KIT | KIT-Bibliothek | Impressum | Datenschutz

Global continua of solutions to the Lugiato–Lefever model for frequency combs obtained by two-mode pumping

Gasmi, Elias 1; Jahnke, Tobias 2; Kirn, Michael 2; Reichel, Wolfgang 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider Kerr frequency combs in a dual-pumped microresonator as time-periodic and spatially $2\pi$-periodic traveling wave solutions of a variant of the Lugiato-Lefever equation, which is a damped, detuned and driven nonlinear Schrödinger equation given by $ia_\tau = (\zeta − i ) a − da_{xx} − |a|^2 a + i f_0 + i f_1\text{e}^{i( k_1 x−ν_1 \tau)}$. The main new feature of the problem is the specific form of the source term $f_0 + f_1 \text{e}^{i(k_1 x− ν_1 \tau )}$ which describes the simultaneous pumping of two different modes with mode indices $k_0 = 0$ and $k_1\in\mathbb{N}$. We prove existence and uniqueness theorems for these traveling waves based on a-priori bounds and fixed point theorems. Moreover, by using the implicit function theorem and bifurcation theory, we show how non-degenerate solutions from the 1-mode case, i.e. $f_1 = 0$, can be continued into the range $f_1\ne 0$. Our analytical findings apply both for anomalous $(d > 0)$ and normal $(d < 0)$ dispersion, and they are illustrated by numerical simulations.


Volltext §
DOI: 10.5445/IR/1000151945
Veröffentlicht am 27.10.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 10.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000151945
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 35 S.
Serie CRC 1173 Preprint ; 2022/56666
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter Nonlinear Schrödinger equation, bifurcation theory, continuation methods
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page