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WELLPOSEDNESS FOR A (1+1)-DIMENSIONAL WAVE EQUATION
WITH QUASILINEAR BOUNDARY CONDITION

SEBASTIAN OHREM, WOLFGANG REICHEL, AND ROLAND SCHNAUBELT

Abstract. We consider the linear wave equation V (x)utt(x, t)−uxx(x, t) = 0 on [0,∞)×[0,∞)
with initial conditions and a nonlinear Neumann boundary condition ux(0, t) = (f(ut(0, t)))t at
x = 0. This problem is an exact reduction of a nonlinear Maxwell problem in electrodynamics.
In the case where f : R → R is an increasing homeomorphism we study global existence,
uniqueness and wellposedness of the initial value problem by the method of characteristics and
fixed point methods. We also prove conservation of energy and momentum and discuss why
there is no wellposedness in the case where f is a decreasing homeomorphism. Finally we
show that previously known time-periodic, spatially localized solutions (breathers) of the wave
equation with the nonlinear Neumann boundary condition at x = 0 have enough regularity to
solve the initial value problem with their own initial data.

1. Introduction and main results

In this paper we study the initial value problem for the following 1+1-dimensional wave equation
with quasilinear boundary condition:











V (x)utt(x, t)− uxx(x, t) = 0, x ∈ [0,∞), t ∈ [0,∞),

ux(0, t) = (f(ut(0, t)))t, x = 0, t ∈ [0,∞),

u(x, t0) = u0(x), ut(x, t0) = u1(x), x ∈ [0,∞), t = 0.

(1)

This initial value problem has two main features: the wave equation on the half-axis [0,∞) is
linear with a space-dependent speed of propagation and the boundary condition at x = 0 is a
rather singular, quasilinear, 2nd-order in time Neumann-condition. We show wellposedness on
all time intervals [0, T ] with T > 0, and preservation of energy and momentum.

Our interest in (1) stems from the fact that it appears in the context of electromagnetics as an
exact reduction of a nonlinear Maxwell system. We recall the Maxwell equations in the absence
of charges and currents

∇ ·D = 0, ∇×E =− ∂tB, D =ε0E+P(E),

∇ ·B = 0, ∇×H = ∂tD, B =µ0H

with the electric field E, the electric displacement field D, the polarization field P, the magnetic
field B, and the magnetic induction field H. Particular properties of the underlying material
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are modelled by the specification of the relations between E,D,P on one hand, and B,H on
the other hand. Here, we assume a magnetically inactive material, i.e., B = µ0H, but on the
electric side we assume a material with a Kerr-type nonlinear behaviour, cf. [1], Section 2.3,
given through

P(E) = ε0χ1(x)E+ ε0χNL(x)g(|E|2)E
with x = (x, y, z) ∈ R3 and |·| the Euclidean norm on R3. For simplicity we assume that χ1, χNL

are given scalar valued functions instead of the more general situation where they are matrix
valued. The scalar constants ε0, µ0 are such that c = (ε0µ0)

−1/2 is the speed of light in vacuum.
Local existence, wellposedness and regularity results for the general nonlinear Maxwell system
have been shown on R3 by Kato [3] and on domains by Spitz [7, 8].

In its second order formulation the Maxwell system becomes

0 = ∇×∇× E+ ∂2t

(

µ0ε0(1 + χ1(x))E+ µ0ε0χNL(x)g(|E|2)E
)

.(2)

We assume additionally that χ1(x) = χ1(x), χNL(x) = χNL(x) and that E takes the form of a
polarized traveling wave

(3) E(x, t) = (0, 0, U(x, κ−1y − t))T .

Then the quasilinear vectorial wave-type equation (2) turns into the scalar equation

(4) V (x)Utt − Uxx + Γ(x)(g(U2)U)tt = 0

for U = U(x, t), where V (x) = µ0ε0(1 + χ1(x)) − κ−2 and Γ(x) = µ0ε0χNL(x). Note that (4)
is an exact reduction of the Maxwell problem, from which all fields can be reconstructed. E.g.,
the magnetic induction B can be retrieved from ∇×E = −∂tB by time-integration and it will
satisfy ∇ ·B = 0 provided it does so at time t = 0. By assumption the magnetic field is given
by H = 1

µ0
B and it satisfies ∇×H = ∂tD. It remains to check that the displacement field D

satisfies the Gauss law ∇ ·D = 0 in the absence of external charges. This follows directly from
the constitutive equation D = ε0(1 + χ1(x))E + ε0χNL(x)g(|E|2)E and the assumption of the
polarized form of the electric field in (3).

In the extreme case where Γ(x) = 2δ0(x) is a multiple of the δ-distribution at 0 and where
U(x, t) = ut(x, t) for an even function u(x, t) = u(−x, t), by removing one time derivative (4)
becomes

{

V (x)utt(x, t)− uxx(x, t) = 0, x ∈ [0,∞), t ∈ [0,∞),

ux(0, t) = (f(ut(0, t)))t, x = 0, t ∈ [0,∞)
(5)

with f(s) := g(s2)s. Clearly (1) is the initial value problem for (5).

Problem (5) with f(s) = ±s3 has been considered in [4]. Under specific assumptions on the
linear potential V the existence of infinitely many breathers, i.e., real-valued, time-periodic,
spatially localized solutions of (5), was shown. Typical examples of V were given in classes
of piecewise continuous functions having jump discontinuities. Under different assumptions on
V and Γ, but still including δ-distributions, problem (5) was considered in [2] and real-valued
breathers were constructed. Our goal is to study the initial value problem (1) from the point of
view of wellposedness, to derive the conservation of momentum and energy, and to verify that
known time-periodic solutions from [4] satisfy (1) with their own initial values. Note that the
boundary condition in (1) becomes ux(0, t) = ±3ut(0, t)

2utt(0, t) in the model case f(s) = ±s3.
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Hence, (1) is a singular initial value problem which is not covered by typical theories like, e.g.,
energy methods or monotone operators. Instead, our approach will be to prove existence by
making use of the method of characteristics. Uniqueness, wellposedness, global existence, and
the conservation of energy and momentum will build upon this.

Our basic assumptions on the initial data u0, u1 are:

u0 ∈ C1([0,∞)), u1 ∈ C([0,∞)).(A0)

Here Ck([0,∞)) = Ck([0,∞),R), and in general all function spaces consist of real-valued func-
tions unless the codomain is explicitly mentioned. Motivated by the results from [4] we are
interested in the case where the coefficient V may have discontinuities. In particular, we con-
sider piecewise C1 functions V .

Let I ⊆ R be a closed interval. We call a function φ : I → R piecewise Ck if there exists a
discrete set D ⊆ I such that φ ∈ Ck(I \D) and the limits φ(j)(x−) and φ(j)(x+) exist for all
x ∈ D(φ) and 0 ≤ j ≤ k, although they do not need to coincide. If I is bounded from below
(or above), in addition we require φ(j)(min I+) (or φ(j)(max I−)) to exist for all 0 ≤ j ≤ k.
Let PCk(I) denote the set of piecewise Ck functions on I, and for φ ∈ PC(I) := PC0(I) let us
denote by D(φ) the set of discontinuities of φ.

For the coefficient V and the nonlinear function f we assume

V ∈ PC1([0,∞)), V, V ′ ∈ L∞, inf V > 0,(A1)

inf{|d1 − d2| with d1, d2 ∈ D(V ) ∪ {0}, d1 6= d2} > 0,(A2)

f : R → R is an increasing homeomorphism.(A3)

The main theorem of this paper is given next.

Theorem 1.1. Assume (A0)–(A3). Then (1) admits a unique and global C1-solution. More-
over, (1) is wellposed on every finite time interval [0, T ] with T > 0.

In Proposition 6.1 our concept of continuous dependence on data is stated precisely. In the
above result the assumption (A3) is crucial. For a decreasing homeomorphism f the result
of Theorem 1.1 does not hold, see Remark 1.7. Since we have already used the notion of a
C1-solution, we are going to explain it in detail next. As the notion of a C1-solution will also
be used for subdomains of [0,∞)× [0,∞) we first define the notion of an admissible domain.

Definition 1.2 (admissible domain). We call a set Ω ⊆ [0,∞)× [0,∞) an admissible domain
if it is of the form

Ω = {(x, t) ∈ [0,∞)× [0,∞) | t ≤ h(x)}

where h ≡ +∞ or h : [0,∞) → R is Lipschitz with |hx(x)| ≤
√

V (x) for almost all x. We
denote the relative interior of Ω by

Ω◦ := {(x, t) ∈ [0,∞)× [0,∞) | t < h(x)}.

In order to explain the notion of a C1-solution let us first mention that we cannot expect that
a solution of (1) has everywhere second derivatives utt or uxx. This is essentially due to the
nonlinear boundary condition and the discontinuities of second derivatives which propagate
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away from x = 0. However, if we denote by c(x) := 1√
V (x)

the inverse of the x-dependent wave

speed, then we can factorize the wave operator as

∂2

∂t2
− c(x)2

∂2

∂x2
= (∂t − c(x)∂x)(∂t + c(x)∂x) + c(x)c′(x)∂x.

It is then reasonable for a C1-solution to have almost everywhere a mixed second directional
derivative ∂2ν,µ with directions ν = (1,−c(x)) and µ = (1, c(x)). This is the basis for the
following definition.

Definition 1.3 (solution). A function u ∈ C1(Ω) on an admissible domain Ω is called a C1-
solution to (1) if the following hold:

(i) For all (x, t) ∈ Ω \ (D(c) ∪ D(c′) × R) we have (∂t − c(x)∂x)(ut + c(x)ux)(x, t) =
−c(x)cx(x)ux(x, t).

(ii) (f(ut(0, t)))t = ux(0, t) for all (0, t) ∈ Ω◦.
(iii) u(x, 0) = u0(x) for all (x, 0) ∈ Ω, ut(x, 0) = u1(x) for all (x, 0) ∈ Ω◦.

Problem (1) has a momentum given by

M(u, t) :=

∫ ∞

0

V (x)ut dx+ f(ut(0, t))(6)

and an energy given by

E(u, t) := 1
2

∫ ∞

0

(

V (x)ut(x, t)
2 + ux(x, t)

2
)

dx+ F (ut(0, t))(7)

where F (s) := sf(s) −
∫ s

0
f(σ) dσ. If, e.g., f is continuously differentiable, then F (s) is a

primitive of sf ′(s). The conservation of momentum and energy is stated next.

Theorem 1.4. Assume (A0)–(A3) and that u is a C1-solution of (1) with u′0(x), u1(x) → 0 as
x → ∞. Then the momentum given by (6) and the energy given by (7) are time-invariant.

Remark 1.5. Note that F (s) =
∫ s

0
f(s) − f(σ) dσ goes to +∞ as s → ±∞, so that due to

Theorem 1.4, ux( · , t) and ut( · , t) are bounded in L2(0,∞) and ut(0, t) is bounded as well.

Another common notion of solution for (1) is the notion of a weak solution, which we only give
for Ω = [0,∞)2. The fact that a C1-solution to (1) is also a weak solution to (1) holds true an
will be proven in Proposition 5.2 in Section 5.

Definition 1.6 (weak solution). A function u ∈ W 1,1
loc

([0,∞)× [0,∞)) is called a weak solution
to (1) if f(ut(0, · )) ∈ L1

loc
([0,∞)), u( · , 0) = u0, and u satisfies

0 =

∫ ∞

0

∫ ∞

0

(V (x)utϕt − uxϕx) dx dt +

∫ ∞

0

f(ut(0, t))ϕt(0, t) dt

+

∫ ∞

0

V (x)u1(x)ϕ(x, 0) dx+ f(u1(0))ϕ(0, 0)

for all ϕ ∈ C∞
c ([0,∞)× [0,∞)).
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Remark 1.7. Due to assumption (A3) we have only considered increasing functions f . If we
instead allow f : R → R to be a decreasing homeomorphism, then (1) will not be wellposed in
general and can have multiple solutions. Consider for example the cubic term f(y) = −y3 with
constant potential V = 1 and homogeneous initial data:











utt(x, t)− uxx(x, t) = 0, x ∈ [0,∞), t ∈ [0,∞),

ux(0, t) = −(ut(0, t)
3)t, x = 0, t ∈ [0,∞),

u(x, t0) = 0, ut(x, t0) = 0, x ∈ [0,∞), t = 0.

(8)

By direct calculation one can show that the right-traveling wave

up(x, t) =

{

(

2
3
(t− x)

)
3
2 , x < t,

0, x ≥ t

is a nontrivial solution to (8). In fact, u is a C1-solution of (∂x+ ∂t)u = 0. But (8) also has the
trivial solution u = 0, or u(x, t) = ±up(x, t− τ) for any τ ≥ 0. However, due to the continuity
of f−1, one can still show existence of solutions to (1) in the case where f grows at least linearly,
cf. (A4). This follows from the arguments in Sections 3 and 4. Theorem 1.4 also holds when f
is decreasing, but now the quantity F (y) tends to −∞ as y → ±∞, so that (7) does not give
rise to estimates on u. Lastly, also in this case C1-solutions to (1) are weak solutions.

In addition to the problem being posed on the positive real half-line x ∈ [0,∞), we can also
consider the same quasilinear problem posed on a bounded domain x ∈ [0, L] where we impose
a homogeneous Dirichlet condition at x = L:



















V (x)utt(x, t)− uxx(x, t) = 0, x ∈ [0, L], t ∈ [0,∞),

ux(0, t) = (f(ut(0, t)))t, t ∈ [0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [0, L],

u(L, t) = 0, t ∈ [0,∞).

(9)

Both Theorem 1.1 and Theorem 1.4 remain valid when making the obvious adaptations to this
setting.

Theorem 1.8. Assume (A0)–(A3). Then (9) admits a unique and global C1-solution u. More-
over, the energy given by

E(u, t) := 1
2

∫ L

0

(

V (x)ut(x, t)
2 + ux(x, t)

2
)

dx+ F (ut(0, t)).

is time-invariant.

Remark 1.9. For Dirichlet boundary data, momentum is in general not conserved.

The paper is structured as follows. In Section 2 we provide a change of variables which turns
the wave operator with variable wave speed in (1) into a constant coefficient operator with a
convenient factorization. In Section 3 we collect all results on the linear wave equation that
is obtained from the change of variables in Section 2. Section 4 contains the proof of the
existence and uniqueness part of the main result of Theorem 1.1 under an extra assumption
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which will removed in the subsequent Section 5. This section also contains the proof of energy
and momentum conservation as stated in Theorem 1.4, and the fact that C1-solutions of (1) in
the sense of Definition 1.3 are also weak solutions, cf. Proposition 5.2. The wellposedness part
of Theorem 1.1 can be found in Section 6. Finally, in Section 7 we verify that the breather
solutions from [4] satisfy (1) with their own initial values. The Appendices A and B contain
some technical results used in the proofs of the main results.

2. A change of variables

It will be convenient to normalize the wave speed to 1. To achieve this, we introduce a new
variable z = κ(x) =

∫ x

0
1

c(s)
ds, and thus a new coordinate system (z, t). Avoiding new notation

we denote the functions V, c, u, u0, u1 transformed into this new coordinate system again by
V, c, u, u0, u1. The relation between the two coordinate systems is given by

∂z

∂x
=

1

c(x)
or c(x)∂x = ∂z or dx = c(x) dz.

From now on until the end of Section 5, we will exclusively work with the coordinate system
(z, t). As before we denote the points where c is discontinuous by D(c) and the points where
cz is discontinuous by D(cz).

Formally the initial value problem (1) transforms into










utt(z, t)− uzz(z, t) = − cz(z)
c(z)

uz(z, t), z ∈ [0,∞), t ∈ [0,∞),
1

c(0)
uz(0, t) = (f(ut(0, t)))t, t ∈ [0,∞),

u(z, 0) = u0(z), ut(z, 0) = u1(z), z ∈ [0,∞).

(10)

where we need to take into account that ux = 1
c
uz is continuous (and not uz itself) and that

the differential equation does not hold at the discontinuities of c and cz. A detailed definition
of the solution concept is given below in Definition 2.3.

We begin by rephrasing Definitions 1.2 and 1.3 for the new coordinate system.

Definition 2.1 (admissible domain). We call a set Ω ⊆ [0,∞)× [0,∞) an admissible domain
if it is of the form

Ω = {(z, t) ∈ [0,∞)× [0,∞) | t ≤ h(z)}
where h ≡ +∞ or h : [0,∞) → R is Lipschitz continuous with Lipschitz constant 1. We denote
its relative interior by

Ω◦ := {(z, t) ∈ [0,∞)× [0,∞) | t < h(z)}.

Next we introduce function spaces that capture the condition of the continuity of 1
c
uz.

Definition 2.2 (x-dependent function spaces). Let the transformation between (x, t) and (z, t)-
coordinates be given by κ̃(x, t) := (κ(x), t) = (z, t). For Ω ⊆ [0,∞)× [0,∞) we write

C1
(x,t)(Ω) := {u : Ω → R | u ◦ κ̃ ∈ C1(κ̃−1(Ω))}

where we understand u to be a function of (z, t) variables, and ũ := u ◦ κ̃ is the (x, t)-dependent
version of u, i.e. ũ(x, t) = u(z, t) holds. Note that u ∈ C1

(x,t)(Ω) if and only if u, ut,
1
c
uz ∈ C(Ω).
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Similarly, for an interval I ⊆ [0,∞) we define

C1
x(I) := {v : I → R | v ◦ κ ∈ C1(κ−1(I))}.

where again we understand v to be a function of z.

Definition 2.3 (solution). A function u ∈ C1
(x,t)(Ω) on an admissible domain Ω is called a

C1-solution to (10) if the following hold:

(i) For all (z, t) ∈ Ω \ (D(c) ∪D(cz)× R) we have (∂t − ∂z)(ut + uz)(z, t) = − cz(z)
c(z)

uz(z, t).

(ii) f(ut(0, t))t =
1

c(0)
uz(0, t) for all (0, t) ∈ Ω◦.

(iii) u(z, 0) = u0(z) for all (z, 0) ∈ Ω, ut(z, 0) = u1(z) for all (z, 0) ∈ Ω◦.

Remark 2.4. Note that u : Ω → R is a C1-solution to (1) in the (x, t)-coordinates if and only
if it is a C1-solution to (10) in the (z, t)-coordinates.

3. Auxiliary results on the linear part

In this section we gather some auxiliary results and estimates on the linear wave equation.
These will prove useful for the study of the nonlinear boundary condition. All results of this
section hold under the assumptions (A0)–(A3).

We first note that the wave equation has finite speed of propagation; if we know its behavior at
time t0 on an interval [z0 − r, z0 + r], then we can defer its accurate behavior on the space-time
triangle with corners (z0 − r, t0), (z0 + r, t0) and (z0, t0 + r).

Definition 3.1. For (z0, t0) ∈ R
2 and r > 0 we denote the triangle with corners (z0 − r, t0),

(z0 + r, t0) and (z0, t0 + r) by

∆(z0, t0, r) := {(z, t) ∈ R
2 | t ≥ t0, |z − z0|+ |t− t0| ≤ r},

its base projected onto the z-axis is given by Pz∆(z0, t0, r) = [z0 − r, z0 + r] with projection
Pz(z, t) := z. Similarly, we define left and right half triangles

∆−(z0, t0, r) := ∆(z0, t0, r) ∩ {z ≤ z0}, ∆+(z0, t0, r) := ∆(z0, t0, r) ∩ {z ≥ z0}
whose bases are given by

Pz∆−(z0, t0, r) = [z0 − r, z0], Pz∆−(z0, t0, r) = [z0, z0 + r].

Recall the solution formula for the 1-dimensional wave equation:

Theorem 3.2. Let (z0, t0) ∈ R2, r > 0, ∆ := ∆(z0, t0, r) and B := Pz∆. Assume that
u0 ∈ C1(B), u1 ∈ C(B), and g ∈ L∞(∆) is continuous outside a set L consisting of finitely
many lines of the form {z = const}. Then the function

u(z, t) = 1
2
(u0(z + t− t0) + u0(z − t + t0)) +

1
2

∫ z+t−t0

z−t+t0

u1(y) dy +
1
2

∫

∆(z,t0,t−t0)

g(y, τ) d(y, τ)

belongs to C1(∆) and is the unique C1-solution of the problem
{

(∂t − ∂z)(ut + uz) = g, (z, t) ∈ ∆,

u(z, t0) = u0(z), ut(z, t0) = u1(z), z ∈ B
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in the following sense: u(·, t0) = u0(·), ut(·, t0) = u1(·) on B and the directional derivative
(∂t − ∂z)(ut + uz) exists and equals g on ∆◦ \ L.

Remark 3.3. For every C1-solution u of (∂t − ∂z)(ut + uz) = g on a domain we have that
(∂t + ∂z)(ut − uz) = (∂t − ∂z)(ut + uz) wherever g is continuous, cf. Schwarz’s theorem in
[6, Theorem 9.41]. As a consequence, any of the two factorizations of the wave operator
(∂t − ∂z)(∂t + ∂z) or (∂t + ∂z)(∂t − ∂z) can be used and yields the same solution.

By combining the above Theorem 3.2 with a fixed point argument, we can treat the initial

value problem for (∂t − ∂z)(ut + uz) = − cz(z)
c(z)

uz on sufficiently small triangles ∆. In order to

have a slightly more general situation available we work with a piecewise continuous function
λ instead of cz

c
.

Corollary 3.4. Let (z0, t0) ∈ R2 and ∆ := ∆(z0, t0, r), B := Pz∆ for r > 0. Assume u0 ∈
C1(B), u1 ∈ C(B) and λ ∈ PC(B) such that r‖λ‖∞ < 1. Then

{

(∂t − ∂z)(ut + uz) = −λ(z)uz, (z, t) ∈ ∆,

u(z, t0) = u0(z), ut(z, t0) = u1(z), z ∈ B
(11)

has a unique solution u ∈ C1(∆) in the sense of Theorem 3.2 with g = −λuz and L = D(λ)×R.
We denote this solution by Φ(u0, u1) := u.

Remark 3.5. If additionally u0, u1 are odd around z = z0 and λ is odd around z = z0, then
the solution of (11) is odd around z = z0. To see this, notice that under these assumptions the
odd reflection of the solution u of (11) again solves (11) – but with the opposite factorization
of the wave operator. Hence, by Remark 3.3 and uniqueness of solutions, u coincides with its
odd reflection.

Proof of Corollary 3.4. W.l.o.g. we assume (z0, t0) = (0, 0). Let u ∈ C1(∆). Then by Theo-
rem 3.2 u is a solution if and only if

u(z, t) = 1
2
(u0(z + t) + u0(z − t)) + 1

2

∫ z+t

z−t

u1(y) dy − 1
2

∫

∆(z,0,t)

λ(y)uz(y, τ) d(y, τ)(12)

holds for (z, t) ∈ ∆. Taking the derivative w.r.t. z we obtain

uz(z, t) =
1
2
(u′0(z + t) + u′0(z − t)) + 1

2
(u1(z + t)− u1(z − t))

− 1
2

∫ t

0

λ(z + t− s)uz(z + t− s, s) ds+ 1
2

∫ t

0

λ(z − t + s)uz(z − t + s, s) ds.
(13)

We consider (13) as a fixed point problem for uz ∈ C(∆). If we denote the right-hand side of
(13) by T (uz)(z, t), then clearly T maps C(∆) into itself. Furthermore, one has

‖T (uz)− T (wz)‖∞

= 1
2

sup
(z,t)∈∆

∣

∣

∣

∣

−
∫ t

0

λ(z + s) [uz − wz](z + s, t− s) ds+

∫ t

0

λ(z − s) [uz − wz](z − s, t− s) ds

∣

∣

∣

∣

≤ ‖λ‖∞r · ‖uz − wz‖∞
so that by Banach’s fixed-point theorem there exists a unique solution uz of (13). With the
help of uz we define u as in (12) and thus get the claimed result. �
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In the setting of the above proof, we can obtain estimates on the solution u. First, if we set
q := r‖λ‖∞, then by Banach’s fixed-point theorem we have

‖uz − 0‖∞ ≤ 1

1− q
‖T (0)− 0‖∞.

Using ‖T (0)‖∞ ≤ ‖u′0‖∞ + ‖u1‖∞, we obtain

‖uz‖∞ ≤ 1

1− q
(‖u′0‖∞ + ‖u1‖∞)

From

u(z, t) = 1
2
(u0(z + t) + u0(z − t)) + 1

2

∫ z+t

z−t

u1(y) dy − 1
2

∫ t

0

∫ z+(t−τ)

z−(t−τ)

λ(y)uz(y, τ) dy dτ,

ut(z, t) =
1
2
(u′0(z + t)− u′0(z − t)) + 1

2
(u1(z + t) + u1(z − t))

− 1
2

∫ t

0

λ(z + s)uz(z + s, t− s) ds− 1
2

∫ t

0

λ(z − s)uz(z − s, t− s) ds

we also obtain

‖u‖∞ ≤ ‖u0‖∞ + r‖u1‖∞ + 1
2
r2‖λ‖∞‖uz‖∞, ‖ut‖∞ ≤ ‖u′0‖∞ + ‖u1‖∞ + r‖λ‖∞‖uz‖∞.

Combining these estimates, we get the following result.

Corollary 3.6. In the setting of Corollary 3.4, the following estimates hold with q := r‖λ‖∞:

‖u‖∞ ≤ ‖u0‖∞ +
rq

2(1− q)
‖u′0‖∞ +

r(1− 1
2
q)

1− q
‖u1‖∞,

‖uz‖∞ ≤ 1

1− q
(‖u′0‖∞ + ‖u1‖∞),

‖ut‖∞ ≤ 1

1− q
(‖u′0‖∞ + ‖u1‖∞).

In particular, there exists a constant C = C(r, ‖λ‖∞) such that the operator-norm of the linear
solution operator Φ : C1(B)× C(B) → C1(∆), which maps the data (u0, u1) ∈ C1(B) × C(B)
to the solution of (11), satisfies

‖Φ‖ ≤ C.

Recall that in Definition 2.3 we required uz

c
to be continuous. Since c may have jumps, e.g. at

z0, we also need to treat the jump condition

uz(z0+, t)

c(z0+)
=
uz(z0−, t)
c(z0−)

.

We prepare this in the following lemma by adding to (11) the inhomogeneous Dirichlet condition

u(z0, t)
!
= b(t) at the spatial boundary z = z0.
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Lemma 3.7. Let (z0, t0) ∈ R2 and ∆+ := ∆+(z0, t0, r), B+ := Pz∆+ for r > 0. Assume u0 ∈
C1(B+), u1 ∈ C(B+), b ∈ C1([t0, t0 + r]) with b(t0) = u0(z0), b

′(t0) = u1(z0) and λ ∈ PC(B+)
such that r‖λ‖∞ < 1. Then the problem











(∂t − ∂z)(ut + uz) = −λ(z)uz, (z, t) ∈ ∆◦
+,

u(z0, t) = b(t), t ∈ [t0, t0 + r],

u(z, t0) = u0(z), ut(z, t0) = u1(z), z ∈ B+,

(14)

has a unique C1-solution u : ∆+ → R in the sense of Theorem 3.2 with g = −λuz and L =
D(λ)×R. We denote this solution by Φ+(b, u0, u1) := u. The assertion also holds for the right
half triangle ∆− := ∆−(z0, t0, r) with corresponding solution operator Φ−.

Proof. Note that the function Gb defined on ∆+ by

Gb(z, t) =

{

b(t0) + (t− t0)b
′(t0), z − z0 > t− t0 ≥ 0,

b(t + z0 − z) + (z − z0)b
′(t0), t− t0 ≥ z − z0 ≥ 0

(15)

belongs to C1(∆+), solves the homogenous wave equation (∂t − ∂z)(∂t + ∂z)G
b = 0 on ∆+, and

satisfies Gb(z0, t) = b(t). Setting v := u−Gb, problem (14) can be rewritten as


















(∂t − ∂z)(vt + vz) = −λ(z)
(

vz +Gb
z

)

, (z, t) ∈ ∆◦
+,

v(z0, t) = 0, t ∈ [t0, t0 + r],

v(z, t0) = u0(z)− b(t0) =: v0(z), z ∈ B+,

vt(z, t0) = u1(z)− b′(t0) =: v1(z), z ∈ B+.

(16)

Note that v0(z0) = v1(z0) = 0 by assumption. If we extend the functions v0, v1, and λ in an
odd way and Gb in an even way around z = z0, we can consider the problem











(∂t − ∂z)(ṽt + ṽz) = −λodd(z) ·
(

ṽz +Gb
even,z

)

(z, t) ∈ ∆◦,

ṽ(z, t0) = v0,odd(z), z ∈ B,

ṽt(z, t0) = v1,odd(z), z ∈ B,

(17)

where ∆ := ∆(z0, t0, r) and B := Pz∆. Arguing as in the proof of Corollary 3.4, we see that
due to the Banach fixed-point theorem, (17) has a unique solution, which must be odd, cf.
Remark 3.5. Now, on one hand the solution of (17) solves (after restriction to ∆+) (16) and,
on the other hand, after odd extension around z = z0 every solution of (16) solves (17). This
shows existence and uniqueness for (16) and hence for (14). �

Remark 3.8. One can show that there exists a constant C = C(r, ‖λ‖∞) such that

Φ± : C1([t0, t0 + r])× C1(B±)× C(B±) → C1(∆±)

satisfy ‖Φ±‖ ≤ C.

When treating the nonlinear problem (1), the operators Φ± play an important role and the
estimate in Remark 3.8 will be used. However, we need to investigate the dependency of Φ±
on the datum b more precisely. This will be achieved next in the case where u0 = u1 = 0.
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Lemma 3.9 (Estimate on Φ± in the case u0 = u1 = 0). Let ∆±, and λ be as in Lemma 3.7 with
q := r‖λ‖∞ < 1. Assume b ∈ C1([t0, t0 + r]) and b(t0) = b′(t0) = 0. Then for u := Φ±(b, 0, 0)
one has

|uz(z, t)± b′(m)| ≤ α|z − z0||b′(m)|+ β

∫ m

t0

|b′(τ)| dτ,

where m := max{t0, t− |z − z0|}, α := 2
4−q

‖λ‖∞, and β := 4
(2−q)(4−q)

‖λ‖∞.

Proof. We only give the proof in the “+”-case and for (z0, t0) = (0, 0). We revisit the proof of
Lemma 3.7 where Φ+ is defined. From (13) we know that vz satisfies

vz(z, t) =− 1
2

∫ t

0

λodd(z + s) ·
(

Gb
even,z(z + s, t− s) + vz(z + s, t− s)

)

ds

+ 1
2

∫ t

0

λodd(z − s) ·
(

Gb
even,z(z − s, t− s) + vz(z − s, t− s)

)

ds.

We denote the term on the right-hand side by T (vz)(z, t) and already know that T is Lipschitz
continuous with constant q < 1. Therefore we may write the solution as vz := lim

n→∞
T n(0) and

thus have to study v
(n)
z := T n(0). The claimed inequality for uz will follow once we have shown

that

|vz(z, t)| ≤ α|z − z0||b′(m)|+ β

∫ m

t0

|b′(τ)| dτ.

Due to vz := lim
n→∞

T n(0) it is sufficient to show that this estimate holds for all v
(n)
z . Since

v
(0)
z = 0, there is nothing left to show for n = 0. Now assume that the estimate has been shown

for some fixed n. Recalling the definition of Gb from (15), we have

Gb
even,z(z, t) = − sign(z)b′(max{t− |z|, 0}).

Notice that Gb
even,z(z, t) vanishes for |z| ≥ t. Therefore, if v

(n)
z vanishes for |z| ≥ t then also

v
(n+1)
z = T (v

(n)
z ) vanishes on this set. So in the following we may assume |z| < t. We will

only consider z ≥ 0 as z < 0 can be treated similarly. For z ≥ 0 and t > z the expression
m = max{t − |z|, 0} simplifies to m = t − z. We begin by estimating the terms which are

independent of v
(n)
z :

∣

∣

∣

∣

∫ t

0

λodd(z + s)Gb
even,z(z + s, t− s) ds

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫ t

0

λodd(z + s)b′(max{t− z − 2s, 0}) ds
∣

∣

∣

∣

≤ 1
2
‖λ‖∞

∫ t−z

0

|b′(τ)| dτ = 1
2
‖λ‖∞

∫ m

0

|b′(τ)| dτ,
∣

∣

∣

∣

∫ t

0

λodd(z − s)Gb
even,z(z − s, t− s) ds

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫ z

0

λodd(z − s)b′(t− z) ds+

∫ t

z

λodd(z − s)b′(max{t+ z − 2s, 0}) ds
∣

∣

∣

∣
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≤ ‖λ‖∞z|b′(t− z)|+ 1
2
‖λ‖∞

∫ t−z

0

|b′(τ)| dτ = ‖λ‖∞z|b′(m)|+ 1
2
‖λ‖∞

∫ m

0

|b′(τ)| dτ.

The remaining two summands are treated by
∣

∣

∣

∣

∫ t

0

λodd(z + s)v(n)z (z + s, t− s) ds

∣

∣

∣

∣

≤ ‖λ‖∞
∫ t

0

(

α(z + s)|b′(max{t− z − 2s, 0})|+ β

∫ max{t−z−2s,0}

0

|b′(τ)| dτ
)

ds

= ‖λ‖∞
∫ t−z

2

0

(

α(z + s)|b′(t− z − 2s)|+ β

∫ t−z−2s

0

|b′(τ)| dτ
)

ds

≤ ‖λ‖∞
∫ t−z

2

0

(

α
t+ z

2
|b′(t− z − 2s)|+ β

∫ t−z

0

|b′(τ)| dτ
)

ds

= ‖λ‖∞
(

α
t+ z

4
+ β

t− z

2

)
∫ m

0

|b′(τ)| dτ,
∣

∣

∣

∣

∫ t

0

λodd(z − s)v(n)z (z − s, t− s) ds

∣

∣

∣

∣

≤ ‖λ‖∞
∫ t

0

(

α|z − s||b′(max{t− s− |z − s|, 0})|+ β

∫ max{t−s−|z−s|,0}

0

|b′(τ)| dτ
)

ds

= ‖λ‖∞
∫ z

0

(

α(z − s)|b′(t− z)|+ β

∫ t−z

0

|b′(τ)| dτ
)

ds

+ ‖λ‖∞
∫ z+t

2

z

(

α(s− z)|b′(t+ z − 2s)|+ β

∫ t+z−2s

0

|b′(τ)| dτ
)

ds

≤ ‖λ‖∞
(

α
z2

2
|b′(m)|+ βz

∫ m

0

|b′(τ)| dτ
)

+ ‖λ‖∞
(

α
t− z

4
+ β

t− z

2

)
∫ m

0

|b′(τ)| dτ.

Summing up all four estimates, we obtain

2
∣

∣v(n+1)
z (z, t)

∣

∣

≤ 1
2
‖λ‖∞

∫ m

0

|b′(τ)| dτ

+ ‖λ‖∞z|b′(m)|+ 1
2
‖λ‖∞

∫ m

0

|b′(τ)| dτ

+ ‖λ‖∞
(

α
t+ z

4
+ β

t− z

2

)
∫ m

0

|b′(τ)| dτ

+ ‖λ‖∞
(

α
z2

2
|b′(m)|+ βz

∫ m

0

|b′(τ)| dτ
)

+ ‖λ‖∞
(

α
t− z

4
+ β

t− z

2

)
∫ m

0

|b′(τ)| dτ
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= ‖λ‖∞
(

1 + α
z

2

)

z|b′(m)|

+ ‖λ‖∞
(

1
2
+ 1

2
+ α

t+ z

4
+ β

t− z

2
+ βz + α

t− z

4
+ β

t− z

2

)
∫ m

0

|b′(τ)|

=: 2C1z|b′(m)|+ 2C2

∫ m

0

|b′(τ)| dτ.

It remains to verify C1 ≤ α and C2 ≤ β. In fact, using t, z ≤ r, we obtain

2C1 ≤ ‖λ‖∞ +
q

2
α = 2α,

2C2 ≤ ‖λ‖∞ +
q

2
α + qβ = 2α + qβ = 2β,

where the equalities hold by definition of α and β, respectively. �

4. Proof of Theorem 1.1

In this section, we will prove the existence and uniqueness part of the main Theorem 1.1 under
the additional assumption that f grows at least linearly, i.e., for some A,B > 0 we have

|f(x)| ≥ A|x| −B for x ∈ R.(A4)

In Section 5 we will show how to remove this assumption. The wellposedness part of Theo-
rem 1.1 will be completed in Section 6.

We will again use that the wave equation has finite speed of propagation so that we may argue
locally. To be more specific, we will work on the following types of triangular domains:

• A jump triangle is a triangle ∆ = ∆(z0, 0, r) with base B = Pz∆ ⊆ (0,∞), where
z0 ∈ D(c) and B intersects D(c) in no other point. These are useful for the study of

the jump condition uz(z+,t)
c(z+)

= uz(z−,t)
c(z−)

.

• A boundary triangle is a half-triangle ∆+ = ∆+(0, 0, r) with base B+ = Pz∆+ = [0, r]
where B+ does not intersect D(c). These are used to study the nonlinear Neumann
condition uz

c(0)
= (f(ut))t.

• A plain triangle is a triangle ∆ = ∆(z0, 0, r) with base B = Pz∆ ⊆ (0,∞) not inter-
secting D(c). These are used to cover the remaining space.

Lemma 4.1. Let ∆ be a plain triangle with base B. Assume r
∥

∥

cz
c

∥

∥

∞ < 1. Then (10) has a

unique C1-solution u on ∆ and there exists a constant C = C(r,
∥

∥

cz
c

∥

∥

∞) such that the solution

operator Φ: C1(B)× C(B) → C1(∆), (u0, u1) 7→ u satisfies ‖Φ‖ ≤ C.

Proof. This follows immediately from Corollary 3.4 and Corollary 3.6. �

Lemma 4.2. Let ∆ be a jump triangle with base B. Assume r
∥

∥

cz
c

∥

∥

∞ < 1. Then (10) has a

unique C1-solution u on ∆ and there exists a constant C = C(r,
∥

∥

cz
c

∥

∥

∞) such that the solution

operator Φ: C1
x(B)× C(B) → C1

(x,t)(∆), (u0, u1) 7→ u satisfies ‖Φ‖ ≤ C.
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Proof. Let ∆ = ∆(z0, 0, r). If u : ∆ → R is a solution of (10), then by defining b : [0, r] →
R, b(t) = u(z0, t) and using Lemma 3.7 we have

u(z, t) =

{

Φ+(b, u0, u1)(z, t), z ≥ z0,

Φ−(b, u0, u1)(z, t), z ≤ z0.
(18)

On the other hand, if b ∈ C1([0, r]) with b(0) = u0(z0) and b′(0) = u1(z0) is given, then the
function u defined by (18) satisfies u, ut ∈ C(∆) as Φ±(b, u0, u1) and Φ±(b, u0, u1)t coincide
with b resp. b′ at the boundary z = z0. Hence, u solves (10) if and only if ux is continuous, i.e.

uz(z0+, t)

c(z0+)
=
uz(z0−, t)
c(z0−)

(19)

holds for all t ∈ [0, r]. Using (18), we can write (19) as

1

c(z0−)
Φ−(b, u0, u1)z(z0, t) =

1

c(z0+)
Φ+(b, u0, u1)z(z0, t)

or as

b′(t) = γ

(

1

c(z0−)
(b′(t)− Φ−(b, u0, u1)z(z0, t)) +

1

c(z0+)
(b′(t) + Φ+(b, u0, u1)z(z0, t))

)

with

γ :=

(

1

c(z0−)
+

1

c(z0+)

)−1

We denote the right-hand side by T (b)(t) and show now that Ψ: b 7→ u0(z0) +
∫ ( · )
0

T (b)(τ) dτ
is a strict contraction in the space X := {b ∈ C1([0, r]) | b(0) = u0(z0)} with norm ‖b‖X =

sup{e−µt|b′(t)| : t ∈ [0, r]}, where µ > 0 will be chosen later. So let b, b̃ ∈ X and write b̂ := b− b̃.
Next we estimate

∣

∣

∣
Ψ(b)(t)−Ψ(b̃)(t)

∣

∣

∣

= γ

∣

∣

∣

∣

1

c(z0−)

(

b̂′(t)− Φ−(b̂, 0, 0)z(z0, t)
)

+
1

c(z0+)

(

b̂′(t) + Φ+(b̂, 0, 0)z(z0, t)
)

∣

∣

∣

∣

≤ γ

(

1

c(z0−)
β

∫ t

0

∣

∣

∣
b̂′(τ)

∣

∣

∣
dτ +

1

c(z0+)
β

∫ t

0

∣

∣

∣
b̂′(τ)

∣

∣

∣
dτ

)

= β

∫ t

0

∣

∣

∣
b̂′(τ)

∣

∣

∣
dτ ≤ β

∥

∥

∥
b̂
∥

∥

∥

X

∫ t

0

eµτ dτ ≤ β

µ
eµt
∥

∥

∥
b̂
∥

∥

∥

X
,

where β is the constant from Lemma 3.9. If we choose µ > β, then Ψ is a strict contraction
so that b = Ψ(b) has a unique solution by Banach’s fixed-point theorem. Using Remark 3.8,
the fixed-point theorem also shows that b linearly and continuously depends on u0 and u1.
Moreover, boundedness of the linear solution operator Φ then follows from (18). �

Lemma 4.3. Let ∆+ be a boundary triangle with base B+. Assume r
∥

∥

cz
c

∥

∥

∞ < 1. Then (10)

has a unique C1-solution on ∆+.

Proof. As in the previous lemma, we write b(t) = u(0, t), Then u is a solution on ∆+ if and
only if u = Φ+(b, u0, u1) and

df(ut(0, t))

dt
=
uz(0, t)

c(0)
.
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We may rewrite the latter equation as

df(b′(t))

dt
=

1

c(0)
Φ+(b, u0, u1)z(0, t).

Replacing b(t) with d(t) := f(b′(t)), where b can be reconstructed from d via bd(t) := u0(0) +
∫ t

0
f−1(d(τ)) dτ we are left with solving

d′(t) =
1

c(0)
Φ+(bd, u0, u1)z(0, t).(20)

Therefore, it suffices to show that (20) with initial datum d(0) = f(u1(0)) has a unique solution.

Uniqueness: Assume that d, d̃ are solutions to (20) that coincide up to time t⋆ ≥ 0, but not

at time tn for some tn ≥ 0 with tn ↓ t⋆ as n → ∞. Define δ(t) :=
∣

∣

∣
f−1(d(t))− f−1(d̃(t))

∣

∣

∣
. For

ε > 0 consider the function

hε(t) := ε(1 + t− t⋆) +
1

c(0)

∫ t

t⋆

(

−δ(s) + β

∫ s

t⋆

δ(τ) dτ

)

ds,

where β is the constant from Lemma 3.9.

Claim: The inequality
∣

∣

∣
d(t)− d̃(t)

∣

∣

∣
< hε(t) holds for all t ≥ t⋆.

Clearly, the claim holds true for t = t⋆, and thus by continuity for t close to t⋆. Assume the

claim is false. Then there exists some minimal ti > t⋆ such that
∣

∣

∣
d(ti)− d̃(ti)

∣

∣

∣
= hε(ti). W.l.o.g.

assume that d(ti) ≥ d̃(ti). Since d(t)− d̃(t) < hε(t) for t⋆ ≤ t < ti, we get d′(ti)− d̃′(ti) ≥ h′ε(ti)
which implies

1

c(0)
Φ+(bd, 0, 0)z(0, ti)−

1

c(0)
Φ+(bd̃, 0, 0)z(ti) ≥ ε+

1

c(0)

(

−δ(ti) + β

∫ ti

t⋆

δ(τ) dτ

)

and hence

(21) Φ+(bd − bd̃, 0, 0)z(0, ti) + δ(ti) > β

∫ ti

t⋆

δ(τ) dτ ≥ 0.

On the other hand, setting b := bd − bd̃ we have

|Φ+(b, 0, 0)z(0, ti) + b′(ti)| ≤ β

∫ ti

t⋆

|b′(τ)| dτ

due to Lemma 3.9. Since b′(ti) = f−1(d(ti)) − f−1(d̃(ti)) and since f−1 is increasing, we see
that b′(ti) = δ(ti). Combining these facts, we find

|Φ+(b, 0, 0)z(0, ti) + δ(ti)| ≤ β

∫ ti

t⋆

δ(τ) dτ

which contradicts (21). So the claim holds.

Letting ε go to 0, we obtain
∣

∣

∣
d(t)− d̃(t)

∣

∣

∣
≤ 1

c(0)

∫ t

t⋆

(

−δ(s) + β

∫ s

t⋆

δ(τ) dτ

)

ds
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for any t ≥ t⋆. Fubini implies that the term on the right-hand side is negative for t ∈ (t⋆, t⋆+
1
β
),

a contradiction.

Existence: Let D, µ > 0. Consider the set

K := {d ∈ W 1,∞([0, r]) : d(t0) = f−1(u1(0)), |d(t)| ≤ Deµt, |d′(t)| ≤ Dµeµt for t ∈ [0, r]},
which is a convex and compact subset of C([0, r]), as well as the operator

T : K → C([0, r]), T (d)(t) = f−1(u1(0)) +
1

c(0)

∫ t

t0

Φ+(bd, u0, u1)z(0, τ) dτ.

We choose D := max{|f−1(u1(0))|, 1}, so that K is nonempty as it contains the constant
function d ≡ f−1(u1(0)). To see that T is continuous, let dn ∈ K with dn → d in C([0, r])
as n → ∞. As f−1 is uniformly continuous on [−Deµr, Deµr], we have f−1 ◦ dn → f−1 ◦ d in
C([0, r]), from which it follows that

bdn = u0(0) +

∫ ( · )

0

f−1(dn(τ)) dτ

converges to

bd = u0(0) +

∫ ( · )

0

f−1(d(τ)) dτ.

in C1([0, r]). Due to Remark 3.8, the operator Φ+( · , u0, u1) : C1([0, r]) → C1(∆+) is continuous.
Hence T (dn) → T (d) in C([0, r]) as n→ ∞.

To check that T maps into K, we need to verify that for any d ∈ K one has

|T (d)′(t)| ≤ Dµeµt.(22)

Notice that |d(t)| ≤ Deµt follows from (22) by integration. By assumption (A4) on the growth

on f we have |f−1(y)| ≤ |y|+B
A

, and in particular |b′d(t)| = |f−1(d(t))| ≤ Deµt+B
A

. We use this
inequality, |bd(t)| ≤ |u0(0)|+ t‖b′d‖∞ as well as Remark 3.8 to estimate

|T (d)′(t)| = 1

c(0)
|Φ+(bd, u0, u1)z(0, t)|

≤ C

c(0)

(

‖bd‖[0,t],C1 + ‖u0‖C1 + ‖u1‖∞
)

≤ C

c(0)

(

(1 + t)‖b′d‖[0,t],∞ + 2‖u0‖C1 + ‖u1‖∞
)

≤ C

c(0)

(

(1 + t)
Deµt +B

A
+ 2‖u0‖C1 + ‖u1‖∞

)

≤ C

c(0)

(

(1 + r)
D +B

A
+ 2‖u0‖C1 + ‖u1‖∞

)

eµt.

Therefore T maps K into itself if we choose

µ :=
C

c(0)D

(

(1 + r)
D +B

A
+ 2‖u0‖C1 + ‖u1‖∞

)

.

Hence existence follows by applying Schauder’s fixed-point Theorem. �
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With these auxiliary results finished, we are able to prove the main theorem.

Proof of Theorem 1.1 with additional assumption (A4).
Step 1 - Constructing a solution:

Denote by C the set containing all jump, boundary and plain triangles where the heights r have
to satisfy r

∥

∥

cz
c

∥

∥

∞ < 1. As we have just shown in the previous three lemmata, (10) admits a
unique solution on each ∆ ∈ C. Since C is closed with respect to finite intersection, we obtain
a solution u of (10) on ∪∆∈C∆. Note that [0,∞)× [0, h) ⊆ ∪∆∈T∆ where

h := 1
2
min

{

∥

∥

∥

cz
c

∥

∥

∥

−1

∞
, |d1 − d2| : d1, d2 ∈ D(c) ∪ {0}, d1 6= d2

}

.

By restriction, we therefore obtain a solution u(1) of (1) on [0,∞) × [0, h̃] for any 0 < h̃ < h.

Restarting with initial data u
(2)
0 (z) = u(1)(z, h̃) and u

(2)
1 (z) = u

(1)
t (z, h̃), the above method

yields a solution u(2) on [0,∞)× [0, h̃]. We repeat this argument to construct solutions u(k) for

k ∈ N. Finally, we define the map u : [0,∞)× [0,∞) → R by u(z, (k− 1)h̃+ τ) = u(k)(z, τ) for

τ ∈ [0, h̃], which solves (1).

Step 2 - Uniqueness:

Assume that u, ũ : Ω → R are two different solutions to (10), where Ω = {(z, t) | t ≤ h(z)} is an
admissible domain. So there exists (z0, t0) ∈ Ω with u(z0, t0) 6= ũ(z0, t0). Consider the (possibly
cut-off) triangle ∆ := ∆(z0, 0, t0) ∩ {z ≥ 0} and define the set N := {(z, t) ∈ ∆ | u(z, t) 6=
ũ(z, t)} and tinf := inf Pt(N), where Pt denotes the projection onto the second variable. Choose
some sequence (zn, tn) ∈ N with tn → tinf and zn → z∞ ∈ [0,∞).

For ε > 0 consider the (possibly cut-off) triangle ∆ε := ∆ ∩∆(z∞, tinf , ε) ∩ {z ≥ 0} with base
Bε.

Claim: u(z, tinf) = ũ(z, tinf) and ut(z, tinf) = ũt(z, tinf) hold for all z ∈ Bε.

If tinf = 0, this holds because both u and ũ satisfy the same initial conditions. If tinf > 0, by
assumption we have u(z, t) = ũ(z, t) for z ∈ Bε and t < tinf as (z, t) ∈ ∆ and therefore also
ut(z, t) = ũt(z, t), so that the claim is obtained by taking the limit t→ tinf .

If we choose ε small enough, then ∆ε is a jump (if z∞ ∈ D(c)), boundary (if z∞ = 0) or plain
triangle (otherwise). By the previously established uniqueness results on these triangles, u and
ũ must coincide on ∆ε. But since tn ≥ tinf for all n, we have (zn, tn) ∈ ∆ε for n sufficiently
large, so that u(zn, tn) = ũ(zn, tn). This cannot be since (zn, tn) ∈ N . �

Remark 4.4 (Modifications for the bounded domain version). In order to capture the homo-
geneous Dirichlet boundary condition for the bounded domain version of the theorem, we also
need to consider ”Dirichlet” triangles ∆− with center z0 = L. Problem (1) is well-defined on
the domain ∆− assuming r

∥

∥

cz
c

∥

∥

∞ < 1. In fact the solution on ”Dirichlet” triangles is simply
given by u = Φ−(0, u0, u1). We can then proceed as in the above proof to show existence and
uniqueness of solutions.
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5. Energy, Momentum, and Completion of Theorem 1.1

We recall that the energy of (1) is given by

E(u, t) := 1
2

∫ ∞

0

(

V (x)ut(x, t)
2 + ux(x, t)

2
)

dx+ F (ut(0, t))

= 1
2

∫ ∞

0

(

1

c(z)2
ut(z, t)

2 +

(

uz(z, t)

c(z)

)2
)

· c(z) dz + F (ut(0, t))

= 1
2

∫ ∞

0

1

c(z)

(

ut(z, t)
2 + uz(z, t)

2
)

dz + F (ut(0, t))

where F (y) = yf(y)−
∫ y

0
f(v) dv. In (z, t)–coordinates the momentum reads

M(u, t) =

∫ ∞

0

1

c
ut dz + f(ut(0, t)).

We now show that both quantities are time-invariant.

Proof of Theorem 1.4. Let Ω ⊆ [0,∞)× [0,∞) be a Lipschitz domain such that c is C1 on Ω.
Recall that (∂t∓∂z)(ut±uz)u+

cz
c
uz = 0. In the following, for a term a(±,∓) which may have

± or ∓ signs, we write
∑±a(±,∓) := a(+,−) + a(−,+).

Part 1: Energy. With ν being the outer normal at ∂Ω we calculate

0 =
∑±

∫

Ω

[

(∂t ∓ ∂z)(ut ± uz)u+
cz
c
uz

]

· 1
c
(ut ± uz) d(z, t)

=
∑±

∫

∂Ω

(ν2 ∓ ν1)
1

c
(ut ± uz)

2 dσ

+
∑±

∫

Ω

(

cz
c2
uz(ut ± uz)−

1

c
(ut ± uz) · (∂t ∓ ∂z)(ut ± uz)∓

cz
c2
(ut ± uz)

2

)

d(z, t).

The sum
∑± over the boundary integrals can be simplified to

∑±
∫

∂Ω

(ν2 ∓ ν1)
1

c
(ut ± uz)

2 dσ =

∫

∂Ω

(

2

c
ν2(u

2
t + u2z)−

4

c
ν1utuz

)

dσ.

The sum
∑± of the integrands in the integral over Ω vanishes as can be seen by the following

calculation using once more the differential equation (∂t ∓ ∂z)(ut ± uz)u+
cz
c
uz = 0:

∑±
(

cz
c2
uz(ut ± uz)−

1

c
(ut ± uz) · (∂t ∓ ∂z)(ut ± uz)∓

cz
c2
(ut ± uz)

2

)

=
∑±

(

cz
c2
uz(ut ± uz) +

1

c
(ut ± uz)

cz
c
uz ∓

cz
c2
(ut ± uz)

2

)

=
cz
c2

∑±(
2uz(ut ± uz)∓ (ut ± uz)

2
)

= 0.

Hence
∫

∂Ω

(

2

c
ν2(u

2
t + u2z)−

4

c
ν1utuz

)

dσ = 0.(23)
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Since D(c) and D(cz) are discrete sets, we find an increasing sequence 0 = a1 < a2 < a3 < . . .
with ak → ∞ as k → ∞ such that D(c) ∪D(cz) ⊆ {ak : k ∈ N}.

Now let t1 < t2 ∈ R and K ∈ N. We choose Ω = [ak, ak+1] × [t1, t2] and sum (23) from k = 1
to K. As terms along common boundaries cancel, we obtain

0 =

∫

∂([0,aK+1]×[t1,t2])

(

2

c
ν2(u

2
t + u2z)−

4

c
ν1utuz

)

dσ

or equivalently

1
2

∫ aK+1

0

(

1

c
u2t +

1

c
u2z

)

dz

∣

∣

∣

∣

t=t2

= 1
2

∫ aK+1

0

(

1

c
u2t +

1

c
u2z

)

dz

∣

∣

∣

∣

t=t1

−
∫ t2

t1

1

c
utuz dt

∣

∣

∣

∣

z=aK+1

+

∫ t2

t1

1

c
utuz dt

∣

∣

∣

∣

z=0

.

The estimates established in Corollary 3.6 and the assumptions on the initial conditions u0, u1
show that ut(z, t) and uz(z, t) converge to 0 as z → ∞ uniformly on [t1, t2]. In the limitK → ∞,
we thus obtain

1
2

∫ ∞

0

(

1

c
u2t +

1

c
u2z

)

dz

∣

∣

∣

∣

t=t2

= 1
2

∫ ∞

0

(

1

c
u2t +

1

c
u2z

)

dz

∣

∣

∣

∣

t=t1

+

∫ t2

t1

1

c
utuz dt

∣

∣

∣

∣

z=0

.

Switching back to (x, t)–coordinates, we infer
∫ t2

t1

utux dt

∣

∣

∣

∣

x=0

=

∫ t2

t1

ut(0, t)ux(0, t) dt

=

∫ t2

t1

ut(0, t)f(ut(0, t))t dt = F (ut(0, t2))− F (ut(0, t1))

where the last equality is due to Lemma A.1. This shows the claimed energy conservation:

1
2

∫ ∞

0

(

V (x)u2t + u2x
)

dx+ F (ut(0, t))

∣

∣

∣

∣

t=t2

= 1
2

∫ ∞

0

(

V (x)u2t + u2x
)

dx+ F (ut(0, t))

∣

∣

∣

∣

t=t1

.

Part 2: Momentum. We calculate

0 =
∑±

∫

Ω

1

c

[

(∂t ± ∂z)(ut ∓ uz) +
cz
c
uz

]

d(z, t)

=
∑±

∫

∂Ω

(ν2 ± ν1)
1

c
(ut ∓ uz) dσ

+
∑±

∫

Ω

(

±cz
c2
(ut ∓ uz) +

cz
c2
uz

)

d(z, t)

= 2

∫

∂Ω

(

ν2
1

c
ut − ν1

1

c
uz

)

dσ.

(24)

Again we choose Ω = [ak, ak+1] × [t1, t2], and sum (24) from k = 1 to K. As before all terms
along common boundaries cancel, whence we obtain

∫ aK+1

0

1

c
ut dz

∣

∣

∣

∣

t=t2

=

∫ aK+1

0

1

c
ut dz

∣

∣

∣

∣

t=t1

+

∫ t2

t1

1

c
uz dt

∣

∣

∣

∣

z=aK+1

−
∫ t2

t1

1

c
uz dt

∣

∣

∣

∣

z=0

.
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Since
∫ t2

t1

1

c
uz dt

∣

∣

∣

∣

z=0

=

∫ t2

t1

f(ut(0, t))t dt = f(ut(0, t2))− f(ut(0, t1)),

in the limit K → ∞ we find the claimed momentum conservation:
∫ ∞

0

1

c2
ut dx+ f(ut(0, t))

∣

∣

∣

∣

t=t2

=

∫ ∞

0

1

c2
ut dx+ f(ut(0, t))

∣

∣

∣

∣

t=t1

. �

In Section 4, we required an extra growth condition (A4) on f in order to prove a first version
of Theorem 1.1. We now discuss how to exploit the energy conservation to eliminate this extra
growth assumption and prove Theorem 1.1 in full generality.

Lemma 5.1. For t > 0 the estimate

F (ut(0, t)) ≤ F (u1(0)) +
1
2

∫ κ−1(t)

0

(

V (x)u1(x)
2 + u0,x(x)

2
)

dx

holds, where κ(x) =
∫ x

0
1

c(s)
ds =

∫ x

0

√

V (s) ds.

Proof. Fix t1 > 0, let ε > 0 and define modified initial data ũ0, ũ1 : [0,∞) → R by setting

ũ′0(z) =











u′0(z), z ≤ t1,
t1+ε−z

ε
u′0(t1), t1 ≤ z ≤ t1 + ε,

0, z ≥ t1 + ε,

ũ1(z) =











u1(z), z ≤ t1,
t1+ε−z

ε
u1(t1), t1 ≤ z ≤ t1 + ε,

0, z ≥ t1 + ε,

and ũ0(0) = u0(0). Denote the solution to (10) corresponding to these initial data by ũ. By
uniqueness of the solution, u(z, t) = ũ(z, t) for |z| + |t| ≤ t1. In particular, ũt(0, t1) = ut(0, t1).
This yields

F (ut(0, t1))

= F (ũt(0, t1)) ≤ E(ũ, t1) = E(ũ, 0)

= F (ũt(0, 0)) +
1
2

∫ ∞

0

(

V (x)ũ1(x)
2 + ũ′0(x)

2
)

dx

= F (u1(0)) +
1
2

∫ κ−1(t1)

0

(

V (x)u1(x)
2 + u′0(x)

2
)

dx+ 1
2

∫ κ−1(t1+ε)

κ−1(t1)

(

V (x)ũ1(x)
2 + ũ′0(x)

2
)

dx.

Letting ε→ 0, the last term goes to 0. �

Proof of Theorem 1.1 without additional assumption (A4).
Fix T > 0 and let

C := F (u1(0)) +
1
2

∫ κ−1(T )

0

(

V (x)u1(x)
2 + u0,x(x)

2
)

dx

Since F (y) =
∫ y

0
f(y) − f(x) dx we see that F (y) → ∞ as y → ±∞. Therefore the set

{y : F (y) ≤ C} is contained in the interval [−K,K] for some K > 0. Now consider the cut-off
version of f given by

fK(y) =











y −K + f(K), y ≥ K,

f(y), −K ≤ y ≤ K,

y +K + f(−K), y ≤ −K,
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which satisfies the growth conditions from Section 4. Therefore, Theorem 1.1 can be applied
to (1) with f replaced by fK and we obtain a solution uK on [0,∞)× [0, T ]. Lemma 5.1 gives
FK(uK,t(0, t)) ≤ C, so that uK,t(0, t) takes values in [−K,K] where the functions f, F and
fk, Fk coincide. Hence uK solves the original problem (1) up to time T . �

Next, we verify that C1-solutions to (1) are indeed weak solutions in the sense of Definition 1.6.

Proposition 5.2. A C1-solution to (1) is also a weak solution to (1).

Proof. Let u be a C1-solution to (1). We have to show that

0 =

∫ ∞

0

∫ ∞

0

(V (x)utϕt − uxϕx) dx dt +

∫ ∞

0

f(ut(0, t))ϕt(0, t) dt

+

∫ ∞

0

V (x)u1(x)ϕ(x, 0) dx+ f(u1(0))ϕ(0, 0)

holds for all ϕ ∈ C∞
c ([0,∞)× [0,∞)).

Let Ω ⊆ [0,∞) × [0,∞) be a Lipschitz domain such that c is C1 on Ω. Denoting the outer
normal at ∂Ω by ν, we obtain

0 =

∫

Ω

[

(∂t − ∂z)(ut + uz) +
cz
c
uz

]

· 1
c
ϕ d(z, t)

=

∫

∂Ω

1

c
(ut + uz)ϕ · (ν2 − ν1) dσ +

∫

Ω

(

cz
c2
uzϕ− (ut + uz)(∂t − ∂z)

[

1

c
ϕ

])

d(z, t)

=

∫

∂Ω

(

1

c
utϕν2 −

1

c
uzϕν1

)

dσ +

∫

Ω

(

1

c
uzϕz −

1

c
utϕt

)

d(z, t)

+

∫

∂Ω

(

1

c
uzϕν2 −

1

c
utϕν1

)

dσ +

∫

Ω

(

ut∂z

[

1

c
ϕ

]

− uz∂t

[

1

c
ϕ

])

d(z, t).

We next show that the sum of the last two integrals equals zero. First, we calculate
∫

∂Ω

(

1

c
uzϕν2 −

1

c
utϕν1

)

dσ +

∫

Ω

(

ut∂z

[

1

c
ϕ

]

− uz∂t

[

1

c
ϕ

])

d(z, t)

=

∫

∂Ω

(

1

c
uzϕν2 −

1

c
utϕν1 + u∂z

[

1

c
ϕ

]

ν2 − u∂t

[

1

c
ϕ

]

ν1

)

dσ

=

∫

∂Ω

(ν2∂z − ν1∂t)

[

1

c
uϕ

]

dσ.

Let γ : [0, l] → R be a positively oriented parametrization of ∂Ω by arc length. As ν is the
outer normal at ∂Ω, the identity γ′ = (ν2,−ν1)⊤ holds. Hence,
∫

∂Ω

(ν2∂z − ν1∂t)

[

1

c
uϕ

]

dσ =

∫

∂Ω

(

ν2
−ν1

)

· ∇
[

1

c
uϕ

]

dσ =

∫ l

0

γ′(s) · ∇
[

1

c
uϕ

]

(γ(s)) ds = 0

as γ is closed. Thus we have shown

0 =

∫

∂Ω

(

1

c
utϕν2 −

1

c
uzϕν1

)

dσ +

∫

Ω

(

1

c
uzϕz −

1

c
utϕt

)

d(z, t).(25)
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As in the proof of Theorem 1.4 we choose an increasing sequence 0 = a1 < a2 < a3 < . . . with
ak → ∞ as k → ∞ such that D(c) ∪D(cz) ⊆ {ak : k ∈ N}. We take Ω = [ak, ak+1]× [n, n + 1]
in (25) and sum over k ∈ N and n ∈ N0. Using that boundary terms along common boundaries
cancel out, the fact that ϕ has compact support, and (1), we obtain

0 =

∫

∂[0,∞)2

(

1

c
utϕν2 −

1

c
uzϕν1

)

dσ +

∫

[0,∞)2

(

1

c
uzϕz −

1

c
utϕt

)

d(z, t)

= −
∫ ∞

0

[

1

c
utϕ

]

(z, 0) dz +

∫ ∞

0

[

1

c
uzϕ

]

(0, t) dt+

∫ ∞

0

∫ ∞

0

(

1

c
uzϕz −

1

c
utϕt

)

dz dt

= −
∫ ∞

0

V (x)ut(x, 0)ϕ(x, 0) dx+

∫ ∞

0

ux(0, t)ϕ(0, t) dt+

∫ ∞

0

∫ ∞

0

(uxϕx − V (x)utϕt) dx dt

= −
∫ ∞

0

V (x)u1(x)ϕ(x, 0) dx+

∫ ∞

0

(f(ut(0, t)))tϕ(0, t) dt+

∫ ∞

0

∫ ∞

0

(uxϕx − V (x)utϕt) dx dt

= −
∫ ∞

0

V (x)u1(x)ϕ(x, 0) dx−
∫ ∞

0

f(ut(0, t))ϕt(0, t) dt− f(u1(0))ϕ(0, 0)

+

∫ ∞

0

∫ ∞

0

(uxϕx − V (x)utϕt) dx dt

which finishes the proof. �

6. Wellposedness

The section completes the proof of the wellposedness claim stated in Theorem 1.1. To be
precise, (1) is wellposed in the following sense. The spaces C1

(x,t)([0,∞) × [0, T ]), C1
x([0,∞)),

and C([0,∞)) are endowed with uniform convergence on compact sets.

Proposition 6.1. Assume that u
(n)
0 , u

(n)
1 are initial data with u

(n)
0 → u0 in C1

x([0,∞)) and

u
(n)
1 → u1 in C([0,∞)), and denote by u(n) and u the solutions of (10) corresponding to these

initial data. Then for any T > 0, we have u(n) → u in C1
(x,t)([0,∞)× [0, T ]).

Sketch of proof. We proceed similar to the proof of Theorem 1.1. Choose some

0 < r̄ < min

{

(

5−
√
17
)
∥

∥

∥

cz
c

∥

∥

∥

−1

∞
, |z1 − z2| : z1, z2 ∈ D(c) ∪ {0}, z1 6= z2

}

.

and let β be as in Lemma 3.9 with r = r̄. The choice of r̄ implies βr̄ < 4(5−
√
17)

(−3+
√
17)(−1+

√
17)

= 1 as

well as q := r̄
∥

∥

cz
c

∥

∥

∞ < 1.

Denote by C the set containing all triangles ∆ that are of jump-type or plain-type and such
that their base-radii r are at most r̄. Then by Lemmas 4.1 and 4.2, there exists a constant
C > 0 such that

∥

∥u(n) − u
∥

∥

C1
(x,t)

(∆)
≤ Cmax

{

∥

∥

∥
u
(n)
0 − u0

∥

∥

∥

C1
x([0,∞))

,
∥

∥

∥
u
(n)
1 − u1

∥

∥

∥

C([0,∞))

}

holds for each ∆ ∈ C.
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We also consider a single boundary-type triangle ∆+ with center z0 = 0 and height r̄. Writing

b(t) := u(0, t), b(n)(t) := u(n)(0, t), d(t) := f(ut(0, t)) as well as d(n)(t) := f(u
(n)
t (0, t)), as in the

proof of Lemma 4.3 we obtain

d′(t) =
1

c(0)
Φ+(b, u0, u1)z(0, t),

(

d(n)
)′
(t) =

1

c(0)
Φ+(b

(n), u
(n)
0 , u

(n)
1 )z(0, t).

Setting b̂(t) := u
(n)
0 (0)− u0(0) + t

(

u
(n)
1 (0)− u1(0)

)

, we find

c(0)
(

d′(n)(t)− d′(t)
)

= Φ+(b
(n) − b, u

(n)
0 − u0, u

(n)
1 − u1)z(0, t)

= Φ+(b̂, u
(n)
0 − u0, u

(n)
1 − u1)z(0, t) + Φ+(b

(n) − b− b̂, 0, 0)z(0, t)

= Φ+(b̂, u
(n)
0 − u0, u

(n)
1 − u1)z(0, t)−

[

f−1(d(n)(t))− f−1(d(t))−
(

u
(n)
1 (0)− u1(0)

)]

+ ρ(n, t)

where Lemma 3.9 gives

|ρ(n, t)| ≤ β

∫ t

0

∣

∣

∣
f−1(d(n)(τ))− f−1(d(τ))− u

(n)
1 (0) + u1(0)

∣

∣

∣
dτ.

Multiplying with sign
(

d(n)(t)− d(t)
)

and integrating, we obtain

c(0)
∣

∣d(n)(t)− d(t)
∣

∣

≤ c(0)
∣

∣d(n)(0)− d(0)
∣

∣

+

∫ t

0

(
∣

∣

∣
Φ+(b̂, u

(n)
0 − u0, u

(n)
1 − u1)z(0, s)

∣

∣

∣
−
∣

∣f−1(d(n)(s))− f−1(d(s))
∣

∣+
∣

∣

∣
u
(n)
1 (0)− u1(0)

∣

∣

∣

)

ds

+ β

∫ t

0

∫ s

0

∣

∣

∣
f−1(d(n)(τ))− f−1(d(τ))− u

(n)
1 (0) + u1(0)

∣

∣

∣
dτ ds

≤
∫ t

0

(
∣

∣

∣
Φ+(b̂, u

(n)
0 − u0, u

(n)
1 − u1)z(0, s)

∣

∣

∣
−
∣

∣f−1(d(n)(s))− f−1(d(s))
∣

∣+
∣

∣

∣
u
(n)
1 (0)− u1(0)

∣

∣

∣

)

ds

+ β

∫ r̄

0

∫ t

0

(

∣

∣f−1(d(n)(τ))− f−1(d(τ))
∣

∣+
∣

∣

∣
u
(n)
1 (0)− u1(0)

∣

∣

∣

)

dτ ds

=

∫ t

0

∣

∣

∣
Φ+(b̂, u

(n)
0 − u0, u

(n)
1 − u1)z(0, s)

∣

∣

∣
ds+ (1 + r̄β)t

∣

∣

∣
u
(n)
1 (0)− u1(0)

∣

∣

∣

− (1− r̄β)

∫ t

0

∣

∣f−1(d(n)(s))− f−1(d(s))
∣

∣ds

≤
∫ t

0

∣

∣

∣
Φ+(b̂, u

(n)
0 − u0, u

(n)
1 − u1)z(0, s)

∣

∣

∣
ds+ (1 + r̄β)t

∣

∣

∣
u
(n)
1 (0)− u1(0)

∣

∣

∣

≤ C̃
(

r̄,
∥

∥

∥

cz
c

∥

∥

∥

∞

)

max

{

∥

∥

∥
u
(n)
0 − u0

∥

∥

∥

C1
x([0,∞))

,
∥

∥

∥
u
(n)
1 − u1

∥

∥

∥

C([0,∞))

}

.

This shows the uniform convergence of d(n) to d on [0, r̄] as n→ ∞. Since

b(t) = u0(0) +

∫ t

0

f−1(d(τ)) dτ, b(n)(t) = u0(0) +

∫ t

0

f−1(d(n)(τ)) dτ
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for t ∈ [0, r̄], it follows that b(n) → b in C1([0, r̄]) as n → ∞, and therefore we see that

u(n) = Φ+(b
(n), u

(n)
0 , u

(n)
1 ) → Φ+(b, u0, u1) = u in C1(∆+).

Combined, we find that that u(n) → u in C1
(x,t)(D) where D := ∪∆∈C∆. Note that [0,∞) ×

[0, r̄
2
] ⊆ D, so in particular u(n) → u in C1

(x,t)([0,∞) × [0, r̄
2
]). Applying this result repeatedly

k times, we see that u(n) → u in C1
(x,t)([0,∞) × [0, k r̄

2
]) where k ∈ N is chosen such that

k r̄
2
≥ T . �

7. Breather solutions and their regularity

One can also consider (1) in the context of breather solutions, where a breather is a time-
periodic and spatially localized function. With time-period denoted by T , the time domain
becomes the torus T := R/T and after dropping the initial data, (1) reads

{

V (x)utt(x, t)− uxx(x, t) = 0, x ∈ [0,∞), t ∈ T,

ux(0, t) = (f(ut(0, t)))t, t ∈ T.
(26)

In [4] the case of a cubic boundary term f(y) = 1
2
γy3 (γ ∈ R \ {0}) and a 2π-periodic step

potential V : R → R given by

V (x) =

{

a, |x| < πθ,

b, θπ < |x| < π,
(A5)

where b > a > 0 and θ ∈ (0, 1) was discussed. It was shown that if V satisfies

4
√
aθω ∈ 2N0 + 1 and 4

√
b(1− θ)ω ∈ 2N0 + 1,(A6)

where ω := 2π
T

is the frequency, then there exist infinitely many weak breather solutions u of
(26) with time-period T . A weak solution of (26) is defined next.

Definition 7.1. Let f : R → R be an increasing, odd homeomorphism. A weak solution of
(26) is a function u ∈ H1([0,∞) × T) with u(0, ·) ∈ W 1,1(T) and f(ut(0, ·)) ∈ L1(T) which
satisfies

∫

[0,∞)×T

−V (x)utϕt + uxϕx d(x, t)−
∫

T

f(ut(0, t))ϕt(0, t) dt = 0

for all test functions ϕ ∈ C∞
c ([0,∞)× T).

Remark 7.2. We require that the trace u(0, ·) of u at x = 0 has an integrable weak first-order
time derivative in order to give a pointwise meaning to ut(0, t) and, in particular, to define
f(ut(0, t)) pointwise almost everywhere.

In the setting of [4] where f(y) = 1
2
γy3, one requires ut(0, t) ∈ L3(T) and

2

∫

[0,∞)×T

−V (x)utϕt + uxϕx d(x, t)− γ

∫

T

ut(0, t)
3ϕt(0, t) dt = 0.
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In [4, Theorem 4] it was furthermore shown that weak solutions to (26) constructed in [4] lie

in H
5
4
−ε(T, L2(0,∞)) ∩H

1
4
−ε(T, H1(0,∞)) for ε > 0. Here, the Bochner spaces Hs(T, X) are

defined by

‖u‖2Hs(T,X) :=
∑

k∈Z
(1 + k2)s‖ûk‖2X .

In this section, we will show the following improved regularity result for breather solutions of
(26):

Theorem 7.3. Assume (A3), (A5), (A6) that f−1 is r-Hölder continuous with r ∈ (0, 1) and
that u is a weak solution to (26). Then u is T

2
-antiperiodic, lies in C1,r([0,∞) × T) and is

a C1-solution to (1) with its own initial data, i.e. u0(x) = u(x, 0) and u1(x) = ut(x, 0). In

addition, there exists C > 0 such that |u(x, t)| ≤ Ce−ρx where ρ := log(b)−log(a)
4π

.

Note that in the setting of [4], the assumptions of Theorem 7.3 are satisfied with r = 1
3
. In the

following, we are going to prove Theorem 7.3 and we will always assume the assumptions of
Theorem 7.3.

7.1. Fourier decomposition of V (x)∂2t −∂2x. We denote by ek(t) :=
1√
T
eikωt the orthonormal

Fourier base of L2(T) and decompose u in its Fourier series with respect to t:

u(x, t) =
∑

k∈Z
ûk(x)ek(t) =: F−1(û)

with

ûk(x) := Fk(u) :=

∫

T

u(x, t)ek(t) dt.

Writing L := V (x)∂2t −∂2x and Lk := −∂2x−k2ω2V (x), we see that any solution u of (26) satisfies

0 = Lu

and therefore also

0 = Fk Lu = Lk Fk u = Lkûk(27)

for all k ∈ Z. Since

‖u‖2L2([0,∞)×T) + ‖ux‖2L2([0,∞)×T) =
∑

k∈Z
‖ûk‖2L2(0,∞) + ‖(ûk)x‖2L2(0,∞),

each ûk is an H1((0,∞),C)-solution of (27). As V (and therefore also Lk) is given explicitly,
we can characterize the space of solutions of (27) as follows.

Proposition 7.4. If k ∈ Z is even, then the only solution ûk ∈ H1((0,∞),C) to (27) is
ûk = 0. If k is odd, there exists a fundamental Bloch mode φk ∈ H2((0,∞),R) such that a
function ûk ∈ H1((0,∞),C) solves (27) if and only if ûk = λφk for some λ ∈ C. Furthermore,
φk satisfies

φk(0) = 1, φ′
k(0) = Ck(−1)(k−1)/2, φk(x+ 4π) =

a

b
φk(x)

for x > 0, where C = C(T, a) ∈ R is a constant independent of k.
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A proof of Proposition 7.4 for k odd can be found in [4, Appendix A2]. The nonexistence result
for even k can be obtained using similar arguments: For k 6= 0 the monodromy matrix for Lk is
the identity matrix so that (27) only has spatially periodic solutions. For k = 0, the solutions
of (27) are affine.

7.2. Bootstrapping argument. Assume that u is a weak solution to (26) in the sense of
Definition 7.1. By Proposition 7.4, all even Fourier modes of u vanish so that there exists a
complex sequence α̂k such that

u(x, t) =
∑

k∈Zodd

α̂kφk(x)ek(t).(28)

where Zodd := 2Z + 1. In particular, u is T
2
-antiperiodic. Choosing x = 0 in (28), we find

u(0, t) =
∑

k∈Zodd
α̂kek(t) =: α(t). As β := f(ut(0, · )) ∈ L1(T), we can define its Fourier

coefficients β̂k := Fk(β). The functions α and β are related in two ways, which we will exploit
to construct a bootstrapping argument.

Firstly, we have

α′(t) = ut(0, t) = f−1(f(ut(0, t))) = f−1(β(t)).

We can apply ∂−1
t to both sides and obtain

α = ∂−1
t f−1(β)(29)

Here ∂−1
t g := F−1

(

( 1
ikω
ĝk)k∈Zodd

)

for a T
2
-antiperiodic function g ∈ L1(T). Secondly, by using

Definition 7.1 with ϕ(x, t) = ψ(x)ek(t) for k ∈ Zodd, where ψ ∈ C∞
c ([0,∞)) and ψ(0) = 1, we

obtain

0 =

∫

[0,∞)×T

[

−V (x)utψ(x)e
′
k(t) + uxψ

′(x)ek(t)
]

d(x, t)−
∫

T

f(ut(0, t))ψ(0)e
′
k(t) dt

=

∫ ∞

0

[

−V (x)ikωα̂kφk(x)ikωψ(x) + α̂kφ
′
k(x)ψ

′(x)
]

dx+ ikωβ̂k

=

∫ ∞

0

[

−α̂kk
2ω2V (x)φk(x)ψ(x)− α̂kφ

′′
k(x)ψ(x)

]

dx− α̂kφ
′
k(0)ψ(0) + ikωβ̂k

= −φ′
k(0)α̂k + ikωβ̂k,

or

β̂k =
φ′
k(0)

ikω
α̂k.(30)

Since u(0, ·) is T
2
-antiperiodic, the even Fourier coefficients of α = u(0, ·) vanish, and since f is

odd the even Fourier coefficients of β = f(ut(0, ·)) also vanish.

We next investigate the properties of the maps defined by (29) and (30), which we consider
as maps between the fractional Sobolev-Slobodeckij spaces W s,p(T). The definition and all
employed properties of the spaces W s,p(T) can be found in Appendix B. In the following we
use the suffix “anti” to denote that the space consists of functions which are T

2
-antiperiodic in

time.
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Lemma 7.5. The map

β 7→ ∂−1
t f−1(β)

is well-defined from W s,p
anti(T) to W

1+rs,p/r
anti (T) for any s ∈ [0, 1) and p ∈ [1,∞) as well as from

C0,s
anti(T) to C1,rs

anti (T) for any s ∈ [0, 1].

Proof. If β ∈ C0,s
anti(T), then f−1(β) ∈ C0,rs

anti (T) since f−1 is r-Hölder regular, and thus ∂−1
t f(β) ∈

C1,rs
anti (T). If β ∈ W s,p

anti(T), then f−1(β) ∈ W
rs,p/r
anti (T) by Lemma B.2 and thus ∂−1

t f(β) ∈
W

1+rs,p/r
anti (T). �

Lemma 7.6. The map

α 7→ F−1

(

(

φ′
k(0)

ikω
α̂k

)

k∈Zodd

)

is well-defined from W s,p
anti(T) to W s,p

anti(T) for all s ∈ (0,∞) and p ∈ [1,∞) as well as from

Ck,s
anti(T) to Ck,s

anti(T) for all k ∈ N0 and s ∈ [0, 1].

Proof. We begin by taking a closer look at the Fourier multiplier M̂k :=
φ′

k(0)

ikω
which is defined

for k ∈ Zodd and extended by 0 to the whole of Z. By Proposition 7.4 we have φ′
k(0) =

Ck(−1)(k−1)/2 for a real constant C depending only on T and a. From this we obtain

M̂k = − iC

ω
Im ik

for all k ∈ Z. Now, M̂k is the Fourier series of

M(t) :=

√
TC

2ω

(

δT/4(t)− δ−T/4(t)
)

where δx denotes the Dirac measure at x. In particular, M is a finite measure. For α ∈ L1
anti(T)

we calculate

Fk

(

1√
T
M ∗ α

)

=
1√
T

∫

T

∫

T

α(t− s) dM(s)ek(t) dt

=

∫

T

∫

T

α(t− s)ek(t− s) dtek(s) dM(s) = M̂kα̂k.

so that F−1
(

k 7→ M̂kα̂k

)

exists and equals 1√
T
M ∗α. To see that 1√

T
M ∗( · ) maps W s,p

anti(T) into

W s,p
anti(T) and Ck,s

anti(T) into Ck,s
anti(T), let ‖ · ‖ be ‖ · ‖W s,p or ‖ · ‖Ck,s (or any translation invariant

norm). Then
∥

∥

∥
F−1

(

(M̂kα̂k)k∈Zodd

)
∥

∥

∥
=

∥

∥

∥

∥

1√
T
M ∗ α

∥

∥

∥

∥

=
1√
T

∥

∥

∥

∥

∫

T

α( · − s) dM(s)

∥

∥

∥

∥

≤ 1√
T

∫

T

‖α( · − s)‖d|M |(s) = |M |(T)√
T

‖α‖. �

With the previous two lemmata, we can complete the bootstrapping argument stated next.
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Lemma 7.7. If the pair (α, β) satisfies (29) and (30) with α, β ∈ L1
anti(T), then α, β ∈ C1,r

anti(T).

Proof. By Lemma 7.5 we have α ∈ W
1,1/r
anti (T), and therefore β ∈ W

1,1/r
anti (T) by Lemma 7.6.

Applying Lemmas 7.5 and 7.6 again, we get α, β ∈ W
1+r−ε,1/r2

anti (T) for any ε > 0. Repeating

this n times, we obtain α, β ∈ W
1+r−ε,1/r2+n

anti (T). If n ∈ N is large enough, then W
1+r−ε,1/r2+n

anti (T)
embeds continuously into C1

anti(T) by Lemma B.3, so in particular we have α, β ∈ C1
anti(T). Now,

applying Lemmas 7.5 and 7.6 one last time yields α, β ∈ C1,r
anti(T). �

Proof of Theorem 7.3. Note that α, β ∈ L1
anti(T) by Definition 7.1, so Lemma 7.7 is applicable

and yields α, β ∈ C1,r
anti(T).

By d1 := θπ, d2 := (2 − θ)π, d3 := (2 + θ)π, . . . we label the discontinuities of V . We start by
showing that u ∈ C1,r

anti([0, d1]× T). To do this, consider

w(x, t) :=
1

2

(

α(t+
√
ax) + α(t−

√
ax)
)

+
1

2
√
a

(

β(t+
√
ax)− β(t−

√
ax)
)

.(31)

Note that w is T
2
-antiperiodic in time. The k-th Fourier coefficient of w is given by

ŵk(x) =
α̂k

2

(

eikω
√
ax + e−ikω

√
ax
)

+
β̂k
2
√
a

(

eikω
√
ax − e−ikω

√
ax
)

= α̂k cos(kω
√
ax) +

β̂ki√
a
sin(kω

√
ax).

We see that ŵk solves Lkŵk = 0 on [0, d1] and at x = 0 it satisfies

ŵk(0) = α̂k = α̂kφk(0) and ŵ′
k(0) =

β̂ki√
a
kω

√
a = α̂kφ

′
k(0),

where we have used (30). So ŵk(x) = αkφk(x) must hold, and from this we obtain

w(x, t) =
∑

k∈Zodd

ŵk(x)ek(t) =
∑

k∈Zodd

α̂kφk(x)ek(t) = u(x, t).

As w is given by (31), u = w ∈ C1,r
anti([0, d1]× T) follows immediately.

Now assume that u ∈ C1,r
anti([0, dn]×T) holds for some n ∈ N. We aim to show u ∈ C1,r

anti([0, dn+1]),
denote by v ∈ {a, b} the value of V on (dn, dn+1) and define a function w by

w(x, t) =
1

2

(

u(dn, t+
√
v(x− dn)) + u(dn, t−

√
v(x− dn))

)

+
1

2
√
v

∫ t+
√
v(x−dn)

t−√
v(x−dn)

ux(dn, τ) dτ

(32)

for x ∈ [dn, dn+1] and t ∈ T. Then w ∈ C1,r
anti([dn, dn+1] × T) follows immediately from (32).

Arguing as above, one can show Lkŵk(x) = 0 for all k ∈ Z. Since ŵk(dn) = ûk(dn) = α̂kφk(dn)
and ŵ′

k(dn) = α̂kφ
′
k(dn), we again get ŵk(x) = α̂kφk(x) and thus w = u on [dn, dn+1]× T.
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Next we need to show the uniform bound |u(x, t)| ≤ Ce−ρx with ρ = log(b)−log(a)
4π

. By Propo-
sition 7.4, u satisfies u(x + 4π, t) = a

b
u(x, t) for all x ∈ [0,∞) and t ∈ T. Hence we can

choose

C := max
x∈[0,4π],t∈T

eρx|u(x, t)|.

To show that u is a C1-solution to (1), first from (31) it follows that the directional derivative

(∂t − c(x)∂x)(ut + c(x)ux)

exists and equals 0 for x ∈ (0, d1) as c(x) = 1√
a

here. Similarly, using (32) we obtain

(∂t − c(x)∂x)(ut + c(x)ux) = 0

for x ∈ (dn, dn+1) as c(x) = 1√
v
. Lastly, due to (28), (30) and the definition of β we have

Fk(ux(0, · )) = φ′
k(0)α̂k = ikωβ̂k = Fk(β

′) = Fk(f(ut(0, · ))t)
for all k ∈ Zodd, so ux(0, t) = (f(ut(0, t)))t for all t ∈ T. This shows that u is a C1-solution to
(1) with its own initial data. �

Appendix A.

Lemma A.1. For t0, t1 ∈ R with t0 < t1 and g ∈ C([t0, t1],R) with f ◦ g is C1([t0, t1]), the
equation

F (g(t1))− F (g(t0)) =

∫ t1

t0

g(t)
df(g(t))

dt
dt

holds.

Proof. Assume first that f and g are both C1 in which case the definition F (y) = yf(y) −
∫ y

0
f(s) ds and integration by parts yield the result

∫ t1

t0

g(t)
df(g(t))

dt
dt = [g(t)f(g(t))]t1t=t0

−
∫ t1

t0

g′(t)f(g(t)) dt

= [g(t)f(g(t))]t1t=t0
−
∫ g(t1)

g(t0)

f(v) dv = F (g(t1))− F (g(t0)).

(33)

For the general case, choose a sequence of non-negative smooth mollifiers φn : R → [0,∞)
converging to δ0, each with support in [− 1

n
, 1
n
] and with average

∫

R
φn(x) dx = 1. Since f

is strictly increasing, so is fn := φn ∗ f . In particular, fn is bijective and we may define
gn := (fn)

−1 ◦ f ◦ g so that fn ◦ gn = f ◦ g.

Clearly, fn → f uniformly on compacts. To see that gn → g uniformly on compacts, it suffices
to show

∥

∥(fn)
−1 − f−1

∥

∥

∞ ≤ 1
n

for n ∈ N. Note that

fn(x− 1
n
) =

∫ x

x− 2
n

f(y)φn(x− 1
n
− y) dy ≤

∫ x

x− 2
n

f(x)φn(x− 1
n
− y) dy = f(x).

If we choose x := f−1(y) for arbitrary y ∈ R and apply (fn)
−1 to both sides of the above

inequality, we get f−1(y)− 1
n
≤ (fn)

−1(y). Similarly, f−1(y) + 1
n
≥ (fn)

−1(y) holds so that the
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estimate
∥

∥(fn)
−1 − f−1

∥

∥

∞ ≤ 1
n

is shown. Letting Fn(s) := sfn(s) −
∫ s

0
fn(σ) dσ, by (33) we

have

Fn(gn(t1))− Fn(gn(t0)) =

∫ t1

t0

gn(t)
dfn(gn(t))

dt
dt =

∫ t1

t0

gn(t)
df(g(t))

dt
dt.

For n→ ∞, the desired result follows. �

Appendix B. Sobolev-Slobodeckij space

Definition B.1. Denote the distance on the torus T by d. Then, for s ∈ (0, 1) and p ∈ [1,∞)

define the Sobolev-Slobodeckij space W s,p(T) :=
{

u ∈ Lp(T) : [u]W s,p(T) <∞
}

with

[u]pW s,p(T) =

∫

T

∫

T

|u(t1)− u(t2)|p
d(t1, t2)1+sp

dt1 dt2

Also let W 0,p(T) := Lp(T) and W k+s,p(T) :=
{

u ∈ W k,p(T) : u(k) ∈ W s,p(T)
}

for k ∈ N, s ∈
[0, 1) and p ∈ [1,∞).

Lemma B.2. If g : R → R is r-Hölder continuous, then the map

W s,p(T) →W rs,p/r(T), u 7→ g ◦ u
is well-defined for s ∈ [0, 1) and p ∈ [1,∞).

Proof. By assumption, there exists C > 0 such that |g(x)− g(y)| ≤ C|x− y|r holds for all
x, y ∈ R. First, let u ∈ Lp(T). Then

‖g(u)‖p/r
Lp/r(T)

=

∫

T

|g(u(t))|p/r dt ≤ 2p/r−1

∫

T

(

|g(u(t))− g(0)|p/r + |g(0)|p/r
)

dt

≤ 2p/r−1

∫

T

(

Cp/r|u(t)|p + |g(0)|p/r
)

dt = 2p/r−1
(

Cp/r‖u‖pLp(T) + T |g(0)|p/r
)

,

so g(u) ∈ Lp/r(T). Now let u ∈ W s,p(T) with s ∈ (0, 1). Then

[g(u)]
p/r

W rs,p/r(T)
=

∫

T

∫

T

|g(u(t1))− g(u(t2))|p/r
d(t1, t2)1+sp

dt1 dt2

≤
∫

T

∫

T

Cp/r|u(t1)− u(t2)|p
d(t1, t2)1+sp

dt1 dt2 = Cp/r[u]pW s,p(T). �

Lemma B.3. W 1+s,p(T) →֒ C1,s− 1
p (T) for s ∈ (0, 1), p ∈ (1,∞) with sp > 1.

Proof. Consider the fractional Sobolev-Slobodeckij space W s,p([0, T ]) which is similarly defined
using the seminorm

[v]pW s,p([0,T ]) =

∫ T

0

∫ T

0

|v(t1)− v(t2)|p

|t1 − t2|1+sp dt1 dt2

We have [u′]pW s,p([0,T ]) ≤ [u′]pW s,p(T) < ∞, so that u′ ∈ W s,p([0, T ]) and from [5, Theorem 2] it

follows that u′ ∈ C(sp−1)/p([0, T ]). �
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