
Authentication and Authorization in Microservice-Based

Applications

Niklas Sčnger1, Sebastian Abeck2

Abstract: The development of microservice-based applications adds challenges when using different
cloud services. One such challenge is the integration of authentication and authorization among
different systems. In this publication, we describe the development of a software as a service solution
with the focus on the integration of authentication and authorization. For the development of the
business logic, the integration platform as a service MuleSoft is used. The identity and access
management as a service solution Okta is used to provide the necessary means for authentication. To
perform authorization decisions, JSON Web Tokens and API proxies are used.

Keywords: Authentication; Authorization; Microservices; Engineering; Okta; MuleSoft

1 Introduction

Compared to the development of a classical monolithic application, the goal of a modern

cloud application using a microservice architecture is to reuse existing software components

or services by integrating them through well-defined application programming interfaces

(APIs) [Ne15]. This publication describes the integration of authentication and authorization

in the development of a Software as a Service (SaaS) using the products MuleSoft and Okta.

As a demonstrator, the case study of the development of a connected car application, called

PredictiveCarMaintenance (PCM), is used. Fig. 1 provides an overview of the groups

accessing as well as the products and protocols used to build the application PCM which

provides vehicle data (e.g., state, maintenance intervals) for vehicle users and garages. For

the implementation of the application, the well-established products Okta and MuleSoft are

used. Okta provides an IAM as a Service (IAMaaS) solution to, among others, register and

authenticate users [In22b]. MuleSoft calls itself an Integration Platform as a Service (iPaaS),

which can be used to develop tailored APIs by integrating existing systems [Mu22b]. In

order to meet the IAM requirements, the two products must be strictly aligned with each

other. The established protocols OpenID Connect (OIDC) and OAuth 2.0 are used for this

purpose. To allow a user to login and display the requested data, the User Interface (UI) is

developed using the TypeScript-based framework Angular.

1 Karlsruhe Institute of Technology, Research Group Cooperation & Management, Zirkel 2, 76131 Karlsruhe,

Germany, niklas.saenger@kit.edu
2 Karlsruhe Institute of Technology, Research Group Cooperation & Management, Zirkel 2, 76131 Karlsruhe,

Germany, sebastian.abeck@kit.edu

cba doi:10.18420/inf2022_19

D. Demmler, D. Krupka, H. Federrath. (Hrsg.): INFORMATIK 2022,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022 207

mailto:niklas.saenger@kit.edu
mailto:sebastian.abeck@kit.edu
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/inf2022_19

PredictiveCarMaintenance

(PCM)

OpenID

Connect OAuth2

Protocols

useKarlsruheinspiredConsult

(KiC)

CaseStudyCompany

(CSC)

CaseStudyGarage

(CSG)

develops

use

use

user

interface

Cloud Products

based on

Angular

Fig. 1ȷ Overview of the Application PredictiveCarMaintenance

Following the principle of least privilege, the users of the application PCM should only have

the privileges to perform their necessary tasks [SS75]. Those tasks differ for each group

and should be defined by a detailed requirements analysis. In the context of this publication,

the groups, their tasks, and the requirements are described informally in the following.

PCM is developed by the company KarlsruheinspiredConsult (KiC). The CaseStudyCompany

(CSC) is a customer of KiC which has a large vehicle fleet and uses the application PCM to

manage their fleet. Finally, the company CaseStudyGarage (CSG) is a garage and uses the

application PCM to organize vehicle repairs. Since employees from KiC are the developers

of the application PCM, they must also perform administrative tasks as well as support

for their customers. Therefore, KiC employees require access to all data that is available

in the system. To protect these comprehensive permissions, a second factor is required

for authentication of KiC employees. This factor must be verified by the IAMaaS Okta.

Employees of CSC use the application PCM to see current and past data of the vehicles

they are assigned to. An employee is assigned to a vehicle by the company CSC. While an

employee can schedule a maintenance appointment with the CSG through the application

PCM, the CSC employee cannot access the advanced diagnostics data and maintenance

information. Vice versa, employees of the CSG must only access the diagnostics data and

maintenance information of a vehicle they have been assigned to by a supervisor.

The present article is structured as followsȷ Sect. 2 presents the related work. The design

of the frontend architecture and the implementation of the authentication based on the

previously described requirements is described in Sect. 3. The design and the implementation

of the authorization are described in Sect. 4. Finally, the results and future work are discussed

in Sect. 5.

208

2 Related Work

In their systematic review from 2012, Iankoulova and Davena analyze security requirements

for cloud computing and find that access control, as the degree to which a system limits

access to its resources, is a key requirement [ID12]. This is also a problem in a microservice

architecture as de Almeida and Canedo [AC22] point out in their systematic literature

review on authentication and authorization in microservice architectures. They find that

challenges are trust between microservices compromised by unauthorized access, individual

concern for each microservice, and microservice access control. Furthermore, the authors

find the most used security mechanisms are OAuth 2.0, JSON Web Tokens (JWT), and API

Gateways. Other important mechanisms are Single-Sign On, OpenID Connect (OIDC), as

well as Role Based Access Control (RBAC) and Attribute Based Access Control (ABAC).

The Open Web Application Security Project (OWASP) further strengthens the security

issues in their report of the top 10 security risks in web applications [Fo21]. The 2021 report

includes broken access control (A01ȷ2021) as the most serious web application security

risk.

He and Yang [HY17] describe the realization of authentication and authorization of an

end-user in a microservice architecture. They propose an authorization solution using JWTs

provided by an authentication server and an API gateway to validate the JWT. Zhao et al.

[ZJJ18] also describe an authorization mechanism using an API gateway and JWT issued

by an OAuth 2.0 authorization server. Xu et al. introduce the development of a microservice

security agent in an edge computing environment [XJK19]. The authors propose a security

agent consisting of an API gateway, a client server including a user interface, and a security

agent. The client server is used to configure the API gateway. The API gateway then performs

authorization decisions based on a JWT which are issued by the security agent. Similar

to the described approaches, this publication performs authentication and authorization

decisions based on an API gateway as well as JWTs. However, this publication sets the

focus on the realization based on the integration of the cloud solutions MuleSoft and Okta.

Nehme et al. describe fine-grained authorization for a microservice architecture based on

OAuth 2.0 and eXtensible Access Control Markup Language (XACML) [Ne19]. They

develop a gateway solution which applies XACML policies to resource requests, thus

decoupling the security aspects from functional requirements of a microservice. Furthermore,

the authors describe the shortcomings of the coarse-grained nature of OAuth 2.0 which is

used in this publication.

MuleSoft offers the API-led connectivity approach, which aims at connecting data to

applications through reusable APIs [Mu22a]. To do so, MuleSoft uses a three-layered

architecture with each layer having its own API type. First, the System layer is the lowest

layer and provides System APIs integrating the data from external systems. The middle

layer is the Process layer which performs business logic and provides the results through

Process APIs. Finally, the top layer is the Experience layer providing the processed data

209

in the required format for an arbitrary client through an Experience API. This layer can

be compared to a Backend for Frontend (BFF), which does not perform business logic but

rather supports the frontend [Ne15].

3 Authentication

This chapter describes the systematic realization of the authentication requirements for

the application PCM described in Sect. 1. To restrict access to the application PCM for

authenticated users, the architecture of the application PCM must take authentication into

account during the design phase. Next, the implementation phase consists of two steps.

First, the configuration of the IAM system Okta to implement the required authentication

mechanisms (i.e., OIDC Client, multifactor authentication). Second, the implementation of

the frontend using the results of the Okta configuration.

3.1 Design of the Architecture

The UML-based diagram displayed in Fig. 2 presents an excerpt of the architecture of the

application PCM with a focus on the frontend. It is a combination of a UML deployment

diagram and a UML component diagram [OM17]. It allows to further enrich a physical node

from a deployment diagram by applying software components from a UML component

diagram running on the subsystems. It also presents a more detailed view on which and how

components inside physical nodes communicate with each other (i.e., protocol).

Based on the case study requirements depicted in Sect. 1, the diagram in Fig. 2 contains

three nodes for the involved systems «iamaas system» Okta and «ipaas system» MuleSoft as

well as «browser» PCMFrontend for the required Angular frontend. While the architecture

of the frontend is generally independent from the implementation, the components are

enriched by Angular-specific stereotypes «ng component» and «ng service» to differentiate

views from reusable functions or tasks (e.g., authentication).

To allow a user to log into the PCMFrontend, the «ng component» Login provides a web

page with fields for a username and password as well as a login button. The «ng service»

Authentication, initiates the authentication by executing the OIDC flow against the OAuth

«authorization server» Default provided by Okta. The «ng service» Authentication uses the

«oidc client» PredictiveCarMaintenanceOpenidconnectClient (PCMOC) to authorize itself

to the «authorization server» Default. After a user is successfully authenticated, they are

redirected to the «ng component» LandingPage which provides references to the pages a

user is allowed to access. The design of the components required for authentication and

authorization is inspired by the OIDC flow and allows for separation of concerns in the

frontend architecture.

Furthermore, for each user group (i.e., VehicleUser, Garage), a dedicated «ng component»

is created to display the requested information. To retrieve the information, an experience

210

«ipaas system»
MuleSoft

«ng component»
Login

«ng service»
Permissions

«ng module»
AppRouting

«ng service»
AuthorizationGuard

«ng service»
Authentication

«ng component»
VehicleUser

«ng component»
Garage

«ng component»
LandingPage

«authorization server»
Default

«oidc client»
PCMOC

«api proxy»
A-Garage

«api proxy»
A-VehicleUser

«experience microservice»
E-Garage

«experience microservice»
E-VehicleUser

«iamaas system»
Okta

«browser»
PCMFrontend

OAuth 2.0

 OAuth2.0

Login

 LandingPage

VehicleUser

HTTP

HTTP

HTTP

 Garage

E-VehicleUser E-Garage

AuthenticationAPI

RoutingDecision

 UserPermission

 E-Garage E-VehicleUser

Fig. 2ȷ Excerpt of the PCMFrontend with Focus on Authentication and Authorization

microservice is developed for each user group. This allows to only provide the data required

for a user group and further restrict the access to the experience microservice with the

use of an API proxy. This is also inspired by the MuleSoft API-led connectivity approach

[Mu22a]. The authorization decisions in the «browser» PCMFrontend and the experience

microservices are further elaborated in Sect. 4.

3.2 Configuration of the IAMaaS Okta

Before users can authenticate themselves in the PCMFrontend and access sensitive data, the

IAM system Okta must be configured accordingly. Therefore, the first thing that must be

decided is where and how the users will be stored inside Okta. In this example, the users

are created manually inside Okta. Okta offers a universal directory which provides a single

view on users and groups and provides integration of further directories (e.g., LDAP, Active

Directory). To be able to distinguish between the affiliation and the function of a user (e.g.,

a mechanic or vehicle user), each user is assigned to a corresponding group which must

first be created in Okta. For PCM, the groups CaseStudyCompany, CaseStudyGarage, and

KarlsruheinspiredConsult are created for the employees of the respective companies being

part of the case study.

211

The OIDC protocol is based on OAuth 2.0 and allows authenticating users to an identity

provider. In this example, the IAM system Okta acts as the identity provider and provides

an OIDC client to the PCMFrontend. Depending on the requirements, there are several

options to configure and use an OIDC client (e.g., client types, grant types). Okta guides

the developer through the creation of an OIDC client by asking for the application which

has implications on the basic configuration. In case of PCMOC, the SPA application type is

used. This forces the developer to use a public OIDC client since the client ID and secret

can be extracted from the deployed frontend otherwise. Furthermore, the developer has

to use Proof Key for Code Exchange (PKCE) which is also recommended by the Internet

Engineering Task Force (IETF) for public OAuth 2.0 clients [SBA15]. To be able to use the

OIDC client and authenticate the users to the PCMFrontend, valid redirect URLs must be

configured (e.g., https://localhost:4200/home). The redirect URLs are validated during the

authentication to ensure that a request is coming from the PCMFrontend.

So far, the users of the group KarlsruheinspiredConsult can access the PCMFrontend through

OIDC client PCMOC with their username and password. However, since the KiC employees

have vast access to the application PCM, the authentication is further strengthened by

introducing a second factor. This process is called Multi-factor Authentication (MFA).

Okta can enable MFA per OIDC client or per Okta organization. It is also possible to

enable the MFA for selected users or groups. The configuration of MFA is done through an

authentication policy. For the application PCM, time-based one-time-passwords (TOTP)

are selected as a second authentication factor [Vi11].

To enforce the second factor, a new multifactor authentication policy is created and enrolled

for the group KarlsruheinspiredConsult. Enabling the MFA policy changes the authentication

process displayed in Fig. 3. After the user is prompted the authentication form and enters

the credentials, the authorization server verifies the credentials and checks if there is an

MFA policy enabled for the user. If the user is from KiC, the user is asked to enter a TOTP.

After the user enters the correct one-time password, the authentication process is continued

and the user is successfully authenticated using MFA. Otherwise, the authentication process

fails, and the user is not authenticated.

3.3 Implementation of the Authentication

For the implementation of the authentication, Okta allows to either sign in users through a

redirect to their page or to use an embedded widget which performs the authentication in

the background. The PCMFrontend uses the customized embedded Okta sign-in widget to

provide users a seamless interface throughout the authentication process [In22a].

The authentication process for a user is further described in the UML sequence diagram in

Fig. 3. The goal of the authentication process is to obtain an ID token as well as an access

token. After a user opens the «ng component» Login, the «ng service» Authentication is

called, which uses the Okta sign-in widget to initiate the OIDC flow with PKCE. Therefore,

212

the «ng service» Authentication first has to generate a verifier as well as a code challenge. The

verifier is a random string with a length between 43 and 128 characters. The code challenge

is the SHA256 hashed value of the verifier [SBA15]. The code challenge is then included

in an HTTP GET request to the endpoint /𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 of the OAuth 2.0 «authorization

server» Default. Afterwards, the «ng component» Login presents the embedded Okta sign-in

widget. The user can then enter their credentials (i.e., username and password) and press

the login button. The credentials are then parsed to the «authorization server» Default

and are subsequently verified. Otherwise, an authorization code is returned to the «ng

service» Authentication. The authorization code can then be exchanged by the «ng service»

Authentication to obtain the requested tokens. Therefore, the «ng service» Authentication

has to send an HTTP POST request which includes the authorization code as well as the code

verifier to the /𝑡𝑜𝑘𝑒𝑛 endpoint of the «authorization server» Default. The «authorization

server» Default can then verify the authorization code. To verify the code verifier, the

SHA256 hash function must first be applied to the code verifier and the result compared to

the code challenge. If the authorization code and code verifier can be verified, the ID token

and the access token are returned to the «ng service» Authentication. Finally, the user is

redirected to the «ng component» LandingPage.

«ng component»
Login

«authorization server»
Default

«ng service»
Authentication

call
«ng service»

Authentication

verify authorization code
and code verifier

authentication
success

 parse credentials

prompt authentication
form

 change to authentication form

open
«ng component» Login

redirect to
«ng component» LandingPage

id token, access token

code verifier
and code challenge

result

verify
authentication

POST /token: authorization code,
code verifier

authorization code

GET /authorize: code challenge

generate PKCE code verifier
and code challenge

enter credentials
press login button

(Okta sign-in widget)

Fig. 3ȷ Sequence Diagram of the Authentication Flow

213

4 Authorization

The realization of authorization is required to protect the user data of the application PCM.

Similar to the authentication, the authorization is an essential aspect of the design phase

and consequently realized in the implementation phase. To perform authorization decisions,

this section will describe the design of the access control mechanisms in the frontend and

backend. For the application PCM, the access control decision has to be implemented in

two places. First, the PCMFrontend has to decide what view a user can access based on

the group membership of a user (i.e., Attribute Based Access Control). Second, the iPaaS

system MuleSoft must decide what entities a user can access on an API-level.

4.1 PCMFrontend-level Authorization

After the successful authentication, the access token is returned from the authorization server

Default to the PCMFrontend. Listing 1 presents an excerpt of an access token provided by

Okta. The access token contains requested information in the JWT format and is used by

the PCMFrontend to decide which «ng component» a user can access [JBS15].

In the architecture of the PCMFrontend presented in Fig. 2, the «ng service» Authorization

Guard and the «ng service» Permissions are used to perform the authorization. The «ng

service» Permissions contains a mapping from group names to paths (i.e., «ng component»)

that a user is allowed to access. The AuthorizationGuard examines the access token and

extracts the claim groups. In the example access token of Listing 1, the user is in the

groups Everyone and CaseStudyCompany (line 5). Based on the extracted groups, the

AuthorizationGuard decides if the user can access a path or not. If a user only has the group

CaseStudyCompany in their access token, the access to the «ng component» VehicleUser is

allowed, while the access to the «ng component» Garage is denied.

1. "exp": 1643886904,

2. "cid": "0oa3ouku57Q89YCEc0x7",

3. "scp": ["openid", "email", "profile"],

4. "sub": "alex.twin@csc.com",

5. "groups": ["Everyone", "CaseStudyCompany"]

List. 1ȷ Excerpt of an Access Token Provided by Okta

4.2 API-Level Authorization

Protecting the access to an «ng component» is not enough since the «ng component» obtain

their data from a RESTful API which could otherwise be directly accessed. Thus, the

access must also be protected on an API-level. There are two challenges that generally

214

must be overcomeȷ First, coarse-grained authorization requires to protect the API itself (i.e.,

who can access a specific API endpoint). Second, fine-grained authorization decides what

resources a user can access and which operations they can perform. A common approach to

solve coarse-grained authorization, which is also supported by MuleSoft, is the use of API

gateways as a mediator between a client and a service. An API gateway allows to create

API proxies and apply and enforce policies to such a proxy. As depicted in Fig. 2, the

application PCM has the «experience microservice» E-VehicleUser and the «experience

microservice» E-Garage which provide the data for the «ng component» VehicleUser and

the «ng component» Garage respectively. A «experience microservice» provides tailored

API endpoints for each user group. To manage the traffic to an «experience microservice»,

API proxies provided by MuleSoft are used. In Fig. 2, the «api proxy» A-VehicleUser and

an «api proxy» A-Garage for the respective «experience microservice» are shown.

To solve the coarse-grained authorization, the JWT can be inspected by the «api proxy»

similar to the PCMFrontend. The corresponding policy is called JWT validation. Before an

«api proxy» can introspect the JWT, the PCMFrontend has to include the access token which

it previously received from Okta in every HTTP request that is sent to the «api proxy». To

include a JWT in an HTTP request, the HTTP authorization header must be set with the

JWT set as bearer [FR14; JH12]. If the «api proxy» receives a request without a JWT, the

request is immediately returned as unauthorized. Otherwise, the JWT validation policy will

perform three checksȷ

First, it must be validated that the JWT itself has not been tempered with and is not yet

expired. A JWT consists of a header, a payload, and a signature [JBS15]. The signature is

encrypted by the token issuer (i.e., Okta). To verify the contents of a token, the signature of

the token has to be decrypted using a public key. The OAuth 2.0 authorization server can

provide the keys to a third party through a JSON Web Key Set (JWKS) endpoint [Jo15].

In this case, the authorization server Default offers a JWKS endpoint which is referenced

by the «api proxy» A-VehicleUser and the «api proxy» A-Garage to verify the origin of

the JWT. Second, Okta adds the custom claim cid to its JWT which represents the id of

the OIDC client that performed the authentication request. An example can be found in

line 2 of the JWT displayed in Listing 1. In this case, the value 0𝑜𝑎3𝑜𝑢𝑘𝑢57𝑄89𝑌𝐶𝐸𝑐0𝑥7

represents the client id of the «oidc client» PCMOC which was used to issue the access

token. With this verification, the «api proxy» can verify that the token was requested by

the OIDC client of the application PCM. Third, based on the group assigned to the user,

the access to an «experience microservice» should either be allowed or denied. Hence, the

claim group from the JWT must be evaluated. In the example access token in Listing 1,

the user has the groups EveryOne and CaseStudyCompany. Thus, the user should only be

allowed to access the «experience microservice» E-VehicleUser. To access the «experience

microservice» E-Garage, the group CaseStudyGarage must be present in the JWT.

An exemplary request to receive vehicle information for a specific Vehicle Identification

Number (VIN) is presented in Fig. 4. Here, the interaction between involved systems can be

seen. The user of the PCMFrontend initiates an HTTP GET request to an endpoint /vin/id

215

«experience microservice»
:E-VehicleUser

«iamaas system»
:Okta

«api proxy»
:A-VehicleUser

«browser»
:PCMFrontend

tokenValid

verifyJWT()
:JWKS

JWKS

getJWKS()

getVehicleFileExcerpt(vin)
:Access Token

alt

[token is valid]

[token is invalid]

unauthorizedAccessError

userVehicleFileExcerpt

getVehicleFileExcerpt(vin)
:Email

userVehicleFileExcerpt

Fig. 4ȷ Excerpt of the Authorization Sequence

which is intercepted by the «api proxy» A-VehicleUser. Before the proxy can apply the JWT

validation policy, the JWKS is fetched. Subsequently, the JWT is validated, and the custom

claims are checked. If the request is performed by an employee of CSC, the request is

forwarded to the «experience microservice» E-VehicleUser and the result is returned to the

PCMFrontend. Otherwise, an unauthorized error message is returned to the PCMFrontend.

At this point, the «experience microservice» E-VehicleUser is protected against requests by

users outside the CSC and KiC. This leaves the question on how to perform fine-grained

authorization, e.g., how to decide which vehicle a user is allowed to access and how to

enforce this access. Generally, deciding the access to a resource on a fine-grained level can

either be performed inside the application (i.e., business logic) or externalized (i.e., by an

external policy enforcement point).

In case of the «experience microservice» E-Vehicle and E-Garage, the authorization decision

is performed inside the microservice based on the the email address of the requesting

user which is available in the JWT. The experience microservices will perform an internal

lookup to check if the email address is allowed to access the VIN. For example, if Alex Twin

performs a request for a vehicle file using the access token from Listing 1, the «experience

microservice» E-VehicleUser will use the email address alex.twin@csc.com from the token

to lookup if the email address is allowed to access the VIN. If so, the request is allowed

216

and the vehicle file is returned to the «browser» PCMFrontend. Otherwise, an unauthorized

error is returned.

5 Conclusion

In this publication, we described the development of a software as a service solution using

the cloud products MuleSoft and Okta. The focus is set on securing the application by

integrating authentication and authorization mechanisms using the protocols OIDC and

OAuth 2.0. The integration of authentication and authorization requires the coordination

between systems. The IAMaaS Okta stores the user information and groups and provides the

OIDC client which is used by the PCMFrontend. The Angular frontend uses the configured

OIDC client to initiate the authentication flow. The PCMFrontend decides which views can

be accessed based on the groups of a user. To decide which experience microservices can

be accessed by a user, API proxies with a JWT validation policy are used. The fine-grained

authorization decisions are performed inside the experience microservices.

Authenticating users in a single page application using OIDC and Angular is a well

established topic. However, performing authorization decisions, especially fine-grained

authorization decisions, in a microservice architecture must be further researched. In this

publication, we performed coarse-grained authorization decisions inside an API proxy by

only allowing access to an experience microservice for a certain group. Currently, the decision

of who can access a specific vehicle is performed in the logic of the experience microservice.

While this is a simple solution, if the requirements for the decision changes, the experience

microservice must also be changed due to the tight coupling. Thus, authorization decisions

should rather be performed outside the microservice. This also leaves the microservice

with its core functionalities. However, externalizing the authorization decision requires

additional infrastructure (i.e., decision points) as well as the definitions of access policies.

Future research will investigate the structured development, the systematic storage, and the

enforcement of authorization policies in applications using the microservice architecture.

References

[AC22] de Almeida, M. G.; Canedo, E. D.ȷ Authentication and Authorization in Mi-

croservices Architectureȷ A Systematic Literature Review. en, Applied Sciences

12/6, p. 3023, Mar. 2022, visited onȷ 03/31/2022.

[Fo21] Foundation, O.ȷ OWASP Top 10ȷ2021, Publication, OWASP Foundation, 2021.

[FR14] Fielding, R. T.; Reschke, J.ȷ Hypertext Transfer Protocol (HTTP/1.1)ȷ Authenti-

cation, RFC 7235, June 2014.

[HY17] He, X.; Yang, X.ȷ Authentication and Authorization of End User in Microservice

Architecture. en, Journal of Physicsȷ Conference Series 910/, p. 012060, Oct.

2017, visited onȷ 03/31/2022.

217

[ID12] Iankoulova, I.; Daneva, M.ȷ Cloud computing security requirementsȷ A systematic

review. Inȷ 2012 Sixth International Conference on Research Challenges in

Information Science (RCIS). IEEE, pp. 1–7, 2012.

[In22a] Inc., O.ȷ Okta Documentationȷ Embedded Okta Sign-In Widget fundamentals,

tech. rep., [retrieved 05/04/2022], 2022.

[In22b] Inc., O.ȷ The World’s #1 Identity Platform | Okta, tech. rep., [retrieved

05/04/2022], Okta Inc., 2022.

[JBS15] Jones, M.; Bradley, J.; Sakimura, N.ȷ JSON Web Token (JWT), RFC 7519, May

2015.

[JH12] Jones, M.; Hardt, D.ȷ The OAuth 2.0 Authorization Frameworkȷ Bearer Token

Usage, RFC 6750, Oct. 2012.

[Jo15] Jones, M.ȷ JSON Web Key (JWK), RFC 7517, May 2015.

[Mu22a] MuleSoftȷ API-led connectivity - The next step in the evolution of SOA,

https://www.mulesoft.com/lp/whitepaper/api/api-led-connectivity,

2022, visited onȷ 03/31/2022.

[Mu22b] MuleSoftȷ MuleSoft | Integration Platform for Connecting SaaS and Enterprise

Applications, https://mulesoft.com/, 2022, visited onȷ 03/31/2022.

[Ne15] Newman, S.ȷ Building Microservicesȷ Designing Fine-grained Systems. O’Reilly

Media, Inc., 2015.

[Ne19] Nehme, A.; Jesus, V.; Mahbub, K.; Abdallah, A.ȷ Fine-Grained Access Control

for Microservices. In (Zincir-Heywood, N.; Bonfante, G.; Debbabi, M.; Garcia-

Alfaro, J., eds.)ȷ Foundations and Practice of Security. Vol. 11358, Series Titleȷ

Lecture Notes in Computer Science, Springer International Publishing, Cham,

pp. 285–300, 2019, isbnȷ 978-3-030-18419-3, visited onȷ 04/20/2022.

[OM17] OMGȷ OMG Unified Modeling Language (OMG UML), Superstructure, Version

2.5.1, tech. rep., 2017, visited onȷ 08/02/2021.

[SBA15] Sakimura, N.; Bradley, J.; Agarwal, N.ȷ Proof Key for Code Exchange by OAuth

Public Clients, RFC 7636, Sept. 2015.

[SS75] Saltzer, J.; Schroeder, M.ȷ The protection of information in computer systems.

Proceedings of the IEEE 63/9, pp. 1278–1308, 1975.

[Vi11] View, M.; Rydell, J.; Pei, M.; Machani, S.ȷ TOTPȷ Time-Based One-Time

Password Algorithm, RFC 6238, May 2011.

[XJK19] Xu, R.; Jin, W.; Kim, D.ȷ Microservice Security Agent Based On API Gateway in

Edge Computing. en, Sensors 19/22, p. 4905, Nov. 2019, visited onȷ 04/20/2022.

[ZJJ18] Zhao, J. T.; Jing, S. Y.; Jiang, L. Z.ȷ Management of API Gateway Based on

Micro-service Architecture. en, Journal of Physicsȷ Conference Series 1087/,

p. 032032, Sept. 2018, visited onȷ 04/20/2022.

218

https://www.mulesoft.com/lp/whitepaper/api/api-led-connectivity
https://mulesoft.com/

