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Abstract 
 
The increasing global demand for high-quality and low-cost battery electrodes poses 
major challenges for battery cell production. As mechanical defects on the electrode 
sheets have an impact on the cell performance and their lifetime, inline quality control 
during electrode production is of high importance. Correlation of detected defects with 
process parameters provides the basis for optimization of the production process and 
thus enables long-term reduction of reject rates, shortening of the production ramp-up 
phase, and maximization of equipment availability. To enable automatic detection of 
visually detectable defects on electrode sheets passing through the process steps at 
a speed of 9 m/s, a You-Only-Look-Once architecture (YOLO architecture) for the 
identification of visual detectable defects on coated electrode sheets is demonstrated 
within this work. The ability of the quality assurance (QA) system developed here to 
detect mechanical defects in real time is validated by an exemplary integration of the 
architecture into the electrode manufacturing process chain at the Battery Lab Factory 
Braunschweig. 
 
Introduction 
 
The demand for electrical energy is subject to continuous growth1. In this context, 
energy storage systems such as battery cells are becoming increasingly relevant. 
High-quality cells at the lowest possible cost represent one of the central challenges 
of battery cell production. One way to reduce manufacturing costs is to improve the 
production processes using digital methods10. In this term reliable production facilities 
that have appropriate quality assurance systems are particularly desirable. Within this 
work, the process for manufacturing electrode sheets for lithium-ion battery cells, a 
widely used and established energy storage system, is considered. The transferability 



of insights generated for this chemistry should however also extend to any other cell 
chemistry like Na- or Mg-ion batteries. The electrode manufacturing process 
considered herein includes four production steps, which are shown in figure 1. As the 
initial steps of the battery cell production, these first production steps have far-reaching 
effects on the battery performance and its lifetime4 and are thus quality-determining. 
In order to avoid cascading effects in the further production steps, early-stage defect 
identification is extremely important to improve the electrode and manufacturing 
quality2,3. Since the coating and calendering process account for approx. 22% of the 
total cost of electrode production, there is great potential for cost reduction in 
optimizing these processes5,6,8. In particular, the coating and calendering process may 
cause mechanical electrode defects that are visually detectable. Typical effects due 
to the coating effect4 (including drying) include agglomerations, bubbles/pinholes, 
cracks or impurities4,11. Electrode handling between process steps can also cause 
scratches on the electrode sheets. Last, the compaction of the electrode sheets by the 
calendering process leads to wrinkles and electrode deformations7,8,12. Manual 
identification of these defects on the surface of electrodes is a very time-consuming, 
error-prone, inefficient, expensive and lengthy process9. Deep learning approaches 
offer a promising methodology for automated detection of mechanical defects and 
deformations of the electrode. 
 
 
 
Deep learning has been widely used in different areas such as computer vision13 , 
virtual assistants14, medicine and pharmaceuticals15, and retail16. It17 is a member of 
machine learning methods that use multiple latent layers to discover potential 
underlying patterns and extract higher level features from data. Convolutional neural 
networks18 (CNN) are a type of artificial neural network (ANN) which can accept 
images as input and reduce the complex preprocessing. Due to the large, complex, 
and parallel computation carried out by CNN, the central processing unit (CPU) takes 
a long time to complete the training process. However, the availability of graphical 
processing units (GPU) and specialized computing hardware accelerates the 
processing required for training the deep CNNs and establishes the superiority on 
many complex computer vision tasks such as autonomous driving19, and on the fly 
object detection20 in many areas. Over the past few years, many architectures of CNN 
have been developed, such as LaNet (1998), AlexNet (2012), GoogleNet (2014), VGG 
(2014), and ResNet (2015), which have significantly reduced the error in the 
benchmark ImageNet Large Scale Visual Recognition Challenge 21,22. 
The challenge in defect detection in battery electrode manufacturing is that there are 
relatively few training examples with that one needs to teach the model a specific 
shape and the high speed of the electrodes rendering any human in the loop 
inefficient. 
Deep learning based automatic object detection algorithms have already proved their 
significance in many areas.  Yanfen et al.19 proposed a vision-based system to detect 
various objects and to predict the intention of pedestrians for autonomous driving. 
Baloni et al.23 introduced a deep convolutional neural network (DCNN) detection 



method to identify hydrocephalus, a disease found in the central nervous system and 
requires an early-stage treatment. For pharmaceutical products, Kandpal et al.24 
summarized the application of hyper spectroscopy, vibrational spectroscopy (Raman, 
FTIR, IR)25, infrared26, and other spectroscopy techniques. Wen et al.7 performed 
deep learning based image analysis to identify defects (cracks and pores) in 3D 
metallic additive manufacturing parts. Oliveira et al27 developed an entropy and image 
dynamic thresholding method for automatic identification and classification of the 
cracks (horizontal, vertical, miscellaneous or no cracks) on the road. The authors28,29 
reviewed the application of defect detection methods used in the fabric production 
industry. Therefore, in this paper we studied the application of automatic defect 
detection techniques in the electrode manufacturing production process. 
 

 
 
Figure 1: Schematic view of the steps in electrode production30. The first step in 
electrode manufacturing is slurry mixing where the raw active material is mixed with 
binder, solvent, and other additives. Coating and drying is the process of dispersing 
the slurry onto the aluminium (cathode) and copper (anode) metal foils and drying 
the coated material to evaporate the solvents. In the calendering step the coated 
material is pressed onto the metal foil to provide the consistent thickness, porosity 
and adhesion. Notching is the step in which individual electrode sheets are cut out of 
the calendared electrode coil into the final shape for the battery cell. 

 
 
In Figure 1 a schematic diagram of the electrode production workflow is shown30. It is 
necessary to reduce or eliminate the defects such as agglomerates, bubbles, and 
scratches to produce good quality electrodes8. Agglomerates/blisters are primarily 
caused by inhomogeneities in the slurry. These inhomogeneities are caused, for 
example, by insufficient mixing times. In addition, agglomerates may form due to 
insufficient mixing of the powdered active material. Bubbles can be caused by air 
inclusions in the mixing process in combination with a missing degassing step.  
Furthermore, deviations caused e.g. due to excessive coating rates8 or insufficient 
slurry feed rates during coating lead to bubbles and missing spots.  Cracks may appear 
after the drying process due to the handling of the electrodes and the winding and 
unwinding between the process steps of the electrode production. 

In order to gather the data for object detection algorithm, a fast and precise Cognex 
camera is placed on the calendering machine to take the pictures of the produced 
electrode at a certain interval.  
 



 

Figure 2: Exemplary images of defective electrodes captured by Cognex camera 
placed on the coating machine: a) a coarse accumulation of active material on the 
electrode surface is referred to as “agglomerate”; b) a hole on the electrode surface is 
called “bubble” or “pinhole”, c) the active material is coated on the metal foil and the 
foil is not a part of the electrode, therefore, the left and right side of the electrode is 
also considered as a defect and labelled as “foil”. The start and end part of the 
electrode also contains foil ; d) a line on the electrode surface is annotated as 
“scratch”. The lines are created to separate the images and the colors are added to 
distinguish each defect class, i.e. each category has 4 images.  
 
The selected deep learning model to identify defects and draw bounding boxes around 
the defects along with the prediction probability and labels is YOLOv531 , which is the 
fifth version (latest) of the popular YOLO32 (You Only Look Once) CNN family. The 
original YOLO model was developed in 2015 and was the first object detection model 
to draw bounding boxes around the objects and identify the class labels. As illustrated 
in Figure 3, YOLOv5 is a single stage object detector that requires only a single pass 
through a neural network during training to predict almost all “similar” objects present 
in an image or video. YOLOv5 can detect objects with very high precision. While 
training the model on COCO (Common objects in context) dataset33 (a popular 
computer vision dataset of labelled images with  80 different objects), it obtained 0.007 
seconds per image (~140 frames per second) inference time. This makes us confident 
that the application of YOLOv5 for defect detection could be directly applied in real 
production systems.   A successful implementation of this technique could also allow 
for the implementation of a near real time feedback loop to find optimal coating settings 
for defect free electrodes.  
 



 
Figure 3: The architecture of YOLO32 is based on  a) model backbone, b) model neck 
and c) model head. a) Model backbone extracts the important features from the given 
input image. YOLOv531 uses CSPNet (Cross Stage Partial Networks) as a backbone. 
b) Model neck generates the feature pyramids which helps the model to identify the 
unseen objects effectively. The common feature pyramid techniques are FPN (Feature 
Pyramid Network), BiFPN (Bi-directional Feature Pyramid Network), PANet (Path 
Aggregation Network), etc. YOLOv5 uses PANet as a neck to get a feature pyramid. 
c) Model head performs the final object detection part. The final output vector consists 
of bounding boxes, class probabilities, and object labels. 

 

 

Methods 

The process of defect detection is divided into three steps: (i) data collection i.e. 
(collecting the electrode images that include agglomerates, bubbles, foil, and 
scratches, (ii) image annotation i.e. (manually drawing bounding boxes around 
selected defects and assigning of the class labels, (iii) model training. on custom 
dataset (train the YOLOv5 model on the labelled images. 

The infrastructure of eLab at RWTH Aachen University was used to generate 
experimental data. The machines used for anode production at PEM at RWTH 
University were an Eirich EL5 intensive Mixer and a coating machine from Buerkle 
Process Technologies which is equipped with a precision slot die unit. The coating 
speed during the coating trials was set to 1.0 m/min at a convection drying temperature 
of 100°C (chamber 1) and 80°C (chamber 2). The web tension is set via the winding 
unit with servo drive (counter roll with asynchronous drive). A Cognex Camera 
integrated in the Buerkle coating machine was used to take images of the dried 
electrode.  These images were later used for training and validation. 



Typical defects that occur in electrode production such as bubbles that lead to pinholes 
or agglomerates were introduced intentionally. Agglomerates, for example, are 
favoured by a shortened dry mixing phase. If agglomerates were detected on the slot 
die during the coating trials, they have been partially removed manually. Therefore, 
the coating images represent an isolated example and are not representative of a 
commenced series production. Therefore, the coating images represent an isolated 
example and are not representative of an commenced series production. 

A total of 882 optical photographs of electrodes were taken from the Cognex camera 
placed on the coating machine. Figure 2 shows four types of defects in some images, 
which were identified by expert analysis: agglomerate, bubble, foil, and scratch.  Some 
of the images contain a large number of defects while most are defect free others have 
only metal foil on both sides of the electrode. There are a variety of paid and free 
image annotation softwares34 such as V7, Lebelbox, ScaleAI, LabelMe, LabelImg, etc. 
We used the LabelMe35 tool to draw the bounding boxes around the defects and to 
give the class labels which are then used to train the YOLOv5 model. The labels are 
stored in a .yaml file with the same name and in the same directory where the images 
are stored. Each .yaml file contains the class label, coordinates of the bounding box, 
height, and width for the corresponding image. 
 
The YOLOv5 GitHub repository36 was cloned to the local computer equipped with 
Windows 10 Pro operating system, CPU AMD Ryzen Threadripper PRO 3975WX 32-
Cores @3.50 GHz, GPU NVIDIA RTX A6000 and 128 GB RAM, CUDA 11.2 and 
CUDNN 8.1.1 to accelerate the GPU computing. All the dependencies were installed 
from the requirements.txt file. For the training purpose, a train_data folder was created 
where all the images with their respective labels were stored. The data is splitted into 
two parts, 80% of the data was assigned to the training set and the remaining 20% 
was assigned to the validation set. As YOLOv5 is trained on the COCO dataset, a 
custom configuration file is generated to store the path of training data and validation 
data along with the number of classes and class labels. The model was trained on the 
following parameters: image_size=1280, batch_size=64 (number of images which will 
be processed in one batch), subdivision=16 (number of mini batches in one batch), 
optimizer=SGD (stochastic gradient descent), lr0=0.01 (initial learning rate), lrf=0.1 
(final OneCycleLR learning rate), scale=0.5 (scales the image contents while keeping 
the image size constant), epochs=500 (number of iterations). The best weights 
observed in epoch 174, the training process stopped after the 274th epoch as there 
was no improvement in the last 100 epochs. The best weights were autosaved in the 
runs folder inside the yolo working directory for further validation. These weights were 
used to test the performance of the model on the test data. The model was  trained on 
80% of the data and tested on the remaining 20% of the data. The best weights after 
the training were stored into the yolo working directory to predict the defects on the 
new unseen data.  
 

 



Results & Discussion 
 
 
 
Figure 4 shows three different types of loss plots, precision, recall, and mean average 
precision (mAP) plots for the training and validation set generated during the training 
of the YOLOv5 model. The box-loss plot indicates the performance of the model in 
terms of locating the bounding box around the defect. This measure examines the 
potential competency of the model to predict the center of the bounding boxes and 
determines how well the bounding box covers the defect. In the beginning when the 
training started, the box-loss was 0.11 and it was reduced to 0.01 after training (after 
around 280 epochs) for the training set. The loss for validations set was also reduced 
by around 80% (from 0.10 to 0.02) after 280 steps. The obj-loss plot is significantly a 
measure of the likelihood that a defect is present in the predicted bounding box. If the 
obj-loss is low, it means that the predicted bounding box contains a defect with higher 
probability. The recorded value of obj-loss after 280 epochs was 0.02 and 0.09 with a 
decrease by around 76% and 49% for the training and validation sets. The cls-loss 
plot represents how efficiently the model can predict the class label of a defect. The 
model performs pretty well  in terms of predicting the correct class labels. The model 
achieved 0.00036 and 0.00033 cls-loss for training and validation sets respectively 
which is considerably less. 
 
The precision and recall are relevance based performance measures for a supervised 
learning model. Precision is the ratio of accurately predicted labels to the all predicted 
labels while recall is the ratio of accurately predicted labels to all the correct labels. 
The precision and recall of the model is 88% and 84% respectively which indicates the 
good performance. Mean average precision (mAP) is a measure to evaluate the 
accuracy of object detection models. It compares the actual bounding box to the 
predicted one and generates a score. The model achieved 88% mAP for all the classes 
combined, therefore it is significantly precise in its detections. The mAP for individual 
classes is: 65% for agglomerates, 98% for bubbles, 99% for foil, and 90% for 
scratches. As there were nearly 300 agglomerates in the data, we see a great potential 
to improve the performance of the model by training with an additional number of 
instances of agglomerate class. The mAP of the model with different intersection over 
union (IoU) thresholds from 0.5 to 0.95 is denoted as mAP_0.5:0.95. 
 



 
Figure 4: The performance of the YOLOv5 model trained on the custom data:  a), b) 
the box-loss plot indicates the performance of the model in terms of locating the 
bounding box around the defect; c), d) the obj-loss plot is significantly a measure of 
the likelihood that a defect is present in the predicted bounding box; e), f) the cls-loss 
plot represents how efficiently the model can predict the class label of a defect; g) 
precision is the ratio of accurately predicted labels to the all predicted labels while; i) 
recall is the ratio of accurately predicted labels to all the correct labels; h), j) the mean 
average precision (mAP) is a measure to evaluate the performance of the object 
detection models in terms of actual and predicted bounding box differences. 
 
 



 
Figure 5: The confusion matrix showing the actual and predicted class labels for 
defects. Foil class achieved the height precision and recall. Bubble class obtained 
higher recall as compared to precision. The model performed almost consistently while 
predicting the agglomerates and scratches. The model achieved 75% total accuracy.  
 
A confusion matrix37 is a 𝑁𝘟𝑁 performance table for the classification models that 
compares the predicted responses with the actual responses. For object detection and 
instant segmentation applications, the confusion matrix is less intuitive. Intersection 
over Union (IoU) plays an important role to calculate confusion matrix for object 
detection tasks. IoU is also known as Jaccard index and is a measure to evaluate the 
extent of overlap between two bounding boxes or masks.The ground truth bounding 
box coordinates (BBg) and predicted bounding box coordinates  (BBp) are required to 
compute the IoU. 

𝐼𝑜𝑈	 = 	
𝑎𝑟𝑒𝑎	(𝐵𝐵𝑔	 ∩ 	𝐵𝐵𝑝)
𝑎𝑟𝑒𝑎	(𝐵𝐵𝑔	 ∪ 	𝐵𝐵𝑝) 

 
IoU is computed by the ratio of overlapping area to the union area between the ground 
truth bounding box and predicted bounding box. The number of true positives (TP), 
false positives (FP), and false negatives (FN) are determined by the IoU score. The 
confusion matrix can be generated at different IoU thresholds. The results in Figure 5 
are output at 0.45 IoU threshold (default threshold value to get the maximum 
accuracy). True positive is an outcome of correct detection made by the model where 
the actual annotation and predicted bounding box locate the same defect (detection 
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After training the model on 80% of the data, it is tested on the remaining 20% of the 
data to check if the model can predict the defects correctly. The model was then also 
trained on 70% of the data and tested on the remaining 30% of the data, with no 
significant degradation in performance. Figure 6 shows the potential competency of 
the model to predict the different types of defects. The model achieved 9.5ms 
inference time during the prediction. The model is able to predict bubbles (pink 
bounding boxes), agglomerates (red bounding boxes), foil (orange bounding boxes), 
and scratches (yellow bounding boxes). As the figure shows, the model is able to 
predict almost all bubbles and foil. Some instances of agglomerates and scratches are 
not predicted by the model considering the fact that we do not have the sufficient 
instances of these defects to train the model. 



 
 
Figure 6: A batch of defected electrode images from the test dataset. The model 
predicts the bounding boxes around different types of defects that indicate the spatial 
location of the defects on the electrode surface along with the confidence score. The 
score demonstrates the possibility that the predicted bounding box contains a defect 
and what is the accuracy of the bounding box. The colors indicate different classes of 
defects. The red color stands for agglomerates, the pink color for bubbles, the yellow 
color for scratches and the orange color for foils. All the predicted bounding boxes 
have a confidence score greater than 0.25 (default confidence threshold for YOLOv5). 
 
Spatial distribution 
This paper demonstrates the application of defect detection algorithms as a preventive 
measure in the electrode production line. The defects are correlated with the input 
parameters such as type of active material, mixing time, coating speed, slit width, etc. 
The proposed model can identify the spatial location of the defects on the electrode 
surface which can be useful to establish the relation between input parameters and 
defects. The whole data (882 images) is fed into the model to identify the total number 



of defects present on the electrode surface on the horizontal and vertical axis. Each 
input image has an original height of 500 pixels and a width of 2448 pixels. The total 
number of defects present on the horizontal axis is shown in Figure 7. The active 
material is coated on the aluminium or copper foil to produce the positive and negative 
electrodes. The point at which the coating contacts the foil can be easily determined 
by Figure 7. About the first and last 350 pixels on the horizontal axis of the image are 
identified as foil and therefore the remaining area is covered with active material. The 
number of defects of foil class are equal to the number of images in the dataset as 
each image consists of an underneath foil and it can be validated by Figure 7. The 
defects are not equally distributed on the electrode surface and more defects appear 
on the right side of the images which may be due to the fact that the slit width is not 
perfectly aligned. This correlation between the defects and input parameters can be 
utilized as a preventive measure to reduce the defects during the production of the 
next electrode. Figure 7 exhibits the distribution of defects on the vertical axis, which 
specifies that the defects are uniformly distributed along the axis. From Figures 7, it 
can be concluded that there are more defects in the right part of the electrode surface. 
 

 
Figure 7: The distribution of the defects present on the electrode surface. a) The count 
of defects along the horizontal axis where x axis represents the pixel values and y axis 
represents the number of defects.  In the horizontal direction, the left and right parts 
of the image consist of foil. Since the data set consists of 882 images, the number of 
defects on the left and right sides is almost 882. There are more defects appearing in 
the right side of the electrode; b) The count of defects along the vertical axis where x 
axis represents the number of defects and y axis represents the pixel values. In the 
vertical direction, the top and bottom parts of the image consist of foil. Since there are 
two foils along the vertical axis and the dataset consists of 882 images, there are 
almost 1764 of the total defects due to foil. The defects are almost perfectly aligned 
along the axis.  

 
Since each plausible defect category can be generated by different input parameters 
chosen during the electrode coating process, we determined the number of defects 
per category along the horizontal and vertical axes to study the effects of these 
parameters. Figure 8 represents these defects along the horizontal axis. The 
agglomerates and scratches appear in the centre part of the electrode and have a 
Gaussian distribution. Agglomerates can occur if the raw material is not adequately 
mixed and the produced slurry is not homogeneous. There are only a few instances 



of agglomerates and scratches and these can be reduced by adjusting the input 
parameters. The instances of the foil class correspond to the number of images in the 
dataset. It can be seen from the figure that the model can detect almost all the foils on 
both sides of the electrode, while it does not detect any foils in the middle part of the 
image. The electrode has a considerable number of bubbles, which increase gradually 
as we go from left to right. Bubbles form where the coating of the electrode is missing 
and can be caused by gas inclusion during the mixing process. There are a lot of 
bubbles near the foil on the right side. 
 

 
Figure 8: The per category defects on the horizontal axis. a)Scratch; b) Agglomerate; 
c) Foil; d) Bubble. Horizontal axis represents the pixel value along the axis and the 
vertical axis represents the number of defects per category. The agglomerates and 
scratches are distributed in a nearly Gaussian shape and occur in the central part of 
the electrode. These types of defects rarely occur in the entire data set. Since the 
dataset contains 882 images, the number of instances of the foil class is almost 882 
on the left and right sides of the images. The number of bubbles increases from left to 
right, and there are a large number of instances of this particular class on the 
electrode. 

Figure 9 illustrates the defects for each class on the vertical axis. Similar to the 
horizontal axis, there are few scratches and agglomerates on the vertical axis. The 
number of instances of the foil class is almost twice the number of images in the data 
set. The electrode has a large number of bubbles, but they are evenly distributed over 
the entire electrode.  
 
 



 
 
Figure 9: The per category defects on the vertical axis. a)Scratch; b) Agglomerate; c) 
Foil; d) Bubble. Horizontal axis represents the number of defects per category and the 
vertical axis represents the pixel value along the axis. There are fewer scratches and 
agglomerates compared to bubbles. Since the dataset consists of 882 images, there 
are approximately 1764 instances of the foil category. The bubbles are almost 
uniformly distributed along the axis.  

 
The information about the size and shape of the defect can be helpful for physics-
based simulations. The electrochemical performance of LiB is highly correlated to the 
quality of the used electrodes.  If the electrodes are not defective, the battery is 
expected to have a longer life as well as more capacity. However, in the case of bigger 
and porous defects, the foil located under the active material comes into direct contact 
with the electrolyte, and the battery may suffer a significant loss of electrical properties. 
The defects on the basis of bounding boxes are cropped out from the original electrode 
images and then stored in a separate directory. The model detected 283 
agglomerates, 5235 bubbles, 1765 foil and 305 scratches. The shape of the defects 
is determined with one of the most popular and widely used canny edge detection 
algorithms. Edge detection is noise sensitive, so the initial step is to filter out the 
background noise in the image by applying a 5x5 Gaussian filter.The filtered image is 
then processed with a Sobel kernel in the horizontal and vertical directions to 
determine the intensity gradient of the image. After determining the magnitude and 
direction of the gradient, all unwanted pixels in the image that potentially do not belong 
to the edge are removed by non-maximum suppression. The hysteresis threshold is 
used to find the edges. Two threshold values are set for this purpose, min_threshold 



and max_threshold. The edges with intensity gradient greater than max_threshold are 
classified as edges, while those with intensity gradient less than min_threshold are 
classified as non-edges and will be rejected. All edges whose intensity gradient is in 
between these two thresholds are categorized either as edges or non-edges 
depending on their connectivity. They are considered as part of the edges if they are 
linked to any pixels with "edges". Otherwise, they are discarded as well. Since there 
is a significant amount of background noise, we manually adjust the threshold for each 
image to identify the edges that best resemble the shape of the defect. Figure 10 
shows the cropped defects from the original image, their shape obtained with edges, 
and their respective sizes plotted on a polar chart. The detected edge image is 
represented in an array, and for each row the distance between the edges is then 
calculated from subtracting the first pixel value from the last pixel value if there is a 
one in the array. The average value of the difference is plotted on the polar diagram. 
The image is rotated 360 degrees clockwise with step size 1 and the average distance 
is calculated and plotted for each rotation. The defect size is indicated by the radial 
axis labels. 





 

 
 

Figure 10: The defects of each class together with their shape and size: (a) 
Agglomerate; (b) Bubble; (c) Foil; (d) Scratch. The images in the first row are the actual 
defects on the electrode, cropped by the model from the original electrode images 
based on the bounding box coordinates. The second row shows the edges detected 
by the Canny Edge Detection algorithm to represent the shape of the defect. The last 



row shows the size of the defect in a polar diagram, while rotating the defect by 360 
degrees.  
 

Conclusion 

In this paper, we propose YOLOv5 , a Deep Learning-based framework, for early 
detection of defects in electrode production lines. This study can be used as a 
preventive measure to improve electrode and manufacturing quality. This model has 
been trained on a few examples and yet shows promising performance that can make 
any human in the loop inefficient. The model can precisely predict each defect class 
in static (image) and dynamic (video) datasets and achieved 88% mAP for all the 
classes combined. Since there was less training data, we see great potential to 
improve the performance of the model by training with an additional number of training 
data instances.  

The model is capable of detecting defects in near at a web speed of 9 m/s, thus 
reducing the ramp-up times and allowing closed-loop optimization with exact defect 
localization. The model achieved an inference time of 9.5 ms in prediction while being 
trained on 80% of the data and tested on the remaining 20% of the data.Therefore, it 
is possible to adjust the parameters of the coating process during the current 
production to reduce the defects generated in the previous batch. 

The original YOLOv5 model was trained on the COCO dataset, a popular computer 
vision dataset that contains labeled images of 80 different objects but does not contain 
defect related data. Therefore, the model is trained on a custom dataset where the 
images are annotated using the LabelMe tool. This is a manual and time-consuming 
task, as the performance of the model is highly affected by the number of annotated 
instances of the defects and the exact defect localization. Active learning is a potential 
candidate to annotate a larger number of images to improve the performance of the 
model.  

 

 

Acknowledgements 

This work contributes to the research performed at CELEST (Center for 
Electrochemical Energy Storage Ulm-Karlsruhe) and was funded by the German 
Research Foundation (DFG) under Project ID 390874152 (POLiS Cluster of 
Excellence). This project received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 957189. This project 
received funding from BMBF in the framework of the BMBF-Kompetenzcluster 
InZePro for the projects DataBatt No 03XP0323D and InForm No 03XP0363A. 
 

Author Contributions 

tbd 



 

References 

(1)  Michaelis, D.; Rahimzei, E.; Kampker, P.; Heimes, H.; Offermanns, C.; Locke, M.; Löbberding, H.; 
Wennemar, S.; Thielmann, A.; Hettesheimer, D.; Neef, C.; Kwade, A.; Haselrieder, W.; Blömeke, 
S.; Doose, S.; von Drachenfels, N.; Drees, R.; Fröhlich, A.; Gottschalk, L.; Huang, Z. Roadmap 
Batterie-Produktionsmittel 2030 - Update 2020; 2021. 

(2)  Gutoff, E. B.; Cohen, E. D. Coating and Drying Defects: Troubleshooting Operating Problems; 
John Wiley & Sons, 2006. 

(3)  Gitis, A.; Kwade, A.; Sauer, D. U. Flaw Detection in the Coating Process of Lithium-Ion Battery 
Electrodes with Acoustic Guided Waves, Institut für Stromrichtertechnik und Elektrische 
Antriebe ISEA, 2017. 

(4)  Mohanty, D.; Hockaday, E.; Li, J.; Hensley, D. K.; Daniel, C.; Wood, D. L. Effect of Electrode 
Manufacturing Defects on Electrochemical Performance of Lithium-Ion Batteries: Cognizance 
of the Battery Failure Sources. J. Power Sources 2016, 312, 70–79. 
https://doi.org/10.1016/j.jpowsour.2016.02.007. 

(5)  Duffner, F.; Mauler, L.; Wentker, M.; Leker, J.; Winter, M. Large-Scale Automotive Battery Cell 
Manufacturing: Analyzing Strategic and Operational Effects on Manufacturing Costs. Int. J. 
Prod. Econ. 2021, 232, 107982. https://doi.org/10.1016/j.ijpe.2020.107982. 

(6)  Sakti, A.; Michalek, J. J.; Fuchs, E. R. H.; Whitacre, J. F. A Techno-Economic Analysis and 
Optimization of Li-Ion Batteries for Light-Duty Passenger Vehicle Electrification. J. Power 
Sources 2015, 273, 966–980. https://doi.org/10.1016/j.jpowsour.2014.09.078. 

(7)  Wen, H.; Huang, C.; Guo, S. The Application of Convolutional Neural Networks (CNNs) to 
Recognize Defects in 3D-Printed Parts. Materials 2021, 14 (10), 2575. 
https://doi.org/10.3390/ma14102575. 

(8)  Reynolds, C. D.; Slater, P. R.; Hare, S. D.; Simmons, M. J. H.; Kendrick, E. A Review of Metrology 
in Lithium-Ion Electrode Coating Processes. Mater. Des. 2021, 209, 109971. 
https://doi.org/10.1016/j.matdes.2021.109971. 

(9)  Han, L.; Liu, Y. M.; Lu, W. Z.; Xiao, F. Design of Automatic Production Line for Electrode Defects 
Inspection of Li-Ion Power Battery. Appl. Mech. Mater. 2014, 470, 400–403. 
https://doi.org/10.4028/www.scientific.net/AMM.470.400. 

(10)  Masias, A.; Marcicki, J.; Paxton, W. A. Opportunities and Challenges of Lithium Ion Batteries in 
Automotive Applications. ACS Energy Lett. 2021, 6 (2), 621–630. 
https://doi.org/10.1021/acsenergylett.0c02584. 

(11)  Badmos, O.; Kopp, A.; Bernthaler, T.; Schneider, G. Image-Based Defect Detection in Lithium-
Ion Battery Electrode Using Convolutional Neural Networks. J. Intell. Manuf. 2020, 31 (4), 885–
897. https://doi.org/10.1007/s10845-019-01484-x. 

(12)  Mayer, D.; Wurba, A.-K.; Bold, B.; Bernecker, J.; Smith, A.; Fleischer, J. Investigation of the 
Mechanical Behavior of Electrodes after Calendering and Its Influence on Singulation and Cell 
Performance. Processes 2021, 9 (11), 2009. https://doi.org/10.3390/pr9112009. 

(13)  Wood, D. A.; Kafiabadi, S.; Al Busaidi, A.; Guilhem, E. L.; Lynch, J.; Townend, M. K.; Montvila, A.; 
Kiik, M.; Siddiqui, J.; Gadapa, N.; Benger, M. D.; Mazumder, A.; Barker, G.; Ourselin, S.; Cole, J. 
H.; Booth, T. C. Deep Learning to Automate the Labelling of Head MRI Datasets for Computer 
Vision Applications. Eur. Radiol. 2022, 32 (1), 725–736. https://doi.org/10.1007/s00330-021-
08132-0. 

(14)  Vishnu, R.; Krishna Prakash, N. Mobile Application-Based Virtual Assistant Using Deep Learning. 



In Soft Computing and Signal Processing; Reddy, V. S., Prasad, V. K., Wang, J., Reddy, K. T. V., 
Eds.; Springer: Singapore, 2022; pp 609–617. https://doi.org/10.1007/978-981-16-1249-7_57. 

(15)  Pan, X.; Lin, X.; Cao, D.; Zeng, X.; Yu, P. S.; He, L.; Nussinov, R.; Cheng, F. Deep Learning for Drug 
Repurposing: Methods, Databases, and Applications. WIREs Comput. Mol. Sci. n/a (n/a), e1597. 
https://doi.org/10.1002/wcms.1597. 

(16)  Dutta, S. An Overview on the Evolution and Adoption of Deep Learning Applications Used in 
the Industry. WIREs Data Min. Knowl. Discov. 2018, 8 (4), e1257. 
https://doi.org/10.1002/widm.1257. 

(17)  LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521 (7553), 436–444. 
https://doi.org/10.1038/nature14539. 

(18)  Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, 
Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–21. 
https://doi.org/10.1109/TNNLS.2021.3084827. 

(19)  Li, Y.; Wang, H.; Dang, L. M.; Nguyen, T. N.; Han, D.; Lee, A.; Jang, I.; Moon, H. A Deep Learning-
Based Hybrid Framework for Object Detection and Recognition in Autonomous Driving. IEEE 
Access 2020, 8, 194228–194239. https://doi.org/10.1109/ACCESS.2020.3033289. 

(20)  Zaidi, S. S. A.; Ansari, M. S.; Aslam, A.; Kanwal, N.; Asghar, M.; Lee, B. A Survey of Modern Deep 
Learning Based Object Detection Models. Digit. Signal Process. 2022, 126, 103514. 
https://doi.org/10.1016/j.dsp.2022.103514. 

(21)  Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, 
Tools, and Techniques to Build Intelligent Systems; O’Reilly Media, Inc., 2019. 

(22)  Vasudevan, S. K.; Pulari, S. R.; Vasudevan, S. Deep Learning: A Comprehensive Guide; Chapman 
and Hall/CRC: New York, 2021. https://doi.org/10.1201/9781003185635. 

(23)  Baloni, D.; Verma, S. Detection of Hydrocephalus Using Deep Convolutional Neural Network in 
Medical Science. Multimed. Tools Appl. 2022, 1–23. https://doi.org/10.1007/s11042-022-
11953-w. 

(24)  Kandpal, L. M.; Park, E.; Tewari, J.; Cho, B.-K. Spectroscopic Techniques for Nondestructive 
Quality Inspection of Pharmaceutical Products: A Review. J. Biosyst. Eng. 2015, 40 (4), 394–408. 
https://doi.org/10.5307/JBE.2015.40.4.394. 

(25)  Amar, M.; Gondal, I.; Wilson, C. Vibration Spectrum Imaging: A Novel Bearing Fault 
Classification Approach. IEEE Trans. Ind. Electron. 2015, 62 (1), 494–502. 
https://doi.org/10.1109/TIE.2014.2327555. 

(26)  Li, P.; Dolado, I.; Alfaro-Mozaz, F. J.; Casanova, F.; Hueso, L. E.; Liu, S.; Edgar, J. H.; Nikitin, A. Y.; 
Vélez, S.; Hillenbrand, R. Infrared Hyperbolic Metasurface Based on Nanostructured van Der 
Waals Materials. Science 2018, 359 (6378), 892–896. https://doi.org/10.1126/science.aaq1704. 

(27)  Oliveira, H.; Correia, P. L. Automatic Road Crack Segmentation Using Entropy and Image 
Dynamic Thresholding. In 2009 17th European Signal Processing Conference; 2009; pp 622–
626. 

(28)  Ngan, H. Y. T.; Pang, G. K. H.; Yung, N. H. C. Automated Fabric Defect Detection—A Review. 
Image Vis. Comput. 2011, 29 (7), 442–458. https://doi.org/10.1016/j.imavis.2011.02.002. 

(29)  Mahajan, P.; Kolhe, S.; Patil, P.; Mahajan, J. A Review of Automatic Fabric Defect Detection 
Techniques. undefined 2009. 

(30)  Hawley, W. B.; Li, J. Electrode Manufacturing for Lithium-Ion Batteries—Analysis of Current and 
next Generation Processing. J. Energy Storage 2019, 25, 100862. 
https://doi.org/10.1016/j.est.2019.100862. 

(31)  Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; NanoCode012; Kwon, Y.; TaoXie; Fang, J.; 



imyhxy; Michael, K.; Lorna; V, A.; Montes, D.; Nadar, J.; Laughing; tkianai; yxNONG; Skalski, P.; 
Wang, Z.; Hogan, A.; Fati, C.; Mammana, L.; AlexWang1900; Patel, D.; Yiwei, D.; You, F.; Hajek, 
J.; Diaconu, L.; Minh, M. T. Ultralytics/Yolov5: V6.1 - TensorRT, TensorFlow Edge TPU and 
OpenVINO Export and Inference; Zenodo, 2022. https://doi.org/10.5281/zenodo.6222936. 

(32)  Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object 
Detection. ArXiv150602640 Cs 2016. 

(33)  Lin, T.-Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; 
Zitnick, C. L.; Dollár, P. Microsoft COCO: Common Objects in Context. ArXiv14050312 Cs 2015. 

(34)  Chen, Y.; Zeng, X.; Chen, X.; Guo, W. A Survey on Automatic Image Annotation. Appl. Intell. 
2020, 50 (10), 3412–3428. https://doi.org/10.1007/s10489-020-01696-2. 

(35)  Russell, B. C.; Torralba, A.; Murphy, K. P.; Freeman, W. T. LabelMe: A Database and Web-Based 
Tool for Image Annotation. Int. J. Comput. Vis. 2008, 77 (1–3), 157–173. 
https://doi.org/10.1007/s11263-007-0090-8. 

(36)  Ultralytics/Yolov5; Ultralytics, 2022. 
(37)  Padilla, R.; Netto, S. L.; da Silva, E. A. B. A Survey on Performance Metrics for Object-Detection 

Algorithms. In 2020 International Conference on Systems, Signals and Image Processing 
(IWSSIP); 2020; pp 237–242. https://doi.org/10.1109/IWSSIP48289.2020.9145130. 

 
 


