ANNALES MATHÉMATIQUES

Takeshi Katsura, Masahito Ogawa & Airi Takeuchi **On the magic square C*-algebra of size 4** Volume 29, n^o 1 (2022), p. 99-148. <https://doi.org/10.5802/ambp.408>

Cet article est mis à disposition selon les termes de la licence Creative Commons attribution 4.0. [https://creativecommons.org/licenses/4.0/](https://creativecommons.org/licenses/by/4.0/deed.fr)

Publication éditée par le laboratoire de mathématiques Blaise Pascal de l'université Clermont Auvergne, UMR 6620 du CNRS Clermont-Ferrand — France

Publication membre du Centre Mersenne pour l'édition scientifique ouverte <http://www.centre-mersenne.org/> e-ISSN : 2118-7436

On the magic square C*-algebra of size 4

Takeshi Katsura Masahito Ogawa Airi Takeuchi

Abstract

In this paper, we investigate the structure of the magic square C^* -algebra $A(4)$ of size 4. We show that a certain twisted crossed product of $A(4)$ is isomorphic to the homogeneous C*-algebra $M_4(C(\mathbb{R}P^3))$. Using this result, we show that $A(4)$ is isomorphic to the fixed point algebra of $M_4(C(\mathbb{R}P^3))$ by a certain action. From this concrete realization of $A(4)$, we compute the K-groups of $A(4)$ and their generators.

Introduction

Let $n = 1, 2, \ldots$. The magic square C*-algebra $A(n)$ of size *n* is the underlying C*-algebra of the quantum group $A_s(n)$ defined by Wang in [\[9\]](#page-49-0) as a free analogue of the symmetric group \mathfrak{S}_n . In [\[2,](#page-49-1) Proposition 1.1], it is claimed that for $n = 1, 2, 3, A(n)$ is isomorphic to $\mathbb{C}^{n!}$, and hence commutative and finite dimensional. We give the proof of this fact in Proposition [2.1.](#page-4-0) In [\[3,](#page-49-2) Proposition 1.2] it is proved that for $n \ge 4$, $A(n)$ is non-commutative and infinite dimensional. We see that for $n \geq 5$, $A(n)$ is not exact (Proposition [2.5\)](#page-5-0). Something interesting happens for $A(4)$ (see [\[1,](#page-49-3) [2,](#page-49-1) [3\]](#page-49-2)). In [\[3\]](#page-49-2), Banica and Moroianu constructed a ∗-homomorphism from $A(4)$ to $M_4(C(SU(2)))$ by using the Pauli matrices, and showed that it is faithful in some weak sense. In [\[2\]](#page-49-1), Banica and Collins showed that the ∗-homomorphism above is in fact faithful by using integration techniques. We reprove this fact in Corollary [7.9.](#page-19-0) Our method uses a twisted crossed product. The following is the first main result.

Theorem A (Theorem [3.6\)](#page-7-0). The twisted crossed product $A(4) \rtimes_{\alpha}^{\text{tw}} (K \times K)$ is isomorphic *to* $M_4(C(\mathbb{R}P^3))$.

The notation in this theorem is explained in Section [3.](#page-5-1) From this theorem, we see that the magic square C*-algebra $A(4)$ of size 4 is isomorphic to a C^* -subalgebra of the homogeneous C^* -algebra $M_4(C(\mathbb{R}P^3))$. The next theorem, which is the second main result, expresses this C*-subalgebra as a fixed point algebra of $M_4(C(\mathbb{R}P^3))$.

The first named author is supported by JSPS KAKENHI Grant Number JP18K03345. The third named author is supported by Masason Foundation.

Keywords: C*-algebra, magic square C*-algebra, twisted crossed product, K-theory.

²⁰²⁰ Mathematics Subject Classification: 46L05, 46L55, 46L80.

Theorem B (Theorem [8.2\)](#page-20-0). *The fixed point algebra* $M_4(C(\mathbb{R}P^3))^{\beta}$ *of the action* β *is isomorphic to* $A(4)$ *.*

See Section [8](#page-19-1) for the definition of the action β . We remark that Theorem [B](#page-2-0) can be also obtained by combining [\[1,](#page-49-3) Theorem 3.1, Theorem 5.1] and [\[4,](#page-49-4) Proposition 3.3]. Our proof of Theorem [B](#page-2-0) uses a twisted crossed product instead of quantum groups used in [\[1,](#page-49-3) [4\]](#page-49-4), and gives an explicit and straightforward isomorphism.

Since β is concrete, we can analyze $M_4(C(\mathbb{R}P^3))^{\beta}$ very explicitly. In particular, we can compute the K-groups of $M_4(C(\mathbb{R}P^3))^{\beta}$ explicitly. As a corollary we get the following which is the third main result.

Theorem C (Theorem [15.16\)](#page-49-5). We have $K_0(A(4)) \cong \mathbb{Z}^{10}$ and $K_1(A(4)) \cong \mathbb{Z}$. More specifically, $K_0(A(4))$ is generated by $\{[p_{i,j}]_0\}_{i,j=1}^4$, and $K_1(A(4))$ is generated by $[u]_1$. *The positive cone* $K_0(A(4))_+$ *of* $K_0(A(4))$ *is generated by* $\{[p_{i,j}]_0\}_{i,j=1}^4$ *as a monoid.*

Note that ${p_{i,j}}_{i,j=1}^4$ is the generating set of $A(4)$ consisting of projections, and u is the defining unitary (see Definition [15.15\)](#page-48-0). We should remark that the computation $K_0(A(4)) \cong \mathbb{Z}^{10}$ and $K_1(A(4)) \cong \mathbb{Z}$ and that $K_0(A(4))$ is generated by $\{[p_{i,j}]_0\}_{i,j=1}^4$ were already obtained by Voigt in [\[8\]](#page-49-6) by using Baum–Connes conjecture for quantum groups. In fact, Voigt got the corresponding results for $A(n)$ with $n \geq 4$. Theorem [C](#page-2-1) gives totally different proofs for the results by Voigt in [\[8\]](#page-49-6) by analyzing the structure of $A(4)$ directly which seems not to be applied to $A(n)$ for $n > 4$. That $K_1(A(4))$ is generated by $[u]_1$ was not obtained in [\[8\]](#page-49-6), and is a new result. Combining this result with the computation that $K_1(A(n)) \cong \mathbb{Z}$ for $n \geq 4$ in [\[8\]](#page-49-6) and the easy fact that the surjection $A(n) \rightarrow A(4)$ in Corollary [2.4](#page-5-2) for $n \ge 4$ sends the defining unitary to the direct sum of the defining unitary and the units, we obtain that $K_1(A(n)) \cong \mathbb{Z}$ is generated by the K_1 class of the defining unitary for $n \geq 4$. We would like to thank Christian Voigt for the discussion about this observation.

This paper is organized as follows. In Section [1,](#page-3-0) we define magic square C*-algebras $A(n)$ and their abelianizations $A^{ab}(n)$. In Section [2,](#page-4-1) we investigate $A(n)$ for $n \neq 4$. From Section [3,](#page-5-1) we study $A(4)$. In Section 3, we introduce the twisted crossed product $A(4) \rtimes_{\alpha}^{\text{tw}} (K \times K)$ $A(4) \rtimes_{\alpha}^{\text{tw}} (K \times K)$ $A(4) \rtimes_{\alpha}^{\text{tw}} (K \times K)$ $A(4) \rtimes_{\alpha}^{\text{tw}} (K \times K)$, and state Theorem [A.](#page-1-0) We give the proof of Theorem A from Section 4 to Section [7.](#page-13-0) In Section [8,](#page-19-1) we state and prove Theorem [B.](#page-2-0) From Section [9](#page-21-0) to Section [15,](#page-41-0) we prove Theorem [C.](#page-2-1)

Acknowledgments

The first named author thanks Junko Muramatsu for helping the research in the beginning of the research. The authors are grateful to Makoto Yamashita for calling attention to [\[8\]](#page-49-6), and to Christian Voigt for the discussion on the results in [\[8\]](#page-49-6). The authors are also grateful to the anonymous referees for the evaluation of our paper and for the constructive critics.

1. **Definitions of and basic facts on magic square C*-algebras**

Definition 1.1. Let $n = 1, 2, \ldots$. The *magic square C*-algebra of size n* is the universal unital C*-algebra $A(n)$ generated by $n \times n$ projections $\{p_{i,j}\}_{i,j=1}^n$ satisfying

$$
\sum_{i=1}^{n} p_{i,j} = 1 \quad (j = 1, 2, \dots, n), \qquad \sum_{j=1}^{n} p_{i,j} = 1 \quad (i = 1, 2, \dots, n).
$$

Remark 1.2. The magic square C^* -algebra $A(n)$ is the underlying C^* -algebra of the quantum group $A_s(n)$ defined by Wang in [\[9\]](#page-49-0) as a free analogue of the symmetric group \mathfrak{S}_n .

We fix a positive integer *n*. Let \mathfrak{S}_n be the symmetric group of degree *n* whose element is considered to be a bijection on the set $\{1, 2, \ldots, n\}$.

Definition 1.3. By the universality of $A(n)$, there exists an action $\alpha : \mathfrak{S}_n \times \mathfrak{S}_n \sim A(n)$ defined by

$$
\alpha_{(\sigma,\mu)}(p_{i,j}) = p_{\sigma(i),\mu(j)}
$$

for $(\sigma, \mu) \in \mathfrak{S}_n \times \mathfrak{S}_n$ and $i, j = 1, 2, \dots, n$.

Definition 1.4. Let $A^{ab}(n)$ be the universal unital C^{*}-algebra generated by $n \times n$ projections ${p_{i,j}}_{i,j=1}^n$ satisfying the relations in Definition [1.1](#page-3-1) and

$$
p_{i,j}p_{k,l} = p_{k,l}p_{i,j}
$$
 $(i, j, k, l = 1, 2, ..., n).$

The following lemma follows immediately from the definitions.

Lemma 1.5. *The C*-algebra* $A^{ab}(n)$ *is the abelianization of* $A(n)$ *. More specifically, there exists a natural surjection* $A(n) \rightarrow A^{ab}(n)$ sending each projection $p_{i,j}$ to $p_{i,j}$, *and every* ∗*-homomorphism from* $A(n)$ *to an abelian C*^{*}-algebra factors through this *surjection.*

Proposition 1.6. The abelian C^* -algebra $A^{ab}(n)$ is isomorphic to the C^* -algebra $C(\mathfrak{S}_n)$ *of continuous functions on the discrete set* \mathfrak{S}_n .

Proof. For each $\sigma \in \mathfrak{S}_n$, we define a character χ_{σ} of $A^{ab}(n)$ by

$$
\chi_{\sigma}(p_{i,j}) = \begin{cases} 1 & (i = \sigma(j)) \\ 0 & (i \neq \sigma(j)). \end{cases}
$$

Note that such a character χ_{σ} uniquely exists by the universality of $A^{ab}(n)$. It is easy to see that any character of $A^{ab}(n)$ is in the form of χ_{σ} for some $\sigma \in \mathfrak{S}_n$. This shows that $A^{ab}(n)$ is isomorphic to $C(\mathfrak{S}_n)$ by the Gelfand theorem.

We can compute minimal projections of $A^{ab}(n)$ as follows.

Proposition 1.7. *For* $\sigma \in \mathfrak{S}_n$ *, we set*

$$
p_{\sigma} \coloneqq p_{\sigma(1),1} p_{\sigma(2),2} \dots p_{\sigma(n),n} \in A^{\text{ab}}(n).
$$

Then $\{p_{\sigma}\}_{{\sigma}\in\mathfrak{S}_n}$ *is the set of minimal projections of* $A^{ab}(n)$ *.*

Proof. Since $A^{ab}(n)$ is commutative, p_{σ} is a projection for every $\sigma \in \mathfrak{S}_n$. For $\sigma \in \mathfrak{S}_n$, let χ_{σ} be the character defined in the proof of Proposition [1.6.](#page-3-2) Then we have

$$
\chi_{\sigma'}(p_{\sigma}) = \begin{cases} 1 & (\sigma' = \sigma) \\ 0 & (\sigma' \neq \sigma) \end{cases}
$$

for $\sigma, \sigma' \in \mathfrak{S}_n$. This shows that $\{p_{\sigma}\}_{{\sigma}\in\mathfrak{S}_n}$ is the set of minimal projections of $A^{ab}(n)$. \Box

For each $\sigma \in \mathfrak{S}_n$, we can define a character χ_{σ} of $A(n)$ by the same formula as in the proof of Proposition [1.6](#page-3-2) (or to be the composition of the character χ_{σ} in the proof of Proposition [1.6](#page-3-2) and the natural surjection $A(n) \rightarrow A^{ab}(n)$). With these characters we have the following as a corollary of Proposition [1.6](#page-3-2) (It is easy to show it directly).

Corollary 1.8. *The set of all characters of the magic square C*-algebra* $A(n)$ *is* $\{ \chi_{\sigma} \mid \sigma \in \mathfrak{S}_n \}$ whose cardinality is n!.

2. **General results on magic square C*-algebras**

In this section, we investigate $A(n)$ for $n \neq 4$. The results in this section are known to specialists.

Proposition 2.1. *For* $n = 1, 2, 3$, $A(n)$ *is commutative. Hence the surjection* $A(n) \rightarrow$ $A^{ab}(n)$ *is an isomorphism for* $n = 1, 2, 3$ *.*

Proof. For $n = 1$ and $n = 2$, it is easy to see $A(1) \cong \mathbb{C}$ and $A(2) \cong \mathbb{C}^2$. To show that $A(3)$ is commutative, it suffices to show $p_{1,1}$ commutes with $p_{2,2}$. In fact if $p_{1,1}$ commutes with $p_{2,2}$, we can see that $p_{1,1}$ commutes with $p_{2,3}$, $p_{3,2}$ and $p_{3,3}$ using the action α defined in Definition [1.3.](#page-3-3) Then $p_{1,1}$ commutes with every generators because $p_{1,1}$ is orthogonal to and hence commutes with $p_{1,2}$, $p_{1,3}$, $p_{2,1}$ and $p_{3,1}$. Using the action α again, we see that every generators commutes with every generators.

Now we are going to show that $p_{1,1}$ commutes with $p_{2,2}$. We have

$$
p_{1,1}p_{2,2} = (1 - p_{1,2} - p_{1,3})p_{2,2} = p_{2,2} - p_{1,3}p_{2,2}
$$

= $p_{2,2} - (1 - p_{2,3} - p_{3,3})p_{2,2} = p_{3,3}p_{2,2}.$

By symmetry, we have $p_{2,2}p_{3,3} = p_{1,1}p_{3,3}$ and $p_{3,3}p_{1,1} = p_{2,2}p_{1,1}$. Hence we get

$$
p_{1,1}p_{2,2} = p_{3,3}p_{2,2} = (p_{2,2}p_{3,3})^* = (p_{1,1}p_{3,3})^* = p_{3,3}p_{1,1} = p_{2,2}p_{1,1}.
$$

This completes the proof.

Proposition 2.2. Let n_1, n_2, \ldots, n_k be positive integers, and set $n = \sum_{j=1}^k n_j$. There exists *a surjection from* $A(n)$ *to the unital free product* $*_{j=1}^{k} A(n_j)$ *.*

Proof. The desired surjection is obtained by sending the generators $\{p_{i,j}\}_{i,j=1}^{n_1}$ of $A(n)$ to the generators of $A(n_1) \subset *_{j=1}^k A(n_j)$, the generators $\{p_{i,j}\}_{i,j=n}^{n_1+n_2}$ $_{i,j=n_1+1}^{n_1+n_2}$ of $A(n)$ to the generators of $A(n_2) \subset *_{j=1}^k A(n_j)$ and so on, and by sending the other generators of $A(n)$ to 0.

Corollary 2.3. Let *n* be a positive integer. There exists a surjection from $A(n + 1)$ to $A(n)$.

Proof. This follows from Proposition [2.2](#page-5-3) because $A(n) * A(1) \cong A(n) * \mathbb{C} \cong A(n)$. \Box

Corollary 2.4. *Let* n, m *be positive integers with* $n \geq m$ *. There exists a surjection from* $A(n)$ *to* $A(m)$.

Proof. This follows from Corollary [2.3.](#page-5-4) □

Proposition 2.5. *For* $n \geq 5$, $A(n)$ *is not exact.*

Proof. Note that an image of an exact C*-algebra is exact (see [\[5,](#page-49-7) Corollary 9.4.3]). By Corollary [2.4,](#page-5-2) it suffices to show that $A(5)$ is not exact. By Proposition [2.2,](#page-5-3) there exists a surjection from $A(5)$ to $A(2) * A(3) \cong \mathbb{C}^2 * \mathbb{C}^6$ which is not exact (see [\[5,](#page-49-7) Proposition 3.7.11]). This completes the proof.

The C^* -algebra $A(4)$ is not commutative, but is exact, in fact is subhomogeneous (Corollary [7.9\)](#page-19-0). From the next section, we investigate the structure of $A(4)$.

3. **Twisted crossed product**

We denote elements $\sigma \in \mathfrak{S}_4$ by $(\sigma(1)\sigma(2)\sigma(3)\sigma(4))$. We define the Klein (four) group K by

$$
K \coloneqq \{t_1, t_2, t_3, t_4\} \subset \mathfrak{S}_4
$$

where t_1 is the identity (1234) of \mathfrak{S}_4 , $t_2 = (2143)$, $t_3 = (3412)$ and $t_4 = (4321)$. The group K is isomorphic to $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$.

We choose the indices so that we have $t_i t_j = t_{t_i(j)}$ for $i, j = 1, 2, 3, 4$. Note that we have $t_i(j) = t_j(i)$ for $i, j = 1, 2, 3, 4$.

Definition 3.1. Define unitaries c_1 , c_2 , c_3 , c_4 in $M_2(\mathbb{C})$ by

$$
c_1 := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad c_2 := \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix}, \quad c_3 := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad c_4 := \begin{pmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix}.
$$

The unitaries c_1, c_2, c_3, c_4 are called the Pauli matrices.

Definition 3.2. Put $\omega = (1342) \in \mathfrak{S}_4$. Define a map ε : $\{1, 2, 3, 4\}^2 \rightarrow \{1, -1\}$ by

$$
\varepsilon(i, j) := \begin{cases} 1 & \text{if } i = 1 \text{ or } j = 1 \text{ or } \omega(i) = j \\ -1 & \text{otherwise,} \end{cases}
$$

for each *i*, $j = 1, 2, 3, 4$.

TABLE 3.1. Values of $\varepsilon(i, j)$

	2	-2	

We have the following calculation which can be proved straightforwardly.

Lemma 3.3. *For i*, $j = 1, 2, 3, 4$ *, we have* $c_i c_j = \varepsilon(i, j) c_{t_i(j)}$ *.*

From this lemma and the computation $t_i t_j = t_{t_i(j)}$, we have the following lemma which means that $K^2 \ni (t_i, t_j) \mapsto \varepsilon(i, j) \in \{1, -1\}$ becomes a cocycle of K.

Lemma 3.4. *For i*, *j*, $k = 1, 2, 3, 4$ *, we have* $\varepsilon(i, j)\varepsilon(t_i(j), k) = \varepsilon(i, t_i(k))\varepsilon(j, k)$ *.*

Proof. Compute $c_i c_j c_k$ in the two ways, namely $(c_i c_j) c_k$ and $c_i (c_j c_k)$.

Hence the following definition makes sense. Let us denote by the same symbol α the restriction of the action α : $\mathfrak{S}_4 \times \mathfrak{S}_4 \cap A(4)$ to $K \times K \subset \mathfrak{S}_4 \times \mathfrak{S}_4$.

Definition 3.5. Let $A(4) \rtimes_{\alpha}^{\text{tw}} (K \times K)$ be the twisted crossed product of the action α and the cocycle

$$
(K \times K)^2 \ni ((t_i, t_j), (t_k, t_l)) \longmapsto \varepsilon(i, k) \varepsilon(j, l) \in \{1, -1\}.
$$

By definition, $A(4) \rtimes_{\alpha}^{\text{tw}} (K \times K)$ is the universal C^{*}-algebra generated by the unital subalgebra $A(4)$ and unitaries ${u_{i,j}}_{i,j=1}^4$ such that

$$
u_{i,j}xu_{i,j}^* = \alpha_{(t_i,t_j)}(x) \qquad \text{for all } i, j \text{ and all } x \in A(4)
$$

and

$$
u_{i,j}u_{k,l} = \varepsilon(i,k)\varepsilon(j,l)u_{t_i(k),t_j(l)} \qquad \text{for all } i,j,k,l.
$$

We denote by \mathcal{R}_{u} the latter relation. The former relation is equivalent to the relation

$$
u_{i,j} p_{k,l} = p_{t_i(k),t_j(l)} u_{i,j} \qquad \text{for all } i, j, k, l
$$

which is denoted by \mathcal{R}_{up} .

Recall that $A(4)$ is the universal unital C^{*}-algebra generated by the set ${p_{i,j}}_{i,j=1}^4$ of projections satisfying the following relation denoted by \mathcal{R}_p

$$
\sum_{i=1}^{4} p_{i,j} = 1 \quad (j = 1, 2, 3, 4), \qquad \sum_{j=1}^{4} p_{i,j} = 1 \quad (i = 1, 2, 3, 4).
$$

The following is the first main theorem.

Theorem 3.6. The twisted crossed product $A(4) \rtimes_{\alpha}^{\text{tw}} (K \times K)$ is isomorphic to $M_4(C(\mathbb{R}P^3))$.

We finish the proof of this theorem in the end of Section [7.](#page-13-0)

To prove this theorem, we start with finite presentation of the C^* -algebra $C(\mathbb{R}P^3)$ in the next section.

4. Real projective space $\mathbb{R}P^3$

Definition 4.1. We set an equivalence relation ∼ on the manifold

$$
S^3 := \left\{ a = (a_1, a_2, a_3, a_4) \in \mathbb{R}^4 \middle| \sum_{i=1}^4 a_i^2 = 1 \right\}
$$

so that $a \sim b$ if and only if $a = b$ or $a = -b$. The quotient space S^3 / \sim is the real projective space $\mathbb{R}P^3$ of dimension 3. The equivalence class of $(a_1, a_2, a_3, a_4) \in S^3$ is denoted as $[a_1, a_2, a_3, a_4] \in \mathbb{R}P^3$.

Definition 4.2. For *i*, $j = 1, 2, 3, 4$, we define a continuous function $f_{i,j}$ on $\mathbb{R}P^3$ by $f_{i,j}([a_1, a_2, a_3, a_4]) = a_i a_j \text{ for } [a_1, a_2, a_3, a_4] \in \mathbb{R}P^3.$

Note that $f_{i,j}$ is a well-defined continuous function.

Lemma 4.3. *The functions* $\{f_{i,j}\}_{i,j=1}^4$ *satisfy the following relation*

$$
f_{i,j} = f_{i,j}^* = f_{j,i} \text{ for all } i, j,
$$

\n
$$
f_{i,j} f_{k,l} = f_{i,k} f_{j,l} \text{ for all } i, j, k, l,
$$

\n
$$
\sum_{i=1}^4 f_{i,i} = 1.
$$

Proof. This follows from easy computation. □

Definition 4.4. We denote by \mathcal{R}_f the relation in Lemma [4.3.](#page-8-0)

Proposition 4.5. *The* C^* -algebra $C(\mathbb{R}P^3)$ is the universal unital C^* -algebra generated *by elements* $\{f_{i,j}\}_{i,j=1}^4$ *satisfying* \mathcal{R}_f *.*

Proof. Let A be the universal unital C*-algebra generated by elements $\{f_{i,j}\}_{i,j=1}^4$ satisfying $\mathcal{R}_{\rm f}$. For *i*, *j*, *k*, *l* = 1, 2, 3, 4, we have

$$
f_{i,j}f_{k,l} = f_{i,k}f_{j,l} = f_{k,i}f_{l,j} = f_{k,l}f_{i,j}.
$$

Hence A is commutative. Thus there exists a compact set X such that $A \cong C(X)$.

By Lemma [4.3,](#page-8-0) we have a unital $*$ -homomorphism $A \to C(\mathbb{R}P^3)$. This induces a continuous map $\varphi: \mathbb{R}P^3 \to X$. It suffices to show that this continuous map is homeomorphic.

We first show that φ is injective. Take $[a_1, a_2, a_3, a_4]$ and $[b_1, b_2, b_3, b_4] \in \mathbb{R}P^3$ with $\varphi([a_1, a_2, a_3, a_4]) = \varphi([b_1, b_2, b_3, b_4])$. Then, for $i, j = 1, 2, 3, 4$, we have $a_i a_j = b_i b_j$. Since $\sum_{i=1}^{4} a_i^2 = 1$, there exists i_0 such that $a_{i_0} \neq 0$. Set $\sigma = b_{i_0}/a_{i_0} \in \mathbb{R}$. Since $a_i a_{i_0} = b_i b_{i_0}$, we have $a_i = \sigma b_i$ for $i = 1, 2, 3, 4$. Since $\sum_{i=1}^{4} a_i^2 = \sum_{i=1}^{4} b_i^2 = 1$, we get $\sigma = \pm 1$. Hence $[a_1, a_2, a_3, a_4] = [b_1, b_2, b_3, b_4]$. This shows that φ is injective.

Next we show that φ is surjective. Take a unital character $\chi : A \to \mathbb{C}$ of A. To show that φ is surjective, it suffices to find $[a_1, a_2, a_3, a_4] \in \mathbb{R}P^3$ such that $\chi(f_{i,j}) = a_i a_j$ for all *i*, $j = 1, 2, 3, 4$. Since $\sum_{i=1}^{4} \chi(f_{i,i}) = \chi(\sum_{i=1}^{4} f_{i,i}) = 1$, there exists *i*₀ such that $\chi(f_{i_0,i_0}) \neq 0$. Since

$$
f_{i_0,i_0} = f_{i_0,i_0} \sum_{i=1}^4 f_{i,i} = \sum_{i=1}^4 f_{i_0,i_0} f_{i,i} = \sum_{i=1}^4 f_{i_0,i} f_{i_0,i} = \sum_{i=1}^4 f_{i_0,i} f_{i_0,i}^*.
$$

we have $\chi(f_{i_0, i_0}) > 0$. Put $a_i := \frac{\chi(f_{i_0, i})}{\sqrt{\chi(f_{i_0, i_0})}}$. We have

$$
\sum_{i=1}^{4} a_i^2 = \sum_{i=1}^{4} \frac{\chi(f_{i_0,i})^2}{\chi(f_{i_0,i_0})} = \sum_{i=1}^{4} \frac{\chi(f_{i_0,i_0})\chi(f_{i,i})}{\chi(f_{i_0,i_0})} = \sum_{i=1}^{4} \chi(f_{i,i}) = 1.
$$

On the magic square C*-algebra of size 4

We also have

$$
\chi(f_{i,j}) = \frac{\chi(f_{i_0,i})\chi(f_{i_0,j})}{\chi(f_{i_0,i_0})} = a_i a_j,
$$

for $i, j = 1, 2, 3, 4$. This shows that φ is surjective.

Since $\mathbb{R}P^3$ is compact and X is Hausdorff, $\varphi \colon \mathbb{R}P^3 \to X$ is a homeomorphism. Thus we have shown that A is isomorphic to $C(\mathbb{R}P^3)$ \Box

Let ${e_{i,j}}_{i,j=1}^4$ be the matrix unit of $M_4(\mathbb{C})$. Then ${e_{i,j}}_{i,j=1}^4$ satisfies the following relation denoted by \mathcal{R}_{e} ;

$$
e_{i,j} = e_{j,i}^{*} \quad \text{for all } i, j,
$$

\n
$$
e_{i,j}e_{k,l} = \delta_{j,k}e_{i,l} \quad \text{for all } i, j, k, l,
$$

\n
$$
\sum_{i=1}^{4} e_{i,i} = 1,
$$

here $\delta_{j,k}$ is the Kronecker delta. It is well-known, and easy to see, that $M_4(\mathbb{C})$ is the universal unital C*-algebra generated by $\{e_{i,j}\}_{i,j=1}^4$ satisfying \mathcal{R}_{e} .

The C^{*}-algebra $M_4(C(\mathbb{R}P^3)) = C(\mathbb{R}P^3, M_4(\mathbb{C})) = C(\mathbb{R}P^3) \otimes M_4(\mathbb{C})$ is the universal unital C^{*}-algebra generated by $\{f_{i,j}\}_{i,j=1}^4$ and $\{e_{i,j}\}_{i,j=1}^4$ satisfying \mathcal{R}_f , \mathcal{R}_e and the following relation denoted by \mathcal{R}_{fe} ;

$$
f_{i,j}e_{k,l} = e_{k,l}f_{i,j} \quad \text{for all } i, j, k, l.
$$

5. **Unitaries**

Definition 5.1. For *i*, $j = 1, 2, 3, 4$, we define a unitary $U_{i,j} \in M_4(\mathbb{C}) \subset M_4(C(\mathbb{R}P^3))$ by

$$
U_{i,j} \coloneqq \sum_{k=1}^4 \varepsilon(i,k) \varepsilon(k,j) e_{t_i(k),t_j(k)}
$$

From a direct calculation, we have

$$
U_{1,1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad U_{1,2} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix},
$$

$$
U_{1,3} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \t\t\t\t\tU_{1,4} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix},
$$

\n
$$
U_{2,1} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}, \t\t\t\t\tU_{2,2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix},
$$

\n
$$
U_{3,1} = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \t\t\t\t\tU_{3,2} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix},
$$

\n
$$
U_{3,3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \t\t\t\t\tU_{3,4} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix},
$$

\n
$$
U_{4,1} = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \t\t\t\tU_{4,2} = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pm
$$

We have the following. We denote the transpose matrix of a matrix M by M^T .

Proposition 5.2. *For* $(a_1, a_2, a_3, a_4) \in \mathbb{C}^4$,

$$
(b_1, b_2, b_3, b_4)^{\mathrm{T}} \coloneqq U_{i,j}(a_1, a_2, a_3, a_4)^{\mathrm{T}},
$$

satisfies $\sum_{k=1}^{4} b_k c_k = c_i (\sum_{k=1}^{4} a_k c_k) c_j^*$.

On the magic square C*-algebra of size 4

Proof. For *i*, *j*, $k = 1, 2, 3, 4$, we have

$$
c_i c_{t_j(k)} = \varepsilon(i, t_j(k)) c_{t_i(t_j(k))}
$$
\n
$$
c_{t_i(k)} c_j = \varepsilon(t_i(k), j) c_{t_j(t_i(k))}.
$$

Hence $c_i c_{t_j(k)} c_j^* = \varepsilon(i, t_j(k)) \varepsilon(t_i(k), j)^{-1} c_{t_i(k)}$. Since

$$
\varepsilon(i, t_i(k))\varepsilon(k, j) = \varepsilon(i, k)\varepsilon(t_i(k), j),
$$

we have

$$
\varepsilon(i, t_j(k))\varepsilon(t_i(k), j)^{-1} = \varepsilon(i, k)\varepsilon(k, j)^{-1} = \varepsilon(i, k)\varepsilon(k, j)
$$

This shows that $U_{i,j} = \sum_{k=1}^{4} \varepsilon(i,k) \varepsilon(k,j) e_{t_i(k),t_j(k)}$ satisfies the desired property. \square

Proposition 5.3. *For i*, *j*, *k*, *l* = 1, 2, 3, 4*, we have*

$$
U_{i,j}U_{k,l} = \varepsilon(i,k)\varepsilon(j,l)U_{t_i(k),t_j(l)}.
$$

Proof. We have

$$
U_{i,j}U_{k,l} = \left(\sum_{m=1}^{4} \varepsilon(i,m)\varepsilon(m,j)e_{t_i(m),t_j(m)}\right) \left(\sum_{n=1}^{4} \varepsilon(k,n)\varepsilon(n,l)e_{t_k(n),t_l(n)}\right)
$$

=
$$
\left(\sum_{m=1}^{4} \varepsilon(i,t_k(m))\varepsilon(t_k(m),j)e_{t_i(t_k(m)),t_j(t_k(m))}\right)
$$

$$
\times \left(\sum_{n=1}^{4} \varepsilon(k,t_j(n))\varepsilon(t_j(n),l)e_{t_k(t_j(n)),t_l(t_j(n))}\right)
$$

$$
= \sum_{m=1}^{4} \varepsilon(i,t_k(m))\varepsilon(t_k(m),j)\varepsilon(k,t_j(m))\varepsilon(t_j(m),l)e_{t_i(t_k(m)),t_l(t_j(m))}
$$

Since we have

$$
\begin{aligned} &\varepsilon(i,t_k(m))\varepsilon(k,m)=\varepsilon(i,k)\varepsilon(t_i(k),m),\quad \varepsilon(k,t_j(m))\varepsilon(m,j)=\varepsilon(k,m)\varepsilon(t_k(m),j),\\ &\varepsilon(m,j)\varepsilon(t_j(m),l)=\varepsilon(m,t_j(l))\varepsilon(j,l), \end{aligned}
$$

we get

$$
\varepsilon(i, t_k(m))\varepsilon(t_k(m), j)\varepsilon(k, t_j(m))\varepsilon(t_j(m), l) = \varepsilon(i, k)\varepsilon(j, l)\varepsilon(t_i(k), m)\varepsilon(m, t_j(l)).
$$

Hence we obtain

$$
U_{i,j}U_{k,l} = \sum_{m=1}^{4} \varepsilon(i,k)\varepsilon(j,l)\varepsilon(t_i(k),m)\varepsilon(m,t_j(l))e_{t_i(t_k(m)),t_j(t_l(m))}
$$

= $\varepsilon(i,k)\varepsilon(j,l)U_{t_i(k),t_j(l)}$.

One can also prove this proposition using Proposition [5.2.](#page-10-0)

6. **Projections**

Definition 6.1. We define $P_{1,1} := \sum_{i,j=1}^{4} f_{i,j} e_{i,j} \in M_4(C(\mathbb{R}P^3))$. For $i, j = 1, 2, 3, 4$, we define $P_{i,j} \in M_4(C(\mathbb{R}P^3))$ by

$$
P_{i,j} := U_{i,j} P_{1,1} U_{i,j}^*.
$$

Note that $U_{1,1} = 1$.

Proposition 6.2. *For each i*, $j = 1, 2, 3, 4$, $P_{i,j}$ *is a projection.*

Proof. It suffices to show that $P_{1,1}$ is a projection. We have

$$
P_{1,1}^* = \sum_{i,j=1}^4 f_{i,j}^* e_{i,j}^* = \sum_{i,j=1}^4 f_{j,i} e_{j,i} = P_{1,1},
$$

and

$$
P_{1,1}^2 = \sum_{i,j=1}^4 f_{i,j} e_{i,j} \sum_{k,l=1}^4 f_{k,l} e_{k,l} = \sum_{i,j,k,l=1}^4 f_{i,j} e_{i,j} f_{k,l} e_{k,l}
$$

=
$$
\sum_{i,j,l=1}^4 f_{i,j} f_{j,l} e_{i,l} = \sum_{i,j,l=1}^4 f_{i,l} f_{j,j} e_{i,l} = \sum_{i,l=1}^4 f_{i,l} e_{i,l} = P_{1,1}.
$$

Hence $P_{1,1}$ is a projection.

Proposition 6.3. *The set* ${P_{i,j}}_{j,j=1}^4$ *of projections and the set* ${U_{i,j}}_{j,j=1}^4$ *of unitaries satisfy* Rup*.*

Proof. This follows from the computation

$$
U_{i,j}P_{k,l}U_{i,j}^* = U_{i,j}U_{k,l}P_{1,1}U_{k,l}^*U_{i,j}^*
$$

=
$$
(\varepsilon(i,k)\varepsilon(j,l))^2 U_{t_i(k),t_j(l)}P_{1,1}U_{t_i(k),t_j(l)}^* = P_{t_i(k),t_j(l)}
$$

using Proposition [5.3.](#page-11-0)

Proposition 6.4. *The set* ${P_{i,j}}_{i,j=1}^4$ *of projections satisfies* \mathcal{R}_p *.*

Proof. From Proposition [6.3,](#page-12-0) it suffices to show

$$
P_{1,1} + P_{1,2} + P_{1,3} + P_{1,4} = 1, \qquad P_{1,1} + P_{2,1} + P_{3,1} + P_{4,1} = 1.
$$

This follows from the following direct computations

$$
P_{1,1} = \begin{pmatrix} f_{1,1} & f_{1,2} & f_{1,3} & f_{1,4} \\ f_{2,1} & f_{2,2} & f_{2,3} & f_{2,4} \\ f_{3,1} & f_{3,2} & f_{3,3} & f_{3,4} \\ f_{4,1} & f_{4,2} & f_{4,3} & f_{4,4} \end{pmatrix},
$$
\n
$$
P_{1,2} = \begin{pmatrix} f_{2,2} & -f_{2,1} & -f_{2,4} & f_{2,3} \\ -f_{1,2} & f_{1,1} & f_{1,4} & -f_{1,3} \\ -f_{4,2} & f_{4,1} & f_{4,4} & -f_{4,3} \\ f_{3,2} & -f_{3,1} & -f_{3,4} & f_{3,3} \end{pmatrix},
$$
\n
$$
P_{2,1} = \begin{pmatrix} f_{2,2} & -f_{2,1} & f_{2,4} & -f_{2,3} \\ -f_{1,2} & f_{1,1} & -f_{1,4} & f_{1,3} \\ f_{4,2} & -f_{4,1} & f_{4,4} & -f_{4,3} \\ -f_{3,2} & f_{3,1} & -f_{3,4} & f_{3,3} \end{pmatrix},
$$
\n
$$
P_{1,3} = \begin{pmatrix} f_{3,3} & f_{3,4} & -f_{3,1} & -f_{3,2} \\ f_{4,3} & f_{4,4} & -f_{4,1} & -f_{4,2} \\ -f_{1,3} & -f_{1,4} & f_{1,1} & f_{1,2} \\ -f_{2,3} & -f_{2,4} & f_{2,1} & f_{2,2} \end{pmatrix},
$$
\n
$$
P_{3,1} = \begin{pmatrix} f_{3,3} & -f_{3,4} & -f_{3,1} & f_{3,2} \\ -f_{4,3} & f_{4,4} & f_{4,1} & -f_{4,2} \\ -f_{1,3} & f_{1,4} & f_{1,1} & -f_{1,2} \\ -f_{2,3} & -f_{2,4} & f_{2,1} & f_{2,2} \end{pmatrix},
$$
\n
$$
P_{1,4} = \begin{pmatrix} f_{4,4} & -f_{4,3}
$$

By Proposition [5.3,](#page-11-0) Proposition [6.2,](#page-12-1) Proposition [6.3](#page-12-0) and Proposition [6.4,](#page-12-2) we have a *-homomorphism $\Phi: A(4) \rtimes_{\alpha}^{\text{tw}} (K \times K) \to M_4(C(\mathbb{R}P^3))$ sending $p_{i,j}$ to $P_{i,j}$ and $u_{i,j}$ to $U_{i,j}$. In the next section, we construct the inverse map of Φ .

7. **The inverse map**

Definition 7.1. For $i, j = 1, 2, 3, 4$, we set

$$
E_{i,j} := \frac{1}{4} \sum_{k=1}^{4} \varepsilon(i,k) \varepsilon(k,j) u_{t_i(k),t_j(k)} \in A(4) \rtimes_\alpha^{\text{tw}} (K \times K)
$$

Definition 7.2. For $i, j = 1, 2, 3, 4$, we set

$$
F_{i,j} := \sum_{k=1}^{4} E_{k,i} p_{1,1} E_{j,k} \in A(4) \rtimes_{\alpha}^{\text{tw}} (K \times K).
$$

Lemma 7.3. *For i*, $j = 1, 2, 3, 4$ *, we have* $u_{i,1}E_{1,1}u_{1,j} = E_{i,j}$ *. For* $i = 1, 2, 3, 4$ *, we have* $u_{i,i}E_{1,1} = E_{1,1}u_{i,i} = E_{1,1}$. We also have $E_{1,1}^2 = E_{1,1}$.

Proof. We have $E_{1,1} = \frac{1}{4} \sum_{k=1}^{4} u_{k,k}$. For $i, j = 1, 2, 3, 4$, we have

$$
u_{i,1}E_{1,1}u_{1,j} = \frac{1}{4}\sum_{k=1}^{4}u_{i,1}u_{k,k}u_{1,j} = \frac{1}{4}\sum_{k=1}^{4}\varepsilon(i,k)\varepsilon(k,j)u_{t_i(k),t_j(k)} = E_{i,j}.
$$

For $i = 1, 2, 3, 4$, we have

$$
u_{i,i}E_{1,1} = \frac{1}{4}\sum_{k=1}^{4}u_{i,i}u_{k,k} = \frac{1}{4}\sum_{k=1}^{4}\varepsilon(i,k)^{2}u_{t_{i}(k),t_{i}(k)} = \frac{1}{4}\sum_{k=1}^{4}u_{k,k} = E_{1,1}.
$$

Similarly, we get $E_{1,1}u_{i,i} = E_{1,1}$. Finally, we have $E_{1,1}^2 = \frac{1}{4} \sum_{k=1}^4 u_{k,k} E_{1,1} = E_{1,1}$.

Proposition 7.4. *The set* ${E_{i,j}}^4_{i,j=1}$ *satisfies* \mathcal{R}_{e} *.*

Proof. We have $E_{1,1} = \frac{1}{4} \sum_{k=1}^{4} u_{k,k}$. We also have

$$
E_{2,2} = \frac{1}{4} (u_{1,1} + u_{2,2} - u_{3,3} - u_{4,4})
$$

\n
$$
E_{3,3} = \frac{1}{4} (u_{1,1} - u_{2,2} + u_{3,3} - u_{4,4})
$$

\n
$$
E_{4,4} = \frac{1}{4} (u_{1,1} - u_{2,2} - u_{3,3} + u_{4,4}).
$$

Hence $\sum_{i=1}^{4} E_{i,i} = u_{1,1} = 1$.

It is easy to see $E_{1,1}^* = E_{1,1}$. For $i = 1, 2, 3, 4$, we have

$$
E_{1,1}u_{i,1}^*=E_{1,1}u_{i,i}u_{i,1}^*=E_{1,1}u_{1,i}u_{i,1}u_{i,1}^*=E_{1,1}u_{1,i}
$$

and $u_{1,i}^*E_{1,1} = u_{i,1}E_{1,1}$ similarly. Hence by Lemma [7.3,](#page-13-1) we obtain

$$
E_{i,j}^* = (u_{i,1}E_{1,1}u_{1,j})^* = u_{1,j}^*E_{1,1}u_{i,1}^* = u_{j,1}E_{1,1}u_{1,i} = E_{j,i}
$$

for $i, j = 1, 2, 3, 4$.

By Lemma [7.3,](#page-13-1) we obtain

$$
E_{i,j}E_{j,k} = u_{i,1}E_{1,1}u_{1,j}u_{j,1}E_{1,1}u_{1,k} = u_{i,1}E_{1,1}u_{j,j}E_{1,1}u_{1,k}
$$

= $u_{i,1}E_{1,1}^2u_{1,k} = u_{i,1}E_{1,1}u_{1,k} = E_{i,k}$

for *i*, *j*, $k = 1, 2, 3, 4$. The proof ends if we show $E_{i,j}E_{k,l} = 0$ for *i*, *j*, *k*, *l* = 1, 2, 3, 4 with $j \neq k$. It suffices to show $E_{1,1}u_{1,j}u_{k,1}E_{1,1} = 0$ for $j, k = 1, 2, 3, 4$ with $j \neq k$. Since $u_{1,j}u_{k,1} = u_{k,j} = \varepsilon(k, t_k(j))u_{k,k}u_{1,t_k(j)}$, it suffices to show $E_{1,1}u_{1,j}E_{1,1} = 0$ for

On the magic square C*-algebra of size 4

 $j = 2, 3, 4$. For $j = 2$, we get

$$
4E_{1,1}u_{1,2}E_{1,1} = \sum_{k=1}^{4} u_{k,k}u_{1,2}E_{1,1}
$$

= $u_{1,2}E_{1,1} + u_{1,2}u_{2,2}E_{1,1} - u_{1,2}u_{3,3}E_{1,1} - u_{1,2}u_{4,4}E_{1,1}$
= 0

By similar computations, we get $E_{1,1}u_{1,3}E_{1,1} = E_{1,1}u_{1,4}E_{1,1} = 0$. This completes the \Box

Proposition 7.5. *The set* ${F_{i,j}}^4_{i,j=1}$ *satisfy* \mathcal{R}_{f} *.*

Proof. For $i, j = 1, 2, 3, 4$, Proposition [7.4](#page-14-0) shows

$$
F_{i,j}^* = \left(\sum_{k=1}^4 E_{k,i} p_{1,1} E_{j,k}\right)^* = \sum_{k=1}^4 E_{j,k}^* p_{1,1}^* E_{k,i}^*
$$

$$
= \sum_{k=1}^4 E_{k,j} p_{1,1} E_{i,k} = F_{j,i}.
$$

Next, we show $F_{i,j} = F_{j,i}$ for $i, j = 1, 2, 3, 4$. We are going to prove $F_{2,4} = F_{4,2}$. The other 5 cases can be proved similarly. To show that $F_{2,4} = F_{4,2}$, it suffices to show $E_{1,2} p_{1,1} E_{4,1} = E_{1,4} p_{1,1} E_{2,1}$ because it implies $E_{k,2} p_{1,1} E_{4,k} = E_{k,4} p_{1,1} E_{2,k}$ for $k = 1, 2, 3, 4$ by multiplying $E_{k,1}$ from left and $E_{1,k}$ from right. By Lemma [7.3,](#page-13-1) we have

$$
4E_{1,2}p_{1,1}E_{4,1} = (u_{1,2} - u_{2,1} - u_{3,4} + u_{4,3})p_{1,1}u_{4,1}E_{1,1}
$$

= $(p_{1,2}u_{1,2} - p_{2,1}u_{2,1} - p_{3,4}u_{3,4} + p_{4,3}u_{4,3})u_{4,1}E_{1,1}$
= $(p_{1,2}u_{4,2} + p_{2,1}u_{3,1} - p_{3,4}u_{2,4} - p_{4,3}u_{1,3})E_{1,1}$
= $(p_{1,2}u_{1,3}u_{4,4} - p_{2,1}u_{1,3}u_{3,3} + p_{3,4}u_{1,3}u_{2,2} - p_{4,3}u_{1,3})E_{1,1}$
= $(p_{1,2} - p_{2,1} + p_{3,4} - p_{4,3})u_{1,3}E_{1,1}$

$$
4E_{1,4}p_{1,1}E_{2,1} = (u_{1,4} - u_{2,3} + u_{3,2} - u_{4,1})p_{1,1}u_{2,1}E_{1,1}
$$

= $(p_{1,4}u_{1,4} - p_{2,3}u_{2,3} + p_{3,2}u_{3,2} - p_{4,1}u_{4,1})u_{2,1}E_{1,1}$
= $(p_{1,4}u_{2,4} + p_{2,3}u_{1,3} - p_{3,2}u_{4,2} - p_{4,1}u_{3,1})E_{1,1}$
= $(-p_{1,4}u_{1,3}u_{2,2} + p_{2,3}u_{1,3} - p_{3,2}u_{1,3}u_{4,4} + p_{4,1}u_{1,3}u_{3,3})E_{1,1}$
= $(-p_{1,4} + p_{2,3} - p_{3,2} + p_{4,1})u_{1,3}E_{1,1}$.

Since

$$
p_{1,1} + p_{1,2} + p_{1,3} + p_{1,4} + p_{3,1} + p_{3,2} + p_{3,3} + p_{3,4}
$$

= 2 = p_{1,1} + p_{2,1} + p_{3,1} + p_{4,1} + p_{1,3} + p_{2,3} + p_{3,3} + p_{4,3},

we have

$$
p_{1,2} - p_{2,1} + p_{3,4} - p_{4,3} = -p_{1,4} + p_{2,3} - p_{3,2} + p_{4,1}.
$$

Therefore, we obtain $E_{1,2} p_{1,1} E_{4,1} = E_{1,4} p_{1,1} E_{2,1}$. Thus we have proved $F_{2,4} = F_{4,2}$.

Next we show $F_{i,j}F_{k,l} = F_{i,k}F_{j,l}$ for $i, j, k, l = 1, 2, 3, 4$, To show this, it suffices to show $p_{1,1} E_{j,k} p_{1,1} = p_{1,1} E_{k,j} p_{1,1}$ for $j, k = 1, 2, 3, 4$. We are going to prove $p_{1,1}E_{3,4}p_{1,1} = p_{1,1}E_{4,3}p_{1,1}$. The other 5 cases can be proved similarly. This follows from the following computation

$$
4p_{1,1}E_{3,4}p_{1,1} = p_{1,1}(u_{3,4} + u_{4,3} - u_{1,2} - u_{2,1})p_{1,1}
$$

= $p_{1,1}(u_{3,4} + u_{4,3})p_{1,1} - p_{1,1}p_{1,2}u_{1,2} - p_{1,1}p_{2,1}u_{2,1}$
= $p_{1,1}(u_{3,4} + u_{4,3})p_{1,1}$,

$$
4p_{1,1}E_{4,3}p_{1,1} = p_{1,1}(u_{4,3} + u_{3,4} + u_{2,1} + u_{1,2})p_{1,1}
$$

= $p_{1,1}(u_{3,4} + u_{4,3})p_{1,1} + p_{1,1}p_{2,1}u_{2,1} + p_{1,1}p_{1,2}u_{1,2}$

Finally we show $\sum_{i=1}^{4} F_{i,i} = 1$. For $i = 1, 2, 3, 4$, we have

 $= p_{1,1} (u_{3,4} + u_{4,3}) p_{1,1}.$

$$
F_{i,i} = \sum_{k=1}^{4} E_{k,i} p_{1,1} E_{i,k} = \sum_{k=1}^{4} u_{k,1} E_{1,1} u_{1,i} p_{1,1} u_{i,1} E_{1,1} u_{1,k}
$$

=
$$
\sum_{k=1}^{4} u_{k,1} E_{1,1} p_{1,i} u_{1,i} u_{i,1} E_{1,1} u_{1,k} = \sum_{k=1}^{4} u_{k,1} E_{1,1} p_{1,i} u_{i,i} E_{1,1} u_{1,k}
$$

=
$$
\sum_{k=1}^{4} u_{k,1} E_{1,1} p_{1,i} E_{1,1} u_{1,k}.
$$

Hence we obtain

$$
\sum_{i=1}^{4} F_{i,i} = \sum_{i=1}^{4} \sum_{k=1}^{4} u_{k,1} E_{1,1} p_{1,i} E_{1,1} u_{1,k}
$$

=
$$
\sum_{k=1}^{4} u_{k,1} E_{1,1}^{2} u_{1,k} = \sum_{k=1}^{4} u_{k,1} E_{1,1} u_{1,k} = \sum_{k=1}^{4} E_{k,k} = 1
$$

by Lemma [7.3](#page-13-1) and Proposition [7.4.](#page-14-0) We are done.

On the magic square C*-algebra of size 4

Proposition 7.6. *The sets* ${E_{i,j}}_{i,j=1}^4$ *and* ${F_{i,j}}_{i,j=1}^4$ *satisfy* \mathcal{R}_{fe} *.*

Proof. For *i*, *j*, *k*, *l* = 1, 2, 3, 4, we have $E_{i,j}F_{k,l} = F_{k,l}E_{i,j}$ because

$$
E_{i,j}F_{k,l} = E_{i,j} \sum_{m=1}^{4} E_{m,k}p_{1,1}E_{l,m} = E_{i,k}p_{1,1}E_{l,j},
$$

$$
F_{k,l}E_{i,j} = \sum_{m=1}^{4} E_{m,k}p_{1,1}E_{l,m}E_{i,j} = E_{i,k}p_{1,1}E_{l,j}
$$

by Proposition [7.4.](#page-14-0) \Box

By Proposition [7.4,](#page-14-0) Proposition [7.5](#page-15-0) and Proposition [7.6,](#page-17-0) we have a ∗-homomorphism $\Psi: M_4(C(\mathbb{R}P^3)) \to A(4) \rtimes_\alpha^{\text{tw}} (K \times K)$ sending $f_{i,j}$ to $F_{i,j}$ and $e_{i,j}$ to $E_{i,j}$.

We are going to see that this map Ψ is the inverse of Φ . We first show $\Psi \circ \Phi =$ $\mathrm{id}_{A(4)\rtimes_\alpha^{\mathrm{tw}}(K\times K)}$.

Proposition 7.7. *For* $x \in A(4) \rtimes_{\alpha}^{\text{tw}} (K \times K)$ *, we have* $\Psi(\Phi(x)) = x$ *.*

Proof. For $i, j = 1, 2, 3, 4$, we have

$$
\Psi(\Phi(u_{i,j})) = \Psi(U_{i,j}) = \sum_{k=1}^{4} \varepsilon(i,k)\varepsilon(k,j)\Psi(e_{t_i(k),t_j(k)})
$$

\n
$$
= \sum_{k=1}^{4} \varepsilon(i,k)\varepsilon(k,j)E_{t_i(k),t_j(k)}
$$

\n
$$
= \frac{1}{4} \sum_{k=1}^{4} \varepsilon(i,k)\varepsilon(k,j) \sum_{m=1}^{4} \varepsilon(t_i(k),m)\varepsilon(m,t_j(k))u_{t_i(t_k(m)),t_j(t_k(m))}
$$

\n
$$
= \frac{1}{4} \sum_{k=1}^{4} \sum_{l=1}^{4} \varepsilon(i,k)\varepsilon(k,j)\varepsilon(t_i(k),t_k(l))\varepsilon(t_k(l),t_j(k))u_{t_i(l),t_j(l)}.
$$

Since we have

$$
\frac{1}{4} \sum_{k=1}^{4} \varepsilon(i,k)\varepsilon(k,j)\varepsilon(t_i(k),t_k(l))\varepsilon(t_k(l),t_j(k))
$$
\n
$$
= \frac{1}{4} \sum_{k=1}^{4} \varepsilon(i,k)\varepsilon(t_i(k),t_k(l))\varepsilon(t_k(l),t_j(k))\varepsilon(k,j)
$$
\n
$$
= \frac{1}{4} \sum_{k=1}^{4} \varepsilon(i,l)\varepsilon(k,t_k(l))\varepsilon(t_k(l),k)\varepsilon(l,j) = \delta_{l,1},
$$

we obtain $\Psi(\Phi(u_{i,j})) = u_{i,j}$. By the computation in the proof of Proposition [7.6,](#page-17-0) we have

$$
\Psi(P_{1,1}) = \Psi\left(\sum_{i,j=1}^{4} f_{i,j}e_{i,j}\right) = \sum_{i,j=1}^{4} F_{i,j}E_{i,j} = \sum_{i,j=1}^{4} E_{i,i}p_{1,1}E_{j,j} = p_{1,1}.
$$

For $i, j = 1, 2, 3, 4$, we have

$$
\Psi(\Phi(p_{i,j})) = \Psi(P_{i,j}) = \Psi(U_{i,j})\Psi(P_{1,1})\Psi(U_{i,j})^* = u_{i,j}p_{1,1}u_{i,j}^* = p_{i,j}.
$$

These show that $\Psi(\Phi(x)) = x$ for all $x \in A(4) \rtimes_{\alpha}^{\text{tw}} (K \times K)$.

Next, we show $\Phi \circ \Psi = \mathrm{id}_{M_4(C(\mathbb{R}P^3))}$.

Proposition 7.8. *For* $x \in M_4(C(\mathbb{R}P^3))$ *, we have* $\Phi(\Psi(x)) = x$ *.*

Proof. For $i, j = 1, 2, 3, 4$, we have

$$
\Phi(\Psi(e_{i,j})) = \Phi(E_{i,j}) = \frac{1}{4} \sum_{k=1}^{4} \varepsilon(i,k) \varepsilon(k,j) \Phi(u_{t_i(k),t_j(k)})
$$

\n
$$
= \frac{1}{4} \sum_{k=1}^{4} \varepsilon(i,k) \varepsilon(k,j) U_{t_i(k),t_j(k)}
$$

\n
$$
= \frac{1}{4} \sum_{k=1}^{4} \varepsilon(i,k) \varepsilon(k,j) \sum_{m=1}^{4} \varepsilon(t_i(k),m) \varepsilon(m,t_j(k)) e_{t_i(t_k(m)),t_j(t_k(m))}
$$

\n
$$
= \frac{1}{4} \sum_{k=1}^{4} \sum_{l=1}^{4} \varepsilon(i,k) \varepsilon(k,j) \varepsilon(t_i(k),t_k(l)) \varepsilon(t_k(l),t_j(k)) e_{t_i(l),t_j(l)}
$$

\n
$$
= e_{i,j}
$$

as in the proof of Proposition [7.7.](#page-17-1) For $i, j = 1, 2, 3, 4$, we have

$$
\Phi(\Psi(f_{i,j})) = \Phi(F_{i,j}) = \sum_{k=1}^{4} \Phi(E_{k,i})\Phi(p_{1,1})\Phi(E_{j,k})
$$

=
$$
\sum_{k=1}^{4} e_{k,i} P_{1,1} e_{j,k}
$$

=
$$
\sum_{k=1}^{4} e_{k,i} \left(\sum_{l,m=1}^{4} f_{l,m} e_{l,m} \right) e_{j,k}
$$

=
$$
\sum_{k=1}^{4} f_{i,j} e_{k,k} = f_{i,j}.
$$

These show that $\Phi(\Psi(x)) = x$ for all $x \in M_4(C(\mathbb{R}P^3))$ \Box)).

By these two propositions, we get Theorem [3.6.](#page-7-0) As its corollary, we have the following.

Corollary 7.9 (cf. [\[2,](#page-49-1) Theorem 4.1]). *There is an injective* **-homomorphism* $A(4) \rightarrow$ $M_4(C(\mathbb{R}P^3)).$

Proof. This follows from Theorem [3.6](#page-7-0) because the ∗-homomorphism $A(4) \rightarrow A(4) \rtimes_{\alpha}^{\text{tw}}$ $(K \times K)$ is injective.

One can see that the injective ∗-homomorphism constructed in this corollary is nothing but the Pauli representation constructed in [\[3\]](#page-49-2) and considered in [\[2\]](#page-49-1). Note that Banica and Collins remarked after [\[2,](#page-49-1) Definition 2.1] that the target of the Pauli representation can be replaced by $M_4(C(SO_3))$ instead of $M_4(C(SU_2))$. Here SO_3 is homeomorphic to $\mathbb{R}P^3$ whereas SU_2 is homeomorphic to S^3 .

8. **Action**

One can see that the dual group of $K \times K$ is isomorphic to $K \times K$ using the product of the cocycle ε (see below).

TABLE 8.1. Values of $\varepsilon(i, j)\varepsilon(j, i)$

	2	2	
2			
\mathbf{r}			

Let $\widehat{\alpha}$: $K \times K \sim A(4) \rtimes_{\alpha}^{\text{tw}} (K \times K)$ be the dual action of α . Namely $\widehat{\alpha}$ is determined by the following equation for all i, j, k, l

$$
\widehat{\alpha}_{i,j}(p_{k,l}) = p_{k,l}, \qquad \widehat{\alpha}_{i,j}(u_{k,l}) = \varepsilon(i,k)\varepsilon(k,i)\varepsilon(j,l)\varepsilon(l,j)u_{k,l},
$$

where we write $\widehat{\alpha}_{(t_i,t_j)}$ as $\widehat{\alpha}_{i,j}$.
Figure 1.2.2.4.16 for $\widehat{\alpha}_{i,j}$.

For *i*, $j = 1, 2, 3, 4$, define $\sigma_{i,j} : \mathbb{R}P^3 \to \mathbb{R}P^3$ by $\sigma_{i,j}([a_1, a_2, a_3, a_4]) = [b_1, b_2, b_3, b_4]$ for $[a_1, a_2, a_3, a_4] \in \mathbb{R}P^3$ where $(b_1, b_2, b_3, b_4) \in S^3$ is determined by

$$
(b_1, b_2, b_3, b_4)^{\mathrm{T}} = U_{i,j}(a_1, a_2, a_3, a_4)^{\mathrm{T}},
$$

in other words $\sum_{k=1}^{4} b_k c_k = c_i (\sum_{k=1}^{4} a_k c_k) c_j^*$ by Proposition [5.2.](#page-10-0) Let $\beta: K \times K$ $M_4(C(\mathbb{R}P^3))$ be the action determined by $\beta_{i,j}(F) = \text{Ad} U_{i,j} \circ F \circ \sigma_{i,j}$ for $F \in$ $M_4(C(\mathbb{R}P^3)) = C(\mathbb{R}P^3, M_4(\mathbb{C}))$ where we write $\beta_{(t_i,t_j)}$ as $\beta_{i,j}$.

Proposition 8.1. *The* *-homomorphism Φ : $A(4) \rtimes_{\alpha}^{tw} (K \times K) \rightarrow M_4(C(\mathbb{R}P^3))$ is *equivariant with respect to* $\widehat{\alpha}$ *and* β *.*

Proof. For *i*, $j = 1, 2, 3, 4$, we have $P_{1,1} \circ \sigma_{i,j} = \text{Ad } U_{i,j} \circ P_{1,1}$. In fact for $[a_1, a_2, a_3, a_4] \in$ $\mathbb{R}P^3$, on one hand we have

$$
(P_{1,1} \circ \sigma_{i,j}) ([a_1, a_2, a_3, a_4]) = (b_1, b_2, b_3, b_4)^{\mathrm{T}} (b_1, b_2, b_3, b_4),
$$

where

$$
(b_1, b_2, b_3, b_4)^{\mathrm{T}} = U_{i,j}(a_1, a_2, a_3, a_4)^{\mathrm{T}},
$$

and on the other hand we have

$$
(\mathrm{Ad}\,U_{i,j}\circ P_{1,1})([a_1,a_2,a_3,a_4])=U_{i,j}(a_1,a_2,a_3,a_4)^{\mathrm{T}}(a_1,a_2,a_3,a_4)U_{i,j}^*
$$

here note $U_{i,j}^* = U_{i,j}^T$ because the entries of $U_{i,j}$ are -1 , 0 or 1. For i, j, k, l = 1, 2, 3, 4, we have

$$
\beta_{i,j}(P_{k,l}) = \text{Ad}\,U_{i,j} \circ (\text{Ad}\,U_{k,l} \circ P_{1,1}) \circ \sigma_{i,j}
$$
\n
$$
= \text{Ad}\,U_{i,j} \circ \text{Ad}\,U_{k,l} \circ \text{Ad}\,U_{i,j} \circ P_{1,1}
$$
\n
$$
= \text{Ad}(U_{i,j}U_{k,l}U_{i,j}) \circ P_{1,1}
$$
\n
$$
= \text{Ad}\,U_{k,l} \circ P_{1,1} = P_{k,l}.
$$

For *i*, *j*, *k*, *l* = 1, 2, 3, 4, we also have

$$
\beta_{i,j}(U_{k,l}) = \operatorname{Ad} U_{i,j} \circ U_{k,l} \circ \sigma_{i,j}
$$

\n
$$
= U_{i,j} U_{k,l} U_{i,j}^*
$$

\n
$$
= \varepsilon(i,k) \varepsilon(j,l) U_{t_i(k),t_j(l)} U_{i,j}^*
$$

\n
$$
= \varepsilon(i,k) \varepsilon(j,l) \varepsilon(k,i)^{-1} \varepsilon(l,j)^{-1} U_{k,l} U_{i,j} U_{i,j}^*
$$

\n
$$
= \varepsilon(i,k) \varepsilon(j,l) \varepsilon(k,i) \varepsilon(l,j) U_{k,l}
$$

here note that $U_{k,l} \in M_4(C(\mathbb{R}P^3)) = C(\mathbb{R}P^3, M_4(\mathbb{C}))$ is a constant function. These complete the proof.

The following is the second main theorem.

Theorem 8.2. The fixed point algebra $M_4(C(\mathbb{R}P^3))^{\beta}$ of the action β is isomorphic to (4)*.*

Proof. This follows from Theorem [3.6](#page-7-0) and Proposition [8.1](#page-20-1) because the fixed point algebra $(A(4) \rtimes_{\alpha}^{\text{tw}} (K \times K))^{\widehat{\alpha}}$ of $\widehat{\alpha}$ is $A(4)$.

As we remark in Introduction, this theorem can be also obtained by combining [\[1,](#page-49-3) Theorem 3.1, Theorem 5.1] and [\[4,](#page-49-4) Proposition 3.3]. Compared with this method, our proof is explicit and straightforward.

9. **Quotient Space** $\mathbb{R}P^3/(K \times K)$

Definition 9.1. We set $A := M_4(C(\mathbb{R}P^3))^{\beta}$.

By Theorem [8.2,](#page-20-0) the C^* -algebra $A(4)$ is isomorphic to A. From this section, we compute the structure of A and its K-groups.

In this section, we study the quotient Space $\mathbb{R}P^3/(K \times K)$ of $\mathbb{R}P^3$ by the action σ of $K \times K$. In [\[6\]](#page-49-8), it is proved that this quotient space $\mathbb{R}P^3/(K \times K)$ is homeomorphic to S^3 .

Definition 9.2. We denote by X the quotient space $\mathbb{R}P^3/(K \times K)$ of the action σ of $K \times K$. We denote by $\pi \colon \mathbb{R}P^3 \to X$ the quotient map.

We use the following lemma later.

Lemma 9.3. *For i*, $j = 2, 3, 4$ *and* $[a_1, a_2, a_3, a_4] \in \mathbb{R}P^3$ *with* $\sigma_{i,j}([a_1, a_2, a_3, a_4]) =$ $[a_1, a_2, a_3, a_4]$, we have $P_{k,l}([a_1, a_2, a_3, a_4]) = P_{k(k), l_l(l)}([a_1, a_2, a_3, a_4])$ for $k, l =$ 1, 2, 3, 4*.*

Proof. This follows from

$$
P_{k,l}([a_1, a_2, a_3, a_4]) = \beta_{i,j}(P_{k,l})([a_1, a_2, a_3, a_4])
$$

= Ad $U_{i,j}(P_{k,l}(\sigma_{i,j}([a_1, a_2, a_3, a_4])))$
= Ad $U_{i,j}(P_{k,l}([a_1, a_2, a_3, a_4]))$
= $(Ad U_{i,j}(P_{k,l}))([a_1, a_2, a_3, a_4])$
= $P_{t_i(k), t_j(l)}([a_1, a_2, a_3, a_4]).$

Definition 9.4. For each $i, j = 2, 3, 4$, define

$$
\widetilde{F}_{i,j} := \left\{ [a_1, a_2, a_3, a_4] \in \mathbb{R}P^3 \, \middle| \, \sigma_{i,j}([a_1, a_2, a_3, a_4]) = [a_1, a_2, a_3, a_4] \right\} \subset \mathbb{R}P^3
$$

to be the set of fixed points of $\sigma_{i,j}$, and define $F_{i,j} \subset X$ to be the image $\pi(\widetilde{F}_{i,j})$.

We have $\widetilde{F}_{i,j} = \pi^{-1}(F_{i,j})$. The following two propositions can be proved by direct computation using the computation of $U_{i,j}$ after Definition [5.1](#page-9-0)

Proposition 9.5. *For each* $i = 2, 3, 4, \sigma_{1i}$ *and* σ_{i1} *have no fixed points.*

Proposition 9.6. *For each i*, $j = 2, 3, 4$, $\widetilde{F}_{i,j}$ *is homeomorphic to a disjoint union of two circles. More precisely, we have*

$$
\widetilde{F}_{2,2} = \{ [a, b, 0, 0], [0, 0, a, b] \in \mathbb{R}P^3 | a, b \in \mathbb{R}, a^2 + b^2 = 1 \}
$$
\n
$$
\widetilde{F}_{2,3} = \{ [a, b, -b, a], [a, b, b, -a] \in \mathbb{R}P^3 | a, b \in \mathbb{R}, 2(a^2 + b^2) = 1 \}
$$
\n
$$
\widetilde{F}_{2,4} = \{ [a, b, a, b], [a, b, -a, -b] \in \mathbb{R}P^3 | a, b \in \mathbb{R}, 2(a^2 + b^2) = 1 \}
$$
\n
$$
\widetilde{F}_{3,2} = \{ [a, b, b, a], [a, b, -b, -a] \in \mathbb{R}P^3 | a, b \in \mathbb{R}, 2(a^2 + b^2) = 1 \}
$$
\n
$$
\widetilde{F}_{3,3} = \{ [a, 0, b, 0], [0, a, 0, b] \in \mathbb{R}P^3 | a, b \in \mathbb{R}, a^2 + b^2 = 1 \}
$$
\n
$$
\widetilde{F}_{3,4} = \{ [a, a, b, -b], [a, -a, b, b] \in \mathbb{R}P^3 | a, b \in \mathbb{R}, 2(a^2 + b^2) = 1 \}
$$
\n
$$
\widetilde{F}_{4,2} = \{ [a, b, a, -b], [a, b, -a, b] \in \mathbb{R}P^3 | a, b \in \mathbb{R}, 2(a^2 + b^2) = 1 \}
$$
\n
$$
\widetilde{F}_{4,3} = \{ [a, a, b, b], [a, -a, b, -b] \in \mathbb{R}P^3 | a, b \in \mathbb{R}, 2(a^2 + b^2) = 1 \}
$$
\n
$$
\widetilde{F}_{4,4} = \{ [a, 0, 0, b], [0, a, b, 0] \in \mathbb{R}P^3 | a, b \in \mathbb{R}, a^2 + b^2 = 1 \}
$$

Definition 9.7. We set $\widetilde{F} := \bigcup_{i,j=2}^4 \widetilde{F}_{i,j}$ and $F := \bigcup_{i,j=2}^4 F_{i,j}$. We also set $\widetilde{O} := \mathbb{R}P^3 \setminus \widetilde{F}$ and $O \coloneqq X \setminus F$.

We have $\widetilde{F} = \pi^{-1}(F)$ and hence $\widetilde{O} = \pi^{-1}(O)$. Note that \widetilde{O} is the set of points $[a_1, a_2, a_3, a_4] \in \mathbb{R}P^3$ such that $\sigma_{i,j}([a_1, a_2, a_3, a_4]) \neq [a_1, a_2, a_3, a_4]$ for all $i, j =$ 1, 2, 3, 4 other than $(i, j) = (1, 1)$. Note also that \tilde{F} and F are closed, and hence \tilde{O} and O are open.

Definition 9.8. For each i_2, i_3, i_4 with $\{i_2, i_3, i_4\} = \{2, 3, 4\}$, define $\widetilde{F}_{(i_2 i_3 i_4)} \subset \mathbb{R}P^3$ by $\widetilde{F}_{(i_2i_3i_4)} \coloneqq \widetilde{F}_{i_2,2} \cap \widetilde{F}_{i_3,3} \cap \widetilde{F}_{i_4,4}$

and define $F_{(i_2i_3i_4)} \subset X$ to be the image $\pi(\widetilde{F}_{(i_2i_3i_4)})$.

Proposition 9.9. *For each* i_2 , i_3 , i_4 *with* $\{i_2, i_3, i_4\} = \{2, 3, 4\}$ *, we have* $\widetilde{F}_{(i_1i_3i_4)} = \widetilde{F}_{i_2,2} \cap \widetilde{F}_{i_3,3} = \widetilde{F}_{i_2,2} \cap \widetilde{F}_{i_4,4} = \widetilde{F}_{i_3,3} \cap \widetilde{F}_{i_4,4}.$

We also have

$$
\begin{aligned}\n\widetilde{F}_{(234)} &= \{ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] \}, \\
\widetilde{F}_{(342)} &= \left\{ \left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right], \left[\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2} \right], \left[\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2} \right], \left[\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2} \right] \}, \\
\widetilde{F}_{(423)} &= \left\{ \left[-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right], \left[\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right], \left[\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2} \right], \left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2} \right] \right\}, \\
\widetilde{F}_{(243)} &= \left\{ \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0 \right], \left[\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0, 0 \right], \left[0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right], \left[0, 0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right] \right\},\n\end{aligned}
$$

On the magic square C*-algebra of size 4

$$
\widetilde{F}_{(432)} = \left\{ \left[\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0 \right], \left[\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}, 0 \right], \left[0, \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right], \left[0, \frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}} \right] \right\}, \n\widetilde{F}_{(324)} = \left\{ \left[\frac{1}{\sqrt{2}}, 0, 0, \frac{1}{\sqrt{2}} \right], \left[\frac{1}{\sqrt{2}}, 0, 0, -\frac{1}{\sqrt{2}} \right], \left[0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right], \left[0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0 \right] \right\}.
$$

Proof. This follows from Proposition [9.6.](#page-22-0)

Proposition 9.10. *For each* i_2 , i_3 , i_4 *with* $\{i_2, i_3, i_4\} = \{2, 3, 4\}$, $F_{(i_2 i_3 i_4)}$ *consists of one point.*

Proof. This follows from Proposition [9.9.](#page-22-1)

Definition 9.11. For each i_2 , i_3 , i_4 with $\{i_2, i_3, i_4\} = \{2, 3, 4\}$, we set $x_{(i_2 i_3 i_4)}$ ∈ *X* by $F_{(i_2 i_3 i_4)} = \{x_{(i_2 i_3 i_4)}\}.$

Proposition 9.12. *For each* $i, j = 2, 3, 4, F_{i,j}$ *is homeomorphic to a closed interval whose endpoints are* $x_{(i_2 i_3 i_4)}$ *with* $i_j = i$,

Proof. This follows from Proposition [9.6.](#page-22-0) See also Figure [13.2](#page-37-0) and the remarks around it.

Note that $F \subset X$ is the complete bipartite graph between $\{x_{(234)}, x_{(342)}, x_{(423)}\}$ and ${x_{(243)}, x_{(432)}, x_{(324)}}$. See Figure [13.2.](#page-37-0)

Definition 9.13. For $i, j = 2, 3, 4$, we define

$$
F_{i,j}^{\circ} := F_{i,j} \setminus \{x_{(i_2 i_3 i_4)} \mid i_j = i\},\
$$

and define

$$
F^{\circ} := \bigcup_{i,j=2}^{4} F_{i,j}^{\circ}, \qquad F^{\bullet} := \{x_{(234)}, x_{(342)}, x_{(423)}, x_{(243)}, x_{(432)}, x_{(324)}\}.
$$

Definition 9.14. We set $\widetilde{F}_{i,j}^{\circ} := \pi^{-1}(F_{i,j}^{\circ})$ for $i, j = 2, 3, 4$, $\widetilde{F}^{\circ} := \pi^{-1}(F^{\circ})$ and $\widetilde{F}^{\bullet} :=$ $\pi^{-1}(F^{\bullet}).$

10. **Exact sequences**

For a locally compact subset Y of $\mathbb{R}P^3$ which is invariant under the action σ , the action $\beta: K \times K \sim M_4(C(\mathbb{R}P^3))$ induces the action $K \times K \sim M_4(C_0(Y))$ which is also denoted by β . We use the following lemma many times.

Lemma 10.1. Let Y be a locally compact subset of $\mathbb{R}P^3$ which is invariant under the *action* σ . Let Z be a closed subset of Y which is invariant under the action σ . Then we *have a a short exact sequence*

$$
0 \longrightarrow M_4(C_0(Y \setminus Z))^{\beta} \longrightarrow M_4(C_0(Y))^{\beta} \longrightarrow M_4(C_0(Z))^{\beta} \longrightarrow 0
$$

Proof. It suffices to show that $M_4(C_0(Y))^{\beta} \to M_4(C_0(Z))^{\beta}$ is surjective. The other assertions are easy to see.

Take $f \in M_4(C_0(Z))^{\beta}$. Since $M_4(C_0(Y)) \to M_4(C_0(Z))$ is surjective, there exists $g \in M_4(C_0(Y))$ with $g|_Z = f$. Set $g_0 \in M_4(C_0(Y))$ by

$$
g_0 := \frac{1}{16} \sum_{i,j=1}^4 \beta_{i,j}(g).
$$

Then $g_0 \in M_4(C_0(Y))^{\beta}$ and $g_0|_Z = f$. This completes the proof.

We also use the following lemma many times.

Lemma 10.2. *Let be a locally compact subset of* R ³ *which is invariant under the action* σ . Let *Z* be a closed subset of *Y* such that $Y = \bigcup_{i,j=1}^{4} \sigma_{i,j}(Z)$ and that $\sigma_{i,j}(Z) \cap Z = \emptyset$ *for i*, $j = 1, 2, 3, 4$ *with* $(i, j) \neq (1, 1)$ *. Then we have* $M_4(C_0(Y))^{\beta} \cong M_4(C_0(Z))$ *.*

Proof. The restriction map $M_4(C_0(Y))^{\beta} \to M_4(C_0(Z))$ is an isomorphism because its inverse is given by

$$
M_4(C_0(Z)) \ni f \longmapsto \sum_{i,j=1}^4 \beta_{i,j}(f) \in M_4(C_0(Y))^{\beta}.
$$

Under the situation of the lemma above, $\pi: Z \to \pi(Z) = \pi(Y)$ is a homeomorphism. Hence we have $M_4(C_0(Y))^{\beta} \cong M_4(C_0(Z)) \cong M_4(C_0(\pi(Z))) = M_4(C_0(\pi(Y))).$

The following lemma generalize Lemma [10.2.](#page-24-0)

Lemma 10.3. Let G be a subgroup of $K \times K$. Let Y be a locally compact subset of $\mathbb{R}P^3$ which is invariant under the action σ . Suppose that each point of Y is fixed by $\sigma_{i,j}$ for all $(t_i, t_j) \in G$. Let Z be a closed subset of Y such that $Y = \bigcup_{i,j=1}^4 \sigma_{i,j}(Z)$ and *that* $\sigma_{i,j}(Z) \cap Z = \emptyset$ *for i*, *j* = 1, 2, 3, 4 *with* $(t_i, t_j) \notin G$. *Then we have* $M_4(C_0(Y))^{\beta}$ ≅ $C_0(Z, D)$ where

$$
D \coloneqq \{ T \in M_4(\mathbb{C}) \mid \text{Ad}\,U_{i,j}(T) = T \text{ for all } (t_i, t_j) \in G \}.
$$

Proof. We have a restriction map $M_A(C_0(Y))^{\beta} \to C_0(Z,D)$ which is an isomorphism because its inverse is given by

$$
C_0(Z,D) \ni f \longmapsto \sum_{(i,j) \in I} \beta_{i,j}(f) \in M_4(C_0(Y))^{\beta},
$$

where an index set *I* is chosen so that $\{(t_i, t_j) \in K \times K \mid (i, j) \in I\}$ becomes a complete representative of the quotient $(K \times K)/G$.

Under the situation of the lemma above, $\pi: Z \to \pi(Z) = \pi(Y)$ is a homeomorphism. Hence we have $M_4(C_0(Y))^{\beta} \cong C_0(Z, D) \cong C_0(\pi(Z), D) = C_0(\pi(Y), D)$.

Definition 10.4. We set $I := M_4(C_0(\widetilde{O}))^{\beta}$ and $B := M_4(C(\widetilde{F}))^{\beta}$.

By Lemma [10.1](#page-24-1) we get a short exact sequence

$$
0 \longrightarrow I \longrightarrow A \longrightarrow B \longrightarrow 0.
$$

From this sequence, we get a six-term exact sequence

$$
K_0(I) \longrightarrow K_0(A) \longrightarrow K_0(B)
$$

\n
$$
\delta_1 \uparrow \qquad \qquad \downarrow \delta_0
$$

\n
$$
K_1(B) \longleftarrow K_1(A) \longleftarrow K_1(I).
$$

From next section, we compute $K_i(B)$, $K_i(I)$ and δ_i for $i = 0, 1$. Consult [\[7\]](#page-49-9) for basics of K-theory.

11. **The Structure of the Quotient**

Definition 11.1. For $i, j = 2, 3, 4$, let $D_{i,j}$ be the fixed algebra of Ad $U_{i,j}$ on $M_4(\mathbb{C})$.

From the direct computation, we have the following.

Proposition 11.2. *For each i*, $j = 2, 3, 4$ *,* $D_{i,j}$ *is isomorphic to* $M_2(\mathbb{C}) \oplus M_2(\mathbb{C})$ *. More precisely, we have*

$$
D_{2,2} = \begin{cases} \begin{pmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & e & f \\ 0 & 0 & g & h \end{pmatrix} \end{cases}, \qquad D_{2,3} = \begin{cases} \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ -h & g & f & -e \\ d & -c & -b & a \end{pmatrix} \end{cases},
$$

$$
D_{2,4} = \begin{cases} \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ c & d & a & b \\ g & h & e & f \end{pmatrix} \end{cases}, \qquad D_{3,2} = \begin{cases} \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ h & g & f & e \\ d & c & b & a \end{pmatrix} \end{pmatrix},
$$

$$
D_{3,3} = \begin{cases} \begin{pmatrix} a & 0 & b & 0 \\ 0 & c & 0 & d \\ e & 0 & f & 0 \\ 0 & g & 0 & h \end{pmatrix} \end{cases}, \qquad D_{3,4} = \begin{cases} \begin{pmatrix} a & b & c & d \\ b & a & -d & -c \\ e & f & g & h \\ -f & -e & h & g \end{pmatrix} \end{cases},
$$

$$
D_{4,2} = \left\{ \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ c & -d & a & -b \\ -g & h & -e & f \end{pmatrix} \right\}, \qquad D_{4,3} = \left\{ \begin{pmatrix} a & b & c & d \\ b & a & d & c \\ e & f & g & h \\ f & e & h & g \end{pmatrix} \right\},
$$

$$
D_{4,4} = \left\{ \begin{pmatrix} a & 0 & 0 & b \\ 0 & c & d & 0 \\ 0 & e & f & 0 \\ g & 0 & 0 & h \end{pmatrix} \right\},
$$

 $where a, b, c, d, e, f, g, h$ *run through* \mathbb{C} *.*

Definition 11.3. For each i_2 , i_3 , i_4 with $\{i_2, i_3, i_4\} = \{2, 3, 4\}$, define $D_{(i_2 i_3 i_4)}$ ⊂ R P^3 by

$$
D_{(i_2i_3i_4)} \coloneqq D_{i_2,2} \cap D_{i_3,3} \cap D_{i_4,4}.
$$

Proposition 11.4. *For each* i_2 , i_3 , i_4 *with* $\{i_2, i_3, i_4\} = \{2, 3, 4\}$ *, we have*

$$
D_{(i_2i_3i_4)} = D_{i_2,2} \cap D_{i_3,3} = D_{i_2,2} \cap D_{i_4,4} = D_{i_3,3} \cap D_{i_4,4},
$$

and $D_{(i_2 i_3 i_4)}$ is isomorphic to \mathbb{C}^4 *. More precisely, we have*

$$
D_{(234)} = \begin{Bmatrix} \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix} \end{Bmatrix} \qquad D_{(423)} = \begin{Bmatrix} \begin{pmatrix} a & b & c & d \\ b & a & -d & -c \\ c & -d & a & -b \\ d & -c & -b & a \end{pmatrix} \end{Bmatrix}
$$

$$
D_{(342)} = \begin{Bmatrix} \begin{pmatrix} a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{pmatrix} \end{Bmatrix} \qquad D_{(243)} = \begin{Bmatrix} \begin{pmatrix} a & b & 0 & 0 \\ b & a & 0 & 0 \\ 0 & 0 & c & d \\ 0 & 0 & d & c \end{pmatrix} \end{Bmatrix}
$$

$$
D_{(324)} = \begin{Bmatrix} \begin{pmatrix} a & 0 & 0 & d \\ 0 & b & c & 0 \\ 0 & c & b & 0 \\ 0 & c & b & 0 \\ d & 0 & 0 & a \end{pmatrix} \end{Bmatrix}
$$

where a, b, c, d run through $\mathbb C$.

Definition 11.5. We set $B^{\circ} := M_4(C_0(\widetilde{F}^{\circ}))^{\beta}$ and $B^{\bullet} := M_4(C(\widetilde{F}^{\bullet}))^{\beta}$. We also set $B_{i,j}^{\circ} := M_4(C_0(\widetilde{F}_{i,j}^{\circ}))^{\beta}$ for $i, j = 2, 3, 4$ and $B_{(i_2i_3i_4)} := M_4(C_0(\widetilde{F}_{(i_2i_3i_4)}))^{\beta}$ for i_2, i_3, i_4 with $\{i_2, i_3, i_4\} = \{2, 3, 4\}.$

From the discussion up to here, we have the following proposition.

On the magic square C*-algebra of size 4

Proposition 11.6. *We have*

$$
B^{\circ} \cong \bigoplus_{i,j=2}^{4} B^{\circ}_{i,j}, \qquad B^{\bullet} \cong \bigoplus_{\{i_2,i_3,i_4\}=\{2,3,4\}} B_{(i_2i_3i_4)}.
$$

We also have

$$
B_{i,j}^{\circ} \cong C_0(F_{i,j}^{\circ}, D_{i,j}) \cong C_0((0,1), M_2(\mathbb{C}) \oplus M_2(\mathbb{C})),
$$

for i, $j = 2, 3, 4$ *and*

$$
B_{(i_2i_3i_4)} \cong C(F_{(i_2i_3i_4)}, D_{(i_2i_3i_4)}) \cong \mathbb{C}^4
$$

for i_2 , i_3 , i_4 *with* $\{i_2, i_3, i_4\} = \{2, 3, 4\}.$

From this proposition, we get

$$
B^{\circ} \cong C_0((0,1), M_2(\mathbb{C}) \oplus M_2(\mathbb{C}))^9 \cong C_0((0,1), M_2(\mathbb{C}))^{18}, \quad B^{\bullet} \cong (\mathbb{C}^4)^6 \cong \mathbb{C}^{24}.
$$

12. **K-groups of the quotient**

From the short exact sequence

$$
0 \longrightarrow B^{\circ} \longrightarrow B \longrightarrow B^{\bullet} \longrightarrow 0,
$$

we get a six-term exact sequence

$$
0 = K_0(B^\circ) \longrightarrow K_0(B) \longrightarrow K_0(B^\bullet) \cong \mathbb{Z}^{24}
$$

\n
$$
\downarrow \delta
$$

\n
$$
0 = K_1(B^\bullet) \longleftarrow K_1(B) \longleftarrow K_1(B^\circ) \cong \mathbb{Z}^{18}.
$$

From this sequence, we have $K_0(B) \cong \ker \delta$ and $K_1(B) \cong \operatorname{coker} \delta$. Next we compute $\delta: K_0(B^{\bullet}) \to K_1(B^{\circ}).$

Proposition 12.1. *Under the isomorphism* Φ : $A(4) \rightarrow A$ *, the* C^* -algebra $A^{ab}(4)$ *is canonically isomorphic to* • *.*

Proof. Since $B^{\bullet} \cong \mathbb{C}^{24}$ is commutative, the surjection $A(4) \cong A \twoheadrightarrow B \twoheadrightarrow B^{\bullet}$ factors through the surjection $A(4) \rightarrow A^{ab}(4)$. The induced surjection $A^{ab}(4) \rightarrow B^{\bullet}$ is an isomorphism because $A^{ab}(4) \cong \mathbb{C}^{24}$.

For $i, j = 1, 2, 3, 4$, the image of $P_{i,j} \in A$ under a surjection is denoted by the same symbol $P_{i,j}$. By Proposition [1.7](#page-4-2) and Proposition [12.1,](#page-27-0) the 24 minimal projections of B^{\bullet} are

$$
P_{(i_1 i_2 i_3 i_4)} \coloneqq P_{i_1,1} P_{i_2,2} P_{i_3,3} P_{i_4,4} \in B^\bullet
$$

for $(i_1i_2i_3i_4) \in \mathfrak{S}_4$.

Definition 12.2. For $\sigma \in \mathfrak{S}_4$, we define $q_{\sigma} \coloneqq [P_{\sigma}]_0 \in K_0(B^{\bullet})$.

Note that $\{q_{\sigma}\}_{{\sigma}\in\mathfrak{S}_4}$ is a basis of $K_0(B^{\bullet}) \cong \mathbb{Z}^{24}$.

Proposition 12.3. *For each* i_2 , i_3 , i_4 *with* $\{i_2, i_3, i_4\} = \{2, 3, 4\}$ *, the* 4 *minimal projections* $of \mathbb{C}^4 \cong B_{(i_2 i_3 i_4)} \subset B^{\bullet}$ are $P_{\sigma t_k}$ for $k = 1, 2, 3, 4$ where $\sigma \coloneqq (1 i_2 i_3 i_4) \in \mathfrak{S}_4$.

Proof. Take i_2 , i_3 , i_4 with $\{i_2, i_3, i_4\} = \{2, 3, 4\}$. Since the 4 points in $\widetilde{F}_{(i_2 i_3 i_4)}$ are fixed by $\sigma_{i_2,2}, \sigma_{i_3,3}$ and $\sigma_{i_4,4}$, we have $P_{k,l} = P_{t_{i}(k), t_j(l)}$ in $B_{(i_2 i_3 i_4)}$ for $k, l = 1, 2, 3, 4$ and $j = 2, 3, 4$ by Lemma [9.3.](#page-21-1) More concretely we have

$$
P_{1,1} = P_{i_2,2} = P_{i_3,3} = P_{i_4,4},
$$

\n
$$
P_{i_2,1} = P_{1,2} = P_{i_4,3} = P_{i_3,4},
$$

\n
$$
P_{i_3,1} = P_{i_4,2} = P_{1,3} = P_{i_2,4},
$$

\n
$$
P_{i_4,1} = P_{i_3,2} = P_{i_2,3} = P_{1,4}
$$

in $B_{(i_2 i_3 i_4)}$. These four projections are mutually orthogonal, and their sum equals to 1. Thus the 4 minimal projections of $B_{(i_2i_3i_4)}$ are $P_{(1i_2i_3i_4)}$, $P_{(i_21i_4i_3)}$, $P_{(i_3i_41i_2)}$ and $P_{(i_4i_3i_21)}$.

Take *i*, $j = 2, 3, 4$, and fix them for a while. Let $(1m_2m_3m_4) \in \mathfrak{S}_4$ be the unique even permutation with $m_j = i$, and $(1n_2n_3n_4) \in \mathfrak{S}_4$ be the unique odd permutation with $n_j = i$. We set $\sigma = (1m_2m_3m_4)$ and $\tau = (1n_2n_3n_4)$. Then we have the following commutative diagram with exact rows;

By Lemma [9.3,](#page-21-1) we have $P_{k,l} = P_{t_i(k), t_i(l)}$ in $B_{i,j}$ for $k, l = 1, 2, 3, 4$. Let $\omega = (1342) \in \mathfrak{S}_4$. Note that we have $t_i(\omega(i)) = \omega^2(i)$ and $t_i(\omega^2(i)) = \omega(i)$. One can see that $B_{i,j}$ is a direct sum of two C^{*}-subalgebras $B_{i,j}^{\cap}$ and $B_{i,j}^{\cup}$ where $B_{i,j}^{\cap}$ is generated by

 $P_{1,1} = P_{i,j}, \quad P_{1,j} = P_{i,1}, \quad P_{\omega(i),\omega(j)} = P_{\omega^2(i),\omega^2(j)}, \quad P_{\omega(i),\omega^2(j)} = P_{\omega^2(i),\omega(j)}$ and $B_{i,j}^{\cup}$ is generated by

$$
P_{1,\omega(j)} = P_{i,\omega^2(j)}, \quad P_{1,\omega^2(j)} = P_{i,\omega(j)}, \quad P_{\omega(i),1} = P_{\omega^2(i),j}, \quad P_{\omega(i),j} = P_{\omega^2(i),1}.
$$

Note that $P_{1,1}+P_{1,j} = P_{\omega(i), \omega(j)}+P_{\omega(i), \omega^2(j)}$ is the unit of $B_{i,j}^{\cap}$, and $P_{1,\omega(j)}+P_{1,\omega^2(j)} =$ $P_{\omega(i),1} + P_{\omega(i),j}$ is the unit of $B_{i,j}^{\cup}$. It turns out that both $B_{i,j}^{\cap}$ and $B_{i,j}^{\cup}$ are isomorphic to the universal unital C^* -algebra generated by two projections, which is isomorphic to

$$
\left\{f \in C([0,1], M_2(\mathbb{C})) \mid f(0) = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}, f(1) = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \right\}.
$$

This fact can be proved directly, but we do not prove it here because we do not need it. The image of $B_{i,j}^{\cap}$ under the surjection $B_{i,j} \to B_{(m_2m_3m_4)} \oplus B_{(n_2n_3n_4)}$ is $(\mathbb{C}p_{\sigma} + \mathbb{C}p_{\sigma t_j}) \oplus (\mathbb{C}p_{\tau} + \mathbb{C}p_{\sigma t_j})$ $\mathbb{C}p_{\tau t_j}$). Therefore, the image of $B_{i,j}^{\cup}$ under the surjection $B_{i,j} \to B_{(m_2m_3m_4)} \oplus B_{(n_2n_3n_4)}$ is $(\mathbb{C}p_{\sigma t_{\omega(j)}} + \mathbb{C}p_{\sigma t_{\omega^2(j)}}) \oplus (\mathbb{C}p_{\tau t_{\omega(j)}} + \mathbb{C}p_{\tau t_{\omega^2(j)}})$. We set $v_{i,j}^{\cap}, v_{i,j}^{\cup} \in K_1(B_{i,j}^{\circ})$ by $v_{i,j}^{\cap} \coloneqq \delta'(q_{\sigma})$ and $v_{i,j}^{\cup} \coloneqq \delta'(q_{\sigma t_{\omega(j)}})$ where

$$
\delta' : K_0(B_{(m_2m_3m_4)} \oplus B_{(n_2n_3n_4)}) \to K_1(B_{i,j}^{\circ})
$$

is the exponential map. Then we have the following.

Lemma 12.4. *The set* $\{v_{i,j}^{\cap}, v_{i,j}^{\cup}\}$ *is a generator of* $K_1(B_{i,j}^{\circ}) \cong \mathbb{Z}^2$ *, and we have* $\delta'(q_{\sigma}) = \delta'(q_{\sigma t_j}) = v_{i,j}^{\cap}, \qquad \qquad \delta'(q_{\sigma t_{\omega(j)}}) = \delta'(q_{\sigma t_{\omega^2(j)}}) = v_{i,j}^{\cup},$ $\delta'(q_{\tau}) = \delta'(q_{\tau t_j}) = -v_{i,j}^{\cap}, \qquad \qquad \delta'(q_{\tau t_{\omega(j)}}) = \delta'(q_{\tau t_{\omega^2(j)}}) = -v_{i,j}^{\cup}.$

Proof. Choose a closed interval $Z \subset \mathbb{R}P^3$ such that $\pi : Z \to F_{i,j}$ is a homeomorphism (see Figure [13.2](#page-37-0) and the remarks around it for an example of such a space). Let $z_0, z_1 \in Z$ be the point such that $\pi(z_0) = v_{(m_2m_3m_4)}$ and $\pi(z_1) = v_{(n_2n_3n_4)}$. Then we have $B_{i,j}^{\circ} \cong C_0(Z \setminus \{z_0, z_1\}, D_{i,j})$. Let $B'_{i,j}$ be the inverse image of $B_{(m_2m_3m_4)}$ under the surjection $B_{i,j} \to B_{(m_2m_3m_4)} \oplus B_{(n_2n_3n_4)}$. Then we have the following commutative diagram with exact rows;

Let us denote by φ the homomorphism from $K_0(B_{(m_1,m_2,m_4)})$ to $K_0(D_{i,j})$ induced by the vertical map from $B_{(m_2m_3m_4)} \cong D_{(m_2m_3m_4)}$ to $D_{i,j}$. Then $K_0(D_{i,j}) \cong \mathbb{Z}^2$ is spanned by $\varphi(q_{\sigma}) = \varphi(q_{\sigma t_j})$ and $\varphi(q_{\sigma t_{\omega(j)}}) = \varphi(q_{\sigma t_{\omega^2(j)}})$. Since $K_l(C_0(Z \setminus \{z_0\}, D_{i,j})) = 0$ for $l =$ $(0, 1, K_0(D_{i,j}) \to K_1(B_{i,j}^{\circ})$ is an isomorphism. This shows that $\{v_{i,j}^{\circ}, v_{i,j}^{\circ}\}$ is a generator of $K_1(B_{i,j}^{\circ}) \cong \mathbb{Z}^2$. We also have $\delta'(q_{\sigma}) = \delta'(q_{\sigma t_j})$ and $\delta'(q_{\sigma t_{\omega(j)}}) = \delta'(q_{\sigma t_{\omega^2(j)}})$. Similarly, we have $\delta'(q_{\tau}) = \delta'(q_{\tau t_j})$ and $\delta'(q_{\tau t_{\omega(j)}}) = \delta'(q_{\tau t_{\omega^2(j)}})$.

Since the image of the projection $P_{1,1} \in B_{i,j}$ under the surjection $B_{i,j} \to B_{(m_2m_3m_4)} \oplus$ $B_{(n_2n_3n_4)}$ is $P_{\sigma} + P_{\tau}$, we have $\delta'(q_{\sigma} + q_{\tau}) = 0$. Hence $\delta'(q_{\tau}) = -v_{i,j}^{\cap}$. Similarly we have $\delta'(q_{\sigma t_{\omega(j)}} + q_{\tau t_{\omega(j)}}) = 0$ because the image of $P_{1,\omega(j)} \in B_{i,j}$ under the surjection $B_{i,j} \to B_{(m_2m_3m_4)} \oplus B_{(n_2n_3n_4)}$ is $P_{\sigma t_{\omega(j)}} + P_{\tau t_{\omega(j)}}$. We are done.

From these computation, we get the following proposition.

Proposition 12.5. *The exponential map* $\delta: K_0(B^{\bullet}) \to K_1(B^{\circ})$ *is as Table [12.1.](#page-31-0)*

We will see that $K_1(B) \cong \text{coker }\delta$ is isomorphic to $\mathbb{Z}^4 \oplus \mathbb{Z}/2\mathbb{Z}$ in Proposition [15.5.](#page-44-0) This implies $K_0(B) \cong \text{ker } \delta$ is isomorphic to \mathbb{Z}^{10} because ker δ is a free abelian group with dimension $24 - 18 + 4 = 10$. Below, we examine the generator of $K_0(B) \cong \text{ker } \delta$.

For $i, j = 1, 2, 3, 4$, we have

$$
P_{i,j} = P_{i,j} \sum_{k \neq i} \sum_{l=1}^{n} P_{k,l} = \sum_{i = \sigma(j)} P_{\sigma}
$$

in B^{\bullet} . Hence $[P_{i,j}]_0 = \sum_{i=\sigma(j)} q_{\sigma}$ in $K_0(B^{\bullet})$.

Proposition 12.6. *The group* ker δ *is generated by* $\{ [P_{i,j}]_0 | i, j = 1, 2, 3, 4 \}.$

Proof. It is straightforward to check that $[P_{i,j}]_0$ is in ker δ for $i, j = 1, 2, 3, 4$.

Take $x \in \text{ker } \delta$, and we will show that x is in the subgroup generated by $\{ [P_{i,j}]_0 \mid$ $i, j = 1, 2, 3, 4$. Write $x = \sum_{\sigma \in \mathfrak{S}_4} n_{\sigma} q_{\sigma}$ with $n_{\sigma} \in \mathbb{Z}$. Subtracting $n_{(4213)} [P_{2,2}]_0$ + $n_{(4132)}[P_{1,2}]_0$ from x, we may assume $n_{(4213)} = n_{(4132)} = 0$ without loss of generality. Subtracting $n_{(4312)} [P_{3,2}]_0 + n_{(4123)} [P_{2,3}]_0 + n_{(4231)} [P_{1,4}]_0$ from x, we may further assume $n_{(4312)} = n_{(4123)} = n_{(4231)} = 0$ without loss of generality. Subtracting $n_{(2341)} [P_{2,1}]_0 +$ $n_{(3142)} [P_{3,1}]_0$ from x, we may further assume $n_{(2341)} = n_{(3142)} = 0$ without loss of generality. Subtracting $n_{(2413)} [P_{4,2}]_0 + n_{(3214)} [P_{4,4}]_0 + n_{(1324)} [P_{1,1}]_0$ from x, we may further assume $n_{(2413)} = n_{(3214)} = n_{(1324)} = 0$ without loss of generality. Now we will show $x = 0$ using $x \in \text{ker } \delta$.

Since $n_{(3241)} + n_{(4132)} = n_{(3142)} + n_{(4231)}$, we have $n_{(3241)} = 0$. Since $n_{(2314)} + n_{(3241)} = n_{(2341)} + n_{(3214)}$, we have $n_{(2314)} = 0$. Since $n_{(1423)} + n_{(2314)} = n_{(1324)} + n_{(2413)}$, we have $n_{(1423)} = 0$. Since $n_{(1423)} + n_{(4132)} = n_{(1432)} + n_{(4123)}$, we have $n_{(1432)} = 0$. Since $n_{(3124)} + n_{(4213)} = n_{(3214)} + n_{(4123)}$, we have $n_{(3124)} = 0$. Since $n_{(2431)} + n_{(4213)} = n_{(2413)} + n_{(4231)}$, we have $n_{(2431)} = 0$. Since $n_{(1342)} + n_{(2431)} = n_{(1432)} + n_{(2341)}$, we have $n_{(1342)} = 0$. Since $n_{(2314)} + n_{(4132)} = n_{(2134)} + n_{(4312)}$, we have $n_{(2134)} = 0$. Since $n_{(2431)} + n_{(3124)} = n_{(2134)} + n_{(3421)}$, we have $n_{(3421)} = 0$. Since $n_{(1423)} + n_{(3241)} = n_{(1243)} + n_{(3421)}$, we have $n_{(1243)} = 0$.

	2,2		3,3		4,4			4,3		2,4		3,2	3,4		4,2		2,3	
$\boldsymbol{\mathcal{V}}$ \tilde{q}	\cap	U	∩	U	∩	U	∩	U	∩	U	∩	U	∩	U	∩	U	∩	U
(1234)	$\mathbf{1}$	θ	1	θ	1	Ω	θ	θ	θ	θ	Ω	θ	θ	θ	$\overline{0}$	θ	θ	$\mathbf{0}$
(2143)	$\mathbf{1}$	$\mathbf{0}$	$\overline{0}$	$\mathbf{1}$	θ	$\mathbf{1}$	$\boldsymbol{0}$	$\mathbf{0}$	$\mathbf{0}$	θ	θ	θ	θ	$\boldsymbol{0}$	$\boldsymbol{0}$	$\mathbf{0}$	θ	$\boldsymbol{0}$
(3412)	$\overline{0}$	$\mathbf{1}$	1	θ	θ	$\mathbf{1}$	θ	$\mathbf{0}$	$\mathbf{0}$	θ	θ	θ	θ	$\boldsymbol{0}$	$\boldsymbol{0}$	$\mathbf{0}$	θ	$\mathbf{0}$
(4321)	θ	1	$\overline{0}$	1	1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	θ	θ	θ	θ	$\boldsymbol{0}$	$\boldsymbol{0}$	$\mathbf{0}$	θ	$\boldsymbol{0}$
(1342)	$\overline{0}$	$\overline{0}$	θ	θ	θ	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	1	θ	1	θ	θ	$\overline{0}$	$\boldsymbol{0}$	$\mathbf{0}$	θ	$\mathbf{0}$
(2431)	θ	$\mathbf{0}$	θ	θ	θ	θ	θ	$\mathbf{1}$	$\mathbf{1}$	θ	θ	1	θ	θ	$\boldsymbol{0}$	θ	θ	$\mathbf{0}$
(3124)	θ	$\overline{0}$	$\overline{0}$	Ω	θ	θ	$\overline{0}$	$\mathbf{1}$	$\overline{0}$	1	1	θ	θ	$\overline{0}$	$\overline{0}$	θ	θ	$\boldsymbol{0}$
(4213)	$\overline{0}$	0	$\overline{0}$	θ	θ	θ	1	$\boldsymbol{0}$	$\boldsymbol{0}$	1	θ	$\mathbf{1}$	θ	$\overline{0}$	$\boldsymbol{0}$	$\overline{0}$	θ	$\boldsymbol{0}$
(1423)	$\overline{0}$	θ	θ	θ	θ	θ	$\overline{0}$	$\overline{0}$	$\overline{0}$	θ	θ	θ	1	$\overline{0}$	$\mathbf{1}$	θ	1	$\boldsymbol{0}$
(2314)	$\overline{0}$	$\mathbf{0}$	θ	θ	θ	θ	$\mathbf{0}$	$\mathbf{0}$	$\overline{0}$	θ	θ	θ	θ	$\mathbf{1}$	$\boldsymbol{0}$	$\mathbf{1}$	1	$\boldsymbol{0}$
(3241)	θ	$\mathbf{0}$	θ	θ	$\overline{0}$	$\mathbf{0}$	θ	$\mathbf{0}$	$\overline{0}$	θ	θ	$\overline{0}$	1	$\boldsymbol{0}$	$\overline{0}$	$\mathbf{1}$	θ	$\mathbf{1}$
(4132)	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	θ	θ	θ	$\overline{0}$	$\mathbf{0}$	$\mathbf{0}$	θ	θ	θ	θ	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\overline{1}$
(1243)	-1	$\mathbf{0}$	$\overline{0}$	θ	$\overline{0}$	$\mathbf{0}$	-1	$\mathbf{0}$	$\overline{0}$	$\mathbf{0}$	θ	θ	-1	$\boldsymbol{0}$	$\boldsymbol{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
(2134)	-1	θ	θ	Ω	θ	$\overline{0}$	$\mathbf{0}$	-1	θ	θ	Ω	θ	θ	-1	θ	θ	θ	$\boldsymbol{0}$
(3421)	θ	-1	θ	θ	θ	θ	θ	-1	θ	θ	θ	θ	-1	θ	θ	θ	θ	$\mathbf{0}$
(4312)	$\overline{0}$	-1	θ	θ	θ	θ	-1	$\mathbf{0}$	$\boldsymbol{0}$	$\mathbf{0}$	Ω	θ	θ	-1	θ	θ	θ	$\boldsymbol{0}$
(1432)	$\mathbf{0}$	$\overline{0}$	-1	$\mathbf{0}$	$\boldsymbol{0}$	$\mathbf{0}$	$\boldsymbol{0}$	$\overline{0}$	-1	$\boldsymbol{0}$	$\boldsymbol{0}$	$\overline{0}$	$\boldsymbol{0}$	$\overline{0}$	-1	$\overline{0}$	$\overline{0}$	$\mathbf{0}$
(2341)	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	-1	θ	$\boldsymbol{0}$	$\boldsymbol{0}$	$\mathbf{0}$	-1	$\boldsymbol{0}$	Ω	θ	θ	$\boldsymbol{0}$	$\boldsymbol{0}$	-1	θ	$\boldsymbol{0}$
(3214)	$\overline{0}$	$\overline{0}$	-1	θ	θ	$\boldsymbol{0}$	$\overline{0}$	$\overline{0}$	$\boldsymbol{0}$	$^{-1}$	θ	θ	θ	$\overline{0}$	$\overline{0}$	$^{-1}$	θ	$\boldsymbol{0}$
(4123)	θ	$\overline{0}$	θ	-1	θ	θ	$\overline{0}$	$\overline{0}$	$\overline{0}$	-1	θ	θ	θ	$\boldsymbol{0}$	-1	θ	θ	$\boldsymbol{0}$
(1324)	$\overline{0}$	$\overline{0}$	Ω	Ω	-1	Ω	$\overline{0}$	$\overline{0}$	$\overline{0}$	Ω	-1	θ	Ω	$\overline{0}$	$\overline{0}$	$\overline{0}$	-1	θ
(2413)	θ	$\mathbf{0}$	θ	θ	θ	-1	θ	$\mathbf{0}$	θ	θ	Ω	-1	Ω	$\boldsymbol{0}$	$\overline{0}$	θ	-1	θ
(3142)	θ	$\boldsymbol{0}$	$\overline{0}$	Ω	θ	-1	θ	$\mathbf{0}$	θ	θ	-1	Ω	θ	$\overline{0}$	$\boldsymbol{0}$	$\overline{0}$	θ	-1
(4231)	θ	$\overline{0}$	Ω	Ω	-1	θ	θ	$\overline{0}$	θ	θ	θ	-1	Ω	$\overline{0}$	$\overline{0}$	θ	θ	-1

TABLE 12.1. Computation of the exponential map δ

Since $n_{(1234)} + n_{(2143)} = n_{(1243)} + n_{(2134)} = 0$, $n_{(1234)} + n_{(3412)} = n_{(1432)} + n_{(3214)} = 0$ and $n_{(2143)} + n_{(3412)} = n_{(2413)} + n_{(3142)} = 0$, we have $2n_{(1234)} = 0$. Hence $n_{(1234)} = 0$. This implies $n_{(2143)} = n_{(3412)} = 0$. Finally, since $n_{(1234)} + n_{(4321)} = n_{(1324)} + n_{(4231)}$, we have $n_{(4321)} = 0$. We have shown that $x = 0$. This completes the proof.

From Proposition [12.6](#page-30-0) (or its proof), we see that $K_0(B) \cong \text{ker } \delta$ is isomorphic to \mathbb{Z}^n with $n \leq 10$. Note that the group generated by $\{[P_{i,j}]_0 \mid i, j = 1, 2, 3, 4\}$ is in fact

generated by 10 elements

$$
[P_{1,1}]_0, [P_{1,2}]_0, [P_{1,3}]_0, [P_{1,4}]_0, [P_{2,1}]_0, [P_{2,2}]_0, [P_{2,3}]_0, [P_{3,1}]_0, [P_{3,2}]_0, [P_{3,3}]_0.
$$

We will show that $K_0(B) \cong \ker \delta$ is isomorphic to \mathbb{Z}^{10} in Proposition [15.5.](#page-44-0)

\dot{i}			$\mathbf{1}$				\overline{c}				3		4				
İ \boldsymbol{q}	$\mathbf{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\mathbf{1}$	$\overline{2}$	3	$\overline{4}$	1	$\overline{2}$	3	$\overline{4}$	1	$\overline{2}$	3	$\overline{4}$	
(1234)	1	θ	θ	θ	$\overline{0}$	$\mathbf{1}$	$\overline{0}$	$\overline{0}$	θ	θ	$\mathbf{1}$	θ	θ	θ	θ	$\mathbf{1}$	
(2143)	θ	1	θ	θ	1	θ	θ	θ	θ	θ	θ	1	θ	θ	1	$\mathbf{0}$	
(3412)	$\overline{0}$	$\mathbf{0}$	$\mathbf{1}$	θ	$\overline{0}$	$\overline{0}$	$\overline{0}$	1	1	θ	$\mathbf{0}$	θ	θ	1	$\overline{0}$	$\overline{0}$	
(4321)	0	$\boldsymbol{0}$	$\boldsymbol{0}$	1	$\boldsymbol{0}$	$\overline{0}$	$\mathbf{1}$	$\overline{0}$	$\overline{0}$	$\mathbf{1}$	$\overline{0}$	$\overline{0}$	1	$\overline{0}$	$\overline{0}$	$\boldsymbol{0}$	
(1342)	$\mathbf{1}$	$\overline{0}$	$\overline{0}$	θ	$\overline{0}$	$\overline{0}$	$\overline{0}$	1	θ	1	θ	θ	θ	θ	1	$\overline{0}$	
(2431)	$\overline{0}$	$\overline{0}$	$\overline{0}$	1	1	θ	θ	0	θ	θ	1	θ	θ	1	θ	$\overline{0}$	
(3124)	$\overline{0}$	$\mathbf{1}$	$\mathbf{0}$	θ	θ	θ	$\mathbf{1}$	θ	1	θ	θ	θ	Ω	θ	θ	$\mathbf{1}$	
(4213)	0	$\overline{0}$	$\mathbf{1}$	$\overline{0}$	$\overline{0}$	$\mathbf{1}$	$\overline{0}$	$\overline{0}$	θ	$\overline{0}$	$\overline{0}$	1	1	$\overline{0}$	$\overline{0}$	$\overline{0}$	
(1423)	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	θ	$\mathbf{1}$	θ	θ	θ	θ	$\mathbf{1}$	θ	$\mathbf{1}$	θ	$\mathbf{0}$	
(2314)	$\overline{0}$	θ	1	θ	1	θ	θ	θ	θ	1	θ	θ	θ	θ	θ	$\mathbf{1}$	
(3241)	$\overline{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\boldsymbol{0}$	$\overline{0}$	$\mathbf{1}$	$\mathbf{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\mathbf{1}$	$\mathbf{0}$	
(4132)	$\overline{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\overline{0}$	$\boldsymbol{0}$	1	θ	$\boldsymbol{0}$	$\mathbf{1}$	$\overline{0}$	1	$\overline{0}$	$\mathbf{0}$	$\overline{0}$	
(1243)	1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	θ	1	θ	θ	θ	θ	θ	1	θ	θ	1	$\mathbf{0}$	
(2134)	$\overline{0}$	$\mathbf{1}$	$\mathbf{0}$	$\overline{0}$	$\mathbf{1}$	θ	$\boldsymbol{0}$	θ	θ	θ	1	θ	θ	θ	$\mathbf{0}$	$\mathbf{1}$	
(3421)	$\overline{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\overline{0}$	$\overline{0}$	$\mathbf{1}$	$\overline{0}$	1	$\overline{0}$	$\overline{0}$	θ	θ	$\mathbf{1}$	$\overline{0}$	$\mathbf{0}$	
(4312)	0	$\overline{0}$	1	θ	$\overline{0}$	$\overline{0}$	$\overline{0}$	1	θ	1	θ	θ	1	$\overline{0}$	$\overline{0}$	$\mathbf{0}$	
(1432)	$\mathbf{1}$	$\overline{0}$	$\overline{0}$	$\mathbf{0}$	$\mathbf{0}$	$\overline{0}$	$\boldsymbol{0}$	$\mathbf{1}$	θ	$\mathbf{0}$	$\mathbf{1}$	θ	θ	$\mathbf{1}$	$\overline{0}$	$\overline{0}$	
(2341)	$\overline{0}$	$\mathbf{0}$	$\overline{0}$	$\mathbf{1}$	1	$\overline{0}$	$\boldsymbol{0}$	$\overline{0}$	$\overline{0}$	1	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\mathbf{1}$	$\mathbf{0}$	
(3214)	0	θ	1	θ	θ	1	0	0	1	θ	θ	θ	θ	θ	θ	1	
(4123)	$\overline{0}$	$\mathbf{1}$	$\mathbf{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\mathbf{1}$	θ	θ	θ	$\overline{0}$	1	1	$\overline{0}$	θ	$\overline{0}$	
(1324)	$\mathbf{1}$	$\mathbf{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\mathbf{1}$	$\overline{0}$	$\overline{0}$	1	$\overline{0}$	$\overline{0}$	θ	$\overline{0}$	$\overline{0}$	$\mathbf{1}$	
(2413)	$\mathbf{0}$	θ	$\mathbf{1}$	$\mathbf{0}$	1	θ	θ	θ	θ	θ	θ	1	θ	$\mathbf{1}$	θ	$\mathbf{0}$	
(3142)	$\overline{0}$	1	$\overline{0}$	$\overline{0}$	θ	θ	θ	1	1	θ	θ	θ	θ	θ	1	$\overline{0}$	
(4231)	$\overline{0}$	$\mathbf{0}$	$\overline{0}$	1	θ	1	$\overline{0}$	θ	θ	$\overline{0}$	1	θ	1	$\overline{0}$	$\overline{0}$	$\overline{0}$	

TABLE 12.2. Computation of $[P_{i,j}]_0$

The positive cone $K_0(B^{\bullet})_+$ of $K_0(B^{\bullet})$ is the set of sums of q_{σ} 's. In other words, we have

$$
K_0(B^{\bullet})_{+} = \left\{ \sum_{\sigma \in \mathfrak{S}_4} n_{\sigma} q_{\sigma} \middle| n_{\sigma} = 0, 1, 2, \dots \right\}
$$

Proposition 12.7. *The intersection* $K_0(B^{\bullet})_+ \cap \text{ker } \delta$ *is the set of sums of* $[P_{i,j}]_0$'s.

Proof. It is clear that $[P_{i,j}]_0$ is in $K_0(B^{\bullet})_+ \cap \text{ker } \delta$ for $i, j = 1, 2, 3, 4$. Thus the set of sums of $[P_{i,j}]_0$'s is contained in $K_0(B^{\bullet})_+ \cap \text{ker } \delta$.

Take $x \in K_0(B^{\bullet})_+ \cap \text{ker } \delta$. By Proposition [12.6,](#page-30-0) there exist $n_{i,j} \in \mathbb{Z}$ for $i, j = 1, 2, 3, 4$ such that $x = \sum_{i,j=1}^{4} n_{i,j} [P_{i,j}]_0$. We set $n := \sum_{n_{i,j} < 0} (-n_{i,j})$. If $n = 0$, then x is in the set of sums of $[P_{i,j}]_0$'s. If $n > 0$, then we will show that there exist $n'_{i,j} \in \mathbb{Z}$ for $i, j = 1, 2, 3, 4$ such that $x = \sum_{i,j=1}^{4} n'_{i,j} [P_{i,j}]_0$ and that $n' := \sum_{n'_{i,j} < 0} (-n'_{i,j})$ satisfies $0 \le n' < n$. Repeating this argument at most *n* times, we will find $n_{i,j}^{"'} \in \mathbb{Z}$ for *i*, $j = 1, 2, 3, 4$ such that $x = \sum_{i,j=1}^4 n''_{i,j} [P_{i,j}]_0$ and that $n'' \coloneqq \sum_{n''_{i,j} < 0} (-n''_{i,j})$ satisfies $n'' = 0$. This shows that x is in the set of sums of $[P_{i,j}]_0$'s.

Since $n > 0$ we have $i_0, j_0 \in \{1, 2, 3, 4\}$ such that $n_{i_0, j_0} < 0$. To simplify the notation, we assume $i_0 = 3$ and $j_0 = 1$. The other 15 cases can be shown similarly. Since $x \in K_0(B^{\bullet})_+$, the coefficient of v_{σ} in x is non-negative for all $\sigma \in \mathfrak{S}_4$. In particular, so is for $\sigma \in \mathfrak{S}_4$ with $i_0 = \sigma(j_0)$. Since the coefficient of $v_{(3,1,2,4)}$ in x is non-negative we have $n_{3,1} + n_{1,2} + n_{2,3} + n_{4,4} \ge 0$. Since $n_{3,1} < 0$, we have $n_{1,2} + n_{2,3} + n_{4,4} > 0$. Hence either $n_{1,2}$, $n_{2,3}$ or $n_{4,4}$ is positive. Similarly, since the coefficients of

$$
v_{(3,1,4,2)}, v_{(3,2,1,4)}, v_{(3,2,4,1)}, v_{(3,4,1,2)}, v_{(3,4,2,1)}
$$

in x are non-negative, we obtain that either $n_{1,2}$, $n_{4,3}$ or $n_{2,4}$ is positive etc. Then by Lemma [12.8](#page-34-0) below we have either

- (i) $n_{i_1,2}$ $n_{i_1,3}$ and $n_{i_1,4}$ are positive for some $i_1 \in \{1,2,4\}$,
- (ii) n_{1,j_1} n_{2,j_1} and n_{4,j_1} are positive for some $j_1 \in \{2, 3, 4\}$, or
- (iii) $n_{i_1, j_1}, n_{i_1, j_2}, n_{i_2, j_1}$ and n_{i_2, j_2} are positive for some distinct $i_1, i_2 \in \{1, 2, 4\}$ and distinct $j_1, j_2 \in \{2, 3, 4\}.$

In the case [\(i\)](#page-33-0), we set $n'_{i,j}$ by

$$
n'_{i,j} = \begin{cases} n_{i,j} + 1 & \text{for } i \in \{1, 2, 3, 4\} \setminus \{i_1\} \text{ and } j = 1, \\ n_{i,j} - 1 & \text{for } i = i_1 \text{ and } j = 2, 3, 4 \\ n_{i,j} & \text{otherwise.} \end{cases}
$$

Then since $n'_{3,1} = n_{3,1} + 1$, $n' := \sum_{n'_{i,j} < 0} (-n'_{i,j})$ satisfies $0 \le n' < n$. We also have $x = \sum_{i,j=1}^{4} n'_{i,j} [P_{i,j}]_0$ because $\sum_{i=1}^{4} [P_{i,1}]_0 = \sum_{j=1}^{4} [P_{i,j}]_0$. In the case [\(ii\)](#page-33-1), we get the same conclusion for $n'_{i,j}$ defined by

$$
n'_{i,j} = \begin{cases} n_{i,j} + 1 & \text{for } i = 3 \text{ and } j \in \{1, 2, 3, 4\} \setminus \{j_1\}, \\ n_{i,j} - 1 & \text{for } i = 1, 2, 4 \text{ and } j = j_1 \\ n_{i,j} & \text{otherwise.} \end{cases}
$$

In the case [\(iii\)](#page-33-2), we define $n'_{i,j}$ by

$$
n'_{i,j} = \begin{cases} n_{i,j} + 1 & \text{for } i \in \{1, 2, 3, 4\} \setminus \{i_1, i_2\} \text{ and } j \in \{1, 2, 3, 4\} \setminus \{j_1, j_2\}, \\ n_{i,j} - 1 & \text{for } i = i_1, i_2 \text{ and } j = j_1, j_2 \\ n_{i,j} & \text{otherwise.} \end{cases}
$$

Since $n'_{3,1} = n_{3,1} + 1$, $n' := \sum_{n'_{i,j} < 0} (-n'_{i,j})$ satisfies $0 \le n' < n$. We also have $x =$ $\sum_{i,j=1}^{4} n'_{i,j} [P_{i,j}]_0$ because

$$
\sum_{i=1}^{4} [P_{i,j_1}]_0 + \sum_{i=1}^{4} [P_{i,j_2}]_0 = \sum_{j=1}^{4} [P_{i_3,j}]_0 + \sum_{j=1}^{4} [P_{i_4,j}]_0.
$$

where $\{i_3, i_4\} = \{1, 2, 3, 4\} \setminus \{i_1, i_2\}$. This completes the proof.

Lemma 12.8. *Let* a, b, c and d, e, f are distinct three numbers, respectively. Suppose $n_{i,j} \in \mathbb{Z}$ for $i = a, b, c$ and $j = d, e, f$ satisfy that either $n_{\omega(d),d}, n_{\omega(e),e}$ or $n_{\omega(f),f}$ is *positive for all bijection* ω : $\{d, e, f\} \rightarrow \{a, b, c\}$. Then we have either

- (i) $n_{i_1, d} n_{i_2, e}$ and $n_{i_1, f}$ are positive for some $i_1 \in \{a, b, c\}$,
- (ii) n_{a,j_1} n_{b,j_1} and n_{c,j_1} are positive for some $j_1 \in \{d, e, f\}$, or
- (iii) $n_{i_1, j_1}, n_{i_1, j_2}, n_{i_2, j_1}$ and n_{i_2, j_2} are positive for some distinct $i_1, i_2 \in \{a, b, c\}$ and *distinct* $j_1, j_2 \in \{d, e, f\}.$

Proof. To the contrary, assume that the conclusion does not hold. Then for $j = d, e, f$, either $n_{a,j}$, $n_{b,j}$ or $n_{c,j}$ is non-positive. Thus we obtain a map ω : $\{d, e, f\} \rightarrow \{a, b, c\}$ such that $n_{\omega(i), i}$ is non-positive for $j = d, e, f$. If the cardinality of the image of ω is three, then ω is a bijection and it contradicts the assumption. If the cardinality of the image of ω is two, let i_1 be the element in $\{a, b, c\}$ which is not in the image of ω . Then we have either $n_{i_1,d}$ $n_{i_1,e}$ or $n_{i_1,f}$ is non-positive. Let $j_1 \in \{d,e,f\}$ be an element such that n_{i_1,j_1} is non-positive. If the cardinality of $\omega^{-1}(\omega(j_1))$ is two, we get a bijection ω' : $\{d, e, f\} \rightarrow \{a, b, c\}$ such that $n_{\omega(d), d}, n_{\omega(e), e}$ and $n_{\omega(f), f}$ are non-positive. This

is a contradiction. If the cardinality of $\omega^{-1}(\omega(j_1))$ is one, we have either n_{i_1,j_2}, n_{i_1,j_3} , n_{i_2, j_2} or n_{i_2, j_3} is non-positive where $i_2 = \omega(j_1)$ and $\{j_2, j_3\} = \{d, e, f\} \setminus \{j_1\}$. In this case, we can find a bijection ω' : $\{d, e, f\} \rightarrow \{a, b, c\}$ such that $n_{\omega(d), d}$, $n_{\omega(e), e}$ and $n_{\omega(f), j}$ are non-positive. This is a contradiction. Finally, if the cardinality of the image of ω is one, let i_1 be the unique element of the image of ω , and i_2 and i_3 be the other two elements in $\{a, b, c\}$. We have $j_2, j_3 \in \{d, e, f\}$ such that n_{i_2, j_2} and n_{i_3, j_3} are non-positive. If $j_2 \neq j_3$, then we can find a bijection ω' : $\{d, e, f\} \rightarrow \{a, b, c\}$ such that $n_{\omega(d), d}$, $n_{\omega(e), e}$ and $n_{\omega(f), f}$ are non-positive. This is a contradiction. If $j_2 = j_3$, then we have either n_{i_2, j_1} , $n_{i_2,j'_1}, n_{i_3,j'_1}$ or n_{i_3,j_1} is non-positive where $\{j_1, j'_1\} = \{d, e, f\} \setminus \{j_2\}$. In this case, we can find a bijection ω' : $\{d, e, f\} \rightarrow \{a, b, c\}$ such that $n_{\omega(d), d}$, $n_{\omega(e), e}$ and $n_{\omega(f), f}$ are non-positive. This is a contradiction. We are done.

13. **The Structure of the Ideal**

Definition 13.1. Define a subspace V of $\mathbb{R}P^3$ by

$$
V \coloneqq \big\{ [a_1, a_2, a_3, a_4] \in \mathbb{R}P^3 \, \big| \, a_1, a_2, a_3 > |a_4| \big\}.
$$

The next proposition gives us a motivation to compute the subspace V and its closure \overline{V} in $\mathbb{R}P^3$.

Proposition 13.2. *We have the following facts.*

- (i) *For each* $i, j = 1, 2, 3, 4$ *with* $(i, j) \neq (1, 1)$ *, we have* $\sigma_{i, j}(V) \cap V = \emptyset$
- (ii) *The restriction of* π *to* V *is a homeomorphism onto* $\pi(V) \subset X$.
- (iii) $\overline{V} = \{ [a_1, a_2, a_3, a_4] \in \mathbb{R}P^3 \mid a_1, a_2, a_3 \ge |a_4| \}$ and $\pi(\overline{V}) = X$.

Proof. [\(i\)](#page-35-0) and [\(iii\)](#page-35-1) can be checked directly, and [\(ii\)](#page-35-2) follows from (i). □

In the next proposition, when we write $[a_1, a_2, a_3, a_4] \in \overline{V}$, we mean (a_1, a_2, a_3, a_4) satisfies $a_1, a_2, a_3 > |a_4|$.

Proposition 13.3. *The map*

$$
h: \overline{V} \ni [a_1, a_2, a_3, a_4] \longmapsto (3a_1^2 + a_4^2 + 4a_4|a_4|, 3a_2^2 + a_4^2 + 4a_4|a_4|, 3a_3^2 + a_4^2 + 4a_4|a_4|) \in \mathbb{R}^3
$$

is a homeomorphism onto the hexahedron whose 6 faces are isosceles right triangles and whose vertices are (0, 0, 0)*,* (3, 0, 0)*,* (0, 3, 0)*,* (0, 0, 3) *and* (2, 2, 2)*. This map sends onto the interior of the hexahedron.*

Proof. First note that we have $|a_4| \leq 1/2$ for $[a_1, a_2, a_3, a_4] \in \overline{V}$. When $|a_4| = 1/2$, we have $a_1 = a_2 = a_3 = 1/2$. We have $h([1/2, 1/2, 1/2, 1/2]) = (2, 2, 2)$ and $h([1/2, 1/2, 1/2, -1/2]) = (0, 0, 0)$. When $|a_4| = 0$, we have $a_1, a_2, a_3 \ge 0$ and $a_1^2 + a_2^2 + a_3^2 = 1$. Thus

$$
\{h([a_1, a_2, a_3, 0]) \mid [a_1, a_2, a_3, 0] \in \overline{V}\} = \{(x, y, z) \in \mathbb{R}^3 \mid x, y, z \ge 0, x + y + z = 3\}
$$

which is the equilateral triangle whose vertices are $(3, 0, 0)$, $(0, 3, 0)$ and $(0, 0, 3)$. For each *t* with $-1/2 < t < 0$, we have

$$
\{h([a_1, a_2, a_3, t]) \mid [a_1, a_2, a_3, t] \in \overline{V}\}\
$$

$$
= \{(x, y, z) \in \mathbb{R}^3 \mid x, y, z \ge 0, x + y + z = 3(1 - 4t^2)\}\
$$

which is the equilateral triangle whose vertices are $(3(1-4t^2), 0, 0)$, $(0, 3(1-4t^2), 0)$ and $(0, 0, 3(1 - 4t²))$. Thus

$$
\{h([a_1, a_2, a_3, a_4]) \,|\, [a_1, a_2, a_3, a_4] \in \overline{V}, a_4 \le 0\}
$$

is the tetrahedron whose vertices are $(0, 0, 0)$, $(3, 0, 0)$, $(0, 3, 0)$ and $(0, 0, 3)$. Note that for each $[a_1, a_2, a_3, a_4] \in \overline{V}$ with $a_4 \geq 0$, the point $h([a_1, a_2, a_3, a_4])$ is the reflection point of $h([a_1, a_2, a_3, -a_4])$ with respect to the plane $x + y + z = 3$ because the vector $(8a_4^2, 8a_4^2, 8a_4^2)$ is orthogonal to the plane $x + y + z = 3$ and the point $(3a_1^2 + a_4^2, 3a_2^2 + a_4^2, 3a_3^2 + a_4^2)$ is on the plane $x + y + z = 3$. Thus

$$
\{h([a_1, a_2, a_3, a_4]) \,|\, [a_1, a_2, a_3, a_4] \in \overline{V}, a_4 \ge 0\}
$$

is the reflection of the tetrahedron above with respect to the plane $x + y + z = 3$, which in turn is the tetrahedron whose vertices are $(3, 0, 0), (0, 3, 0), (0, 0, 3)$ and $(2, 2, 2)$. From the discussion above, we see that h is injective. Therefore we see that h is a homeomorphism from \overline{V} onto the hexahedron whose vertices are $(0, 0, 0)$, $(3, 0, 0)$, $(0, 3, 0)$, $(0, 0, 3)$ and $(2, 2, 2)$. We can also see that the map h sends V onto the interior of the hexahedron. \Box

Definition 13.4. Define $O_0 \coloneqq \pi(V) \subset O$.

By Proposition [13.2](#page-35-3)[\(ii\)](#page-35-2) and Proposition [13.3,](#page-35-4) $O_0 \cong V$ is homeomorphic to \mathbb{R}^3 .

Definition 13.5. We set $E := \widetilde{F} \cap \overline{V}$ and $E_{i,j} := \widetilde{F}_{i,j} \cap \overline{V}$ for $i, j = 2, 3, 4$.

We have $E = \bigcup_{i,j=2}^{4} E_{i,j}$. For $i, j = 2, 3, 4$ with $i \neq j$, the map $\pi: E_{i,j} \to F_{i,j}$ is a homeomorphism. For $i = 2, 3, 4$ the map $\pi: E_{i,i} \to F_{i,i}$ is a 2-to-1 map except the middle point.

On the magic square C*-algebra of size 4

$$
[0,0,1,0] \qquad [1/2,1/2,1/2,1/2]
$$

$$
[0,1,0,0]
$$

$$
[1/2, 1/2, 1/2, -1/2] \qquad [1, 0, 0, 0]
$$

FIGURE 13.1. \overline{V}

FIGURE 13.2. $\pi: E \to F$ $(t = 1/\sqrt{2})$ 2)

We have

$$
E_{2,2} = \{ [a, b, 0, 0] \in \overline{V} \mid a, b \ge 0, a^2 + b^2 = 1 \},
$$

\n
$$
E_{2,3} = \{ [a, b, b, -a] \in \overline{V} \mid 0 \le a \le b, 2(a^2 + b^2) = 1 \},
$$

\n
$$
E_{2,4} = \{ [a, b, a, b] \in \overline{V} \mid 0 \le b \le a, 2(a^2 + b^2) = 1 \},
$$

\n
$$
E_{3,2} = \{ [a, b, b, a] \in \overline{V} \mid 0 \le a \le b, 2(a^2 + b^2) = 1 \},
$$

\n
$$
E_{3,3} = \{ [a, 0, b, 0] \in \overline{V} \mid a, b \ge 0, a^2 + b^2 = 1 \},
$$

\n
$$
E_{3,4} = \{ [a, a, b, -b] \in \overline{V} \mid 0 \le b \le a, 2(a^2 + b^2) = 1 \},
$$

\n
$$
E_{4,2} = \{ [a, b, a, -b] \in \overline{V} \mid 0 \le b \le a, 2(a^2 + b^2) = 1 \},
$$

$$
E_{4,3} = \{ [a, a, b, b] \in \overline{V} \mid 0 \le b \le a, 2(a^2 + b^2) = 1 \},
$$

$$
E_{4,4} = \{ [0, a, b, 0] \in \overline{V} \mid a, b \ge 0, a^2 + b^2 = 1 \}.
$$

Definition 13.6. We set $R_x^+, R_y^+, R_z^+, R_x^-, R_y^-, R_z^- \subset \overline{V}$ by

$$
R_{x}^{\pm} := \left\{ \left[\sqrt{1 - 3t^2}, t, t, \pm t \right] \in \overline{V} \middle| 0 < t < 1/2 \right\}
$$

\n
$$
R_{y}^{\pm} := \left\{ \left[t, \sqrt{1 - 3t^2}, t, \pm t \right] \in \overline{V} \middle| 0 < t < 1/2 \right\}
$$

\n
$$
R_{z}^{\pm} := \left\{ \left[t, t, \sqrt{1 - 3t^2}, \pm t \right] \in \overline{V} \middle| 0 < t < 1/2 \right\}
$$

We see that $R_x^+ \cup R_y^+ \cup R_z^- \cup R_y^- \cup R_z^-$ is the space obtained by subtracting E from the "edges" of \overline{V} .

Definition 13.7. We set R^+ , $R^- \subset O$ by

$$
R^{\pm} \coloneqq \pi(R_{x}^{\pm}) = \pi(R_{y}^{\pm}) = \pi(R_{z}^{\pm})
$$

Note that π induces a homeomorphism from R_x^{\pm} (or R_y^{\pm} , R_z^{\pm}) to R^{\pm} . Hence both R^{\pm} and R^- are homeomorphic to $\mathbb R$.

Definition 13.8. We set

$$
\widehat{T}_{2,3} := \left\{ \left[t, a, b, -t \right] \in \overline{V} \middle| 0 < t < 1/2, \ a, b > t, \ a^2 + b^2 = 1 - 2t^2 \right\},\
$$
\n
$$
\widehat{T}_{3,4} := \left\{ \left[a, b, t, -t \right] \in \overline{V} \middle| 0 < t < 1/2, \ a, b > t, \ a^2 + b^2 = 1 - 2t^2 \right\},\
$$
\n
$$
\widehat{T}_{4,2} := \left\{ \left[b, t, a, -t \right] \in \overline{V} \middle| 0 < t < 1/2, \ a, b > t, \ a^2 + b^2 = 1 - 2t^2 \right\},\
$$
\n
$$
\widehat{T}_{3,2} := \left\{ \left[t, a, b, t \right] \in \overline{V} \middle| 0 < t < 1/2, \ a, b > t, \ a^2 + b^2 = 1 - 2t^2 \right\},\
$$
\n
$$
\widehat{T}_{4,3} := \left\{ \left[a, b, t, t \right] \in \overline{V} \middle| 0 < t < 1/2, \ a, b > t, \ a^2 + b^2 = 1 - 2t^2 \right\},\
$$
\n
$$
\widehat{T}_{2,4} := \left\{ \left[b, t, a, t \right] \in \overline{V} \middle| 0 < t < 1/2, \ a, b > t, \ a^2 + b^2 = 1 - 2t^2 \right\}.
$$

These 6 spaces are the interiors of the 6 "faces" of \overline{V} .

Definition 13.9. We set

$$
\begin{aligned}\n\widehat{T}_{2,3}^r &:= \left\{ [t, a, b, -t] \in \widehat{T}_{2,3} \mid a > b \right\}, & \widehat{T}_{2,3}^l &:= \left\{ [t, a, b, -t] \in \widehat{T}_{2,3} \mid a < b \right\} \\
\widehat{T}_{3,4}^r &:= \left\{ [a, b, t, -t] \in \widehat{T}_{3,4} \mid a > b \right\}, & \widehat{T}_{3,4}^l &:= \left\{ [a, b, t, -t] \in \widehat{T}_{3,4} \mid a < b \right\} \\
\widehat{T}_{4,2}^r &:= \left\{ [b, t, a, -t] \in \widehat{T}_{4,2} \mid a > b \right\}, & \widehat{T}_{4,2}^l &:= \left\{ [b, t, a, -t] \in \widehat{T}_{4,2} \mid a < b \right\} \\
\widehat{T}_{3,2}^r &:= \left\{ [t, a, b, t] \in \widehat{T}_{3,2} \mid a > b \right\}, & \widehat{T}_{3,2}^l &:= \left\{ [t, a, b, t] \in \widehat{T}_{3,2} \mid a < b \right\} \\
\widehat{T}_{4,3}^r &:= \left\{ [a, b, t, t] \in \widehat{T}_{4,3} \mid a > b \right\}, & \widehat{T}_{4,3}^l &:= \left\{ [a, b, t, t] \in \widehat{T}_{4,3} \mid a < b \right\} \\
\widehat{T}_{2,4}^r &:= \left\{ [b, t, a, t] \in \widehat{T}_{2,4} \mid a > b \right\}, & \widehat{T}_{2,4}^l &:= \left\{ [b, t, a, t] \in \widehat{T}_{2,4} \mid a < b \right\}.\n\end{aligned}
$$

On the magic square C*-algebra of size 4

For *i*, $j = 2, 3, 4$ with $i \neq j$, the set $\widehat{T}_{i,j} \setminus (\widehat{T}_{i,j}^r \cup \widehat{T}_{i,j}^l)$ is the interior of $E_{i,j}$.

Definition 13.10. For $i, j = 2, 3, 4$ with $i \neq j$, we set

$$
T_{i,j} := \pi(\widehat{T}_{i,j}^r) = \pi(\widehat{T}_{i,j}^l).
$$

Note that π induces a homeomorphism from $\widehat{T}_{i,j}^r$ (or $\widehat{T}_{i,j}^l$) to $T_{i,j}$. Hence $T_{i,j}$ is homeomorphic to \mathbb{R}^2 .

The space O is a disjoint union (as a set) of

$$
O_0
$$
, $T_{2,3}$, $T_{3,4}$, $T_{4,2}$, R^- , $T_{3,2}$, $T_{4,3}$, $T_{2,4}$, R^+ .

We use these spaces to compute the K-groups of $I = M_4(C_0(\widetilde{O}))^{\beta}$.

14. **K-groups of the ideal**

Definition 14.1. We set $I_0 := M_4(C_0(\pi^{-1}(O_0)))^{\beta}$ and $I^* := M_4(C_0(\pi^{-1}(O \setminus O_0)))^{\beta}$.

We have a short exact sequence

$$
0 \longrightarrow I_0 \longrightarrow I \longrightarrow I^{\star} \longrightarrow 0.
$$

We have $I_0 \cong M_4(C_0(V)) \cong M_4(C_0(O_0)) \cong M_4(C_0(\mathbb{R}^3)).$

Definition 14.2. We set $T := T_{2,3} \cup T_{3,4} \cup T_{4,2} \cup T_{3,2} \cup T_{4,3} \cup T_{2,4}$ and $R := R^- \cup R^+$. We set $I^{\circ} := M_4(C_0(\pi^{-1}(T)))^{\beta}$ and $I^{\bullet} := M_4(C_0(\pi^{-1}(R)))^{\beta}$.

We have $I^{\circ} \cong M_4(C_0(T)) \cong \bigoplus_{i,j} M_4(C_0(T_{i,j})) \cong M_4(C_0(\mathbb{R}^2))^6$ and

$$
I^{\bullet} \cong M_4(C_0(R)) \cong M_4(C_0(R^-)) \oplus M_4(C_0(R^+)) \cong M_4(C_0(\mathbb{R}))^2.
$$

We have a short exact sequence

$$
0 \longrightarrow I^{\circ} \longrightarrow I^{\star} \longrightarrow I^{\bullet} \longrightarrow 0.
$$

This induces a six-term exact sequence

$$
\mathbb{Z}^6 \cong K_0(I^{\circ}) \longrightarrow K_0(I^{\star}) \longrightarrow K_0(I^{\bullet}) \longrightarrow 0
$$

\n
$$
\uparrow \qquad \qquad \downarrow
$$

\n
$$
\mathbb{Z}^2 \cong K_1(I^{\bullet}) \longleftarrow K_1(I^{\star}) \longleftarrow K_1(I^{\circ}) \longrightarrow 0.
$$

We set $r^- \in K_1(M_4(C_0(R^-)))$ and $r^+ \in K_1(M_4(C_0(R^+)))$ to be the images of $v_{(1234)} \in$ $K_0(B_{(234)}) \subset K_0(B^{\bullet})$ under the exponential maps coming from the exact sequences

$$
0 \longrightarrow M_4(C_0(R^{\pm})) \longrightarrow M_4(C_0(\pi^{-1}(R^{\pm} \cup \{x_{(234)}\})))^{\beta} \longrightarrow B_{(234)} \longrightarrow 0.
$$

Then similarly as the proof of Lemma [12.4,](#page-29-0) we see that r^- and r^+ are the generators of $K_1(M_4(C_0(R^-))) \cong \mathbb{Z}$ and $K_1(M_4(C_0(R^+))) \cong \mathbb{Z}$, respectively.

Let $\omega = (1342) \in \mathfrak{S}_4$. For $i = 2, 3, 4$, we set $w_{i,\omega(i)} \in K_0(M_4(C_0(T_{i,\omega(i)})))$ to be the image of the generator r^- of $K_1(M_4(C_0(R^-)))$ under the index map coming from the exact sequences

$$
0 \longrightarrow M_4(C_0(T_{i,\omega(i)})) \longrightarrow M_4(C_0(\pi^{-1}(T_{i,\omega(i)} \cup R^-)))^{\beta} \longrightarrow M_4(C_0(R^-)) \longrightarrow 0.
$$

Since

$$
M_4(C_0(\pi^{-1}(T_{2,3}\cup R^-)))^{\beta} \cong M_4(C_0(\widehat{T}_{2,3}^r\cup R_y^-)) \cong M_4(C_0((0,1)\times (0,1]))
$$

whose K-groups are 0, $w_{2,3}$ is a generator of $K_0(M_4(C_0(T_{2,3}))) \cong \mathbb{Z}$. Similarly, $w_{3,4}$ and $w_{4,2}$ are generators of $K_0(M_4(C_0(T_{3,4})) \cong \mathbb{Z}$ and $K_0(M_4(C_0(T_{4,2}))) \cong \mathbb{Z}$, respectively.

Similarly for $i = 2, 3, 4$, we set the generator $w_{\omega(i), i}$ of $K_0(M_4(C_0(T_{\omega(i), i})) \cong \mathbb{Z}$ to be the image of the generator r^+ of $K_1(M_4(C_0(R^+)))$ under the index map coming from the exact sequences

$$
0 \longrightarrow M_4(C_0(T_{\omega(i),i})) \longrightarrow M_4(C_0(\pi^{-1}(T_{\omega(i),i} \cup R^+)))^{\beta} \longrightarrow M_4(C_0(R^+)) \longrightarrow 0.
$$

Then the index map from

$$
K_1(I^{\bullet}) \cong K_1(M_4(C_0(R^-))) \oplus K_1(M_4(C_0(R^+))) \cong \mathbb{Z}^2
$$

to

$$
K_0(I^{\circ}) \cong K_0(M_4(C_0(T_{2,3}))) \oplus K_0(M_4(C_0(T_{3,4}))) \oplus K_0(M_4(C_0(T_{4,2})))
$$

$$
\oplus K_0(M_4(C_0(T_{3,2}))) \oplus K_0(M_4(C_0(T_{4,3}))) \oplus K_0(M_4(C_0(T_{2,4}))) \cong \mathbb{Z}^6
$$

becomes $\mathbb{Z}^2 \ni (a, b) \mapsto (a, a, a, b, b, b) \in \mathbb{Z}^6$. Thus we have the following.

Proposition 14.3. We have $K_0(I^{\star}) \cong \mathbb{Z}^4$ and $K_1(I^{\star}) = 0$.

We denote by $s_1, s_2, s_3, s_4 \in K_0(I^*)$ the images of $w_{2,3}, w_{3,4}, w_{3,2}, w_{4,3} \in K_0(I^*)$. Then $\{s_1, s_2, s_3, s_4\}$ becomes a basis of $K_0(I^*) \cong \mathbb{Z}^4$. Note that the images of $w_{4,2}, w_{2,4} \in$ $K_0(I^{\circ})$ are $-s_1 - s_2 \in K_0(I^{\star})$ and $-s_3 - s_4 \in K_0(I^{\star})$, respectively.

We have a six-term exact sequence

$$
0 = K_0(I_0) \longrightarrow K_0(I) \longrightarrow K_0(I^*) \cong \mathbb{Z}^4
$$

\n
$$
0 = K_1(I^*) \longleftarrow K_1(I) \longleftarrow K_1(I_0) \cong \mathbb{Z}.
$$
 (14.1)

To compute the index map $K_0(I^{\star}) \to K_1(I_0)$, we need the following lemma.

Lemma 14.4. *The index map from* $K_0(I^{\circ}) \cong \mathbb{Z}^6$ to $K_1(I_0) \cong \mathbb{Z}$ coming from the short *exact sequence*

$$
0 \longrightarrow I_0 \longrightarrow M_4(C_0(\pi^{-1}(O_0 \cup T)))^{\beta} \longrightarrow I^{\circ} \longrightarrow 0.
$$

is 0*.*

Proof. We set $\widehat{T} := \bigcup_{i,j} (\widehat{T}_{i,j}^r \cup \widehat{T}_{i,j}^l)$ where i, j run 2, 3, 4 with $i \neq j$. We have the following commutative diagram with exact rows;

$$
0 \longrightarrow I_0 \longrightarrow M_4(C_0(\pi^{-1}(O_0 \cup T)))^{\beta} \longrightarrow I^{\circ} \longrightarrow 0
$$

$$
\downarrow \cong \qquad \qquad \downarrow
$$

$$
0 \longrightarrow M_4(C_0(V)) \longrightarrow M_4(C_0(V \cup \widehat{T}))) \longrightarrow M_4(C_0(\widehat{T})) \longrightarrow 0.
$$

Note that $V \cup \widehat{T} = \pi^{-1}(O_0 \cup T) \cap \overline{V}$. From this diagram, we see that the index map $K_0(I^{\circ}) \to K_1(I_0)$ factors through $K_0(M_4(C_0(\widehat{T})))$.

Take *i*, $j = 2, 3, 4$ with $i \neq j$. Let $a_{i,j}^r \in K_0(M_4(C_0(\widehat{T}_{i,j}^r)))$ and $a_{i,j}^l \in K_0(M_4(C_0(\widehat{T}_{i,j}^l)))$ be the images of the generator $w_{i,j}$ of $K_0(M_4(C_0(T_{i,j})))$ under the homomorphism induced by π . Under the map $K_0(I^{\circ}) \to K_0(M_4(C_0(\widehat{T}))),$ the generator $w_{i,j}$ of $K_0(M_4(C_0(T_{i,j})))$ goes to $a_{i,j}^r + a_{i,j}^l$. Under the index map $K_0(M_4(C_0(\widehat{T}))) \to K_1(M_4(C_0(V)))$ the element $a_{i,j}^r + a_{i,j}^l$ goes to 0 because the side to V from $\hat{T}_{i,j}^r$ and the one from $\hat{T}_{i,j}^l$ differ if $\hat{T}_{i,j}^r$ and $\hat{T}_{i,j}^l$ are identified through the map π to $T_{i,j}$. Thus we see that the map $K_0(I^{\circ}) \to K_1(M_4(C_0(V))) \cong K_1(I_0)$ is 0.

By this lemma, the composition of the map $K_0(I^{\circ}) \to K_0(I^{\star})$ and the index map $K_0(I^*) \to K_1(I_0)$ is 0. Since the map $\mathbb{Z}^6 \cong K_0(I^*) \to K_0(I^*) \cong \mathbb{Z}^4$ is a surjection, we see that the index map $K_0(I^*) \to K_1(I_0)$ is 0. Thus we have the following.

Proposition 14.5. We have $K_0(I) \cong K_0(I^*) \cong \mathbb{Z}^4$ and $K_1(I) \cong K_1(I_0) \cong \mathbb{Z}$.

15. **K-groups of**

Recall the six-term exact sequence

$$
K_0(I) \longrightarrow K_0(A) \longrightarrow K_0(B)
$$

\n
$$
\delta_1 \uparrow \qquad \qquad \downarrow \delta_0
$$

\n
$$
K_1(B) \longleftarrow K_1(A) \longleftarrow K_1(I).
$$

In this section, we calculate the exponential map δ_0 : $K_0(B) \to K_1(I)$ and the index map $\delta_1 : K_1(B) \to K_0(I)$.

Proposition 15.1. *The exponential map* δ_0 : $K_0(B) \rightarrow K_1(I)$ *is* 0*.*

Proof. Since $K_0(B)$ is generated by 16 elements $\{ [P_{i,j}]_0 \}_{i,j=1}^4$, the map $K_0(A) \to K_0(B)$ is surjective. Hence the exponential map $\delta_0 : K_0(B) \to K_1(I)$ is 0.

By the definitions of the generators of K -groups we did so far, we have the following. (See Figure [13.2](#page-37-0) for the relation between T and F .)

Proposition 15.2. The index map δ'' : $K_1(B^{\circ}) \cong \mathbb{Z}^{18} \to K_0(I^{\circ}) \cong \mathbb{Z}^6$ coming from the *short exact sequence*

$$
0 \longrightarrow I^{\circ} \longrightarrow M_4(C_0(\pi^{-1}(T \cup F^{\circ})))^{\beta} \longrightarrow B^{\circ} \longrightarrow 0.
$$

is as Table [15.1.](#page-42-0)

	3,3 2,2			4,4		2,3		3,4		4,2		3,2		4,3		2,4		
w		U				U		U		U	∩	U		U		U		
2,3	θ	θ	θ	0	-1	-1			θ	$\boldsymbol{0}$	$\overline{0}$	θ	θ	0	θ	θ	Ω	- 0
3,4		-1	θ	θ	$\mathbf{0}$	$\boldsymbol{0}$	θ	$\boldsymbol{0}$			Ω	θ	$\overline{0}$	θ	0	θ	Ω	- 0
4,2	θ	θ		-1	θ	$\overline{0}$	θ	$\boldsymbol{0}$	θ	θ		1	Ω	θ	θ	θ	Ω	- 0
3,2	θ	0	θ	0		-1	θ	$\boldsymbol{0}$	θ	$\boldsymbol{0}$	$\overline{0}$	θ			0	$\overline{0}$	Ω	- 0
4,3			θ	θ	θ	θ	θ	θ	θ	$\overline{0}$	$\overline{0}$	$\overline{0}$	Ω	θ			Ω	\bigcirc
2,4	θ	θ			θ	0	0	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	θ	$\boldsymbol{0}$	0	$\boldsymbol{0}$	θ	0		

TABLE 15.1. Computation of the index map δ''

Definition 15.3. The composition of the index map δ'' : $K_1(B^{\circ}) \to K_0(I^{\circ})$ and the map $K_0(I^{\circ}) \to K_0(I^{\star})$ is denoted by $\eta \colon K_1(B^{\circ}) \to K_0(I^{\star})$

We set $\tilde{\eta}: K_1(B^{\circ}) \to K_0(I^{\star}) \oplus \mathbb{Z}/2\mathbb{Z}$ by $\tilde{\eta}(w_{i,j}^{\cap}) = (\eta(w_{i,j}^{\cap}), 0)$ and $\tilde{\eta}(w_{i,j}^{\cup}) =$ $(\eta(w_{i,j}^{\cup}), 1)$ for $i, j = 2, 3, 4$.

We denote the generator of $\mathbb{Z}/2\mathbb{Z}$ in $K_0(I^{\star}) \oplus \mathbb{Z}/2\mathbb{Z}$ by s_5 .

Proposition 15.4. *The map* $\widetilde{\eta}: K_1(B^{\circ}) \to K_0(I^{\star}) \oplus \mathbb{Z}/2\mathbb{Z}$ *is surjective, and its kernel*
eximal description of $S: K_1(B^{\bullet}) \to K_0(B^{\circ})$ *coincides with the image of* δ : $K_0(B^{\bullet}) \to K_1(B^{\circ})$.

Proof. Since

$$
\widetilde{\eta}(w_{2,3}^{\cap}) = s_1, \quad \widetilde{\eta}(w_{3,4}^{\cap}) = s_2, \quad \widetilde{\eta}(w_{3,2}^{\cap}) = s_3, \quad \widetilde{\eta}(w_{4,3}^{\cap}) = s_4,
$$

 s_1, s_2, s_3, s_4 are in the image of $\tilde{\eta}$. Since $\tilde{\eta}(w_{2,2}^{\cup} + w_{3,3}^{\cup} + w_{4,4}^{\cup}) = s_5$, s_5 is also in the image of \tilde{n} . Thus \tilde{n} is surjective.

			3,3				2,3		3,4		4,2		3,2		4,3		2,4	
		∪			∩	U	∩	U	\cap	- U	∩	∪		U				∪
	θ	θ			$1 - 1$	-1		1	$\overline{0}$	$\overline{0}$		-1 -1	$\overline{0}$	θ	θ	$\bf{0}$	θ	$\overline{0}$
2					$\overline{0}$	θ	θ	$\boldsymbol{0}$		-1	-1 -1		$\overline{0}$	θ	θ	θ	$\overline{0}$	$\overline{0}$
3	θ	θ			$\cdot -1$	-1 $-$	θ	$\bf{0}$	$\overline{0}$	$\bf{0}$	$\overline{0}$	$\overline{0}$			θ	θ		
					$\overline{0}$	$\overline{0}$	$\overline{0}$	$\bf{0}$	$\overline{0}$	θ	$\overline{0}$	$\overline{0}$	$\overline{0}$	θ				
			θ	1	θ	1	0	1	θ	-1	$\overline{0}$	1	θ	-1	θ	-1	θ	

TABLE 15.2. Computation of $\tilde{\eta}$

It is straightforward to check $\tilde{\eta} \circ \delta = 0$ Hence the image of δ is contained in the kernel of \tilde{n} . Suppose

$$
x = \sum_{i,j=2}^{4} n_{i,j}^{\cap} w_{i,j}^{\cap} + \sum_{i,j=2}^{4} n_{i,j}^{\cup} w_{i,j}^{\cup}
$$

is in the kernel of $\tilde{\eta}$ where $n_{i,j}^{\cap}, n_{i,j}^{\cup} \in \mathbb{Z}$ for $i, j = 2, 3, 4$. We will show that x is in the image of δ . By adding

$$
n_{2,3}^{U} \delta(q_{(3142)}) + n_{3,4}^{U} \delta(q_{(4312)}) + n_{4,2}^{U} \delta(q_{(2341)}) + n_{4,3}^{U} \delta(q_{(3421)}) + n_{2,4}^{U} \delta(q_{(4123)})
$$

we may assume

$$
n_{2,3}^{\cup} = n_{3,4}^{\cup} = n_{4,2}^{\cup} = n_{3,2}^{\cup} = n_{4,3}^{\cup} = n_{2,4}^{\cup} = 0
$$

without loss of generality. By subtracting $n_{3,3}^{0}(q_{(4321)}) + n_{4,4}^{0} \delta(q_{(3412)})$, we may further assume $n_{3,3}^{\cup} = n_{4,4}^{\cup} = 0$ without loss of generality. Then $n_{2,2}^{\cup}$ is even since the coefficient of c_5 in $\tilde{\eta}(x)$ is 0. Hence by adding

$$
\frac{n_{2,2}^{\mathsf{U}}}{2} \big(\delta(q_{(2143)}) - \delta(q_{(3412)}) - \delta(q_{(4321)}) \big)
$$

we may further assume $n_{2,2}^{\cup} = 0$ without loss of generality. Thus we may assume $x = \sum_{i,j=2}^{4} n_{i,j}^{\cap} w_{i,j}^{\cap}$. By adding $n_{2,2}^{\cap} \delta(q_{(1243)}) + n_{3,3}^{\cap} \delta(q_{(1432)}) + n_{4,4}^{\cap} \delta(q_{(1324)})$, we may further assume $n_{2,2}^{\cap} = n_{3,3}^{\cap} = n_{4,4}^{\cap} = 0$ without loss of generality. By subtracting $n_{4,2}^{\cap} \delta(q_{(1423)}) + n_{2,4}^{\cap} \delta(q_{(1342)})$, we may further assume $n_{4,2}^{\cap} = n_{2,4}^{\cap} = 0$ without loss of generality. Thus we may assume

$$
x = n_{2,3}^{\cap} w_{2,3}^{\cap} + n_{3,4}^{\cap} w_{3,4}^{\cap} + n_{3,2}^{\cap} w_{3,2}^{\cap} + n_{4,3}^{\cap} w_{4,3}^{\cap}.
$$

Then we have $n_{2,3}^{\cap} = n_{3,4}^{\cap} = n_{3,2}^{\cap} = n_{4,3}^{\cap} = 0$ because

$$
\widetilde{\eta}(x) = n_{2,3}^{\cap} s_1 + n_{3,4}^{\cap} s_2 + n_{3,2}^{\cap} s_3 + n_{4,3}^{\cap} s_4.
$$

Thus $x = 0$. We have shown that x is in the image of δ . Hence the image of δ coincides with the kernel of $\tilde{\eta}$.

As a corollary of this proposition, we have the following as predicted.

Proposition 15.5. We have $K_0(B) \cong \mathbb{Z}^{10}$ and $K_1(B) \cong \mathbb{Z}^4 \oplus \mathbb{Z}/2\mathbb{Z}$.

Proof. By Proposition [15.4,](#page-42-1) we see that $K_1(B) \cong \text{coker } \delta$ is isomorphic to $\mathbb{Z}^4 \oplus \mathbb{Z}/2\mathbb{Z}$. This implies $K_0(B) \cong \text{ker } \delta$ is isomorphic to \mathbb{Z}^{10} because ker δ is a free abelian group with dimension $24 - 18 + 4 = 10$.

We also have the following.

Proposition 15.6. *The index map* $\delta_1: K_1(B) \to K_0(I)$ *is as* $K_1(B) \cong \mathbb{Z}^4 \oplus \mathbb{Z}/2\mathbb{Z} \ni$ $(n, m) \mapsto n \in \mathbb{Z}^4 \cong K_0(I).$

Proof. From the commutative diagram with exact rows

$$
0 \longrightarrow I \longrightarrow A \longrightarrow B \longrightarrow 0
$$

$$
0 \longrightarrow I^{\star} \longrightarrow M_4(C_0(\pi^{-1}((O \setminus O_0) \cup F)))^{\beta} \longrightarrow B \longrightarrow 0,
$$

the index map $\delta_1 : K_1(B) \to K_0(I)$ coincides with the map $K_1(B) \to K_0(I^*)$ if we identify $K_0(I) \cong K_0(I^*)$ as we did in Proposition [14.5.](#page-41-1)

From the commutative diagram with exact rows

$$
0 \longrightarrow I^{\circ} \longrightarrow M_4(C_0(\pi^{-1}(T \cup F^{\circ})))^{\beta} \longrightarrow B^{\circ} \longrightarrow 0
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
0 \longrightarrow I^{\star} \longrightarrow M_4(C_0(\pi^{-1}((O \setminus O_0) \cup F)))^{\beta} \longrightarrow B \longrightarrow 0,
$$

we have the commutative diagram

$$
K_1(B^\circ) \longrightarrow K_0(I^\circ)
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
K_1(B) \longrightarrow K_0(I^\star).
$$

From this diagram, we see that the map $K_1(B) \to K_0(I^*)$ is as $K_1(B) \cong \mathbb{Z}^4 \oplus \mathbb{Z}/2\mathbb{Z} \ni$ $(n, m) \mapsto n \in \mathbb{Z}^4 \cong K_0(I^{\star})$. This completes the proof.

On the magic square C*-algebra of size 4

Definition 15.7. Define a unitary $w \in C(S^3, M_2(\mathbb{C}))$ by

$$
w(a_1, a_2, a_3, a_4) = a_1c_1 + a_2c_2 + a_3c_3 + a_4c_4
$$

=
$$
\begin{pmatrix} a_1 + a_2\sqrt{-1} & a_3 + a_4\sqrt{-1} \\ -a_3 + a_4\sqrt{-1} & a_1 - a_2\sqrt{-1} \end{pmatrix}
$$

for $(a_1, a_2, a_3, a_4) \in S^3$.

Then $[w]_1$ is the generator of $K_1(C(S^3, M_2(\mathbb{C}))) \cong K_1(M_4(C(S^3))) \cong \mathbb{Z}$.

Let $\varphi: A \to M_4(C(S^3))$ be the composition of the embedding $A \to M_4(C(\mathbb{R}P^3))$ and the map $M_4(C(\mathbb{R}^3)) \to M_4(C(S^3))$ induced by $[\cdot] : S^3 \to \mathbb{R}^3$. Let $\tilde{\pi} : S^3 \to X$ be the composition of $[\cdot] : S^3 \to \mathbb{R}P^3$ and $\pi : \mathbb{R}P^3 \to X$. We set V' of S^3 by

$$
V' \coloneqq \left\{ (a_1, a_2, a_3, a_4) \in S^3 \, \middle| \, a_1, a_2, a_3 > |a_4| \right\}.
$$

Then V' is homeomorphic to V via [·], and hence to O_0 via $\tilde{\pi}$. Note that the map M (C (V)) $\epsilon \rightarrow M$ (C (S³)) induces the isomorphism $M_4(C_0(V')) \hookrightarrow M_4(C(S^3))$ induces the isomorphism

$$
K_1(M_4(C_0(V')) \to K_1(M_4(C(S^3))).
$$

Since $I_0 \cong M_4(C_0(O_0)) \cong M_4(C_0(V'))$ canonically, we set a generator y of $K_1(I_0)$ which corresponds to the generator $[w]_1$ of $K_1(M_4(C(S^3)))$ via the isomorphism $K_1(M_4(C_0(V'))) \rightarrow K_1(M_4(C(S^3)))$. We denote by the same symbol y the generator of $K_1(I) \cong K_1(I_0)$ corresponding to $y \in K_1(I_0)$.

Proposition 15.8. *The image of* $y \in K_1(I)$ *under the map* $K_1(I) \rightarrow K_1(A) \rightarrow$ $K_1(M_4(C(S^3)))$ is 32[w]₁.

Proof. The map $I_0 \to I \to A \to M_4(C(S^3))$ is induced by $\tilde{\pi} : \tilde{\pi}^{-1}(O_0) \to O_0$ when we identify I_0 with M_4 (C_0 (O_0)). We have

$$
\widetilde{\pi}^{-1}(O_0) = \coprod_{i,j=1}^{4} \sigma_{i,j}^+(V') \amalg \coprod_{i,j=1}^{4} \sigma_{i,j}^-(V')
$$

where $\sigma_{i,j}^{\pm}$: $S^3 \to S^3$ is induced by the unitary $\pm U_{i,j}$ similarly as $\sigma_{i,j}$: $\mathbb{R}P^3 \to \mathbb{R}P^3$ for $i, j = 1, 2, 3, 4$. These 32 homeomorphisms preserve the orientation of S^3 . Therefore, the image of $y \in K_1(I_0)$, and hence the one of $y \in K_1(I)$, in $K_1(M_4(C(S^3)))$ is 32[*w*]₁. □

Definition 15.9. Define the linear map $\xi : M_2(\mathbb{C}) \to \mathbb{C}^4$ by

$$
\xi\left(\begin{pmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}\right)=\frac{1}{\sqrt{2}}(a_{11},a_{12},a_{21},a_{22}).
$$

Definition 15.10. Define unital *-homomorphisms $\iota, \iota': M_2(\mathbb{C}) \to M_4(\mathbb{C})$ by

$$
\iota\left(\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}\right) = \begin{pmatrix} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & a_{11} & a_{21} \\ 0 & 0 & a_{21} & a_{22} \end{pmatrix},
$$

$$
\iota'\left(\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}\right) = \begin{pmatrix} a_{11} & 0 & a_{12} & 0 \\ 0 & a_{11} & 0 & a_{12} \\ a_{21} & 0 & a_{22} & 0 \\ 0 & a_{21} & 0 & a_{22} \end{pmatrix}.
$$

Lemma 15.11. *For each* $M, N \in M_2(\mathbb{C})$ *, we have*

$$
\xi(M)\iota(N) = \xi(MN), \qquad \iota'(M)\xi(N)^{\mathrm{T}} = \xi(MN)^{\mathrm{T}}.
$$

¬

.

Proof. It follows from a direct computation. □

Definition 15.12. Define $U \in M_4(A)$ by

$$
U = \begin{pmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \\ P_{41} & P_{42} & P_{43} & P_{44} \end{pmatrix}.
$$

It can be easily checked that \hat{U} is a unitary.

Proposition 15.13. *The image of* $[U]_1 \in K_1(A)$ *under the map* $K_1(A) \to K_1(M_4(C(S^3)))$ *is* $16[w]_1$.

Proof. Let φ_4 : $M_4(A) \to M_4(M_4(C(S^3)))$ be the *-homomorphism induced by φ . Set $\mathbb{U} \coloneqq \varphi_4(U)$. For $i, j = 1, 2, 3, 4$, the (i, j) -entry $\mathbb{U}_{i, j} \in C(S^3, M_4(\mathbb{C}))$ of \mathbb{U} is given by

$$
\mathbb{U}_{i,j}(a_1,a_2,a_3,a_4) = U_{i,j}(a_1,a_2,a_3,a_4)^{\mathrm{T}}(a_1,a_2,a_3,a_4)U_{i,j}^*
$$

for each $(a_1, a_2, a_3, a_4) \in S^3$.

Let $W \in M_4(\mathbb{C})$ be

$$
W = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -\sqrt{-1} & 0 & 0 \\ 0 & 0 & 1 & -\sqrt{-1} \\ 0 & 0 & -1 & -\sqrt{-1} \\ 1 & \sqrt{-1} & 0 & 0 \end{pmatrix}
$$

Then W is a unitary.

Take $(a_1, a_2, a_3, a_4) \in S^3$ and $i, j = 1, 2, 3, 4$. We set

$$
(b_1, b_2, b_3, b_4) = (a_1, a_2, a_3, a_4)U_{i,j}^*
$$

By Proposition [5.2,](#page-10-0) we have $\sum_{k=1}^{4} b_k c_k = c_i \left(\sum_{k=1}^{4} a_k c_k \right) c_j^*$. We also have

$$
\xi \left(\sum_{k=1}^{4} b_k c_k \right) W = \frac{1}{\sqrt{2}} (b_1 + b_2 \sqrt{-1}, b_3 + b_4 \sqrt{-1}, -b_3 + b_4 \sqrt{-1}, b_1 - b_2 \sqrt{-1}) W
$$

= (b_1, b_2, b_3, b_4)

Hence we get

$$
(a_1, a_2, a_3, a_4)U_{i,j}^* = \xi \left(c_i \left(\sum_{k=1}^4 a_k c_k\right) c_j^*\right)W
$$

$$
= \xi(c_i) \iota \left(\left(\sum_{k=1}^4 a_k c_k\right) c_j^*\right)W
$$

$$
= \xi(c_i) \iota (w(a_1, a_2, a_3, a_4)) \iota(c_j^*)W
$$

by Lemma [15.11.](#page-46-0) Similarly, we get

$$
U_{i,j}(a_1, a_2, a_3, a_4)^{\mathrm{T}} = W^{\mathrm{T}} \xi \left(c_i \left(\sum_{k=1}^4 a_k c_k \right) c_j^* \right)^{\mathrm{T}}
$$

= $W^{\mathrm{T}} \iota' \left(c_i \left(\sum_{k=1}^4 a_k c_k \right) \right) \xi (c_j^*)^{\mathrm{T}}$
= $W^{\mathrm{T}} \iota' (c_i) \iota' (w(a_1, a_2, a_3, a_4)) \xi (c_j^*)^{\mathrm{T}}$

by Lemma [15.11.](#page-46-0) Define V, W, W' $\in M_4(M_4(\mathbb{C}))$ by

$$
\mathbb{V} = (\xi(c_j^*)^T \xi(c_i))_{i,j=1}^4,
$$
\n
$$
\mathbb{W} = \begin{pmatrix}\n\iota(c_1^*)W & 0 & 0 & 0 \\
0 & \iota(c_2^*)W & 0 & 0 \\
0 & 0 & \iota(c_3^*)W & 0 \\
0 & 0 & 0 & \iota(c_4^*)W\n\end{pmatrix},
$$
\n
$$
\mathbb{W}' = \begin{pmatrix}\nW^T \iota'(c_1) & 0 & 0 & 0 \\
0 & W^T \iota'(c_2) & 0 & 0 \\
0 & 0 & W^T \iota'(c_3) & 0 \\
0 & 0 & 0 & W^T \iota'(c_4)\n\end{pmatrix}.
$$

One can check that these are unitaries. If we consider these as constant functions in $M_4(C(S^3, M_4(\mathbb{C})))$, we have

$$
\mathbb{U}=\mathbb{W}'\iota_4'(w)\mathbb{V}\iota_4(w)\mathbb{W},
$$

where $\iota_4(w), \iota'_4(w) \in M_4(C(S^3, M_4(\mathbb{C})))$ are defined as

$$
t_4(w) = \begin{pmatrix} t(w(\cdot)) & 0 & 0 & 0 \\ 0 & t(w(\cdot)) & 0 & 0 \\ 0 & 0 & t(w(\cdot)) & 0 \\ 0 & 0 & 0 & t(w(\cdot)) \end{pmatrix},
$$

$$
t'_4(w) = \begin{pmatrix} t'(w(\cdot)) & 0 & 0 & 0 \\ 0 & t'(w(\cdot)) & 0 & 0 \\ 0 & 0 & t'(w(\cdot)) & 0 & 0 \\ 0 & 0 & 0 & t'(w(\cdot)) & 0 \\ 0 & 0 & 0 & 0 & t'(w(\cdot)) \end{pmatrix}.
$$

Since $[u_4(w)]_1 = [u'_4(w)]_1 = 8[w]_1$, we obtain $[\mathbb{U}]_1 = 16[w]_1$.

Proposition 15.14. We have $K_0(A) \cong \mathbb{Z}^{10}$ and $K_1(A) \cong \mathbb{Z}$. More specifically, $K_0(A)$ is generated by $\{\left[P_{i,j}\right]_0\}_{i,j=1}^4$, and $K_1(A)$ is generated by $[U]_1$. Moreover, the positive cone $K_0(A)_+$ *of* $K_0(A)$ is generated by $\{\left[P_{i,j}\right]_0\}_{i,j=1}^4$ as a monoid.

Proof. We have already seen that $K_0(A) \to K_0(B)$ is isomorphic, and we have a short exact sequence

$$
0 \longrightarrow K_1(I) \longrightarrow K_1(A) \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.
$$

From this, we see that $K_1(A)$ is isomorphic to either $\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$ or \mathbb{Z} . If $K_1(A)$ is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, one can choose an isomorphism so that $y \in K_1(I)$ goes to $(1, 0) \in \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Then the image of the map $K_1(A) \to K_1(M_4(C(S^3))) \cong \mathbb{Z}$ is 32 \mathbb{Z} by Proposition [15.8.](#page-45-0) This is a contradiction because the image of $[U]_1 \in K_1(A)$ is 16 by Proposition [15.13.](#page-46-1) Hence $K_1(A)$ is isomorphic to Z so that $y \in K_1(I)$ goes to 2. By Proposition [15.8](#page-45-0) and Proposition [15.13,](#page-46-1) $[U]_1 \in K_1(A)$ corresponds to $1 \in \mathbb{Z}$. Thus $[U]_1$ is a generator of $K_1(A) \cong \mathbb{Z}$.

It is clear that the monoid generated by $\{ [P_{i,j}]_0 \}_{i,j=1}^4$ is contained in the positive cone $K_0(A)_+$. The positive cone $K_0(A)_+$ maps into the positive cone $K_0(B^{\bullet})_+$ under the surjection $A \to B^{\bullet}$. Hence by Proposition [12.7,](#page-33-3) $K_0(A)_{+}$ is contained in the monoid generated by $\{ [P_{i,j}]_0 \}_{i,j=1}^4$. Thus $K_0(A)_+$ is the monoid generated by $\{ [P_{i,j}]_0 \}_{i,j=1}^4$. \Box

Definition 15.15. Define $u \in M_4(A(4))$ by

$$
u = \begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{pmatrix}.
$$

It can be easily checked that \vec{u} is a unitary. This unitary \vec{u} is called the *defining unitary* of the magic square C^* -algebra $A(4)$.

By Proposition [15.14,](#page-48-1) we get the third main theorem.

Theorem 15.16. We have $K_0(A(4)) \cong \mathbb{Z}^{10}$ and $K_1(A(4)) \cong \mathbb{Z}$. More specifically, $K_0(A(4))$ is generated by $\{[p_{i,j}]_0\}_{i,j=1}^4$, and $K_1(A(4))$ is generated by $[u]_1$. *The positive cone* $K_0(A(4))_+$ *of* $K_0(A(4))$ *is generated by* $\{[p_{i,j}]_0\}_{i,j=1}^4$ *as a monoid.*

As mentioned in the introduction, the computation $K_0(A(4)) \cong \mathbb{Z}^{10}$ and $K_1(A(4)) \cong \mathbb{Z}$ and that $K_0(A(4))$ is generated by $\{ [p_{i,j}]_0 \}_{i,j=1}^4$ were already obtained by Voigt in [\[8\]](#page-49-6). We give totally different proofs of these facts. That $K_1(A(4))$ is generated by $[u]_1$ and the computation of the positive cone $K_0(A(4))_+$ of $K_0(A(4))$ are new.

References

- [1] Teodor Banica and Julien Bichon. Quantum groups acting on 4 points. *J. Reine Angew. Math.*, 626:75–114, 2009.
- [2] Teodor Banica and Benoît Collins. Integration over the Pauli quantum group. *J. Geom. Phys.*, 58(8):942–961, 2008.
- [3] Teodor Banica and Sergiu Moroianu. On the structure of quantum permutation groups. *Proc. Am. Math. Soc.*, 135(1):21–29, 2007.
- [4] Julien Bichon and Robert Yuncken. Quantum subgroups of the compact quantum group SU−¹ (3). *Bull. Lond. Math. Soc.*, 46(2):315–328, 2014.
- [5] Nathanial P. Brown and Narutaka Ozawa. C^{*}-algebras and finite-dimensional approx*imations*, volume 88 of *Graduate Studies in Mathematics*. American Mathematical Society, 2008.
- [6] S. Osugi. The homology theory of quotient spaces of the spheres by the action of the finite groups, 2018. Master thesis, Keio University.
- [7] Mikael Rørdam, F. Larsen, and Niels Laustsen. *An introduction to K-theory for* ∗ *-algebras*, volume 49 of *London Mathematical Society Student Texts*. Cambridge University Press, 2000.
- [8] Christian Voigt. On the structure of quantum automorphism groups. *J. Reine Angew. Math.*, 732:255–273, 2017.
- [9] Shuzhou Wang. Quantum symmetry groups of finite spaces. *Commun. Math. Phys.*, 195(1):195–211, 1998.

Takeshi Katsura Department of Mathematics Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522 JAPAN katsura@math.keio.ac.jp

Airi Takeuchi Karlsruhe Institute of Technology Department of Mathematics 76128 Karlsruhe GERMANY airi.takeuchi@partner.kit.edu

Masahito Ogawa Library & Information center Yokohama City University 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 JAPAN