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Abstract

Abstract
Analytic shear-lag models enjoy great popularity for assessing and interpreting microstructure depen-
dent stationary creep in fibrous metal composites, especially the formulation of Kelly-Street [Kelly
and Street, Proc. Roy. Soc. A 328 (1972) 267-293]. Beyond the original model’s scope, i.e. large
aspect ratios of inclusions, predictions are highly inaccurate, which was recently pointed out by Wicht
et al. [Wicht et al., Acta Materialia 226 (2022)], by comparing model predictions to micromechan-
ical Fast-Fourier-Transform-based simulations. In this study we therefore modify basic Kelly-Street
model assumptions, concerning effective creep rate, stress transfer and inclusion spacing to arrive
at a modified model with an extended scope. To validate the modified model, we benchmark the
model against Fast-Fourier-Transform-based micromechanical simulations. We show, that the pro-
posed modifications are successful in extending the model’s scope to inclusions with small aspect
ratios < 20. Thus, the reformulated model is a powerful tool to describe and interpret microstructure
dependent creep.
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A popular model for predicting and interpreting microstructure-dependent creep of fibrous and cellular
metal composites is the analytic 1D shear-lag model proposed by Kelly and Street, originally published
in 1972 [1, 2]. It allows the interpretation of experimental data, by linking changes in creep rates to
variations in microstructure. For a given load, the model predicts stationary creep rates assuming either
creeping or rigid inclusions for varying inclusion aspect ratios and volume fractions. The model owes its
popularity to simplicity and straightforward implementation. Applications include creep rate predictions
for lead phosphor-bronze [1], Ni-W [3], Al-SiC [4,5], niobium silicides [6], NiAl-Cr [7] and NiAl-Mo [8,9].
The model is used beyond it’s scope routinely, even though several publications pointed at the limited
applicability. Usually the following aspects are named limiting factors for the model’s scope:

• Some inclusions have a finite creep resistance [6, 10].

• The model neglects stress transfer at fiber ends [4, 10,11].
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• The model assumes a uniform matrix deformation rate, which is set equal to the composite’s
deformation rate [10,12].

In a recent study by Wicht et al. [10], cellular NiAl-Mo is investigated, where significant deviations
between creep rate predictions based on the rigid Kelly-Street model and creep rates computed by mi-
cromechanical FFT-based simulations arise. Creep rates deviate by up to an order of magnitude from
numerical simulations, when small aspect ratios ≤ 20 are considered. As in previous publications, the
deviation is attributed to a finite creep resistance of the inclusions and an inhomogeneous strain-rate field
for low aspect ratios.
These observations demonstrate, that the application of the Kelly-Street model needs to be carefully
considered, before experimental data can be interpreted. In the present study, we aim at modifying the
original Kelly-Street model, to extend the model’s scope to morphologies with small inclusion aspect
ratios. The goal is to propose a reliable model, which accurately predicts microstructure dependent
creep for a wide range of morphologies. To validate the modified model we use Fast-Fourier-Transform-
based (FFT-based) micromechanical solvers, computing effective creep rates for artificially generated
microstructures.
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Figure 1: Schematic model diagrams for the original Kelly-Street model and and its adopted version
proposed in this article. a) Considered unit cell. Load is applied in z direction. b) Cross section of unit
cell perpendicular to z with circular inclusions (above), cellular inclusions (below) and average inclusion
spacing t = 2h. c) Normal stress distribution within inclusion and matrix for the original and modified
model. d) Creep rate distribution within inclusion and matrix for the original and modified model. zcc
and zmc denote the rigid inclusion regions for the creeping and modified model.

The Kelly-Street model, c.f. Fig. 1 a), considers a volume element composed of a prismatic inclusion of
length l and diameter d embedded in the matrix material and subjected to a uniaxial effective stress.
The model approximates spacing between inclusions by a geometrical parameter h, which is specified
by d and the volume fraction of the inclusions φ. The inclusions are assumed to behave either rigid or
creeping. The transient regime of creep is neglected in the model.
The original model assumptions and equations are summarized below for the rigid and creeping inclusion
models. These are

• a constant strain rate in the matrix, which is equal to the effective strain rate in the composite,

• stress transfer at inclusion ends (z = l/2) is neglected, c.f. Fig. 1 c),
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• (when applicable) inclusions creep with the same rate as the matrix in the center, while a zone l′

at each end is rigid, c.f. Fig. 1 d),

• (when applicable) creep behavior in both matrix and inclusion is governed by a power law and

• an estimated inclusion spacing based on hexagonal circle packing, c.f. Fig. 1 b).

The following summary of the rigid model is taken from Refs. [2, Sec. 3.1] and [6, Sec. 2.1]. Stationary
creep behavior of the matrix material is assumed to follow a power law according to

ε̇m = ε̇m0

(
σm

σm
0

)n

, (1)

with matrix stress σm, Exponent n, reference strain rate ε̇m0 and reference stress σm
0 . The shear lag

formalism assumes a shear stress distribution τI(z) parallel to the matrix/inclusion interface in z, due to
matrix normal stress σm. Using the balance of forces in a cylindrical coordinate system, τI(z) is related
to a normal stress σi(z) within the inclusion via σi(z) = 2τI(z). σi(z) is depicted in Fig. 1 c). It should
be noted that stress transfer across the matrix/inclusion interface at z = l/2 is violated, which leads to
zero normal stresses at z = l/2 and a subsequent jump to σm. The load-carrying capacity of the rigid
inclusion is based on a mean inclusion stress σ̄i, which is retrieved by averaging σi(z) over the inclusion
length l. This results in

σ̄i (ε̇) =

(
l

d

)(n+1)/n(
t

d

)−1/n(
2

3

)1/n(
n

2n+ 1

)(
n

n+ 1

)
σm (ε̇) , (2)

where the inclusion spacing t = 2h is estimated from a hexagonal packing of circular inclusion cross
sections, c.f. Fig. 1 b), according to

t

d
=

√
2
√

3

π
φ− 1. (3)

The relation between applied stress σ, mean inclusion stress σ̄i and matrix stress σm is

σ = φσ̄i (ε̇) + (1− φ)σm (ε̇) . (4)

After some algebraic manipulations of Eqs. (1 - 4), the creep rate for the composite reads

ε̇ = ε̇m0

(
σ

σm
0

(
Φ(l/d)(n+1)/n − 1

)
φ+ σm

0

)n

, (5)

with the stress transfer function

Φ =

(
2

3

)1/n(
n

2n+ 1

)(
n

n+ 1

)(√
π

2
√

3φ
− 1

)−1/n
. (6)

The creeping model assumes a center region within the inclusion, where ε̇m = ε̇i, while ε̇i = 0 holds for
z ∈ [zcc , l/2], c.f. Fig 1 d). Thus interface shear stress τI(z) is non-zero only for z ∈ [zcc , l/2]. This leads
to a constant normal stress σi(z) for z ∈ [0, zcc ], c.f. Fig. 1 c). The formalism presented above leads to a
mean inclusion stress

σ̄i (ε̇) =

(
1− n+ 1

2n+ 1

2l′

l

)
σm (ε̇) , (7)

according to Chan [6, Sec. 2.2]. Thereby 2l′/l denotes the quasi-rigid inclusion fraction and is computed
as

2l′

l
= 2

(
l

d

)−1(
σi (ε̇)

σm (ε̇)

n+ 1

2n

(
3t

4d

)1/n
)n/(n+1)

. (8)
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No closed-form solution for the effective creep rate can be retrieved, but (4) can be solved numerically
to determine the composite’s creep rate. Here we want to point out, that for the limiting case of a fully
creeping fiber, i.e. l′ = 0, the Kelly-Street model for creeping fibers reduces to the rule of mixtures, which
gives a lower bound for the effective creep rate. This limit case can be summarized as

σ = (1− φ)σm
0

(
ε̇

ε̇m0

)1/n

+ φσi
0

(
ε̇

ε̇i0

)1/m

. (9)

Again, this does not yield an explicit expression for the effective creep rate, but can be solved numerically
for a given stress σ.
As pointed out, the major inconsistencies in the classical Kelly-Street model arise from (i) improper
modeling of the effective strain rate, (ii) a violation of stress transfer between matrix and inclusion and
(iii) a restriction to inclusions of circular cross section. The following model modifications address these
issues:

1) From a micromechanical perspective the effective strain is the volume average of the local strain
rate in each phase. Thus the original assumption ε̇m = ε̇ is inaccurate. For the modified model, we
treat the solution of (4) as the matrix strain rate ε̇m. As the strain rate is zero in a fraction 2l′/l

of the inclusions and equal to ε̇m in the rest, the effective strain rate computes to

ε̇ =

(
1− 2l′

l
φ

)
ε̇m, where ε̇m solves Eq. (4). (10)

2) We assume, that the inclusion stress σi(z) at z = l/2 is equal to the matrix stress σm, due to the
continuity of the stress vector [4, 12, 13]. This results in a modified inclusion normal stress σi(z),
which is depicted in Fig. 1 c). Following the procedure of Kelly-Street for creeping inclusions yields

σ̄i (ε̇) =

(
1− n

2n+ 1

2l′

l

)
σi (ε̇) +

(
n

2n+ 1

2l′

l

)
σm (ε̇) , (11)

as an expression for the mean fiber stress. The rigid inclusion fraction is adjusted to

2l′

l
= 2

(
l

d

)−1(
σi(ε̇)− σm(ε̇)

σm(ε̇)

n+ 1

2n

(
3t

4d

)1/n
)n/(n+1)

. (12)

3) Kelly and Street use the minimum fiber spacing of a hexagonal circle packing (3) as an approxi-
mation of the average inclusion distance. Thus, the range of volume fractions is naturally bounded
by the maximum packing density for circles. However, for non circular inclusions, e.g. NiAl-Mo
with cellular inclusions, higher volume fractions up to φ = 1 are geometrically feasible. Hence, we
propose to use the cell distance of a hexagonal tiling, c.f. Fig. 1 b),

t

d
=

√
3

2

(
φ−1/2 − 1

)
(13)

as an alternative estimate for cellular structures.

We set up two benchmarks to investigate the influence of morphology on effective creep rates, as predicted
by the original and the modified Kelly-Street model. We start by investigating directionally solidified
NiAl-Mo, where Mo serves as an aligned strengthening phase to the NiAl intermetallic of low creep resis-
tance. Depending on process conditions, cellular mesostructures of regular microstructure with aligned
Mo fibers embedded in degenerated regions with misaligned Mo fibers and of lower fiber volume fraction
form [9]. The regular, aligned regions with volume fraction φ provide high creep resistance (equivalent
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to inclusions in the Kelly street model), while the degenerated regions result in a lower creep resistance
(equivalent to the matrix in the Kelly-Street model). The resulting composite has been studied at 900◦C

experimentally by Seemueller et al. [9] and numerically by Wicht et al. [10] and is considered here, due
to the fact that volume fractions of up to φ = 100 % are feasible. This allows us to study the model’s
behavior with the modified inclusion spacing of Eq. 13. In addition, the difference in creep behavior
between regular and degenerated regions over the entire range of l/d ∈ [5, 40] is rather small, i.e. the
variation in ε̇ is less than an order of magnitude, c.f. Fig. 4 b). The second system considered is a
composite of cylindrical phosphor-bronze fibers, which are embedded in a lead matrix. This composite
was originally studied at room temperature by Kelly and Street [1] and will be considered here, because
of the large difference in stationary creep rate of inclusion and matrix.

(a) (b)
Figure 2: Synthetically generated microstructures used for micromechanical simulations: a) cellular
NiAl-Mo, φ = 65 % and l/d = 5 (regularly aligned regions are presented as compact regions) and b) lead
phosphor-bronze fibrous composite, φ = 30 % and l/d = 25 (fibers are depicted as compact regions).

As the individual control of the microstructure parameters φ as well as l/d is experimentally complicated
or even impossible, we use computational homogenization to obtain effective stationary creep rates. To
this end an in-house FFT-based micromechanics solver, written in Python 3.7 with Cython extensions, is
used. We compute local strain and strain rate fields by solving the Lippmann-Schwinger equation [14,15]
for known constitutive laws, an explicit description of the considered microstructure and periodic bound-
ary conditions. Using FFT-based solvers offers the flexibility to study a wide range of morphological
configurations and thus to verify Kelly-Street model predictions. For our numerical simulations, we pre-
scribe an effective uniaxial stress state in fiber direction on a volume element (VE), which is held constant
until a steady-state creep rate is reached. The effective properties, i.e. the effective creep rates, are then
obtained from the local fields by averaging over the volume element. The considered VEs were generated
using the algorithms presented in Refs. [10] and [16]. A cellular NiAl-Mo and a lead phosphor-bronze
microstructure are depicted in Fig. 2 a) and b). We note, that VE studies have been conducted to ensure
a reasonable VE size. In addition, we generate five instances for each aspect ratio and volume fraction and
use the mean value of effective creep rates as well as the 99 % confidence interval based on the student-t
distribution [17], to ensure a result independent of the individual VE. For further details concerning these
FFT-based solvers and computational homogenization we refer to the recent review by Schneider [18].
The material parameters for Kelly-Street predictions and FFT simulations were taken from literature.
For the Kelly-Street model, these are summarized in Tab. 1. As the creep parameters for phosphor-bronze
fibers were not presented in the original manuscript, the power law parameters were obtained by a least
square fitting to experimental data in Ref. [1]. We note the relatively large exponent for the fibers of 40,
which is in agreement with the observations by Kelly and Street [1, Sec. 5.1] and the large difference in
creep response of matrix and fiber material. A Norton plot (minimum strain rate vs. stress in double
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logarithmic representation) illustrating this is depicted in Fig. 3. As Fig. 3 indicates, for large aspect
ratios and inclusion volume fractions, i.e. l/d = 100 and ϕ = 40 %, the creeping and modified model both
are highly accurate in predicting the stationary creep response of lead phosphor-bronze.
For the FFT-based simulations of cellular NiAl-Mo a material model developed in Ref. [10, Sec. 2.3] is
used, which results in an effective uniaxial behavior equal to the power-law. In the case of lead phosphor-
bronze the material behavior in FFT simulations is prescribed by a power law in both phases, where
necessary parameters are chosen equal to the Kelly-Street parameters presented in Tab. 1.

Table 1: Parameters for the 1-dimensional power-law model.
Lead matrix [1] ε̇m0 = 2.77 · 10−9 s−1 σm

0 = 3.3 MPa n= 14

Fiber phosphor-bronze (this study) ε̇i0 = 5.4 · 10−14 s−1 σi
0 = 120 MPa m= 40

Matrix NiAl-Mo [10] ε̇m0 = 1 s−1 σm
0 = 503 MPa n= 5.8

Inclusion NiAl-Mo [10] ε̇i0 = 1 s−1 σi
0 = 1245 MPa m= 10

Experimental Matrix Experimental Fiber Experimental Composite Matrix
Fiber Rigid inclusions Creeping inclusions Modified
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Figure 3: Norton plot of lead phosphor-bronze fiber and matrix materials measured by Kelly and Street [1],
illustrating the large difference in creep resistance. In addition composite data (l/d = 100, φ = 40 %) as
well as original and modified model predictions are depicted.

7



Rule of mixtures Rigid inclusions Creeping inclusions Modified Simulation 99% conf.

0 0.15 0.3 0.45 0.6 0.75 0.9 1

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

cell volume fraction φ

ε̇
in

1/
s

(a)

5 10 20 40

10−7

10−6

10−5

10−4

aspect ratio l/d

ε̇
in

1/
s

(b)

0.1 0.2 0.3 0.4
10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
101

fiber volume fraction φ

ε̇
in

1/
s

(c)

10 25 50 75 100
10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
101

aspect ratio l/d

ε̇ m
in

in
1
/s

(d)

Figure 4: Kelly-Street model predictions and simulation results for cellular NiAl-Mo with σ = 200 MPa:
a) ε̇ vs. φ for l/d = 5 and b) ε̇ vs. l/d for φ = 65%. Kelly-Street model predictions and simulation results
for lead phosphor-bronze with σ = 15 MPa: c) ε̇ vs. φ for l/d = 25 and d) ε̇ vs. l/d for φ = 10%.

We start by considering cellular NiAl-Mo composite material. A comparison of simulation results to the
original and modified Kelly-Street model predictions is depicted in Fig. 4 a) and b). The rule of mixtures
is included to show the lower bound for the effective creep rate. Fig. 4 a) considers the full range of
admissible volume fractions φ ∈ [0 %, 100 %] at l/d = 5, while Fig. 4 b) is provided for fixed φ = 65%

and varying l/d, which is the configuration studied by Seemüller et al. [9]. For computing creep rates
based on the modified model we consider all modifications presented above, including the adjusted ratio
of Eq. (13), to allow for cellular inclusion spacing.
The original Kelly-Street model formulations do not allow accurate descriptions of effective creep rates
for small aspect ratios, c.f. Fig. 4 b), blue and green curve. This holds for the entire range of possible
cell volume fractions, where the deviation is up to an order of magnitude, c.f. Fig. 4 a). Even though
the inclusions are considered rigid, the Kelly-Street model underestimates the composite’s creep resis-
tance. In addition, for cell volume fractions above the maximum packing density for circles, both models
degenerate. The effective creep rate, as predicted by FFT simulations, black curve, lies roughly at the
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geometric mean of the rule of mixtures (red curve) and the original Kelly-Street models. This trend
is accurately predicted by the modified model (violet curve) over the whole range of admissible volume
fractions, where deviations are less than a factor of two and therefore well within the experimental scatter
of minimum creep rates.
As the difference in stationary creep rate for both phases is comparably small, the effective creep rate
approaches the lower bound predicted by the rule of mixtures for relatively small l/d > 20, c.f. Fig. 4
b). This leads to the observation, that the creeping inclusion formulation allows accurate creep rate
predictions, as long as l/d > 20. For smaller l/d the deviations increase substantially. The modified
model however captures the entire range of considered aspect ratios, closely following the FFT simulation
results. The inclusions can clearly not be considered as rigid, as the rigid Kelly-Street model does not
capture the trend of saturating effective creep rates for larger aspect ratios.
In the following, focus is placed on the assessment of the creep response of fibrous lead phosphor-bronze.
We note, that the original fiber spacing in Eq. (3) for the modified Kelly-Street model is used, as the
inclusions are circular in cross section. The results are depicted in Fig. 4 for fixed l/d = 25 and varying
φ (c) and for fixed φ = 10% for varying l/d (d).
Over the entire range of considered aspect ratios, the variation in ε̇ is of order 108. Even for large aspect
ratios up to 100, the results differ from the rule of mixtures by orders of magnitudes. In the range of
l/d ∈ [50, 100], the effective creep rate predictions of creeping (blue curve) and modified (violet curve)
model almost coincide. Thus, both models allow an accurate prediction. However, the smaller l/d, the
larger the deviations of the original model, being an order of magnitude for l/d = 10. Only the modified
model closely follows the numerically computed creep rates for smaller aspect ratios. The rigid inclusion
model (green curve) fails to capture the trend predicted by FFT simulations and is highly inaccurate for
l/d ≥ 50.
For the relatively small l/d = 25 in Fig. 4 c), with a varying fiber volume fraction in the range
φ ∈ [0%, 40%], the large difference in creep response of the constituting phases dominates the effec-
tive composite behavior. We note, that for the whole range of φ, the modified and rigid models closely
match the FFT-simulation results. The creeping fiber model (blue curve) is only accurate for small
φ ≤ 15 %, but overestimates the stationary creep rate in the entire range.

To conclude this study we summarize our main results:

• When comparing the original model against FFT-based simulations, the limited scope of the original
formulation is apparent.

• To extend the model’s scope, we reformulated three assumptions concerning the effective strain
rate, stress transfer at fiber ends and inclusion spacing.

• The benchmarks prove, that the modified model is successful in extending the model’s scope, by
providing exceptionally accurate predictions for morphological configurations (i.e. small fiber aspect
ratios ≤ 20), where the original versions of the model remain inaccurate.
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