KIT | KIT-Bibliothek | Impressum | Datenschutz

Generative machine learning methods for multivariate ensemble post-processing

Chen, Jieyu 1; Janke, Tim; Steinke, Florian; Lerch, Sebastian ORCID iD icon 1
1 Institut für Volkswirtschaftslehre (ECON), Karlsruher Institut für Technologie (KIT)

Abstract:

Ensemble weather forecasts based on multiple runs of numerical weather prediction models typically show systematic errors and require post-processing to obtain reliable forecasts. Ac- curately modeling multivariate dependencies is crucial in many practical applications, and various approaches to multivariate post-processing have been proposed where ensemble pre- dictions are first post-processed separately in each margin and multivariate dependencies are then restored via copulas. These two-step methods share common key limitations, in particular the difficulty to include additional predictors in modeling the dependencies. We propose a novel multivariate post-processing method based on generative machine learning to address these challenges. In this new class of nonparametric data-driven distributional regression models, samples from the multivariate forecast distribution are directly obtained as output of a generative neural network. The generative model is trained by optimizing a proper scoring rule which measures the discrepancy between the generated and observed data, conditional on exogenous input variables. Our method does not require parametric assumptions on univariate distributions or multivariate dependencies and allows for incor- porating arbitrary predictors. ... mehr


Volltext §
DOI: 10.5445/IR/1000151932
Veröffentlicht am 26.10.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Volkswirtschaftslehre (ECON)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 10.2022
Sprache Deutsch
Identifikator ISSN: 2194-1629
KITopen-ID: 1000151932
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 31 S.
Serie KIT Scientific Working Papers ; 201
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page