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Abstract: Partitioning of evapotranspiration (ET) into transpiration (T) and residual evaporation
(E) is a challenging but important task in order to assess the dynamics of increasingly scarce water
resources in forest ecosystems. The T/ET ratio has been linked to the ecosystem water use efficiency
of temperate forests, and thus is an important index for understanding utilization of water resources
under global climate change. We used concurrent sap flow and eddy-covariance measurements to
quantify the ET partitioning in pure European beech forest during the 2019–2020 period. The sap flow
data were upscaled to stand level T and combined with stand level ET to calculate the T/ET ratio. We
analysed intra-annual dynamics, the effect of seasonality and the impact of meteorological conditions
on T, ET and T/ET. Annual T/ET of a pure European beech ecosystem was 0.48, falling at the
lower end of reported global T/ET values for forest ecosystems. T/ET showed significant seasonal
differences throughout spring (T/ET = 0.28), summer (T/ET = 0.62) and autumn (T/ET = 0.35).
Air temperature (R2 = 0.45–0.63), VPD (R2 = 0.47–0.6) and PAR (R2 = 0.32–0.63) affected the daily
dynamics of T, ET and T/ET; however, soil water content (SWC) had no significant effect. Mature
European beech trees showed more anisohydric behaviour and relatively stable T/ET, even under
decreasing SWC. The results improve the understanding of ecosystem scale T, ET and T/ET intra-
annual dynamics and environmental constraints in anisohydric mature European beech.

Keywords: Fagus sylvatica; anisohydric; ecohydrology; sap flow; eddy-covariance

1. Introduction

Evapotranspiration (ET) is a major variable of terrestrial water cycle. It consists mainly
of transpiration (T) via the stomata of plants, evaporation from the soil, and evaporation of
water intercepted by the plant canopy and litter layer [1,2]. Determining the contribution
of T to ET (hereafter T/ET) is a challenging task but necessary for understanding the
response of ecosystem water balance under climate change [3–5]. A growing awareness of
the importance of ecohydrology has motivated efforts to partition ET into its components,
as a key to unravelling processes underlying ecosystem water use and its response to
climate change [6,7]. Whereas evaporation is controlled by meteorological conditions, T
is mainly controlled by stomatal conductance that relates to plant physiology and can be
affected by abiotic environmental conditions [8], but also by plant species interactions [9,10],
atmospheric CO2 concentration [11] and nutrient availability [12].

Currently occurring global climate change (GCC) is driven mostly by rapid increase
of atmospheric CO2 concentration linked mainly to anthropogenic factors [13]. As atmo-
spheric CO2 concentration increases, plants reduce the opening of their stomata, thereby
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reducing T rates [14]. This reduction in plant T leads to weaker evaporative cooling, and this
can exacerbate the increase in leaf surface temperatures [15–17]. Warmer and dryer climatic
conditions can also lead to earlier leaf senescence, thus further reducing plant T [18–20]. On
the other hand, numerous recent studies report higher transpiration due to GCC, despite
the lower stomatal conductance, due to higher evaporative demand, and conclude that the
predictions of future global transpiration dynamics are highly uncertain [21–24]. Because
the T process correlates with plant growth and the carbon cycle [25–28], quantitative esti-
mation of T contribution to ET has long been acknowledged to play a crucial role in water
resource management, ecosystem productivity estimation and the ecosystem water use
efficiency, from the regional to global scale [7,29,30]. Several sap flow methods have been
developed in order to characterize T fluxes at the tree scale, which can be then scaled up to
the stand level [31–33]. Other recent methods for ET partitioning include stable isotopic
composition of water [34], T/ET ratio based on solar-induced chlorophyll fluorescence [35]
and modelling approaches [3].

Previous studies show that the ecosystem T/ET ratio varies greatly among ecosystems
and timescales; however, on an annual basis, it is mostly in the range of 40–70% [36–39].
This range of ratios emphasizes that even in water-limited environments, plants do not use
all of the precipitation input, and major water losses occur, mainly through soil evaporation
and runoff [40,41]. One of the main constraining parameters of T/ET is the leaf area index
(LAI), often used for T/ET partitioning estimates [3,5,42]. The T/ET variation can be also
explained by abiotic factors, where T/ET generally decreases with higher aridity and lower
precipitation, and increases with latitude [36,43]. The T/ET ratio increases at the ecosystem
scale with greater depth of water uptake, as well as for soils with better infiltration regimes
than more impermeable soils [44–46]. Drought induces a reduction of T in plants due
to increasing water potential which leads to stomatal closure, which contributes to a
lower T/ET ratio [47]. Oppositely, mature European beech has been characterized as a
strongly anisohydric species, keeping its stomata open for a longer period under drought
conditions [48,49]. Anisohydric behaviour would then promote maintenance of high T/ET
values even under increasing aridity. Raising the global temperature and increasing aridity
may drive a further increase of T/ET of European beech forests [50]. The T/ET ratio is
highly positively correlated with ecosystem water use efficiency (WUE) across temperate
and subtropical forests [51]. Quantifying T/ET is key to predicting ecosystem survival and
productivity, especially in water-limited regions [6]. This is extremely important in light of
the drying and warming trends predicted for the near future under GCC.

Although widely studied and vastly important, ET partitioning variability is still
subject to great debate [52,53]. In recent years, a number of studies have been conducted to
explore global-scale ET and its partitioning in a changing environment. Jasechko et al. [54]
used the distinct isotope effects of T and evaporation (E) to show that T is by far the largest
water flux from the Earth’s continents, representing 80–90% of terrestrial ET. Coenders-
Gerrits et al. [55] revised the input data in the modelling of Jasechko et al. [54] and proposed
a more conservative ratio of T to ET (T/ET), i.e., 35–80%. At the plot scale, T/ET values
estimated from scaled sap flow can be 15% lower than those estimated by the isotope
approach [56]. Wei et al. [57] also reported 10–20% T/ET differences between estimations
using isotopes and estimations using a two-source ET model simulation. Most recent
studies reported a global mean terrestrial T/ET ratio around 0.6 [36,41]. It also seems that
GCC is promoting an increasing trend of T/ET due to a rise in vegetation transpiration
over the semiarid and subhumid grasslands, croplands and forestlands under the influence
of prolonged growing seasons and increasing temperatures [58,59].

Understanding of T/ET dynamics is crucial for the correct modelling of forest water
fluxes and water use efficiency assessments. Accurate ecohydrological modelling is a base
for the proper decision making of foresters, stakeholders and policy makers. The objective
of this study was, first, to define the intra-annual dynamics of T, ET and T/ET, and test the
influence of seasonality in the 2019–2020 period. Second, we aimed to identify the main
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environmental factors which are affecting T, ET and T/ET, especially the impact of soil
water content to characterize if European beech shows isohydric or anisohydric behaviour.

2. Materials and Methods
2.1. Site Information

The site is a managed even-aged mature European beech stand, approximately
110 years old, at 49◦02′′10 N and 17◦58′′12 E in the Czech Republic at 550 m a.s.l. The
annual average air temperature of the site was 8.5 ◦C and the average annual precipitation
sum was 762 mm during the 2010–2020 period. The stand average diameter at breast height
(DBH) was 37.64 cm, average height was 31 m and cumulative basal area was 48.16 m2.
The site is located at 10◦ slope with west-south-west exposition. The main soil type of
the site is Eutric Cambisol with a shallow soil depth of 0.6–0.7 m. Most of the soil at this
site is covered by thick layer of European beech leaf fall. The site is part of the CzeCOS,
information available online: http://www.czecos.cz (accessed on 22 August 2022) network
of eddy-covariance towers spread across Czech Republic and part of the FLUXNET net-
work, information available online: https://www.icos-cp.eu/data-products/2G60-ZHAK
(accessed on 22 August 2022).

2.2. Energy Balance

The net radiation (Rn) incident on a surface is equal to the downwelling short-wave
(K↓) and long-wave (L↓) radiation minus the upwelling short-wave (K↑) and long-wave
(L↑) radiation. The net radiation represents the amount of radiation energy captured or
released by the ecosystem. The captured radiation energy is partitioned into different
energy fluxes, which can be described using the surface energy balance equation (in
W m−2):

Rn = H + LE + G + J

where H is the energy transferred between the surface and the atmosphere as sensible heat,
LE is the energy flux associated with evapotranspiration (ET), J is the energy stored within
the canopy air and biomass and the energy absorbed during the process of photosynthesis,
and G is the soil heat flux. Hence, available energy (AE) is equal to Rn-G-J.

2.3. Eddy-Covariance and Meteorological Measurements

The eddy covariance (EC) system consisted of a LI-COR infrared gas analyser (LI-7200,
LI-COR, Lincoln, NE, USA) and a Gill ultrasonic anemometer (HS-50, Lymington, Gill
Instruments, UK). The system was installed on a meteorological tower at a height of 44 m
above ground. Eddy covariance measurements of H, LE and friction velocity (u*, in m s−1)
were done at 20 Hz resolution during the 2019–2020 period. The processing of EC raw
data measured included spike detection and removal [60], time lag compensation, sonic
temperature correction [61], and high [62,63] and low frequency spectral corrections [64].
Coordinate rotation was carried out using the planar-fit method [65], and fluxes were
computed at half-hourly time intervals using the block-averaging method. All EC process-
ing was done with the EddyPro software v7.0.6 (LI-COR, Lincoln, NE, USA). A thorough
data quality checking procedure was applied to EC measurements using the R package
‘openeddy’ (https://github.com/lsigut/openeddy, accessed on 25 September 2022) [66]. In
McGloin et al. [66], it was found that the bulk energy balance closure fraction varied with
wind direction, with particularly low closure fractions (≈0.5) for SE, S and SW winds at
the site. Thus, an additional quality check was applied to measurements as the days with
closure fraction lower than 0.5 were excluded from the analysis. Evapotranspiration (ET)
was calculated as LE divided by latent heat of vaporization (λ). Latent heat of vaporization
is a function of air temperature (Tair) and was estimated according to Allen et al. [67]:

λ = 2.501−
(

2.361× 10−3
)
× Tair

http://www.czecos.cz
https://www.icos-cp.eu/data-products/2G60-ZHAK
https://github.com/lsigut/openeddy
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Air temperature and relative humidity (RH) measurements were conducted with
EMS33 temperature and humidity sensors (EMS Brno, Brno, Czech Republic) at 2 m height.
Precipitation measurements were conducted with 386 Met One precipitation gauges (Met
One Instruments, Grants pass, OR, USA). Potential evapotranspiration (PET) was calculated
according to the FAO Penman-Monteith equation (FAO56 R Package) [67,68]. Soil water
content (SWC) was measured with three randomly placed ThetaProbes (Delta-T, Burwell,
United Kingdom) at 30 cm depth. Incident photosynthetic active radiation (PAR) was
measured by a LI-190R Quantum Sensor (LI-COR, Lincoln, NE, USA) at 44 m height above
ground. The seasonal averages of all meteorological conditions during the 2019–2020
period are visualized in Table 1, and daily dynamics of all environmental conditions are
visualized in Figure 1. The year 2019 was similar to the long-term average (2009–2016) in
terms of temperature and precipitation, and the year 2020 was slightly colder with more
rainfall than the long-term average.

Table 1. Average values of air temperature (Tair) and vapour pressure deficit (VPD), and sum values
of precipitation (P) for the whole year and the March–October period (3–11 subscript).

Year T air P VPD T air (3–11) P (3–11) VPD (3–11)

(◦C) (mm) (hPa) (◦C) (mm) (hPa)

2019 9.91 653 3.36 13.88 427 4.66
2020 8.86 835 3.54 12.46 669 4.92
2009–2016 9.26 688 3.55 12.29 571 4.44
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2.4. Sap Flow Measurements and Upscaling

The sap flow of nine European beech individuals was measured using the trunk heat
balance (THB) method with internal heating and sensing during the vegetation seasons of
2019 and 2020 [69]. The EMS81 sap flow sensors (EMS Brno, Brno, Czech Republic) were
installed at the tree’s breast height (1.3 m). The THB system measurements are integrated
over the heated space [69–71]. The system measured in 2-min intervals, stored 10-min
averages and expressed values as specific sap flow (Q) per unit of trunk circumference
(kg day−1 cm−1). Sap flow for the entire tree (Qtree) was calculated by multiplying Q with
the tree circumference, excluding the bark and phloem layer, and was aggregated to daily
sums. The upscaling of Qtree from individuals to stand transpiration (T) was conducted
according to the methodology formulated by Čermák et al. [69]. Qtree of the DBH classes
was calculated based on scaling curves of tree DBH and Qtree for the years 2019 and 2020
separately (Supplementary Figure S1). Stand level sap flow (Qstand) was then obtained as
Qtree values of mean trees of individual DBH classes multiplied by numbers of trees in
classes, ni, and summarized for the stand area unit of 1 ha:

Qstand =
i=m

∑
i=1

(Qtree)× ni

The nondimensional coefficient S was subsequently computed by dividing the sap
flow of the stand (Qstand) by the sap flow of the trees (Qtree), for which it was directly
measured according to Nalevanková et al. [50]:

S =
∑ Qstand

∑ Qtree

The S coefficient was used to multiply the measured values of the sap flow to obtain the
values of the sap flow at a stand level. At the daily timescale, the sap flow was considered
to be equal to daily T, as the time-lag between the breast height measurement and crown T
is eliminated. The dendrometric characteristics of the inventory data of the upscaled stand
are visualized in Supplementary Figure S1.
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2.5. Statistical Analysis

All statistical analysis were conducted in R 4.2.1 software (R Core Team, Vienna, Aus-
tria). ANOVA assumptions of normal distribution of transpiration (T), evapotranspiration
(ET) and their ratio (T/ET) data were tested by the Shapiro–Wilk test and homoscedasticity
between months was tested by the Bartlett’s test. Afterwards, the statistical differences
between month averages of T, ET and T/ET were tested by one-way ANOVA and Tukey’s
HSD post hoc test. The impact of environmental conditions on T, ET and T/ET were tested
by linear and logarithmic regression.

3. Results
3.1. Seasonal Dynamics of Ecosystem Transpiration and Evapotranspiration

The ecosystem transpiration (T) derived from upscaled sap flow (Qtree) measurements
corresponds to evapotranspiration (ET) variability derived from eddy-covariance measure-
ments during the two observed years (Figure 2). There was no occurrence of overestimation
of T values above ET during the whole period for ET data points filtered with the energy
closure quality check (Figure 2c). The linear regression between T and ET showed that
ecosystem T increased by 0.73 mm day−1 per 1 mm day−1 of ecosystem ET. The mean
value for the observed period (April–October 2019–2020) of T was 1.29 mm day−1, ET was
2.25 mm day−1 and the mean annual T/ET ratio was 0.48. The potential evapotranspiration
(PET) calculated with the FAO Penman–Monteith equation was in most cases higher than
the measured ET (Figure 3a). The relationship between measured ET and calculated PET
show that ET is not reaching the possible PET values (Figure 3b). Results of one-way
ANOVA showed that there were significant differences between the months for the T, ET
and T/ET ratio (Table 2). We observed significantly different between periods of spring,
summer and autumn for T, ET and T/ET during both years 2019 and 2020 (Figure 4). The
ET and T values peaked in June of 2019 and in July–August of 2020 with comparable daily
ET values around 3.5–4 mm day−1 and T values around 2–3 mm day−1 in both years. April
and October mean values were the lowest, with daily ET values of 1.13mm day−1 and T
values of 0.35 mm day−1 for both 2019 and 2020. Comparison of the two years reveals
similar intra-annual dynamics with the exception of significantly higher ET and T values
during the June of 2019 compared to June of 2020. The mean monthly ET during the June
of 2019 was 29% higher and the T mean was 40% higher compared to the June of 2020. The
differences of T and ET during these periods correspond to differences of VPD during June
of 2019 and 2020 (Figure 1c). Another anomaly was the significantly higher ET in August of
2020 compared to August of 2019, with an approximately 20% increase. The T proportion
of ET did not significantly change during the period from June to September for both 2019
and 2020 (Figure 4). During this stable period, T accounted on average for around 70%
of total ET. Nevertheless, the T could account for more than 85% of total ET during some
days within the vegetation peak. The T/ET ratio dropped to 20–40% during the spring and
autumn months, and thus the ET was dominated by evaporation. The ET/T ratio shows
similar variability between the two analysed years. Residual evaporation from soil and
interception therefore dominates the ecosystem ET during spring and autumn.

3.2. Impact of Environmental Variables on Ecosystem Transpiration and Evapotranspiration

The impact of environmental variables on daily dynamics of T, ET and T/ET was
tested for the combined data of both the 2019 and 2020 years (April–October). Air tem-
perature (Tair), vapour pressure deficit (VPD) and photosynthetically active radiation
(PAR) showed a great explanatory power for T variability with determination coefficients
around 0.6 (Figure 5a–c). As for ET, the best explanatory variable was PAR, with R2 = 0.63.
Both Tair and VPD showed weaker R2 for ET around 0.5. This relationship revealed that
a 1 ◦C increase of Tair led to a 0.16 mm increase of T and a 0.187 mm increase of ET
(Figure 5a–c). Surprisingly, soil water content (SWC) had no significant impact on either T
or ET. Additionally, the relationship between VPD and both T and ET was linear, without
apparent asymptotic trends. The ecosystem ET increased with increasing VPD at a rate of
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0.26 mm day−1 hPa−1 and the ecosystem T increased at a rate of 0.23 mm day−1 per 1 hPa.
The ET increased for 0.6 mm per 100 µmol m−2 s−1 of PAR and T increased at a rate of
0.5 mm per 100 µmol m−2 s−1 of PAR (Figure 5g). Tair had a positive linear effect on the
daily dynamics of T/ET, with a 0.031 increase rate per 1 ◦C (Figure 5b). The T/ET increased
with increasing VPD, but then reached a plateau described by a logarithmic relationship
(Figure 5d). SWC had a limited effect on T/ET variability (Figure 5e) with R2 = 0.1. PPAR
explained only 30% of observed T/ET ratio variability and the response rate was 11% of
the T/ET increase per 100 µmol m−2 s−1 1 (Figure 5h). The T/ET reached maximal values
on warm sunny days with moderate VPD, where T accounted for around 90% of total
ecosystem ET. The impact of environmental conditions on T, ET and T/ET during the peak
of the season (June–August) is visualized in the supplementary materials (Supplementary
Figure S2).
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Table 2. Results of one-way ANOVA for statistical differences of transpiration, evapotranspiration,
and transpiration to evapotranspiration ratio between the months.

DF SumSQ MeanSQ F p

Evapotranspiration

Month 13 311.8 23.986 40.93 <0.001
Residuals 277 162.3 0.586

Transpiration

Month 13 184.4 14.19 33.78 <0.001
Residuals 277 116.3 0.42

Transpiration/Evapotranspiration

Month 13 6.474 0.498 15.92 <0.001
Residuals 277 8.663 0.031

Furthermore, the impact of monthly mean environmental variables on monthly mean
T, ET and T/ET was investigated. Tair was a predictor for ET monthly level variability with
an R2 of 0.74, and then PAR with an R2 of 0.68 and VPD with an R2 of 0.67 (Figure 6a,d,j).
Linear regression between monthly mean Tair and T showed an R2 of 0.83, which captured
both the latent phenological effect and the temperature response effect (Figure 6b). VPD
explained 65% and PAR 0.51% of monthly mean T variability (Figure 6e,k). Mean monthly
SWC had no significant effect on either T or ET during the observed period (Figure 6g,h).
Monthly rising of mean Tair 1 ◦C corresponded to a 0.24 mm increase of monthly mean ET
and a 0.19 mm increase of monthly mean T. The strongest predictor for T/ET variability
was Tair, with R2 of 0.74, and then VPD with an R2 of 0.5 (Figure 6c,f). An increase of
monthly mean Tair by 1 ◦C led to a rise of T/ET by 0.04, or 4% increased T contribution
towards total ET. A monthly mean VPD rise of 1 hPa corresponded to a 0.06 increase of
T/ET ratio. SWC had a significant negative effect on monthly mean T/ET with an R2 of
0.29 (Figure 6i). The reduction of SWC by 1% corresponded to a decrease of monthly mean
T/ET by 0.01. On the other hand, PAR had no significant effect on monthly mean T/ET
(Figure 6l).
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4. Discussion
4.1. Seasonal Changes of Ecosystem Transpiration and Evapotranspiration Partitioning

We observed no apparent decoupling between the ecosystem transpiration (T) and
evapotranspiration (ET) during the two observed years which were derived from upscaled
sap flow and eddy-covariance data. The mean value of T during the June–August period
was 1.73 mm day−1, and for ET it was 3.29 mm day−1. A study by Davi et al. [72], which
utilized a combined simulated and measured approach, showed a similar range of values
for both T and ET in a European beech forest in France, ranging from 2–5 mm day−1 during
the peak of the vegetation season. Analysis of intra-annual monthly variability showed
significant differences between spring, summer and autumn seasons, with peaking T/ET
(0.75) during the June–September period and the lowest T/ET values during April–May
(0.28) and October (0.35). In comparison to our results, the T/ET ratio of European beech
derived from sap flow and ET calculated based on PAR transmittance showed greater
values during spring (0.5), lower values during the autumn (0.15) and similar values during
the summer (0.8) [73]. Moreover, the lower T values and subsequently smaller T/ET ratio
during the April–May period observed in this study can be linked to cambial activity and
sap flow rise due to phenological onset and propagation [73]. Another factor reducing
spring T could be leaf development [74] and stomatal maturation [75,76]. After the leaves
are fully developed, the T/ET ratio seems stable until the autumn senescence, as similarly
observed by Wilson et al. [77] in a mixed broadleaf forest. The reduction of T during autumn
was observed for Fagus sylvatica in mixed forest and was linked to declining hydraulic
conductance [78]. The mean T/ET ratio of 0.497 observed in our study corresponds to
more novel and reserved estimates within the 0.35–0.6 range [35,39,54]. In comparison,
American boreal spruce forests have higher annual T/ET ratio between 0.7–0.8, European
boreal evergreen forests show T/ET values around 0.5 and evergreen deciduous forests
show a T/ET ratio of around 0.7–0.8 [79]. The T/ET ratio seems very stable from the annual
perspective and differs only slightly between 2019 and 2020. A similar stable T/ET ratio
was observed in a study of mixed temperate forest which included European beech with
40% abundance [80]. A study by Paul-Limoges et al. [80] reported an annual T/ET ratio of
0.74 in the mixed temperate forest, without T/ET drops during spring and autumn due to
the presence of evergreen trees. The low T/ET ratio of European beech forest during spring
and autumn due to the phenological development of leaves might pose a disadvantage in
comparison to evergreen forests from the annual perspective.

4.2. Environmental Impact on Ecosystem Transpiration and Evapotranspiration

We have not observed decoupling between T and ET, and thus have demonstrated
the weak stomatal control of European beech under high evaporative demand. The re-
lationship between VPD and T was linear without apparent limitation at higher VPD
levels. Moreover, the soil water content (SWC) had no significant impact on T variability
with a determination coefficient of 0.06. A linear response of T to VPD without apparent
asymptotic change at high VPD and no significant impact of SWC on T suggests more aniso-
hydric behaviour. Similarly, a recent paper by Leuschner et al. [49] has found that mature
European beech trees exhibited anisohydric behaviour based on a relationship between
stomatal conductance and leaf water potential. Nalevanková et al. [48] also did not find
a significant impact of soil water potential on transpiration values in a mature European
beech forest under drought. A mature European beech stand will therefore keep their
stomata open to maintain photosynthesis even under water-deficit, maximizing carbon
assimilation but risking hydraulic failure. Long-term transpiration development derived
from carbon isotope ratios of tree ring cellulose of Fagus crenata has shown no decrease
of T under increasing VPD, which could be explained by the anisohydric strategy of the
species [81]. In contrast, the T from isohydric species is reduced via stomatal control due to
the reduction of soil water potential or soil water content [82–84]. It should be noted that we
measured SWC at a 30 cm depth, which could skew the real relationship for deep-rooting
European beech. Nevertheless, the site has very shallow soil (60–70 cm), and therefore the
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differences might not be so pronounced. We also think that, at this site, there is no reachable
groundwater table due to the topography; however, we do not have empirical evidence
of that. Temperature, VPD and PAR showed significant impact on both T and ET due to
their effect on evaporative demand. Empirical connection between T derived from sap
flow and evaporative demand are well documented for a plethora of tree species [48,85–87].
Similar results for ET were observed by water balance modelling of European beech stands
based on precipitation and runoff dynamics [88]. The diurnal ET dynamics of temperate
mixed forests were also controlled mostly by the air temperature and global radiation, but
not by soil temperature [89]. The positive linear impact of temperature on transpiration
is probably driven by increasing stomatal conductance linked to rising temperature, even
under constant VPD [90].

4.3. Environmental Impact on T/ET Ratio

The T/ET ratio is positively correlated with ecosystem water use efficiency (WUE)
in temperate forests [51]. Therefore, it is an important target for the assessment of for-
est ecosystem productivity under increasing aridity due to GCC. It seems that climate
warming is having a positive effect on T/ET partitioning and therefore WUE in forest
ecosystems [6,58]. Jiang et al. [91] found that agroforestry ecosystems can control its WUE
via regulation of T/ET by LAI adjustment. Air temperature explained around 50% of T/ET
variability in our study as it probably captures the phenological development of the foliage.
Positive correlation between air temperature on T/ET ratio has been also observed for
wheat and barley [5]. SWC in our study showed the very small explanatory power of
T/ET with R2 of 0.15. Contrary to that, a study by Nie et al. [6] found a strong negative
correlation between the T/ET and SWC across various forest types at a global scale. A
strong influence of SWC on T/ET has been observed also in subtropical forests and was
linked to stomatal control under a soil water deficit [92]. The differences could be explained
by the anisohydric response strategy of the mature European beech. As suggested in a
recent study by Paul-Limoges et al. [5], knowledge of empirical relationships between
environmental conditions and T/ET ratios for specific phenological stages can be beneficial
also for empirical T estimation, based on reliable eddy-covariance measurements of ET.
Given that the T/ET ratio for a tree species is stable under certain phenological conditions,
gained knowledge can improve the ecosystem T estimates needed for proper understand-
ing of forest water fluxes under GCC. Further exploration of isohydric species with strong
stomatal control is needed to properly quantify the effect of water deficit and/or drought
on ecosystem-level T/ET partitioning.

5. Conclusions

European beech forest has significant intra-annual variability of transpiration, evapotran-
spiration, and transpiration/evapotranspiration ratio. Spring and autumn phenological de-
velopment leads to the reduction of transpiration and total transpiration/evapotranspiration
ratio. The values of all three parameters seem stable at the inter-annual level between the
slightly drier 2019 and the more humid 2020. The main environmental factors affecting daily
and monthly transpiration and evapotranspiration dynamics was air temperature. Surpris-
ingly, SWC had no significant impact on transpiration and/or evapotranspiration dynamics,
on the daily or monthly scale. The relationship between VPD and transpiration was linear,
without limitation of transpiration at high VPD. The combination of non-significant response
to soil water content and linear response to VPD suggests the more anisohydric behaviour of
mature European beech.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/w14193015/s1, Figure S1: The scaling curves for tran-
spiration upscaling based on diameter at breast height (DBH) for the years 2019 (a) and 2020 (b).
The DBH distribution of the trees within the area of interest used for the upscaling (c); Figure S2:
Impact of daily mean air temperature (a,b), vapour pressure deficit (c,d), soil water content (e,f) and
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photosynthetic active radiation (g,h) on daily sums of ecosystem transpiration, evapotranspiration,
and transpiration/evapotranspiration ratio during the 2019–2020 (June–August) period.
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Ecophysiology in a European Beech Forest. iForest 2015, 8, 438–447. [CrossRef]
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