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On the magic square C*-algebra of size 4

Takeshi Katsura
Masahito Ogawa
Airi Takeuchi

Abstract

In this paper, we investigate the structure of the magic square C*-algebra 𝐴(4) of size 4. We show that
a certain twisted crossed product of 𝐴(4) is isomorphic to the homogeneous C*-algebra 𝑀4 (𝐶 (R𝑃3)) .
Using this result, we show that 𝐴(4) is isomorphic to the fixed point algebra of𝑀4 (𝐶 (R𝑃3)) by a certain
action. From this concrete realization of 𝐴(4) , we compute the K-groups of 𝐴(4) and their generators.

Introduction

Let 𝑛 = 1, 2, . . . . The magic square C*-algebra 𝐴(𝑛) of size 𝑛 is the underlying C*-algebra
of the quantum group 𝐴𝑠 (𝑛) defined by Wang in [9] as a free analogue of the symmetric
group 𝔖𝑛. In [2, Proposition 1.1], it is claimed that for 𝑛 = 1, 2, 3, 𝐴(𝑛) is isomorphic
to C𝑛!, and hence commutative and finite dimensional. We give the proof of this fact in
Proposition 2.1. In [3, Proposition 1.2] it is proved that for 𝑛 ≥ 4, 𝐴(𝑛) is non-commutative
and infinite dimensional. We see that for 𝑛 ≥ 5, 𝐴(𝑛) is not exact (Proposition 2.5).
Something interesting happens for 𝐴(4) (see [1, 2, 3]). In [3], Banica and Moroianu
constructed a ∗-homomorphism from 𝐴(4) to 𝑀4 (𝐶 (𝑆𝑈 (2))) by using the Pauli matrices,
and showed that it is faithful in some weak sense. In [2], Banica and Collins showed that
the ∗-homomorphism above is in fact faithful by using integration techniques. We reprove
this fact in Corollary 7.9. Our method uses a twisted crossed product. The following is
the first main result.

Theorem A (Theorem 3.6). The twisted crossed product 𝐴(4) otw𝛼 (𝐾 ×𝐾) is isomorphic
to 𝑀4 (𝐶 (R𝑃3)).

The notation in this theorem is explained in Section 3. From this theorem, we see
that the magic square C*-algebra 𝐴(4) of size 4 is isomorphic to a 𝐶∗-subalgebra of the
homogeneous 𝐶∗-algebra 𝑀4 (𝐶 (R𝑃3)). The next theorem, which is the second main
result, expresses this 𝐶∗-subalgebra as a fixed point algebra of 𝑀4 (𝐶 (R𝑃3)).

The first named author is supported by JSPS KAKENHI Grant Number JP18K03345. The third named author is
supported by Masason Foundation.
Keywords: C*-algebra, magic square C*-algebra, twisted crossed product, K-theory.
2020 Mathematics Subject Classification: 46L05, 46L55, 46L80.
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Theorem B (Theorem 8.2). The fixed point algebra 𝑀4 (𝐶 (R𝑃3))𝛽 of the action 𝛽 is
isomorphic to 𝐴(4).

See Section 8 for the definition of the action 𝛽. We remark that Theorem B can be also
obtained by combining [1, Theorem 3.1, Theorem 5.1] and [4, Proposition 3.3]. Our proof
of Theorem B uses a twisted crossed product instead of quantum groups used in [1, 4],
and gives an explicit and straightforward isomorphism.
Since 𝛽 is concrete, we can analyze 𝑀4 (𝐶 (R𝑃3))𝛽 very explicitly. In particular, we can

compute the K-groups of 𝑀4 (𝐶 (R𝑃3))𝛽 explicitly. As a corollary we get the following
which is the third main result.

Theorem C (Theorem 15.16). We have 𝐾0 (𝐴(4)) � Z10 and 𝐾1 (𝐴(4)) � Z. More
specifically, 𝐾0 (𝐴(4)) is generated by {[𝑝𝑖, 𝑗 ]0}4𝑖, 𝑗=1, and 𝐾1 (𝐴(4)) is generated by [𝑢]1.

The positive cone 𝐾0 (𝐴(4))+ of 𝐾0 (𝐴(4)) is generated by {[𝑝𝑖, 𝑗 ]0}4𝑖, 𝑗=1 as a monoid.

Note that {𝑝𝑖, 𝑗 }4𝑖, 𝑗=1 is the generating set of 𝐴(4) consisting of projections, and 𝑢
is the defining unitary (see Definition 15.15). We should remark that the computation
𝐾0 (𝐴(4)) � Z10 and 𝐾1 (𝐴(4)) � Z and that 𝐾0 (𝐴(4)) is generated by {[𝑝𝑖, 𝑗 ]0}4𝑖, 𝑗=1
were already obtained by Voigt in [8] by using Baum–Connes conjecture for quantum
groups. In fact, Voigt got the corresponding results for 𝐴(𝑛) with 𝑛 ≥ 4. Theorem C
gives totally different proofs for the results by Voigt in [8] by analyzing the structure
of 𝐴(4) directly which seems not to be applied to 𝐴(𝑛) for 𝑛 > 4. That 𝐾1 (𝐴(4)) is
generated by [𝑢]1 was not obtained in [8], and is a new result. Combining this result
with the computation that 𝐾1 (𝐴(𝑛)) � Z for 𝑛 ≥ 4 in [8] and the easy fact that the
surjection 𝐴(𝑛) → 𝐴(4) in Corollary 2.4 for 𝑛 ≥ 4 sends the defining unitary to the direct
sum of the defining unitary and the units, we obtain that 𝐾1 (𝐴(𝑛)) � Z is generated by
the 𝐾1 class of the defining unitary for 𝑛 ≥ 4. We would like to thank Christian Voigt for
the discussion about this observation.
This paper is organized as follows. In Section 1, we define magic square C*-algebras

𝐴(𝑛) and their abelianizations 𝐴ab (𝑛). In Section 2, we investigate 𝐴(𝑛) for 𝑛 ≠ 4.
From Section 3, we study 𝐴(4). In Section 3, we introduce the twisted crossed product
𝐴(4) otw𝛼 (𝐾 × 𝐾), and state Theorem A. We give the proof of Theorem A from Section 4
to Section 7. In Section 8, we state and prove Theorem B. From Section 9 to Section 15,
we prove Theorem C.

Acknowledgments
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1. Definitions of and basic facts on magic square C*-algebras

Definition 1.1. Let 𝑛 = 1, 2, . . . . The magic square C*-algebra of size 𝑛 is the universal
unital C*-algebra 𝐴(𝑛) generated by 𝑛 × 𝑛 projections {𝑝𝑖, 𝑗 }𝑛𝑖, 𝑗=1 satisfying

𝑛∑︁
𝑖=1

𝑝𝑖, 𝑗 = 1 ( 𝑗 = 1, 2, . . . , 𝑛),
𝑛∑︁
𝑗=1

𝑝𝑖, 𝑗 = 1 (𝑖 = 1, 2, . . . , 𝑛).

Remark 1.2. The magic square C*-algebra 𝐴(𝑛) is the underlying C*-algebra of the
quantum group 𝐴𝑠 (𝑛) defined by Wang in [9] as a free analogue of the symmetric
group 𝔖𝑛.

We fix a positive integer 𝑛. Let𝔖𝑛 be the symmetric group of degree 𝑛 whose element
is considered to be a bijection on the set {1, 2, . . . , 𝑛}.

Definition 1.3. By the universality of 𝐴(𝑛), there exists an action 𝛼 : 𝔖𝑛 ×𝔖𝑛 y 𝐴(𝑛)
defined by

𝛼(𝜎,𝜇) (𝑝𝑖, 𝑗 ) = 𝑝𝜎 (𝑖) ,𝜇 ( 𝑗)

for (𝜎, 𝜇) ∈ 𝔖𝑛 ×𝔖𝑛 and 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

Definition 1.4. Let 𝐴ab (𝑛) be the universal unital C*-algebra generated by 𝑛×𝑛 projections
{𝑝𝑖, 𝑗 }𝑛𝑖, 𝑗=1 satisfying the relations in Definition 1.1 and

𝑝𝑖, 𝑗 𝑝𝑘,𝑙 = 𝑝𝑘,𝑙 𝑝𝑖, 𝑗 (𝑖, 𝑗 , 𝑘, 𝑙 = 1, 2, . . . , 𝑛).

The following lemma follows immediately from the definitions.

Lemma 1.5. The C*-algebra 𝐴ab (𝑛) is the abelianization of 𝐴(𝑛). More specifically,
there exists a natural surjection 𝐴(𝑛) � 𝐴ab (𝑛) sending each projection 𝑝𝑖, 𝑗 to 𝑝𝑖, 𝑗 ,
and every ∗-homomorphism from 𝐴(𝑛) to an abelian C*-algebra factors through this
surjection.

Proposition 1.6. The abelian C*-algebra 𝐴ab (𝑛) is isomorphic to the C*-algebra 𝐶 (𝔖𝑛)
of continuous functions on the discrete set 𝔖𝑛.

Proof. For each 𝜎 ∈ 𝔖𝑛, we define a character 𝜒𝜎 of 𝐴ab (𝑛) by

𝜒𝜎 (𝑝𝑖, 𝑗 ) =
{
1 (𝑖 = 𝜎( 𝑗))
0 (𝑖 ≠ 𝜎( 𝑗)).
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Note that such a character 𝜒𝜎 uniquely exists by the universality of 𝐴ab (𝑛). It is easy to
see that any character of 𝐴ab (𝑛) is in the form of 𝜒𝜎 for some 𝜎 ∈ 𝔖𝑛. This shows that
𝐴ab (𝑛) is isomorphic to 𝐶 (𝔖𝑛) by the Gelfand theorem. �

We can compute minimal projections of 𝐴ab (𝑛) as follows.

Proposition 1.7. For 𝜎 ∈ 𝔖𝑛, we set

𝑝𝜎 B 𝑝𝜎 (1) ,1𝑝𝜎 (2) ,2 . . . 𝑝𝜎 (𝑛) ,𝑛 ∈ 𝐴ab (𝑛).

Then {𝑝𝜎}𝜎∈𝔖𝑛
is the set of minimal projections of 𝐴ab (𝑛).

Proof. Since 𝐴ab (𝑛) is commutative, 𝑝𝜎 is a projection for every 𝜎 ∈ 𝔖𝑛. For 𝜎 ∈ 𝔖𝑛,
let 𝜒𝜎 be the character defined in the proof of Proposition 1.6. Then we have

𝜒𝜎′ (𝑝𝜎) =
{
1 (𝜎′ = 𝜎)
0 (𝜎′ ≠ 𝜎)

for𝜎, 𝜎′ ∈ 𝔖𝑛. This shows that {𝑝𝜎}𝜎∈𝔖𝑛
is the set ofminimal projections of 𝐴ab (𝑛). �

For each 𝜎 ∈ 𝔖𝑛, we can define a character 𝜒𝜎 of 𝐴(𝑛) by the same formula as in
the proof of Proposition 1.6 (or to be the composition of the character 𝜒𝜎 in the proof
of Proposition 1.6 and the natural surjection 𝐴(𝑛) � 𝐴ab (𝑛)). With these characters we
have the following as a corollary of Proposition 1.6 (It is easy to show it directly).

Corollary 1.8. The set of all characters of the magic square C*-algebra 𝐴(𝑛) is
{𝜒𝜎 | 𝜎 ∈ 𝔖𝑛} whose cardinality is 𝑛!.

2. General results on magic square C*-algebras

In this section, we investigate 𝐴(𝑛) for 𝑛 ≠ 4. The results in this section are known to
specialists.

Proposition 2.1. For 𝑛 = 1, 2, 3, 𝐴(𝑛) is commutative. Hence the surjection 𝐴(𝑛) �
𝐴ab (𝑛) is an isomorphism for 𝑛 = 1, 2, 3.

Proof. For 𝑛 = 1 and 𝑛 = 2, it is easy to see 𝐴(1) � C and 𝐴(2) � C2. To show that 𝐴(3)
is commutative, it suffices to show 𝑝1,1 commutes with 𝑝2,2. In fact if 𝑝1,1 commutes with
𝑝2,2, we can see that 𝑝1,1 commutes with 𝑝2,3, 𝑝3,2 and 𝑝3,3 using the action 𝛼 defined
in Definition 1.3. Then 𝑝1,1 commutes with every generators because 𝑝1,1 is orthogonal
to and hence commutes with 𝑝1,2, 𝑝1,3, 𝑝2,1 and 𝑝3,1. Using the action 𝛼 again, we see
that every generators commutes with every generators.
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Now we are going to show that 𝑝1,1 commutes with 𝑝2,2. We have

𝑝1,1𝑝2,2 = (1 − 𝑝1,2 − 𝑝1,3)𝑝2,2 = 𝑝2,2 − 𝑝1,3𝑝2,2
= 𝑝2,2 − (1 − 𝑝2,3 − 𝑝3,3)𝑝2,2 = 𝑝3,3𝑝2,2.

By symmetry, we have 𝑝2,2𝑝3,3 = 𝑝1,1𝑝3,3 and 𝑝3,3𝑝1,1 = 𝑝2,2𝑝1,1. Hence we get

𝑝1,1𝑝2,2 = 𝑝3,3𝑝2,2 = (𝑝2,2𝑝3,3)∗ = (𝑝1,1𝑝3,3)∗ = 𝑝3,3𝑝1,1 = 𝑝2,2𝑝1,1.

This completes the proof. �

Proposition 2.2. Let 𝑛1, 𝑛2, . . . , 𝑛𝑘 be positive integers, and set 𝑛 =
∑𝑘
𝑗=1 𝑛 𝑗 . There exists

a surjection from 𝐴(𝑛) to the unital free product ∗𝑘𝑗=1 𝐴(𝑛 𝑗 ).
Proof. The desired surjection is obtained by sending the generators {𝑝𝑖, 𝑗 }𝑛1𝑖, 𝑗=1 of 𝐴(𝑛)
to the generators of 𝐴(𝑛1) ⊂ ∗𝑘𝑗=1 𝐴(𝑛 𝑗 ), the generators {𝑝𝑖, 𝑗 }𝑛1+𝑛2𝑖, 𝑗=𝑛1+1 of 𝐴(𝑛) to the
generators of 𝐴(𝑛2) ⊂ ∗𝑘𝑗=1 𝐴(𝑛 𝑗 ) and so on, and by sending the other generators of
𝐴(𝑛) to 0. �

Corollary 2.3. Let 𝑛 be a positive integer. There exists a surjection from 𝐴(𝑛 + 1) to
𝐴(𝑛).

Proof. This follows from Proposition 2.2 because 𝐴(𝑛) ∗ 𝐴(1) � 𝐴(𝑛) ∗ C � 𝐴(𝑛). �

Corollary 2.4. Let 𝑛, 𝑚 be positive integers with 𝑛 ≥ 𝑚. There exists a surjection from
𝐴(𝑛) to 𝐴(𝑚).

Proof. This follows from Corollary 2.3. �

Proposition 2.5. For 𝑛 ≥ 5, 𝐴(𝑛) is not exact.

Proof. Note that an image of an exact C*-algebra is exact (see [5, Corollary 9.4.3]).
By Corollary 2.4, it suffices to show that 𝐴(5) is not exact. By Proposition 2.2, there
exists a surjection from 𝐴(5) to 𝐴(2) ∗ 𝐴(3) � C2 ∗ C6 which is not exact (see [5,
Proposition 3.7.11]). This completes the proof. �

The 𝐶∗-algebra 𝐴(4) is not commutative, but is exact, in fact is subhomogeneous
(Corollary 7.9). From the next section, we investigate the structure of 𝐴(4).

3. Twisted crossed product

We denote elements 𝜎 ∈ 𝔖4 by (𝜎(1)𝜎(2)𝜎(3)𝜎(4)). We define the Klein (four) group
𝐾 by

𝐾 B {𝑡1, 𝑡2, 𝑡3, 𝑡4} ⊂ 𝔖4
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where 𝑡1 is the identity (1234) of 𝔖4, 𝑡2 = (2143), 𝑡3 = (3412) and 𝑡4 = (4321). The
group 𝐾 is isomorphic to (Z/2Z) × (Z/2Z).
We choose the indices so that we have 𝑡𝑖𝑡 𝑗 = 𝑡𝑡𝑖 ( 𝑗) for 𝑖, 𝑗 = 1, 2, 3, 4. Note that we

have 𝑡𝑖 ( 𝑗) = 𝑡 𝑗 (𝑖) for 𝑖, 𝑗 = 1, 2, 3, 4.

Definition 3.1. Define unitaries 𝑐1, 𝑐2, 𝑐3, 𝑐4 in 𝑀2 (C) by

𝑐1 B

(
1 0
0 1

)
, 𝑐2 B

(√
−1 0
0 −

√
−1

)
, 𝑐3 B

(
0 1
−1 0

)
, 𝑐4 B

(
0

√
−1√

−1 0

)
.

The unitaries 𝑐1, 𝑐2, 𝑐3, 𝑐4 are called the Pauli matrices.

Definition 3.2. Put 𝜔 = (1342) ∈ 𝔖4. Define a map 𝜀 : {1, 2, 3, 4}2 → {1,−1} by

𝜀(𝑖, 𝑗) B
{
1 if 𝑖 = 1 or 𝑗 = 1 or 𝜔(𝑖) = 𝑗

−1 otherwise,

for each 𝑖, 𝑗 = 1, 2, 3, 4.

Table 3.1. Values of 𝜀(𝑖, 𝑗)

𝑖 𝑗 1 2 3 4
1 1 1 1 1
2 1 −1 1 −1
3 1 −1 −1 1
4 1 1 −1 −1

We have the following calculation which can be proved straightforwardly.

Lemma 3.3. For 𝑖, 𝑗 = 1, 2, 3, 4, we have 𝑐𝑖𝑐 𝑗 = 𝜀(𝑖, 𝑗)𝑐𝑡𝑖 ( 𝑗) .

From this lemma and the computation 𝑡𝑖𝑡 𝑗 = 𝑡𝑡𝑖 ( 𝑗) , we have the following lemma which
means that 𝐾2 3 (𝑡𝑖 , 𝑡 𝑗 ) ↦→ 𝜀(𝑖, 𝑗) ∈ {1,−1} becomes a cocycle of 𝐾 .

Lemma 3.4. For 𝑖, 𝑗 , 𝑘 = 1, 2, 3, 4, we have 𝜀(𝑖, 𝑗)𝜀(𝑡𝑖 ( 𝑗), 𝑘) = 𝜀(𝑖, 𝑡 𝑗 (𝑘))𝜀( 𝑗 , 𝑘).

Proof. Compute 𝑐𝑖𝑐 𝑗𝑐𝑘 in the two ways, namely (𝑐𝑖𝑐 𝑗 )𝑐𝑘 and 𝑐𝑖 (𝑐 𝑗𝑐𝑘 ). �

Hence the following definition makes sense. Let us denote by the same symbol 𝛼 the
restriction of the action 𝛼 : 𝔖4 ×𝔖4 y 𝐴(4) to 𝐾 × 𝐾 ⊂ 𝔖4 ×𝔖4.

Definition 3.5. Let 𝐴(4) otw𝛼 (𝐾 × 𝐾) be the twisted crossed product of the action 𝛼 and
the cocycle

(𝐾 × 𝐾)2 3 ((𝑡𝑖 , 𝑡 𝑗 ), (𝑡𝑘 , 𝑡𝑙)) ↦−→ 𝜀(𝑖, 𝑘)𝜀( 𝑗 , 𝑙) ∈ {1,−1}.
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By definition, 𝐴(4) otw𝛼 (𝐾 × 𝐾) is the universal 𝐶∗-algebra generated by the unital
subalgebra 𝐴(4) and unitaries {𝑢𝑖, 𝑗 }4𝑖, 𝑗=1 such that

𝑢𝑖, 𝑗𝑥𝑢
∗
𝑖, 𝑗 = 𝛼(𝑡𝑖 ,𝑡 𝑗 ) (𝑥) for all 𝑖, 𝑗 and all 𝑥 ∈ 𝐴(4)

and

𝑢𝑖, 𝑗𝑢𝑘,𝑙 = 𝜀(𝑖, 𝑘)𝜀( 𝑗 , 𝑙)𝑢𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑙) for all 𝑖, 𝑗 , 𝑘, 𝑙.

We denote by Ru the latter relation. The former relation is equivalent to the relation

𝑢𝑖, 𝑗 𝑝𝑘,𝑙 = 𝑝𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑙)𝑢𝑖, 𝑗 for all 𝑖, 𝑗 , 𝑘, 𝑙

which is denoted by Rup.
Recall that 𝐴(4) is the universal unital 𝐶∗-algebra generated by the set {𝑝𝑖, 𝑗 }4𝑖, 𝑗=1 of

projections satisfying the following relation denoted by Rp
4∑︁
𝑖=1

𝑝𝑖, 𝑗 = 1 ( 𝑗 = 1, 2, 3, 4),
4∑︁
𝑗=1

𝑝𝑖, 𝑗 = 1 (𝑖 = 1, 2, 3, 4).

The following is the first main theorem.

Theorem 3.6. The twisted crossed product 𝐴(4)otw𝛼 (𝐾×𝐾) is isomorphic to𝑀4 (𝐶 (R𝑃3)).

We finish the proof of this theorem in the end of Section 7.
To prove this theorem, we start with finite presentation of the 𝐶∗-algebra 𝐶 (R𝑃3) in

the next section.

4. Real projective space R𝑃3

Definition 4.1. We set an equivalence relation ∼ on the manifold

𝑆3 B

{
𝑎 = (𝑎1, 𝑎2, 𝑎3, 𝑎4) ∈ R4

����� 4∑︁
𝑖=1

𝑎2𝑖 = 1

}
so that 𝑎 ∼ 𝑏 if and only if 𝑎 = 𝑏 or 𝑎 = −𝑏. The quotient space 𝑆3/∼ is the real projective
space R𝑃3 of dimension 3. The equivalence class of (𝑎1, 𝑎2, 𝑎3, 𝑎4) ∈ 𝑆3 is denoted as
[𝑎1, 𝑎2, 𝑎3, 𝑎4] ∈ R𝑃3.

Definition 4.2. For 𝑖, 𝑗 = 1, 2, 3, 4, we define a continuous function 𝑓𝑖, 𝑗 on R𝑃3 by
𝑓𝑖, 𝑗 ( [𝑎1, 𝑎2, 𝑎3, 𝑎4]) = 𝑎𝑖𝑎 𝑗 for [𝑎1, 𝑎2, 𝑎3, 𝑎4] ∈ R𝑃3.

Note that 𝑓𝑖, 𝑗 is a well-defined continuous function.

105



Takeshi Katsura & Masahito Ogawa & Airi Takeuchi

Lemma 4.3. The functions { 𝑓𝑖, 𝑗 }4𝑖, 𝑗=1 satisfy the following relation

𝑓𝑖, 𝑗 = 𝑓 ∗𝑖, 𝑗 = 𝑓 𝑗 ,𝑖 for all 𝑖, 𝑗 ,
𝑓𝑖, 𝑗 𝑓𝑘,𝑙 = 𝑓𝑖,𝑘 𝑓 𝑗 ,𝑙 for all 𝑖, 𝑗 , 𝑘, 𝑙,
4∑︁
𝑖=1

𝑓𝑖,𝑖 = 1.

Proof. This follows from easy computation. �

Definition 4.4. We denote by Rf the relation in Lemma 4.3.

Proposition 4.5. The 𝐶∗-algebra 𝐶 (R𝑃3) is the universal unital 𝐶∗-algebra generated
by elements { 𝑓𝑖, 𝑗 }4𝑖, 𝑗=1 satisfying Rf .

Proof. Let 𝐴 be the universal unital𝐶∗-algebra generated by elements { 𝑓𝑖, 𝑗 }4𝑖, 𝑗=1 satisfying
Rf . For 𝑖, 𝑗 , 𝑘, 𝑙 = 1, 2, 3, 4, we have

𝑓𝑖, 𝑗 𝑓𝑘,𝑙 = 𝑓𝑖,𝑘 𝑓 𝑗 ,𝑙 = 𝑓𝑘,𝑖 𝑓𝑙, 𝑗 = 𝑓𝑘,𝑙 𝑓𝑖, 𝑗 .

Hence 𝐴 is commutative. Thus there exists a compact set 𝑋 such that 𝐴 � 𝐶 (𝑋).
By Lemma 4.3, we have a unital ∗-homomorphism 𝐴→ 𝐶 (R𝑃3). This induces a con-

tinuous map 𝜑 : R𝑃3 → 𝑋 . It suffices to show that this continuous map is homeomorphic.
We first show that 𝜑 is injective. Take [𝑎1, 𝑎2, 𝑎3, 𝑎4] and [𝑏1, 𝑏2, 𝑏3, 𝑏4] ∈ R𝑃3 with

𝜑( [𝑎1, 𝑎2, 𝑎3, 𝑎4]) = 𝜑( [𝑏1, 𝑏2, 𝑏3, 𝑏4]). Then, for 𝑖, 𝑗 = 1, 2, 3, 4, we have 𝑎𝑖𝑎 𝑗 = 𝑏𝑖𝑏 𝑗 .
Since

∑4
𝑖=1 𝑎

2
𝑖
= 1, there exists 𝑖0 such that 𝑎𝑖0 ≠ 0. Set 𝜎 = 𝑏𝑖0/𝑎𝑖0 ∈ R. Since

𝑎𝑖𝑎𝑖0 = 𝑏𝑖𝑏𝑖0 , we have 𝑎𝑖 = 𝜎𝑏𝑖 for 𝑖 = 1, 2, 3, 4. Since
∑4
𝑖=1 𝑎

2
𝑖
=

∑4
𝑖=1 𝑏

2
𝑖
= 1, we get

𝜎 = ±1. Hence [𝑎1, 𝑎2, 𝑎3, 𝑎4] = [𝑏1, 𝑏2, 𝑏3, 𝑏4]. This shows that 𝜑 is injective.
Next we show that 𝜑 is surjective. Take a unital character 𝜒 : 𝐴 → C of 𝐴. To show

that 𝜑 is surjective, it suffices to find [𝑎1, 𝑎2, 𝑎3, 𝑎4] ∈ R𝑃3 such that 𝜒( 𝑓𝑖, 𝑗 ) = 𝑎𝑖𝑎 𝑗

for all 𝑖, 𝑗 = 1, 2, 3, 4. Since
∑4
𝑖=1 𝜒( 𝑓𝑖,𝑖) = 𝜒

(∑4
𝑖=1 𝑓𝑖,𝑖

)
= 1, there exists 𝑖0 such that

𝜒( 𝑓𝑖0 ,𝑖0 ) ≠ 0. Since

𝑓𝑖0 ,𝑖0 = 𝑓𝑖0 ,𝑖0

4∑︁
𝑖=1

𝑓𝑖,𝑖 =

4∑︁
𝑖=1

𝑓𝑖0 ,𝑖0 𝑓𝑖,𝑖 =

4∑︁
𝑖=1

𝑓𝑖0 ,𝑖 𝑓𝑖0 ,𝑖 =

4∑︁
𝑖=1

𝑓𝑖0 ,𝑖 𝑓
∗
𝑖0 ,𝑖
.

we have 𝜒( 𝑓𝑖0 ,𝑖0 ) > 0. Put 𝑎𝑖 B
𝜒 ( 𝑓𝑖0 ,𝑖)√
𝜒 ( 𝑓𝑖0 ,𝑖0 )

. We have

4∑︁
𝑖=1

𝑎2𝑖 =

4∑︁
𝑖=1

𝜒( 𝑓𝑖0 ,𝑖)2

𝜒( 𝑓𝑖0 ,𝑖0 )
=

4∑︁
𝑖=1

𝜒( 𝑓𝑖0 ,𝑖0 )𝜒( 𝑓𝑖,𝑖)
𝜒( 𝑓𝑖0 ,𝑖0 )

=

4∑︁
𝑖=1

𝜒( 𝑓𝑖,𝑖) = 1.
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We also have

𝜒( 𝑓𝑖, 𝑗 ) =
𝜒( 𝑓𝑖0 ,𝑖)𝜒( 𝑓𝑖0 , 𝑗 )

𝜒( 𝑓𝑖0 ,𝑖0 )
= 𝑎𝑖𝑎 𝑗 ,

for 𝑖, 𝑗 = 1, 2, 3, 4. This shows that 𝜑 is surjective.
Since R𝑃3 is compact and 𝑋 is Hausdorff, 𝜑 : R𝑃3 → 𝑋 is a homeomorphism. Thus

we have shown that 𝐴 is isomorphic to 𝐶 (R𝑃3). �

Let {𝑒𝑖, 𝑗 }4𝑖, 𝑗=1 be the matrix unit of 𝑀4 (C). Then {𝑒𝑖, 𝑗 }
4
𝑖, 𝑗=1 satisfies the following

relation denoted by Re;

𝑒𝑖, 𝑗 = 𝑒
∗
𝑗 ,𝑖 for all 𝑖, 𝑗 ,

𝑒𝑖, 𝑗𝑒𝑘,𝑙 = 𝛿 𝑗 ,𝑘𝑒𝑖,𝑙 for all 𝑖, 𝑗 , 𝑘, 𝑙,
4∑︁
𝑖=1

𝑒𝑖,𝑖 = 1,

here 𝛿 𝑗 ,𝑘 is the Kronecker delta. It is well-known, and easy to see, that 𝑀4 (C) is the
universal unital C*-algebra generated by {𝑒𝑖, 𝑗 }4𝑖, 𝑗=1 satisfying Re.
The 𝐶∗-algebra 𝑀4 (𝐶 (R𝑃3)) = 𝐶 (R𝑃3, 𝑀4 (C)) = 𝐶 (R𝑃3) ⊗ 𝑀4 (C) is the universal

unital 𝐶∗-algebra generated by { 𝑓𝑖, 𝑗 }4𝑖, 𝑗=1 and {𝑒𝑖, 𝑗 }4𝑖, 𝑗=1 satisfying Rf , Re and the
following relation denoted by Rfe;

𝑓𝑖, 𝑗𝑒𝑘,𝑙 = 𝑒𝑘,𝑙 𝑓𝑖, 𝑗 for all 𝑖, 𝑗 , 𝑘, 𝑙.

5. Unitaries

Definition 5.1. For 𝑖, 𝑗 = 1, 2, 3, 4, we define a unitary𝑈𝑖, 𝑗 ∈ 𝑀4 (C) ⊂ 𝑀4 (𝐶 (R𝑃3)) by

𝑈𝑖, 𝑗 B
4∑︁
𝑘=1

𝜀(𝑖, 𝑘)𝜀(𝑘, 𝑗)𝑒𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑘)

From a direct calculation, we have

𝑈1,1 =

©«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ª®®®®¬
, 𝑈1,2 =

©«
0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

ª®®®®¬
,
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𝑈1,3 =

©«
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

ª®®®®¬
, 𝑈1,4 =

©«
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

ª®®®®¬
,

𝑈2,1 =

©«
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

ª®®®®¬
, 𝑈2,2 =

©«
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

ª®®®®¬
,

𝑈2,3 =

©«
0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

ª®®®®¬
, 𝑈2,4 =

©«
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

ª®®®®¬
,

𝑈3,1 =

©«
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

ª®®®®¬
, 𝑈3,2 =

©«
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

ª®®®®¬
,

𝑈3,3 =

©«
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

ª®®®®¬
, 𝑈3,4 =

©«
0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

ª®®®®¬
,

𝑈4,1 =

©«
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

ª®®®®¬
, 𝑈4,2 =

©«
0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

ª®®®®¬
,

𝑈4,3 =

©«
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

ª®®®®¬
, 𝑈4,4 =

©«
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

ª®®®®¬
.

We have the following. We denote the transpose matrix of a matrix 𝑀 by 𝑀T.

Proposition 5.2. For (𝑎1, 𝑎2, 𝑎3, 𝑎4) ∈ C4,

(𝑏1, 𝑏2, 𝑏3, 𝑏4)T B 𝑈𝑖, 𝑗 (𝑎1, 𝑎2, 𝑎3, 𝑎4)T,

satisfies
∑4
𝑘=1 𝑏𝑘𝑐𝑘 = 𝑐𝑖

(∑4
𝑘=1 𝑎𝑘𝑐𝑘

)
𝑐∗
𝑗
.
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Proof. For 𝑖, 𝑗 , 𝑘 = 1, 2, 3, 4, we have

𝑐𝑖𝑐𝑡 𝑗 (𝑘) = 𝜀(𝑖, 𝑡 𝑗 (𝑘))𝑐𝑡𝑖 (𝑡 𝑗 (𝑘)) 𝑐𝑡𝑖 (𝑘)𝑐 𝑗 = 𝜀(𝑡𝑖 (𝑘), 𝑗)𝑐𝑡 𝑗 (𝑡𝑖 (𝑘)) .

Hence 𝑐𝑖𝑐𝑡 𝑗 (𝑘)𝑐∗𝑗 = 𝜀(𝑖, 𝑡 𝑗 (𝑘))𝜀(𝑡𝑖 (𝑘), 𝑗)−1𝑐𝑡𝑖 (𝑘) . Since

𝜀(𝑖, 𝑡 𝑗 (𝑘))𝜀(𝑘, 𝑗) = 𝜀(𝑖, 𝑘)𝜀(𝑡𝑖 (𝑘), 𝑗),

we have

𝜀(𝑖, 𝑡 𝑗 (𝑘))𝜀(𝑡𝑖 (𝑘), 𝑗)−1 = 𝜀(𝑖, 𝑘)𝜀(𝑘, 𝑗)−1 = 𝜀(𝑖, 𝑘)𝜀(𝑘, 𝑗)

This shows that𝑈𝑖, 𝑗 =
∑4
𝑘=1 𝜀(𝑖, 𝑘)𝜀(𝑘, 𝑗)𝑒𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑘) satisfies the desired property. �

Proposition 5.3. For 𝑖, 𝑗 , 𝑘, 𝑙 = 1, 2, 3, 4, we have

𝑈𝑖, 𝑗𝑈𝑘,𝑙 = 𝜀(𝑖, 𝑘)𝜀( 𝑗 , 𝑙)𝑈𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑙) .

Proof. We have

𝑈𝑖, 𝑗𝑈𝑘,𝑙 =

( 4∑︁
𝑚=1

𝜀(𝑖, 𝑚)𝜀(𝑚, 𝑗)𝑒𝑡𝑖 (𝑚) ,𝑡 𝑗 (𝑚)

) ( 4∑︁
𝑛=1

𝜀(𝑘, 𝑛)𝜀(𝑛, 𝑙)𝑒𝑡𝑘 (𝑛) ,𝑡𝑙 (𝑛)

)
=

( 4∑︁
𝑚=1

𝜀(𝑖, 𝑡𝑘 (𝑚))𝜀(𝑡𝑘 (𝑚), 𝑗)𝑒𝑡𝑖 (𝑡𝑘 (𝑚)) ,𝑡 𝑗 (𝑡𝑘 (𝑚))

)
×

( 4∑︁
𝑛=1

𝜀(𝑘, 𝑡 𝑗 (𝑛))𝜀(𝑡 𝑗 (𝑛), 𝑙)𝑒𝑡𝑘 (𝑡 𝑗 (𝑛)) ,𝑡𝑙 (𝑡 𝑗 (𝑛))

)
=

4∑︁
𝑚=1

𝜀(𝑖, 𝑡𝑘 (𝑚))𝜀(𝑡𝑘 (𝑚), 𝑗)𝜀(𝑘, 𝑡 𝑗 (𝑚))𝜀(𝑡 𝑗 (𝑚), 𝑙)𝑒𝑡𝑖 (𝑡𝑘 (𝑚)) ,𝑡𝑙 (𝑡 𝑗 (𝑚))

Since we have

𝜀(𝑖, 𝑡𝑘 (𝑚))𝜀(𝑘, 𝑚) = 𝜀(𝑖, 𝑘)𝜀(𝑡𝑖 (𝑘), 𝑚), 𝜀(𝑘, 𝑡 𝑗 (𝑚))𝜀(𝑚, 𝑗) = 𝜀(𝑘, 𝑚)𝜀(𝑡𝑘 (𝑚), 𝑗),
𝜀(𝑚, 𝑗)𝜀(𝑡 𝑗 (𝑚), 𝑙) = 𝜀(𝑚, 𝑡 𝑗 (𝑙))𝜀( 𝑗 , 𝑙),

we get

𝜀(𝑖, 𝑡𝑘 (𝑚))𝜀(𝑡𝑘 (𝑚), 𝑗)𝜀(𝑘, 𝑡 𝑗 (𝑚))𝜀(𝑡 𝑗 (𝑚), 𝑙) = 𝜀(𝑖, 𝑘)𝜀( 𝑗 , 𝑙)𝜀(𝑡𝑖 (𝑘), 𝑚)𝜀(𝑚, 𝑡 𝑗 (𝑙)).

Hence we obtain

𝑈𝑖, 𝑗𝑈𝑘,𝑙 =

4∑︁
𝑚=1

𝜀(𝑖, 𝑘)𝜀( 𝑗 , 𝑙)𝜀(𝑡𝑖 (𝑘), 𝑚)𝜀(𝑚, 𝑡 𝑗 (𝑙))𝑒𝑡𝑖 (𝑡𝑘 (𝑚)) ,𝑡 𝑗 (𝑡𝑙 (𝑚))

= 𝜀(𝑖, 𝑘)𝜀( 𝑗 , 𝑙)𝑈𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑙) . �

One can also prove this proposition using Proposition 5.2.
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6. Projections

Definition 6.1. We define 𝑃1,1 B
∑4
𝑖, 𝑗=1 𝑓𝑖, 𝑗𝑒𝑖, 𝑗 ∈ 𝑀4 (𝐶 (R𝑃3)). For 𝑖, 𝑗 = 1, 2, 3, 4, we

define 𝑃𝑖, 𝑗 ∈ 𝑀4 (𝐶 (R𝑃3)) by

𝑃𝑖, 𝑗 B 𝑈𝑖, 𝑗𝑃1,1𝑈
∗
𝑖, 𝑗 .

Note that𝑈1,1 = 1.

Proposition 6.2. For each 𝑖, 𝑗 = 1, 2, 3, 4, 𝑃𝑖, 𝑗 is a projection.

Proof. It suffices to show that 𝑃1,1 is a projection. We have

𝑃∗
1,1 =

4∑︁
𝑖, 𝑗=1

𝑓 ∗𝑖, 𝑗𝑒
∗
𝑖, 𝑗 =

4∑︁
𝑖, 𝑗=1

𝑓 𝑗 ,𝑖𝑒 𝑗 ,𝑖 = 𝑃1,1,

and

𝑃21,1 =

4∑︁
𝑖, 𝑗=1

𝑓𝑖, 𝑗𝑒𝑖, 𝑗

4∑︁
𝑘,𝑙=1

𝑓𝑘,𝑙𝑒𝑘,𝑙 =

4∑︁
𝑖, 𝑗 ,𝑘,𝑙=1

𝑓𝑖, 𝑗𝑒𝑖, 𝑗 𝑓𝑘,𝑙𝑒𝑘,𝑙

=

4∑︁
𝑖, 𝑗 ,𝑙=1

𝑓𝑖, 𝑗 𝑓 𝑗 ,𝑙𝑒𝑖,𝑙 =

4∑︁
𝑖, 𝑗 ,𝑙=1

𝑓𝑖,𝑙 𝑓 𝑗 , 𝑗𝑒𝑖,𝑙 =

4∑︁
𝑖,𝑙=1

𝑓𝑖,𝑙𝑒𝑖,𝑙 = 𝑃1,1.

Hence 𝑃1,1 is a projection. �

Proposition 6.3. The set {𝑃𝑖, 𝑗 }4𝑖, 𝑗=1 of projections and the set {𝑈𝑖, 𝑗 }4𝑖, 𝑗=1 of unitaries
satisfy Rup.

Proof. This follows from the computation

𝑈𝑖, 𝑗𝑃𝑘,𝑙𝑈
∗
𝑖, 𝑗 = 𝑈𝑖, 𝑗𝑈𝑘,𝑙𝑃1,1𝑈

∗
𝑘,𝑙𝑈

∗
𝑖, 𝑗

= (𝜀(𝑖, 𝑘)𝜀( 𝑗 , 𝑙))2𝑈𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑙)𝑃1,1𝑈∗
𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑙) = 𝑃𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑙)

using Proposition 5.3. �

Proposition 6.4. The set {𝑃𝑖, 𝑗 }4𝑖, 𝑗=1 of projections satisfies Rp.

Proof. From Proposition 6.3, it suffices to show

𝑃1,1 + 𝑃1,2 + 𝑃1,3 + 𝑃1,4 = 1, 𝑃1,1 + 𝑃2,1 + 𝑃3,1 + 𝑃4,1 = 1.
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This follows from the following direct computations

𝑃1,1 =

©«
𝑓1,1 𝑓1,2 𝑓1,3 𝑓1,4
𝑓2,1 𝑓2,2 𝑓2,3 𝑓2,4
𝑓3,1 𝑓3,2 𝑓3,3 𝑓3,4
𝑓4,1 𝑓4,2 𝑓4,3 𝑓4,4

ª®®®®¬
,

𝑃1,2 =

©«
𝑓2,2 − 𝑓2,1 − 𝑓2,4 𝑓2,3
− 𝑓1,2 𝑓1,1 𝑓1,4 − 𝑓1,3
− 𝑓4,2 𝑓4,1 𝑓4,4 − 𝑓4,3
𝑓3,2 − 𝑓3,1 − 𝑓3,4 𝑓3,3

ª®®®®¬
, 𝑃2,1 =

©«
𝑓2,2 − 𝑓2,1 𝑓2,4 − 𝑓2,3
− 𝑓1,2 𝑓1,1 − 𝑓1,4 𝑓1,3
𝑓4,2 − 𝑓4,1 𝑓4,4 − 𝑓4,3
− 𝑓3,2 𝑓3,1 − 𝑓3,4 𝑓3,3

ª®®®®¬
,

𝑃1,3 =

©«
𝑓3,3 𝑓3,4 − 𝑓3,1 − 𝑓3,2
𝑓4,3 𝑓4,4 − 𝑓4,1 − 𝑓4,2
− 𝑓1,3 − 𝑓1,4 𝑓1,1 𝑓1,2
− 𝑓2,3 − 𝑓2,4 𝑓2,1 𝑓2,2

ª®®®®¬
, 𝑃3,1 =

©«
𝑓3,3 − 𝑓3,4 − 𝑓3,1 𝑓3,2
− 𝑓4,3 𝑓4,4 𝑓4,1 − 𝑓4,2
− 𝑓1,3 𝑓1,4 𝑓1,1 − 𝑓1,2
𝑓2,3 − 𝑓2,4 − 𝑓2,1 𝑓2,2

ª®®®®¬
,

𝑃1,4 =

©«
𝑓4,4 − 𝑓4,3 𝑓4,2 − 𝑓4,1
− 𝑓3,4 𝑓3,3 − 𝑓3,2 𝑓3,1
𝑓2,4 − 𝑓2,3 𝑓2,2 − 𝑓2,1
− 𝑓1,4 𝑓1,3 − 𝑓1,2 𝑓1,1

ª®®®®¬
, 𝑃4,1 =

©«
𝑓4,4 𝑓4,3 − 𝑓4,2 − 𝑓4,1
𝑓3,4 𝑓3,3 − 𝑓3,2 − 𝑓3,1
− 𝑓2,4 − 𝑓2,3 𝑓2,2 𝑓2,1
− 𝑓1,4 − 𝑓1,3 𝑓1,2 𝑓1,1

ª®®®®¬
.

�

By Proposition 5.3, Proposition 6.2, Proposition 6.3 and Proposition 6.4, we have a
∗-homomorphism𝛷 : 𝐴(4) otw𝛼 (𝐾 × 𝐾) → 𝑀4 (𝐶 (R𝑃3)) sending 𝑝𝑖, 𝑗 to 𝑃𝑖, 𝑗 and 𝑢𝑖, 𝑗 to
𝑈𝑖, 𝑗 . In the next section, we construct the inverse map of𝛷.

7. The inverse map

Definition 7.1. For 𝑖, 𝑗 = 1, 2, 3, 4, we set

𝐸𝑖, 𝑗 B
1
4

4∑︁
𝑘=1

𝜀(𝑖, 𝑘)𝜀(𝑘, 𝑗)𝑢𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑘) ∈ 𝐴(4) otw𝛼 (𝐾 × 𝐾)

Definition 7.2. For 𝑖, 𝑗 = 1, 2, 3, 4, we set

𝐹𝑖, 𝑗 B
4∑︁
𝑘=1

𝐸𝑘,𝑖 𝑝1,1𝐸 𝑗 ,𝑘 ∈ 𝐴(4) otw𝛼 (𝐾 × 𝐾).

Lemma 7.3. For 𝑖, 𝑗 = 1, 2, 3, 4, we have 𝑢𝑖,1𝐸1,1𝑢1, 𝑗 = 𝐸𝑖, 𝑗 . For 𝑖 = 1, 2, 3, 4, we have
𝑢𝑖,𝑖𝐸1,1 = 𝐸1,1𝑢𝑖,𝑖 = 𝐸1,1. We also have 𝐸21,1 = 𝐸1,1.
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Proof. We have 𝐸1,1 = 1
4
∑4
𝑘=1 𝑢𝑘,𝑘 . For 𝑖, 𝑗 = 1, 2, 3, 4, we have

𝑢𝑖,1𝐸1,1𝑢1, 𝑗 =
1
4

4∑︁
𝑘=1

𝑢𝑖,1𝑢𝑘,𝑘𝑢1, 𝑗 =
1
4

4∑︁
𝑘=1

𝜀(𝑖, 𝑘)𝜀(𝑘, 𝑗)𝑢𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑘) = 𝐸𝑖, 𝑗 .

For 𝑖 = 1, 2, 3, 4, we have

𝑢𝑖,𝑖𝐸1,1 =
1
4

4∑︁
𝑘=1

𝑢𝑖,𝑖𝑢𝑘,𝑘 =
1
4

4∑︁
𝑘=1

𝜀(𝑖, 𝑘)2𝑢𝑡𝑖 (𝑘) ,𝑡𝑖 (𝑘) =
1
4

4∑︁
𝑘=1

𝑢𝑘,𝑘 = 𝐸1,1.

Similarly, we get 𝐸1,1𝑢𝑖,𝑖 = 𝐸1,1. Finally, we have 𝐸21,1 =
1
4
∑4
𝑘=1 𝑢𝑘,𝑘𝐸1,1 = 𝐸1,1. �

Proposition 7.4. The set {𝐸𝑖, 𝑗 }4𝑖, 𝑗=1 satisfies Re.

Proof. We have 𝐸1,1 = 1
4
∑4
𝑘=1 𝑢𝑘,𝑘 . We also have

𝐸2,2 =
1
4
(𝑢1,1 + 𝑢2,2 − 𝑢3,3 − 𝑢4,4)

𝐸3,3 =
1
4
(𝑢1,1 − 𝑢2,2 + 𝑢3,3 − 𝑢4,4)

𝐸4,4 =
1
4
(𝑢1,1 − 𝑢2,2 − 𝑢3,3 + 𝑢4,4).

Hence
∑4
𝑖=1 𝐸𝑖,𝑖 = 𝑢1,1 = 1.

It is easy to see 𝐸∗
1,1 = 𝐸1,1. For 𝑖 = 1, 2, 3, 4, we have

𝐸1,1𝑢
∗
𝑖,1 = 𝐸1,1𝑢𝑖,𝑖𝑢

∗
𝑖,1 = 𝐸1,1𝑢1,𝑖𝑢𝑖,1𝑢

∗
𝑖,1 = 𝐸1,1𝑢1,𝑖

and 𝑢∗1,𝑖𝐸1,1 = 𝑢𝑖,1𝐸1,1 similarly. Hence by Lemma 7.3, we obtain

𝐸∗
𝑖, 𝑗 = (𝑢𝑖,1𝐸1,1𝑢1, 𝑗 )∗ = 𝑢∗1, 𝑗𝐸1,1𝑢

∗
𝑖,1 = 𝑢 𝑗 ,1𝐸1,1𝑢1,𝑖 = 𝐸 𝑗 ,𝑖

for 𝑖, 𝑗 = 1, 2, 3, 4.
By Lemma 7.3, we obtain

𝐸𝑖, 𝑗𝐸 𝑗 ,𝑘 = 𝑢𝑖,1𝐸1,1𝑢1, 𝑗𝑢 𝑗 ,1𝐸1,1𝑢1,𝑘 = 𝑢𝑖,1𝐸1,1𝑢 𝑗 , 𝑗𝐸1,1𝑢1,𝑘

= 𝑢𝑖,1𝐸
2
1,1𝑢1,𝑘 = 𝑢𝑖,1𝐸1,1𝑢1,𝑘 = 𝐸𝑖,𝑘

for 𝑖, 𝑗 , 𝑘 = 1, 2, 3, 4. The proof ends if we show 𝐸𝑖, 𝑗𝐸𝑘,𝑙 = 0 for 𝑖, 𝑗 , 𝑘, 𝑙 = 1, 2, 3, 4
with 𝑗 ≠ 𝑘 . It suffices to show 𝐸1,1𝑢1, 𝑗𝑢𝑘,1𝐸1,1 = 0 for 𝑗 , 𝑘 = 1, 2, 3, 4 with 𝑗 ≠ 𝑘 .
Since 𝑢1, 𝑗𝑢𝑘,1 = 𝑢𝑘, 𝑗 = 𝜀(𝑘, 𝑡𝑘 ( 𝑗))𝑢𝑘,𝑘𝑢1,𝑡𝑘 ( 𝑗) , it suffices to show 𝐸1,1𝑢1, 𝑗𝐸1,1 = 0 for
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𝑗 = 2, 3, 4. For 𝑗 = 2, we get

4𝐸1,1𝑢1,2𝐸1,1 =
4∑︁
𝑘=1

𝑢𝑘,𝑘𝑢1,2𝐸1,1

= 𝑢1,2𝐸1,1 + 𝑢1,2𝑢2,2𝐸1,1 − 𝑢1,2𝑢3,3𝐸1,1 − 𝑢1,2𝑢4,4𝐸1,1
= 0

By similar computations, we get 𝐸1,1𝑢1,3𝐸1,1 = 𝐸1,1𝑢1,4𝐸1,1 = 0. This completes the
proof. �

Proposition 7.5. The set {𝐹𝑖, 𝑗 }4𝑖, 𝑗=1 satisfy Rf .

Proof. For 𝑖, 𝑗 = 1, 2, 3, 4, Proposition 7.4 shows

𝐹∗
𝑖, 𝑗 =

( 4∑︁
𝑘=1

𝐸𝑘,𝑖 𝑝1,1𝐸 𝑗 ,𝑘

)∗
=

4∑︁
𝑘=1

𝐸∗
𝑗 ,𝑘 𝑝

∗
1,1𝐸

∗
𝑘,𝑖

=

4∑︁
𝑘=1

𝐸𝑘, 𝑗 𝑝1,1𝐸𝑖,𝑘 = 𝐹𝑗 ,𝑖 .

Next, we show 𝐹𝑖, 𝑗 = 𝐹𝑗 ,𝑖 for 𝑖, 𝑗 = 1, 2, 3, 4. We are going to prove 𝐹2,4 = 𝐹4,2.
The other 5 cases can be proved similarly. To show that 𝐹2,4 = 𝐹4,2, it suffices to
show 𝐸1,2𝑝1,1𝐸4,1 = 𝐸1,4𝑝1,1𝐸2,1 because it implies 𝐸𝑘,2𝑝1,1𝐸4,𝑘 = 𝐸𝑘,4𝑝1,1𝐸2,𝑘 for
𝑘 = 1, 2, 3, 4 by multiplying 𝐸𝑘,1 from left and 𝐸1,𝑘 from right. By Lemma 7.3, we have

4𝐸1,2𝑝1,1𝐸4,1 = (𝑢1,2 − 𝑢2,1 − 𝑢3,4 + 𝑢4,3)𝑝1,1𝑢4,1𝐸1,1
= (𝑝1,2𝑢1,2 − 𝑝2,1𝑢2,1 − 𝑝3,4𝑢3,4 + 𝑝4,3𝑢4,3)𝑢4,1𝐸1,1
= (𝑝1,2𝑢4,2 + 𝑝2,1𝑢3,1 − 𝑝3,4𝑢2,4 − 𝑝4,3𝑢1,3)𝐸1,1
= (𝑝1,2𝑢1,3𝑢4,4 − 𝑝2,1𝑢1,3𝑢3,3 + 𝑝3,4𝑢1,3𝑢2,2 − 𝑝4,3𝑢1,3)𝐸1,1
= (𝑝1,2 − 𝑝2,1 + 𝑝3,4 − 𝑝4,3)𝑢1,3𝐸1,1

4𝐸1,4𝑝1,1𝐸2,1 = (𝑢1,4 − 𝑢2,3 + 𝑢3,2 − 𝑢4,1)𝑝1,1𝑢2,1𝐸1,1
= (𝑝1,4𝑢1,4 − 𝑝2,3𝑢2,3 + 𝑝3,2𝑢3,2 − 𝑝4,1𝑢4,1)𝑢2,1𝐸1,1
= (𝑝1,4𝑢2,4 + 𝑝2,3𝑢1,3 − 𝑝3,2𝑢4,2 − 𝑝4,1𝑢3,1)𝐸1,1
= (−𝑝1,4𝑢1,3𝑢2,2 + 𝑝2,3𝑢1,3 − 𝑝3,2𝑢1,3𝑢4,4 + 𝑝4,1𝑢1,3𝑢3,3)𝐸1,1
= (−𝑝1,4 + 𝑝2,3 − 𝑝3,2 + 𝑝4,1)𝑢1,3𝐸1,1.
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Since

𝑝1,1 + 𝑝1,2 + 𝑝1,3 + 𝑝1,4 + 𝑝3,1 + 𝑝3,2 + 𝑝3,3 + 𝑝3,4
= 2 = 𝑝1,1 + 𝑝2,1 + 𝑝3,1 + 𝑝4,1 + 𝑝1,3 + 𝑝2,3 + 𝑝3,3 + 𝑝4,3,

we have
𝑝1,2 − 𝑝2,1 + 𝑝3,4 − 𝑝4,3 = −𝑝1,4 + 𝑝2,3 − 𝑝3,2 + 𝑝4,1.

Therefore, we obtain 𝐸1,2𝑝1,1𝐸4,1 = 𝐸1,4𝑝1,1𝐸2,1. Thus we have proved 𝐹2,4 = 𝐹4,2.
Next we show 𝐹𝑖, 𝑗𝐹𝑘,𝑙 = 𝐹𝑖,𝑘𝐹𝑗 ,𝑙 for 𝑖, 𝑗 , 𝑘, 𝑙 = 1, 2, 3, 4, To show this, it suf-

fices to show 𝑝1,1𝐸 𝑗 ,𝑘 𝑝1,1 = 𝑝1,1𝐸𝑘, 𝑗 𝑝1,1 for 𝑗 , 𝑘 = 1, 2, 3, 4. We are going to prove
𝑝1,1𝐸3,4𝑝1,1 = 𝑝1,1𝐸4,3𝑝1,1. The other 5 cases can be proved similarly. This follows from
the following computation

4𝑝1,1𝐸3,4𝑝1,1 = 𝑝1,1 (𝑢3,4 + 𝑢4,3 − 𝑢1,2 − 𝑢2,1)𝑝1,1
= 𝑝1,1 (𝑢3,4 + 𝑢4,3)𝑝1,1 − 𝑝1,1𝑝1,2𝑢1,2 − 𝑝1,1𝑝2,1𝑢2,1
= 𝑝1,1 (𝑢3,4 + 𝑢4,3)𝑝1,1,

4𝑝1,1𝐸4,3𝑝1,1 = 𝑝1,1 (𝑢4,3 + 𝑢3,4 + 𝑢2,1 + 𝑢1,2)𝑝1,1
= 𝑝1,1 (𝑢3,4 + 𝑢4,3)𝑝1,1 + 𝑝1,1𝑝2,1𝑢2,1 + 𝑝1,1𝑝1,2𝑢1,2
= 𝑝1,1 (𝑢3,4 + 𝑢4,3)𝑝1,1.

Finally we show
∑4
𝑖=1 𝐹𝑖,𝑖 = 1. For 𝑖 = 1, 2, 3, 4, we have

𝐹𝑖,𝑖 =

4∑︁
𝑘=1

𝐸𝑘,𝑖 𝑝1,1𝐸𝑖,𝑘 =

4∑︁
𝑘=1

𝑢𝑘,1𝐸1,1𝑢1,𝑖 𝑝1,1𝑢𝑖,1𝐸1,1𝑢1,𝑘

=

4∑︁
𝑘=1

𝑢𝑘,1𝐸1,1𝑝1,𝑖𝑢1,𝑖𝑢𝑖,1𝐸1,1𝑢1,𝑘 =

4∑︁
𝑘=1

𝑢𝑘,1𝐸1,1𝑝1,𝑖𝑢𝑖,𝑖𝐸1,1𝑢1,𝑘

=

4∑︁
𝑘=1

𝑢𝑘,1𝐸1,1𝑝1,𝑖𝐸1,1𝑢1,𝑘 .

Hence we obtain
4∑︁
𝑖=1

𝐹𝑖,𝑖 =

4∑︁
𝑖=1

4∑︁
𝑘=1

𝑢𝑘,1𝐸1,1𝑝1,𝑖𝐸1,1𝑢1,𝑘

=

4∑︁
𝑘=1

𝑢𝑘,1𝐸
2
1,1𝑢1,𝑘 =

4∑︁
𝑘=1

𝑢𝑘,1𝐸1,1𝑢1,𝑘 =

4∑︁
𝑘=1

𝐸𝑘,𝑘 = 1

by Lemma 7.3 and Proposition 7.4. We are done. �
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Proposition 7.6. The sets {𝐸𝑖, 𝑗 }4𝑖, 𝑗=1 and {𝐹𝑖, 𝑗 }4𝑖, 𝑗=1 satisfy Rfe.

Proof. For 𝑖, 𝑗 , 𝑘, 𝑙 = 1, 2, 3, 4, we have 𝐸𝑖, 𝑗𝐹𝑘,𝑙 = 𝐹𝑘,𝑙𝐸𝑖, 𝑗 because

𝐸𝑖, 𝑗𝐹𝑘,𝑙 = 𝐸𝑖, 𝑗

4∑︁
𝑚=1

𝐸𝑚,𝑘 𝑝1,1𝐸𝑙,𝑚 = 𝐸𝑖,𝑘 𝑝1,1𝐸𝑙, 𝑗 ,

𝐹𝑘,𝑙𝐸𝑖, 𝑗 =

4∑︁
𝑚=1

𝐸𝑚,𝑘 𝑝1,1𝐸𝑙,𝑚𝐸𝑖, 𝑗 = 𝐸𝑖,𝑘 𝑝1,1𝐸𝑙, 𝑗

by Proposition 7.4. �

By Proposition 7.4, Proposition 7.5 and Proposition 7.6, we have a ∗-homomorphism
𝛹 : 𝑀4 (𝐶 (R𝑃3)) → 𝐴(4) otw𝛼 (𝐾 × 𝐾) sending 𝑓𝑖, 𝑗 to 𝐹𝑖, 𝑗 and 𝑒𝑖, 𝑗 to 𝐸𝑖, 𝑗 .
We are going to see that this map 𝛹 is the inverse of 𝛷. We first show 𝛹 ◦𝛷 =

id𝐴(4)otw𝛼 (𝐾×𝐾 ) .

Proposition 7.7. For 𝑥 ∈ 𝐴(4) otw𝛼 (𝐾 × 𝐾), we have𝛹 (𝛷(𝑥)) = 𝑥.

Proof. For 𝑖, 𝑗 = 1, 2, 3, 4, we have

𝛹 (𝛷(𝑢𝑖, 𝑗 )) =𝛹 (𝑈𝑖, 𝑗 ) =
4∑︁
𝑘=1

𝜀(𝑖, 𝑘)𝜀(𝑘, 𝑗)𝛹 (𝑒𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑘) )

=

4∑︁
𝑘=1

𝜀(𝑖, 𝑘)𝜀(𝑘, 𝑗)𝐸𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑘)

=
1
4

4∑︁
𝑘=1

𝜀(𝑖, 𝑘)𝜀(𝑘, 𝑗)
4∑︁
𝑚=1

𝜀(𝑡𝑖 (𝑘), 𝑚)𝜀(𝑚, 𝑡 𝑗 (𝑘))𝑢𝑡𝑖 (𝑡𝑘 (𝑚)) ,𝑡 𝑗 (𝑡𝑘 (𝑚))

=
1
4

4∑︁
𝑘=1

4∑︁
𝑙=1

𝜀(𝑖, 𝑘)𝜀(𝑘, 𝑗)𝜀(𝑡𝑖 (𝑘), 𝑡𝑘 (𝑙))𝜀(𝑡𝑘 (𝑙), 𝑡 𝑗 (𝑘))𝑢𝑡𝑖 (𝑙) ,𝑡 𝑗 (𝑙) .

Since we have

1
4

4∑︁
𝑘=1

𝜀(𝑖, 𝑘)𝜀(𝑘, 𝑗)𝜀(𝑡𝑖 (𝑘), 𝑡𝑘 (𝑙))𝜀(𝑡𝑘 (𝑙), 𝑡 𝑗 (𝑘))

=
1
4

4∑︁
𝑘=1

𝜀(𝑖, 𝑘)𝜀(𝑡𝑖 (𝑘), 𝑡𝑘 (𝑙))𝜀(𝑡𝑘 (𝑙), 𝑡 𝑗 (𝑘))𝜀(𝑘, 𝑗)

=
1
4

4∑︁
𝑘=1

𝜀(𝑖, 𝑙)𝜀(𝑘, 𝑡𝑘 (𝑙))𝜀(𝑡𝑘 (𝑙), 𝑘)𝜀(𝑙, 𝑗) = 𝛿𝑙,1,
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we obtain𝛹 (𝛷(𝑢𝑖, 𝑗 )) = 𝑢𝑖, 𝑗 . By the computation in the proof of Proposition 7.6, we have

𝛹 (𝑃1,1) =𝛹
( 4∑︁
𝑖, 𝑗=1

𝑓𝑖, 𝑗𝑒𝑖, 𝑗

)
=

4∑︁
𝑖, 𝑗=1

𝐹𝑖, 𝑗𝐸𝑖, 𝑗 =

4∑︁
𝑖, 𝑗=1

𝐸𝑖,𝑖 𝑝1,1𝐸 𝑗 , 𝑗 = 𝑝1,1.

For 𝑖, 𝑗 = 1, 2, 3, 4, we have

𝛹 (𝛷(𝑝𝑖, 𝑗 )) =𝛹 (𝑃𝑖, 𝑗 ) =𝛹 (𝑈𝑖, 𝑗 )𝛹 (𝑃1,1)𝛹 (𝑈𝑖, 𝑗 )∗ = 𝑢𝑖, 𝑗 𝑝1,1𝑢∗𝑖, 𝑗 = 𝑝𝑖, 𝑗 .

These show that𝛹 (𝛷(𝑥)) = 𝑥 for all 𝑥 ∈ 𝐴(4) otw𝛼 (𝐾 × 𝐾). �

Next, we show𝛷 ◦𝛹 = id𝑀4 (𝐶 (R𝑃3)) .

Proposition 7.8. For 𝑥 ∈ 𝑀4 (𝐶 (R𝑃3)), we have𝛷(𝛹 (𝑥)) = 𝑥.

Proof. For 𝑖, 𝑗 = 1, 2, 3, 4, we have

𝛷(𝛹 (𝑒𝑖, 𝑗 )) =𝛷(𝐸𝑖, 𝑗 ) =
1
4

4∑︁
𝑘=1

𝜀(𝑖, 𝑘)𝜀(𝑘, 𝑗)𝛷(𝑢𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑘) )

=
1
4

4∑︁
𝑘=1

𝜀(𝑖, 𝑘)𝜀(𝑘, 𝑗)𝑈𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑘)

=
1
4

4∑︁
𝑘=1

𝜀(𝑖, 𝑘)𝜀(𝑘, 𝑗)
4∑︁
𝑚=1

𝜀(𝑡𝑖 (𝑘), 𝑚)𝜀(𝑚, 𝑡 𝑗 (𝑘))𝑒𝑡𝑖 (𝑡𝑘 (𝑚)) ,𝑡 𝑗 (𝑡𝑘 (𝑚))

=
1
4

4∑︁
𝑘=1

4∑︁
𝑙=1

𝜀(𝑖, 𝑘)𝜀(𝑘, 𝑗)𝜀(𝑡𝑖 (𝑘), 𝑡𝑘 (𝑙))𝜀(𝑡𝑘 (𝑙), 𝑡 𝑗 (𝑘))𝑒𝑡𝑖 (𝑙) ,𝑡 𝑗 (𝑙)

= 𝑒𝑖, 𝑗

as in the proof of Proposition 7.7. For 𝑖, 𝑗 = 1, 2, 3, 4, we have

𝛷(𝛹 ( 𝑓𝑖, 𝑗 )) =𝛷(𝐹𝑖, 𝑗 ) =
4∑︁
𝑘=1

𝛷(𝐸𝑘,𝑖)𝛷(𝑝1,1)𝛷(𝐸 𝑗 ,𝑘 )

=

4∑︁
𝑘=1

𝑒𝑘,𝑖𝑃1,1𝑒 𝑗 ,𝑘

=

4∑︁
𝑘=1

𝑒𝑘,𝑖

( 4∑︁
𝑙,𝑚=1

𝑓𝑙,𝑚𝑒𝑙,𝑚

)
𝑒 𝑗 ,𝑘

=

4∑︁
𝑘=1

𝑓𝑖, 𝑗𝑒𝑘,𝑘 = 𝑓𝑖, 𝑗 .

These show that𝛷(𝛹 (𝑥)) = 𝑥 for all 𝑥 ∈ 𝑀4 (𝐶 (R𝑃3)). �
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By these two propositions, we get Theorem 3.6. As its corollary, we have the following.

Corollary 7.9 (cf. [2, Theorem 4.1]). There is an injective ∗-homomorphism 𝐴(4) →
𝑀4 (𝐶 (R𝑃3)).

Proof. This follows from Theorem 3.6 because the ∗-homomorphism 𝐴(4) → 𝐴(4) otw𝛼
(𝐾 × 𝐾) is injective. �

One can see that the injective ∗-homomorphism constructed in this corollary is nothing
but the Pauli representation constructed in [3] and considered in [2]. Note that Banica
and Collins remarked after [2, Definition 2.1] that the target of the Pauli representation
can be replaced by 𝑀4 (𝐶 (𝑆𝑂3)) instead of 𝑀4 (𝐶 (𝑆𝑈2)). Here 𝑆𝑂3 is homeomorphic to
R𝑃3 whereas 𝑆𝑈2 is homeomorphic to 𝑆3.

8. Action

One can see that the dual group of 𝐾 × 𝐾 is isomorphic to 𝐾 × 𝐾 using the product of the
cocycle 𝜀 (see below).

Table 8.1. Values of 𝜀(𝑖, 𝑗)𝜀( 𝑗 , 𝑖)

𝑖 𝑗 1 2 3 4
1 1 1 1 1
2 1 1 −1 −1
3 1 −1 1 −1
4 1 −1 −1 1

Let �̂� : 𝐾 × 𝐾 y 𝐴(4) otw𝛼 (𝐾 × 𝐾) be the dual action of 𝛼. Namely �̂� is determined
by the following equation for all 𝑖, 𝑗 , 𝑘, 𝑙

�̂�𝑖, 𝑗 (𝑝𝑘,𝑙) = 𝑝𝑘,𝑙 , �̂�𝑖, 𝑗 (𝑢𝑘,𝑙) = 𝜀(𝑖, 𝑘)𝜀(𝑘, 𝑖)𝜀( 𝑗 , 𝑙)𝜀(𝑙, 𝑗)𝑢𝑘,𝑙 ,

where we write �̂�(𝑡𝑖 ,𝑡 𝑗 ) as �̂�𝑖, 𝑗 .
For 𝑖, 𝑗 =1, 2, 3, 4, define 𝜎𝑖, 𝑗 : R𝑃3 → R𝑃3 by 𝜎𝑖, 𝑗 ( [𝑎1, 𝑎2, 𝑎3, 𝑎4])= [𝑏1, 𝑏2, 𝑏3, 𝑏4]

for [𝑎1, 𝑎2, 𝑎3, 𝑎4] ∈ R𝑃3 where (𝑏1, 𝑏2, 𝑏3, 𝑏4) ∈ 𝑆3 is determined by

(𝑏1, 𝑏2, 𝑏3, 𝑏4)T = 𝑈𝑖, 𝑗 (𝑎1, 𝑎2, 𝑎3, 𝑎4)T,

in other words
∑4
𝑘=1 𝑏𝑘𝑐𝑘 = 𝑐𝑖

(∑4
𝑘=1 𝑎𝑘𝑐𝑘

)
𝑐∗
𝑗
by Proposition 5.2. Let 𝛽 : 𝐾 × 𝐾 y

𝑀4 (𝐶 (R𝑃3)) be the action determined by 𝛽𝑖, 𝑗 (𝐹) = Ad𝑈𝑖, 𝑗 ◦ 𝐹 ◦ 𝜎𝑖, 𝑗 for 𝐹 ∈
𝑀4 (𝐶 (R𝑃3)) = 𝐶 (R𝑃3, 𝑀4 (C)) where we write 𝛽(𝑡𝑖 ,𝑡 𝑗 ) as 𝛽𝑖, 𝑗 .
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Proposition 8.1. The ∗-homomorphism 𝛷 : 𝐴(4) otw𝛼 (𝐾 × 𝐾) → 𝑀4 (𝐶 (R𝑃3)) is
equivariant with respect to �̂� and 𝛽.

Proof. For 𝑖, 𝑗 = 1, 2, 3, 4, we have 𝑃1,1◦𝜎𝑖, 𝑗 = Ad𝑈𝑖, 𝑗◦𝑃1,1. In fact for [𝑎1, 𝑎2, 𝑎3, 𝑎4] ∈
R𝑃3, on one hand we have

(𝑃1,1 ◦ 𝜎𝑖, 𝑗 ) ( [𝑎1, 𝑎2, 𝑎3, 𝑎4]) = (𝑏1, 𝑏2, 𝑏3, 𝑏4)T (𝑏1, 𝑏2, 𝑏3, 𝑏4),

where
(𝑏1, 𝑏2, 𝑏3, 𝑏4)T = 𝑈𝑖, 𝑗 (𝑎1, 𝑎2, 𝑎3, 𝑎4)T,

and on the other hand we have

(Ad𝑈𝑖, 𝑗 ◦ 𝑃1,1) ( [𝑎1, 𝑎2, 𝑎3, 𝑎4]) = 𝑈𝑖, 𝑗 (𝑎1, 𝑎2, 𝑎3, 𝑎4)T (𝑎1, 𝑎2, 𝑎3, 𝑎4)𝑈∗
𝑖, 𝑗

here note 𝑈∗
𝑖, 𝑗

= 𝑈T
𝑖, 𝑗
because the entries of 𝑈𝑖, 𝑗 are −1, 0 or 1. For 𝑖, 𝑗 , 𝑘, 𝑙 = 1, 2, 3, 4,

we have

𝛽𝑖, 𝑗 (𝑃𝑘,𝑙) = Ad𝑈𝑖, 𝑗 ◦ (Ad𝑈𝑘,𝑙 ◦ 𝑃1,1) ◦ 𝜎𝑖, 𝑗
= Ad𝑈𝑖, 𝑗 ◦ Ad𝑈𝑘,𝑙 ◦ Ad𝑈𝑖, 𝑗 ◦ 𝑃1,1
= Ad(𝑈𝑖, 𝑗𝑈𝑘,𝑙𝑈𝑖, 𝑗 ) ◦ 𝑃1,1
= Ad𝑈𝑘,𝑙 ◦ 𝑃1,1 = 𝑃𝑘,𝑙 .

For 𝑖, 𝑗 , 𝑘, 𝑙 = 1, 2, 3, 4, we also have

𝛽𝑖, 𝑗 (𝑈𝑘,𝑙) = Ad𝑈𝑖, 𝑗 ◦𝑈𝑘,𝑙 ◦ 𝜎𝑖, 𝑗
= 𝑈𝑖, 𝑗𝑈𝑘,𝑙𝑈

∗
𝑖, 𝑗

= 𝜀(𝑖, 𝑘)𝜀( 𝑗 , 𝑙)𝑈𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑙)𝑈∗
𝑖, 𝑗

= 𝜀(𝑖, 𝑘)𝜀( 𝑗 , 𝑙)𝜀(𝑘, 𝑖)−1𝜀(𝑙, 𝑗)−1𝑈𝑘,𝑙𝑈𝑖, 𝑗𝑈∗
𝑖, 𝑗

= 𝜀(𝑖, 𝑘)𝜀( 𝑗 , 𝑙)𝜀(𝑘, 𝑖)𝜀(𝑙, 𝑗)𝑈𝑘,𝑙

here note that 𝑈𝑘,𝑙 ∈ 𝑀4 (𝐶 (R𝑃3)) = 𝐶 (R𝑃3, 𝑀4 (C)) is a constant function. These
complete the proof. �

The following is the second main theorem.

Theorem 8.2. The fixed point algebra 𝑀4 (𝐶 (R𝑃3))𝛽 of the action 𝛽 is isomorphic to
𝐴(4).

Proof. This follows from Theorem 3.6 and Proposition 8.1 because the fixed point algebra(
𝐴(4) otw𝛼 (𝐾 × 𝐾)

)𝛼 of �̂� is 𝐴(4). �
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As we remark in Introduction, this theorem can be also obtained by combining [1,
Theorem 3.1, Theorem 5.1] and [4, Proposition 3.3]. Compared with this method, our
proof is explicit and straightforward.

9. Quotient Space R𝑃3/(𝐾 × 𝐾)

Definition 9.1. We set 𝐴 B 𝑀4 (𝐶 (R𝑃3))𝛽 .

By Theorem 8.2, the 𝐶∗-algebra 𝐴(4) is isomorphic to 𝐴. From this section, we
compute the structure of 𝐴 and its K-groups.
In this section, we study the quotient Space R𝑃3/(𝐾 × 𝐾) of R𝑃3 by the action 𝜎 of

𝐾 × 𝐾 . In [6], it is proved that this quotient space R𝑃3/(𝐾 × 𝐾) is homeomorphic to 𝑆3.

Definition 9.2. We denote by 𝑋 the quotient space R𝑃3/(𝐾 × 𝐾) of the action 𝜎 of
𝐾 × 𝐾 . We denote by 𝜋 : R𝑃3 → 𝑋 the quotient map.

We use the following lemma later.

Lemma 9.3. For 𝑖, 𝑗 = 2, 3, 4 and [𝑎1, 𝑎2, 𝑎3, 𝑎4] ∈ R𝑃3 with 𝜎𝑖, 𝑗 ( [𝑎1, 𝑎2, 𝑎3, 𝑎4]) =
[𝑎1, 𝑎2, 𝑎3, 𝑎4], we have 𝑃𝑘,𝑙 ( [𝑎1, 𝑎2, 𝑎3, 𝑎4]) = 𝑃𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑙) ( [𝑎1, 𝑎2, 𝑎3, 𝑎4]) for 𝑘, 𝑙 =
1, 2, 3, 4.

Proof. This follows from

𝑃𝑘,𝑙 ( [𝑎1, 𝑎2, 𝑎3, 𝑎4]) = 𝛽𝑖, 𝑗 (𝑃𝑘,𝑙) ( [𝑎1, 𝑎2, 𝑎3, 𝑎4])
= Ad𝑈𝑖, 𝑗

(
𝑃𝑘,𝑙 (𝜎𝑖, 𝑗 ( [𝑎1, 𝑎2, 𝑎3, 𝑎4]))

)
= Ad𝑈𝑖, 𝑗

(
𝑃𝑘,𝑙 ( [𝑎1, 𝑎2, 𝑎3, 𝑎4])

)
=

(
Ad𝑈𝑖, 𝑗 (𝑃𝑘,𝑙)

)
( [𝑎1, 𝑎2, 𝑎3, 𝑎4])

= 𝑃𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑙) ( [𝑎1, 𝑎2, 𝑎3, 𝑎4]). �

Definition 9.4. For each 𝑖, 𝑗 = 2, 3, 4, define

𝐹𝑖, 𝑗 B
{
[𝑎1, 𝑎2, 𝑎3, 𝑎4] ∈ R𝑃3

��𝜎𝑖, 𝑗 ( [𝑎1, 𝑎2, 𝑎3, 𝑎4]) = [𝑎1, 𝑎2, 𝑎3, 𝑎4]
}
⊂ R𝑃3

to be the set of fixed points of 𝜎𝑖, 𝑗 , and define 𝐹𝑖, 𝑗 ⊂ 𝑋 to be the image 𝜋(𝐹𝑖, 𝑗 ).

We have 𝐹𝑖, 𝑗 = 𝜋−1 (𝐹𝑖, 𝑗 ). The following two propositions can be proved by direct
computation using the computation of𝑈𝑖, 𝑗 after Definition 5.1

Proposition 9.5. For each 𝑖 = 2, 3, 4, 𝜎1,𝑖 and 𝜎𝑖,1 have no fixed points.
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Proposition 9.6. For each 𝑖, 𝑗 = 2, 3, 4, 𝐹𝑖, 𝑗 is homeomorphic to a disjoint union of two
circles. More precisely, we have

𝐹2,2 =
{
[𝑎, 𝑏, 0, 0], [0, 0, 𝑎, 𝑏] ∈ R𝑃3

�� 𝑎, 𝑏 ∈ R, 𝑎2 + 𝑏2 = 1
}

𝐹2,3 =
{
[𝑎, 𝑏,−𝑏, 𝑎], [𝑎, 𝑏, 𝑏,−𝑎] ∈ R𝑃3

�� 𝑎, 𝑏 ∈ R, 2(𝑎2 + 𝑏2) = 1
}

𝐹2,4 =
{
[𝑎, 𝑏, 𝑎, 𝑏], [𝑎, 𝑏,−𝑎,−𝑏] ∈ R𝑃3

�� 𝑎, 𝑏 ∈ R, 2(𝑎2 + 𝑏2) = 1
}

𝐹3,2 =
{
[𝑎, 𝑏, 𝑏, 𝑎], [𝑎, 𝑏,−𝑏,−𝑎] ∈ R𝑃3

�� 𝑎, 𝑏 ∈ R, 2(𝑎2 + 𝑏2) = 1
}

𝐹3,3 =
{
[𝑎, 0, 𝑏, 0], [0, 𝑎, 0, 𝑏] ∈ R𝑃3

�� 𝑎, 𝑏 ∈ R, 𝑎2 + 𝑏2 = 1
}

𝐹3,4 =
{
[𝑎, 𝑎, 𝑏,−𝑏], [𝑎,−𝑎, 𝑏, 𝑏] ∈ R𝑃3

�� 𝑎, 𝑏 ∈ R, 2(𝑎2 + 𝑏2) = 1
}

𝐹4,2 =
{
[𝑎, 𝑏, 𝑎,−𝑏], [𝑎, 𝑏,−𝑎, 𝑏] ∈ R𝑃3

�� 𝑎, 𝑏 ∈ R, 2(𝑎2 + 𝑏2) = 1
}

𝐹4,3 =
{
[𝑎, 𝑎, 𝑏, 𝑏], [𝑎,−𝑎, 𝑏,−𝑏] ∈ R𝑃3

�� 𝑎, 𝑏 ∈ R, 2(𝑎2 + 𝑏2) = 1
}

𝐹4,4 =
{
[𝑎, 0, 0, 𝑏], [0, 𝑎, 𝑏, 0] ∈ R𝑃3

�� 𝑎, 𝑏 ∈ R, 𝑎2 + 𝑏2 = 1
}

Definition 9.7. We set 𝐹 B
⋃4
𝑖, 𝑗=2 𝐹𝑖, 𝑗 and 𝐹 B

⋃4
𝑖, 𝑗=2 𝐹𝑖, 𝑗 . We also set 𝑂 B R𝑃3 \ 𝐹

and 𝑂 B 𝑋 \ 𝐹.

We have 𝐹 = 𝜋−1 (𝐹) and hence 𝑂 = 𝜋−1 (𝑂). Note that 𝑂 is the set of points
[𝑎1, 𝑎2, 𝑎3, 𝑎4] ∈ R𝑃3 such that 𝜎𝑖, 𝑗 ( [𝑎1, 𝑎2, 𝑎3, 𝑎4]) ≠ [𝑎1, 𝑎2, 𝑎3, 𝑎4] for all 𝑖, 𝑗 =

1, 2, 3, 4 other than (𝑖, 𝑗) = (1, 1). Note also that 𝐹 and 𝐹 are closed, and hence 𝑂 and 𝑂
are open.

Definition 9.8. For each 𝑖2, 𝑖3, 𝑖4 with {𝑖2, 𝑖3, 𝑖4} = {2, 3, 4}, define 𝐹(𝑖2𝑖3𝑖4) ⊂ R𝑃3 by

𝐹(𝑖2𝑖3𝑖4) B 𝐹𝑖2 ,2 ∩ 𝐹𝑖3 ,3 ∩ 𝐹𝑖4 ,4,

and define 𝐹(𝑖2𝑖3𝑖4) ⊂ 𝑋 to be the image 𝜋(𝐹(𝑖2𝑖3𝑖4) ).

Proposition 9.9. For each 𝑖2, 𝑖3, 𝑖4 with {𝑖2, 𝑖3, 𝑖4} = {2, 3, 4}, we have

𝐹(𝑖2𝑖3𝑖4) = 𝐹𝑖2 ,2 ∩ 𝐹𝑖3 ,3 = 𝐹𝑖2 ,2 ∩ 𝐹𝑖4 ,4 = 𝐹𝑖3 ,3 ∩ 𝐹𝑖4 ,4.
We also have

𝐹(234) =
{
[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]

}
,

𝐹(342) =

{[
1
2
,
1
2
,
1
2
,
1
2

]
,

[
1
2
,
1
2
,−1
2
,−1
2

]
,

[
1
2
,−1
2
,−1
2
,
1
2

]
,

[
1
2
,−1
2
,
1
2
,−1
2

]}
,

𝐹(423) =

{[
−1
2
,
1
2
,
1
2
,
1
2

]
,

[
1
2
,−1
2
,
1
2
,
1
2

]
,

[
1
2
,
1
2
,−1
2
,
1
2

]
,

[
1
2
,
1
2
,
1
2
,−1
2

]}
,

𝐹(243) =

{[
1
√
2
,
1
√
2
, 0, 0

]
,

[
1
√
2
,− 1√

2
, 0, 0

]
,

[
0, 0,

1
√
2
,
1
√
2

]
,

[
0, 0,

1
√
2
,− 1√

2

]}
,
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𝐹(432) =

{[
1
√
2
, 0,
1
√
2
, 0

]
,

[
1
√
2
, 0,− 1√

2
, 0

]
,

[
0,
1
√
2
, 0,
1
√
2

]
,

[
0,
1
√
2
, 0,− 1√

2

]}
,

𝐹(324) =

{[
1
√
2
, 0, 0,

1
√
2

]
,

[
1
√
2
, 0, 0,− 1√

2

]
,

[
0,
1
√
2
,
1
√
2
, 0

]
,

[
0,
1
√
2
,− 1√

2
, 0

]}
.

Proof. This follows from Proposition 9.6. �

Proposition 9.10. For each 𝑖2, 𝑖3, 𝑖4 with {𝑖2, 𝑖3, 𝑖4} = {2, 3, 4}, 𝐹(𝑖2𝑖3𝑖4) consists of one
point.

Proof. This follows from Proposition 9.9. �

Definition 9.11. For each 𝑖2, 𝑖3, 𝑖4 with {𝑖2, 𝑖3, 𝑖4} = {2, 3, 4}, we set 𝑥 (𝑖2𝑖3𝑖4) ∈ 𝑋 by
𝐹(𝑖2𝑖3𝑖4) = {𝑥 (𝑖2𝑖3𝑖4) }.

Proposition 9.12. For each 𝑖, 𝑗 = 2, 3, 4, 𝐹𝑖, 𝑗 is homeomorphic to a closed interval whose
endpoints are 𝑥 (𝑖2𝑖3𝑖4) with 𝑖 𝑗 = 𝑖,

Proof. This follows from Proposition 9.6. See also Figure 13.2 and the remarks around
it. �

Note that 𝐹 ⊂ 𝑋 is the complete bipartite graph between {𝑥 (234) , 𝑥 (342) , 𝑥 (423) } and
{𝑥 (243) , 𝑥 (432) , 𝑥 (324) }. See Figure 13.2.

Definition 9.13. For 𝑖, 𝑗 = 2, 3, 4, we define

𝐹◦
𝑖, 𝑗 B 𝐹𝑖, 𝑗 \ {𝑥 (𝑖2𝑖3𝑖4) | 𝑖 𝑗 = 𝑖},

and define

𝐹◦ B
4⋃

𝑖, 𝑗=2
𝐹◦
𝑖, 𝑗 , 𝐹• B {𝑥 (234) , 𝑥 (342) , 𝑥 (423) , 𝑥 (243) , 𝑥 (432) , 𝑥 (324) }.

Definition 9.14. We set 𝐹◦
𝑖, 𝑗
B 𝜋−1 (𝐹◦

𝑖, 𝑗
) for 𝑖, 𝑗 = 2, 3, 4, 𝐹◦ B 𝜋−1 (𝐹◦) and 𝐹• B

𝜋−1 (𝐹•).

10. Exact sequences

For a locally compact subset 𝑌 of R𝑃3 which is invariant under the action 𝜎, the action
𝛽 : 𝐾×𝐾 y 𝑀4 (𝐶 (R𝑃3)) induces the action 𝐾×𝐾 y 𝑀4 (𝐶0 (𝑌 )) which is also denoted
by 𝛽. We use the following lemma many times.
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Lemma 10.1. Let 𝑌 be a locally compact subset of R𝑃3 which is invariant under the
action 𝜎. Let 𝑍 be a closed subset of 𝑌 which is invariant under the action 𝜎. Then we
have a a short exact sequence

0 // 𝑀4 (𝐶0 (𝑌 \ 𝑍))𝛽 // 𝑀4 (𝐶0 (𝑌 ))𝛽 // 𝑀4 (𝐶0 (𝑍))𝛽 // 0

Proof. It suffices to show that 𝑀4 (𝐶0 (𝑌 ))𝛽 → 𝑀4 (𝐶0 (𝑍))𝛽 is surjective. The other
assertions are easy to see.
Take 𝑓 ∈ 𝑀4 (𝐶0 (𝑍))𝛽 . Since 𝑀4 (𝐶0 (𝑌 )) → 𝑀4 (𝐶0 (𝑍)) is surjective, there exists

𝑔 ∈ 𝑀4 (𝐶0 (𝑌 )) with 𝑔 |𝑍 = 𝑓 . Set 𝑔0 ∈ 𝑀4 (𝐶0 (𝑌 )) by

𝑔0 B
1
16

4∑︁
𝑖, 𝑗=1

𝛽𝑖, 𝑗 (𝑔).

Then 𝑔0 ∈ 𝑀4 (𝐶0 (𝑌 ))𝛽 and 𝑔0 |𝑍 = 𝑓 . This completes the proof. �

We also use the following lemma many times.

Lemma 10.2. Let𝑌 be a locally compact subset of R𝑃3 which is invariant under the action
𝜎. Let 𝑍 be a closed subset of 𝑌 such that 𝑌 =

⋃4
𝑖, 𝑗=1 𝜎𝑖, 𝑗 (𝑍) and that 𝜎𝑖, 𝑗 (𝑍) ∩ 𝑍 = ∅

for 𝑖, 𝑗 = 1, 2, 3, 4 with (𝑖, 𝑗) ≠ (1, 1). Then we have 𝑀4 (𝐶0 (𝑌 ))𝛽 � 𝑀4 (𝐶0 (𝑍)).

Proof. The restriction map 𝑀4 (𝐶0 (𝑌 ))𝛽 → 𝑀4 (𝐶0 (𝑍)) is an isomorphism because its
inverse is given by

𝑀4 (𝐶0 (𝑍)) 3 𝑓 ↦−→
4∑︁

𝑖, 𝑗=1
𝛽𝑖, 𝑗 ( 𝑓 ) ∈ 𝑀4 (𝐶0 (𝑌 ))𝛽 . �

Under the situation of the lemma above, 𝜋 : 𝑍 → 𝜋(𝑍) = 𝜋(𝑌 ) is a homeomorphism.
Hence we have 𝑀4 (𝐶0 (𝑌 ))𝛽 � 𝑀4 (𝐶0 (𝑍)) � 𝑀4

(
𝐶0 (𝜋(𝑍))

)
= 𝑀4

(
𝐶0 (𝜋(𝑌 ))

)
.

The following lemma generalize Lemma 10.2.

Lemma 10.3. Let 𝐺 be a subgroup of 𝐾 × 𝐾. Let 𝑌 be a locally compact subset of
R𝑃3 which is invariant under the action 𝜎. Suppose that each point of 𝑌 is fixed by
𝜎𝑖, 𝑗 for all (𝑡𝑖 , 𝑡 𝑗 ) ∈ 𝐺. Let 𝑍 be a closed subset of 𝑌 such that 𝑌 =

⋃4
𝑖, 𝑗=1 𝜎𝑖, 𝑗 (𝑍) and

that 𝜎𝑖, 𝑗 (𝑍) ∩ 𝑍 = ∅ for 𝑖, 𝑗 = 1, 2, 3, 4 with (𝑡𝑖 , 𝑡 𝑗 ) ∉ 𝐺. Then we have 𝑀4 (𝐶0 (𝑌 ))𝛽 �
𝐶0 (𝑍, 𝐷) where

𝐷 B {𝑇 ∈ 𝑀4 (C) | Ad𝑈𝑖, 𝑗 (𝑇) = 𝑇 for all (𝑡𝑖 , 𝑡 𝑗 ) ∈ 𝐺}.

Proof. We have a restriction map 𝑀4 (𝐶0 (𝑌 ))𝛽 → 𝐶0 (𝑍, 𝐷) which is an isomorphism
because its inverse is given by

𝐶0 (𝑍, 𝐷) 3 𝑓 ↦−→
∑︁

(𝑖, 𝑗) ∈𝐼
𝛽𝑖, 𝑗 ( 𝑓 ) ∈ 𝑀4 (𝐶0 (𝑌 ))𝛽 ,
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where an index set 𝐼 is chosen so that {(𝑡𝑖 , 𝑡 𝑗 ) ∈ 𝐾 × 𝐾 | (𝑖, 𝑗) ∈ 𝐼} becomes a complete
representative of the quotient (𝐾 × 𝐾)/𝐺. �

Under the situation of the lemma above, 𝜋 : 𝑍 → 𝜋(𝑍) = 𝜋(𝑌 ) is a homeomorphism.
Hence we have 𝑀4 (𝐶0 (𝑌 ))𝛽 � 𝐶0 (𝑍, 𝐷) � 𝐶0 (𝜋(𝑍), 𝐷) = 𝐶0 (𝜋(𝑌 ), 𝐷).

Definition 10.4. We set 𝐼 B 𝑀4 (𝐶0 (𝑂))𝛽 and 𝐵 B 𝑀4 (𝐶 (𝐹))𝛽 .

By Lemma 10.1 we get a short exact sequence

0 −→ 𝐼 −→ 𝐴 −→ 𝐵 −→ 0.

From this sequence, we get a six-term exact sequence

𝐾0 (𝐼) // 𝐾0 (𝐴) // 𝐾0 (𝐵)
𝛿0
��

𝐾1 (𝐵)

𝛿1

OO

𝐾1 (𝐴)oo 𝐾1 (𝐼).oo

From next section, we compute 𝐾𝑖 (𝐵), 𝐾𝑖 (𝐼) and 𝛿𝑖 for 𝑖 = 0, 1. Consult [7] for basics of
K-theory.

11. The Structure of the Quotient 𝐵

Definition 11.1. For 𝑖, 𝑗 = 2, 3, 4, let 𝐷𝑖, 𝑗 be the fixed algebra of Ad𝑈𝑖, 𝑗 on 𝑀4 (C).

From the direct computation, we have the following.

Proposition 11.2. For each 𝑖, 𝑗 = 2, 3, 4, 𝐷𝑖, 𝑗 is isomorphic to 𝑀2 (C) ⊕ 𝑀2 (C). More
precisely, we have

𝐷2,2 =


©«
𝑎 𝑏 0 0
𝑐 𝑑 0 0
0 0 𝑒 𝑓

0 0 𝑔 ℎ

ª®®®®¬
 , 𝐷2,3 =


©«
𝑎 𝑏 𝑐 𝑑

𝑒 𝑓 𝑔 ℎ

−ℎ 𝑔 𝑓 −𝑒
𝑑 −𝑐 −𝑏 𝑎

ª®®®®¬
 ,

𝐷2,4 =


©«
𝑎 𝑏 𝑐 𝑑

𝑒 𝑓 𝑔 ℎ

𝑐 𝑑 𝑎 𝑏

𝑔 ℎ 𝑒 𝑓

ª®®®®¬
 , 𝐷3,2 =


©«
𝑎 𝑏 𝑐 𝑑

𝑒 𝑓 𝑔 ℎ

ℎ 𝑔 𝑓 𝑒

𝑑 𝑐 𝑏 𝑎

ª®®®®¬
 ,

𝐷3,3 =


©«
𝑎 0 𝑏 0
0 𝑐 0 𝑑

𝑒 0 𝑓 0
0 𝑔 0 ℎ

ª®®®®¬
 , 𝐷3,4 =


©«
𝑎 𝑏 𝑐 𝑑

𝑏 𝑎 −𝑑 −𝑐
𝑒 𝑓 𝑔 ℎ

− 𝑓 −𝑒 ℎ 𝑔

ª®®®®¬
 ,
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𝐷4,2 =


©«
𝑎 𝑏 𝑐 𝑑

𝑒 𝑓 𝑔 ℎ

𝑐 −𝑑 𝑎 −𝑏
−𝑔 ℎ −𝑒 𝑓

ª®®®®¬
 , 𝐷4,3 =


©«
𝑎 𝑏 𝑐 𝑑

𝑏 𝑎 𝑑 𝑐

𝑒 𝑓 𝑔 ℎ

𝑓 𝑒 ℎ 𝑔

ª®®®®¬
 ,

𝐷4,4 =


©«
𝑎 0 0 𝑏

0 𝑐 𝑑 0
0 𝑒 𝑓 0
𝑔 0 0 ℎ

ª®®®®¬
 ,

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ run through C.

Definition 11.3. For each 𝑖2, 𝑖3, 𝑖4 with {𝑖2, 𝑖3, 𝑖4} = {2, 3, 4}, define 𝐷 (𝑖2𝑖3𝑖4) ⊂ R𝑃3 by

𝐷 (𝑖2𝑖3𝑖4) B 𝐷𝑖2 ,2 ∩ 𝐷𝑖3 ,3 ∩ 𝐷𝑖4 ,4.

Proposition 11.4. For each 𝑖2, 𝑖3, 𝑖4 with {𝑖2, 𝑖3, 𝑖4} = {2, 3, 4}, we have

𝐷 (𝑖2𝑖3𝑖4) = 𝐷𝑖2 ,2 ∩ 𝐷𝑖3 ,3 = 𝐷𝑖2 ,2 ∩ 𝐷𝑖4 ,4 = 𝐷𝑖3 ,3 ∩ 𝐷𝑖4 ,4,

and 𝐷 (𝑖2𝑖3𝑖4) is isomorphic to C4. More precisely, we have

𝐷 (234) =


©«
𝑎 0 0 0
0 𝑏 0 0
0 0 𝑐 0
0 0 0 𝑑

ª®®®®¬
 𝐷 (423) =


©«
𝑎 𝑏 𝑐 𝑑

𝑏 𝑎 −𝑑 −𝑐
𝑐 −𝑑 𝑎 −𝑏
𝑑 −𝑐 −𝑏 𝑎

ª®®®®¬


𝐷 (342) =


©«
𝑎 𝑏 𝑐 𝑑

𝑏 𝑎 𝑑 𝑐

𝑐 𝑑 𝑎 𝑏

𝑑 𝑐 𝑏 𝑎

ª®®®®¬
 𝐷 (243) =


©«
𝑎 𝑏 0 0
𝑏 𝑎 0 0
0 0 𝑐 𝑑

0 0 𝑑 𝑐

ª®®®®¬


𝐷 (432) =


©«
𝑎 0 𝑏 0
0 𝑐 0 𝑑

𝑏 0 𝑎 0
0 𝑑 0 𝑐

ª®®®®¬
 𝐷 (324) =


©«
𝑎 0 0 𝑑

0 𝑏 𝑐 0
0 𝑐 𝑏 0
𝑑 0 0 𝑎

ª®®®®¬


where 𝑎, 𝑏, 𝑐, 𝑑 run through C.

Definition 11.5. We set 𝐵◦ B 𝑀4 (𝐶0 (𝐹◦))𝛽 and 𝐵• B 𝑀4 (𝐶 (𝐹•))𝛽 . We also set
𝐵◦
𝑖, 𝑗
B 𝑀4 (𝐶0 (𝐹◦

𝑖, 𝑗
))𝛽 for 𝑖, 𝑗 = 2, 3, 4 and 𝐵 (𝑖2𝑖3𝑖4) B 𝑀4 (𝐶0 (𝐹(𝑖2𝑖3𝑖4) ))𝛽 for 𝑖2, 𝑖3, 𝑖4

with {𝑖2, 𝑖3, 𝑖4} = {2, 3, 4}.

From the discussion up to here, we have the following proposition.
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Proposition 11.6. We have

𝐵◦ �
4⊕

𝑖, 𝑗=2
𝐵◦
𝑖, 𝑗 , 𝐵• �

⊕
{𝑖2 ,𝑖3 ,𝑖4 }={2,3,4}

𝐵 (𝑖2𝑖3𝑖4) .

We also have

𝐵◦
𝑖, 𝑗 � 𝐶0 (𝐹◦

𝑖, 𝑗 , 𝐷𝑖, 𝑗 ) � 𝐶0
(
(0, 1), 𝑀2 (C) ⊕ 𝑀2 (C)

)
,

for 𝑖, 𝑗 = 2, 3, 4 and

𝐵 (𝑖2𝑖3𝑖4) � 𝐶 (𝐹(𝑖2𝑖3𝑖4) , 𝐷 (𝑖2𝑖3𝑖4) ) � C4

for 𝑖2, 𝑖3, 𝑖4 with {𝑖2, 𝑖3, 𝑖4} = {2, 3, 4}.

From this proposition, we get

𝐵◦ � 𝐶0
(
(0, 1), 𝑀2 (C) ⊕ 𝑀2 (C)

)9
� 𝐶0

(
(0, 1), 𝑀2 (C))18, 𝐵• � (C4)6 � C24.

12. K-groups of the quotient 𝐵

From the short exact sequence

0 −→ 𝐵◦ −→ 𝐵 −→ 𝐵• −→ 0,

we get a six-term exact sequence

0 = 𝐾0 (𝐵◦) // 𝐾0 (𝐵) // 𝐾0 (𝐵•) � Z24

𝛿
��

0 = 𝐾1 (𝐵•)

OO

𝐾1 (𝐵)oo 𝐾1 (𝐵◦) � Z18.oo

From this sequence, we have 𝐾0 (𝐵) � ker 𝛿 and 𝐾1 (𝐵) � coker 𝛿. Next we compute
𝛿 : 𝐾0 (𝐵•) → 𝐾1 (𝐵◦).

Proposition 12.1. Under the isomorphism 𝛷 : 𝐴(4) → 𝐴, the 𝐶∗-algebra 𝐴ab (4) is
canonically isomorphic to 𝐵•.

Proof. Since 𝐵• � C24 is commutative, the surjection 𝐴(4) � 𝐴 � 𝐵 � 𝐵• factors
through the surjection 𝐴(4) � 𝐴ab (4). The induced surjection 𝐴ab (4) � 𝐵• is an
isomorphism because 𝐴ab (4) � C24. �
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For 𝑖, 𝑗 = 1, 2, 3, 4, the image of 𝑃𝑖, 𝑗 ∈ 𝐴 under a surjection is denoted by the same
symbol 𝑃𝑖, 𝑗 . By Proposition 1.7 and Proposition 12.1, the 24 minimal projections of 𝐵•

are
𝑃(𝑖1𝑖2𝑖3𝑖4) B 𝑃𝑖1 ,1𝑃𝑖2 ,2𝑃𝑖3 ,3𝑃𝑖4 ,4 ∈ 𝐵•

for (𝑖1𝑖2𝑖3𝑖4) ∈ 𝔖4.

Definition 12.2. For 𝜎 ∈ 𝔖4, we define 𝑞𝜎 B [𝑃𝜎]0 ∈ 𝐾0 (𝐵•).

Note that {𝑞𝜎}𝜎∈𝔖4 is a basis of 𝐾0 (𝐵•) � Z24.

Proposition 12.3. For each 𝑖2, 𝑖3, 𝑖4 with {𝑖2, 𝑖3, 𝑖4} = {2, 3, 4}, the 4 minimal projections
of C4 � 𝐵 (𝑖2𝑖3𝑖4) ⊂ 𝐵• are 𝑃𝜎𝑡𝑘 for 𝑘 = 1, 2, 3, 4 where 𝜎 B (1𝑖2𝑖3𝑖4) ∈ 𝔖4.

Proof. Take 𝑖2, 𝑖3, 𝑖4 with {𝑖2, 𝑖3, 𝑖4} = {2, 3, 4}. Since the 4 points in 𝐹(𝑖2𝑖3𝑖4) are fixed
by 𝜎𝑖2 ,2, 𝜎𝑖3 ,3 and 𝜎𝑖4 ,4, we have 𝑃𝑘,𝑙 = 𝑃𝑡𝑖 𝑗 (𝑘) ,𝑡 𝑗 (𝑙) in 𝐵 (𝑖2𝑖3𝑖4) for 𝑘, 𝑙 = 1, 2, 3, 4 and
𝑗 = 2, 3, 4 by Lemma 9.3. More concretely we have

𝑃1,1 = 𝑃𝑖2 ,2 = 𝑃𝑖3 ,3 = 𝑃𝑖4 ,4,

𝑃𝑖2 ,1 = 𝑃1,2 = 𝑃𝑖4 ,3 = 𝑃𝑖3 ,4,

𝑃𝑖3 ,1 = 𝑃𝑖4 ,2 = 𝑃1,3 = 𝑃𝑖2 ,4,

𝑃𝑖4 ,1 = 𝑃𝑖3 ,2 = 𝑃𝑖2 ,3 = 𝑃1,4

in 𝐵 (𝑖2𝑖3𝑖4) . These four projections are mutually orthogonal, and their sum equals to 1. Thus
the 4 minimal projections of 𝐵 (𝑖2𝑖3𝑖4) are 𝑃(1𝑖2𝑖3𝑖4) , 𝑃(𝑖21𝑖4𝑖3) , 𝑃(𝑖3𝑖41𝑖2) and 𝑃(𝑖4𝑖3𝑖21) . �

Take 𝑖, 𝑗 = 2, 3, 4, and fix them for a while. Let (1𝑚2𝑚3𝑚4) ∈ 𝔖4 be the unique even
permutation with 𝑚 𝑗 = 𝑖, and (1𝑛2𝑛3𝑛4) ∈ 𝔖4 be the unique odd permutation with 𝑛 𝑗 = 𝑖.
We set 𝜎 = (1𝑚2𝑚3𝑚4) and 𝜏 = (1𝑛2𝑛3𝑛4). Then we have the following commutative
diagram with exact rows;

0 // 𝐵◦ //

����

𝐵 //

����

𝐵• //

����

0

0 // 𝐵◦
𝑖, 𝑗

// 𝐵𝑖, 𝑗 // 𝐵 (𝑚2𝑚3𝑚4) ⊕ 𝐵 (𝑛2𝑛3𝑛4)
// 0.

ByLemma 9.3, we have 𝑃𝑘,𝑙 = 𝑃𝑡𝑖 (𝑘) ,𝑡 𝑗 (𝑙) in 𝐵𝑖, 𝑗 for 𝑘, 𝑙 = 1, 2, 3, 4. Let𝜔 = (1342) ∈ 𝔖4.
Note that we have 𝑡𝑖 (𝜔(𝑖)) = 𝜔2 (𝑖) and 𝑡𝑖 (𝜔2 (𝑖)) = 𝜔(𝑖). One can see that 𝐵𝑖, 𝑗 is a direct
sum of two 𝐶∗-subalgebras 𝐵∩

𝑖, 𝑗
and 𝐵∪

𝑖, 𝑗
where 𝐵∩

𝑖, 𝑗
is generated by

𝑃1,1 = 𝑃𝑖, 𝑗 , 𝑃1, 𝑗 = 𝑃𝑖,1, 𝑃𝜔 (𝑖) ,𝜔 ( 𝑗) = 𝑃𝜔2 (𝑖) ,𝜔2 ( 𝑗) , 𝑃𝜔 (𝑖) ,𝜔2 ( 𝑗) = 𝑃𝜔2 (𝑖) ,𝜔 ( 𝑗)

and 𝐵∪
𝑖, 𝑗
is generated by

𝑃1,𝜔 ( 𝑗) = 𝑃𝑖,𝜔2 ( 𝑗) , 𝑃1,𝜔2 ( 𝑗) = 𝑃𝑖,𝜔 ( 𝑗) , 𝑃𝜔 (𝑖) ,1 = 𝑃𝜔2 (𝑖) , 𝑗 , 𝑃𝜔 (𝑖) , 𝑗 = 𝑃𝜔2 (𝑖) ,1.
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Note that 𝑃1,1+𝑃1, 𝑗 = 𝑃𝜔 (𝑖) ,𝜔 ( 𝑗) +𝑃𝜔 (𝑖) ,𝜔2 ( 𝑗) is the unit of 𝐵∩
𝑖, 𝑗
, and 𝑃1,𝜔 ( 𝑗) +𝑃1,𝜔2 ( 𝑗) =

𝑃𝜔 (𝑖) ,1 + 𝑃𝜔 (𝑖) , 𝑗 is the unit of 𝐵∪
𝑖, 𝑗
. It turns out that both 𝐵∩

𝑖, 𝑗
and 𝐵∪

𝑖, 𝑗
are isomorphic to

the universal unital 𝐶∗-algebra generated by two projections, which is isomorphic to{
𝑓 ∈ 𝐶 ( [0, 1], 𝑀2 (C))

���� 𝑓 (0) = (
∗ 0
0 ∗

)
, 𝑓 (1) =

(
∗ 0
0 ∗

)}
.

This fact can be proved directly, but we do not prove it here because we do not need it. The
image of 𝐵∩

𝑖, 𝑗
under the surjection 𝐵𝑖, 𝑗 → 𝐵 (𝑚2𝑚3𝑚4)⊕𝐵 (𝑛2𝑛3𝑛4) is (C𝑝𝜎+C𝑝𝜎𝑡 𝑗 )⊕(C𝑝𝜏+

C𝑝𝜏𝑡 𝑗 ). Therefore, the image of 𝐵∪
𝑖, 𝑗
under the surjection 𝐵𝑖, 𝑗 → 𝐵 (𝑚2𝑚3𝑚4) ⊕ 𝐵 (𝑛2𝑛3𝑛4)

is (C𝑝𝜎𝑡𝜔 ( 𝑗) + C𝑝𝜎𝑡𝜔2 ( 𝑗) ) ⊕ (C𝑝𝜏𝑡𝜔 ( 𝑗) + C𝑝𝜏𝑡𝜔2 ( 𝑗) ). We set 𝑣
∩
𝑖, 𝑗
, 𝑣∪
𝑖, 𝑗

∈ 𝐾1 (𝐵◦
𝑖, 𝑗
) by

𝑣∩
𝑖, 𝑗
B 𝛿′(𝑞𝜎) and 𝑣∪𝑖, 𝑗 B 𝛿′(𝑞𝜎𝑡𝜔 ( 𝑗) ) where

𝛿′ : 𝐾0 (𝐵 (𝑚2𝑚3𝑚4) ⊕ 𝐵 (𝑛2𝑛3𝑛4) ) → 𝐾1 (𝐵◦
𝑖, 𝑗 )

is the exponential map. Then we have the following.

Lemma 12.4. The set {𝑣∩
𝑖, 𝑗
, 𝑣∪
𝑖, 𝑗
} is a generator of 𝐾1 (𝐵◦

𝑖, 𝑗
) � Z2, and we have

𝛿′(𝑞𝜎) = 𝛿′(𝑞𝜎𝑡 𝑗 ) = 𝑣∩𝑖, 𝑗 , 𝛿′(𝑞𝜎𝑡𝜔 ( 𝑗) ) = 𝛿′(𝑞𝜎𝑡𝜔2 ( 𝑗) ) = 𝑣
∪
𝑖, 𝑗 ,

𝛿′(𝑞𝜏) = 𝛿′(𝑞𝜏𝑡 𝑗 ) = −𝑣∩𝑖, 𝑗 , 𝛿′(𝑞𝜏𝑡𝜔 ( 𝑗) ) = 𝛿′(𝑞𝜏𝑡𝜔2 ( 𝑗) ) = −𝑣∪𝑖, 𝑗 .

Proof. Choose a closed interval 𝑍 ⊂ R𝑃3 such that 𝜋 : 𝑍 → 𝐹𝑖, 𝑗 is a homeomorphism
(see Figure 13.2 and the remarks around it for an example of such a space). Let
𝑧0, 𝑧1 ∈ 𝑍 be the point such that 𝜋(𝑧0) = 𝑣 (𝑚2𝑚3𝑚4) and 𝜋(𝑧1) = 𝑣 (𝑛2𝑛3𝑛4) . Then we
have 𝐵◦

𝑖, 𝑗
� 𝐶0 (𝑍 \ {𝑧0, 𝑧1}, 𝐷𝑖, 𝑗 ). Let 𝐵′

𝑖, 𝑗
be the inverse image of 𝐵 (𝑚2𝑚3𝑚4) under

the surjection 𝐵𝑖, 𝑗 → 𝐵 (𝑚2𝑚3𝑚4) ⊕ 𝐵 (𝑛2𝑛3𝑛4) . Then we have the following commutative
diagram with exact rows;

0 // 𝐵◦
𝑖, 𝑗

// 𝐵′
𝑖, 𝑗

//

��

𝐵 (𝑚2𝑚3𝑚4)
//

��

0

0 // 𝐵◦
𝑖, 𝑗

// 𝐶0 (𝑍 \ {𝑧0}, 𝐷𝑖, 𝑗 ) // 𝐷𝑖, 𝑗 // 0.

Let us denote by 𝜑 the homomorphism from 𝐾0 (𝐵 (𝑚2𝑚3𝑚4) ) to 𝐾0 (𝐷𝑖, 𝑗 ) induced by the
vertical map from 𝐵 (𝑚2𝑚3𝑚4) � 𝐷 (𝑚2𝑚3𝑚4) to 𝐷𝑖, 𝑗 . Then 𝐾0 (𝐷𝑖, 𝑗 ) � Z2 is spanned by
𝜑(𝑞𝜎) = 𝜑(𝑞𝜎𝑡 𝑗 ) and 𝜑(𝑞𝜎𝑡𝜔 ( 𝑗) ) = 𝜑(𝑞𝜎𝑡𝜔2 ( 𝑗) ). Since𝐾𝑙 (𝐶0 (𝑍 \{𝑧0}, 𝐷𝑖, 𝑗 )) = 0 for 𝑙 =
0, 1, 𝐾0 (𝐷𝑖, 𝑗 ) → 𝐾1 (𝐵◦

𝑖, 𝑗
) is an isomorphism. This shows that {𝑣∩

𝑖, 𝑗
, 𝑣∪
𝑖, 𝑗
} is a generator

of 𝐾1 (𝐵◦
𝑖, 𝑗
) � Z2. We also have 𝛿′(𝑞𝜎) = 𝛿′(𝑞𝜎𝑡 𝑗 ) and 𝛿′(𝑞𝜎𝑡𝜔 ( 𝑗) ) = 𝛿′(𝑞𝜎𝑡

𝜔2 ( 𝑗)
).

Similarly, we have 𝛿′(𝑞𝜏) = 𝛿′(𝑞𝜏𝑡 𝑗 ) and 𝛿′(𝑞𝜏𝑡𝜔 ( 𝑗) ) = 𝛿′(𝑞𝜏𝑡𝜔2 ( 𝑗) ).

127



Takeshi Katsura & Masahito Ogawa & Airi Takeuchi

Since the image of the projection 𝑃1,1 ∈ 𝐵𝑖, 𝑗 under the surjection 𝐵𝑖, 𝑗 → 𝐵 (𝑚2𝑚3𝑚4) ⊕
𝐵 (𝑛2𝑛3𝑛4) is 𝑃𝜎 + 𝑃𝜏 , we have 𝛿′(𝑞𝜎 + 𝑞𝜏) = 0. Hence 𝛿′(𝑞𝜏) = −𝑣∩

𝑖, 𝑗
. Similarly

we have 𝛿′(𝑞𝜎𝑡𝜔 ( 𝑗) + 𝑞𝜏𝑡𝜔 ( 𝑗) ) = 0 because the image of 𝑃1,𝜔 ( 𝑗) ∈ 𝐵𝑖, 𝑗 under the
surjection 𝐵𝑖, 𝑗 → 𝐵 (𝑚2𝑚3𝑚4) ⊕ 𝐵 (𝑛2𝑛3𝑛4) is 𝑃𝜎𝑡𝜔 ( 𝑗) + 𝑃𝜏𝑡𝜔 ( 𝑗) . We are done. �

From these computation, we get the following proposition.

Proposition 12.5. The exponential map 𝛿 : 𝐾0 (𝐵•) → 𝐾1 (𝐵◦) is as Table 12.1.

We will see that 𝐾1 (𝐵) � coker 𝛿 is isomorphic to Z4 ⊕ Z/2Z in Proposition 15.5.
This implies 𝐾0 (𝐵) � ker 𝛿 is isomorphic to Z10 because ker 𝛿 is a free abelian group
with dimension 24 − 18 + 4 = 10. Below, we examine the generator of 𝐾0 (𝐵) � ker 𝛿.
For 𝑖, 𝑗 = 1, 2, 3, 4, we have

𝑃𝑖, 𝑗 = 𝑃𝑖, 𝑗

∑︁
𝑘≠𝑖

𝑛∑︁
𝑙=1

𝑃𝑘,𝑙 =
∑︁
𝑖=𝜎 ( 𝑗)

𝑃𝜎

in 𝐵•. Hence [𝑃𝑖, 𝑗 ]0 =
∑
𝑖=𝜎 ( 𝑗) 𝑞𝜎 in 𝐾0 (𝐵•).

Proposition 12.6. The group ker 𝛿 is generated by {[𝑃𝑖, 𝑗 ]0 | 𝑖, 𝑗 = 1, 2, 3, 4}.

Proof. It is straightforward to check that [𝑃𝑖, 𝑗 ]0 is in ker 𝛿 for 𝑖, 𝑗 = 1, 2, 3, 4.
Take 𝑥 ∈ ker 𝛿, and we will show that 𝑥 is in the subgroup generated by {[𝑃𝑖, 𝑗 ]0 |

𝑖, 𝑗 = 1, 2, 3, 4}. Write 𝑥 =
∑
𝜎∈𝔖4 𝑛𝜎𝑞𝜎 with 𝑛𝜎 ∈ Z. Subtracting 𝑛(4213) [𝑃2,2]0 +

𝑛(4132) [𝑃1,2]0 from 𝑥, we may assume 𝑛(4213) = 𝑛(4132) = 0 without loss of generality.
Subtracting 𝑛(4312) [𝑃3,2]0+𝑛(4123) [𝑃2,3]0+𝑛(4231) [𝑃1,4]0 from 𝑥, we may further assume
𝑛(4312) = 𝑛(4123) = 𝑛(4231) = 0 without loss of generality. Subtracting 𝑛(2341) [𝑃2,1]0 +
𝑛(3142) [𝑃3,1]0 from 𝑥, we may further assume 𝑛(2341) = 𝑛(3142) = 0 without loss of
generality. Subtracting 𝑛(2413) [𝑃4,2]0 + 𝑛(3214) [𝑃4,4]0 + 𝑛(1324) [𝑃1,1]0 from 𝑥, we may
further assume 𝑛(2413) = 𝑛(3214) = 𝑛(1324) = 0 without loss of generality. Now we will
show 𝑥 = 0 using 𝑥 ∈ ker 𝛿.
Since 𝑛(3241) + 𝑛(4132) = 𝑛(3142) + 𝑛(4231) , we have 𝑛(3241) = 0.
Since 𝑛(2314) + 𝑛(3241) = 𝑛(2341) + 𝑛(3214) , we have 𝑛(2314) = 0.
Since 𝑛(1423) + 𝑛(2314) = 𝑛(1324) + 𝑛(2413) , we have 𝑛(1423) = 0.
Since 𝑛(1423) + 𝑛(4132) = 𝑛(1432) + 𝑛(4123) , we have 𝑛(1432) = 0.
Since 𝑛(3124) + 𝑛(4213) = 𝑛(3214) + 𝑛(4123) , we have 𝑛(3124) = 0.
Since 𝑛(2431) + 𝑛(4213) = 𝑛(2413) + 𝑛(4231) , we have 𝑛(2431) = 0.
Since 𝑛(1342) + 𝑛(2431) = 𝑛(1432) + 𝑛(2341) , we have 𝑛(1342) = 0.
Since 𝑛(2314) + 𝑛(4132) = 𝑛(2134) + 𝑛(4312) , we have 𝑛(2134) = 0.
Since 𝑛(2431) + 𝑛(3124) = 𝑛(2134) + 𝑛(3421) , we have 𝑛(3421) = 0.
Since 𝑛(1423) + 𝑛(3241) = 𝑛(1243) + 𝑛(3421) , we have 𝑛(1243) = 0.
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Table 12.1. Computation of the exponential map 𝛿

2,2 3,3 4,4 4,3 2,4 3,2 3,4 4,2 2,3
𝑞 𝑣 ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪
(1234) 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
(2143) 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
(3412) 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
(4321) 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
(1342) 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
(2431) 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0
(3124) 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0
(4213) 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0
(1423) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
(2314) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
(3241) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
(4132) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
(1243) −1 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0
(2134) −1 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0
(3421) 0 −1 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0
(4312) 0 −1 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0
(1432) 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0
(2341) 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0
(3214) 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0
(4123) 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0
(1324) 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 −1 0
(2413) 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 −1 0
(3142) 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 −1
(4231) 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0 −1

Since 𝑛(1234) + 𝑛(2143) = 𝑛(1243) + 𝑛(2134) = 0, 𝑛(1234) + 𝑛(3412) = 𝑛(1432) + 𝑛(3214) = 0
and 𝑛(2143) + 𝑛(3412) = 𝑛(2413) + 𝑛(3142) = 0, we have 2𝑛(1234) = 0. Hence 𝑛(1234) = 0.
This implies 𝑛(2143) = 𝑛(3412) = 0. Finally, since 𝑛(1234) + 𝑛(4321) = 𝑛(1324) + 𝑛(4231) , we
have 𝑛(4321) = 0. We have shown that 𝑥 = 0. This completes the proof. �

From Proposition 12.6 (or its proof), we see that 𝐾0 (𝐵) � ker 𝛿 is isomorphic to
Z𝑛 with 𝑛 ≤ 10. Note that the group generated by {[𝑃𝑖, 𝑗 ]0 | 𝑖, 𝑗 = 1, 2, 3, 4} is in fact
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generated by 10 elements

[𝑃1,1]0, [𝑃1,2]0, [𝑃1,3]0, [𝑃1,4]0, [𝑃2,1]0, [𝑃2,2]0, [𝑃2,3]0, [𝑃3,1]0, [𝑃3,2]0, [𝑃3,3]0.

We will show that 𝐾0 (𝐵) � ker 𝛿 is isomorphic to Z10 in Proposition 15.5.

Table 12.2. Computation of [𝑃𝑖, 𝑗 ]0

𝑖 1 2 3 4
𝑞 𝑗 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
(1234) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(2143) 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
(3412) 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
(4321) 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
(1342) 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
(2431) 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0
(3124) 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
(4213) 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0
(1423) 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
(2314) 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
(3241) 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0
(4132) 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0
(1243) 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
(2134) 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
(3421) 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0
(4312) 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0
(1432) 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
(2341) 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
(3214) 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
(4123) 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
(1324) 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
(2413) 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0
(3142) 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0
(4231) 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0
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The positive cone 𝐾0 (𝐵•)+ of 𝐾0 (𝐵•) is the set of sums of 𝑞𝜎’s. In other words, we
have

𝐾0 (𝐵•)+ =

{ ∑︁
𝜎∈𝔖4

𝑛𝜎𝑞𝜎

����� 𝑛𝜎 = 0, 1, 2, . . .

}
Proposition 12.7. The intersection 𝐾0 (𝐵•)+ ∩ ker 𝛿 is the set of sums of [𝑃𝑖, 𝑗 ]0’s.

Proof. It is clear that [𝑃𝑖, 𝑗 ]0 is in 𝐾0 (𝐵•)+ ∩ ker 𝛿 for 𝑖, 𝑗 = 1, 2, 3, 4. Thus the set of
sums of [𝑃𝑖, 𝑗 ]0’s is contained in 𝐾0 (𝐵•)+ ∩ ker 𝛿.
Take 𝑥 ∈ 𝐾0 (𝐵•)+ ∩ ker 𝛿. By Proposition 12.6, there exist 𝑛𝑖, 𝑗 ∈ Z for 𝑖, 𝑗 = 1, 2, 3, 4

such that 𝑥 =
∑4
𝑖, 𝑗=1 𝑛𝑖, 𝑗 [𝑃𝑖, 𝑗 ]0. We set 𝑛 B

∑
𝑛𝑖, 𝑗<0 (−𝑛𝑖, 𝑗 ). If 𝑛 = 0, then 𝑥 is in the set of

sums of [𝑃𝑖, 𝑗 ]0’s. If 𝑛 > 0, then we will show that there exist 𝑛′𝑖, 𝑗 ∈ Z for 𝑖, 𝑗 = 1, 2, 3, 4
such that 𝑥 =

∑4
𝑖, 𝑗=1 𝑛

′
𝑖, 𝑗

[𝑃𝑖, 𝑗 ]0 and that 𝑛′ B
∑
𝑛′
𝑖, 𝑗
<0 (−𝑛′𝑖, 𝑗 ) satisfies 0 ≤ 𝑛′ < 𝑛.

Repeating this argument at most 𝑛 times, we will find 𝑛′′
𝑖, 𝑗

∈ Z for 𝑖, 𝑗 = 1, 2, 3, 4 such that
𝑥 =

∑4
𝑖, 𝑗=1 𝑛

′′
𝑖, 𝑗

[𝑃𝑖, 𝑗 ]0 and that 𝑛′′ B
∑
𝑛′′
𝑖, 𝑗
<0 (−𝑛′′𝑖, 𝑗 ) satisfies 𝑛′′ = 0. This shows that 𝑥

is in the set of sums of [𝑃𝑖, 𝑗 ]0’s.
Since 𝑛 > 0 we have 𝑖0, 𝑗0 ∈ {1, 2, 3, 4} such that 𝑛𝑖0 , 𝑗0 < 0. To simplify the notation,

we assume 𝑖0 = 3 and 𝑗0 = 1. The other 15 cases can be shown similarly. Since
𝑥 ∈ 𝐾0 (𝐵•)+, the coefficient of 𝑣𝜎 in 𝑥 is non-negative for all 𝜎 ∈ 𝔖4. In particular, so
is for 𝜎 ∈ 𝔖4 with 𝑖0 = 𝜎( 𝑗0). Since the coefficient of 𝑣 (3,1,2,4) in 𝑥 is non-negative we
have 𝑛3,1 + 𝑛1,2 + 𝑛2,3 + 𝑛4,4 ≥ 0. Since 𝑛3,1 < 0, we have 𝑛1,2 + 𝑛2,3 + 𝑛4,4 > 0. Hence
either 𝑛1,2, 𝑛2,3 or 𝑛4,4 is positive. Similarly, since the coefficients of

𝑣 (3,1,4,2) , 𝑣 (3,2,1,4) , 𝑣 (3,2,4,1) , 𝑣 (3,4,1,2) , 𝑣 (3,4,2,1)

in 𝑥 are non-negative, we obtain that either 𝑛1,2, 𝑛4,3 or 𝑛2,4 is positive etc. Then by
Lemma 12.8 below we have either

(i) 𝑛𝑖1 ,2 𝑛𝑖1 ,3 and 𝑛𝑖1 ,4 are positive for some 𝑖1 ∈ {1, 2, 4},

(ii) 𝑛1, 𝑗1 𝑛2, 𝑗1 and 𝑛4, 𝑗1 are positive for some 𝑗1 ∈ {2, 3, 4}, or

(iii) 𝑛𝑖1 , 𝑗1 , 𝑛𝑖1 , 𝑗2 , 𝑛𝑖2 , 𝑗1 and 𝑛𝑖2 , 𝑗2 are positive for some distinct 𝑖1, 𝑖2 ∈ {1, 2, 4} and
distinct 𝑗1, 𝑗2 ∈ {2, 3, 4}.

In the case (i), we set 𝑛′
𝑖, 𝑗
by

𝑛′𝑖, 𝑗 =


𝑛𝑖, 𝑗 + 1 for 𝑖 ∈ {1, 2, 3, 4} \ {𝑖1} and 𝑗 = 1,
𝑛𝑖, 𝑗 − 1 for 𝑖 = 𝑖1 and 𝑗 = 2, 3, 4
𝑛𝑖, 𝑗 otherwise.
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Then since 𝑛′3,1 = 𝑛3,1 + 1, 𝑛′ B
∑
𝑛′
𝑖, 𝑗
<0 (−𝑛′𝑖, 𝑗 ) satisfies 0 ≤ 𝑛′ < 𝑛. We also have

𝑥 =
∑4
𝑖, 𝑗=1 𝑛

′
𝑖, 𝑗

[𝑃𝑖, 𝑗 ]0 because
∑4
𝑖=1 [𝑃𝑖,1]0 =

∑4
𝑗=1 [𝑃𝑖1 , 𝑗 ]0. In the case (ii), we get the

same conclusion for 𝑛′
𝑖, 𝑗
defined by

𝑛′𝑖, 𝑗 =


𝑛𝑖, 𝑗 + 1 for 𝑖 = 3 and 𝑗 ∈ {1, 2, 3, 4} \ { 𝑗1},
𝑛𝑖, 𝑗 − 1 for 𝑖 = 1, 2, 4 and 𝑗 = 𝑗1

𝑛𝑖, 𝑗 otherwise.

In the case (iii), we define 𝑛′
𝑖, 𝑗
by

𝑛′𝑖, 𝑗 =


𝑛𝑖, 𝑗 + 1 for 𝑖 ∈ {1, 2, 3, 4} \ {𝑖1, 𝑖2} and 𝑗 ∈ {1, 2, 3, 4} \ { 𝑗1, 𝑗2},
𝑛𝑖, 𝑗 − 1 for 𝑖 = 𝑖1, 𝑖2 and 𝑗 = 𝑗1, 𝑗2

𝑛𝑖, 𝑗 otherwise.

Since 𝑛′3,1 = 𝑛3,1 + 1, 𝑛′ B
∑
𝑛′
𝑖, 𝑗
<0 (−𝑛′𝑖, 𝑗 ) satisfies 0 ≤ 𝑛′ < 𝑛. We also have 𝑥 =∑4

𝑖, 𝑗=1 𝑛
′
𝑖, 𝑗

[𝑃𝑖, 𝑗 ]0 because
4∑︁
𝑖=1

[𝑃𝑖, 𝑗1 ]0 +
4∑︁
𝑖=1

[𝑃𝑖, 𝑗2 ]0 =
4∑︁
𝑗=1

[𝑃𝑖3 , 𝑗 ]0 +
4∑︁
𝑗=1

[𝑃𝑖4 , 𝑗 ]0.

where {𝑖3, 𝑖4} = {1, 2, 3, 4} \ {𝑖1, 𝑖2}. This completes the proof. �

Lemma 12.8. Let 𝑎, 𝑏, 𝑐 and 𝑑, 𝑒, 𝑓 are distinct three numbers, respectively. Suppose
𝑛𝑖, 𝑗 ∈ Z for 𝑖 = 𝑎, 𝑏, 𝑐 and 𝑗 = 𝑑, 𝑒, 𝑓 satisfy that either 𝑛𝜔 (𝑑) ,𝑑 , 𝑛𝜔 (𝑒) ,𝑒 or 𝑛𝜔 ( 𝑓 ) , 𝑓 is
positive for all bijection 𝜔 : {𝑑, 𝑒, 𝑓 } → {𝑎, 𝑏, 𝑐}. Then we have either

(i) 𝑛𝑖1 ,𝑑 𝑛𝑖1 ,𝑒 and 𝑛𝑖1 , 𝑓 are positive for some 𝑖1 ∈ {𝑎, 𝑏, 𝑐},

(ii) 𝑛𝑎, 𝑗1 𝑛𝑏, 𝑗1 and 𝑛𝑐, 𝑗1 are positive for some 𝑗1 ∈ {𝑑, 𝑒, 𝑓 }, or

(iii) 𝑛𝑖1 , 𝑗1 , 𝑛𝑖1 , 𝑗2 , 𝑛𝑖2 , 𝑗1 and 𝑛𝑖2 , 𝑗2 are positive for some distinct 𝑖1, 𝑖2 ∈ {𝑎, 𝑏, 𝑐} and
distinct 𝑗1, 𝑗2 ∈ {𝑑, 𝑒, 𝑓 }.

Proof. To the contrary, assume that the conclusion does not hold. Then for 𝑗 = 𝑑, 𝑒, 𝑓 ,
either 𝑛𝑎, 𝑗 , 𝑛𝑏, 𝑗 or 𝑛𝑐, 𝑗 is non-positive. Thus we obtain a map 𝜔 : {𝑑, 𝑒, 𝑓 } → {𝑎, 𝑏, 𝑐}
such that 𝑛𝜔 ( 𝑗) , 𝑗 is non-positive for 𝑗 = 𝑑, 𝑒, 𝑓 . If the cardinality of the image of 𝜔 is
three, then 𝜔 is a bijection and it contradicts the assumption. If the cardinality of the
image of 𝜔 is two, let 𝑖1 be the element in {𝑎, 𝑏, 𝑐} which is not in the image of 𝜔. Then
we have either 𝑛𝑖1 ,𝑑 𝑛𝑖1 ,𝑒 or 𝑛𝑖1 , 𝑓 is non-positive. Let 𝑗1 ∈ {𝑑, 𝑒, 𝑓 } be an element such
that 𝑛𝑖1 , 𝑗1 is non-positive. If the cardinality of 𝜔−1 (𝜔( 𝑗1)) is two, we get a bijection
𝜔′ : {𝑑, 𝑒, 𝑓 } → {𝑎, 𝑏, 𝑐} such that 𝑛𝜔 (𝑑) ,𝑑 , 𝑛𝜔 (𝑒) ,𝑒 and 𝑛𝜔 ( 𝑓 ) , 𝑓 are non-positive. This
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is a contradiction. If the cardinality of 𝜔−1 (𝜔( 𝑗1)) is one, we have either 𝑛𝑖1 , 𝑗2 , 𝑛𝑖1 , 𝑗3 ,
𝑛𝑖2 , 𝑗2 or 𝑛𝑖2 , 𝑗3 is non-positive where 𝑖2 = 𝜔( 𝑗1) and { 𝑗2, 𝑗3} = {𝑑, 𝑒, 𝑓 } \ { 𝑗1}. In this case,
we can find a bijection 𝜔′ : {𝑑, 𝑒, 𝑓 } → {𝑎, 𝑏, 𝑐} such that 𝑛𝜔 (𝑑) ,𝑑 , 𝑛𝜔 (𝑒) ,𝑒 and 𝑛𝜔 ( 𝑓 ) , 𝑓
are non-positive. This is a contradiction. Finally, if the cardinality of the image of 𝜔 is one,
let 𝑖1 be the unique element of the image of 𝜔, and 𝑖2 and 𝑖3 be the other two elements in
{𝑎, 𝑏, 𝑐}. We have 𝑗2, 𝑗3 ∈ {𝑑, 𝑒, 𝑓 } such that 𝑛𝑖2 , 𝑗2 and 𝑛𝑖3 , 𝑗3 are non-positive. If 𝑗2 ≠ 𝑗3,
then we can find a bijection 𝜔′ : {𝑑, 𝑒, 𝑓 } → {𝑎, 𝑏, 𝑐} such that 𝑛𝜔 (𝑑) ,𝑑 , 𝑛𝜔 (𝑒) ,𝑒 and
𝑛𝜔 ( 𝑓 ) , 𝑓 are non-positive. This is a contradiction. If 𝑗2 = 𝑗3, then we have either 𝑛𝑖2 , 𝑗1 ,
𝑛𝑖2 , 𝑗′1 , 𝑛𝑖3 , 𝑗′1 or 𝑛𝑖3 , 𝑗1 is non-positive where { 𝑗1, 𝑗

′
1} = {𝑑, 𝑒, 𝑓 } \ { 𝑗2}. In this case, we

can find a bijection 𝜔′ : {𝑑, 𝑒, 𝑓 } → {𝑎, 𝑏, 𝑐} such that 𝑛𝜔 (𝑑) ,𝑑 , 𝑛𝜔 (𝑒) ,𝑒 and 𝑛𝜔 ( 𝑓 ) , 𝑓 are
non-positive. This is a contradiction. We are done. �

13. The Structure of the Ideal 𝐼

Definition 13.1. Define a subspace 𝑉 of R𝑃3 by

𝑉 B
{
[𝑎1, 𝑎2, 𝑎3, 𝑎4] ∈ R𝑃3

�� 𝑎1, 𝑎2, 𝑎3 > |𝑎4 |
}
.

The next proposition gives us a motivation to compute the subspace 𝑉 and its closure
𝑉 in R𝑃3.

Proposition 13.2. We have the following facts.

(i) For each 𝑖, 𝑗 = 1, 2, 3, 4 with (𝑖, 𝑗) ≠ (1, 1), we have 𝜎𝑖, 𝑗 (𝑉) ∩𝑉 = ∅

(ii) The restriction of 𝜋 to 𝑉 is a homeomorphism onto 𝜋(𝑉) ⊂ 𝑋 .

(iii) 𝑉 =
{
[𝑎1, 𝑎2, 𝑎3, 𝑎4] ∈ R𝑃3

�� 𝑎1, 𝑎2, 𝑎3 ≥ |𝑎4 |
}

and 𝜋(𝑉) = 𝑋 .

Proof. (i) and (iii) can be checked directly, and (ii) follows from (i). �

In the next proposition, when we write [𝑎1, 𝑎2, 𝑎3, 𝑎4] ∈ 𝑉 , we mean (𝑎1, 𝑎2, 𝑎3, 𝑎4)
satisfies 𝑎1, 𝑎2, 𝑎3 ≥ |𝑎4 |.

Proposition 13.3. The map

ℎ : 𝑉 3 [𝑎1, 𝑎2, 𝑎3, 𝑎4] ↦−→
(
3𝑎21+𝑎

2
4+4𝑎4 |𝑎4 |, 3𝑎

2
2+𝑎

2
4+4𝑎4 |𝑎4 |, 3𝑎

2
3+𝑎

2
4+4𝑎4 |𝑎4 |

)
∈ R3

is a homeomorphism onto the hexahedron whose 6 faces are isosceles right triangles and
whose vertices are (0, 0, 0), (3, 0, 0), (0, 3, 0), (0, 0, 3) and (2, 2, 2). This map sends 𝑉
onto the interior of the hexahedron.
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Proof. First note that we have |𝑎4 | ≤ 1/2 for [𝑎1, 𝑎2, 𝑎3, 𝑎4] ∈ 𝑉 . When |𝑎4 | = 1/2,
we have 𝑎1 = 𝑎2 = 𝑎3 = 1/2. We have ℎ( [1/2, 1/2, 1/2, 1/2]) = (2, 2, 2) and
ℎ( [1/2, 1/2, 1/2,−1/2]) = (0, 0, 0). When |𝑎4 | = 0, we have 𝑎1, 𝑎2, 𝑎3 ≥ 0 and
𝑎21 + 𝑎

2
2 + 𝑎

2
3 = 1. Thus{

ℎ( [𝑎1, 𝑎2, 𝑎3, 0])
�� [𝑎1, 𝑎2, 𝑎3, 0] ∈ 𝑉}

=
{
(𝑥, 𝑦, 𝑧) ∈ R3

�� 𝑥, 𝑦, 𝑧 ≥ 0, 𝑥 + 𝑦 + 𝑧 = 3}
which is the equilateral triangle whose vertices are (3, 0, 0), (0, 3, 0) and (0, 0, 3). For
each 𝑡 with −1/2 < 𝑡 < 0, we have{

ℎ( [𝑎1, 𝑎2, 𝑎3, 𝑡])
�� [𝑎1, 𝑎2, 𝑎3, 𝑡] ∈ 𝑉}

=
{
(𝑥, 𝑦, 𝑧) ∈ R3

�� 𝑥, 𝑦, 𝑧 ≥ 0, 𝑥 + 𝑦 + 𝑧 = 3(1 − 4𝑡2)}
which is the equilateral triangle whose vertices are (3(1 − 4𝑡2), 0, 0), (0, 3(1 − 4𝑡2), 0)
and (0, 0, 3(1 − 4𝑡2)). Thus{

ℎ( [𝑎1, 𝑎2, 𝑎3, 𝑎4])
�� [𝑎1, 𝑎2, 𝑎3, 𝑎4] ∈ 𝑉, 𝑎4 ≤ 0}

is the tetrahedron whose vertices are (0, 0, 0), (3, 0, 0), (0, 3, 0) and (0, 0, 3). Note
that for each [𝑎1, 𝑎2, 𝑎3, 𝑎4] ∈ 𝑉 with 𝑎4 ≥ 0, the point ℎ( [𝑎1, 𝑎2, 𝑎3, 𝑎4]) is the
reflection point of ℎ( [𝑎1, 𝑎2, 𝑎3,−𝑎4]) with respect to the plane 𝑥 + 𝑦 + 𝑧 = 3 because
the vector (8𝑎24, 8𝑎

2
4, 8𝑎

2
4) is orthogonal to the plane 𝑥 + 𝑦 + 𝑧 = 3 and the point

(3𝑎21 + 𝑎
2
4, 3𝑎

2
2 + 𝑎

2
4, 3𝑎

2
3 + 𝑎

2
4) is on the plane 𝑥 + 𝑦 + 𝑧 = 3. Thus{

ℎ( [𝑎1, 𝑎2, 𝑎3, 𝑎4])
�� [𝑎1, 𝑎2, 𝑎3, 𝑎4] ∈ 𝑉, 𝑎4 ≥ 0}

is the reflection of the tetrahedron above with respect to the plane 𝑥 + 𝑦 + 𝑧 = 3, which in
turn is the tetrahedron whose vertices are (3, 0, 0), (0, 3, 0), (0, 0, 3) and (2, 2, 2). From the
discussion above, we see that ℎ is injective. Therefore we see that ℎ is a homeomorphism
from 𝑉 onto the hexahedron whose vertices are (0, 0, 0), (3, 0, 0), (0, 3, 0), (0, 0, 3) and
(2, 2, 2). We can also see that the map ℎ sends 𝑉 onto the interior of the hexahedron. �

Definition 13.4. Define 𝑂0 B 𝜋(𝑉) ⊂ 𝑂.

By Proposition 13.2(ii) and Proposition 13.3, 𝑂0 � 𝑉 is homeomorphic to R3.

Definition 13.5. We set 𝐸 B 𝐹 ∩𝑉 and 𝐸𝑖, 𝑗 B 𝐹𝑖, 𝑗 ∩𝑉 for 𝑖, 𝑗 = 2, 3, 4.

We have 𝐸 =
⋃4
𝑖, 𝑗=2 𝐸𝑖, 𝑗 . For 𝑖, 𝑗 = 2, 3, 4 with 𝑖 ≠ 𝑗 , the map 𝜋 : 𝐸𝑖, 𝑗 → 𝐹𝑖, 𝑗 is a

homeomorphism. For 𝑖 = 2, 3, 4 the map 𝜋 : 𝐸𝑖,𝑖 → 𝐹𝑖,𝑖 is a 2-to-1map except the middle
point.
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[1/2, 1/2, 1/2,−1/2] [1, 0, 0, 0]

[0, 1, 0, 0]

[0, 0, 1, 0] [1/2, 1/2, 1/2, 1/2]

Figure 13.1. 𝑉

𝑥 (423)

𝑥 (342)

𝑥 (243)

𝑥 (324)

𝑥 (432)

𝐹3,4

𝐹4,2

𝐹2,3

𝐹2,4 𝐹4,3

𝐹3,2

[1/2, 1/2, 1/2,−1/2]

[1/2, 1/2, 1/2, 1/2]

[𝑡, 𝑡, 0, 0]

[0, 𝑡, 𝑡, 0]

[𝑡, 0, 𝑡, 0]

[1, 0, 0, 0]

[0, 1, 0, 0]

[0, 0, 1, 0]

𝐸3,4

𝐸4,2

𝐸2,3

𝐸3,3

𝐸4,4

𝐸2,4
𝐸4,3

𝐸3,2

𝐸2,2

−→ 𝑥 (234)

𝐹2,2

𝐹4,4

𝐹3,3

Figure 13.2. 𝜋 : 𝐸 → 𝐹 (𝑡 = 1/
√
2)

We have

𝐸2,2 =
{
[𝑎, 𝑏, 0, 0] ∈ 𝑉

�� 𝑎, 𝑏 ≥ 0, 𝑎2 + 𝑏2 = 1
}
,

𝐸2,3 =
{
[𝑎, 𝑏, 𝑏,−𝑎] ∈ 𝑉

�� 0 ≤ 𝑎 ≤ 𝑏, 2(𝑎2 + 𝑏2) = 1
}
,

𝐸2,4 =
{
[𝑎, 𝑏, 𝑎, 𝑏] ∈ 𝑉

�� 0 ≤ 𝑏 ≤ 𝑎, 2(𝑎2 + 𝑏2) = 1
}
,

𝐸3,2 =
{
[𝑎, 𝑏, 𝑏, 𝑎] ∈ 𝑉

�� 0 ≤ 𝑎 ≤ 𝑏, 2(𝑎2 + 𝑏2) = 1
}
,

𝐸3,3 =
{
[𝑎, 0, 𝑏, 0] ∈ 𝑉

�� 𝑎, 𝑏 ≥ 0, 𝑎2 + 𝑏2 = 1
}
,

𝐸3,4 =
{
[𝑎, 𝑎, 𝑏,−𝑏] ∈ 𝑉

�� 0 ≤ 𝑏 ≤ 𝑎, 2(𝑎2 + 𝑏2) = 1
}
,

𝐸4,2 =
{
[𝑎, 𝑏, 𝑎,−𝑏] ∈ 𝑉

�� 0 ≤ 𝑏 ≤ 𝑎, 2(𝑎2 + 𝑏2) = 1
}
,
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𝐸4,3 =
{
[𝑎, 𝑎, 𝑏, 𝑏] ∈ 𝑉

�� 0 ≤ 𝑏 ≤ 𝑎, 2(𝑎2 + 𝑏2) = 1
}
,

𝐸4,4 =
{
[0, 𝑎, 𝑏, 0] ∈ 𝑉

�� 𝑎, 𝑏 ≥ 0, 𝑎2 + 𝑏2 = 1
}
.

Definition 13.6. We set 𝑅+
𝑥 , 𝑅

+
𝑦 , 𝑅

+
𝑧 , 𝑅

−
𝑥 , 𝑅

−
𝑦 , 𝑅

−
𝑧 ⊂ 𝑉 by

𝑅±
𝑥 B

{[√︁
1 − 3𝑡2, 𝑡, 𝑡,±𝑡

]
∈ 𝑉

��� 0 < 𝑡 < 1/2}
𝑅±
𝑦 B

{[
𝑡,
√︁
1 − 3𝑡2, 𝑡,±𝑡

]
∈ 𝑉

��� 0 < 𝑡 < 1/2}
𝑅±
𝑧 B

{[
𝑡, 𝑡,

√︁
1 − 3𝑡2,±𝑡

]
∈ 𝑉

��� 0 < 𝑡 < 1/2}
We see that 𝑅+

𝑥 ∪ 𝑅+
𝑦 ∪ 𝑅+

𝑧 ∪ 𝑅−
𝑥 ∪ 𝑅−

𝑦 ∪ 𝑅−
𝑧 is the space obtained by subtracting 𝐸

from the “edges” of 𝑉 .

Definition 13.7. We set 𝑅+, 𝑅− ⊂ 𝑂 by
𝑅± B 𝜋(𝑅±

𝑥 ) = 𝜋(𝑅±
𝑦 ) = 𝜋(𝑅±

𝑧 )

Note that 𝜋 induces a homeomorphism from 𝑅±
𝑥 (or 𝑅±

𝑦 , 𝑅±
𝑧 ) to 𝑅±. Hence both 𝑅+

and 𝑅− are homeomorphic to R.

Definition 13.8. We set

𝑇2,3 B
{
[𝑡, 𝑎, 𝑏,−𝑡] ∈ 𝑉

�� 0 < 𝑡 < 1/2, 𝑎, 𝑏 > 𝑡, 𝑎2 + 𝑏2 = 1 − 2𝑡2},
𝑇3,4 B

{
[𝑎, 𝑏, 𝑡,−𝑡] ∈ 𝑉

�� 0 < 𝑡 < 1/2, 𝑎, 𝑏 > 𝑡, 𝑎2 + 𝑏2 = 1 − 2𝑡2},
𝑇4,2 B

{
[𝑏, 𝑡, 𝑎,−𝑡] ∈ 𝑉

�� 0 < 𝑡 < 1/2, 𝑎, 𝑏 > 𝑡, 𝑎2 + 𝑏2 = 1 − 2𝑡2},
𝑇3,2 B

{
[𝑡, 𝑎, 𝑏, 𝑡] ∈ 𝑉

�� 0 < 𝑡 < 1/2, 𝑎, 𝑏 > 𝑡, 𝑎2 + 𝑏2 = 1 − 2𝑡2},
𝑇4,3 B

{
[𝑎, 𝑏, 𝑡, 𝑡] ∈ 𝑉

�� 0 < 𝑡 < 1/2, 𝑎, 𝑏 > 𝑡, 𝑎2 + 𝑏2 = 1 − 2𝑡2},
𝑇2,4 B

{
[𝑏, 𝑡, 𝑎, 𝑡] ∈ 𝑉

�� 0 < 𝑡 < 1/2, 𝑎, 𝑏 > 𝑡, 𝑎2 + 𝑏2 = 1 − 2𝑡2}.
These 6 spaces are the interiors of the 6 “faces” of 𝑉 .

Definition 13.9. We set

𝑇𝑟2,3 B
{
[𝑡, 𝑎, 𝑏,−𝑡] ∈ 𝑇2,3

�� 𝑎 > 𝑏}, 𝑇 𝑙2,3 B
{
[𝑡, 𝑎, 𝑏,−𝑡] ∈ 𝑇2,3

�� 𝑎 < 𝑏}
𝑇𝑟3,4 B

{
[𝑎, 𝑏, 𝑡,−𝑡] ∈ 𝑇3,4

�� 𝑎 > 𝑏}, 𝑇 𝑙3,4 B
{
[𝑎, 𝑏, 𝑡,−𝑡] ∈ 𝑇3,4

�� 𝑎 < 𝑏}
𝑇𝑟4,2 B

{
[𝑏, 𝑡, 𝑎,−𝑡] ∈ 𝑇4,2

�� 𝑎 > 𝑏}, 𝑇 𝑙4,2 B
{
[𝑏, 𝑡, 𝑎,−𝑡] ∈ 𝑇4,2

�� 𝑎 < 𝑏}
𝑇𝑟3,2 B

{
[𝑡, 𝑎, 𝑏, 𝑡] ∈ 𝑇3,2

�� 𝑎 > 𝑏}, 𝑇 𝑙3,2 B
{
[𝑡, 𝑎, 𝑏, 𝑡] ∈ 𝑇3,2

�� 𝑎 < 𝑏}
𝑇𝑟4,3 B

{
[𝑎, 𝑏, 𝑡, 𝑡] ∈ 𝑇4,3

�� 𝑎 > 𝑏}, 𝑇 𝑙4,3 B
{
[𝑎, 𝑏, 𝑡, 𝑡] ∈ 𝑇4,3

�� 𝑎 < 𝑏}
𝑇𝑟2,4 B

{
[𝑏, 𝑡, 𝑎, 𝑡] ∈ 𝑇2,4

�� 𝑎 > 𝑏}, 𝑇 𝑙2,4 B
{
[𝑏, 𝑡, 𝑎, 𝑡] ∈ 𝑇2,4

�� 𝑎 < 𝑏}.
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For 𝑖, 𝑗 = 2, 3, 4 with 𝑖 ≠ 𝑗 , the set 𝑇𝑖, 𝑗 \ (𝑇𝑟𝑖, 𝑗 ∪ 𝑇 𝑙𝑖, 𝑗 ) is the interior of 𝐸𝑖, 𝑗 .

Definition 13.10. For 𝑖, 𝑗 = 2, 3, 4 with 𝑖 ≠ 𝑗 , we set

𝑇𝑖, 𝑗 B 𝜋(𝑇𝑟𝑖, 𝑗 ) = 𝜋(𝑇 𝑙𝑖, 𝑗 ).

Note that 𝜋 induces a homeomorphism from 𝑇𝑟
𝑖, 𝑗
(or 𝑇 𝑙

𝑖, 𝑗
) to 𝑇𝑖, 𝑗 . Hence 𝑇𝑖, 𝑗 is

homeomorphic to R2.
The space 𝑂 is a disjoint union (as a set) of

𝑂0, 𝑇2,3, 𝑇3,4, 𝑇4,2, 𝑅
−, 𝑇3,2, 𝑇4,3, 𝑇2,4, 𝑅

+.

We use these spaces to compute the K-groups of 𝐼 = 𝑀4 (𝐶0 (𝑂))𝛽 .

14. K-groups of the ideal 𝐼

Definition 14.1. We set 𝐼0 B 𝑀4
(
𝐶0 (𝜋−1 (𝑂0))

)𝛽 and 𝐼★ B 𝑀4
(
𝐶0 (𝜋−1 (𝑂 \𝑂0))

)𝛽 .
We have a short exact sequence

0 −→ 𝐼0 −→ 𝐼 −→ 𝐼★ −→ 0.

We have 𝐼0 � 𝑀4 (𝐶0 (𝑉)) � 𝑀4 (𝐶0 (𝑂0)) � 𝑀4 (𝐶0 (R3)).

Definition 14.2. We set 𝑇 B 𝑇2,3 ∪𝑇3,4 ∪𝑇4,2 ∪𝑇3,2 ∪𝑇4,3 ∪𝑇2,4 and 𝑅 B 𝑅− ∪ 𝑅+. We
set 𝐼◦ B 𝑀4

(
𝐶0 (𝜋−1 (𝑇))

)𝛽 and 𝐼• B 𝑀4
(
𝐶0 (𝜋−1 (𝑅))

)𝛽 .
We have 𝐼◦ � 𝑀4 (𝐶0 (𝑇)) �

⊕
𝑖, 𝑗 𝑀4 (𝐶0 (𝑇𝑖, 𝑗 )) � 𝑀4 (𝐶0 (R2))6 and

𝐼• � 𝑀4 (𝐶0 (𝑅)) � 𝑀4 (𝐶0 (𝑅−)) ⊕ 𝑀4 (𝐶0 (𝑅+)) � 𝑀4 (𝐶0 (R))2.

We have a short exact sequence

0 −→ 𝐼◦ −→ 𝐼★ −→ 𝐼• −→ 0.

This induces a six-term exact sequence

Z6 � 𝐾0 (𝐼◦) // 𝐾0 (𝐼★) // 𝐾0 (𝐼•)

��

0

Z2 � 𝐾1 (𝐼•)

OO

𝐾1 (𝐼★)oo 𝐾1 (𝐼◦)oo 0.

We set 𝑟− ∈ 𝐾1
(
𝑀4 (𝐶0 (𝑅−))

)
and 𝑟+ ∈ 𝐾1

(
𝑀4 (𝐶0 (𝑅+))

)
to be the images of 𝑣 (1234) ∈

𝐾0 (𝐵 (234) ) ⊂ 𝐾0 (𝐵•) under the exponential maps coming from the exact sequences

0 −→ 𝑀4 (𝐶0 (𝑅±)) −→ 𝑀4
(
𝐶0 (𝜋−1 (𝑅± ∪ {𝑥 (234) }))

)𝛽 −→ 𝐵 (234) −→ 0.
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Then similarly as the proof of Lemma 12.4, we see that 𝑟− and 𝑟+ are the generators of
𝐾1

(
𝑀4 (𝐶0 (𝑅−))

)
� Z and 𝐾1

(
𝑀4 (𝐶0 (𝑅+))

)
� Z, respectively.

Let 𝜔 = (1342) ∈ 𝔖4. For 𝑖 = 2, 3, 4, we set 𝑤𝑖,𝜔 (𝑖) ∈ 𝐾0
(
𝑀4 (𝐶0 (𝑇𝑖,𝜔 (𝑖) ))

)
to be the

image of the generator 𝑟− of 𝐾1
(
𝑀4 (𝐶0 (𝑅−))

)
under the index map coming from the

exact sequences

0 −→ 𝑀4 (𝐶0 (𝑇𝑖,𝜔 (𝑖) )) −→ 𝑀4
(
𝐶0 (𝜋−1 (𝑇𝑖,𝜔 (𝑖) ∪ 𝑅−))

)𝛽 −→ 𝑀4 (𝐶0 (𝑅−)) −→ 0.

Since

𝑀4
(
𝐶0 (𝜋−1 (𝑇2,3 ∪ 𝑅−))

)𝛽
� 𝑀4

(
𝐶0 (𝑇𝑟2,3 ∪ 𝑅

−
𝑦 )

)
� 𝑀4

(
𝐶0 ((0, 1) × (0, 1])

)
whose K-groups are 0, 𝑤2,3 is a generator of 𝐾0

(
𝑀4 (𝐶0 (𝑇2,3))

)
� Z. Similarly, 𝑤3,4 and

𝑤4,2 are generators of 𝐾0
(
𝑀4 (𝐶0 (𝑇3,4))

)
� Z and 𝐾0

(
𝑀4 (𝐶0 (𝑇4,2))

)
� Z, respectively.

Similarly for 𝑖 = 2, 3, 4, we set the generator 𝑤𝜔 (𝑖) ,𝑖 of 𝐾0
(
𝑀4 (𝐶0 (𝑇𝜔 (𝑖) ,𝑖))

)
� Z to

be the image of the generator 𝑟+ of 𝐾1
(
𝑀4 (𝐶0 (𝑅+))

)
under the index map coming from

the exact sequences

0 −→ 𝑀4 (𝐶0 (𝑇𝜔 (𝑖) ,𝑖)) −→ 𝑀4
(
𝐶0 (𝜋−1 (𝑇𝜔 (𝑖) ,𝑖 ∪ 𝑅+))

)𝛽 −→ 𝑀4 (𝐶0 (𝑅+)) −→ 0.

Then the index map from

𝐾1 (𝐼•) � 𝐾1
(
𝑀4 (𝐶0 (𝑅−))

)
⊕ 𝐾1

(
𝑀4 (𝐶0 (𝑅+))

)
� Z2

to

𝐾0 (𝐼◦) � 𝐾0
(
𝑀4 (𝐶0 (𝑇2,3))

)
⊕ 𝐾0

(
𝑀4 (𝐶0 (𝑇3,4))

)
⊕ 𝐾0

(
𝑀4 (𝐶0 (𝑇4,2))

)
⊕ 𝐾0

(
𝑀4 (𝐶0 (𝑇3,2))

)
⊕ 𝐾0

(
𝑀4 (𝐶0 (𝑇4,3))

)
⊕ 𝐾0

(
𝑀4 (𝐶0 (𝑇2,4))

)
� Z6

becomes Z2 3 (𝑎, 𝑏) ↦→ (𝑎, 𝑎, 𝑎, 𝑏, 𝑏, 𝑏) ∈ Z6. Thus we have the following.

Proposition 14.3. We have 𝐾0 (𝐼★) � Z4 and 𝐾1 (𝐼★) = 0.

We denote by 𝑠1, 𝑠2, 𝑠3, 𝑠4 ∈ 𝐾0 (𝐼★) the images of 𝑤2,3, 𝑤3,4, 𝑤3,2, 𝑤4,3 ∈ 𝐾0 (𝐼◦).
Then {𝑠1, 𝑠2, 𝑠3, 𝑠4} becomes a basis of 𝐾0 (𝐼★) � Z4. Note that the images of 𝑤4,2, 𝑤2,4 ∈
𝐾0 (𝐼◦) are −𝑠1 − 𝑠2 ∈ 𝐾0 (𝐼★) and −𝑠3 − 𝑠4 ∈ 𝐾0 (𝐼★), respectively.
We have a six-term exact sequence

0 = 𝐾0 (𝐼0) // 𝐾0 (𝐼) // 𝐾0 (𝐼★) � Z4

��
0 = 𝐾1 (𝐼★)

OO

𝐾1 (𝐼)oo 𝐾1 (𝐼0) � Z.oo

(14.1)

To compute the index map 𝐾0 (𝐼★) → 𝐾1 (𝐼0), we need the following lemma.
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Lemma 14.4. The index map from 𝐾0 (𝐼◦) � Z6 to 𝐾1 (𝐼0) � Z coming from the short
exact sequence

0 −→ 𝐼0 −→ 𝑀4
(
𝐶0 (𝜋−1 (𝑂0 ∪ 𝑇))

)𝛽 −→ 𝐼◦ −→ 0.

is 0.

Proof. We set 𝑇 B
⋃
𝑖, 𝑗 (𝑇𝑟𝑖, 𝑗 ∪ 𝑇 𝑙𝑖, 𝑗 ) where 𝑖, 𝑗 run 2, 3, 4 with 𝑖 ≠ 𝑗 . We have the

following commutative diagram with exact rows;

0 // 𝐼0 //

�
��

𝑀4
(
𝐶0 (𝜋−1 (𝑂0 ∪ 𝑇))

)𝛽 //

��

𝐼◦ //

��

0

0 // 𝑀4 (𝐶0 (𝑉)) // 𝑀4 (𝐶0 (𝑉 ∪ 𝑇))
) // 𝑀4 (𝐶0 (𝑇)) // 0.

Note that 𝑉 ∪ 𝑇 = 𝜋−1 (𝑂0 ∪ 𝑇) ∩ 𝑉 . From this diagram, we see that the index map
𝐾0 (𝐼◦) → 𝐾1 (𝐼0) factors through 𝐾0 (𝑀4 (𝐶0 (𝑇))).
Take 𝑖, 𝑗 =2, 3, 4 with 𝑖≠ 𝑗 . Let 𝑎𝑟

𝑖, 𝑗
∈𝐾0

(
𝑀4 (𝐶0 (𝑇𝑟𝑖, 𝑗 ))

)
and 𝑎𝑙

𝑖, 𝑗
∈𝐾0

(
𝑀4 (𝐶0 (𝑇 𝑙𝑖, 𝑗 ))

)
be the images of the generator𝑤𝑖, 𝑗 of𝐾0

(
𝑀4 (𝐶0 (𝑇𝑖, 𝑗 ))

)
under the homomorphism induced

by 𝜋. Under the map 𝐾0 (𝐼◦) → 𝐾0 (𝑀4 (𝐶0 (𝑇))), the generator 𝑤𝑖, 𝑗 of 𝐾0
(
𝑀4 (𝐶0 (𝑇𝑖, 𝑗 ))

)
goes to 𝑎𝑟

𝑖, 𝑗
+ 𝑎𝑙

𝑖, 𝑗
. Under the index map 𝐾0 (𝑀4 (𝐶0 (𝑇))) → 𝐾1

(
𝑀4 (𝐶0 (𝑉))

)
the element

𝑎𝑟
𝑖, 𝑗

+ 𝑎𝑙
𝑖, 𝑗
goes to 0 because the side to 𝑉 from 𝑇𝑟

𝑖, 𝑗
and the one from 𝑇 𝑙

𝑖, 𝑗
differ

if 𝑇𝑟
𝑖, 𝑗
and 𝑇 𝑙

𝑖, 𝑗
are identified through the map 𝜋 to 𝑇𝑖, 𝑗 . Thus we see that the map

𝐾0 (𝐼◦) → 𝐾1
(
𝑀4 (𝐶0 (𝑉))

)
� 𝐾1 (𝐼0) is 0. �

By this lemma, the composition of the map 𝐾0 (𝐼◦) → 𝐾0 (𝐼★) and the index map
𝐾0 (𝐼★) → 𝐾1 (𝐼0) is 0. Since the map Z6 � 𝐾0 (𝐼◦) → 𝐾0 (𝐼★) � Z4 is a surjection, we
see that the index map 𝐾0 (𝐼★) → 𝐾1 (𝐼0) is 0. Thus we have the following.

Proposition 14.5. We have 𝐾0 (𝐼) � 𝐾0 (𝐼★) � Z4 and 𝐾1 (𝐼) � 𝐾1 (𝐼0) � Z.

15. K-groups of 𝐴

Recall the six-term exact sequence

𝐾0 (𝐼) // 𝐾0 (𝐴) // 𝐾0 (𝐵)
𝛿0
��

𝐾1 (𝐵)

𝛿1

OO

𝐾1 (𝐴)oo 𝐾1 (𝐼).oo

In this section, we calculate the exponential map 𝛿0 : 𝐾0 (𝐵) → 𝐾1 (𝐼) and the index
map 𝛿1 : 𝐾1 (𝐵) → 𝐾0 (𝐼).
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Proposition 15.1. The exponential map 𝛿0 : 𝐾0 (𝐵) → 𝐾1 (𝐼) is 0.

Proof. Since 𝐾0 (𝐵) is generated by 16 elements {[𝑃𝑖, 𝑗 ]0}4𝑖, 𝑗=1, the map 𝐾0 (𝐴) → 𝐾0 (𝐵)
is surjective. Hence the exponential map 𝛿0 : 𝐾0 (𝐵) → 𝐾1 (𝐼) is 0. �

By the definitions of the generators of 𝐾-groups we did so far, we have the following.
(See Figure 13.2 for the relation between 𝑇 and 𝐹.)

Proposition 15.2. The index map 𝛿′′ : 𝐾1 (𝐵◦) � Z18 → 𝐾0 (𝐼◦) � Z6 coming from the
short exact sequence

0 −→ 𝐼◦ −→ 𝑀4
(
𝐶0 (𝜋−1 (𝑇 ∪ 𝐹◦))

)𝛽 −→ 𝐵◦ −→ 0.

is as Table 15.1.

Table 15.1. Computation of the index map 𝛿′′

2,2 3,3 4,4 2,3 3,4 4,2 3,2 4,3 2,4
𝑤 𝑣 ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪
2,3 0 0 0 0 −1 −1 1 1 0 0 0 0 0 0 0 0 0 0
3,4 −1 −1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
4,2 0 0 −1 −1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
3,2 0 0 0 0 −1 −1 0 0 0 0 0 0 1 1 0 0 0 0
4,3 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
2,4 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Definition 15.3. The composition of the index map 𝛿′′ : 𝐾1 (𝐵◦) → 𝐾0 (𝐼◦) and the map
𝐾0 (𝐼◦) → 𝐾0 (𝐼★) is denoted by 𝜂 : 𝐾1 (𝐵◦) → 𝐾0 (𝐼★)
We set 𝜂 : 𝐾1 (𝐵◦) → 𝐾0 (𝐼★) ⊕ Z/2Z by 𝜂(𝑤∩

𝑖, 𝑗
) = (𝜂(𝑤∩

𝑖, 𝑗
), 0) and 𝜂(𝑤∪

𝑖, 𝑗
) =

(𝜂(𝑤∪
𝑖, 𝑗
), 1) for 𝑖, 𝑗 = 2, 3, 4.

We denote the generator of Z/2Z in 𝐾0 (𝐼★) ⊕ Z/2Z by 𝑠5.

Proposition 15.4. The map 𝜂 : 𝐾1 (𝐵◦) → 𝐾0 (𝐼★) ⊕ Z/2Z is surjective, and its kernel
coincides with the image of 𝛿 : 𝐾0 (𝐵•) → 𝐾1 (𝐵◦).

Proof. Since

𝜂(𝑤∩
2,3) = 𝑠1, 𝜂(𝑤∩

3,4) = 𝑠2, 𝜂(𝑤∩
3,2) = 𝑠3, 𝜂(𝑤∩

4,3) = 𝑠4,

𝑠1, 𝑠2, 𝑠3, 𝑠4 are in the image of 𝜂. Since 𝜂(𝑤∪
2,2 +𝑤

∪
3,3 +𝑤

∪
4,4) = 𝑠5, 𝑠5 is also in the image

of 𝜂. Thus 𝜂 is surjective.
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Table 15.2. Computation of 𝜂

2,2 3,3 4,4 2,3 3,4 4,2 3,2 4,3 2,4
𝑠 𝑣 ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪
1 0 0 1 1 −1 −1 1 1 0 0 −1 −1 0 0 0 0 0 0
2 −1 −1 1 1 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0
3 0 0 1 1 −1 −1 0 0 0 0 0 0 1 1 0 0 −1 −1
4 −1 −1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1
5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

It is straightforward to check 𝜂 ◦ 𝛿 = 0 Hence the image of 𝛿 is contained in the kernel
of 𝜂. Suppose

𝑥 =

4∑︁
𝑖, 𝑗=2

𝑛∩𝑖, 𝑗𝑤
∩
𝑖, 𝑗 +

4∑︁
𝑖, 𝑗=2

𝑛∪𝑖, 𝑗𝑤
∪
𝑖, 𝑗

is in the kernel of 𝜂 where 𝑛∩
𝑖, 𝑗
, 𝑛∪
𝑖, 𝑗

∈ Z for 𝑖, 𝑗 = 2, 3, 4. We will show that 𝑥 is in the
image of 𝛿. By adding

𝑛∪2,3𝛿(𝑞 (3142) ) + 𝑛
∪
3,4𝛿(𝑞 (4312) ) + 𝑛

∪
4,2𝛿(𝑞 (2341) )
+ 𝑛∪3,2𝛿(𝑞 (2413) ) + 𝑛

∪
4,3𝛿(𝑞 (3421) ) + 𝑛

∪
2,4𝛿(𝑞 (4123) )

we may assume
𝑛∪2,3 = 𝑛

∪
3,4 = 𝑛

∪
4,2 = 𝑛

∪
3,2 = 𝑛

∪
4,3 = 𝑛

∪
2,4 = 0

without loss of generality. By subtracting 𝑛∪3,3𝛿(𝑞 (4321) ) + 𝑛
∪
4,4𝛿(𝑞 (3412) ), we may further

assume 𝑛∪3,3 = 𝑛
∪
4,4 = 0 without loss of generality. Then 𝑛

∪
2,2 is even since the coefficient

of 𝑐5 in 𝜂(𝑥) is 0. Hence by adding
𝑛∪2,2
2

(
𝛿(𝑞 (2143) ) − 𝛿(𝑞 (3412) ) − 𝛿(𝑞 (4321) )

)
we may further assume 𝑛∪2,2 = 0 without loss of generality. Thus we may assume
𝑥 =

∑4
𝑖, 𝑗=2 𝑛

∩
𝑖, 𝑗
𝑤∩
𝑖, 𝑗
. By adding 𝑛∩2,2𝛿(𝑞 (1243) ) + 𝑛

∩
3,3𝛿(𝑞 (1432) ) + 𝑛

∩
4,4𝛿(𝑞 (1324) ), we may

further assume 𝑛∩2,2 = 𝑛∩3,3 = 𝑛∩4,4 = 0 without loss of generality. By subtracting
𝑛∩4,2𝛿(𝑞 (1423) ) + 𝑛

∩
2,4𝛿(𝑞 (1342) ), we may further assume 𝑛

∩
4,2 = 𝑛

∩
2,4 = 0 without loss of

generality. Thus we may assume

𝑥 = 𝑛∩2,3𝑤
∩
2,3 + 𝑛

∩
3,4𝑤

∩
3,4 + 𝑛

∩
3,2𝑤

∩
3,2 + 𝑛

∩
4,3𝑤

∩
4,3.

Then we have 𝑛∩2,3 = 𝑛
∩
3,4 = 𝑛

∩
3,2 = 𝑛

∩
4,3 = 0 because

𝜂(𝑥) = 𝑛∩2,3𝑠1 + 𝑛
∩
3,4𝑠2 + 𝑛

∩
3,2𝑠3 + 𝑛

∩
4,3𝑠4.
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Thus 𝑥 = 0. We have shown that 𝑥 is in the image of 𝛿. Hence the image of 𝛿 coincides
with the kernel of 𝜂. �

As a corollary of this proposition, we have the following as predicted.

Proposition 15.5. We have 𝐾0 (𝐵) � Z10 and 𝐾1 (𝐵) � Z4 ⊕ Z/2Z.

Proof. By Proposition 15.4, we see that 𝐾1 (𝐵) � coker 𝛿 is isomorphic to Z4 ⊕ Z/2Z.
This implies 𝐾0 (𝐵) � ker 𝛿 is isomorphic to Z10 because ker 𝛿 is a free abelian group
with dimension 24 − 18 + 4 = 10. �

We also have the following.

Proposition 15.6. The index map 𝛿1 : 𝐾1 (𝐵) → 𝐾0 (𝐼) is as 𝐾1 (𝐵) � Z4 ⊕ Z/2Z 3
(𝑛, 𝑚) ↦→ 𝑛 ∈ Z4 � 𝐾0 (𝐼).

Proof. From the commutative diagram with exact rows

0 // 𝐼 //

��

𝐴 //

��

𝐵 // 0

0 // 𝐼★ // 𝑀4
(
𝐶0 (𝜋−1 ((𝑂 \𝑂0) ∪ 𝐹))

)𝛽 // 𝐵 // 0,

the index map 𝛿1 : 𝐾1 (𝐵) → 𝐾0 (𝐼) coincides with the map 𝐾1 (𝐵) → 𝐾0 (𝐼★) if we
identify 𝐾0 (𝐼) � 𝐾0 (𝐼★) as we did in Proposition 14.5.
From the commutative diagram with exact rows

0 // 𝐼◦ //

��

𝑀4
(
𝐶0 (𝜋−1 (𝑇 ∪ 𝐹◦))

)𝛽 //

��

𝐵◦ //

��

0

0 // 𝐼★ // 𝑀4
(
𝐶0 (𝜋−1 ((𝑂 \𝑂0) ∪ 𝐹))

)𝛽 // 𝐵 // 0,

we have the commutative diagram

𝐾1 (𝐵◦)

��

// 𝐾0 (𝐼◦)

��
𝐾1 (𝐵) // 𝐾0 (𝐼★).

From this diagram, we see that the map 𝐾1 (𝐵) → 𝐾0 (𝐼★) is as 𝐾1 (𝐵) � Z4 ⊕ Z/2Z 3
(𝑛, 𝑚) ↦→ 𝑛 ∈ Z4 � 𝐾0 (𝐼★). This completes the proof. �
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Definition 15.7. Define a unitary 𝑤 ∈ 𝐶 (𝑆3, 𝑀2 (C)) by

𝑤(𝑎1, 𝑎2, 𝑎3, 𝑎4) = 𝑎1𝑐1 + 𝑎2𝑐2 + 𝑎3𝑐3 + 𝑎4𝑐4

=

(
𝑎1 + 𝑎2

√
−1 𝑎3 + 𝑎4

√
−1

−𝑎3 + 𝑎4
√
−1 𝑎1 − 𝑎2

√
−1

)
for (𝑎1, 𝑎2, 𝑎3, 𝑎4) ∈ 𝑆3.

Then [𝑤]1 is the generator of 𝐾1
(
𝐶 (𝑆3, 𝑀2 (C))

)
� 𝐾1

(
𝑀4 (𝐶 (𝑆3))

)
� Z.

Let 𝜑 : 𝐴 → 𝑀4 (𝐶 (𝑆3)) be the composition of the embedding 𝐴 → 𝑀4 (𝐶 (R𝑃3))
and the map 𝑀4 (𝐶 (R𝑃3)) → 𝑀4 (𝐶 (𝑆3)) induced by [ · ] : 𝑆3 → R𝑃3. Let �̃� : 𝑆3 → 𝑋

be the composition of [ · ] : 𝑆3 → R𝑃3 and 𝜋 : R𝑃3 → 𝑋 . We set 𝑉 ′ of 𝑆3 by

𝑉 ′ B
{
(𝑎1, 𝑎2, 𝑎3, 𝑎4) ∈ 𝑆3

�� 𝑎1, 𝑎2, 𝑎3 > |𝑎4 |
}
.

Then 𝑉 ′ is homeomorphic to 𝑉 via [ · ], and hence to 𝑂0 via �̃�. Note that the map
𝑀4 (𝐶0 (𝑉 ′)) ↩→ 𝑀4 (𝐶 (𝑆3)) induces the isomorphism

𝐾1
(
𝑀4 (𝐶0 (𝑉 ′))

)
→ 𝐾1

(
𝑀4 (𝐶 (𝑆3))

)
.

Since 𝐼0 � 𝑀4 (𝐶0 (𝑂0)) � 𝑀4 (𝐶0 (𝑉 ′)) canonically, we set a generator 𝑦 of 𝐾1 (𝐼0)
which corresponds to the generator [𝑤]1 of 𝐾1

(
𝑀4 (𝐶 (𝑆3))

)
via the isomorphism

𝐾1
(
𝑀4 (𝐶0 (𝑉 ′))

)
→ 𝐾1

(
𝑀4 (𝐶 (𝑆3))

)
. We denote by the same symbol 𝑦 the genera-

tor of 𝐾1 (𝐼) � 𝐾1 (𝐼0) corresponding to 𝑦 ∈ 𝐾1 (𝐼0).

Proposition 15.8. The image of 𝑦 ∈ 𝐾1 (𝐼) under the map 𝐾1 (𝐼) → 𝐾1 (𝐴) →
𝐾1

(
𝑀4 (𝐶 (𝑆3))

)
is 32[𝑤]1.

Proof. The map 𝐼0 → 𝐼 → 𝐴→ 𝑀4 (𝐶 (𝑆3)) is induced by �̃� : �̃�−1 (𝑂0) → 𝑂0 when we
identify 𝐼0 with 𝑀4 (𝐶0 (𝑂0)). We have

�̃�−1 (𝑂0) =
4∐

𝑖, 𝑗=1
𝜎+
𝑖, 𝑗 (𝑉 ′) q

4∐
𝑖, 𝑗=1

𝜎−
𝑖, 𝑗 (𝑉 ′)

where 𝜎±
𝑖, 𝑗
: 𝑆3 → 𝑆3 is induced by the unitary ±𝑈𝑖, 𝑗 similarly as 𝜎𝑖, 𝑗 : R𝑃3 → R𝑃3 for

𝑖, 𝑗 = 1, 2, 3, 4. These 32 homeomorphisms preserve the orientation of 𝑆3. Therefore, the
image of 𝑦 ∈ 𝐾1 (𝐼0), and hence the one of 𝑦 ∈ 𝐾1 (𝐼), in 𝐾1

(
𝑀4 (𝐶 (𝑆3))

)
is 32[𝑤]1. �

Definition 15.9. Define the linear map 𝜉 : 𝑀2 (C) → C4 by

𝜉

((
𝑎11 𝑎12
𝑎21 𝑎22

))
=
1
√
2
(𝑎11, 𝑎12, 𝑎21, 𝑎22).
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Definition 15.10. Define unital ∗-homomorphisms 𝜄, 𝜄′ : 𝑀2 (C) → 𝑀4 (C) by

𝜄

((
𝑎11 𝑎12
𝑎21 𝑎22

))
=

©«
𝑎11 𝑎12 0 0
𝑎21 𝑎22 0 0
0 0 𝑎11 𝑎21
0 0 𝑎21 𝑎22

ª®®®®¬
,

𝜄′
((
𝑎11 𝑎12
𝑎21 𝑎22

))
=

©«
𝑎11 0 𝑎12 0
0 𝑎11 0 𝑎12
𝑎21 0 𝑎22 0
0 𝑎21 0 𝑎22

ª®®®®¬
.

Lemma 15.11. For each 𝑀, 𝑁 ∈ 𝑀2 (C), we have

𝜉 (𝑀)𝜄(𝑁) = 𝜉 (𝑀𝑁), 𝜄′(𝑀)𝜉 (𝑁)T = 𝜉 (𝑀𝑁)T.

Proof. It follows from a direct computation. �

Definition 15.12. Define𝑈 ∈ 𝑀4 (𝐴) by

𝑈 =

©«
𝑃11 𝑃12 𝑃13 𝑃14
𝑃21 𝑃22 𝑃23 𝑃24
𝑃31 𝑃32 𝑃33 𝑃34
𝑃41 𝑃42 𝑃43 𝑃44

ª®®®®¬
.

It can be easily checked that𝑈 is a unitary.

Proposition 15.13. The image of [𝑈]1 ∈𝐾1 (𝐴) under the map𝐾1 (𝐴) → 𝐾1
(
𝑀4 (𝐶 (𝑆3))

)
is 16[𝑤]1.

Proof. Let 𝜑4 : 𝑀4 (𝐴) → 𝑀4
(
𝑀4 (𝐶 (𝑆3))

)
be the ∗-homomorphism induced by 𝜑. Set

U B 𝜑4 (𝑈). For 𝑖, 𝑗 = 1, 2, 3, 4, the (𝑖, 𝑗)-entry U𝑖, 𝑗 ∈ 𝐶 (𝑆3, 𝑀4 (C)) of U is given by
U𝑖, 𝑗 (𝑎1, 𝑎2, 𝑎3, 𝑎4) = 𝑈𝑖, 𝑗 (𝑎1, 𝑎2, 𝑎3, 𝑎4)T (𝑎1, 𝑎2, 𝑎3, 𝑎4)𝑈∗

𝑖, 𝑗

for each (𝑎1, 𝑎2, 𝑎3, 𝑎4) ∈ 𝑆3.
Let𝑊 ∈ 𝑀4 (C) be

𝑊 =
1
√
2

©«
1 −

√
−1 0 0

0 0 1 −
√
−1

0 0 −1 −
√
−1

1
√
−1 0 0

ª®®®®¬
.

Then𝑊 is a unitary.
Take (𝑎1, 𝑎2, 𝑎3, 𝑎4) ∈ 𝑆3 and 𝑖, 𝑗 = 1, 2, 3, 4. We set

(𝑏1, 𝑏2, 𝑏3, 𝑏4) = (𝑎1, 𝑎2, 𝑎3, 𝑎4)𝑈∗
𝑖, 𝑗 .
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By Proposition 5.2, we have
∑4
𝑘=1 𝑏𝑘𝑐𝑘 = 𝑐𝑖

( ∑4
𝑘=1 𝑎𝑘𝑐𝑘

)
𝑐∗
𝑗
. We also have

𝜉

( 4∑︁
𝑘=1

𝑏𝑘𝑐𝑘

)
𝑊 =

1
√
2
(𝑏1 + 𝑏2

√
−1, 𝑏3 + 𝑏4

√
−1,−𝑏3 + 𝑏4

√
−1, 𝑏1 − 𝑏2

√
−1)𝑊

= (𝑏1, 𝑏2, 𝑏3, 𝑏4)

Hence we get

(𝑎1, 𝑎2, 𝑎3, 𝑎4)𝑈∗
𝑖, 𝑗 = 𝜉

(
𝑐𝑖

( 4∑︁
𝑘=1

𝑎𝑘𝑐𝑘

)
𝑐∗𝑗

)
𝑊

= 𝜉 (𝑐𝑖)𝜄
(( 4∑︁

𝑘=1
𝑎𝑘𝑐𝑘

)
𝑐∗𝑗

)
𝑊

= 𝜉 (𝑐𝑖)𝜄(𝑤(𝑎1, 𝑎2, 𝑎3, 𝑎4))𝜄(𝑐∗𝑗 )𝑊

by Lemma 15.11. Similarly, we get

𝑈𝑖, 𝑗 (𝑎1, 𝑎2, 𝑎3, 𝑎4)T = 𝑊T𝜉
(
𝑐𝑖

( 4∑︁
𝑘=1

𝑎𝑘𝑐𝑘

)
𝑐∗𝑗

)T
= 𝑊T𝜄′

(
𝑐𝑖

( 4∑︁
𝑘=1

𝑎𝑘𝑐𝑘

))
𝜉 (𝑐∗𝑗 )T

= 𝑊T𝜄′(𝑐𝑖)𝜄′(𝑤(𝑎1, 𝑎2, 𝑎3, 𝑎4))𝜉 (𝑐∗𝑗 )T

by Lemma 15.11. Define V,W,W′ ∈ 𝑀4 (𝑀4 (C)) by

V = (𝜉 (𝑐∗𝑗 )T𝜉 (𝑐𝑖))4𝑖, 𝑗=1,

W =

©«
𝜄(𝑐∗1)𝑊 0 0 0
0 𝜄(𝑐∗2)𝑊 0 0
0 0 𝜄(𝑐∗3)𝑊 0
0 0 0 𝜄(𝑐∗4)𝑊

ª®®®®¬
,

W′ =

©«
𝑊T𝜄′(𝑐1) 0 0 0
0 𝑊T𝜄′(𝑐2) 0 0
0 0 𝑊T𝜄′(𝑐3) 0
0 0 0 𝑊T𝜄′(𝑐4)

ª®®®®¬
.

One can check that these are unitaries. If we consider these as constant functions in
𝑀4

(
𝐶 (𝑆3, 𝑀4 (C))

)
, we have

U =W′𝜄′4 (𝑤)V𝜄4 (𝑤)W,
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where 𝜄4 (𝑤), 𝜄′4 (𝑤) ∈ 𝑀4
(
𝐶 (𝑆3, 𝑀4 (C))

)
are defined as

𝜄4 (𝑤) =
©«
𝜄(𝑤( · )) 0 0 0
0 𝜄(𝑤( · )) 0 0
0 0 𝜄(𝑤( · )) 0
0 0 0 𝜄(𝑤( · ))

ª®®®®¬
,

𝜄′4 (𝑤) =
©«
𝜄′(𝑤( · )) 0 0 0
0 𝜄′(𝑤( · )) 0 0
0 0 𝜄′(𝑤( · )) 0
0 0 0 𝜄′(𝑤( · ))

ª®®®®¬
.

Since [𝜄4 (𝑤)]1 = [𝜄′4 (𝑤)]1 = 8[𝑤]1, we obtain [U]1 = 16[𝑤]1. �

Proposition 15.14. We have 𝐾0 (𝐴) � Z10 and 𝐾1 (𝐴) � Z. More specifically, 𝐾0 (𝐴) is
generated by {[𝑃𝑖, 𝑗 ]0}4𝑖, 𝑗=1, and 𝐾1 (𝐴) is generated by [𝑈]1. Moreover, the positive cone
𝐾0 (𝐴)+ of 𝐾0 (𝐴) is generated by {[𝑃𝑖, 𝑗 ]0}4𝑖, 𝑗=1 as a monoid.

Proof. We have already seen that 𝐾0 (𝐴) → 𝐾0 (𝐵) is isomorphic, and we have a short
exact sequence

0 −→ 𝐾1 (𝐼) −→ 𝐾1 (𝐴) −→ Z/2Z −→ 0.
From this, we see that 𝐾1 (𝐴) is isomorphic to either Z⊕Z/2Z or Z. If 𝐾1 (𝐴) is isomorphic
to Z⊕Z/2Z, one can choose an isomorphism so that 𝑦 ∈ 𝐾1 (𝐼) goes to (1, 0) ∈ Z⊕Z/2Z.
Then the image of the map 𝐾1 (𝐴) → 𝐾1

(
𝑀4 (𝐶 (𝑆3))

)
� Z is 32Z by Proposition 15.8.

This is a contradiction because the image of [𝑈]1 ∈ 𝐾1 (𝐴) is 16 by Proposition 15.13.
Hence 𝐾1 (𝐴) is isomorphic to Z so that 𝑦 ∈ 𝐾1 (𝐼) goes to 2. By Proposition 15.8 and
Proposition 15.13, [𝑈]1 ∈ 𝐾1 (𝐴) corresponds to 1 ∈ Z. Thus [𝑈]1 is a generator of
𝐾1 (𝐴) � Z.
It is clear that the monoid generated by {[𝑃𝑖, 𝑗 ]0}4𝑖, 𝑗=1 is contained in the positive

cone 𝐾0 (𝐴)+. The positive cone 𝐾0 (𝐴)+ maps into the positive cone 𝐾0 (𝐵•)+ under
the surjection 𝐴→ 𝐵•. Hence by Proposition 12.7, 𝐾0 (𝐴)+ is contained in the monoid
generated by {[𝑃𝑖, 𝑗 ]0}4𝑖, 𝑗=1. Thus 𝐾0 (𝐴)+ is the monoid generated by {[𝑃𝑖, 𝑗 ]0}

4
𝑖, 𝑗=1. �

Definition 15.15. Define 𝑢 ∈ 𝑀4 (𝐴(4)) by

𝑢 =

©«
𝑝11 𝑝12 𝑝13 𝑝14
𝑝21 𝑝22 𝑝23 𝑝24
𝑝31 𝑝32 𝑝33 𝑝34
𝑝41 𝑝42 𝑝43 𝑝44

ª®®®®¬
.

It can be easily checked that 𝑢 is a unitary. This unitary 𝑢 is called the defining unitary
of the magic square C*-algebra 𝐴(4).
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By Proposition 15.14, we get the third main theorem.

Theorem 15.16. We have 𝐾0 (𝐴(4)) � Z10 and 𝐾1 (𝐴(4)) � Z. More specifically,
𝐾0 (𝐴(4)) is generated by {[𝑝𝑖, 𝑗 ]0}4𝑖, 𝑗=1, and 𝐾1 (𝐴(4)) is generated by [𝑢]1.

The positive cone 𝐾0 (𝐴(4))+ of 𝐾0 (𝐴(4)) is generated by {[𝑝𝑖, 𝑗 ]0}4𝑖, 𝑗=1 as a monoid.

Asmentioned in the introduction, the computation 𝐾0 (𝐴(4)) � Z10 and 𝐾1 (𝐴(4)) � Z
and that 𝐾0 (𝐴(4)) is generated by {[𝑝𝑖, 𝑗 ]0}4𝑖, 𝑗=1 were already obtained by Voigt in [8].
We give totally different proofs of these facts. That 𝐾1 (𝐴(4)) is generated by [𝑢]1 and
the computation of the positive cone 𝐾0 (𝐴(4))+ of 𝐾0 (𝐴(4)) are new.
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