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Abstract 

The future of materials science is borderless, cooperative, and distributed across the globe. This 

necessitates flexible, reconfigurable software defined research workflows, which we herein 

demonstrate by integrating multiple disciplines and modalities. Our brokering approach to research 

orchestration exposes entire laboratories in a cooperative multi-tenancy platform that is 

asynchronous, modular, and resilient. To the best of our knowledge, this constitutes the first 

international materials acceleration platform (MAP) which is herein demonstrated through a battery 

electrolyte workflow that ran in five countries over two weeks. We discuss the lessons learned from 

multi-tenancy and fault tolerance and chart a way to a universal battery MAP with fully ontology-

based schemas and cost-aware orchestration. 

Introduction 

Scientists have continuously innovated on the efficiency improvements of the research process over 

the last many decades1. Automation of research tasks2 and their integration with data lineage 

tracking3 was one of the driving accelerators in the past 20 years in biotechnology and materials 

science4. This research automation created the field of combinatorial materials science (CMS)5 that 

is utilizing the paradigm of well-defined composition and processing variation to unravel the 



 

underlying physicochemical relationships at a greater pace6,7. The near endless breath of the 

chemical space does, however, render any brute force exploration for discovery futile. Effective 

research therefore necessitates approaches that can predict how to design materials according to 

a target functional property. This inverse design8–10 approach is rooted in the idea of rational design 

based descriptors11,12 that define composition-structure-property relationships. Recent 

advancements in research instrumentation13 and user interfaces have lowered the entrance barrier 

for high-throughput experimentation (HTE). Abundance of searchable data, enabled by data 

management3,14, then sparked the proliferation of data-driven methods in synthesis15, 

characterization16, performance evaluation17, and interpretation18. The integration of accelerated 

research tasks in workflows2 guided by data driven methods was then conceived as the next 

evolutionary step in a 2018 workshop initiated by the UN Mission Innovation Initiative and called the 

“materials acceleration platform” (MAP)19. 

To date, there have been early demonstrations of the MAP2 idea, but all have been constrained to 

a laboratory bench20 or building21. Going beyond a single property or even transcending the 

laboratory is necessitated for a true battery map22 as there are multiple functional properties to 

optimize23,24, e.g. lifetime, energy capacity, energy density, voltage range, cost, power density, 

safety, embodied energy, etc. All these critically depend on high-dimensional parameter spaces 

comprising the structure and processing of the materials as well as the assembly, composition and 

environmental conditions during operation of the cell system. The optimization of battery materials 

is therefore a truly multiscale challenge ranging from atoms to systems, nanoseconds to years and 

therefore cannot be mastered on a laboratory bench, a single institution, or domain alone. A 

complicating factor in all of this is the mutual exclusion of certain methods, i.e. density-functional 

theory (DFT) calculations cannot be run on the month scale8,25 and manufactured batteries cannot 

easily be analyzed by e.g. XPS. This is in stark contrast to all of the early MAP-inspired 

demonstrations from other fields26–28, where the entire research lifecycle can be covered either using 

a single robotic setup or a single research group. A comprehensive MAP in battery research 

therefore needs to be distributed across different domains spanning the entire battery research value 

chain29. 

Herein we discuss how we envision the design of a cooperative and resilient MAP that is spatially 

distributed across multiple countries and involves scientists from the experimental and modeling 

domain. Based on these MAP design considerations we deploy a demonstration to a team of 

scientists involved in the BIG-MAP project14, where a brokering software system was hosted at the 

Karlsruhe Institute of Technology (KIT, Germany), laboratory experiments were performed at the 

Helmholtz Institute Ulm (HIU, Germany), computer simulations were performed at Dassault 

Systèmes (3DS, Germany, United Kingdom), the machine learning optimizer was developed and 

run at the Technical University of Denmark (DTU, Denmark), data and ontology interfaces were 

managed at DTU, Stiftelsen for industriell og teknisk forskning (SINTEF, Norway) and École 

polytechnique fédérale de Lausanne (EPFL, Switzerland). This workflow is capable of determining 

the density, viscosity, and pair distribution functions and a machine learning based prediction of 

conductivity of aprotic electrolytes for Li-ion batteries. To the best of our knowledge, this is the first 

demonstration of an international MAP. After intensive design discussion, prior to the actual run, the 

real-world deployment of a MAP involving many partners was a valuable learning experience which 

we discuss at the end of this manuscript. We believe that sharing not just the success but also the 

failures of this new paradigm of performing research will help the community in avoiding some of 

the errors we made and accelerate the progress towards true autonomy. 



 

 

Figure 1: Schematics of conventional accelerated research labs and brokered multitenant materials acceleration 
platforms. The left part of the figure shows the general layout of the FINALES paradigm to research 
orchestration in which multiple tenants i.e. optimizers, experiments, simulation and databases exist in a 
cooperative environment in which each participant can be located anywhere on the globe. The inset presents 
an emblematic workflow of a HELAO30 run in which multiple instruments can be pooled together but typically a 
run is limited to a single laboratory. The design of our MAP allows for the integration of a HELAO workflow. 

MAP design considerations 

There have been numerous reviews and conceptual papers about the high-level design of a MAP, 

ranging from concept papers7,9,14,19,20,31–41, to building a common language to describe the 

advancement towards autonomous research2 and the announcement of the Nobel Turing 

Challenge42. The design of our MAP is motivated by a long-term vision of altering the way how we 

perform materials research22, i.e. going beyond single-laboratory demonstrations and towards the 

creation of an ecosystem that enables atom-to-system innovation at global integration43,44 today. 

We believe that there is a fallacy in the current perception of the MAP paradigm. This misconception 

is in our view, that scientists often think of a single loop35,37,38 optimizing for a specific target. Battery 

research, or energy conversion research in a broader sense, is inherently multimodal and multitarget 

and therefore requires a truly modular MAP, going beyond a single research instrument, group and 

modality. Consequently, a MAP for energy conversion requires a setup combining hardware and 

software components that overcome boundaries between the scales through multiple experimental 

probes, simulators and data driven model building to exploit complementary capacities. In the 

process, it needs to minimize repetitive human actions while increasing the efficiency of experiments 

and maximizing knowledge generation in a time- and cost-efficient manner. Funding allocation 

efficiency requires better utilization of equipment, which we believe to be a defining characteristic of 

the MAP idea as existing equipment can be deployed in new innovative workflows with no additional 

effort. 

Emblematic for conventional optimization loops, that are not yet a MAP by our definition of a battery 

MAP, are demonstrations of optimizing fast charging capabilities45,46 of a specific battery chemistry, 

prolonging the lifetime of a cell chemistry under fast charging conditions and numerous others47–51. 

In principle these achievements of fast charging and lifetime prolongation could also be achieved by 

changing the cell chemistry and not the charging procedure52. A next generation MAP would, 

however, need to be capable of optimizing both the chemistry and the protocol, whilst being agile in 



 

the sense of allowing to investigate different manufacturing settings, such as changing the cell 

geometry23. The goal is therefore the establishment of a universal, highly modular approach that is 

not built for only one purpose. 

We therefore introduce a new concept besides modularity in materials research and the MAP-

Paradigm which is multi-tenancy, i.e. the same experimental or simulation capacity offered as well 

as multiple optimizers or operators with different intentions in the same MAP. Tenants in a MAP are 

all participating units, be it intention-aware tenants like operators and optimizers, or 

intention-agnostic tenants like orchestrators, experimentalists, theorists or data storage applications. 

The defining feature here is that there can be multiple copies of every tenant without racing 

conditions. Building shared MAPs, where instruments no longer belong to a single group, allow the 

utilization of research instruments for a variety of research questions and fields. This is not just 

important for ensuring fault tolerance and around-the-clock operation, but it also creates incentives 

for cost reduction. We also believe that the intention-agnostic sharing of research instrumentation 

will allow for significantly better utilization of instruments and allocation of institutional funding. By 

the collaborative nature of MAPs as described herein, community building is an integral part of the 

design process. The current funding schemes in the European Union (EU) and associated national 

or bilateral funding agencies in fact foster this collaborative approach to research, and we believe 

that there is the need to create more cross-country funding lines that can help in building global 

research workflows. 

With these design considerations in mind, we will describe the technical layout of our MAP, its 

tenants, results, and lessons learned in the following sections. A defining design decision is to 

disable direct communication between tenants, and to channel all communication through a 

brokering service we refer to as the fast intention agnostic learning server, or FINALES in short. 

FINALES is our take on interoperability and constitutes an open interface brokering between hard-, 

and software as well as humans. All simulations and experiments can be requested as a service 

through the FINALES APIs that enables abstraction with standardization in data, communication, 

and information retrieval through being fully ontology linked. Interoperability to FINALES is moved 

to a translation layer developed by the respective tenants such that no existing workflow needs to 

be altered upon addition of a new agent. To the best of our knowledge this is the first multi-tenancy, 

multi-modal and international demonstration of a MAP. 

Demonstration of an international MAP 

In the following section we will introduce the different agents compatible with FINALES, namely the 

brokering server itself, the experimental setup for density and viscosity measurements ASAB 

(Autonomous Synthesis and Analysis of Battery Electrolytes), the simulation orchestrator called 

Pipeline Pilot, the AiiDA interface for data storage and machine learning based conductivity 

predictions, and the optimizer based on a Gaussian process in combination with the Chimera53 

optimizer. 

Tenants 

Broker server - FINALES 

The Fast INtention Agnostic LEarning Server (FINALES) is designed as a broker server mediating 

between the simulations, experiments, optimizers, and other tenants. It can handle incoming and 

outgoing requests asynchronously and acts as a central hub in the communication. In contrast to 

the laboratory orchestration system HELAO30, FINALES acts as a brokering service on a hardware 

independent level by abstracting away from a sequence of hardware events to requesting desired 



 

outcomes. FINALES allows for maximum flexibility and redundancy by explicitly allowing several 

hardware or software services with the same capabilities as well as a virtually unlimited number of 

simultaneous optimizers. This multi-tenancy design allows for several intention-aware tenants 

exploring and exploiting the data and services available through the server. The communication with 

FINALES is defined through Pydantic54 schemas. This structured representation of the data 

facilitates the integration of an ontology such as BattINFO55. Furthermore, the type-checking, which 

Pydantic promotes, improves the security of FINALES. Type-checking and automatic validation of 

input data even allows to include non-automated data acquisition in autonomously orchestrated 

loops, maximizing the inclusiveness and versatility of FINALES. What most significantly 

distinguishes FINALES from HELAO or any other automation framework like Bluesky56 or 

ChemOS20 is FINALES’ passivity as its operation does not depend on the state of the individual 

tenants. By design, HELAO, Bluesky or ChemOS operated instruments could be connected to 

FINALES as tenants. Data management in FINALES works in an append-only mode, which 

preserves all generated data. Datasets can be rated by the tenant providing it e.g. according to the 

success or failure of the measurement through a score related to the fidelity of the data. Deletion of 

requests is not allowed by design. 

Simulation orchestrator - Pipeline Pilot 

Pipeline Pilot is a workflow system with different applications in cheminformatics, laboratories, 

materials modeling, and simulations. Pipeline Pilot enables automation of calculations from the 3DS 

software family as well as the visualization and reporting of results. Research workflows are 

orchestrated similar to the way it is done by HELAO with the addition of being able to graphically 

compose a workflow from hundreds of different configurable components as shown in Figure 2. The 

workflow queries FINALES through the API and identifies pending requests not yet passed to the 

simulation cluster. The workflow extracts relevant input data for the molecular dynamics simulations 

from the simulation request and submits the calculations as jobs onto different high-performance 

computing (HPC) clusters. Finally, results are formatted for reporting them to FINALES. The 

metadata, such as trajectories can also be sent simultaneously to the Materials Cloud archive. This 

protocol runs asynchronously in specific time intervals, and each request is treated independently 

for querying, simulation and posting. 

 

Figure 2: The workflow architecture for automated simulations using Pipeline Pilot in which FINALES is queried for new 
requests that are not yet in the simulation queue. Results are obtained asynchronously and posted onto 
FINALES upon convergence. 

The core calculations of the workflow are performed in the RunParallel Jobs on Cluster component, 

which contains a complete workflow to calculate the ionic transport coefficients of a given electrolyte 



 

composition57,58. Briefly, this calculation proceeds by building an Amorphous Cell of the molecular 

liquid. It then runs an initialization stage NVT molecular dynamics run followed by an NPT run for 

250 ns each to thermalize the system and to obtain an estimate for the density. This is followed by 

a 2000 ns sampling simulation and an automatic analysis of the diffusion coefficients, conductivities, 

and transfer numbers for all ionic species in the system as described in detail in Hanke et al.57. In 

addition, the radial density function is computed, which provides a detailed picture of the molecular 

structure of the liquid.  

Experimental setup - ASAB 

The Autonomous Synthesis and Analysis of Battery electrolytes (ASAB) system used to perform the 

experiments described in this study is shown in Figure 3. It comprises a base module for power 

supply, six syringe pumps and ten eleven-position valve modules including a matching API 

commercially available from the company CETONI GmbH. Furthermore, an Entris II laboratory 

balance from Sartorius AG and a DMA 4100 M densimeter with an additional Lovis 2000 viscometer 

by Anton Paar Germany GmbH are connected to the system. A PC is used to control the system via 

an in-house implemented Python client. The software package comprises servers for the densimeter 

and viscometer, the pump and valve system and the balance, all based on the FastAPI framework59. 

These servers call functions in an actions level within the in-house developed software, which run 

more complex tasks by calling functions in the driver level. The tubing and interconnections of 

pumps, valves, vials and connected devices are digitally represented by a graph. This allows 

searching for the shortest connection between two nodes or paths passing defined nodes in a given 

order. Its graph-implementation makes ASAB flexible regarding the tubing interconnections and 

enables processing of high-level requests even after reconfiguring the hardware. Prior to any mixing 

step, the system fills every syringe related to a reservoir containing a component included in the 

formulation to avoid gas being located at the top of the syringes resulting in flawed mixing ratios. 

The hardware-layout is loaded from a configuration file, which needs to be supplied by the operator 

prior to starting an experiment. FINALES requests are pulled via the servers and the corresponding 

functionality is triggered on the device requested. The setup offers functionalities to request mixing, 

providing a sample to a device, retrieving data and draining the sample from the device. The 

deduction of detailed step-by-step procedures from these high-level requests is performed within 

the ASAB actions and drivers exploiting its internal flexibility. 

Since the simulations work on a molecular representation of the system, the optimizer is chosen to 

represent formulations as a set of mole fractions. Requests for formulations therefore need to be 

transformed to volume fractions by the ASAB software to enable volumetric dosing of the stock 

solutions. In case there is no exact solution to the transformation, the system selects the closest 

accessible formulation using a gradient descent method provided in the SciPy60 Python package. 

This may result in a significant difference between the requested and reported formulation, which 

poses the risk of blocking the optimization loop due to repeated request of the same, non-feasible 

formulation. 

Based on the volume fractions calculated according to this procedure, the volume flow of each stock 

solution is determined by multiplication of the targeted total flow with the volume fraction of the 

respective stock solution. The flows of the stock solutions are merged in the multiplexer. Subsequent 

to the multiplexer, a valve determines, whether the flow is directed towards the waste while 

stabilizing the flows or towards the measuring device. After the measurement ended, the sample is 

drained to the waist using gas aspirated from the atmosphere in the glovebox. Prior to the 

subsequent experiment, gas is pumped through the measuring cells of the densimeter and 

viscometer several times to remove large residues of sample. 



 

 

Figure 3: a) The pump and valve system of the experimental ASAB setup used to perform the experiments relevant for 
this study, b) the densimeter and the attached viscometer device used for the measurements, c) a schematic 
drawing showing the connections within the system. The valves, reservoirs containing the stock solutions 
(R1 - R4), cyclohexane, and EMC for cleaning are shown. Further, the syringes (A - F), the multiplexer for 

mixing and the densimeter and viscometer device are displayed. 

Optimizer application 

The optimizer application is designed in a modular and configurable way. One module is responsible 

for all communication with the broker server, including authentication, retrieving data and sending 

new requests. Another module is responsible for data preprocessing and collecting data in a table 

format appropriate for data analysis. A third module contains the optimizer algorithm, responsible 

for analyzing data and suggesting new measurement inputs. In the current version of the application, 

the optimizer algorithm is based on a Gaussian process optimizer extended for multi-objective 

optimization by using Chimera53. Finally, a central application module binds the other modules 

together by checking the state of the broker server, retrieving data, generating and sending new 

requests in a main loop. The optimizer application can be configured to specify what to optimize, 

which quantities to request and how to reach the broker server. 

Low fidelity conductivity predictor integrated through an AiiDA client 

AiiDA61–63 is a general purpose workflow management platform for computational research projects, 

with a plugin interface to support external code. Currently, the vast majority of the plugins cover 

simulations in the field of materials science. AiiDA provides a framework to codify and automate the 

different tasks involved in computational workflows and is able to seamlessly integrate with 

simulation codes running on HPC clusters. A generic AiiDA client can thus grant FINALES users 

access to a wide variety of simulation tools without needing to implement specific infrastructure to 

interact with the computational server. Furthermore, it can also significantly simplify the 

management of the computing resources used to run these calculations, as well as the coordination 



 

between multiple simulation codes required to produce a given figure of merit (FOM), i.e. the 

implementation of complete workflow. 

The AiiDA-FINALES client demonstrates the interaction of a simulation managed by AiiDA with 

FINALES. A command-line interface is also implemented to simplify the process of starting the client, 

and also provides an easy way of populating requests in the server, which is particularly useful for 

testing. Once the client is started, it connects to the server, pulls any request for conductivity 

measurements, and submits a simulation that estimates a low-fidelity value for this physical property. 

It then monitors the state of the submitted calculations in the internal queue of AiiDA and, when they 

finish, it submits back the measurement results to FINALES. 

The calculation performed for the low-fidelity conductivity value is based on the model reported by 

Rahmanian et al.64 developed using one-shot active learning. The model was designed for solutions 

of lithium hexafluorophosphate (LiPF6) in mixtures of ethylene carbonate (EC), ethyl methyl 

carbonate (EMC) and propylene carbonate (PC), in a range of temperatures reaching from -30 ºC 

to 60 ºC. The original model was expressed as a polynomial on the mass ratios of the participating 

species, in which the coefficients were determined for specific temperatures within the range 

provided in increments of 10ºC. In the implementation used here, any temperature is accepted and 

the parameters are interpolated from those corresponding to the two nearest multiples of ten. 

The implementation serves as a proof of concept of the capabilities that can be enabled by 

connecting AiiDA as a client to FINALES. Further features, such as a persistence mechanism to 

allow the client to be restarted or error handling will be implemented in the future, also leveraging 

future features of the server. 

Demonstration of Operability 

To demonstrate the operability of the system, we chose to involve the ASAB system and Pipeline 

Pilot for performing the experiments and simulations, respectively. The optimizer application was 

used to guide the optimization procedure and send requests to FINALES. Maximizing viscosity while 

minimizing density by variation of the formulation was chosen as the objective for the run. The 

suggestions of the optimizer for adequate follow-up experiments were based on the experimental 

as well as the simulated data available in the database interfaced through FINALES. 

The samples are formulated based on stock solutions provided in vials prior to the start of the 

experiment. For the purpose of the demonstration reported herein, commercial solutions of 1 M 

LiPF6 in EC:EMC 3:7 by weight, and 1 M LiPF6 in EC:DMC 1:1 by weight, as well as EC:EMC 3:7 

by weight and DMC, all ordered from E-Lyte Innovations GmbH are used as received and provided 

as stock solutions to the setup. In preparation of the demonstration run, density measurements for 

each stock solution needed to be performed as these values are required as inputs to calculate the 

volume fractions from the mole fractions to achieve the correct formulation. Each measurement 

originating from the experimental setup comprises three individual measurements. The value for 

each individual measurement is reported to FINALES within one measurement. Hence, it is left up 

to the user of the data, whether the data shall be averaged or used as is. 

Figure 4 shows the averaged data for each quantity and each measurement in the sequence, in 

which they were retrieved from the server. This sequence does not necessarily correspond to the 

order, in which the experiments were performed or requested. Therefore, it is not possible to draw 

any conclusions regarding the effectivity of the optimization. The demonstration revealed some 

shortcomings in the current status of the development of the agents. In the experimental setup, 

cross-contaminations resulted in the mixing ratios not matching with the calculated ones as 

accurately as expected. Further, it is possible that the simulation agent reaches boundaries 

regarding the composition when the mole fraction of the salt exceeds 50 %. Also, our results show 



 

a strong correlation between the viscosity and density in the system under investigation as shown 

in Figure 5. This renders minimum density and maximum viscosity a non-ideal target for optimization 

in this formulation space. 

 

Figure 4: Data obtained from the server after the run. The experimentally determined densities, ρexp, and viscosities, ηexp, 
are shown as well as the density obtained from the simulations, ρsim. The data are presented in the sequence, 
in which they are obtained from the server. This does not necessarily correspond to the sequence, in which 
they were recorded or requested. Zero-valued experimental results arise because it was decided to report zero, 

if all the individual measurements failed. 

 

Figure 5: This graph shows the correlation between the density ρexp and the viscosity ηexp as observed from the 
formulations yielding both, successful density and viscosity measurements. 

The chemical space covered during the run is shown in Figure 6. The squared markers represent 

experimentally measured data, triangles indicate results obtained from simulations. The round 

markers with blue outlines represent requested formulations. A significant deviation between the 

formulations targeted in the experiments and the formulations requested by the optimizer can be 

observed. This most probably depends on the stock solutions, which do not allow to cover the full 

chemical space spanned by the individual chemicals. Furthermore, the approximation required 

during the transition from mole fractions to volume fractions and back during the experiment adds 

another source for the deviation. 



 

 

Figure 6: The compositional space covered during the demonstration run. Squared markers represent target formulations 
of the experiments, triangles mark formulations covered by simulations and the circles with blue outlines 
represent the requested formulations. 

Discussion and Lessons Learned 

Our demonstration revealed several crucial aspects to be considered when designing and running 

an international MAP. In the following, we will summarize the lessons learned from this 

demonstration. 

The experience gained from the demonstration presented herein shows the major importance of a 

binding agreement between all parties regarding input and output data formats for successful 

operation and interaction. The specified data format implemented in FINALES allows for the 

integration of an ontology, which can improve interoperability of the generated data. This is further 

fostered by storing the data in an open machine-readable format as opposed to proprietary formats. 

Further, data from various sources also outside of FINALES may be incorporated for analysis with 

the help of an ontology. Existing data can therefore be complemented by additional data for more 

detailed investigations. 

The addition-only data storage implemented in FINALES allows traceability of the requests and 

responses. Additionally, the metadata stored with each dataset enables e.g. the identification of 

failed measurements, which the user may want to handle differently from successful measurements 

during data analysis. However, an agreement on the handling of missing values proved to be crucial 

even outside the optimizer agent. Missing values can originate from failures during data generation 

or upon merging data from various sources, where some quantities are by design not provided by 

all services. Compliance with the schemas offered by FINALES requires the necessary fields to be 

filled with an appropriate data type. However, it needs to be possible to filter for invalid or unavailable 

data. Therefore, either filling values need to be chosen, which are universally applicable for all 

agents, or each individual value needs to be labelled regarding its validity. Both approaches have 

limitations for some kinds of results. So, care must be taken when deciding for one solution or the 

other. A mixed approach could also be worth to be considered. 



 

The ability of handling side-results, which are typically generated in any experiment or simulation, is 

an important aspect to maximize knowledge gain from each individual activity. Our approach on this 

is to record a comprehensive number of parameters not only focusing on the data of primary interest. 

A strong interconnection between the various data, corresponding metadata, requests, and reports 

is crucial to allow for versatile entry points of data access. Unique identifiers corresponding each 

part of the data and timestamps showed to be very important for tracking the origin and sequence 

of results. Data lineage takes the collection of metadata one step further. This is not yet included in 

the current implementation of our MAP, as the full data lineage in the MAP cannot be provided by a 

central service. Full data lineage tracking requires each agent to provide the data lineage for its 

workflow and to report it to FINALES. In our framework, AiiDA, HELAO and Pipeline Pilot offer data 

lineage tracking functionalities. In the future, FINALES needs to keep track of data lineage during 

the overall workflow and needs to collect all the data lineage from the connected agents. 

Due to the intention agnostic approach of FINALES, several intention-aware tenants can request 

experiments, simulations or other services available in the MAP. The various intention-aware 

tenants may access all the data, comprising even the ones not requested by the respective tenant. 

Hence, all intention-aware tenants can benefit from all the available data while being able to pursue 

very different or even opposed objectives. Efficient usage of the hardware equipment and data is 

therefore maximized. 

In a large-scale application, a billing system will be required to avoid accumulation of cost for some 

of the tenants as the cost of the infrastructure may vary significantly depending on the service to be 

offered. A subscription model could offer a solution. However, the pricing might be volatile, if new 

services are added continuously. 

The communication of limitations of tenants through FINALES to other tenants showed to be very 

important to limit requests to a feasible range. In our demonstration, this would apply e.g. to the 

composition of the stock solutions or limitations arising due to the limited number of molecules, which 

can be represented in the simulations. The limitations of each tenant are relevant for the generation 

of requests. The future development of the experimental setup should include a check of the actual 

chemical composition used for the experiments, as this is not yet covered in the current state. 

Overall, the demonstration reported here proved the operability of a MAP on an international scale, 

even though, a variety of challenges is to be tackled during further development and integration of 

an increasing number of agents. 
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