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Abstract Mean-field homogenization is an established and computationally efficient method estimating the
effective linear elastic behavior of composites. In view of short-fiber reinforced materials, it is important to
homogenize consistently during process simulation. This paper aims to comprehensively reflect and expand the
basics of mean-field homogenization of anisotropic linear viscous properties and to show the parallelism to the
anisotropic linear elastic properties. In particular, the Hill–Mandel condition, which is generally independent
of a specific material behavior, is revisited in the context of boundary conditions for viscous suspensions. This
study is limited to isothermal conditions, linear viscous and incompressible fiber suspensions and to linear
elastic solid composites, both of which consisting of isotropic phases with phase-wise constant properties. In
the context of homogenization of viscous properties, the fibers are considered as rigid bodies. Based on a chosen
fiber orientation state, different mean-field models are compared with each other, all of which are formulated
with respect to orientation averaging. Within a consistent mean-field modeling for both fluid suspensions and
solid composites, all considered methods can be recommended to be applied for fiber volume fractions up to
10%.With respect to larger, industrial-relevant, fiber volume fractions up to 20%, the (two-step) Mori–Tanaka
model and the lower Hashin–Shtrikman bound are well suited.

Keywords Fiber reinforced composites · Fiber suspensions · Short fibers · Mean-field modeling ·
Micromechanics · Effective anisotroy

Symbols and abbreviations
Greek

α Fiber aspect ratio
αi, αd Aspect ratio inclusion (i), aspect ratio distribution (d) within the PCW model
γ̇ , γ̇0, γ̇c Shear rate, reference shear rate, critical shear rate
� Singular surface within V
δC, δV Abbreviation of CF − CM or VF − VM
ε Strain tensor
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ε∗ Eigenstrain tensor
λ1, λ2 Eigenvalues of P◦

0
μs, μv Shear viscosity matrix, volume viscosity matrix
ν Poisson’s ratio
σ , σV Stress tensor, viscous stress tensor
τ , τV Stress polarization, viscous stress polarization
ϕ Polar angle in e1-e2 plane
ψ Arbitrary microstructural quantity

Latin

a Parameter power-law viscosity model
a1, a2 Abbreviations within λ1, λ2
A Strain or strain rate localization tensor
b Parameter power-law viscosity model
b1, ..., b5 Coefficients orientation averaging
B Stress or viscous stress localization tensor
cγ Volume fraction γ -phase
C Stiffness tensor
C0 Reference stiffness tensor
d Shear direction or tensile direction
D Strain rate tensor
D∗ Eigenstrain rate tensor
ei Cartesian basis vectors
E Young’s modulus
E Eshelby tensor
f Probability density function regarding fiber orientation
F Fluidity tensor
G Shear modulus
H Tensor within the definition of P0
I, IS Identity on first-order tensors, identity on symmetric second-order tensors
K Bulk modulus
K Tensor within the definition of P0
n Direction on unit sphere or normal vector
Nint Number of integration points
N,N Fiber orientation tensors of the first kind
p Pressure
p Shear plane normal vector
P1 Projector on spherical second-order tensors
P2 Projector on symmetric deviatoric second-order tensors
P0,P

◦
0 Polarization tensor spheroidal inclusion, polarization tensor spherical inclusion

Pi,Pd Polarization tensor inclusion (i), polarization tensor distribution (d) within the PCW model
S, dS Unit sphere, surface element on unit sphere
S Compliance tensor
t, tp, tV Stress vector, pressure stress vector, viscous stress tensor
T Arbitrary transversely isotropic tensor
u Displacement
V, ∂V Volume, boundary of the volume
v Velocity
V Viscosity tensor
V0 Reference viscosity tensor
wi Quadrature weights regarding S
W,W ∗ Elastic strain energy density, complementary elastic strain energy density
WV,W ∗

V Viscous dissipation, complementary viscous dissipation
x Spatial coordinate
Z Tensor within the definition of P0
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Abbreviations

DD Dilute distribution
DS Differential scheme
F Subscript fiber
HS Hashin–Shtrikman
I Inhomogeneity or inclusion
IBOF Invariant-based optimal fitting
M Subscript matrix
MT Mori–Tanaka
MT-TS Mori–Tanaka two-step
OA Orientation average
PCW Ponte Castañeda-Willis
PDF Probability density function
PP Polypropylene
PTG Phan-Thien–Graham model
R Reuss bound
Re Reynolds number
RVE Representative volume element
S Subscript solid
SC Self-consistent
SC-TS Self-consistent two-step
SIP Single inclusion problem
Sym Symmetric subset
SymDev Symmetric deviatoric subset
UE Upper estimate (g: geometric, h: harmonic, a: arithmetic)
UD Unidirectional
V Subscript viscous or Voigt bound

1 Introduction

1.1 Motivation

Lightweight components are made of short-fiber reinforced polymers due to their beneficial stiffness-to-
weight ratio and good formability [1,2]1. These components are manufactured by injection molding of fiber
suspensions consisting of liquid polymer matrix and suspended fibers. During processing, the local kinematic
conditions within the flow influence the evolution of the fiber orientation state which in turn influences the
anisotropic elastic properties after the fluid–solid transition of the polymer matrix [3,4]. In view of flow–fiber
coupling, the orientation state itself induces anisotropic viscous behavior that affects the flow, which in turn
affects the evolution of fiber orientation [3,5–9]. As a consequence, a physically comprehensive simulation
is required to consider the anisotropic viscosity already during mold filling to better represent both the flow
kinematics and the evolution of the orientation state [4,10]. The selection of a suitable modeling of the effective
anisotropic viscosity is extremely important, since it is hard to be determined experimentally [11,12]. On the
one hand, reorientation takes place instantaneously during the experiments, and on the other hand, many
independent parameters have to be determined depending on the present material symmetry [11,12]. In this
context, homogenization techniques can be used to estimate the effective anisotropic linear viscous behavior
of fiber suspensions [4,5,11,12]. In addition, the adjustment to the mean-field methods established in stiffness
calculations [13–15] enables a micromechanically consistent simulation chain improving the estimation of
elastic anisotropy of manufactured parts. Moreover, mean-field models are computationally efficient compared
to full-field simulations and, therefore, can be used within industrial mold-filling simulations taking the effects
of flow–fiber coupling into account.

1 Preamble of the International Research Training Group GRK 2078 “Integrated engineering of continuous-discontinuous long
fiber reinforced polymer structures” (CoDiCoFRP). Retrieved October 27, 2021. https://www.grk2078.kit.edu/index.php.

https://www.grk2078.kit.edu/index.php
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1.2 Originality of the manuscript and outline

In the framework of this study, mean-field homogenization theory and models concerning the effective linear
elastic behavior of solid composites are reviewed. The aim of the manuscript is to elaborate and detail the
parallels and differences in the homogenization of anisotropic linear viscous properties of short-fiber sus-
pensions and of anisotropic linear elastic properties of solid short-fiber reinforced composites. Such a novel
methodological comparison is important in order to be able to model manufacturing processes of fiber rein-
forced polymers consistently throughout. Previous studies [4,5,12,16,17] having advanced into this topic are
extended by the following details:

• The Hill–Mandel condition [18,19] is formulated in detail for fiber suspensions (see Sect. 3.3.2)
• The basic mean-field equations regarding the effective viscosity and fluidity (dual approach) are provided
for fiber suspensions (see Sects. 3.1, 3.2 and 3.4)

• With respect to orientation averaging and rigid fibers, common mean-field models are reformulated for
estimating the effective viscosity of fiber suspensions (see Sects. 4.2–4.6)

• Upper estimates for the effective viscosity of fiber suspensions are suggested (see Sect. 6)

The outline of themanuscript is as follows. In Sect. 1, the study is motivated and the originality is described.
Furthermore, a detailed literature review is provided and the notation of the manuscript is explained. Section 2
consists of how to describe fibrous microstructures and which statistical assumptions are made for homoge-
nization. The basic relations of mean-field homogenization for linear viscosity and linear elasticity are derived
in Sect. 3. A selection of common mean-field models is given in Sect. 4. In Sect. 5, the lower and upper bounds
for the linear elastic and linear viscous behavior are given. Upper estimates for the effective viscosity are
introduced in Sect. 6. For measured fiber orientation data, the results of all presented mean-field models are
shown and discussed in Sect. 7. The outcomes are summarized in Sect. 8, and additional material is given in
Appendixes A–D. Particularly, Eshelby’s single inclusion problem (SIP) [20,21] is revisited in detail regarding
the parallelism between solid and fluid mechanics in the framework of a consistent tensor notation.

1.3 State of the art

Mean-field homogenization is an established method in solid mechanics to determine the effective behavior of
microstructured heterogeneousmaterials. In general,mean-field approaches consist of bounding and estimating
methods [22–24].

According to Hill [25], the first-order bounds based on the works of Voigt [26] and Reuss [27] are physical
bounds.As a consequence, only having the constituent’s properties and the volume fraction at hand, the effective
elastic properties of composite materials must lie between the lower Reuss and the upper Voigt bound. Large
phase contrast has an unfavorable effect on the usefulness of these bounds, since the range of the actual
properties cannot be narrowed down sufficiently. Another limiting factor of first-order bounds is the restriction
to isotropic effective behavior if the constituents show isotropic mechanical behavior. Based on a variational
formulation with respect to an auxiliary field, namely stress polarization, Hashin and Shtrikman [28] derived
second-order bounds [29–31]. These bounds not only account for the constituent’s properties and the volume
fraction, but also for the geometry of the inclusions in the sense of two-point statistics. Thus, these bounds lead
to a smaller range of the effective behavior. In terms of ellipsoidal inclusions, the Hashin–Shtrikman principle
is formulated by Willis [31,32] more generally. In the context of texture coefficients of crystal aggregates, the
Hashin–Shtrikman bounds are derived and investigated by Lobos and Böhlke [33–35].

Based onEshelby’s single inclusion problem [20,21], the dilute distributionmodel [13,36–38] estimates the
effective stiffness neglecting the interaction between the inclusions. This method is limited to small inclusion
volume fractions since the physical Reuss bound can be violated [39]. According to Benveniste et al. [37], the
dilute distribution approach always ensures the symmetry conditions for the effective stiffness tensor.

Mori and Tanaka [40] use Eshelby’s result to model the interaction between the inclusions via the effective
strain which is set to the effective matrix strain [41,42]. Brylka [43] extended this concept to consider fiber ori-
entation states using an orientation average scheme [44].Anisotropic damagemodeling of fiber reinforced com-
posites using the Mori–Tanaka approach is done by Schemmann [45]. It should be noted that, as described by
Kanaun and Levin [46], the Mori–Tanaka method coincides with the effective field method for the special case
of coinciding inclusion shape and shape of the correlation function. As described by Kehrer [24] and Schem-
mann [45], the advantages of the Mori–Tanaka method lie in its simple and explicit structure. But on the other
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hand, the symmetries of the effective stiffness tensor based on the Mori–Tanaka method are not ensured gener-
ally, as summarized by Kehrer et al. [47]. The symmetries are preserved for two-phase composites [37,48] and
formultiphase compositeswith similar shaped and aligned inclusions [49,50]. The symmetriesmight be lost for
differently shaped inclusionswithinmultiphase composites [49–51]. In addition, differently shaped anisotropic
inclusions embedded in an isotropicmatrix of a two-phase compositemayviolate theHashin–Shtrikmanbounds
[50]. Kanaun and Levin [46] address the drawback of violated index symmetry regarding the Mori–Tanaka
method and present a version of the above-mentioned effective field method avoiding this disadvantage.

Based on the concept of Hershey [52] and Kröner [53] for crystal aggregates, Hill [54] and Budiansky [55]
developed the so-called self-consistentmethod formatrix-based composites. The effective elastic properties are
estimated by embedding a single inclusion in an infinite large matrix having the unknown effective properties,
whichmaybe anisotropic.As described byKanaun andLevin [46], this procedure refers to the effectivemedium
method. In addition, it is shown that the effective mediummethod has the drawback of violating the physically
implied major tensor symmetry for aligned inclusions. Since the effective properties are unknown, this proce-
dure leads to an implicit formulationwhich has to be solved iteratively. Thismethod is usefulwhen the inclusion
andmatrix phases cannot be clearly distinguished [14]. The symmetries of the effective stiffness tensor are pre-
served for two-phase composites and formultiphase compositeswith similar shaped and aligned inclusions [37].
In addition, themixing of themicro- andmacroscale within the self-consistentmethod can be taken as a point of
criticism [14]. A further disadvantage of the self-consistent model is the lack of direct interaction between the
matrix and the inclusion [23,45]. In contrast, within the generalized self-consistentmodel [56,57] the inclusions
are first embedded in the pure matrix material and secondly in the composite having the effective properties.

A further estimation of the effective properties of a composite is given by the differential scheme. The basic
idea is to add the inclusion phase incrementally into the matrix which elastic properties depend on the current
inclusion volume fraction. In every step, the dilute distributionmodel described above is applied. This approach
first was introduced by Roscoe [58] using Einstein’s estimate [59] of suspensions containing rigid spheres of
equal shape in a Newtonianmatrix fluid. For macroscopically isotropic solid composites consisting of isotropic
phases, the differential scheme was suggested by Roscoe [60] and Boucher [61]. By using tensor calculus,
McLaughlin [62] formulated the differential scheme in order to treat two-phase linear elastic anisotropic
composites consisting of anisotropic phases and homogeneously distributed inclusions. It is shown that the
differential scheme fulfills the Hashin–Shtrikman bounds for an isotropic distribution of spheres and for fiber
reinforced composites. Norris [63] formulated a differential approach which includes the differential scheme
of Roscoe [60] and Boucher [61] and the self-consistent method of Kröner [53] and Hill [54] as special cases.

In addition to the more classical models described above, there are newer developments for estimating
the effective elastic properties of composites. Ponte Castañeda and Willis [64] derived explicit estimates of
Hashin–Shtrikman type considering both the inclusion geometries and the spatial distribution. Hori andNemat-
Nasser [65] introduced the double-inclusion model. The basic idea is to embed an ellipsoidal inclusion in an
infinite domain of matrix material. The inclusion itself again consists of two phases, one of which takes on
the role of the matrix and the other the role of an inclusion. Aboutajeddine and Neale [66] developed a new
version of the double-inclusion model in order to generally consider multi-phase composites. Hu and Weng
[67] discuss the connection between the double-inclusionmodel and other mean-field estimates. Zheng and Du
[68] and Du and Zheng [69] proposed the explicit interaction direct derivative model to consider multi-phase
composites with interactive inclusions of different anisotropic behavior. Two-step homogenization approaches
proposed by Pierard et al. [70] divide the composite into domains of which can be homogenized separately.
Subsequently, a homogenization over all domains is done to estimate the effective anisotropic behavior. To
conclude the overview of themean-field homogenization of solid composites, reference ismade to the literature
[13,15,71] which aims to compare different estimates. A comprehensive introduction into homogenization
theory can be found in standard works [14,38,39,72,73].

Early works on the topic of estimating the effective scalar viscosity of suspensions consider solid spheres
immersed in a Newtonian matrix fluid. Einstein [59] derived an expression for dilute suspensions and Frankel
and Acrivos [74] for the concentrated regime, respectively. Graham [75] derived a model which covers both
the dilute and the concentrated regime. In order to describe the anisotropic character of fiber suspensions,
the effective viscosity has to be based on a tensorial approach. In the context of anisotropic fluids, Ericksen
[76] and Hand [77] derived expressions for the stress tensor with respect to non-spherical particles. Based on
the transversely isotropic fluid model of Ericksen [78] only valid for dilute suspensions, Lipscomb et al. [79]
derived expressions for the unknownmaterial constants. Also, Batchelor [80] considered the effective viscosity
of dilute suspensionswith rodlike particles and also investigated the non-dilute regimewhere particle interaction
is present [81]. Brenner [82] considered dilute suspensions of Brownian particles and provided expressions for
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different axisymmetric particle shapes. The effect of Brownian motion in the dilute regime has been studied by
Hinch and Leal [83], and an extension to semi-dilute suspensions also has been carried out. Furthermore, Hinch
and Leal [84] studied suspension mechanics generally and derived a simplified constitutive model. Based on
the model of Hand [77], Hinch an Leal [85] derived constitutive expressions as simple interpolations between
weak and strong flow in dilute regimes. For the semi-dilute regime, the model of Dinh and Armstrong [86] is
applicable. In contrast, for concentrated suspensions themodel of Phan-Thien andGraham [87] and Phan-Thien
[88] can be used. The quantitative subdivision of the suspensions into dilute, semi-dilute and concentrated can
be taken from Petrie [89]. In order to circumvent numerical difficulties of tensor-based models, Favaloro et al.
[90] introduced a model covering anisotropic viscosity via a scalar function.

In the framework of estimating the effective viscosity of fiber suspensions by means of micromechan-
ics, Bertóti and Böhlke [5] have used the Mori–Tanaka model for unidirectional pseudo-domains combined
with orientation averaging to cover the fiber orientation state. Furthermore, the results are compared to the
phenomenological Dinh–Armstrong model. Bertóti [12] has used the Mori–Tanaka model to determine the
three viscosity parameters of Tucker [91] analytically. In addition, results based on fast Fourier transform
(full-field simulations) have been used both to evaluate the mean-field approach and to improve the analytical
expressions of the viscosity parameters [4,12]. In the context of fast Fourier transform, Schneider [11] has
considered primal and dual formulations of cell problems of periodic suspensions and has proved existence and
uniqueness theorems. Within fiber orientation evolution, Favaloro [92] considers the Reuss and Mori–Tanaka
mean-field approach by using localization based on Eshelby’s solution. Periodic suspension consisting of rigid
unidirectional fibers in a Newtonian matrix fluid is considered in view of homogenization by Périn and Lévy
[93] and governing equations for the special case of fiber-parallel flow are determined. For this configura-
tion, Périn [94] addresses lower and upper bounds for the special case of macroscopic isotropy. Thevenin and
Perreux [16] apply the Mori–Tanaka and the self-consistent model estimating the viscosity of fiber suspen-
sions in the framework of two-phase fluid formulations and unidirectional fiber orientation. In addition, the
applicability of micromechanical methods from linear elasticity is addressed. Ponte Castañeda [95] applies
a Hashin–Shtrikman-type homogenization in order to model the rheological behavior of suspensions with
deformable inclusions embedded in Newtonian or viscoplastic matrix fluid. Traxl et al. [17] use nonlinear
homogenization in order to determine the effective viscosity of suspensions with various matrix behaviors and
with different shapes of embedded inclusions or pores. The analogy to linear elasticity is mentioned, and the
dilute distribution, the Mori–Tanaka model and the differential scheme are applied.

1.4 Notation

Within this manuscript, a direct tensor notation is preferred. Scalar quantities are given by lower case Latin
and Greek letters, e.g., a, b, α, β, whereas vectors are denoted by lower case Latin bold letters, e.g., a, b.
Second-order tensors are represented by upper case Latin and lower case Greek bold letters, e.g., A, B, σ , ε
and fourth-order tensors by upper case Latin blackboard bold letters, e.g.,A,B. The dyadic product is denoted
by, for example, a⊗b, A⊗B, and different mappings of vectors and tensors by, e.g., Ab, AB,A[B],AB. The
scalar product only being defined between tensors of equal order is indicated by, for example, a · b, A · B. In
addition, the box product between second-order tensors is defined by (A�C)[B] = ABC. The second-order
identity tensor is denoted by I and I

S refers to the identity on symmetric second-order tensors, respectively.
The projector on spherical second-order tensors is given by P1 = I⊗I/3 and P2 = I

S − P1 indicates the
projector on deviatoric second-order tensors. In the context of named quantities and transpositions, sans serif
font is used. The transposition of a second-order tensor is denoted by, for example, AT. In case of fourth-order
tensors, the major transposition is indicated by, for example, ATH , the transposition of the right index pair by,
for example, ATR , and the transposition of the left index pair by, for example, ATL , respectively. The inner
transposition is denoted by, for example, ATI . The trace of a tensor is denoted by, for example, tr(A), and the
symmetrization operator is indicated by, for example, sym(A). Volume averages are given by, for example,
〈ψ〉, effective quantities are represented by, for example, ψ̄ , and fluctuations of, for example, ψ are indicated
by ψ̂ = ψ − 〈ψ〉. The jump of, for example, ψ over singular surfaces � is denoted by �ψ� = ψ+ − ψ− (±
describing the volumes separated by �), and the material derivative of, for example, ψ is given by ψ̇ . Further
details can be found in, for example, Gurtin et al. [96] and Moakher [97].
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2 Description of fibrous microstructures

In this section, the basics of describing fibrous microstructures are discussed to make the manuscript self-
contained. The microstructure of solids is assumed to be constant in time. For simplicity, the microstructure
of viscous suspensions is considered constant at each time step in order to apply a uniform procedure. In the
following, the specification of the time in the argument list is therefore omitted. This forms the basis for deter-
mining the instantaneous effective viscous behavior of suspensions without a changing microstructure during
homogenization [95]. Within this study, the ergodicity hypothesis [38,39] is assumed to be valid. As a conse-
quence, the ensemble average of an infinitely large ensemble is equal to the volume average over an infinitely
large volume of one single realization [39,46]. Since infinitely large volumes cannot be considered in prac-
tice, all following micromechanical considerations refer to a finitely large statistically representative volume
element (RVE) without cracks or voids [18,39]. Furthermore, phase-wise constant properties 〈ψ〉γ = ψγ are
assumed for simplicity withψ(x) representing an arbitrarymicrostructural quantity regarding phase γ with the
spatial coordinate x. In addition, the considered microstructures are assumed to be statistically homogeneous
throughout the manuscript [38,39].

The probability density function (PDF) f (x, n) [44] corresponding to one-point statistics is used to describe
fibrous microstructures statistically. This function represents the probability to find a rigid fiber aligned in
direction n at the spatial position x and is characterized by the following properties [44]:

f (x, n) ≥ 0, f (x, n) = f (x,−n),

∫
S
f (x, n)dS = 1. (1)

Furthermore, Brownian motion is not considered and the fibers are modeled neutrally buoyant without direct
fiber–fiber interaction [95]. An averaged description of the fiber orientation state can be done with orientation
tensors [44,98]. In general, three kinds of these tensors can be distinguished [98], with the second-order tensor
N and fourth-order tensor N of the first kind being used in practice [44]

N =
∫
S
f (x, n)n⊗ndS, N =

∫
S
f (x, n)n⊗n⊗n⊗ndS. (2)

The surface of the unit sphere is denoted by S with the surface element dS. Throughout the manuscript, N and
N are used within the orientation average procedure discussed in Sect. 4.1. The use of only these two tensors
is equivalent to an approximation of f , since all infinitely many orientation tensors are necessary for an exact
description of the microstructure [44,98]. Concerning the definition of the orientation tensors of the second
and third kind, the reader is referred to Kanatani [98]. These tensors are given in Karl et al. [99] consistent
with the notation of this manuscript.

3 Homogenization of linear viscous and linear elastic properties

In the following, the steps leading to the basic equations of mean-field homogenization for solid composites
and viscous suspensions are discussed in parallel. First, the constitutive relations on the micro- and mesoscale
are presented and secondly, the macroscale relations are given. In addition, the Hill–Mandel condition for solid
composites is reviewed and the corresponding concept is derived in case of viscous suspensions. This section
concludes with the basic equations of homogenization, which allows the effective mechanical behavior to be
estimated with suitable mean-field models.

3.1 Constitutive relations on the micro- and mesoscale

On the micro- and mesoscale, linear elastic behavior of the phases is assumed [18,100] and linear viscous
behavior is assumed analogously regarding the phases of the suspension [5,12,16]

σ = C[ε], σ = −p I + V[D] = −p I + σV,

ε = S[σ ], D = F[σV]. (3)

In Eq. (3), the symmetric Cauchy stress tensor is denoted by σ , C refers to the stiffness tensor with its inverse
S, named compliance tensor, and ε represents the symmetric strain tensor regarding small deformations. For
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viscous suspensions, V stands for the viscosity tensor, with F representing the fluidity as the inverse quantity.
The symmetric part of the velocity gradient is named strain rate tensor D and the viscous stress is denoted
by σV. For the special case of incompressibility, tr(D) = 0 holds and therefore, the inversion of V is defined
on the symmetric deviatoric subset SymDev [5,12], with P2 representing the identity on SymDev. In contrast
to this is the inversion of C on the symmetric subset Sym with I

S as the identity on Sym. Furthermore, the
pressure p has no physical meaning in the special case of incompressibility, but rather represents a reaction
force or a Lagrange multiplier [5,95].

Another possibility to describe the material behavior on the micro- and mesoscale is given by the elastic
strain energy density W and its complement W ∗ for solids [18,39,100], and by the viscous dissipation WV
and its complement W ∗

V for suspensions [95] reading

2W = ε · C[ε], WV = D · V[D],
2W ∗ = σ · S[σ ], W ∗

V = σV · F[σV]. (4)

By σ = ∂W/∂ε = C[ε] on the micro- and mesoscale, C = C
TH applies [34]. The major symmetry V = V

TH

is based on the dissipation principle D · σV = D · V[D] = V · (D⊗D) [3]. Since ε and D are symmetric,
C = C

TR andV = V
TR is usually introduced for convenience but is not required in general. As a consequence,

the left minor symmetry C = C
TL and V = V

TL follows by the major and right minor symmetry.

3.2 Constitutive relations on the macroscale and localization tensors

Analogous to the previous section, macroscopic linear elastic behavior of the solid composite is assumed
[18,31,100]. For suspensions, the assumption of macroscopic linear viscous behavior [5,12] represents the
equivalent leading to the following relations regarding the homogeneous effective fields

σ̄ = C̄[ε̄], σ̄ = − p̄ I + V̄[ D̄] = − p̄ I + σ̄V,

ε̄ = S̄[σ̄ ], D̄ = F̄[σ̄V]. (5)

Based on Eq. (4), the effective strain energy density and its complement for solids [25,29,31,100] can be
defined as follows:

2W̄ = ε̄ · C̄[ε̄], W̄V = D̄ · V̄[ D̄],
2W̄ ∗ = σ̄ · S̄[σ̄ ], W̄ ∗

V = σ̄V · F̄[σ̄V], (6)

with the analogy regarding the effective viscous dissipation of suspensions. In order to connect the effective
fields with the local fields, the following linear localization operations are used for ε and σ without eigenfields
[14] following the work of Hill [18] and Walpole [100]:

ε(x) = AS(x)[ε̄], D(x) = AV(x)[ D̄],
σ (x) = BS(x)[σ̄ ], σV(x) = BV(x)[σ̄V]. (7)

The localization of D̄ is used according to Bertóti [12]. The dependence on x is given explicitly in Eq. (7)
highlighting local fields. The strain/strain rate localization tensor refers to AS,AV and BS,BV stands for the
stress/viscous stress localization tensor, respectively. The index S represents the localization in solid composites
and V stands for the localization in viscous suspensions. In general, the localization tensors have both minor
symmetries but no major symmetry [18] and they are not invertible. Regarding the volume average, the
equations 〈AS,V〉 = I

S and 〈BS,V〉 = I
S hold [14,18]. As described by Gross and Seelig [14], the localization

tensors depend on the complete microstructure and therefore also on the material properties. By using Eqs. (3),
(5) and (7), the connection betweenAS andBS with respect to the effective properties can be derived [18,100].
This procedure can be easily transferred to the viscous localization tensors AV and BV

AS = SBSC̄, BS = CASS̄, AV = FBVV̄, BV = VAVF̄. (8)

In the remaining part of Sect. 3, the indices S and V regarding the localization tensors are omitted for conve-
nience. In the context of the equations, it becomes clear whether the solid or viscous localization is used.
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3.3 Hill–Mandel condition

First, the Hill–Mandel condition [18,19] for solid composites is reviewed to convey the aforementioned paral-
lelism and tomake themanuscript self-contained. Secondly, theHill–Mandel condition for viscous suspensions
addressed briefly by Traxl et al. [17] and Bertóti et al. [4] is derived in detail with respect to singular surfaces
with a discussion of the associated boundary conditions. To the best of the authors’ knowledge, this derivation
has not been published yet. The Hill–Mandel condition is known to ensure an energetically correct scale tran-
sition [24,101], meaning that the macroscopic strain energy density is equal to the strain energy density of the
volume-averaged microscopic quantities [101]. As described by Glüge [101], the Hill–Mandel condition is
directly related to the boundary conditions of the RVE and, moreover, it can be seen as a quality criterion of the
RVE. Another important point is that no assumptions need to be made concerning the constitutive modeling
to fulfill the Hill–Mandel condition [14,17,24]. After Sects. 3.3.1 and 3.3.2, the Hill–Mandel condition is
assumed to be fulfilled.

3.3.1 Hill–Mandel condition for solid composites

Based on the decomposition of the local fields σ (x), ε(x) into the volume averages 〈σ 〉, 〈ε〉 and into the local
fluctuations σ̂ (x), ε̂(x), the Hill–Mandel condition reads

2〈W 〉 = 〈σ · ε〉 = 〈σ 〉 · 〈ε〉, (9)

or equivalently 〈σ̂ · ε̂〉 = 0. Please note that the term σ · ε represents the strain energy density in the linear
elastic case. Equation (9) is valid analogously if the strain rate instead of the strain is used. Then, the Hill-
Mandel condition is formulated in terms of the stress power. Regarding the derivation of Eq. (9), the reader
is referred to further literature, e.g., Nemat-Nasser and Hori [39] and Kachanov and Sevostianov [102]. It can
be shown that the fluctuation term 〈σ̂ · ε̂〉 depends on the stress vector fluctuations t̂ and the displacement
fluctuations û on the boundary ∂V \� of the volume V with the singular surfaces �. Note that only RVEs
without cracks or voids are considered, meaning that t and u are continuous over � [100], which is equivalent
to �t� = 0 and �u� = 0. In summary, Eq. (9) holds if any of the following four cases hold [101]:

• Homogeneous displacement on the boundary ∂V \�: û = 0
• Homogeneous stress on the boundary ∂V \�: t̂ = 0
• Periodic boundary conditions
• Ergodic media (see, e.g., Torquato [38]) in the limit V → ∞: 2〈W 〉 → 〈σ 〉 · 〈ε〉
Motivated by the Hill–Mandel condition and the accessibility of 〈ε〉 and 〈σ 〉 over ∂V \� as shown in Walpole
[100], the following volume averages coincide with the effective fields:

〈σ 〉 = σ̄ , 〈ε〉 = ε̄, 〈W 〉 = W̄ . (10)

It should be noted that the Hill–Mandel condition in Eq. (9) holds for arbitrary stress σ and strain ε that satisfy
the equilibrium and the compatibility condition, respectively. Both fields are not required to be constitutively
coupled.

3.3.2 Hill–Mandel condition for viscous suspensions

The Hill–Mandel condition for viscous suspensions reads

〈WV〉 = 〈σV · D〉 = 〈σV〉 · 〈D〉, (11)

or equivalently 〈σ̂V · D̂〉 = 0. In order to derive Eq. (11), the local viscous dissipationWV given in Eq. (4) and
its volume average 〈WV〉 are considered

WV = σV · D, 〈WV〉 = 〈σV · D〉. (12)

The decomposition regarding the local fields σV(x), D(x) into the volume averages 〈σV〉, 〈D〉 and the local
fluctuations σ̂V(x), D̂(x)

σV = 〈σV〉 + σ̂V, D = 〈D〉 + D̂, (13)
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leads to the following volume-averaged viscous dissipation by using 〈σ̂V〉 = 0 and 〈 D̂〉 = 0:

〈WV〉 = 〈σV〉 · 〈D〉 + 〈σ̂V · D̂〉. (14)

The volume average of the fluctuation terms 〈σ̂V · D̂〉 can be reformulated as follows by applying the product
rule, the symmetry of σV and D = sym grad(v) with the velocity field v

〈σ̂V · D̂〉 = 〈σ̂V · grad(v̂)〉 = 〈div(σ̂T
Vv̂)〉 − 〈v̂ · div(σ̂V)〉. (15)

To further simplify Eq. (15), the balance of linear momentum for viscous suspensions without body forces is
considered in the common form without dimensions [103]

∂v∗

∂t∗
+ grad∗(v∗)v∗ = −grad∗(p∗) + 1

Re
div∗(σ ∗

V). (16)

In Eq. (16), fields and operations without dimensions are denoted by (·)∗, and Re refers to the Reynolds
number. Similar to previous studies [4,11,92,95], Stokes flow (Re 
 1) is considered in the context of this
work for which the pressure and the viscous forces are in equilibrium. As a consequence, local accelerations
due to changes in time and convective accelerations are neglected. Note that for the latter, also small spatial
gradients of the flow are assumed leading to the simplified linear momentum balance grad(p) = div(σV). In
this context, the parallels of linear elastic solids and linear viscous suspensions are addressed in the literature
[38,95] as long as the kinematic constraints are the same for both suspensions and composites. Next, the
splittings p = 〈p〉 + p̂ and σV = 〈σV〉 + σ̂V are used in combination with the linearity of grad(·) and div(·)
leading to the linear momentum balance in terms of averages and fluctuations

grad(〈p〉) + grad( p̂) = div(〈σV〉) + div(σ̂V). (17)

Since 〈p〉 and 〈σV〉 are constant, Eq. (17) reduces in a trivial way to the linear momentum balance for the
fluctuations

grad( p̂) = div(σ̂V). (18)

By inserting Eq. (18) into Eq. (15), the volume average of the fluctuation terms read after applying the product
rule again

〈σ̂V · D̂〉 = 〈div(σ̂T
Vv̂)〉 − 〈v̂ · grad( p̂)〉 = 〈div(σ̂T

Vv̂)〉 − 〈div(v̂ p̂)〉 + 〈 p̂ div(v̂)〉. (19)

For the special case of incompressibility in terms of velocity fluctuations div(v̂) = 0, Eq. (19) can be expressed
as follows

〈σ̂V · D̂〉 = 〈div(σ̂T
Vv̂)〉 − 〈div(v̂ p̂)〉 = 1

V

∫
V
div(σ̂T

Vv̂)dV − 1

V

∫
V
div(v̂ p̂)dV . (20)

In the next step, the Gaussian integral theorem with singular surface � [96] is applied to transform the volume
integrals into surface integrals

〈σ̂V · D̂〉 = 1

V

∫
∂V \�

(σ̂
T
Vv̂) · ndA − 1

V

∫
�

�σ̂T
Vv̂� · ndA − 1

V

∫
∂V \�

(v̂ p̂) · ndA + 1

V

∫
�

�v̂ p̂� · ndA. (21)

To achieve a convenient notation being compatible with the solid mechanics considerations, the stress vectors
tV = σVn and tp = −pn representing viscous and pressure forces are introduced leading to

〈σ̂V · D̂〉 = 1

V

∫
∂V \�

( t̂p + t̂V) · v̂dA − 1

V

∫
�

�( t̂p + t̂V) · v̂�dA = 1

V

∫
∂V \�

t̂ · v̂dA − 1

V

∫
�

� t̂ · v̂�dA. (22)

In Eq. (22), the addition of the force vectors t = σn = (−p I + σV)n = tp + tV is used to obtain a structure
like the one commonly used in solid mechanics. The fluctuation term 〈σ̂V · D̂〉 in Eq. (22) depends on the stress
vector fluctuations t̂ and the velocity fluctuations v̂ on ∂V \�, if cracks and voids are excluded. Therefore,
t and v are continuous over � leading to a vanishing integral over �, since �t� = 0 and �v� = 0 hold. The
remaining integral over ∂V \� vanishes and, as a consequence, Eq. (11) holds if any of the following four
cases hold (implied by the list in Sect. 3.3.1):
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• Homogeneous velocity on the boundary ∂V \�: v̂ = 0
• Homogeneous stress on the boundary ∂V \�: t̂ = 0
• Periodic boundary conditions
• Ergodic media in the limit V → ∞: 〈WV〉 → 〈σV〉 · 〈D〉
Similar to the previous Sect. 3.3.1 and motivated by the Hill–Mandel condition and the accessibility of 〈σV〉
and 〈D〉 over ∂V \�, the effective fields are equal to the volume averages as used by Bertóti [12]

〈σV〉 = σ̄V, 〈D〉 = D̄, 〈WV〉 = W̄V. (23)

The derivation does not imply that the viscous stress and the strain rate are constitutively coupled. Equation (11)
corresponds to the Hill–Mandel condition given in Traxl et al. [17] and refers to the macroscopic viscous
dissipation addressed by Bertóti et al. [4].

3.4 Basic equations of homogenization

Based on the previous sections, the relations representing the effective properties of solid composites and
viscous suspensions are derived. For a more comprehensive treatise of solid composites, the reader is referred
to the basic literature, e.g., Nemat-Nasser and Hori [39]. By using Eqs. (10) and (23), the following relations
hold [18,30,100]

〈σ 〉 = 〈C[ε]〉 = 〈CA〉[ε̄] = C̄[ε̄] = σ̄ , 〈σV〉 = 〈V[D]〉 = 〈VA〉[ D̄] = V̄[ D̄] = σ̄V,

〈ε〉 = 〈S[σ ]〉 = 〈SB〉[σ̄ ] = S̄[σ̄ ] = ε̄, 〈D〉 = 〈F[σV]〉 = 〈FB〉[σ̄V] = F̄[σ̄V] = D̄. (24)

In Eq. (24), both the constitutive laws and the localization relations are used. The definitions of the effective
stiffness C̄, compliance S̄, viscosity V̄, and fluidity F̄ are obtained by comparing the coefficients in Eq. (24). By
assuming phase-wise constant properties, the following explicit expressions are obtained with cγ representing
the volume fraction of phase γ [18,29,100]:

C̄ = 〈CA〉 =
∑
γ

cγCγ 〈A〉γ , V̄ = 〈VA〉 =
∑
γ

cγVγ 〈A〉γ ,

S̄ = 〈SB〉 =
∑
γ

cγ Sγ 〈B〉γ , F̄ = 〈FB〉 =
∑
γ

cγFγ 〈B〉γ . (25)

The expression V̄ = 〈VA〉 is used according to Bertóti [12]. It is pointed out that no assumption regarding the
material symmetry of the tensors involved has beenmade. Additional expressions for the effective stiffness and
compliance can be derived by considering themacroscopic strain energy density combinedwith the localization
relations as follows [14,18,29,100]:

2〈W 〉 = 〈ε · C[ε]〉 = 〈A[ε̄] · CA[ε̄]〉 = ε̄ · 〈ATHCA〉[ε̄] = ε̄ · C̄[ε̄] = 2W̄ → C̄ = 〈ATHCA〉,
2〈W ∗〉 = 〈σ · S[σ ]〉 = 〈B[σ̄ ] · SB[σ̄ ]〉 = σ̄ · 〈BTHSB〉[σ̄ ] = σ̄ · S̄[σ̄ ] = 2W̄ ∗ → S̄ = 〈BTHSB〉. (26)

This concept is transferred to the macroscopic dissipation of viscous suspensions leading to the following
alternative expressions for the effective viscosity and fluidity:

〈WV〉 = 〈D · V[D]〉 = 〈A[ D̄] · VA[ D̄]〉 = D̄ · 〈ATHVA〉[ D̄] = D̄ · V̄[ D̄] = W̄V → V̄ = 〈ATHVA〉,
〈W ∗

V〉 = 〈σV · F[σV]〉 = 〈B[σ̄V] · FB[σ̄V]〉 = σ̄V · 〈BTHFB〉[σ̄V] = σ̄V · F̄[σ̄V] = W̄ ∗
V → F̄ = 〈BTHFB〉.

(27)

It is easy to show that the definitions of the effective properties given in Eqs. (26) and (27) are equal to those
given in Eq. (25) if the Hill–Mandel condition is valid. Note that for deriving the effective viscosity and fluidity,
Stokes flow has been assumed. In addition, the algebraic properties of the effective tensors transfer from the
corresponding local tensors by comparing the constitutive relations on the micro- and mesoscale in Sect. 3.1
with those on the macroscale in Sect. 3.2 [39].
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In the following, the special case of two-phase (·)1 and (·)2 solid composites and viscous suspensions are
considered. By using the volume averages of the localization tensors [18,100]

〈A〉 = I
S = c1〈A〉1 + c2〈A〉2, 〈B〉 = I

S = c1〈B〉1 + c2〈B〉2, (28)

the expressions 〈A〉1 and 〈B〉1 in Eq. (25) can be eliminated to receive equations with only one unknown
localization tensor 〈A〉2 and 〈B〉2. Note that c1 + c2 = 1 applies. For clarity, phase 1 is treated as the matrix
material (M) and phase 2 represents the fibermaterial (F) from now on leading to the following basicmean-field
equations for solid composites [18,29,100] and viscous suspensions:

C̄ = CM + cF(CF − CM)〈A〉F, V̄ = VM + cF(VF − VM)〈A〉F,

S̄ = SM + cF(SF − SM)〈B〉F, F̄ = FM + cF(FF − FM)〈B〉F. (29)

The equation for V̄ is used according to Bertóti [12] and represents the two-fluid approach of Thevenin and
Perreux [16] with the interpretation of VF as an embedded reinforcing fluid. Within the framework of the
assumptions made, these equations for the effective properties are exact. For use, however, models for the
localization tensors are required [14], a selection of which is presented in Sect. 4. The localization tensors
correspond to those from Eq. (7) in the respective context of solid composites or viscous suspensions. In
practice, the equation for C̄ is commonly used by modeling the strain localization tensor 〈A〉F. In the present
study, the fibers are considered as rigid bodies withVF → ∞ and, therefore, with a vanishing fluidity FF [12].
For an alternative approach, the reader is referred to the literature [16]. As a consequence, the use of fluidity
is suitable in view of numerical treatment [11,12] and Eq. (29) can be rewritten by using Eq. (8):

F̄ = FM − cFFM〈B〉F = FM − cFFM〈VAF̄〉F = FM − cFFMVF〈A〉FF̄. (30)

In the last step, phase-wise constant properties 〈VAF̄〉F = VF〈A〉FF̄ are used. The formulation in Eq. (30) has
the advantage that common models for A can be used directly. The last step consists of solving Eq. (30) for F̄
to achieve an explicit equation for V̄ by inverting F̄ on SymDev

F̄ =
(
I
S + cFFMVF〈A〉F

)−1
FM, V̄ = F

−1
M

(
I
S + cFFMVF〈A〉F

) = VM + cFVF〈A〉F. (31)

It is pointed out that the infinitely large fiber viscosity VF is still present in Eq. (31). To get rid of this term
leading to a finite expression, a model regarding the strain rate localization has to be used in a first step. Then,
VF is pulled into 〈A〉F and exploited that V−1

F = FF vanishes. This procedure results in the expressions for V̄
given in Sect. 4.

4 Mean-field homogenization models

In this section, selected mean-field models are presented for solid composites and transferred to viscous
suspensions in the context of the basic equations (29). In order to consider fiber orientation states within
homogenization, the orientation average scheme is discussed at first. Then, different mean-field models are
described briefly and no derivation is given for simplicity. Furthermore, the difference term δC = CF − CM
is considered within the averaging operator 〈AS〉F, since δC〈AS〉F = 〈δCAS〉F holds true for phase-wise
homogeneous properties [15,43]. This is done in the same way for viscous suspensions with δV = VF − VM
andAV. Furthermore, the phases are assumed to be isotropic. Please note that the followingmean-field equations
do not hold generally for inhomogeneous and anisotropic phases.

4.1 Orientation averaging (OA)

As described above, all models are formulated uniquely with respect to the orientation average procedure
[44] accounting for the fiber orientation state. In general, the orientation average of a fourth-order tensor T is
defined by [44]

〈T〉OA =
∫
S
T f dS, (32)
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which can be expressed explicitly as follows in case of a transversely isotropic tensor T with e1-direction as
the axis of symmetry [44]

〈T〉OA = b1N + b2(N⊗I + I⊗N) + b3
(
N�I + (N�I)TR + I�N + (I�N)TR

) + b4 I⊗I + b5I
S. (33)

The coefficients bi depend on the components of T [44]

b1 = T1111 + T2222 − 2T1122 − 4T1212, b2 = T1122 − T2233,

b3 = T1212 + (T2233 − T2222)/2, b4 = T2233,

b5 = T2222 − T2233. (34)

The OA operator 〈·〉OA refers to the averaging operator 〈·〉F. Throughout this manuscript, the fiber orientation
state is assumed to be given and not evolving during the homogenization procedure since, as described before,
only the instantaneous effective viscosity is considered (see, e.g., [95]). Obviously, there is a restriction to N and
N in Eq. (33), which in the sense of a series expansion of the PDF f represents only part of the microstructure
information [44,98]. Thus, the question ariseswhether homogenizationbasedon themicrostructure information
of the leading orientation tensors of thefirst kind N andN is reasonable.According toBrylka [43], the restriction
to N for approximating the stiffness of fiber reinforced materials is critical when sharp textures are present.
Sharp textures occur in the form of bundled short fibers and affect the reliable applicability of N along with the
degree of anisotropy [43]. It is shown that using both N and N lead to smaller stiffness deviations compared
to the use of N only. Müller [23] and Müller and Böhlke [104] study the use of N and N in the context of
maximum entropy estimates in order to predict anisotropic elastic properties. Based on the study of Hine et
al. [105] referring to the maximum entropy character of real short-fiber microstructures, Müller and Böhlke
[104] conclude that N leads to reliable stiffness predictions. However, a recommendation is made by Müller
and Böhlke [104] to check this on a case-by-case basis and also use N to approximate the stiffness. As a
consequence, using the leading fiber orientation tensors to predict the linear viscous and elastic anisotropy in
the present study is evaluated as sufficiently accurate.

4.2 Dilute distribution model (DD)

As already discussed in Sect. 1.3, the DDmethod neglects the interaction between the inclusions and, therefore,
refers to a single inclusion embedded in an infinitely large matrix. The well-known localization tensor of the
SIP is addressed in Appendix A to make the manuscript self-contained and further to formulate the SIP with
respect to solid and fluid mechanics in parallel in one publication

A
SIP
S =

(
I
S + P0,S(CF − CM)

)−1
, A

SIP
V =

(
I
S + P0,V(VF − VM)

)−1
. (35)

In Eq. (35), Hill’s polarization tensor read P0,S = EC
−1
M and P0,V = EV

−1
M with E representing Eshelby’s

tensor [16,100]. For the special case of isotropic matrix behavior and spheroidal inclusions, analytical expres-
sions exist for P0,S [30,43,64]. The expressions for P0,V are given in Appendix B.1 for the special case of
incompressible suspensions to make the manuscript self-contained. Numerical calculation of both P0,S and
P0,V is necessary for anisotropic matrix behavior as shown in Appendix B.2 for P0,S. Furthermore, the analogy
of bulk modulus/volume viscosity and of shear modulus/shear viscosity is pointed out. By using Eq. (35) and
the basic equations (29) for the stiffness [13] and Eqs. (35) and (31) for the viscosity predictions, the equations
for the effective behavior read

C̄ = CM + cF
〈(
δC−1 + P0,S

)−1〉
F, V̄ = VM + cF

〈
P

−1
0,V

〉
F. (36)

4.3 Mori–Tanaka model (MT)

The concept of theMTmodel described in Sect. 1.3 leads to the following averaged localization tensor referring
to the work of Brylka [43] for both solid composites and viscous suspensions

〈AMT〉F =
(
cFI

S + cM〈ASIP〉−1
F

)−1
. (37)
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Both versions of the localization tensor ASIP are given in Eq. (35) with respect to viscosity and stiffness
estimations. Based on Brylka [43] for stiffness predictions and using Eq. (37) in Eq. (31) for estimating the
effective viscosity, the following expressions can be derived:

C̄ = CM + cF
(
cFδC−1 + cM

〈(
δC−1 + P0,S

)−1〉−1
F

)−1
, V̄ = VM + cF

cM

〈
P

−1
0,V

〉
F. (38)

The expression for V̄ corresponds to the orientation-averaged MT model given by Bertóti and Böhlke [5] and
Bertóti [12]. In addition, the idea of two-step homogenization [70] is applied to the MT model for stiffness
predictions (MT-TS) as shown in Hessman et al. [15]. Then, this concept is transferred to the estimation of the
effective viscosity of fiber suspensions. In the first step, the localization tensor in Eq. (37) is simplified for the
unidirectional case (UD) as given in Gross and Seelig [14] and in Thevenin and Perreux [16]

A
MT
S =

(
cFI

S + cM(ASIP
S )−1

)−1 =
(
I
S + cMP0,SδC

)−1
, A

MT
V =

(
I
S + cMP0,VδV

)−1
, (39)

leading to the following expressions for the effective elastic and viscous behavior [5,14]

C̄
UD = CM + cF(CF − CM)

(
I
S + cMP0,SδC

)−1
, V̄

UD = VM + cF
cM

P
−1
0,V. (40)

Note that the expression for V̄UD differs from the formulation in Thevenin and Perreux [16] due to the rigid
fiber assumption. The second step consists of averaging all UD domains in the context of OA

C̄ = 〈
C̄
UD〉

F, V̄ = 〈
V̄
UD〉

F. (41)

In case of viscous suspensions, MT-TS refers to the procedure described by Bertóti and Böhlke [5] leading to
an upper bound for the dissipation. The principle drawbacks of MT, which are addressed in Sect. 1.3, should
be emphasized again at this point. Note that in the present manuscript, no drawback of MT is present due to
the described modeling in Sect. 7.1.

4.4 Self-consistent model (SC)

As already discussed in Sect. 1.3, the SC model refers to a single inclusion problem with the matrix having
the unknown effective properties. As a consequence, the localization tensor for C̄ [14,15] and for V̄ [16] read

A
SC
S =

(
I
S + P̄0,S(CF − C̄)

)−1
, A

SC
V =

(
I
S + P̄0,V(VF − V̄)

)−1
, (42)

with both polarization tensors depending on the anisotropic effective stiffness or viscosity. Therefore, numerical
computation of P̄0,S and P̄0,V is necessary as described in Appendix B.2. Based on Eq. (42) and the basic
equations (29) and (31), the implicit SC estimations read

C̄ = CM + cF
〈(
δC−1 + P̄0,S(CF − C̄)δC−1)−1〉

F, V̄ = VM + cF
〈
P̄

−1
0,V

〉
F. (43)

In Eq. (43), C̄ corresponds to the expression given in Hessman et al. [15] after a small manipulation. Further-
more, Müller [23] uses the orientation-averaged SC method for C̄ regarding PDF approximations based on
Eq. (32). The equation for V̄ follows directly based on Eq. (36) by applying the rigid fiber assumption and
therefore differs from the form given in the literature [16]. It is noted that δC and δV do not depend on C̄

and V̄. Analogous to the MT model, a two-step homogenization scheme is also considered for the SC model
(SC-TS) and written down compactly as follows:

C̄
UD = CM + cF(CF − CM)

(
I
S + P̄0,S(CF − C̄)

)−1
, V̄

UD = VM + cFP̄
−1
0,V,

C̄ = 〈
C̄
UD〉

F, V̄ = 〈
V̄
UD〉

F. (44)

The UD expressions in Eq. (44) can be derived by a direct use of Eq. (42) in Eqs. (29) and (31) without
applying the OA procedure. Analogously, the expression for V̄UD differs from the formulation in Thevenin
and Perreux [16] due to the rigid fiber assumption. Regarding C̄UD, the reader is referred to the work of Kanaun
and Levin [46] or Gross and Seelig [14]. It should be noted that the drawback of violated index symmetry of
this method described by Kanaun and Levin [46] in view of the effective medium method is not present here,
since symmetrizing OA procedure is applied.
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4.5 Differential scheme (DS)

According to the literature review in Sect. 1.3, the basic idea of the DS model is to apply the DD approach
and incrementally embed inclusions in a matrix having the unknown effective properties. Using the derivation
in the literature [14,62,63] with the localization tensor given in Eq. (42), an adaptation to the OA procedure
leads to the following ordinary differential equations for the effective properties:

dC̄

dcF
= 1

1 − cF

〈(
(CF − C̄)−1 + P̄0,S

)−1〉
F,

dV̄

dcF
= 1

1 − cF

〈
P̄

−1
0,V

〉
F. (45)

To the best of the authors’ knowledge, the DS model in this formulation with respect to OA has not been
published yet for both stiffness and viscosity estimates. It is noted that both polarization tensors depend on
the anisotropic matrix behavior and has to be computed numerically as described in Appendix B.2. Since the
numerical integration of Eq. (45) starts with embedding an inclusion into the pure matrix material, the initial
conditions C̄(cF = 0) = CM and V̄(cF = 0) = VM have to be used.

4.6 Ponte Castañeda–Willis model (PCW)

As already introduced in Sect. 1.3, the PCW model [64] accounts for different inclusion geometries with
different spatial distributions and, therefore, it represents a more general approach than previous models.
Throughout this manuscript, all inclusions are assumed to have the same geometry described by Pi and the
same spatial distribution Pd in order to compare the results with those of the other mean-field models discussed
above. As a consequence, the localization tensor of the PCW model is given for solid composites [15] and
transferred to viscous suspensions as follows:

A
PCW
S = A

SIP
S

(
I
S − cFPd,S

〈
δCASIP

S

〉
F

)−1
, A

PCW
V = A

SIP
V

(
I
S − cFPd,V

〈
δVASIP

V

〉
F

)−1
,

A
SIP
S =

(
I
S + Pi,SδC

)−1
, A

SIP
V =

(
I
S + Pi,VδV

)−1
. (46)

The expression for C̄ follows directly by using Eq. (46) in Eq. (29) leading to the expression given in Hessman
et al. [15] after a small algebraic manipulation. The effective viscosity expression is based on the use of Eq. (46)
in Eq. (31)

C̄ = CM + cF
(〈(

δC−1 + Pi,S
)−1〉−1

F − cFPd,S

)−1
, V̄ = VM + cF

(〈
P

−1
i,V

〉−1
F − cFPd,V

)−1
. (47)

The PCW model follows as a special case for a constant spatial distribution of fibers from the interaction
direct derivative model described in Sect. 1.3 [15,23]. For the special case of Pi = Pd = P0, meaning that
the geometry and the distribution of the fibers have the same constant ellipsoidal characteristics P0, the PCW
model equals the MT model [45,69]. Note that V̄ given in Eq. (47) corresponds to the orientation-averaged
expression given in Ponte Castañeda [95] for rigid fibers of one single geometry.

5 Bounds of the effective viscous and elastic properties

In this section, the first- and second-order bounds for the effective viscous and elastic properties are presented
restricted to two-phase suspensions and composites with phase-wise constant properties. In the context of
viscous suspensions, the fibers aremodeled rigid as addressed above. For convenience, the bounds are expressed
formally by inequalities, e.g., C1 ≤ C2 and V1 ≤ V2, representing the following quadratic forms ∀ε ∈ Sym
and ∀D ∈ SymDev [34,106]

ε · C1[ε] ≤ ε · C2[ε], D · V1[D] ≤ D · V2[D]. (48)

As described in Sect. 1.3, the Voigt (V) and Reuss (R) bounds [26,27] are physical bounds and depend on
the volumetric composition and properties of the phases. The lower Reuss bound corresponds to the harmonic
mean (B = I

S), whereas the upper Voigt bound represents the arithmetic mean (A = I
S) of the phase stiffness

or viscosity [14,100]. The advantage is the ease of use, but the bounds are far apart at large phase contrast
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Fig. 1 Hashin–Shtrikman two-step procedure for the lower bound of viscous fiber suspensions and for the lower/upper bounds
of solid fiber reinforced composites (own sketch based on Kehrer et al. [47])

[43], which is directly evident in the case of viscosity with a rigid fiber phase leading to macroscopic rigid
behavior [14]

C
R ≤ C̄ ≤ C

V, V
R ≤ V̄ ≤ V

V,

〈C−1〉−1 ≤ C̄ ≤ 〈C〉, 〈V−1〉−1 ≤ V̄ ≤ 〈V〉,
(cMC

−1
M + cFC

−1
F )−1 ≤ C̄ ≤ cMCM + cFCF, (cMV

−1
M )−1 ≤ V̄ < ∞. (49)

As can be seen directly from Eq. (49), isotropic phases always result in isotropic effective properties [14].
To overcome the drawbacks of Voigt and Reuss and to consider both the inclusion geometry and the fiber
orientation additionally, the Hashin–Shtrikman two-step scheme (HS) [24,47] is applied in this work and
transferred to the homogenization of linear viscous properties. The first step consists of considering an UD
domain with the following effective properties for stiffness [24,47] and viscosity [5,12]:

C̄
UD− = CM + cF(CF − CM)

(
I
S + cMP0,S(CF − CM)

)−1
, V̄

UD− = VM + cF
cM

P
−1
0,V,

C̄
UD+ = CF + cM(CM − CF)

(
I
S + cFP0,S(CM − CF)

)−1
, V

UD+ → ∞. (50)

For the lower bound,P0,S depends onCM andP0,V onVM, whereasCF orVF is used for the upper bound. These
transversely isotropic polarization tensors represent the spheroidal inclusion geometry. As already mentioned,
considering rigid fibers results in an infinite upper bound for the effective viscosity [14]. In the second step,
the bounds of the effective properties are determined by orientation averaging all UD domains. The domains
are assumed to be distributed isotropically, leading to the following equations by using Eq. (50) regarding the
UD domains for stiffness [24,47] and for viscosity:

C̄
HS− = CM − P

◦−1
0,S +

〈(
P

◦−1
0,S + C̄

UD− − CM
)−1

〉−1

F
,

C̄
HS+ = CF − P

◦−1
0,S +

〈(
P

◦−1
0,S + C̄

UD+ − CF
)−1

〉−1

F
,

V̄
HS− = VM − P

◦−1
0,V +

〈(
P

◦−1
0,V + V̄

UD− − VM
)−1

〉−1

F
,

V̄
HS+ → ∞. (51)

Note thatP◦
0 in Eq. (51) describes the isotropic distribution statistics of the domains, not the inclusion geometry.

Therefore, P◦
0 corresponds to the polarization tensor of a spherical inclusion with its eigenvalues λ1, λ2 given

as follows [32,34]:

P
◦
0 = λ1P1 + λ2P2, λ1 = 1

a1 + 2a2
, λ2 = 2(a1 + 3a2)

5a2(a1 + 2a2)
. (52)
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Analogously, P◦
0 depends on CM or VM for the lower bound, whereas P

◦
0 is based on CF or VF for the

upper bound. In case of stiffness, (a1, a2) = (3KM, 2GM) is valid with the bulk modulus KM and the shear
modulus GM of the matrix. For viscous suspensions, (a1, a2) = (3μv, 2μs) holds with the volume viscosity
μv and the shear viscosity μs of the matrix fluid. The two-step procedure discussed above is shown in Fig. 1
restricted to the finite bounds given in Eq. (51). Note that upper and lower bounds of Hashin–Shtrikman type
for the effective dissipation with respect to deformable particles are discussed by Ponte Castañeda [95].

6 Upper estimates for the effective viscous properties

As discussed before, the upper bounds for the effective viscous behavior are infinitely large for rigid fibers.
Therefore, anisotropic upper estimates (UE) based on the DS model and the lower Hashin–Shtrikman bound
are suggested. To avoid the severe overestimation of viscosity by the SC and SC-TS models (see Sect. 7.2),
the DS model is chosen for the upper estimates. It is emphasized that these are not true upper bounds. The
upper estimates are based on the assumption that the DS model represents either the arithmetic (a), or the
harmonic (h), or the geometric (g) mean. The corresponding upper estimates UEa, UEh and UEg for the
effective viscosity can be determined as follows:

V̄
DS = 1

2

(
V̄
HS− + V̄

UEa) → V̄
UEa = 2V̄DS − V̄

HS−,

F̄
DS = 1

2

(
F̄
HS− + F̄

UEh) → V̄
UEh = (

2F̄DS − F̄
HS−)−1

,

ln(V̄DS) = 1

2

(
ln(V̄HS−) + ln(V̄UEg)

)
→ V̄

UEg = exp
(
2ln(V̄DS) − ln(V̄HS−)

)
. (53)

Note that the inequality of the means ψ̄h ≤ ψ̄g ≤ ψ̄a [107] reverses to the inequality for the UE
V̄
UEh ≥ V

UEg ≥ V̄
UEa, in a quadratic sense, based on given V̄

DS and V̄
HS−. After a short calculation, a

simple expression for UEg follows:

V̄
UEg = exp

(
2ln(V̄DS)

)
exp

(
− ln(V̄HS−)

)
= exp

(
2ln(V̄DS)

)
F̄
HS− = (

V̄
DS)2

F̄
HS−. (54)

In Eq. (54), exp(y ln(x)) = exp(ln(x y)) = x y has been used in a tensorial sense. Formally, the three upper
estimates introduced above can be connected to an unknown homogeneous reference viscosityV0 in the context
of the Hashin–Shtrikman two-step bounding method [24,47]:

V̄
UD = V0 − cMV0(V

−1
M − V

−1
0 )V0

(
I
S + cFP0,V(VM − V0)

)−1
,

V̄
UE = V0 − P

◦−1
0,V +

〈(
P

◦−1
0,V + V̄

UD − V0
)−1

〉−1

F
. (55)

Here, V̄UE represents either V̄UEh, V̄UEg or V̄UEa. As described above, P0,V refers to the inclusion geometry
and P◦

0,V represents the isotropic distribution of the UD domains, both of which depending onV0 as the matrix
material.

7 Numerical examples

7.1 Procedure and settings

In this section, the procedure and settings are described in order to compare all mean-field models, bounds
and upper estimates described above. It should be noted that DD is only applicable to dilute concentrations
cF 
 1 and the corresponding results are listed for completeness only to show that DD is not suitable for
industrial-relevant concentrations. As stated before, isotropic phases are considered [5,47]

C(M,F) = E(M,F)

1 − 2ν(M,F)

P1 + E(M,F)

1 + ν(M,F)

P2, VM = 3μvP1 + 2μsP2. (56)
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For the solid composite, polypropylene (PP) is used as matrix material (EM = 1.6 GPa, νM = 0.4) and glass
fibers are considered (EF = 73 GPa, νF = 0.22) as given in Schürmann [108] with the Young’s modulus E
and Poisson’s ratio ν. The study refers to a fiber aspect ratio of α = 10 and to the fiber volume fraction of
cF = 0.2. This volume fraction corresponds to 41.4 wt-% with the solid mass densities ρM = 910 kg/m3 and
ρF = 2540 kg/m3 [108]. The conversion between mass and volume fraction can be found in Schürmann [108]
for given mass densities of the phases. All results given regarding stiffness are normalized by EM. Throughout
the calculation, the viscosity is treated dimensionless, meaning thatμs is defined as the characteristic viscosity.
As a result, the matrix viscosity tensor without dimension is given by V∗

M = 3μv/μsP1 + 2P2.
The polarization tensor P0,S depending on isotropic matrix behavior (DD, MT, PCW, HS) is implemented

for stiffness as given in the literature [30,43,64] for spheroidal inclusions and as given in Eq. (52) for spher-
ical inclusions. Since incompressibility is assumed, the limit μv/μs → ∞ has to be considered within P0,V
for homogenization of linear viscous properties [5,16,17,95]. If P0,V depends on isotropic matrix behavior,
the simplified expressions for the incompressible case given in Appendix B.1 are used. If P0,V depends on
anisotropic matrix behavior (SC, DS), numerical integration is used as described for stiffness in Appendix B.2.
In this context, a finite value of μv/μs has to be chosen to consider incompressibility. Based on the results
in Appendix B.1, μv/μs = 106 is evaluated as sufficiently large. Since the study is limited to incompressible
suspensions, V̄ → P2V̄P2 is set after computation [12]. On the one hand, this procedure eliminates the large
value ofμv/μs. On the other hand, this ensures invertibility on SymDev with F̄V̄ = P2 and eliminates symme-
try errors caused by numerical methods. Furthermore, tr( D̄) = 0 is valid only numerically in incompressible
fluid solvers and in this context P2V̄P2 forces to map only the deviatoric part of D̄. In addition, the viscous
stress is forced to be deviatoric. The issue of non-deviatoric viscous stress in the context of defining a pressure
is addressed in Karl et al. [3] and in Ponte Castañeda [95].

The equations defining the effective material behavior based on SC and DS have to be solved numerically.
An explicit fourth-order Runge–Kutta method [109] with step size �cF = 0.01 is used for the DS model. The
equations of the SCmodel have been solved iteratively with matlab® using a nonlinear equation solver based
on the Levenberg–Marquardt algorithm [110].

A representative fiber orientation state is chosen as a basis of comparison. This fiber orientation state
represents the final anisotropy in view of a solid fiber reinforced composite. For suspensions, on the other
hand, the orientation state represents only the instantaneous anisotropy as discussed before. The chosen fiber
orientation state for the OA procedure given in the following refers to the measured data N of Hessman et al.
[15,111]:

N=̂
⎛
⎝ 0.7855 −0.0096 0.0089

−0.0096 0.1962 0.0012
0.0089 0.0012 0.0183

⎞
⎠ , N=̂

⎛
⎜⎜⎜⎜⎜⎝

0.6996 0.0776 0.0083 0.0004 0.0078 −0.0076
0.0776 0.1129 0.0057 0.0007 0.0008 −0.0020
0.0083 0.0057 0.0044 0.0001 0.0002 −0.0000
0.0004 0.0007 0.0001 0.0057 −0.0000 0.0008
0.0078 0.0008 0.0002 −0.0000 0.0083 0.0004

−0.0076 −0.0020 −0.0000 0.0008 0.0004 0.0776

⎞
⎟⎟⎟⎟⎟⎠

.

(57)

The orientation tensor N has been determined based on N and the IBOF closure approximation [112]. Note
thatN given in Eq. (57) has to be transformed to the normalized Voigt notation [113] to be used conveniently in
the framework of matrix operations. The elastic anisotropy is visualized via the directional dependent effective
Young’s modulus Ē(d), whereas the viscous anisotropy is visualized via the effective shear viscosity μ̄s(d, p)
defined as follows: [5,114]

1

Ē(d)
= d⊗d · S̄[d⊗d], 1

2μ̄s(d, p)
= √

2 sym(d⊗ p) · F̄[√2 sym(d⊗ p)]. (58)

Within Ē , d represents the tensile direction andwithin μ̄s, d refers to the shear direction lying in the shear plane
defined by the normal vector p [5,114]. For S̄ = C̄

−1 and F̄ = V̄
−1, the introduced mean-field models, bounds

and upper estimates are used. The results are limited to the e1-e2-plane with the normal vector p = e3 and d
parameterized by ϕ ∈ [0, 2π), leading to the dimensionless anisotropymeasures Ē(ϕ)/EM and μ̄s(ϕ)/μs. For
clarity, Fig. 2 explains how the results regarding viscous and elastic anisotropy are visualized in the following
section.
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(a) (b)

Fig. 2 Visualization procedure regarding the direction-dependent effective Young’s modulus shown in (a) and regarding the
effective shear viscosity shown in (b), restricted to the e1-e2-plane (θ = π/2) parameterized by ϕ ∈ [0, 2π)

(a) (b)

Fig. 3 Dimensionless effective shear viscosity of a fiber suspension in the e1-e2-plane: Results regarding classical mean-field
models shown in (a) and results regarding PCW shown in (b) (orientation state and settings given in Sect. 7.1)

7.2 Results and discussion

In Fig. 3, the viscous anisotropy is shown for all mean-field models and bounds introduced above. The effect of
the suspended fibers with respect to an increased viscosity and an induced anisotropy is distinct. By comparing
the different plots, both the degree of anisotropy and the increase in the viscosity strongly depend on the
mean-field model in use. The Reuss bound shown in Fig. 3a predicts an isotropic effective viscosity, whereas
DD, HS− andMT/MT-TS predict a weakly anisotropic behavior for the chosen orientation. Optically, MT and
MT-TS cannot be distinguished. One can see that the effective viscosity estimation based on DD violates HS−
for the chosen parameters which shows that the validity of the dilute suspension is not given. Higher viscosity is
predicted by SC-TS and DS, which is due to the fact that the inclusions are embedded in the effective material.
This behavior is known from the homogenization of stiffness [13,15,115]. In addition, the anisotropy can be
seen more clearly in SC-TS and DS. In Fig. 3b, the PCWmodel predictions are shownwith respect to HS− and
the pure matrix fluid. Three different aspect ratios αd = 3, αd = 8, αd = 20 for the ellipsoidal distribution has
been chosen arbitrarily to be both below and above the inclusion aspect ratio αi = α = 10 similar to Hessman
et al. [15]. The results show that the effective viscosity based on PCW does not change significantly with αd
and moreover they almost coincide with the results of the MT model.
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(a)

(b)

Fig. 4 Dimensionless effective shear viscosity of a fiber suspension in the e1-e2-plane: Maximum viscosity for SC, SC-TS, DS
shown in (a) and viscous anisotropy based on the upper estimates shown in (b) (orientation state and settings given in Sect. 7.1)

The results of SC are omitted in Fig. 3a since SC tends to percolate quickly and macroscopically predicts
a very high viscosity even at moderate fiber volume fractions [95]. This behavior is known from stiffness
homogenization [14] and is even more distinct in the viscous case. By plotting the maximum in-plane viscosity
against the fiber volume fraction, Fig. 4a addresses the percolation issue. Typical fiber mass fractions 30 wt-%
and 40 wt-% with respect to engineering practice are additionally marked in order to provide reference points
for the relevant ranges to practice. The results show that the percolation of SC is distinct. With respect to
SC-TS, DS predicts a larger maximum shear viscosity for moderate fiber volume fractions. This behavior is
reversed shortly before cF = 0.5 and SC-TS shows percolation, while DS predicts the macroscopic rigidity
only in the limit value cF → 1, as described by Gross and Seelig [14]. For comparison, the model of Phan-
Thien and Graham [87] (PTG) being valid for concentrated suspensions (cFα > 1) [10] is shown. The results
indicate that there is only a small range in which PTG must be used, since it violates HS− and even R for
low volume fractions and PTG starts to percolate even before SC-TS for higher volume fractions. In addition,
Fig. 4a illustrates that the prediction of anisotropic viscosity is highly model-dependent and can lead to large
differences regarding the estimated effective viscosity. Based on the results, mean-field models in which
the fibers are embedded in the effective medium (SC, SC-TS, DS) quickly lead to large differences in the
anisotropic viscosity regarding the other methods (DD, HS−, MT, PCW). This is due to the fact that these
effective medium methods have poles regarding the effective behavior for the case of rigid fibers. To avoid
a strong overestimation, the SC method must only be used for cF < 0.1 based on Fig. 4a. It has also been
observed that in this range the iterative solution procedure of SC converges well. The deviation of DS and SC-
TS from HS−, MT and PCW is moderate for cF < 0.2 and, therefore, all models except SC may be applied in
this range without overestimating the effective viscosity due to being too close to the poles shown. As already
discussed in Sect. 7.1, DD should not be used since industrial-relevant fiber concentrations do not correspond
to dilute suspensions. In addition, R is not capable of predicting anisotropic viscous behavior and, therefore,
is evaluated to be not precise enough. Fig. 4a also shows that DS is an appropriate choice for cF < 0.2 in
terms of the upper estimates, which are shown in Fig. 4b for the present orientation state. Since DS represents
a different mean value, but is constant analogous to HS−, the known order of the mean values is reversed for
the upper estimates (see Sect. 6). It should be noted that the upper estimates lying between SC and DS have
to be seen as different bounding methods, meaning that the difference in the anisotropic viscosity is desired.
Comparing the mean-field predicted anisotropic viscosity with experimental data is not entirely possible as
described by Schneider [11]. On the one hand, many independent experiments have to be carried out in order
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(a) (b)

Fig. 5 Dimensionless effective Young’s modulus of a fiber reinforced composite in the e1-e2-plane: Results regarding classical
mean-field models shown in (a) and results regarding PCW shown in (b) (orientation state and settings given in Sect. 7.1)

to determine the anisotropic state. On the other hand, any experiment will cause fiber reorientation and thus the
orientation state to be measured no longer matches the given orientation state. Schneider [11] also mentions the
problem of analytical methods not to be accurate for large fiber volume fractions. This supports the previously
given recommendation to use certain mean-field models only in a limited way with respect to the fiber volume
fraction. The full-field simulations carried out by Bertóti et al. [4] indicate that a mean-field model based on
MT is capable of estimating the effective viscosity of short-fiber suspensions up to cF = 0.2. The special case
of spherical inclusions in the context of viscosity homogenization is addressed in Appendix C.

Regarding to the use in flow simulations with fiber-induced anisotropy, all explicit models for viscosity are
well suited in view of computational cost. The SC-TS model is only slightly more disadvantageous, as the UD
state only has to be solved iteratively once and then the OA procedure is carried out explicitly using the fiber
orientation evolving locally within the suspension. On the other hand, SC requires the iterative solution of an
implicit equation and DS goes along with numerical integration, both for every local orientation state within
the flow. Furthermore, by assuming rigid fibers in viscous matrix fluid, SCmay suffer from convergence issues
as addressed by Thevenin and Perreux [16].

The results described above are based on a constant matrix viscosity referring to Newtonian behavior. In
view of generalized Newtonianmatrix behavior [10], the givenmean-field methods can also be used estimating
the effective viscosity depending on, for example, the shear rate. This topic is discussed briefly in Appendix D
in terms of MT.

The effective stiffness regarding differentmean-fieldmodels andbounds is shown inFig. 5.Analogous to the
viscosity results, theVoigt andReuss bounds indicate how the stiffness is isotropically increasedwhen isotropic
phases are assumed. The Voigt bound corresponds to a circle with radius Ē/EM = 10.08 and is omitted since
a more suitable upper bound is given with HS+. In Fig. 5a, it can be seen that DD almost coincide with HS−
for ϕ ≈ π/2 and ϕ ≈ 3π/2. As already discussed, DD may not be used in practice since industrial-relevant
fiber concentrations violate the dilute distribution assumption. Furthermore, MT/MT-TS, DS, and SC/SC-TS
are close to HS− compared to HS+. The predicted stiffness increases in this order, which is known from
the literature [14]. Unlike viscosity, the percolation of SC is not distinct for the chosen fiber volume fraction,
which is why both the SC and SC-TS estimations are shown in Fig. 5a. In addition, compared to viscosity,
MT and MT-TS can be clearly distinguished visually. It is noticeable that each of the TS models predict lower
stiffness than the respective direct model, which coincides with the results of Hessman et al. [15] addressing
MT and MT-TS. In Fig. 5b, the results regarding the PCW model for three different spatial distribution aspect
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ratios αd are shown together with HS+ and HS−. Compared to the viscosity homogenization results, the
spatial distribution clearly influences the effective elastic anisotropy. For the considered specification of the
composite, the compatibility with HS+ and HS− shows that the chosen spatial distributions give plausible
results. As described by Hessman et al. [15], the plausibility of the PCW-estimated elastic anisotropy depends
on how the fibers behave in relation to the matrix cell, which altogether depends on the fiber orientation and
on the fiber geometry. The special case of spherical inclusions in the context of stiffness homogenization is
omitted, since this is well discussed in, for example, Gross and Seelig [14].

The recent publication of Hessman et al. [15] also provides full-field simulation results and experimental
data in the context of short-fiber reinforced polymers. Regarding the anisotropy plots therein, the full-field
simulation results and themeasured direction-dependent stiffness almost coincidewith the estimations based on
MT-TS and MT. These results lie roughly between HS− and SC, whereas HS− is more suitable for estimating
the effective viscosity as described above. It turns out that the PCW does not correctly predict the anisotropy
for the chosen parameters and that the difference between HS+ and the full-field and experimental results is
large.

8 Summary and conclusions

Within the scope of this manuscript, the basics of homogenization for linear elastic fiber reinforced composites
are reviewed and transferred to linear viscous fiber suspensions. Particularly, theHill–Mandel condition [18,19]
as an important requirement for mean-field modeling is derived in detail for viscous suspensions and, thus,
previous studies [4,17] are supplemented. In this context, it is shown that the assumption of Stokes flow
[4,11,92,95] is purposeful, leading to four cases for which the viscous Hill–Mandel condition is valid. These
four cases can be directly linked to solid composite considerations in the literature [45,101]. In addition,
incompressibility in the context of viscous suspensions is assumed and temperature effects are neglected.
A wide range of common mean-field models for the effective stiffness [14,15] are reviewed and transferred
estimating the effective viscosity, in order to provide a comprehensive basis for a uniformmean-field procedure.
All of the discussed mean-field models for both suspensions and composites are formulated in the context of
orientation averaging [44] taking into account leading fiber orientation tensors [44,98]. The SIP is revisited in
order to formally support the parallelism of homogenization of stiffness and of viscosity. In addition to mean-
field modeling, the first-order bounds of Voigt and Reuss [26,27] and the second-order Hashin–Shtrikman
two-step scheme [24,47] are reviewed and transferred to viscous suspensions. The analysis shows that the
upper bounds lead to rigid behavior on the macroscale for viscous suspensions, since the fiber phase is modeled
rigid [14]. In order to provide upper estimates for the effective viscosity, the differential scheme results are
seen as different means between the lower Hashin–Shtrikman bound and the upper estimates. For the latter,
explicit expressions are derived.

Against the background of an exemplary selected fiber orientation state [15,111], all mean-field models,
bounds and upper estimates are computed and compared. The results are limited to a fiber aspect ratio α = 10
and a fiber volume fraction cF = 0.2. To be as general as possible, the results are presented without dimension.
For the solid, PP is used as matrix and glass as fiber material [24,47], whereas the viscosity is considered
from the beginning without dimension. The results regarding viscosity show that SC tends to overestimate the
effective behavior strongly and, therefore, only can be recommended to be used for cF < 0.1. SC-TS and DS
also embedding fibers in the effective medium can be used up to cF = 0.2 without large deviations regarding,
e.g., MT, HS− and PCW. This is a typical range in industrial applications and corresponds to≈ 40 wt-% for the
chosen materials. Applying DD is not recommended since the dilute distribution assumption is not given for
practice-relevant fiber concentrations. By considering the full-field and experimental results of Hessman et al.
[15] regarding the effective stiffness of short-fiber reinforced composites, DS, SC and SC-TS overestimate the
effective behavior. In view of solid composites, MT, MT-TS and HS− are evaluated positively by considering
the results of Hessman et al. [15] and PCW is not recommended for the chosen parameters due to differences
in view of the predicted elastic anisotropy.

In conclusion, for cF < 0.1 the deviations between the considered models are small and all can be rec-
ommended to be applied in a micromechanically consistent simulation chain. The overestimating property
of SC, SC-TS and DS is more distinct for suspensions than for solid composites based on the considered
materials and orientation state. As a consequence, for industrially relevant fiber contents up to cF = 0.2 (or
≈ 40 wt-%) applying MT, MT-TS and HS− is recommended for estimating the effective behavior of both
viscous suspensions and solid composites consistently. In this range, HS− can be used as a lower bound for
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both suspensions and composites, whereas UE, DS or SC-TS can be used to estimate the maximum viscosity
in this range and HS+ for the upper bound of the solid composite.

In view of flow–fiber coupled generation of fiber orientation data based on fiber-induced anisotropic
viscous behavior [3,6–9], a uniform mean-field modeling can be applied based on the present work. In case
of viscous fiber suspensions, the presented mean-field models can be applied to replace well-known fiber
suspension models from the literature, e.g., [79,86,87]. In this context, the fiber-induced anisotropic viscous
behavior influences the orientation evolution in a coupled sense and this causes a direct impact on the final
anisotropic properties of the solid composite. With respect to injection molding simulations, computation
time is a limiting factor, since in every time step homogenization of the linear viscous properties has to
be done locally on every grid cell depending on the evolving fiber orientation state. Particularly, explicit
mean-field models are computationally efficient and even implicit models can be implemented as two-step
procedures saving computation time, since the iterative solution only has to be done once forUD. In this context,
mean-field models are superior to full-field approaches, e.g., fast Fourier transform [4,11,116,117], since the
latter require a fully resolved microstructure depending on the local orientation state. Especially in injection
molding simulation or in highly heterogeneous microstructures where no single averaged orientation state can
be considered, full-field approaches are computationally too expensive to be applied in engineering practice.
A disadvantage of mean-field methods is that, compared to full-field approaches, only averaged fields can
be computed. Therefore, it is not possible to resolve the strongly inhomogeneous fields within the composite
or suspension in the area around the fibers. Since full-field approaches are based on a more comprehensive
description of themicrostructure, the effective viscosity or stiffness is estimated less accurately withmean-field
methods. Finally, it should be noted that the drawbacks of some mean-field methods described in Sect. 1.3 are
not present in this work, since only two homogeneous, isotropic phases and only rotationally symmetric fibers
are considered.
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Appendix A: Principle of equivalent eigenstrain and extension to the principle of equivalent eigenstrain
rate

In this section, the SIP is addressed in view of solid and fluid mechanics considering both material classes in
parallel for the first time in a consistent tensor notation. To the best of the authors’ knowledge this parallelism
has not been published yet. Regarding solid mechanics, the reader is referred Eshelby’s work [20,21] and to,
e.g., Nemat-Nasser and Hori [39]. The SIP with respect to immiscible fluids refers to the work of Wetzel and
Tucker [118] and Bilby et al. [119,120] and is called principle of equivalent eigenstrain rate throughout this
manuscript. The following steps formally demonstrate that well-known mean-field models of elasticity can be
applied for viscous suspensions.
Inhomogeneities (I) with CI embedded in the matrix material CM are replaced by a homogeneous reference
material C0 and a corresponding eigenstrain ε∗. The volume of the composite V is considered to fulfill the
implication of Eq. (10) and the static balance of linear momentum. As shown in the upper part of Fig. 6,

http://creativecommons.org/licenses/by/4.0/
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Fig. 6 Principle of equivalent eigenstrain (upper part) and principle of equivalent eigenstrain rate (lower part) to consider
inhomogeneities embedded in a matrix (own sketch based on Gross and Seelig [14] and Brylka [43])

the effective strain ε̄ acts on the boundary ∂V . For viscosity, all quantities are introduced analogously with
the interpretations following from the lower part of Fig. 6. The viscosity of the inclusion is not specified in
detail. In general, the problem can consist of two immiscible fluids. Then, during the derivation, the result of
Eshelby’s single inclusion problem [20,21] is used.
First, the homogeneous properties C0 and V0 are added to the constitutive equations. Note that the index 0
indicates fields within this homogeneous material. The derived fields τ and τV refer to the stress polarization
and the viscous stress polarization [95] representing the difference between the true (viscous) stress and the
(viscous) stress induced by the true strain (rate) in the homogeneous reference material

σ = C[ε] σV = V[D]
= C0[ε] + (C − C0)[ε] = V0[D] + (V − V0)[D]
= C0[ε] + τ , = V0[D] + τV. (A1)

In the next step, the true strain (rate) can be expressed as follows by using Eq. (A1):

ε = C
−1
0 [σ ] − C

−1
0 [τ ], D = V

−1
0 [σV] − V

−1
0 [τV]. (A2)

By splitting the (viscous) stress field into the effective and a fluctuating part, the splitting of ε and D can be
derived

ε = C
−1
0 [σ̄ + σ̂ ] − C

−1
0 [τ ] D = V

−1
0 [σ̄V + σ̂V] − V

−1
0 [τV]

= C
−1
0 [σ̄ ] + C

−1
0 [σ̂ ] − C

−1
0 [τ ] = V

−1
0 [σ̄V] + V

−1
0 [σ̂V] − V

−1
0 [τV]

= ε̄ + ε̂0 + ε∗ = D̄ + D̂0 + D∗

= ε̄ + ε̂, = D̄ + D̂. (A3)

Note that the true fluctuations consist of the fluctuation in the homogeneous reference material and the intro-
duced eigenfields representing the inhomogeneities. By using the expression of the stress polarizations, the
eigenfields can be written as follows:

ε∗ = −C
−1
0 [τ ] = −C

−1
0 (C − C0)[ε], D∗ = −V

−1
0 [τV] = −V

−1
0 (V − V0)[D]. (A4)
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The special case of C0 = CM and V0 = VM leads to eigenfields only present in the volume of the inclusions
VI

ε∗ =
{

0, x ∈ VM
−C

−1
M (CI − CM)[εI], x ∈ VI

, D∗ =
{

0, x ∈ VM
−V

−1
M (VI − VM)[DI], x ∈ VI

. (A5)

In the next step, the fields ε and D are considered inside the inclusion and Eshelby’s result is applied to connect
the fluctuations inside the inclusions with the corresponding eigenfield via the fourth-order tensor E

εI = ε̄ + ε̂I DI = D̄ + D̂I

= ε̄ + E[ε∗
I ] = D̄ + E[D∗

I ]
= ε̄ − EC

−1
M (CI − CM)[εI], = D̄ − EV

−1
M (VI − VM)[DI]. (A6)

In Eq. (A6), the nonvanishing field given in Eq. (A5) has been used. It is pointed out that E depends on either
the solid or the viscous matrix behavior, depending on whether homogenizing the stiffness or the viscosity.
Based on Eq. (A6), the corresponding localization tensors can be derived as follows:

ε̄ =
(
I
S + EC

−1
M (CI − CM)

)
[εI] D̄ =

(
I
S + EV

−1
M (VI − VM)

)
[DI]

εI =
(
I
S + EC

−1
M (CI − CM)

)−1[ε̄] DI =
(
I
S + EV

−1
M (VI − VM)

)−1[ D̄]
= A

SIP
S [ε̄], = A

SIP
V [ D̄]. (A7)

Based on Eq. (A6), the fluctuations inside the inclusions read

ε̂I = −EC
−1
M (CI − CM)[εI], D̂I = −EV

−1
M (VI − VM)[DI], (A8)

which are directly linked to the stress polarization fields for C0 = CM and V0 = VM

τ =
{

0, x ∈ VM
(CI − CM)[εI], x ∈ VI

, τV =
{

0, x ∈ VM
(VI − VM)[DI], x ∈ VI

, (A9)

leading to

ε̂I = −EC
−1
M [τ I], D̂I = −EV

−1
M [τV,I]. (A10)

In this context, the polarization tensors P0,S = EC
−1
M and P0,V = EV

−1
M are defined mapping the (viscous)

stress polarization to the strain (rate) fluctuation in the inclusion. The special case of incompressibility regarding
P0,V is considered in Sec. B.1 to make the manuscript self-contained in view of the methods in use.

Appendix B: Polarization tensor

B.1: Special case of incompressibility in the context of viscosity homogenization

As described in Sect. 7.1, the polarization tensor P0,V for homogenization of incompressible fiber suspensions
has to be determined with respect to the limit μv/μs → ∞. For the special case of isotropic matrix behavior,
this can be done analytically leading to simplified expressions. Regarding spherical inclusions, Eq. (52) reduces
to

lim
μv→∞ λ1 = lim

μv→∞
1

3μv + 4μs
= 0, lim

μv→∞ λ2 = lim
μv→∞

6(μv + 2μs)

10μs(3μv + 4μs)
= 1

5μs
, P

◦
0,V = 1

5μs
P2.

(B11)
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For fiber-like spheroidal inclusions with aspect ratio α > 1 in e1-direction, the polarization tensor is used in
the following normalized Voigt notation [30,43] with the matrix entries given in Ponte Castañeda and Willis
[64]

P0,V=̂

⎛
⎜⎜⎜⎜⎜⎝

n l l 0 0 0
l k + m k − m 0 0 0
l k − m k + m 0 0 0
0 0 0 2m 0 0
0 0 0 0 2r 0
0 0 0 0 0 2r

⎞
⎟⎟⎟⎟⎟⎠

. (B12)

After applying μv/μs → ∞ to the matrix entries above, the simplified expressions given below follow for the
case of an spheroidal inclusion in an incompressible matrix fluid:

k = h(α) − 2α2 + 2α2h(α)

8(1 − α2)μs
, l = 2α2 − h(α) − 2α2h(α)

4(1 − α2)μs
, n = h(α) − 2α2 + 2α2h(α)

2(1 − α2)μs
,

m = 3h(α) − 2α2

16(1 − α2)μs
, r = 2 − 3h(α) + 2α2 − 3α2h(α)

8(1 − α2)μs
, h(α) =

α
(
α
√

α2 − 1 − arcosh(α)
)

(α2 − 1)3/2
.

(B13)

The incompressible Eshelby tensor E is addressed in the literature [12,17] and also other expressions for
the incompressible P0,V [95,121]. It is pointed out that incompressibility is not considered in view of solid
composites. Therefore, the expressions given in Ponte Castañeda and Willis [64] for the matrix entries of P0,S
are used with the elastic constants EM and νM given in Sect. 7.1. Note that the viscous P0,V follows directly
by substituting the bulk modulus KM with μv and the shear modulus GM with μs.
Since the expressions in Eq. (B13) cannot be applied for anisotropic matrix behavior, numerical computation
of the incompressible viscous polarization tensor is necessary. This procedure is addressed in the following
Sect. B.2. In this context, a sufficiently large μv has to be determined ensuring incompressibility based on the
following error measure error1(μv, μs, α) similar to Hessman et al. [15]

error1 = ‖P0,V − P0,V,exact‖
‖P0,V,exact‖ . (B14)

In Eq. (B14), P0,V,exact refers to the expressions in Eq. (B13), whereas P0,V stands for the expressions with
finite μv given in the literature, e.g., [43,64]. For simplicity, μv is normalized with μs = 1 Pas leading to
error1(μv/μs, α) given in Fig. 7a for a spherical (α = 1) and a spheroidal inclusion (α = 10). The choice of
μv/μs = 106 is evaluated to ensure incompressibility sufficiently.

B.2: Numerical computation for anisotropic matrix behavior

In case of anisotropic elastic matrix behavior, the polarization tensor P0,S has to be computed numerically. In
this context, the following integral over the unit sphere S [31,32] is approximated by a quadrature rule:

P0,S = 1

4π det(Z)

∫
S

H(C, n)

‖Z−1n‖3 dS ≈ 1

4π det(Z)

Nint∑
i=1

wi
H(C, ni )

‖Z−1ni‖3
. (B15)

Note that for homogenization of linear viscous properties, C has to be replaced by V in the equations given in
this section representing P0,V. In Eq. (B15), the quadrature weights are denoted by wi and Nint stands for the
number of integration points on S. All other tensors are defined by [24,31,32]

H = I
S(

K−1�(n⊗n)
)
I
S, K = C

TI[n⊗n] =̂ Cik jlnknl , Z = α−1e1⊗e1 + e2⊗e2 + e3⊗e3. (B16)

In this study, the quadrature points and weights (Nint = 5810) are computed according to Lebedev and Laikov
[122] with the implementation of Parrish [123]. In order to show that the amount of integration points is
sufficiently large, the following error measure error2(Nint, α) is defined similar to Hessman et al. [15]:

error2 = ‖P0,S − P0,S,exact‖
‖P0,S,exact‖ . (B17)
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(a) (b)

Fig. 7 Error measure error1(μv/μs, α) addressing the issue of approximating the incompressible limit μv/μs → ∞ by finite
μv/μs regarding the viscous polarization tensor in (a) and error measure error2(Nint, α) addressing the numerical integration of
the polarization tensor regarding the number of integration points Nint in (b)

In Eq. (B17), P0,S,exact refers to the analytical expression given in the literature, e.g., [43,64] with CM given
in Sect. 7.1, whereas P0,S represents the numerical integration shown in Eq. (B15). Note that the special case
of spheroidal inclusions in an isotropic matrix is considered for simplicity. The error depending on the fiber
aspect ratio α and the number of integration points Nint is shown in Fig. 7b. The results show that Nint = 5810
for α = 10 leads to a well approximated polarization tensor. In general, the error increases with increasing α
since large fiber aspect ratios represent a concentration on S to be resolved by the numerical grid.

Appendix C: Special case of spherical inclusions in a viscous matrix

In this section, the viscous mean-field homogenization models are considered for the special case of spherical
inclusions. In addition to the assumption of a statistical homogeneous microstructure, statistical isotropy is
assumed to be valid [38]. As a result, the effective viscosity in case of incompressible suspensions can be
expressed by the isotropic tensor V̄ = 2μ̄sP2. The polarization tensor for spherical inclusions in the incom-
pressible limit is given in Eq. (B11) leading to the following expressions normalized with the matrix shear
viscosity μs

μ̄DD
s

μs
= 1 + 5cF

2
,

μ̄MT
s

μs
= 1 + 5cF

2cM
= μ̄HS−

s

μs
,

μ̄SC
s

μs
= 2

2 − 5cF
,

μ̄DS
s

μs
= 1

(1 − cF)5/2
,

μ̄R
s

μs
= 1

cM
.

(C18)

These expressions correspond to embedding rigid spheres in a linear elastic and incompressible solid matrix
[14]. Furthermore, the solutions for SC and DS can be expressed explicitly. For the special case of spherical
inclusions, MT and PCW coincide with HS− for spherical/isotropic spatial distribution. The upper estimates
can be derived by insertingDS given in Eq. (C18) into Eqs. (53) and (54) leading to the following dimensionless
expressions:

μ̄UEa
s

μs
= 2μ̄DS

s

μs
− μ̄HS−

s

μs
,

μ̄UEh
s

μs
=

(
2μs

μ̄DS
s

− μs

μ̄HS−
s

)−1

,
μ̄
UEg
s

μs
=

(
μ̄DS
s

μs

)2
μs

μ̄HS−
s

. (C19)

Regarding generalized mixture rule in the context of particle–liquid suspensions, the reader is referred to the
work of Ji [124]. It is shown that DD, DS and R given in Eq. (C18) are connected via a single parameter.
In Fig. 8 the effective isotropic shear viscosity is shown for the different models given in Eqs. (C18) and (C19).
The largest shear viscosity is predicted by SC showing percolation at cF = 0.4, whereas DS predicts macro-
scopic rigidity in the limit cF → 1 [14]. Compared to Fig. 4a, SC percolates for higher inclusion volume
fractions and UEa, UEg and UEh lie between SC and DS. In the context of spherical inclusions in a statistical
isotropic suspension, MT-TS and SC-TS are not considered since isotropic orientation averaging with respect
to isotropic domains coincides with MT and SC.
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Fig. 8 Normalized effective shear viscosity for the special case of spherical inclusions with respect to different mean-field models
and fiber volume fraction

(a)
(b)

Fig. 9 Power-law function μs(γ̇ /γ̇0)/μs representing the shear thinning matrix behavior given in (a) and effective viscosity
μ̄s(ϕ, γ̇ /γ̇0)/μs for selected shear rates with respect to MT given in (b)

Appendix D: Generalized Newtonian matrix fluid

Shear rate depending matrix behavior in the context of generalized Newtonian fluids [10,17] is addressed in
this section. For simplicity, only the example of a power-law behavior is considered as used in the study of
Mezi et al. [6]. By introducing a critical shear rate γ̇c representing the transition point from Newtonian to
non-Newtonian behavior, the viscosity tensor of the matrix fluid is given as follows with respect to the power
law [6,10]:

VM =
{
3μvP1 + 2μsP2, γ̇ ≤ γ̇c

3μvP1 + 2μs(γ̇ )P2, γ̇ > γ̇c
, μs(γ̇ ) = a

(
γ̇

γ̇0

)b−1

. (D20)
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It is postulated that the shear rate dependence affects only VM and that the general structure of the basic
equations of homogenization remain unchanged. Furthermore, the volume viscosity does not change since
incompressibility is assumed. The shear rate γ̇ represents the effective shear rate of the matrix following
Thevenin and Perreux [16]

γ̇ =
√ 〈D〉M · 〈D〉M

2
. (D21)

The average strain rate of the matrix 〈D〉M can be expressed in terms of D̄ by using D̄ = cM〈D〉M + cF〈D〉F.
By considering the special case of rigid fibers, the average strain rate of the fibers 〈D〉F vanishes and γ̇ reads

γ̇ =
√

D̄ · D̄
2c2M

=
√

D̄ · D̄
2(1 − cF)2

. (D22)

Similar to Mezi et al. [6], γ̇c = 1 s−1 is chosen as the transition point and the shear thinning behavior refers
to the exponent b = 0.3 and the parameter a = 1 Pas. For the reference shear rate, the value γ̇0 = 1 s−1 is
chosen. In Fig. 9a, the function μs(γ̇ ) is shown normalized with the constant Newtonian matrix viscosity
μs with respect to γ̇ /γ̇0. After the transition point γ̇ /γ̇0 = 1, the shear thinning behavior is clearly visible.
In Fig. 9b, the normalized effective viscosity of the fiber suspension is shown based on MT with respect to
selected shear rates marked in Fig. 9a. The parameters and fiber orientation state refer to Sect. 7.1. The results
show that the anisotropy does not change while the viscosity magnitude decreases with increasing shear rate.
It is noted that μs(γ̇ ) given in Eq. (D20) is only an example and arbitrarily complex functions can be used also
depending on temperature and curing [10,125]. Further information about different non-Newtonian matrix
fluids within homogenization of viscous fiber suspensions can be found in, for example, Thevenin and Perreux
[16] and Traxl et al. [17].
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