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Abstract: Multi-photon lithography allows us to complement planar photonic integrated circuits
(PIC) by in-situ 3D-printed freeform waveguide structures. However, design and optimization
of such freeform waveguides using time-domain Maxwell’s equations solvers often requires
comparatively large computational volumes, within which the structure of interest only occupies
a small fraction, thus leading to poor computational efficiency. In this paper, we present a
solver-independent transformation-optics-(TO-) based technique that allows to greatly reduce
the computational effort related to modeling of 3D freeform waveguides. The concept relies on
transforming freeform waveguides with curved trajectories into equivalent waveguide structures
with modified material properties but geometrically straight trajectories, that can be efficiently
fit into rather small cuboid-shaped computational volumes. We demonstrate the viability of
the technique and benchmark its performance using a series of different freeform waveguides,
achieving a reduction of the simulation time by a factor of 3–6 with a significant potential for
further improvement. We also fabricate and experimentally test the simulated waveguides by
3D-printing on a silicon photonic chip, and we find good agreement between the simulated and
the measured transmission at λ= 1550 nm.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Photonic integration has evolved into a key technology for a wide variety of applications that range
from high-speed communications [1], ultra-fast signal processing [2,3] and artificial intelligence
[4] to optical metrology and sensing [5–8] and to biophotonics and life sciences [9–11]. On the
technological level, photonic integrated circuits (PIC) predominantly rely on planar structures
that can be fabricated with well-established microfabrication techniques based on layer deposition
and 2D patterning via high-resolution electron-beam or deep-UV lithography. More recently,
these techniques have been complemented by multi-photon lithography that allows for in-situ
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fabrication of functional 3D freeform structures that can greatly enhance the functionality and
versatility of planar PIC. Examples are 3D-printed chip-chip connections, so-called photonic wire
bonds [12,13] that open an attractive path towards high-performance hybrid multi-chip modules
[14], 3D-printed waveguide overpasses [15], reconfigurable photonic circuits [16,17], 3D-printed
waveguide interconnects for photonic neural networks [18], 3D-printed waveguide splitters [19],
or 3D-printed polarization splitters and rotators [20]. However, while simulation tools for planar
lightwave structures are available as part of commercial software packages [21–24], efficient
modeling and design of 3D freeform waveguides still represents a challenge. This applies in
particular to numerical solvers that rely on rectilinear grids within cuboid-shaped computational
domains, which is, e.g., the case for most time-domain techniques. Applying such solvers to 3D
freeform waveguides with strongly curved non-plane trajectories requires comparatively large
computational volumes, within which the structure of interest only occupies a small fraction, thus
leading to poor computational efficiency. In addition, accurate representation of curved surfaces
on rectilinear grids requires local refinement of the mesh cells, which leads to reduced time steps
in time-domain simulations and thus increases overall simulation time.

Here, we present a transformation-optics (TO) method for reducing the computational effort
associated with freeform-waveguide simulations. Our approach relies on transforming curved
freeform waveguides in the original 3D space into straight waveguides in a virtual 3D space,
which can then be efficiently treated by rigorous time-domain Maxwell’s equations solvers
defined on a rectilinear grid. Specifically, the transformed waveguide in the virtual space can be
confined in a rectangular simulation box, whose volume is comparable to the actual freeform
waveguide volume. Furthermore, in case of freeform waveguides with rectangular cores, the
grid lines in the virtual space are perfectly aligned with the core surfaces thereby eliminating the
need for any local mesh cell refinement. We demonstrate the viability of the concept using the
commercially available time-domain solver of CST Microwave Studio (CST MWS), which is
based on the finite integration technique (FIT) [25,26], reaching an acceleration by a factor of
3–6. In addition, we fabricate the simulated freeform waveguides on a silicon photonic (SiP)
chip and measure the transmission losses at a vacuum wavelength of λ = 1550 nm. We find
excellent agreement between TO-based simulations in virtual space and the associated reference
simulations in real space, and we confirm that the simulated transmission losses match their
experimentally measured counterparts reasonably well. Although primarily aimed for use with
time-domain solvers on a rectilinear grid, our method represents a general technique that allows
to transform freeform waveguide-based devices into straight structures and is independent of the
underlying solver.

2. TO based concept of freeform waveguide modeling

The TO concept relies on the fact that Maxwell’s equations are form-invariant with respect
to coordinate transformations. In particular, if we map an original domain from an (x, y, z)-
coordinate system, to a virtual domain in a (u, v, s)-coordinate system, we only need to adapt
the material properties in the virtual domain, while the form of Maxwell’s equations remains
unchanged [27–30]. In case of a coordinate transformation described by a differentiable function
(u, v, s)T = f (x, y, z), where (x, y, z) , (u, v, s) ∈ R3, the relationship between the material properties
in the original (x, y, z)-space and in the virtual (u, v, s)-space reads [27–30]:

ϵ′(u, v, s) =
J(x, y, z) · ϵ(x, y, z) · JT(x, y, z)

det(J(x, y, z))

µ′(u, v, s) =
J(x, y, z) · µ(x, y, z) · JT(x, y, z)

det(J(x, y, z))
.

(1)

In these relations, the quantities ϵ and ϵ′ denote the dielectric permittivity tensors, µ and µ′ are
the magnetic permeability tensors, and J is the Jacobian matrix of the coordinate transformation
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function f,
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Note that the transformed media in virtual space are generally anisotropic and magnetic, even if
the structure in original space is made from isotropic non-magnetic material.

The TO concept has previously been used to analyze and design a variety of devices such
as beam deflectors and expanders [31], polarization splitters and rotators [32], flat lenses [33],
waveguide bends [34], or electromagnetic cloaks for hiding of objects [35–37] or for reshaping
the perception of cloaked objects [38,39]. In general it is possible to design TO-based devices
with arbitrary shapes [40] including also plasmonic structures [41], and the underlying principles
of TO can be further expanded into thermodynamics and mechanics [42] or general relativity
[43]. Here, we exploit TO for efficient numerical modeling of 3D freeform waveguides using
well-established time-domain solvers, see Fig. 1 for an illustration of the underlying concept.
Generally, time-domain solvers relying, e.g., on finite-difference-time-domain (FDTD) techniques,
are perfectly suited for large-scale simulations, offering a numerical complexity that scales linearly
with problem size while being amenable to efficient parallelization on large-scale computer
clusters. Moreover, time-domain techniques are robust, lend themselves to broadband or transient
simulations, and even offer a natural path to handling of nonlinear behavior [44]. On the other
hand, time-domain techniques usually rely on rather inflexible rectilinear grids and cuboid-shaped
computational domains, which severely limits the performance when applied to 3D freeform
waveguides. Specifically, the rectilinear grid does not allow for efficient representation of curved
surfaces, while the cuboid-shaped computational domain leads to poor computational efficiency
with comparatively large computational volumes within which the structure of interest only
occupies a small fraction, see Fig. 1(a).

To overcome these problems, we map the freeform waveguide with a curved trajectory in
the original (x, y, z)-space to an equivalent waveguide with a straight trajectory and modified
permittivity and permeability tensors in a virtual (u, v, s)-space, see Fig. 1(b). In the virtual
space, we may then use a rectangular computational domain that only encompasses the straight
waveguide and its direct vicinity, along with a rectilinear grid that is oriented along the direction
of the waveguide. The virtual waveguide can thus be efficiently modeled by a conventional
time-domain solver, and the results are then transformed back to the (x, y, z)-coordinate system to
obtain the field distributions in original space.

To implement this technique, we need to define a function (u, v, s)T = f (x, y, z) that transforms
the curved waveguide in original space into a straight path in virtual space. It is actually
easier and more intuitive to analytically express the inverse function (x, y, z)T = f−1 (u, v, s) that
maps a point (u, v, s) in transformed space back to original space. To arrive at a mathematical
formulation of f−1, we assign the coordinate s to the arc length of the waveguide trajectory
r (s) = (x0 (s) , y0 (s) , z0 (s)) in original space, while u and v are associated with the transverse
position relative to the waveguide trajectory, where the direction is defined by a pair of unit
vectors U and V. This leads to the relation⎡⎢⎢⎢⎢⎢⎢⎢⎣

x (u, v, s)

y (u, v, s)

z (u, v, s)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= f−1 (u, v, s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x0 (s)

y0 (s)

z0 (s)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ uU (s) + vV (s) . (3)

The s-coordinate, i.e., the arc length of the waveguide trajectory is defined such that s = 0 in
its starting point, and the unit vectors U and V are chosen such that they form a right-handed
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Fig. 1. Transformation of a freeform optical waveguide from the original (x, y, z)-space to
the virtual (u, v, s)-space. (a) Sample freeform waveguide in the original (x, y, z)-space. The
computational domain necessary to simulate the structure with a time-domain solver on a
rectilinear grid is determined by the rectangular red box. However, the region of interest,
i.e., the relevant part of the computational domain, only comprises the close vicinity of
the freeform waveguide — this part and its edges are depicted in blue. The rest of the
computational domain is unimportant and unnecessarily consumes computing resources.
Moreover, a fine discretization would be needed to correctly represent the curved surfaces of
the freeform waveguide by a rectilinear computational grid. The coordinate transformation
described in Eq. (3) is defined by the unit vectors U, V, and T, where T is the local
tangent unit vector dr/ds of the trajectory, while U and V span the transverse plane in the
respective trajectory point. The vectors are chosen such that (U, V, T) is a right-handed
trihedron. (b) Transformed waveguide in the virtual (u, v, s)-space. The freeform waveguide
trajectory in the original space has been mapped to a straight line, and the relevant part of the
computational domain that was "twisted" in the original (x, y, z)-space is now represented
by a rectangular blue box. The computational domain can now be reduced to the region of
interest, see red dashed rectangular box, and this means a volume reduction by a factor of
about 25. The coordinate transformation significantly reduces the computational domain at
the cost of pre-calculating the spatial distributions of tensors of dielectric permittivity and
magnetic permeability in (u, v, s)-space. Moreover, the rectilinear computational grid may
be better adapted to the shape of the waveguide, in particular for rectangular cross sections.
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trihedron (U, V, T) with the tangent vector T = dr
ds

. Note that the trajectory r is generally not
parametrized with respect to its arc length s, but with respect to some other parameter t, with
r (t) = (x (t) , y (t) , z (t)). The two parametrizations are connected by the relation s =

∫ τ

0

|︁|︁ dr
dt

|︁|︁ dt.
Equation (3) still leaves the freedom of choosing the orientation of the unit vectors U and

V within the transverse plane in the respective trajectory point. One obvious choice for the
(U, V, T) frame could be the natural Frenet-Serret frame, where U could be chosen as the
binormal vector, and V could be chosen as the normal vector of the trajectory r (t). However,
the Frenet-Serret frame is not the best choice because the binormal and the normal vectors are
neither defined in points where the trajectory is straight, nor in inflection points. Furthermore,
the frames immediately before and immediately after an inflection point are rotated against each
other by 180◦ about the tangent vector. We therefore use the rotation-minimizing frame (RMF)
[45,46], which minimizes the frame spinning along the trajectory, and which is commonly used
in computer graphics and 3D modeling [47]. To calculate the RMF, we use a simple and fast
approximation method called double reflection method [48]. This method requires the trajectory
sample points, the tangent vectors T in all sample points, and a coordinate frame in the first
sample point (U1, V1, T1) as an input. The coordinate frames in the remaining sample points
along the trajectory are calculated recursively [48]. The coordinate frame (U1, V1, T1) in the first
sample point is chosen such that T1 is the tangent, and the two remaining mutually perpendicular
vectors U1 and V1 can be chosen arbitrarily in the plane that is perpendicular to T1.

Note that the coordinate transformation described in Eq. (3) is generally not bijective. A
trivial example is the case of self-intersecting trajectories, which must be excluded. Another
obvious problem might arise if two waveguide segments pass by each other or overpass each
other within a close distance, e.g., in spirals, helices, and loops. In this case, care must be
taken to avoid mapping the same sub-domain of the (x, y, z)-space being in the vicinity of both
waveguide segments twice into two distinct sub-domains of the (u, v, s)-space. Finally, bijectivity
might be violated if the local curvature of the trajectory is too strong, such that the center of
curvature falls into the transformed domain. Specifically, for a given trajectory point, the ranges
for u and v, u ∈ [umin, umax] and v ∈ [vmin, vmax] should be chosen not to include the center of
curvature for this specific trajectory point. In other words: If, in a certain trajectory point, the
center of the curvature would be represented by (uc, vc) in transformed space, then the range of u
and v for this trajectory point must be limited not to include this point, which is ensured by the
sufficient condition (uc, vc) ∉ {(u, v) | umin ≤ u ≤ umax ∧ vmin ≤ v ≤ vmax}. For more details,
see Appendix A.

It should be noted that the TO technique represents a very general concept, relying only on
the fact that Maxwell’s equations are form-invariant with respect to coordinate transformations.
The approach is hence generally independent of material properties and can be applied to a
wide range of structures that can be significantly more complex than the ones investigated in
our manuscript. Examples comprise, but are not limited to, multi-layer waveguide structures
made from doped semiconductor materials with non-vanishing imaginary part of the complex
electric permittivity, metal waveguides and plasmonic structures [41], perfect electric conductors
(PEC) [49], or refractive optical elements such as lenses. In the latter case, curved lens surfaces
in the original space may be transformed to rectangular cuboids in the transformed space. This
would not lead to a reduction of the computational volume as for the case of freeform waveguides
considered in our work but may still avoid local mesh refinement in the vicinity of curved surfaces
and thereby allow to keep larger time steps. The overall reduction of computational complexity
will strongly depend on the respective structure.
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3. Implementation of TO modeling of freeform waveguides

To prove the viability of the proposed approach, we implement and use the TO concept to
simulate freeform waveguides with an invariant rectangular cross section of the core. For
the coordinate transform, we use MATLAB, and the resulting waveguide in virtual space is
then treated with CST MWS, which relies on a time-domain finite-integration technique (FIT)
[25,26]. We restricted the implementation to freeform waveguides that are made from isotropic
material and that feature plane trajectories, such that the tensors ϵ′ and µ′ are diagonal in the
transformed space, see Appendix B. Anisotropic materials and/or a non-plane trajectory would
lead to non-diagonal tensors ϵ′ and µ′, which cannot be treated by the FIT solver of CST MWS
(CST Studio Suite version 2019). Note that the treatment of such non-diagonal tensors associated
with non-plane trajectories increases the computational effort by a factor of approximately two
compared to diagonal tensors associated with plane trajectories, while offering a larger reduction
of the computational volume, e.g., by a factor of 25 in the example illustrated in Fig. 1. A more
detailed discussion of the impact of non-plane trajectories on computational complexity can be
found in Appendix D.

The input data for our MATLAB code consist of the trajectory sample points (x0, y0, z0) in
the original (x, y, z)-space, the orientation of the RMF in the initial point, the cross-sectional
shape of the waveguide core along with the material properties of the core and the cladding
(εcore, µcore, εcladding, and µcladding), and the ranges of u- and v-coordinates that define the space
to be transformed. Without loss of generality, we can assume that the plane trajectory lies in the
(y, z)-plane, i.e., that the x-coordinates of all trajectory points are equal to zero. For simplicity,
we chose the right-handed RMF (U1, V1, T1) in the first sample point of the trajectory such that
U1 is parallel to the x-axis and V1 is perpendicular to U1 and to the tangent vector T1. We further
assume a rectangular core cross section with width wWG and height hWG, measured along the
U- and V-directions of the RMF. In a first step of the transformation, we numerically calculate
the s-coordinate sample points from the trajectory sample points. The RMF (U (s) , V (s) , T (s))
in the remaining trajectory points is then calculated numerically by the aforementioned double
reflection method [48]. In the special case of a plane trajectory in the (y, z)-plane with U1 chosen
to be parallel to the x-axis, U (s) is parallel to the x-axis in all trajectory points. Having calculated
the s-coordinates with given u- and v-coordinate ranges, we have the rectangular box defining the
computational domain in (u, v, s)-space. The ranges of u and v determine how much space around
the trajectory will be taken into account for the TO-based simulations. These ranges should be
large enough to include a sufficient portion of the evanescent field outside the core, but not too
large, to ensure bijectivity of the function (u, v, s)T = f (x, y, z), see Appendix A. In the next step,
the transformed material properties in virtual space need to be calculated and fed to the numerical
solver. Generally, this can be done by adapting ϵ′ and µ′ in each point of space according to
Eq. (1). For commercially available simulation programs with CAD-type user interfaces, however,
setting the spatial variations of the materials properties on the level of individual spatial grid
cells is not very efficient. We therefore approximate the transformed structure with continuously
varying material properties by a multitude of small bricks with constant material properties,
which can be fed to the solver as cuboid CAD elements by a standard scripting interface. We
partition the range of u-coordinates into Nu steps, the range of v-coordinates into Nv steps, and
the range of s-coordinates into Ns steps. Then the total number of bricks is given by

Nbricks = NuNvNs. (4)

Regarding the choice of the brick size, there is obviously a trade-off — too fine a discretization
will require more time to calculate the material properties and more memory to store them, while
too coarse a discretization might cause inaccurate simulation results. For better orientation, we
provide a few rules of thumb that might help to select appropriate brick sizes. Note that these
rules of thumb cannot replace a systematic convergence study for the respective waveguide cross
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section and for the curvature range of interest. In the following, we refer to the discretization
along s as slicing. Slicing the freeform waveguide in each sample point of the trajectory would
result in a large number of slices Ns. We can reduce this number by exploiting the fact that each
slice represents a section of the original waveguide having a constant bend radius. In a first
step, we therefore calculate the bend radii in each trajectory sample point R (s), which is done
numerically. We then step through the trajectory points and calculate the change ∆R of the radius
of curvature with respect to the first trajectory point. When the relative change ∆R/R exceeds a
given threshold of, e.g., 0.1, we merge all preceding points into the first slice. We then repeat the
procedure by using the last sample point of the first slice as a new reference for calculating the
relative change ∆R/R. The last slice is terminated by the last trajectory point of the waveguide.
For proper choice of the brick sizes δu and δv along the transverse u and v direction, we need to
make sure that the associated discretization of the dielectric and magnetic material properties
does not introduce excessive perturbations of the optical wavefronts. As a rule of thumb we
may require that, within the core and within the cladding, the difference δε′ij and δµ′ij of any two
corresponding transformed ϵ′- and µ′-tensor elements in any two neighboring bricks along u and
v should be small compared to the difference of ∆ε between the core and the cladding of the
original waveguide, (︂

δε′ij ≪ ∆ε ∧ δµ′ij ≪ ∆ε
)︂

∀ i, j ∈ {1, 2, 3} . (5)

Note that, for waveguides with strong variations of the curvature along the trajectory, it might
be difficult to fulfill the inequality according to Eq. (5) in all grid points that are contained in a
rectangular bounding box in transformed space. It should then be ensured that Eq. (5) applies at
least to the regions that bear significant electric fields. A systematic convergence study for the
respective case of interest might be unavoidable to ensure proper representation of the waveguide
structure.

Assuming a simplified waveguide structure with a plane trajectory that entirely lies in the
(y, z)-plane allows to greatly simplify the Jacobian according to Eq. (2), see Eq. (9) of Appendix B.
In this case, regions for which the material properties of the original waveguide in original space
do not change along x do not need to be subdivided into bricks along u. Since we consider a
waveguide with homogeneous core and cladding region, we may thus reduce the transformed
structure to Ncore

u = 3 bricks along u in the core region and Ncladding
u = 1 brick along u in the

cladding region below and above the core, see Fig. 2. The range of v-coordinates is divided into
Nv = Ncore

v + Ncladding
v steps, which comprises Ncore

v steps in the core region, and Ncladding
v steps in

the cladding region below and above the core. Therefore, the number of bricks per slice in this
case is Ncore

u Ncore
v + Ncladding

u Ncladding
v , and Eq. (4) becomes

Nplane trajectory
bricks =

(︂
Ncore

u Ncore
v + Ncladding

u Ncladding
v

)︂
Ns. (6)

The example shown in Fig. 2 corresponds to the discretization that we did to perform simulations
in the (u, v, s)-space, featuring Ncore

u = 3, Ncladding
u = 1, Ncore

v = 6, and Ncladding
v = 5 + 5 = 10

steps. This corresponds to 3 × 6 + 1 × 10 = 28 bricks per slice. The total number of bricks is
therefore 28Ns.

Finally, to calculate the material properties of the various bricks in (u, v, s)-space, we first
need to know the material properties of the corresponding bricks in (x, y, z)-space and then
transform them using Eq. (1). After calculating the material properties of all bricks, the MATLAB
code then writes a script which is loaded and run in CST MWS to generate the transformed
structure for simulation by the time-domain solver of CST MWS. After the simulation is done,
scattering parameters (S-parameters) of the freeform waveguide can be read directly, while
the field distribution must additionally undergo the inverse coordinate transformation given by
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Fig. 2. Representation of a waveguide section with a trajectory lying in the (y, z)-plane by
rectangular bricks with constant material properties in virtual (u, v, s)-space. The freeform
waveguide is discretized into sections with approximately constant curvature of the waveguide
trajectory (slices) along s, defined by coordinates si and sj. Green: Core region of the
transformed freeform waveguide. Cyan: Cladding region of the transformed freeform
waveguide. For a freeform waveguide with a plane trajectory in the (y, z)-plane, the axis
U of the RMF is parallel to the x-axis in all trajectory sample points, which allows us to
completely omit the discretization along u above and below the freeform waveguide core and
to reduce the representation along u to three segments in the region of the waveguide core.
The illustrated freeform waveguide slice is represented by an overall of 28 bricks — 5 each
above and below the core, 6 on the each right and the left of the core, and 6 within the core.

Eq. (3), in order to be represented in the original (x, y, z)-space. This is done by exporting the
field distribution from the CST MWS simulation, and performing the inverse transformation by
an additional MATLAB script. Note that our technique leaves the underlying solver unchanged
and may also allow to exploit existing FDTD implementations [21–24] to efficiently treat 3D
freeform waveguides that comprise nonlinear or dispersive media [50,51].

4. Freeform waveguide simulations and experimental benchmarking

To verify our TO approach, we apply it to a series of freeform waveguide structures that connect
two SiP waveguides, see Fig. 3(b). We calculate the transmission and the electric field distribution
for these structures at a wavelength of λ = 1550 nm using the TO concept with CST MWS as a FIT
time-domain solver for the waveguide in the virtual (u, v, s)-space, and we compare the results to
conventional simulations of the original structure in (x, y, z)-space. Moreover, we experimentally
realized and characterized the structures — Fig. 3 shows the experimental setup, some freeform
waveguide illustrations, scanning electron microscope (SEM) pictures of the fabricated structures,
as well as a comparison of the simulated and measured transmission for different waveguide
trajectories, that are described by the height h of the apex above the substrate. As a further
reference, we also calculated the transmission using our previously reported fundamental-mode
approximation (FMA) method [52]. The FMA is based on a look-up table of pre-calculated
eigenmodes (propagation constants and modal field distributions) of waveguide segments with
constant radii of curvature, on their tabulated bending losses and on transition losses due to
modal field mismatch between two adjacent segments with different radii of curvature. The FMA
subdivides freeform waveguides in segments with constant radii of curvature and calculates the
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transmission losses based on the look-up table. While exceptionally fast, this method disregards
the existence of higher-order modes.

For the experimental benchmark, the freeform waveguides were 3D-printed on a SiP chip,
Figs. 3(b)–3(e), that was fabricated through a commercial foundry using standard CMOS process
and 248 nm deep-UV lithography. The waveguides are normally covered by a SiO2 top cladding
layer, which was locally removed to make the SiP waveguides accessible to the 3D printing
system. For fabrication of the 3D freeform waveguides, a negative-tone photoresist is deposited
on the chip and structures are then 3D-printed by two-photon polymerization [53]. Subsequently,
the unexposed resist is removed in a separate development step, and the freeform waveguides
are covered by a low-index polymer (not shown in Fig. 3) that serves as a cladding and a
protection against environmental influences. The refractive index of the freeform waveguide core
at λ = 1550 nm amounts to ncore ≈ 1.53, and the cladding refractive index is ncladding ≈ 1.36.
Both materials are assumed to be lossless dielectrics (relative magnetic permeability µr = 1 in the
original (x, y, z)-space), and the corresponding values of the dielectric permittivity are calculated
by squaring the refractive indices. Each freeform waveguide core has a wWG×hWG = 2 µm×1.8 µm
rectangular cross-section and bridges a lg = 100 µm gap between a pair of SiP strip waveguides
(width wSi = 500 nm, height hSi = 220 nm) that lie on a buried oxide (BOX) SiO2 layer with a
height of hBOX = 3 µm. Each SiP waveguide is connected to a grating coupler (GC) on one side
and to a freeform waveguide on the other side. The connections between SiP waveguides and
freeform waveguides are made through linear inverse tapers with a length of ltaper = 60 µm on both
connected waveguides. The chosen length ensures an adiabatic transition between the different
mode fields in the two waveguides and thus improves the coupling, see Figs. 3(c) and 3(d).
On the SiP waveguide side, the linear taper converts the initial wSi × hSi = 500 nm × 220 nm
cross section to a wSi,taper × hSi = 130 nm × 220 nm cross section at the taper tip, see Figs. 3(c)
and 3(d). On the freeform waveguide side, the initial wWG × hWG = 2 µm × 1.8 µm cross section
is linearly tapered to a wWG,taper × hWG,taper = 0.76 µm × 1.8 µm cross section. All freeform
waveguide trajectories are plane curves with an apex height h swept between hmin = 6.2 µm and
hmax = 16.2 µm with a step of about 670 nm. For these experiments, we designed the beginning
and the ending of each freeform waveguide trajectory (length of 22.5 µm on each side) as a
circular arc, bending upwards with a radius of R0 = 55 µm, while the central freeform waveguide
trajectory part (55 µm length) is variable, generated by a parameterized B-spline, see Figs. 3(e)
and 3(g). For small values of h, there are two sharp bends with radius R1 at the two connections
between the central freeform waveguide section and the two parts with the constant bend radius,
see Fig. 3(g). This bend radius R1 becomes larger with increasing apex height h, such that the
loss contribution of these bends decreases. For large values of h, there is a sharp bend with a
radius R2 at the trajectory apex, which again increases the overall loss. It is therefore expected
that the transmission increases with h near hmin and decreases with h near hmax, with a maximum
between the two extreme values of h.

To measure the transmission loss of a 3D printed freeform waveguide, continuous-wave (CW)
light from a laser source at a vacuum wavelength of λ = 1550 nm is launched to the SiP input
waveguide through a standard single-mode fiber (SMF) and a GC, Figs. 3(a) and 3(b). The light
propagates through the 3D-printed freeform waveguide, and is finally coupled out through another
SiP waveguide and probed by another SMF through the corresponding GC. The transmitted
optical power is measured by an optical power meter (OPM). In order to exclude the coupling
losses between the chip and the fibers, we measure the transmission loss of a reference structure
(not shown) comprising two GC connected by a short SiP waveguide, and we refer all other
transmission measurements to this value. The corresponding result is plotted on a logarithmic
scale in Fig. 3(f) (marked Exp., black). To the best of our knowledge, these measurements
represent the first experimental study of trajectory-dependent losses of 3D-printed freeform
waveguides. The small variations in transmission for adjacent heights demonstrate the precision
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Fig. 3. Benchmarking of the TO approach with respect to different simulation techniques and
to measurements. (a) Experimental setup for measuring the losses of freeform waveguides
with different trajectories: Continuous wave (CW) light at a wavelength of λ = 1550 nm
is launched to the device under test (DUT) consisting of 3D freeform waveguides that are
connected to on-chip access waveguides. The light is coupled to the chip by single-mode
fibers (SMF) and grating couplers (GC). The polarization of the incoming light is adjusted
by a polarization controller (PC), and the power of the transmitted signal is measured by an
optical power meter (OPM). (b) Artist’s impression of the test structures on silicon photonic
(SiP) chip. The 3D freeform waveguides feature different apex heights h, measured between
the trajectory in the center of the waveguide and the top surface of the buried oxide (BOX)
layer. (c) Side view and (d) top view of the tapered transition between a freeform waveguide
and a SiP waveguide. (e) Scanning electron microscope (SEM) image of a series of freeform
waveguides fabricated on a SiP chip. The apex height h of the trajectory is swept between
hmin = 6.2 µm and hmax = 16.2 µm. Bottom inset: Close-up of a freeform waveguide
having an apex height of h ≈ 13 µm. The central part (red) is 55 µm long. The coupling
sections and the adjacent sections (cyan) are kept the same for all freeform waveguides. (f)
Simulated and measured transmission of the freeform waveguides for different apex heights
h. The deviations of the transmissions predicted by the TO technique and the reference
simulation (Ref.) range from −0.5 dB to +0.6 dB, with the biggest differences occurring at
the extreme values hmin and hmax of the apex height h where the waveguide curvature is
strongest. Methods: TO — Transformation optics, Ref. — Reference simulation in original
space, FMA — Fundamental-mode approximation, Exp. — Experimental. (g) Freeform
waveguide trajectories with indicated radii of curvature R0, R1, and R2.
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of the 3D printing system and the reproducibility of the overall fabrication process. Note that
the cross section of 3D-printed freeform waveguide cores (2 µm × 1.8 µm) in combination with
the index difference between the core (ncore ≈ 1.53) and the cladding (ncladding ≈ 1.36) permits
propagation not only of the fundamental mode, but also of some higher-order modes. The local
transmission minimum at an apex height of h ≈ 10 µm, see Fig. 3(f), stems from the excitation of
higher-order modes in the 3D freeform waveguide and from the resulting multimode interference
at the transition to the single-mode SiP waveguide, see also Fig. 4.

We then simulate the freeform waveguide transmission losses with the FIT time domain
solver of CST MWS using the TO approach (in the virtual (u, v, s)-space as described in Section
3), and with the conventional approach (in the original (x, y, z)-space) as a reference. We set
up the ranges of u and v as u ∈ [−2.5 µm, 2.5 µm] and v ∈ [−4 µm, 4 µm] in the TO-based
simulations, while in the reference simulations these ranges correspond to x ∈ [−2.5 µm, 2.5 µm]

and y ∈ [−4 µm, h + 4 µm]. Since we are predominantly interested in the impact of the waveguide
trajectory on the transmission behavior, these simulations do not take into account the coupling of
the SiP waveguide to the 3D-printed freeform waveguide as detailed in Figs. 3(c) and 3(d). Instead,
we assume the freeform waveguide to be embedded into a homogeneous cladding material, and
we cut it at the end of linear taper of the SiP waveguide, as indicated by a dotted red line in
Fig. 3(c). The tapered structure to the right of this line is then replaced by a straight waveguide
section of length ls = 1 µm, in which we define the ports for the CST MWS simulation. Since
a straight waveguide in (x, y, z)-space maps to an identical straight waveguide in (u, v, s)-space
without any change of material properties, the modes of the straight waveguides in both spaces
are identical. The length of the computational domain in the virtual (u, v, s)-space is thus stot+2ls,
where stot denotes the total length of the freeform waveguide trajectory. For the simulation in the
original (x, y, z)-space, the length of the computational domain is only

(︁
lg + 2ls

)︁
. All simulations

were done with the same settings and on the same simulation machine. The discretization of
the freeform waveguide into bricks for performing the TO simulations was done as explained
in Section 3, with 28 bricks per slice as illustrated in Fig. 2. The total number of bricks for
different freeform waveguides ranges from 1288 to 3080. TO-simulated transmission values
in Fig. 3(f) are displayed in red, the results of the reference simulations by the conventional
approach are displayed in blue. The curves obtained by the TO and the reference simulations
are nearly identical, with minimal differences that can be explained by the discretization of the
freeform waveguide model into finite bricks with constant material properties. We analyzed these
differences and find that deviations of the transmissions predicted by both techniques range from
−0.5 dB to +0.6 dB, with the biggest differences occurring at the extreme values hmin and hmax
of the apex height h where the waveguide curvature is strongest. Both curves, similarly to the
experimentally obtained curve, exhibit a local minimum near h = 10 µm, and agree qualitatively
very well with the measurement. The deviations between measurements and simulations can
be explained by the fact that the latter do not account for the coupling of the SiP waveguide to
the 3D-printed freeform waveguide as detailed in Figs. 3(c) and 3(d). In addition, the higher
measured transmission for h ≈ 6 µm can be explained by a possible shrinking of the freeform
waveguides during the development process, which smoothens the two sharp bends designed to
have a curvature radius R1 ≈ 4.3 µm, at the connections of the center freeform waveguide section
to the initial and the final sections having a constant bend radius R0 = 55 µm, see Fig. 3(g).

We also simulate the transmission losses using the FMA method [52], which subdivides
the waveguide into sections of constant curvature and calculates the transmission losses based
on the propagation of the fundamental modes in these waveguide segments — the results are
displayed in green in Fig. 3(f). The transmission obtained by the FMA method, does not show the
local minimum near h = 10 µm, which we attribute to the fact that the FMA method disregards
possible excitation of higher-order modes, such that it cannot take into account any multi-mode
interference effects. Still, the optimum configurations with the least losses around a height of



Research Article Vol. 30, No. 21 / 10 Oct 2022 / Optics Express 38867

Fig. 4. Simulated normalized magnitude |E| of the complex electric field vectors E for the
freeform waveguide with apex height h = 9.54 µm. The complex electric field E is obtained
from the time-domain simulation results through a Fourier transform at the target frequency,
corresponding to a vacuum wavelength of λ = 1550 nm. We compare results in the virtual
(u, v, s)-space and in the original (x, y, z)-space for a TE polarized light, having a dominant
electric field oriented along x in (x, y, z)-space and along u in (u, v, s)-space. The freeform
waveguide has a plane trajectory in the (y, z)-plane (x = 0). The white contour lines in (a)–(d)
are added for a better visualization of the freeform waveguide core. (a) Field distribution
in (u, v, s)-space in plane u = 0, which corresponds to plane x = 0 in (x, y, z)-space. The
freeform waveguide in (u, v, s)-space is straight, which allows to reduce the computational
domain to a minimum-size rectangular volume. (b) Field distribution in (x, y, z)-space in the
plane x = 0 obtained by applying the inverse space transformation (x, y, z)T = f−1 (u, v, s)
to the distribution shown in (a). (c) Field distribution in (x, y, z)-space in plane x = 0,
as obtained from a reference simulation in (x, y, z)-space. The rectangular computational
volume in (x, y, z)-space is not optimal since it comprises much space far away from the
freeform waveguide, where the field is close to zero. The field distribution shows a good
match to the distribution from (b). (d) Relative deviation between the field distributions
obtained from the TO simulation in (b), and the reference simulation in (c), calculated by
normalizing the magnitude of the difference of the respective electric field magnitudes to the
maximum of the field magnitude found for the reference simulation. Referring to Fig. 3(f)
and the field in (a)–(c), we see that multimode interference effects could explain the local
minimum in transmission for apex heights h around 10 µm.
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13 µm are reasonably well reproduced. Within certain limits, the FMA can therefore be used for
a real-time trajectory optimization, which is important for, e.g., photonic wire bonds [12–14,16]
or waveguide overpass fabrication [15] in an industrial setting.

For comparing the electric field distribution obtained by the TO and by the conventional
approach, we plot the magnitude of the complex electric field vectors in the plane u = 0 of the
virtual (u, v, s)-space, Fig. 4(a), and in the corresponding plane x = 0 of the original (x, y, z)-space
after back-transformation, Fig. 4(b). The apex height of the depicted waveguide amounts to
h = 9.54 µm, which corresponds to the local minimum of the simulated transmission, caused by
higher-order mode excitation. Figure 4(c) depicts the results of a CST MWS reference simulation
in (x, y, z)-space, and Fig. 4(d) displays the magnitude of the relative deviation between the field
distributions obtained from the TO simulation, Fig. 4(b), and the reference simulation, Fig. 4(c),
normalized to the maximum of the field magnitude found for the reference simulation. It can be
seen that the two field distributions match well. The biggest differences occur in the regions with
a small bend radius — these differences are attributed to the discretization of the waveguide into
bricks in the transformed space, see Section 3.

5. Computational complexity

To quantify the advantages of the TO approach, we compare the associated computational effort
to that of the conventional approach. The results are displayed in Fig. 5. Figure 5(a) shows the
ratios of the volumes of the computational domains for different apex heights h of the freeform
waveguide, see Fig. 3(b), as well as ratio of the numbers of grid cells. Both ratios indicate a
reduction of the computational effort by more than a factor of two when using the TO technique.
This ratio increases nearly linearly with the apex height h, because the computational volume of
the conventional approach increases more strongly with h than the one of the TO approach. Note
that, for the TO-based simulations, the volume depends predominantly on the total arc length stot
of the freeform waveguide, which increases only slightly with h as long as h ≪ stot. The ratio of
the number of grid cells for the reference simulation and the TO-simulation follows about the
same proportionality as the ratio of the volumes of the computational domains. Note that the
ratio of the grid cell numbers is even slightly larger than the ratio of the computational-domain
volumes. We attribute this finding to the fact that, in virtual space the side walls of the straight
waveguides are perfectly aligned to the rectilinear grid. Local mesh refinement as needed to
accurately represent the curved waveguide surfaces in real space is hence unnecessary for the TO
simulation.

Another parameter that influences the total simulation time is the time step used in the
FIT simulation, for which the Courant-Friedrichs-Lewy stability condition for solving partial
differential equations [26,54] dictates an upper limit,

∆txyz ≤

(︄
cxyz

√︃
1
∆x2 +

1
∆y2 +

1
∆z2

)︄−1

, ∆tuvs ≤

(︄
cuvs

√︃
1
∆u2 +

1
∆v2 +

1
∆s2

)︄−1

. (7)

In these relations, ∆txyz is the maximal time step and cxyz the maximum phase velocity in any
direction in (x, y, z)-space, which is discretized by spatial step sizes ∆x, ∆y, and ∆z. For the TO
approach, ∆tuvs, cuvs and ∆u, ∆v, ∆s are the equivalent quantities in (u, v, s)-space. Since Eq. (7)
must hold for all grid cells in the computational domain, the maximum time step is eventually
dictated by the smallest grid cell. In this context, the TO technique offers the additional advantage
that the geometrically straight waveguide in the transformed (u, v, s)-space can be well represented
by a rather simple rectilinear grid. In contrast to that, correct representation of the surfaces of the
freeform waveguide in the original (x, y, z)-space may require local refinements of the grid cell
sizes ∆x, ∆y, and ∆z, and thus leads to smaller time steps according to Eq. (7). For most cases of
practical interest, this advantage of the TO approach surpasses the advantage of the computational
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Fig. 5. Comparison of the computational effort for the TO technique and for conventional
reference simulations of freeform waveguides with different apex heights h of the trajectories,
see Fig. 3(b). We compare the computational volume and the number of grid cells, the time
steps, and the overall simulation time of the simulations in the transformed (u, v, s)-space
(TO) to that of the direct reference simulations in the original (x, y, z)-space (Ref.). (a) Ratio
of the computational domain volumes and of the corresponding numbers of grid cells for the
reference simulations (Ref.) and the associated TO simulations (TO). Both curves follow
a (nearly) straight line as a function of h. (b) Comparison of time steps, determined by
the smallest grid cell size and by the material properties. In the conventional reference
simulations, smaller grid cell sizes ∆x, ∆y, and ∆z, are needed to correctly represent the
curved surfaces of the freeform waveguides, thus leading to smaller time steps according to
Eq. (7). The large variations of the time steps in the TO-based simulations originate from
different material properties. Specifically, in case of freeform waveguides with sharp bends,
the tensors of material properties in the transformed (u, v, s)-space may have elements with
values close to zero, see Appendix C, which leads to large phase velocity and thus small time
steps in the TO-based model. (c) Comparison of total simulation times. Both the different
numbers of grid cells and different time steps contribute to different simulation times.
Overall, for the structures simulated here, the TO approach is 3–6 times more efficient than
the conventional simulations, with significant potential for further improvement. Note that
the trajectories here are plane curves in the (y, z)-plane that start and end at the same height
y. The advantages of the TO approach related to the volume reduction of the computational
domain and thus to the total simulation time reduction, would be even more pronounced for
waveguides with non-plane trajectories as, e.g., shown in Fig. 1.
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volume reduction by the transformed material tensors, see Fig. 5(b). Note, however, that the
transformed material tensors ϵ′ and µ′ in (u, v, s)-space can have elements with values close to
zero, which strongly increases the associated maximum phase velocity cuvs and thus reduces the
maximum permitted time step ∆tuvs in the TO simulation. This effect occurs, e.g., towards the
inner sides of strong waveguide bends, where the boundary of the computational domain may
be close to a local center of curvature, see Appendix C for details. We can observe this effect
indirectly from Fig. 5(b), where the shortest time step was required for the freeform waveguide
with the smallest height and thus the smallest radius of curvature R1 ≈ 4.3 µm at the transitions
between the fixed and the variable part of the trajectory, see Fig. 3(g). In all simulations, the range
of v-coordinates was v ∈ [−4 µm, 4 µm], thus the boundary of the computational domain in this
simulation was just 0.3 µm away from the center of curvature associated with the most strongly
curved waveguide section. This effect could be mitigated by limiting the values of the elements
of the tensors to a chosen lower bound, which will not have significant impact on the simulation
results — the field is always dragged to the outer side of the bend such that the magnitude at
the inner side is small. Finally, we compare the total simulation times for the TO approach and
the reference simulation, see Fig. 5(c). Both results are influenced by the total number of grid
cells and the time step. In all cases, the TO-based simulations were completed significantly
faster than the conventional reference simulations. It should be mentioned that the additional
computational overhead of the TO-based simulations, given by the time necessary to discretize
the freeform waveguides into bricks, to calculate the material properties, to generate the required
CST MWS scripts, and to perform the spatial back transform after the simulation, was around
10 s, while the time to execute the CST MWS scripts (to generate the the 3D models in CST MWS
interface) varied from approximately 45 s to 120 s, depending on the number of bricks, which
varied from 1288 to 3080. This is negligible compared to the total simulation time of several
thousand seconds and was therefore not included in the results shown in Fig. 5(c). Overall, for the
structures simulated here, the TO approach is 3–6 times faster than the conventional simulation,
with significant potential for further improvement.

The waveguide trajectories in the presented examples are still rather simple, consisting of
plane curves in the (y, z)-plane that start and end at the same height y. For waveguides with
non-plane trajectories, see, e.g., Fig. 1, the reduction of the computational volume through
the TO approach will be even more pronounced, but the numerical treatment also becomes
more complicated. Specifically, for waveguides made from isotropic materials and having plane
trajectories, the tensors ϵ′ and µ′ maintain their diagonal shape in (u, v, s)-space, see Appendix B,
while waveguides with non-plane trajectories require the consideration of off-diagonal elements
in the transformed material tensors ϵ′ and µ′. A more detailed discussion of the impact of
non-plane trajectories on computational complexity can be found in Appendix D. For commonly
used leap-frog schemes, the FDTD update equations for the electric and the magnetic field in
generally anisotropic media can be written as

H′(t + ∆t/2) = H′(t − ∆t/2) − ∆t (µ′ (u, v, s))−1
·
(︁
∇ × E′(t)

)︁
,

E′(t + ∆t) = E′(t) + ∆t (ϵ′ (u, v, s))−1
·
(︁
∇ × H′(t + ∆t/2)

)︁
.

(8)

In this relation, t − ∆t/2, t, t + ∆t/2 and t + ∆t, denote the staggered points in time at which the
electric and the magnetic fields are calculated by the leapfrog scheme, whereas ∆t denotes the
corresponding time step. For isotropic materials or media with diagonal ϵ′- and µ′-tensors in
(u, v, s)-space, the evaluation of each of these update equations simply involves multiplication of
a scalar or a (3, 1) vector by the (3, 1) vector resulting from the ∇×E′- and the ∇×H′-operation.
Taking into account off-diagonal elements would require a multiplication of a (3, 3) matrix by the
(3, 1) vector and thus increase the computational effort for the evaluation of each update equation
by a factor of roughly 2, see Appendix D for a more detailed explanation of the underlying model.
In addition, FDTD modeling of materials with non-diagonal ϵ′ and µ′-tensors is complicated by
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the coupling of non-parallel components of H′ and ∇ × E′ and of E′ and ∇ × H′, which are not
collocated on the standard Yee grid [55]. Numerical modeling of such materials thus requires
spatial interpolation [55,56], or alternative approaches based on Lebedev grids [57,58]. Still,
taking into account that, for non-plane trajectories, the reduction of simulation time should even
exceed the factor of 3–6 that we found for the case of a plane trajectory, see Fig. 5(c), we expect
that the overall computational effort should still be greatly reduced by using the proposed TO
approach.

In this context, it should also be noted that non-plane trajectories would also lead to an
increase of the computation time that is needed to generate the transformed model from the
original structure, since we also need to discretize along the u-axis in transformed space. For a
quantitative estimate, we start from the structure shown in Fig. 2 and assume, for simplicity, that
the discretization along the u-axis also relies on 16 bricks as chosen along the v-axis. The total
number of bricks per s-slice would thus increase from presently 28 to 16 × 16 = 256, i.e., by
approximately an order of magnitude. This would increase the time to generate the corresponding
3D models from the current value of approx. 120 s (2 min) to approx. 1200 s (20 min) in the
worst case. This extra time is significantly smaller than the more than 20 000 s of the overall
simulation time that was needed to treat even the rather simple waveguides with plane trajectories
in real space, see Fig. 5(c). We hence conclude that the overhead needed for generating the
transformed model is significantly overcompensated by the savings of the simulation time used
for the Maxwell’s equations solver also for non-plane trajectories.

Note that the simulations shown in the previous sections refer to waveguides with rectangular
cross sections that are invariant along the waveguide trajectory, which can be accurately
represented by a rather simple rectilinear grid. In case of arbitrary cross sections that vary
along the waveguide trajectory, this advantage of the TO approach might be maintained by
adapting the transformation to not only map the curved trajectory into a straight one, but to also
map an arbitrary waveguide cross section into a rectangular one [59] that is invariant along the
propagation direction.

6. Summary

We introduced a transformation-optics (TO) approach for simulating freeform optical waveguides,
which is applicable to commercially available time-domain Maxwell’s equations solvers. The
method reduces the computational volume by transforming a curved freeform waveguide in the
original 3D space into a straight structure with a modified permittivity and permeability profile.
Furthermore, the method allows for a better alignment of grid lines and surfaces of rectangular
freeform waveguides, thus avoiding local mesh cell refinement. We verify the viability of our
technique by simulating freeform waveguides with plane trajectories, thereby demonstrating a
significant reduction in computational effort compared to the simulations in the original 3D space
while maintaining the same level of accuracy. For experimental benchmarking, we realized a
series of freeform waveguides and measured their transmission losses, finding good qualitative
agreement. To the best of our knowledge, these measurements represent the first experimental
study of trajectory-dependent losses of 3D-printed freeform waveguides. We believe that our
TO-based simulation approach has the potential to greatly facilitate design and prototyping of
optical devices based on 3D freeform waveguides.

Appendix A: on the bijectivity of the coordinate transformation function

A necessary condition for the bijectivity of the coordinate transformation function (u, v, s)T =
f (x, y, z) described by its inverse function (x, y, z)T = f−1 (u, v, s) in Eq. (3) is that the computational
domain does not contain local center of curvature of the freeform waveguide trajectory. This can
be achieved by appropriately choosing the ranges of u- and v-coordinates. As a simple illustrative
example we may think of a freeform waveguide with a plane trajectory in the (y, z)-plane consisting
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of two straight sections that are connected by a 90◦ bend with a constant bend radius R. The
local center of curvature is point C in the (y, z)-plane, see Fig. 6(a). As explained in Section 3,
the RMF in all points of the trajectory is chosen such that vector U, pointing out of the drawing
plane, is parallel to the x-axis and perpendicular to the (y, z)-plane. As a consequence, vector
V is parallel to the (y, z)-plane. Since the vector V is parallel to the v-axis in (u, v, s)-space, the
range v ∈ [−d, d] determines whether the point C is inside or outside the computational domain.

Fig. 6. Waveguide bends for illustrating a necessary condition for the bijectivity of the
coordinate transformation function (u, v, s)T = f (x, y, z), which is defined by its inverse
function (x, y, z)T = f−1 (u, v, s) in Eq. (3). The different computational domains are limited
by the outer boundaries of the hatched areas. We consider a plane freeform waveguide
trajectory (dashed lines) in the (y, z)-plane, consisting of two straight waveguide segments
connected by a 90◦ circular bend with a bend radius R. The (y, z) plane in (x, y, z)-space (left
drawings) corresponds to the (u, v)-plane in (u, v, s)-space (right drawings). The local center
of curvature corresponds to the center C of the 90◦ bend. We consider a symmetric range
of v-coordinates, v ∈ [−d, d]. The RMF is shown only in case (a). (a) If d<R, the point C
is outside the computational domain, ensuring bijective mapping between the two spaces.
(b) If d = R, the point C is on the border of the computational domain. In this critical case,
the space transformation is not anymore a bijection, since point C is mapped onto a line
segment C1C2 in (u, v, s)-space. (c) If d>R, the subdomains A and B in (x, y, z)-space are
mapped to multiple sub-domains A1, A2, A3 and B1, B2, respectively, in (u, v, s)-space, and
the one-to-one correspondence between the two spaces is further violated.

Without going into mathematical details, we give a qualitative analysis of three cases: d<R,
d = R, and d>R, Figs. 6(a)–6(c) here — a more detailed mathematical analysis of the spatial
transformation of 90◦ bends can be found in Appendix C. Dashed lines represent waveguide
trajectories, the white part in the middle represents the waveguide core, and the hatched parts
to both sides represent the portion of cladding that is included in the computational domain.
For all three cases we provide two drawings: One for the original freeform waveguide in the
(y, z)-plane of (x, y, z)-space, and one for the corresponding straight waveguide in the (v, s)-plane
of (u, v, s)-space. If d<R, the computational domain does not include the center point C of
the bend, and the mapping between the two spaces is a bijection, see Fig. 6(a). In case d = R,
point C is on the border of the computational domain and is mapped to a line segment C1C2 in
(u, v, s)-space, the length of which is equal to the arc-length of the 90◦ bend of the trajectory,
C1C2 = Rπ/2, see Fig. 6(b). This is the critical case when the spatial transformation function is
not a bijection anymore. In case d>R, the one-to-one correspondence between the two spaces is
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further violated. Not only the point C is again mapped to the line segment C1C2, but also areas
marked with A and B in the (y, z)-plane are mapped into multiple areas in the (v, s)-plane — see
Fig. 6(c). In particular, area A is mapped to areas A1, A2, and A3, while area B is mapped to
areas B1 and B2. Based on this simple example, it is clear that a necessary condition for ensuring
bijectivity is that C in Fig. 6 is outside of the computational domain. On the other hand, for a
physically correct representation of the waveguide, the essential part of the evanescent fields at
the outside of the bend must be inside the computational domain. This might be accomplished by
choosing a computational domain that comprises an asymmetric range of v-coordinates instead
of the symmetric range [−d, d] used in our example.

This simple example is also very illustrative for the general case of freeform waveguides.
Bends need not necessarily be 90◦ bends, and the bend radius can continuously change along the
trajectory. In case of non-plane true 3D trajectories, the local center of the bend lies in the local
osculating plane, and the same reasoning provided above can be applied. As a matter of fact,
the osculating plane for our example is the (y, z)-plane — the only difference to 3D trajectories
would be that the local vectors of the RMF are not necessarily perpendicular and parallel to the
local osculating plane for each point on the trajectory.

Appendix B: tensors of ϵ′ and µ′ in (u, v, s)-space for freeform waveguides with
plane trajectories

In case of freeform waveguides with plane trajectories and isotropic material properties ε and µ
in the original (x, y, z)-space, the material properties ϵ′ and µ′ in the virtual (u, v, s)-space are
diagonal tensors. This can be shown by assuming that, without loss of generality, the plane
trajectory lies in (y, z)-plane, as explained in Section 3. and Appendix A, such that the vector U
of the RMF in each trajectory point is oriented parallel to the x-axis, while the remaining two
vectors V and T of the RMF lie in the (y, z)-plane, with the vector T forming an angle θ with the
positive z-axis (see Fig. 7). Since the vectors V and T are parallel to the v- and s-axes in the
(u, v, s)-space, respectively, the axes of the 2D (v, s)-coordinate system are rotated by the same
angle θ with respect to the axes of the 2D (y, z)-coordinate system. This allows us to simplify the
calculation of the Jacobian matrix given by Eq. (2). Since the vector U and the x-axis are parallel
to each other, it follows that ∂u/∂x = 1. This also implies that the partial derivatives of u with
respect to y and z must be zero, ∂u/∂y = 0, and ∂u/∂z = 0. Furthermore, the vectors V and T are
perpendicular to the x-axis, which implies that the derivatives of v and s with respect to x must
be zero, too: ∂v/∂x = 0 and ∂s/∂x = 0. The Jacobian matrix of the coordinate transformation
function thus reads

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 ∂v
∂y

∂v
∂z

0 ∂s
∂y

∂s
∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

Assuming the material properties are isotropic in (x, y, z)-space, Eq. (1) can be simplified,

ϵ′(u, v, s) = ε(x, y, z)
J · JT

det(J)

µ′(u, v, s) = µ(x, y, z)
J · JT

det(J)

(10)
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where the product of the Jacobian matrix and its transposed reads

J · JT =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0
(︂
∂v
∂y

)︂2
+

(︂
∂v
∂z

)︂2 (︂
∂y
∂v

∂y
∂s

)︂−1
+

(︂
∂z
∂v

∂z
∂s

)︂−1

0
(︂
∂y
∂v

∂y
∂s

)︂−1
+

(︂
∂z
∂v

∂z
∂s

)︂−1 (︂
∂s
∂y

)︂2
+

(︂
∂s
∂z

)︂2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

Equation (11) is a diagonal matrix if its two off-diagonal elements are equal to zero, which
reduces to

∂y
∂v
∂y
∂s
+
∂z
∂v
∂z
∂s
= 0 . (12)

Since ε (x, y, z), µ (x, y, z), and det (J) are scalars, it follows from Eqs. (10) and (11) that Eq. (12)
is a sufficient condition that ensures that ϵ′ (u, v, s) and µ′ (u, v, s) are diagonal tensors.

Fig. 7. Relationship between coordinates in (x, y, z)- and (u, v, s)-space in a point A with
coordinates (y0 (s) , z0 (s)) on the trajectory for the case of a freeform waveguide with a plane
trajectory. The trajectory lies in the (y, z)-plane, and the RMF is oriented such that the vector
U and the associated u-axis are parallel to the x-axis in all points of the trajectory. The
remaining two axes V and T of the RMF define a 2D frame that lies in the (y, z)-plane. The
axes of the local (v, s)-coordinate system are parallel to the (V, T) frame and rotated by an
angle θ with respect to the axes of the (y, z)-coordinate system.

The coordinate transformation from the (v, s)-coordinate system to the (y, z)-coordinate system
can be extracted from the sketches in Fig. 7,⎡⎢⎢⎢⎢⎣

y (s, v)

z (s, v)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
y0 (s)

z0 (s)

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
v cos θ (s)

v sin θ (s)

⎤⎥⎥⎥⎥⎦ , (13)

where (y0 (s) , (z0 (s)) are coordinates of the point A on the trajectory that is defined by arc-length
coordinate s. Equation (12) can be expressed as a dot-product of two (2, 1)-vectors,

∂

∂v

⎡⎢⎢⎢⎢⎣
y (s, v)

z (s, v)

⎤⎥⎥⎥⎥⎦ ·
∂

∂s

⎡⎢⎢⎢⎢⎣
y (s, v)

z (s, v)

⎤⎥⎥⎥⎥⎦ = 0 . (14)

Inserting Eq. (13) into Eq. (14), we obtain⎡⎢⎢⎢⎢⎣
cos θ (s)

sin θ (s)

⎤⎥⎥⎥⎥⎦ · ⎛⎜⎝T (s) +
⎡⎢⎢⎢⎢⎣
−v sin θ (s) ∂θ(s)∂s

v cos θ (s) ∂θ(s)∂s

⎤⎥⎥⎥⎥⎦⎞⎟⎠ = N (s) · T (s)
(︃
1 + v

∂θ (s)
∂s

)︃
= 0, (15)

where N (s) denotes the unit normal vector in point A on the trajectory, which in case of plane
trajectories is parallel to vector V (s). Since the dot product of the normal and the tangent vector
is always equal to zero, Eq. (15) is always fulfilled, and µ′ (u, v, s) are thus diagonal tensors.
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Appendix C: time-stepping

We have already shown in Appendix A that no local center of curvature of the trajectory is allowed
to be within the computational domain to maintain the bijectivity of the space transformation
defined by Eq. (3). In addition, if the computational domain border is too close to a local center
of curvature, some elements of the tensors ϵ′ (u, v, s) and µ′ (u, v, s) can assume values close to
zero. The Courant-Friedrichs-Lewy stability condition, Eq. (7), then leads to small time steps
of the corresponding time-domain simulation and greatly increases the overall simulation time.
For illustration and similarly to Appendix A, we discuss a circular 90◦-bend with radius R in the
(y, z)-plane, see Fig. 8. Assuming, without loss of generality, that the center of the circular arc is
in the origin of the (x, y, z) coordinate system, the trajectory is given by

x0 = 0,
y0 = −R cos (t),
z0 = R sin (t),

(16)

with t ∈ [0, π/2]. The coordinate s = Rt is the arc length of the trajectory. Since the u-axis is
parallel to the x-axis, and the v-axis is in the plane of the trajectory, we can write the one-to-one
correspondence between the (x, y, z)- and (u, v, s)-spaces, see Fig. 8,

x (u, v, s) = u,

y (u, v, s) = − (R − v) cos
(︂ s
R

)︂
,

z (u, v, s) = (R − v) sin
(︂ s
R

)︂
.

(17)

The Jacobian J of the function (u, v, s)T = f (x, y, z) can be found as the inverse of the Jacobian of
the function (x, y, z)T = f−1 (u, v, s),

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∂x
∂u

∂x
∂v

∂x
∂s

∂y
∂u

∂y
∂v

∂y
∂s

∂z
∂u

∂z
∂v

∂z
∂s

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 cos
(︁ s

R
)︁

− sin
(︁ s

R
)︁

0 R
R−v sin

(︁ s
R
)︁ R

R−v cos
(︁ s

R
)︁
⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

Inserting this result into Eq. (10) leads to

ϵ′ (u, v, s) = ε (x, y, z)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
R−v
R 0 0

0 R−v
R 0

0 0 R
R−v

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ε1,1 0 0

0 ε2,2 0

0 0 ε3,3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

A similar result can be obtained for µ′. Hence, when v approaches R, ε1,1 and ε2,2 (µ1,1 and
µ2,2) tend to 0, causing the maximum phase velocity to tend to infinity. According to the
Courant-Friedrichs-Lewy stability condition Eq. (7), the maximal time step then tends to zero,
and the total simulation time approaches infinity. On the outer side of the bend, for v<0, tensor
elements ε3,3 and µ3,3 are more problematic, since they tend to zero for v → −∞. This is,
however, not of practical relevance since the space far away from the trajectory is commonly not
of interest for modeling of 3D freeform waveguides.
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Fig. 8. Illustration of the space transformation for a 90◦-bend. (a) 90◦-bend waveguide in
the (y, z)-plane of (x, y, z)-space. (b) Same waveguide in the (v, s)-plane of (u, v, s)-space. In
(u, v, s)-space, the 90◦-bend is straightened. It is divided into squares by taking equidistant
divisions along the s-axis (slicing) and along the v-axis. The squares in (u, v, s)-space
correspond to sections bounded by two line segments and two concentric arcs in (x, y, z)-
space. The areas of these sections differ along the radial coordinate and are smaller on the
inner side and larger on the outer side of the bend. Areas close to the origin tend to zero,
and mapping these sections to finite-size squares in (u, v, s)-space causes two elements of
tensors of material properties to tend to zero, see Eq. (19). This leads to a small time step of
the corresponding FDTD simulation due to the Courant-Friedrichs-Lewy stability condition,
Eq. (7), and thus to long simulation times. Areas of sections far from the origin tend to
infinity, and mapping infinite sections to finite size squares in (u, v, s)-space also causes one
of the tensor elements of material properties to tend to zero. These cases are, however, not
critical, since the space far away from the trajectory is commonly not of interest for modeling
of 3D freeform waveguides.

Appendix D: impact of non-plane trajectories on computational complexity

In general, freeform waveguide trajectories are non-plane, which leads to non-diagonal tensors µ′
and ϵ′ in the transformed (u, v, s)-space. This increases the computational complexity, as more
additions and multiplications need to be done in each time step of the Maxwell’s equations solver
compared to the case with diagonal tensors µ′ and ϵ′. As an example, we will consider an FDTD
solver, which is based on the leap-frog algorithm, where in each time step, the electric field E′

and the magnetic field H′ are updated successively. The update relation is given by Eq. (8), that
we repeat here for convenience:

H′(t + ∆t/2) = H′(t − ∆t/2) − ∆t (µ′ (u, v, s))−1
·
(︁
∇ × E′(t)

)︁
,

E′(t + ∆t) = E′(t) + ∆t (ϵ′ (u, v, s))−1
·
(︁
∇ × H′(t + ∆t/2)

)︁
.

(20)

For updating the vector of the electric (magnetic) field in Eq. (20), we need to calculate a curl
of the magnetic (electric) field vector, multiply the (3, 3) matrix ∆t (ϵ′)−1 (∆t (µ′)−1) by the
calculated curl, and add the result to the vector of the electric (magnetic) field in the previous
time point. To find a curl of the (3, 1) vector, we need to calculate six partial derivatives. This
requires nine additions — six additions (6A) to calculate the finite differences between field
components in spatial grid points and three more additions (3A) for calculating the difference
between the two spatial derivatives in each component of the curl — and six multiplications (6M)
for dividing the finite differences of the fields by the corresponding size of the spatial grid cell. In
case of plane trajectories and isotropic materials, the transformed permittivity and permeability
tensors ϵ′ and µ′ are diagonal, and the same applies to the (3, 3) matrices ∆t (ϵ′)−1 and ∆t (µ′)−1.
In this case, multiplication of these matrices by the curl vector requires three additional scalar
multiplications (3M). In contrast to that, non-plane trajectories lead to non-diagonal tensors, for
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which a full vector-matrix multiplication with nine multiplications and six additions is needed
(6A + 9M). Finally, in both cases, adding the resulting vector to the field vector in the previous
time point requires three more additions (3A). Hence, updating the electric or the magnetic
field in one spatial grid point requires twelve additions and nine multiplications 12A + 9M
in case of plane trajectories and diagonal permittivity and permeability tensors, and eighteen
additions and fifteen multiplications 18A + 15M in case of non-diagonal tensors. The ratio of
necessary arithmetic operations is therefore 18A+15M

12A+9M <
5
3 . Based on this rather simple model for

computational effort, we estimate that moving from plane trajectories to non-plane trajectories
increases the computational effort by a factor of roughly 2. Note that additional complications
arise from the fact that the standard Yee grid cannot be used for non-diagonal permittivity and
permeability tensors [55]. On the other hand, the reduction of simulation time for non-plane
trajectories should even exceed the factor of 3–6 that we found for the case of a plane trajectory,
see Fig. 5(c). We thus expect that the overall computational effort should still be greatly reduced
by using the proposed TO approach
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