct
measurements in Table I is reduced by half, from 14 to 7,
the third measurement scenario also confirms the robustness
of the pressure estimates of the BP algorithm implemented in
this work. In ill-conditioned measurement matrix, the RWLS
approach accepts information bias to benefit from a similar
GaBP solution, while the conventional WLS method without
regularization requires matrix inversion.

IV. CONCLUSION AND OUTLOOK

The paper addresses the SE problem in PGM-based gas
networks using the BP algorithm. The proposed BP algorithm
provides the same solution as the conventional WLS method;
this is empirically shown by applying both methods on a
benchmark network with a common performance criteria.
Consequently, the application range and robustness of the SE
solution using the BP framework can be increased. Therefore,
the proposed SE solution is suitable for distribution networks.
For future work, we plan to extend the proposed algorithm for
multimodal energy networks. This may be of interest for the
SE related to coupled networks that are largely equipped with
smart meters.
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