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Abstract—Computational requirements for deep neural net-
works (DNNs) have been on a rising trend for years. Moreover,
network dataflows and topologies are becoming more sophisti-
cated to address more challenging applications. DNN accelerators
cannot adopt quickly to the constantly changing DNNs. In this
paper, we describe our approach to make a static accelerator
more versatile by adding an embedded FPGA (eFPGA). The
eFPGA is tightly coupled to the on-chip network, which allows us
to pass data through the eFPGA before and after it is processed
by the DNN accelerator. Hence, the proposed solution is able
to quickly address changing requirements. To show the benefits
of this approach, we propose an eFPGA application that enables
dynamic quantization of data. We can fit four number converters
on an 1.5mm2 eFPGA, which can process 400 M data elements
per second. We will practically validate our work in the near
future, with a SoC tapeout in the ongoing EPI project.

Index Terms—heterogenous platforms, embedded FPGA, high
performance computing, neural network accelerator

Computational requirements of highly demanding applica-
tions, like the execution of deep neural networks (DNNs),
have risen tremendously in recent years. DNNs are now
able to solve tasks with increasing complexity, like semantic
image segmentation [1] required for robotics or autonomous
vehicles. To achieve this, state-of-the-art DNNs rapidly grow
in parameter size and operations required. The latter surpassed
10 billion in 2020 [2]. As a result, execution of DNNs moved
from CPUs and GPUs to dedicated hardware structures. Spe-
cialized hardware accelerators can leverage spatial parallelism
in DNN operations, since most of them are independent. DNNs
also offer potential for further optimization. For example,
numerous research papers has demonstrated that quantization
of parameters and intermediate results can reduce the hardware
complexity [3] and thus save energy, while maintaining the
network’s accuracy. Furthermore, it has been shown that DNNs
offer a high degree of sparsity. Dynamic pruning [4] of weights
and feature maps can, hence, save much energy and latency.

While dedicated hardware accelerators can leverage ways
to save a lot of energy and computations, they are usually
not reconfigurable and expect a static dataflow. The need
for adaptive accelerators becomes visible as machine learning
engineers constantly present new models with more complex
dataflows and structures to push the accuracy boundaries of all
kinds of applications. However, hardware accelerators cannot
adopt that quickly to the developments, since hardware design,
testing and manufacturing is a time-consuming process.
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Fig. 1: Overview of the EPI accelerator. In the envisaged next
generation, an embedded FPGA extends the accelerator with
adaptable configurability to answer dynamic requirements.

In this paper, we therefore describe our approach to add
flexibility to a powerful high performance computer (HPC)
with an embedded FPGA (eFPGA) inside. The work is based
on the HPC platform that is developed and investigated in
the European Processor Initiative (EPI) [5]. The EPI platform
features, besides general purpose CPUs, an EPI accelerator,
which is designed in the second project phase stated in 2022
(Fig. 1). The EPI accelerator features multiple subcomponents:
From a stencil accelerator for efficient and fast DNN execution
to variable-precision RISC-V cores, which are also equipped
with vector instructions. An eFPGA provided by Menta is
added to the architecture to allow users to add applications
that are not foreseen at chip build time or to react to dynamic
changing requirements. All components are tightly linked with
an on-chip network-on-chip (NoC) that also provides access
to external DDR and HBM memories.

FPGAs to aid HPC computers have already been investi-
gated in many paper, as well as DNN acceleration on FPGAs.
For DNNs, Cichiwskyj et al. [6] first looked at runtime
reconfiguration for DNN workloads, improving the typically
high reconfiguration delay by splitting the accelerator into
smaller components. Escobar et al. [7] looked at a broad
range of more general HPC applications, pointing out the
benefit but also the limitations of FPGAs in HPC. Research
on eFPGAs was mostly carried out in embedded systems like
microcontrollers and small ASICs [8] revealing their potential
to add flexibility to the solutions. However, these eFPGAs are
not coupled with high-performance glue-logic accelerators.
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Fig. 2: Architecture overview that reshapes weights and input
data before they are send to or read from the main memory
to save valuable memory bandwidth.

DNN execution is highly dataflow driven and usually mem-
ory bounded. Quantization aims at reducing the bit width
of both weights and feature map data, and can thus reduce
also the bandwidth requirements for the memory interface.
However, static quantization for all data is always a trade-off
as some layers and regions in DNNs offer potential for further
quantization, while others diminish the network accuracy with
higher quantization. Thus, dynamic quantization has shown
tremendous benefits. Song et al. [9] present, for instance, a
tailored accelerator for dynamic quantization that saves 72%
energy with less than 1% accuracy loss. However, they had to
design an architecture for this particular application.

Since dynamic quantization offers great benefit to make
DNNs more energy efficient and their memory footprint
smaller, we will explore how we can utilize the eFPGA to
enable dynamic quantization as an exemplary application to
demonstrate the benefits of the eFPGA. In this case, the
eFPGA can work together with an unmodified DNN accel-
erator. Therefore, we assume a DNN accelerator that operates
on the well-established bfloat16 format, a 16-bit floating point
format optimized for DNNs. To save energy-intensive memory
transfers, we use the eFPGA to reshape data when it is fetched
from and stored to the off-chip memory. Therefore, we propose
the hardware architecture depicted in Fig. 2. Before a layer
gets processed, we first load a configuration to our architecture,
featuring the number conversion format, e.g. convert from 6
bit integer to bfloat16. A previously configured DMA then
fetches data from the off-chip memory and puts it in a local
scratchpad memory. Configurable number converters perform
a transformation from an arbitrary integer bit-width to bfloat16
on the values in the local memory. Once the conversion is
done, we send the results to the local memory of the DNN
accelerator via the DMA and the on-chip network. The same
applies for the results generated by the accelerator the other
way round. We do this in a highly parallel fashion, to maintain
high troughput. Although our approach adds latency to the
overall system, we can save numerous bytes of data movement.
In addition, this approach enables us to dynamically adapt
the bit width, facilitating a high degree of quantization while
keeping a high accuracy as well.

EPI phase 2 stated in 2022 and is currently ongoing.
Our preliminary results show that we can map four number

converters, the control logic and the DMA on an eFPGA with
1.5mm2 total area using a 12 nm TSMC process. Therefore,
we configured the eFPGA resources to fit the application
before hardening, as described in [10]. With our application
running at 100 MHz, we can achieve a theoretical trough-put
of 400 M word/s, which is sufficient for fast DNN acceleration.
Assuming 8-bit memory numbers, we can cut the bandwidth
requirements for the external memory in half.

DNNs offer great potential for optimizing the high number
of computations and the memory transactions. Our work
addresses these challenges in a highly adaptable way by
exemplary means of a number converter to enable dynamic
quantization. To validate our architecture design, we will
implement it on a test setup, to adjust the bandwidth re-
quirements for the eFPGA and the accelerator and to validate
the theoretical through-put figures. In the future, it is also
conceivable to cover applications like pruning and leveraging
sparsity in feature maps to increase the performance further.
The EPI consortium will tapeout the chip, hence, we will be
able to demonstrate the full potential of our approach on real
hardware in the near future.
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