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Abstract
We will provide bounds on both the Betti numbers and the torsion part of the homology of
hyperbolic orbifolds. These bounds are linear in the volume and are a direct consequence of
an efficient simplicial model of the thick part, which we will construct as well. The homology
statements complement previous work of Bader, Gelander and Sauer (torsion homology of
manifolds), Samet (Betti numbers of orbifolds) and a classical theorem of Gromov (Betti
numbers of manifolds). For arithmetic, non-compact hyperbolic orbifolds—i.e. in the case
of arithmetic, non-uniform lattices in Isom(Hn)—the strongest results will be obtained.

Keywords Orbifolds · Hyperbolic geometry · Homology · Betti numbers · Torsion in
homology · Thick-thin decomposition · Arithmetic lattices

Mathematics Subject Classification 55N99 · 57R18

1 Introduction

An interesting feature of negative curvature is that the topology (e.g. in terms of the homology)
of sufficientlywell-behaved spaces likemanifolds or orbifolds can in some sense be controlled
by their volume. The following result of Gromov [2] can be seen as a starting point for studies
into this theme: for a Hadamard n-manifold X with pinched negative sectional curvature11
−1 ≤ K ≤ a < 0 (for some a < 0) and a torsion-free lattice Γ < Isom(X), the Betti
numbers—that is, the free part of the homology—of the quotient manifold X/Γ is linearly
bounded by the volume, i.e.

bk(X/Γ ;K) ≤ C · Vol(X/Γ ).

This holds for all degrees k = 0, . . . , n and arbitrary coefficient fieldsK.Here,C = C(n) > 0
is a constant depending only on the dimension n. Note that in this and all following statements,

1 In the analytic case, this extends to non-positive curvature −1 ≤ K ≤ 0, given that there are no Euclidean
de Rham factors in X .
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when we speak about homology, we simply mean the singular homology of the topological
quotient space X/Γ ; we make no statements about the group homology2 of Γ .

Using a similar Morse theoretic argument to the one of Gromov, Samet [7] showed that
this can be extended to general lattices Γ < Isom(X), i.e. where X/Γ is an orbifold and not
necessarily a manifold. Again, the Betti numbers of the quotient orbifold satisfy

bk(X/Γ ;K) ≤ C · Vol(X/Γ ),

where k = 0, . . . , n andC = C(n) > 0 depends only on the dimensionn; here, the coefficient
field K has to have characteristic 0.

As the Betti numbers constitute only one part of the homology, it is a natural question
whether the other part—the torsion in the homology—might admit similar bounds. Bader,
Gelander and Sauer [1] settled this question positively for the case of negatively pinched
manifolds (i.e. torsion-free latices again), showing that

log | tors Hk(X/Γ ;Z)| ≤ C · Vol(X/Γ )

holds for all k = 0, . . . , n, where C = C(n) > 0 is a constant depending only on the
dimension n. As a special case, the statement for degree k = 1 in dimension n = 3 has to be
excluded; using Dehn surgery, [1] gives an explicit counterexample for that situation. Unlike
Gromov [2] and Samet [7], Bader, Gelander and Sauer [1] don’t employ Morse theory to
prove the statement above; instead, they construct an efficient simplical decomposition of the
thick part of X/Γ , which yields the torsion homology result as a direct consequence. This
decomposition would also imply another proof for Gromov’s theorem above. The curvature
conditions in [1] can be relaxed to negatively curved visibility manifolds, as was shown by
the author of the present paper in [8].

We will provide answers for the remaining case of torsion homology for orbifolds (i.e.
general, not necessarily torsion-free lattices) in the hyperbolic setting. Similar to [1], we will
achieve this by first constructing an efficient simplical decomposition of the thick part of the
orbifold. To fix notation, Γ < Isom(Hn) will denote a lattice, η ∈ N an upper bound on
the order of finite subgroups of Γ (i.e. |G| ≤ η for all G < Γ finite) and ν > 0 a lower
bound on the displacement of hyperbolic elements3 of Γ (both η and ν always exist). We let
M := H

n/Γ denote the quotient orbifold and write M+ for its thick part. Our main result
now states:

Theorem (see Theorem 3) There are constants C = C(n, η, ν) > 0 and D = D(n, ν) > 0,
such that for any such orbifold M, the pair (M+, ∂M+), i.e. the thick part and its boundary,
is as a pair homotopy equivalent to a simplicial pair (S, S′), where the number of vertices of
S is bounded by C ·Vol(M) and the degree at the vertices of S is universally bounded by D.
For arithmetic, non-uniform Γ , the constants C and D will only depend on the dimension n.

By a straightforward Mayer-Vietoris argument, our simplicial decomposition yields
another proof for the linear bounds on the Betti numbers as a byproduct.

2 The reason is that in general, the group homology of Γ will not coincide with the (singular) homology of
X/Γ . This is especially true for the case of torsion in Γ . Despite this, recall that in the situation of Gromov’s
statement the space X/Γ would be a BΓ , thus leading to the group homology and the singular to homology
to coincide in that particular example.
3 In the manifold setting, this would be equivalent to a lower bound on the length of geodesic loops in M ; the
interpretation is only slightly more complicated in our orbifold situation.

123



Geometriae Dedicata            (2023) 217:3 Page 3 of 29     3 

Theorem (see Theorem 4) There is a constant E = E(n, η, ν) > 0 such that for any such
orbifold M, we have

bk(M;K) ≤ E · Vol(M)

for all k ∈ N0 and arbitrary coefficient field K. For arithmetic, non-uniform Γ , the constant
E will only depend on the dimension n.

While Samet’s [7] result above already provided a linear bound for the Betti numbers even
undermore general curvature assumptions, it is restricted to coefficient fields of characteristic
0; our statement has the advantage that it is valid for arbitrary coefficients.

The application of central interest is the torsion of the homology, where we will show:

Theorem (see Theorem 5) There is a constant F = F(n, η, ν) > 0 such that for any such
orbifold M, we have

log | tors Hk(M;Z)| ≤ F · Vol(M)

for all k ∈ N0. For arithmetic, non-uniform Γ , the constant F will only depend on the
dimension n.

Note that we did not exclude the case of degree k = 1 in dimension n = 3, in contrast to
the similar statement of Bader, Gelander and Sauer [1] above; our extra restrictions regarding
ν enable us to do so.

Although the general situation of our statements uses assumptions on η and ν, the results
are as good as possible for the arithmetic, non-uniform case. Recall that arithmetic, non-
uniform lattices in Isom(Hn) correspond to arithmetic, non-compact hyperbolic orbifolds.
They forman interesting andwidely studied class of orbifolds,with themaybemost prominent
examples given by the Bianchi orbifolds (in dimension n = 3).

Our restriction to the hyperbolic setting is mainly for technical reasons, as we will use
convexity arguments that only hold in constant curvature to prove that the cover we construct
for the thick part is indeed a good cover; the goodness of the cover is needed to be able to use
(some appropriate modification of) the Nerve lemma to obtain the desired simplicial model.

Given the bound η on the order of finite subgroups of Γ that we require, it is possible to
linearly bound the number of components of the thin part (see our thick-thin decomposition
Theorem 2) using a fairly straightforward volume argument. This is in turn is crucial for
controlling the homology. Note that using a more subtle approach, Samet [7] was able to
bound the number of thin components without imposing such an η. This might suggest that
it would be possible to dispose of η in our case as well.

Similarly, we suspect that ν, which was needed for technical reasons only, could be elim-
inated from all the above statements. In fact, more general versions of the results presented
here (see [9]) already no longer rely on ν; but as of now, this comes at the price of having
bounds polynomial in the volume4 instead of the linear ones presented in this paper. As these
slight generalizations need significantly more technical work, we refrain from presenting
them here.

1.1 Structure of the paper

The following sect. 2 summarizes some well-known facts utilized throughout this paper. As
a next step, in Sect. 3 we state the thick-thin decomposition for orbifolds in a fairly general

4 Essentially in the form of C · Vol(M)k+1 for a constant C = C(n, η) > 0 and homology degree k.
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setting. In Sect. 4, we restrict ourselves to the hyperbolic case and prove the main result,
namely the efficient simplicial model for the thick part of hyperbolic orbifolds. The main
applications for the homology of such orbifolds are contained in the final Sect. 5.

1.2 Acknowledgement

The results presented here are part of my doctoral thesis [9], which was written under the
supervision of Prof. Roman Sauer, to whom I am grateful for supportingmywork. The author
acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – 281869850 (RTG 2229).

2 Preliminaries

First, let us fix notation and state some useful facts. General references for the concepts
covered here are [2] and [3].

We will always let X denote a Hadamard manifold with curvature −1 ≤ K ≤ a < 0 for
some a < 0. For a lattice Γ < Isom(X), M := X/Γ will be the finite-volume orbifold to
be studied (M is a manifold if and only if Γ is torsion-free). The boundary at infinity of X
will be denoted by X(∞) or sometimes ∂X .

Every isometry γ ∈ Isom(X) gives rise to a displacement function

dγ : X → [0,∞), x �→ dγ (x) := d(x, γ x),

which can be used to classify the nontrivial isometries of Isom(X): γ is elliptic if dγ has
minimum 0; it is hyperbolic if dγ hasminimum> 0; and it is parabolic if dγ has nominimum.
Elliptic isometries are precisely the torsion elements of Γ ; if M is non-compact, there has
to be a parabolic γ ∈ Γ . The different isometry types are stable under taking powers (with
powers �= 0). Hyperbolic isometries have precisely two fixed points in X(∞), whereas
parabolic isometries have precisely one.

Since the distance function of X is convex, the same holds for the displacement functions.
Hence the sublevel sets {dγ < a} and {dγ ≤ a} (for a ≥ 0) are convex as well. Fixed point
sets Fix(γ ) of elliptic isometries γ arise in the special case of a = 0; they are complete, totally
geodesic submanifolds of codimension ≥ 1 (sometimes we treat id as an elliptic isometry,
in which case Fix(id) = X has codimension 0).

For a closed convex set W ⊆ X , there is a well-defined projection πW : X → W sending
a point x ∈ X to the (unique) point πW (x) ∈ W of smallest distance to x ; we will call πW (x)
the projection point or foot point of x in W . This projection is equivariant under isometries
preserving W , i.e. if γ ∈ Isom(X) with γW = W , then πW (γ x) = γπW (x) for all x ∈ X .

To denote the open r -neighborhood of a subset A ⊆ X (and similarly for subsets of M),
we will write (A)r := {x ∈ X : d(x, a) < r for some a ∈ A}.

Wewill adopt some notation from [7] regarding singular submanifolds. ForG < Isom(X),
let Fix(G) := ⋂

g∈G Fix(g). Now for Δ < Isom(X), define

Σ(Δ) := {Fix(G) : G < Δ finite},
Σi (Δ) := {Y ∈ Σ(Δ) : dim(Y ) = i}, and

Σ<i (Δ) := {Y ∈ Σ(Δ) : dim(Y ) < i}.
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Moreover,

Si (Δ) :=
⋃

Y∈Σi (Δ)

Y and S<i (Δ) :=
⋃

Y∈Σ<i (Δ)

Y .

We will often omit Δ in the notation if it is obvious from the context. Note that since id ∈ Δ

(for arbitrary Δ < Isom(X)), we always have X = Fix({id}) ∈ Σ(Δ).
To prove our main results, we will restrict ourselves to the hyperbolic space X = H

n and
use the upper half space model:

H
n = {(x, t) = (x1, . . . , xn−1, t) ∈ R

n−1 × R | t > 0} = R
n−1 × R>0 ⊆ R

n

with the usual hyperbolic metric. In H
n , a nonempty, closed subset is convex if and only if

it is the intersection of all its (closed) supporting half spaces ( [5] Proposition II.1.4.1). For
the upper half space model, the distances are given by the following formulas:

– d((x, t), (y, s)) = 2 · artanh
(√ ‖x−y‖2+(t−s)2

‖x−y‖2+(t+s)2

)
,

– d((x, t), (x, s)) = ∣
∣ln

( t
s

)∣
∣,

– d((x, t), (y, t)) = 2 · arsinh
( ‖x−y‖

2·t
)
.

Here, ‖ · ‖ denotes the usual Euclidean norm on the Rn−1-factor.

3 Thick-thin decomposition

The general idea behind the thick-thin decomposition is most obvious in the manifold case:
the manifold can be decomposed into two parts-thick part and thin part-, with the thick
part being characterized by a uniform lower bound on the injectivity radius; this makes its
geometry easy to control. On the other hand, the thin part turns out to consist of only two types
of components, tubes (which are ball bundles over the circle) and cusps (which are products
of a compact manifold with a ray). Tubes correspond to sublevel sets of (the displacement
function of) hyperbolic isometries in the universal cover, while cusps similarly correspond to
sublevel sets of parabolic isometries. This relies on the absence of elliptic isometries in the
lattice Γ . While the general situation is similar in the orbifold case, the elliptic isometries
occurring now might complicate the picture. As we will see, using our slightly different
construction, we can essentially remove the influence elliptic isometries might have: the thin
part will be given by the sublevel sets of parabolic and hyperbolic isometries only.

Arguably the most essential tool in the thick-thin decomposition is the Margulis lemma:

Theorem 1 (Margulis lemma; [7] Theorem 2.1) There are constants ε(n) > 0 and m(n) ∈ N

depending only on n, such that if X is an n-dimensional Hadamard manifold with sectional
curvature −1 ≤ K ≤ 0, then for every discrete group Γ < Isom(X), every x ∈ X and every
ε ≤ ε(n), the group

Γε(x) := 〈{γ ∈ Γ : dγ (x) < ε}〉
contains a nilpotent normal subgroup N of index≤ m(n). If Γε(x) is finite, then N is abelian.

The constants ε(n) and m(n) in Theorem 1 will be called Margulis ε and Margulis index
constant, respectively.

In the standard thick-thin decompositions (see e.g. [2] chapter 10, [3] chapter D;moreover,
[4] chapter 3.5 is interesting as it explicitly covers the orbifold case), all isometries are treated
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equally: the sublevel sets in question are given by {dγ < ε} for some fixed ε ∈ (0, ε(n)]. [1]
already introduced the concept of varying levels εγ for different γ for manifolds (see also
[8] chapter 3 for a proof). Our definition extends this to the orbifold case.

Let ε ∈ (0, ε(n)/2] be arbitrary, but fixed5, and let Γ � γ �→ εγ ∈ [ε, ε(n)/2] be a
conjugation-invariant choice of levels, i.e. εγ γ ′γ −1 = εγ ′ for all γ, γ ′ ∈ Γ . Define

ΓεΓ (x) := 〈γ ∈ Γ : dγ (x) < εγ 〉
and consequently the thick part X+ of X as

X+ := {x ∈ X : ΓεΓ (x) is finite}.
The thin part X− is its complement, i.e.

X− := {x ∈ X : ΓεΓ (x) is infinite}.
We define the thick part M+ and the thin part M− of M = X/Γ as the quotient of the
thick part and the thin part of X , respectively, by the group action of Γ , i.e.

M+ := X+/Γ and M− := X−/Γ .

By conjugation-invariance of γ �→ εγ , this is well-defined.
An important fact is that in the present situation, for a fixed lattice Γ , there always exists

an upper bound η := η(Γ ) ∈ N on the order of finite subgroups of Γ (see [4] Proposition
5.4.2), i.e. |G| ≤ η for all finite G < Γ .

As the lengthy proof of the thick-thin decomposition is of limited benefit, we will omit it.
The interested reader might look up the details in [9] chapter 3.26. Eventually, we arrive at
the following result:

Theorem 2 We have:

1. M+ is a compact orbifold with boundary.
2. M+ is connected for dimension n > 2.
3. The number of connected components of M− is bounded by C · Vol(M), where C =

C(n, η) > 0 is a constant only depending on n and η = η(Γ ) ∈ N. In dimension n = 2,
C is independent of η.

4. The connected components U of M− are of one of the following two shapes:

– Tubes (bounded components), i.e. (type 1) U is homeomorphic to a (Dn−1/E)-bundle
over S1 with E < O(n − 1) finite; or (type 2) U is homeomorphic to

D′ × [0, 1] or D′ × (0, 1),

where D′ := (Dn−1/E)/Z2 with finite E < O(n−1), and theZ2-action on Dn−1/E
might be trivial.
Type 1 tubes or homotopy equivalent to S1, whereas type 2 tubes are contractible

– Cusps (unbounded components), i.e. U is homeomorphic to V × (0,∞) for some
compact (n−1)-dimensional orbifold V . If ∂U is the boundary of U in M, then there
is a strong deformation retraction of U onto ∂U.

5 We will generally choose ε to be some fixed fraction of ε(n) to make sure all constants only depend on the
dimension n.
6 The proof is—as a gross simplification—the combination of the ideas of the thick-thin decomposition
for orbifolds with constant levels ε as in [4] and the thick-thin decomposition with variable levels εγ (for
manifolds) as in [1] and [8].
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In particular, M is homotopy equivalent to the compact orbifold MC with boundary, which
is constructed out of M by contracting the cusps onto their common boundary with M+.
Equivalently, MC is the union of M+ with the finitely many tubes.

It can be shown that using M(n) := 2m(n) + 1 (with m(n) the Margulis index constant),
if the group

Γε/M(n)(x) = 〈γ ∈ Γ : dγ (x) < ε/M(n)〉
is infinite (where ε s.t. 0 < ε/M(n) ≤ ε(n)), there already has to be some γ ∈ Γε/M(n)(x)
of infinite order with dγ (x) < ε. Using this fact, we can deduce the following corollary.

Corollary 1 If for some fixed ε′ ∈ (0, ε(n)/2] we choose

εγ :=
{

ε′ if γ hyperbolic or parabolic,

ε := ε′
M(n)

if γ elliptic,

with M(n) ∈ N as above, then the constant C > 0 in Theorem 2. depends only on ε′, n and
η, i.e. C = C(ε′, n, η), and we have

X− = {x ∈ X : There is a hyperbolic or parabolic γ ∈ Γ with dγ (x) < εγ }
=

⋃

γ∈Γ ′
{dγ < εγ }, where Γ ′ = {γ ∈ Γ : γ hyperbolic or parabolic}.

Remark 1 Note that for a fixed latticeΓ , there always exists a lower bound ν := ν(Γ ) > 0 on
the displacement of hyperbolic isometries, i.e.dγ (x) > ν for all x ∈ X andγ ∈ Γ hyperbolic.
This can be used to move the tubes to the thick part; one way of doing this is to simply assume
that the Margulis ε is smaller than ν, which effectively means replacing every occurrence
of ε(n) by ε̃(n), where ε̃(n) := min(ε(n), ν). Hence every constant depending on ε(n), in
particular theC from the previous statements, will depend on ν as well. From now on we will
always assume this, i.e. every timewe use theMargulis ε, wewill implicitly take its minimum
with ν. The benefit is that M− will then consist of cusps only (so X− = ⋃

γ∈Γp
{dγ < εγ },

where Γp = {γ ∈ Γ : γ parabolic}). In particular, M+ = MC and thus M itself will be
homotopy equivalent to its thick part.

4 Efficient simplicial model

In order to achieve the desired bounds on the homology of the orbifold M , we will show that
M admits an efficient simplicial model, i.e. there is a suitable homotopy equivalence to a
simplicial complex with bounded complexity. This is done in several steps. First, contracting
the cusps is a straightforwardway to get a homotopy equivalence betweenM and its shrunken
thick part M ′+ defined below7, so it suffices to construct a nice simplicial model for M ′+. For
that, wewill essentially use the nerve construction: a spacewith a good cover (i.e. contractible
covering sets with contractible intersections) is homotopy equivalent to its nerve (simplicial)
complex. The tricky part is constructing this good cover of M ′+. Due to the singularities in
the orbifold M , we are no longer free to choose the position of possible covering sets. In fact,

7 Again, using our construction in which the thin part consists solely of cusps; of course the presence of tubes
in the thin part would further complicate the matter. This more general situation is dealt with in [9], yielding
only slightly better results than the ones stated here.
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just to achieve a good cover of M ′+ as a subspace of M , the covering sets have to conform to
the positions of the singular submanifolds of M (to that end, we will use foldable sets similar
to those in [7]). This rigidity in the position of the covering sets leads to a complicated
boundary of the covering space (as a subspace of M), which will in general no longer be
homotopy equivalent to M ′+. To remedy this, we will fill in possible gaps at the boundary
of that covering space by using new sets called stretched balls, eventually obtaining a good
cover of M ′+ homotopy equivalent to M ′+.

4.1 Defining the flow

We often utilize that the orbifolds we study are homotopy equivalent to their thick parts.
While there are many possible ways to contract onto the thick part, there is a very natural
one which turns out to have many useful properties; in particular, it will define a homotopy
equivalence between the thick part and the shrunken thick part as well. From now on, we
will use the thick-thin decomposition (Theorem 2 and Corollary 1) with ε′ := ε(n)/2. Here
and henceforth, the shrunken thick part will be defined by

X ′+ := X \ (X−)ε(n)/32 and M ′+ := M \ (M−)ε(n)/32,

respectively. Recall that in our case, the thin part consists of cusps only. Now for every cusp
of M , there is a parabolic fixed point z ∈ X(∞). Hence for the region around a preimage of
such a cusp, we can define the flow (in X ) by flowing along the geodesics to/from z. As this
turns out to be Γ -equivariant, we get a similar flow in M . This procedure can be repeated for
every single cusp separately, and since the cusps have a uniform minimal distance from each
other, we can stick these flows together to construct a global flow for all cusps simultaneously.
Using the notation from the thick-thin decomposition (Theorem 2), the precise statement is
as follows:

Lemma 1 The map F : X+ × [0, 1] → X+, given by flowing away from the parabolic fixed
points z ∈ X(∞) along the geodesics to them, defines a strong deformation retraction of
X+ onto X ′+, which is Γ -equivariant and at time 1 induces a homeomorphism F(·, 1)|∂X+
between ∂X+ and ∂X ′+.

Consequently, flowing along the images (under the projection π : X → X/Γ = M)
of these geodesics yields a map f : M+ × [0, 1] → M+, which is a strong deformation
retraction of M+ onto M ′+ and at time 1 induces a homeomorphism f (·, 1)|∂M+ between
∂M+ and ∂M ′+.

Proof The desired properties of the flow can be shown in a similar way as in [8] chapter 4.1.
A more detailed discussion can also be found in [9] chapter 3. ��

4.2 Stretched and foldable sets

Our special tools to arrive at a good covering of the thick part in the orbifold case will be
the foldable sets and stretched balls mentioned earlier. While foldable sets can be used in the
more general negative curvature setting, the stretched balls are only useful in the hyperbolic
case8, hence from now on we will always assume X = H

n .

8 In fact, stretched balls might also be helpful in the more general setting, but it will be much harder to show
that. A crucial feature of the covering sets is that they and their intersections have to be contractible. In the
hyperbolic case, it is easy to show that stretched balls are convex, immediately giving the desired properties.
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Foldable sets

Foldable sets were already introduced in [7]. The motivation behind them is that in order
to have a contractible image in the quotient orbifold, the shape and position of a set in the
universal cover has to be compatible with the singular submanifolds9.

Definition 1 Let U ⊆ X be open and Y ⊆ X be a convex, complete, totally geodesic
submanifold. U is Y -foldable, if it has the following properties:

1. U is convex and precisely invariant under Γ , i.e. for γ ∈ Γ we always have γU = U or
γU ∩U = ∅.

2. Y is fixed pointwise by ΓU = {γ ∈ Γ : γU = U }.
3. πY (U ) ⊆ U , where πY : X → Y projects to the closest point in Y .
4. The image π(U ∩ Y ) of U ∩ Y in X/Γ is contractible.

If U is a Y -foldable set for suitable Y , we will call U foldable. In that case, the image
π(U ) ⊆ X/Γ is a folded set.

Note that we altered the definition slightly: we only assume that π(U ∩Y ) is contractible,
but not necessarily convex. Later on, Y will always be given by the fixed set of a finite
subgroup of Γ , hence the assumptions on Y will be fulfilled automatically.

Just as in [7], we get the following statements.

Lemma 2 ([7] Proposition 4.9) Folded sets are contractible.

Lemma 3 If U and Y are subsets of X, such that U is precisely invariant under Γ and Y is
fixed pointwise by ΓU , then U ∩ Y is mapped injectively into X/Γ . In particular, U ∩ Y is
homeomorphic to π(U ∩ Y ) ⊆ X/Γ .

We see that the above Lemma 3 holds in particular for Y -foldable setsU . Conversely, we
can also use it to prove that a set is foldable: if properties 1. and 2. hold, then for property 4.
the situation in X/Γ can be reduced to the one in X , which—in general—is less complicated.

The following lemma tells us, in which situations ordinary balls (and their intersections)
are foldable and when an intersection of folded balls remains folded (and thus contractible);
as it is a technical lemma concerned with the relationship between foldable sets and singular
submanifolds, it might be helpful to revisit theΣ-S-notation regarding singular submanifolds
(of or up to some dimension i) outlined in section 2. In a next step, we will extend the results
to our special covering sets, the stretched balls.

Lemma 4 [ [7] Proposition 4.10] Let Y ∈ Σi (where i = n, i.e. Y = X, is also possible).

This uses the fact that in H
n , every half space is convex; but on the other hand—due to a classical result of

Cartan—a space where for every point x and every tangent plane Σx at that point there is a totally geodesic
submanifold tangent to Σx (which holds true under the convex half space condition) already has to have
constant curvature, restricting us to the case ofHn . Hence in general negative curvature, other arguments than
convexity would have to be used to show that stretched balls and their intersections are contractible.
9 As an example, let the fixed point p ∈ H

2 of a suitable rotation γ be the singular submanifold. The quotient
M := H

2/〈γ 〉 will look like a cone, where π(p) is the cone point. A ball far away from p will still have an
image in M that looks like a ball, which thus is contractible. But as we let the ball move towards p, at some
point the rotation will glue opposite parts of the ball together, leading to a non-contractible image homotopic
to S

1, no matter how small the radius of the ball is. Note that if the ball was centered in p, the image would
always be contractible, as it would just be a ball around the cone point. So the moral is that (in order to have
a contractible image) balls would either have to lie far away from the singular submanifolds, or—if they lie
close to them – already be centered in them.
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(a) If y ∈ Y \ S<i and μ > 0 such that Y is fixed pointwise by Γ4μ(y), then Bμ(y) is
Y -foldable.

(b) Let U1 be a Y -foldable ball as in (a) and U2, . . . ,Uk foldable balls with centers
y2, . . . , yk ∈ Y ; note thatwedon’t assume y2, . . . , yk ∈ Y \S<i andhence theU2, . . . ,Uk

will in general not be Y -foldable. If U := ⋂k
j=1Uj �= ∅, then:

1. U is Y -foldable.
2. If the radii μ j of the U j are chosen in a way such that y j is fixed by Γ4μ j (y j )

( j = 1, . . . , k), then π(U ) = ⋂k
j=1 π(Uj ).

Hence the intersection
⋂k

j=1 π(Uj ) of the π(Uj ) is folded and thus contractible.

Stretched balls

We will now introduce stretched balls, which are needed later on to fill in gaps in the good
cover of the thick part, which could appear if we used ordinary balls exclusively. Stretched
balls only need to be defined near the common boundary of a cusp and the thick part. Let
z ∈ X(∞) = ∂Hn be the corresponding parabolic fixed point of the cusp and take the upper
half space model of X = H

n with z as ∞.
Denote the maximal parabolic subgroup of Γ corresponding to z by G ′ (i.e. G ′ = Γz).

If G < Γ is a finite group fixing z and Fix(G) = ⋂
g∈G Fix(g) its singular submanifold,

we have Fix(G) ∈ Σ(G ′). Note that Fix(G) is either equal to H
n (namely if G = {id}) or

given by the (non-empty) intersection of Euclidean affine hyperplanes perpendicular to the
boundary ∂Hn = R

n−1 × {0}. In the present situation we say that the singular submanifold
Fix(G) contains the parabolic fixed point z.

Let c : R → R
n be the hyperbolic geodesic with endpoints c(∞) = z and c(−∞) =

(x (0), 0) for some x (0) ∈ R
n−1, so c([t ′0, t ′1]) (for t ′1 ≥ t ′0 > 0) is a geodesic section. A

stretched ball U of Euclidean radius r > 0 along this geodesic section is then defined by

U := {(x, t) ∈ H
n : deucl((x, t), c(t ′)) < r for some t ′ ∈ [t ′0, t ′1]},

where deucl denotes the Euclidean distance in R
n . Since Euclidean balls are just hyperbolic

balls (with different radius and center), we can also see such a U as a union of hyperbolic
balls around points of c. Of those points, the one with the smallest t-coordinate will be
the (hyperbolic) initial center, whereas the one with the largest t-coordinate will be the
(hyperbolic) end center. Obviously, the hyperbolic radius decreases monotonically while
going from the initial center to the end center. The (hyperbolic) radius at the (hyperbolic)
initial centerwill be called the (hyperbolic) initial radius, and similarlywe get the (hyperbolic)
end radius; the corresponding balls will be the (hyperbolic) initial ball and the (hyperbolic)
end ball, respectively. Note that the hyperbolic initial and end center do not coincide with the
Euclidean initial and end center c(t ′0) and c(t ′1), respectively; despite this, the hyperbolic initial
and end balls are the same as the Euclidean initial and end balls. For a better understanding,
the construction is pictured in Fig. 1. As a union of open balls, U is itself open. U is also
convex, as it is the intersection of its supporting half spaces (see [5] Proposition II.1.4.1).
Finally, note that ordinary balls are special cases of stretched balls for t ′0 = t ′1.

Recall that G ′ denotes the maximal parabolic subgroup of Γ corresponding to z. We will
always assume thatU is entirely contained in the ε(n)-thin part ofHn with respect to G ′, i.e.
G ′

ε(n)(x) = 〈g ∈ G ′ : dg(x) < ε(n)〉 is infinite for all x ∈ U . This way, we can reduce the
group action of Γ on and around U to the action of G ′, which behaves nicely with respect
to the construction of U : since the geodesics going to z, which fiber U , are permuted by
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Fig. 1 Construction of a stretched
ball in the upper half space model
of Hn . The dashed balls are the
initial ball (bottom) and the end
ball (top)

the elements of g ∈ G ′ and G preserves the horospheres around z, we see that gU is also a
stretched ball. Now gU has the same radius asU ; additionally, if y denotes the initial center
of U , then gy is the initial center of gU , and y and gy lie in the same horosphere around z.

From now on and if not explicitly stated otherwise, when talking about initial/end balls
and initial/end centers, we will always mean the hyperbolic ones. The following lemma tells
us that if the hyperbolic initial centers of two intersecting stretched balls lie in the same
horosphere, we get the following estimate on their distance.

Lemma 5 Let U and U ′ be stretched balls with initial balls Bμ(y) and Bμ′(y′). If y and y′
lie in the same horosphere around z and U ∩U ′ �= ∅, then d(y, y′) < 2μ + 2μ′.

Proof Let r denote the Euclidean radius in the construction of U and y = (xy, ty); the
horosphere HS around z containingU is thus given byRn−1×{ty}. The hyperbolic initial ball
Bμ(y) of U can also be seen as a Euclidean ball of radius r around some point ỹ = (xỹ, tỹ),
where xỹ = xy and tỹ > ty . With the usual distance formulas, we see that the hyperbolic
initial radius μ is given by

μ
!= d((xy, tỹ + r), (xy, ty)) = ln

(
tỹ + r

ty

)

,

so tỹ + r = ty · eμ. Using tỹ > ty we conclude

r = ty · eμ − tỹ < ty · eμ − ty = ty · (eμ − 1).

Recall that for a point (x, ty) ∈ HS, we have

d((x, ty), (xy, ty)) = 2 · arsinh
(‖x − xy‖

2 · ty
)

.

If (x, ty) also lies in the Euclidean r -ball E around y, then ‖x − xy‖ < r < ty · (eμ − 1) and
thus

d((x, ty), (xy, ty)) < 2 · arsinh
(
ty · (eμ − 1)

2 · ty
)

= 2 · arsinh
(
eμ − 1

2

)

.

As μ > 0, also (eμ − 1)/2 < (eμ − e−μ)/2 = sinh(μ) holds. By monotonicity of arsinh,
we get arsinh ((eμ − 1)/2) < arsinh(sinh(μ)) = μ, so

d((x, ty), (xy, ty)) < 2 · arsinh
(
eμ − 1

2

)

< 2 · μ.
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Fig. 2 Situation in the proof of
Lemma 5. The dashed balls are
the Euclidean r - and r ′-balls E
and E ′ around the hyperbolic
initial centers y and y′,
respectively

Fig. 3 In the left picture, we see the stretched ball U with initial center y ∈ HS as well as the intersections
y′ ∈ HS′ and y′′ ∈ HS′′ of cy ; these are used as the initial centers of the comparison balls U ′ and U ′′,
respectively. The dashed balls are the initial balls of U , U ′ and U ′′

Hence every point of HS ∩ E has a hyperbolic distance < 2μ to y.
The same arguments hold for U ′, thus every point in the Euclidean r ′-ball E ′ around y′,

which also lies in the same horosphere HS′ around z as y′, has hyperbolic distance < 2μ′
to y′; here, r ′ denotes the Euclidean radius in the construction of U ′.

Now observe that since U ∩U ′ �= ∅, we have E ∩ E ′ �= ∅. By assumption, HS � y and
HS′ � y′ coincide, hence there is a point y′′ ∈ HS ∩ E ∩ E ′ (also see Fig. 2). By the above
arguments we have d(y, y′′) < 2μ and d(y′, y′′) < 2μ′, thus

d(y, y′) < 2μ + 2μ′.

��
The above Lemma 5 assumes that the initial centers lie in the same horosphere, so we will

need another construction to be able to compare stretched balls with initial centers in different
horospheres. If Bμ(y) is the initial ball of a stretched ballU and r the Euclidean radius ofU ,
let cy be the geodesic from y to the parabolic fixed point z. For a horosphere HS′ other than
the horosphere HS � y, let y′ be the unique intersection of cy with HS′. The comparison
ball U ′ ofU at height HS′ is defined as the stretched ball with (hyperbolic) initial center y′,
the same end ball asU and using the same Euclidean radius r in the construction, see Fig. 3.

In other words, we just choose the parameter t ′0 differently. In our later applications, the
comparison ball U ′ will always be well-defined, i.e. the new initial center y′ will always be
farther away from z than the end center (which coincides with the end center of U ).
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We immediately see that the comparison ball U ′ intersects precisely those geodesics to z
that also intersect with U . Since the distance between these geodesics decreases on its way
to z, we get the following estimates for the hyperbolic initial radius μ′ ofU ′: if HS′ is closer
to z than HS, we have μ′ ≤ μ; whereas if HS′ is farther away from z than HS, we have
μ′ ≥ μ. Also note that U intersects another stretched ball U ′′ with initial center y′′ ∈ HS′′
if and only if the comparison ball U ′ of U at height HS′′ intersects U ′′.

Similar to the case of ordinary balls (compare Lemma 4), suitably chosen stretched balls
are foldable:

Lemma 6 Let Y ∈ Σi be a singular submanifold containing the parabolic fixed point z.
Moreover, let y ∈ Y \ S<i and μ > 0 be sufficiently small, such that Y is fixed pointwise
by Γ4μ(y). If U denotes a stretched ball with (hyperbolic) initial ball Bμ(y), then U is
Y -foldable.

Proof We have already seen that stretched balls are open and convex, so let’s turn to the
precise invariance ofU . Since we always assume thatU lies in the ε(n)-thin part ofHn w.r.t.
G (where G is the maximal parabolic subgroup corresponding to the parabolic fixed point z),
and that part is (seen as a component of the ε(n)-thin part w.r.t. Γ ) precisely invariant under
Γ , it only remains to show the precise invariance of U w.r.t. elements of G. Hence, we have
to check if for all g ∈ G, the condition gU ∩ U �= ∅ already implies gU = U . As g ∈ G,
we know that gU is a stretched ball with same initial radius as U and initial center gy in the
same horosphere around z as y. Since gU ∩U �= ∅, we can apply Lemma 5 and get

dg(y) = d(y, gy) < 2μ + 2μ = 4μ,

i.e. g ∈ Γ4μ(y). By assumption, this means that g fixes Y pointwise, thus gy = y and hence
gU = U .

As a next step, we will prove that Y is fixed pointwise by ΓU . Note that in our situation,
we have ΓU = GU , where GU = {g ∈ G : gU = U }. By the above arguments we know
that g ∈ GU already implies dg(y) < 4μ, so g ∈ Γ4μ(y); hence by the assumption, g fixes
Y pointwise.

We will now prove πY (U ) ⊆ U . As every u ∈ U lies in a suitable hyperbolic ball
Bμ0(y0) ⊆ U of radiusμ0 around some y0 ∈ Y (recall that the geodesic c in the construction
ofU is entirely contained in Y ), we get (using that the projection to Y is distance-decreasing,
compare [2] chapter 1.6)

d(πY (u), πY (y0)) ≤ d(u, y0) < μ0.

Since πY (y0) = y0, this implies πY (u) ∈ Bμ0(y0) ⊆ U .
In the last step, we have to show that π(U ∩ Y ) ⊆ H

n/Γ is contractible; by Lemma 3,
this is equivalent toU ∩ Y ⊆ H

n being contractible. Now recall thatU and Y are convex, so
U ∩ Y is convex and thus contractible. ��

We also need a similar statement for the intersection of (the images of) several stretched
balls:

Lemma 7 Let U1 be a Y -foldable stretched ball as in Lemma 6, i.e. with initial center y1 ∈
Y \ S<i , and let U2, . . . ,Uk be foldable stretched balls with initial centers y2, . . . , yk ∈ Y ;
note that we don’t assume y2, . . . , yk ∈ Y \ S<i and hence the U2, . . . ,Uk will in general
not be Y -foldable. If U := ⋂k

j=1Uj �= ∅, then:
1. U is Y -foldable.
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2. If the hyperbolic initial radii μ j of the U j at the initial centers y j are chosen in a way
such that y j is fixed by Γ8μ j (y j ) ( j = 1, . . . , k), then π(U ) = ⋂k

j=1 π(Uj ). Hence the

intersection
⋂k

j=1 π(Uj ) of the π(Uj ) is folded and thus contractible.

Proof Many ideas are similar to those in the proof of [7] Proposition 4.10 and its preceding
text.

1. As an intersection of open, convex and precisely invariant sets, U itself is open, convex
and precisely invariant. Since ΓU1 fixes Y pointwise (because U1 is Y -foldable), we only
need to show that ΓU is a subgroup of ΓU1 to conclude that ΓU fixes Y pointwise. Let
γ ∈ ΓU . As γU = U and U ⊆ U1, we see that

γU1 ⊇ γU = U ⊆ U1,

so γU1 ∩U1 �= ∅ (because U �= ∅). Knowing that U1 is precisely invariant, this leads to
γU1 = U1, hence γ ∈ ΓU1 .
Next, let us check ifπY (U ) ⊆ U . Let c j denote the geodesic from the initial center y j ∈ Y
ofUj to the parabolic fixed point z; note that all the c j are entirely contained in Y . Hence
the Uj are constructed as the union of hyperbolic balls around points of c j ⊆ Y . So if

u ∈ U , there are points y( j)
0 ∈ Y and radiiμ( j)

0 ( j = 1, . . . , k) such that u lies in every ball

B
μ

( j)
0

(y( j)
0 ) =: Bj ⊆ Uj . Just as in the proof of Lemma 6 we conclude that πY (u) ∈ Bj

for all j = 1, . . . , k. Thus

πY (u) ∈
k⋂

j=1

Bj ⊆
k⋂

j=1

Uj = U ,

proving πY (U ) ⊆ U .
It remains to show that π(U ∩ Y ) is contractible. Again, this is equivalent toU ∩ Y being
contractible (by Lemma 3), which itself is a consequence of the convexity of U and Y .

2. Similar to [7] Proposition 4.10, we see that a preimage of
⋂k

j=1 π(Uj ) inHn is just a union

of intersections
⋂k

j=1 γ jU j (γ j ∈ Γ ), so it only remains to show that every such non-

empty intersection
⋂k

j=1 γ jU j arises as a translate of
⋂k

j=1Uj under a suitable element
of Γ . Let r j be the Euclidean radius in the construction ofUj and choose j0 ∈ {1, . . . , k}
such that r j0 ≤ r j for all j = 1, . . . , k. After a possible translation of

⋂k
j=1 γ jU j by

γ −1
j0

, we can assume that γ j0 = id. As
⋂k

j=1 γ jU j �= ∅ by assumption, Uj0 intersects

all the other γ jU j . We let U ( j)
j0

denote the comparison ball of Uj0 at the height of the

horosphere HSj � y j (for j = 1, . . . , k), and μ
( j)
j0

the (hyperbolic) initial radius around

the (hyperbolic) initial center y( j)
j0
. SinceUj0 intersectsUj and γ jU j , alsoU

( j)
j0

intersects
Uj and γ jU j (see definition of the comparison balls). As the Euclidean radius r j0 was
chosen to be minimal—and the Euclidean radius of the comparison ball coincides with r j0
–, the hyperbolic initial radiusμ( j)

j0
also has to satisfyμ

( j)
j0

≤ μ j for all j = 1, . . . , k.Using

Lemma 5, we get d(y j , y
( j)
j0

) < 2μ j + 2μ( j)
j0

≤ 4μ j and d(γ j y j , y
( j)
j0

) < 2μ j + 2μ( j)
j0

≤
4μ j , thus

dγ j (y j ) = d(y j , γ j y j ) < 8μ j
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for every j . Hence γ j ∈ Γ8μ j (y j ) and so by assumption, γ j fixes y j . We conclude
γ jU j = Uj and thus

k⋂

j=1

γ jU j =
k⋂

j=1

Uj .

So
⋂k

j=1 π(Uj ) = π(U ), the latter set being the image of the (by 1.) Y -foldable set U .

Hence
⋂k

j=1 π(Uj ) is folded and thus contractible.

��

4.3 Constructing the cover

Our next goal is to define a suitable cover of the thick part M+. To this end, we will extend the
construction of Samet [7] Theorem 4.2: while the cover given there is indeed a good cover
and contains M+, it is far from being homotopy equivalent to M+; it goes well beyond M+
and, in general, will have gaps outside M+. By gaps we mean that coming from the thin part
(in a suitable way), we might enter and leave the cover several times before entering it for a
last time and staying in M+. To fill these gaps, we will use the previously defined stretched
balls, eventually giving us a good cover that is also homotopy equivalent to M+.

To achieve all the said properties, a very delicate choice of positions and sizes of the
covering sets will be required; the following two lemmas are a major tool for this.

Lemma 8 ( [7] Proposition 4.6) For every ε1 > 0 there is ε2 = ε2(ε1) > 0with the following
property. Let Y1, Y2 ∈ Σ(Γ )with i = dim(Y2) ≤ dim(Y1) and y j ∈ Y j∩X+ ( j = 1, 2), such
that d(y1, S<i (Γ )) ≥ ε1 or d(y2, S<i (Γ )) ≥ ε1. If d(y1, y2) < ε2, then already Y2 ⊆ Y1.

Lemma 9 ( [7] Proposition 4.7) For every ε1 > 0 there is ε3 = ε3(ε1) > 0with the following
property. Let Y ∈ Σ(Γ ), y ∈ Y ∩ X+ and i = dim(Y ). If d(y, S<i (Γ )) > ε1, then Y is fixed
pointwise by every element of Γε1(y).

We have let our X+ take the role of X≥ε,m in [7], so we will always have to assume
(without restriction) that ε2(·), ε3(·) ≤ ε(n)/(2M(n)); recall that X+ ⊆ X≥ε,η with ε =
ε(n)/(2M(n)). Define

μ−1 := min

(
ε(n)

64
, ν

)

,

where ν is theminimal displacement of hyperbolic isometries ofΓ .We then iteratively define
μ−1 > μ0 > . . . > μn by

μi+1 := min

(
ε2(μi )

12
,
ε3(μi )

24
,
μi

12

)

,

with ε2(·) and ε3(·) given by Lemma 8 and 9. Furthermore, let

D0 := maximal μ0-discrete subset in (M ′+)8μ0 ∩ π(S0), and

Di := maximal μi -discrete subset in
(
(M ′+)8μi ∩ π(Si )

) \
⋃

j<i

(π(S j ))μ j
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for i > 0. Without restriction, we can assume thatD0 contains a maximal μ0-discrete subset
of

∂(M ′+)8μ0 ∩ π(S0) ⊆ (M ′+)8μ0 ∩ π(S0),

and similarly Di (for i > 0) contains a maximal μi -discrete subset of

(
∂(M ′+)8μi ∩ π(Si )

) \
⋃

j<i

(π(S j ))μ j ⊆ (
(M ′+)8μi ∩ π(Si )

) \
⋃

j<i

(π(S j ))μ j ,

because maximal μi -discrete subsets in the sets on the left hand side can be extended to
maximal μi -discrete subsets in the sets on the right hand side. Denote by

D :=
n⋃

i=0

Di

the set of all centers. In a first step, let

B′ := {BM
3μi

(x) : x ∈ Di for some i ∈ {0, . . . , n}}
be the set of all ordinary balls (in M) around the points ofD. The following lemma says that
this already covers the shrunken thick part.

Lemma 10 The sets of B′ form a cover of M ′+, i.e.

M ′+ ⊆
⋃

B∈B′
B.

Proof The proof contains ideas of [7] Theorem 4.2 step 1). Let x ∈ M ′+ and choose i ∈
{0, . . . , n} minimal, such that d(x, π(Si )) < 2μi ; since Sn = X , i.e. π(Sn) = M , this is
always possible. Hence there is y ∈ π(Si ) with d(x, y) < 2μi .

We claim that y /∈ ⋃
j<i (π(S j ))μ j . Assume the contrary, then there would be j < i and

z ∈ π(S j ) with d(y, z) < μ j . As μi ≤ μ j/12 (because j < i), this leads to

d(x, z) ≤ d(x, y) + d(y, z) < 2μi + μ j < 2μ j ,

i.e. d(x, π(S j )) < 2μ j ; since j < i , this contradicts the minimality of i . Thus y /∈⋃
j<i (π(S j ))μ j .

Using d(x, y) < 2μi < 8μi , we also get d(y, M ′+) ≤ d(y, x) < 8μi , so y ∈ (M ′+)8μi

and hence

y ∈ (
(M ′+)8μi ∩ π(Si )

) \
⋃

j<i

(π(S j ))μ j .

By definition, Di lies in that set as a maximal μi -discrete subset, so there must be a y′ ∈ Di

with d(y, y′) < μi . We conclude

d(x, y′) ≤ d(x, y) + d(y, y′) < 2μi + μi = 3μi ,

i.e. x ∈ BM
3μi

(y′) ∈ B′, which finishes the proof. ��
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Fig. 4 Choosing a suitable
stretching length. It is enough to
specify the position of the end
center (here: the center of the
gray ball). Ordinary balls of B′
(equivalently: their preimages in
X ) can not exceed the dashed
line, while end balls of stretched
balls will always exceed the
dashed line (see Lemma 12)

Defining the stretching

To fill in possible gaps of the cover outside of M+ (or using another interpretation: to make
the cover stable10 under the flow toM+), wewill have to stretch some of the balls of the cover;
this simply means that we replace that ordinary ball by (the image of) a suitable stretched ball
with that ball as its initial ball. Recall that in the present situation, π(BX

r (y)) = BM
r (π(y))

for all y ∈ X and r > 0, so for the sake of simplicity, the image of a stretched ball in X will
also be called a stretched ball (in M).

Defining the stretching will amount to two tasks: first, we have to state which balls should
be stretched; and second, we have to say for how long to stretch these balls, i.e. define the
stretching length11. The general situation and strategy is summarized in Fig. 4.

– Balls to be stretched: If x ∈ Di ∩ ∂(M ′+)8μi , then (by choice of M ′+) B := BM
3μi

(x)
is contained in the ε(n)-thin part of M . We will replace such a ball by a corresponding
stretched ball with initial center x .

– Stretching length: Let x be the center of a ball BM
3μi

(x) ∈ B′ which should be stretched;

to specify the stretching length, it is enough to define the position of the end center12.
Let cx be the flow geodesic of x ; we will flow along cx in direction of ∂M+ until cx (t) is
precisely μ−1/2 away from ∂M+, but still lies in M+, i.e. for this t we have cx (t) ∈ M+
and d(cx (t), ∂M+) = μ−1/2.

With the stretching given as above, we will turn the set B′ into our final set of covering
sets B. Observe that the set Di ∩ ∂(M ′+)8μi of initial centers of the stretched balls contains
precisely the points of Di with maximal distance to M ′+ (namely 8μi ).

Effects of the stretching

Before proving the desired properties of the cover, we will further investigate the effects that
the stretching had on the balls that were stretched. The following lemma states that with this
choice of stretching, we have achieved a monotonicity of the radii of the (stretched) balls; in
simple terms, it means that the initial centers of stretched balls with large radius are closer

10 We say that a set is stable under the flow if the flow does not leave that set after entering it for the first time.
11 As measured by the (hyperbolic) length of the (Euclidean) line segment in the construction of the stretched
balls or equivalently by the (hyperbolic) distance between the initial center and the end center.
12 We stated the construction of stretched balls only in X , but the construction in M can be translated to X
by lifting the end center.
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to the thin part than the (initial) centers of arbitrary balls of smaller radius, if these balls
intersect13:

Lemma 11 Let yi ∈ D̃i be an initial center of a stretched ball Bi ∈ B̃ with initial ball
BX
3μi

(yi ) and B j ∈ B̃ be an arbitrary (i.e. ordinary or stretched) ball with (initial) center

BX
3μ j

(y j ) for y j ∈ D̃ j . By HSi � yi and HSj � y j we denote the corresponding horospheres
around z. If Bi ∩ Bj �= ∅ and 3μi > 3μ j (so equivalently: i < j ), then HSi is closer to z
than HSj .

Proof We already see from the formulation of the statement that we will treat the situation
in X , where D̃i and B̃ denote the lifts (to X ) of the corresponding sets in M .

By the choice of centers, we have d(yi , X ′+) = 8μi ; moreover, d(y j , X ′+) ≤ 8μ j . Let
x ∈ Bi ∩ Bj . If the (initial) balls BX

3μi
(yi ) and BX

3μ j
(y j ) would intersect (in x , without

restriction), then we would reach the contradiction

8μi = d(yi , X
′+) ≤ d(yi , x) + d(x, y j ) + d(y j , X

′+) < 3μi + 3μ j + 8μ j < 4μi

(note that 12μ j ≤ μi , since i < j). Let cx be the flow geodesic of x , with parametrization
cx (0) = x and cx (−∞) = z (i.e. flowing to X ′+). We’ve already seen that the (initial) balls
can not intersect, but cx has to intersect both (initial) balls. We will distinguish between the
two possible cases:

In the first case, cx leaves the smaller (initial) ball BX
3μ j

(y j ) before entering the larger

initial ball BX
3μi

(yi ). Observe that all points of BX
3μ j

(y j ) have distance < 3μ j + 8μ j <

12μ j ≤ μi to X ′+, because d(y j , X ′+) ≤ 8μ j . As the distance to X ′+ decreases along the

flow, this means that the entry point of cx in BX
3μi

(yi ) also has distance < μi to X ′+. This is
a contradiction, since d(yi , X ′+) = 8μi already implies that all points y ∈ BX

3μi
(yi ) satisfy

d(y, X ′+) ≥ 8μi − 3μi = 5μi . Consequently, this case can not happen.
In the second case, cx leaves the larger initial ball BX

3μi
(yi ) before entering the smaller

(initial) ball BX
3μ j

(y j ). Using the above estimates for the distance to X ′+, we know that along

cx , we have to flow at least 5μi −μi = 4μi after leaving BX
3μi

(yi ) before we enter BX
3μ j

(y j ).

If xi = cx (ti ) denotes the exit point of BX
3μi

(yi ) and x j = cx (t j ) the entry point in BX
3μ j

(y j ),
we see that t j ≥ ti + 4μi

We will now use the upper half space model (again with z as point ∞), so horospheres
around z are (Euclidean) hyperplanesRn−1×{t} ⊆ H

n and the flowgeodesics are (Euclidean)
lines going away from∞ and perpendicular toRn−1×{0}. So the exit point xi is on the lower
half of the initial ball BX

3μi
(yi ) (seen as a Euclidean ball), i.e. it has a t-coordinate smaller

than the t-coordinate of the Euclidean center of BX
3μi

(yi ). Assuming yi = (0, . . . , 0, 1)
(without restriction), by similar arguments as in the proof of Lemma 5 and using the usual
distance formulas we can deduce that the t-coordinate of the Euclidean center of BX

3μi
(yi )

is cosh(3μi ) > 1. Similarly, the t-coordinate of a point that is reached after flowing 4μi (in
hyperbolic length)—and starting from a t-coordinate of cosh(3μi )—can be computed to be
e−μi < 1 (again using the usual distance formulas). By the above arguments, this value is an
upper bound on the t-coordinate of any entry point of the ball BX

3μ j
(y j ); so an arbitrary entry

point of cx into BX
3μ j

(y j ) has a t-coordinate < 1. Since the t-coordinate of the center y j has

13 Note that we will only have to prove this monotonicity for intersecting balls. This is also the reason why
we defined the stretching before stating this lemma: in order to see which balls (stretched and/or ordinary)
intersect, we have to know which balls to stretch and how to stretch them.
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an even smaller t-coordinate than the entry point, y j has a t-coordinate < 1. Thus y j lies in
a horosphere Rn−1 × {t} for some t < 1, whereas yi lies in the horosphere Rn−1 × {1}. ��

Although stretching has the effect of extending the cover in the direction of the thin part,
the resulting cover will still be contained in the (ordinary) thick part; furthermore, there is
some level which ordinary balls will never exceed, but stretched balls will always exceed:

Lemma 12 With the above choice of stretching, we have:

1. All the sets of B are contained in the (ordinary) thick part, i.e.
⋃

B∈B
B ⊆ M+.

2. If B is the end ball of a stretched ball in B, then every point of B has distance less than
μ−1 from ∂M+.

3. If B ′ is an ordinary ball (i.e. non-stretched) in B, then every point of B ′ has distance more
than μ−1 from ∂M+.

Proof Wefirst remark that by themonotonicityμi > μi+1, the balls ofB′ with centers x ∈ D0

are those which can lie the furthest away from M ′+; for these x we have d(x, M ′+) ≤ 8μ0,
so for arbitrary y ∈ BM

3μ0
(x) we get

d(y, M ′+) < 8μ0 + 3μ0 = 11μ0 < 12μ0 ≤ μ−1,

where μ−1 = ε(n)/64 is half the size ε(n)/32 of the shrinking of M+ onto M ′+. Hence
every point of

⋃
B∈B′ B has a distance > μ−1 to the boundary ∂M+, which proves the third

statement.
This also yields

⋃
B∈B′ B ⊆ M+, so it remains to show that this property is preservedwhen

stretching the balls, i.e. when going from B′ to B. Let y be the center of a ball BM
3μi

(y) ∈ B′
that will be stretched; in particular, y will be the initial center of the corresponding stretched
ball. Observe that the hyperbolic radius at the end center is smaller than the hyperbolic radius
at the initial center, and since

3μi ≤ 3μ0 ≤ 3μ−1

12
= μ−1

4
,

the latter is bounded by μ−1/4. Hence the hyperbolic end radius is also smaller than μ−1/4.
Recall that by the definition of the stretching length, the end center will have distance μ−1/2
to ∂M+. Thus every point of the end ball has distance ≥ μ−1/2 − μ−1/4 = μ−1/4 from
∂M+, so the end ball itself is completely contained in M+. Consequently, the entire stretched
ball lies inside M+, which yields the first statement. Also note that the end ball has distance
≥ μ−1/4 to any ordinary ball of B, because the distance of points of the ordinary balls to
∂M+ is always ≥ μ−1.

For the second statement, let y′ be the end center of the stretched ball and y′′ an arbitrary
point in the end ball. Using the above bound on the hyperbolic end radius, we get d(y′, y′′) <

μ−1/4; by the definition of the stretching length, we also have d(y′, ∂M+) = μ−1/2. This
yields d(y′′, ∂M+) < μ−1/4 + μ−1/2 < μ−1, proving the second statement. ��

The stretching length was originally defined via the distance to ∂M+; this means that so
far, we only know when to stop stretching, but not how long we have stretched in absolute
terms. To get such a value for the stretching length in absolute terms, we have to check how
long we have to flow to realize said distance to ∂M+.
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Lemma 13 Every stretched ball B ∈ B with initial ball BM
3μi

(y) is contained in a ball

BM
R(n,ν)(y), where R(n, ν) > 0 is a constant only depending on the dimension n and the

constant ν.

Proof Wewill omit any furthermentioning of ν in the proof, as the dependency of R on ν only
comes from the definition of μ−1 as the minimum of ε(n)/64 and ν; here, the dependency
on ε(n)/64 contains the interesting information on the correct size of R, whereas ν is only
needed to account for the fact that we defined our thick part using ν in order to have no tubes
in the thin part.

Let cy be the flow geodesic of y = cy(0). By the definition of the stretching length, we
have seen that the end center cy(t) of B is characterized by cy(t) ∈ M+ and d(cy(t), ∂M+) =
μ−1/2, for suitable t > 0. Given the construction of the stretched balls, every point y′ ∈ B is
contained in a ball around some cy(t ′), where 0 ≤ t ′ ≤ t ; the radius of that ball is at most 3μi

(which is the initial radius). The latter value is bounded by μ−1, so using d(y, cy(t ′)) = t ′
we get

B ⊆ BM
t+μ−1

(y).

As μ−1 only depends on n, it remains to show that t can also be controlled by only n. Recall
that y is not contained in M ′+ (because it is the initial center of a stretched ball), but in the
piece between ∂M ′+ and ∂M+, and similarly for the end center. If we could bound the length
L of cy between ∂M ′+ and ∂M+, we would thus get the desired bound on the above t . Note
that equivalently, we can try to control the length of the lift of cy (which we also denote by
cy) in X between ∂X ′+ and ∂X+.

Let y1 ∈ ∂X ′+ and y2 ∈ ∂X+ be the intersections of cy with ∂X ′+ and ∂X+. We
reparametrize cy such that cy(0) = y1, so we only have to find an upper bound for t2 > 0,
where cy(t2) = y2. By definition of X ′+, we have that y1 ∈ ({dγ < ε(n)/2})ε(n)/32 for some
parabolic isometry γ ∈ Γ with fixed point z = cy(∞). Let y3 = cy(t3) be the intersection
of cy with ∂{dγ < ε(n)/2}, so t3 ≥ t2 holds14.

Thus it remains to show: if we let y1 = cy(0) denote the entry point of cy in
({dγ < ε(n)/2})ε(n)/32 and y3 = cy(t3) is the entry point of cy in {dγ < ε(n)/2}, then
t3 ≥ 0 is bounded from above by a constant only depending on n.

Again, we choose the upper half space model with z = cy(∞) as the point ∞, and
y1 = (0, 1) ∈ R

n−1 × R>0 without restriction. Note that γ acts on R
n−1 × R>0 = H

n as
a Euclidean motion and on R>0 as the identity; we will denote the restricted action of γ on
R
n−1 also by γ . By the triangle inequality we already have

ε′ := dγ ((0, 1)) ≤ ε(n)

2
+ 2 · ε(n)

32
< ε(n).

With the usual distance formulas we deduce

ε′ = d
(
(0, 1), (γ (0), 1)

) = 2 · arsinh
(‖0 − γ (0)‖

2 · 1
)

= 2 · arsinh
(‖γ (0)‖

2

)

,

hence ‖γ (0)‖ = 2 sinh(ε′/2). Since cy is parametrized by arc length, we get cy(t) =
(0, et ); so similar to the above, the time t displacement is dγ (cy(t)) = dγ ((0, et )) =

14 Either y3 is the intersection of cy with ∂X+ (i.e. t3 = t2), or cy entered ∂X+ earlier (at the boundary of
another sublevel set, i.e. t2 ≤ t3).
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2 arsinh(‖γ (0)‖/(2et )). Using the above value for ‖γ (0)‖ and the bound on ε′, we obtain

dγ (cy(t)) = 2 · arsinh
⎛

⎝
sinh

(
ε′
2

)

et

⎞

⎠ < 2 · arsinh
⎛

⎝
sinh

(
ε(n)
2

)

et

⎞

⎠ .

Hence if t is so large that the term on the right hand side is at most ε(n)/2, then cy(t) already
lies in {dγ < ε(n)/2}; thus we have to solve

2 · arsinh
⎛

⎝
sinh

(
ε(n)
2

)

et

⎞

⎠
!≤ ε(n)

2

for t , i.e.

ln

⎛

⎝
sinh

(
ε(n)
2

)

sinh
(

ε(n)
4

)

⎞

⎠ ≤ t .

So the left hand term tells us themaximal amount of timeneeded for cy to enter {dγ < ε(n)/2};
as it only depends on n, this finishes the proof. ��

Properties of the covering

We will now prove the desired properties of the covering.

Lemma 14 The sets of B form a covering of M ′+, i.e.

M ′+ ⊆
⋃

B∈B
B,

which is stable under the flow f in the sense that if a flow geodesic enters
⋃

B∈B B, then it
remains inside

⋃
B∈B B until it meets ∂M ′+.

Proof Using Lemma 10,
⋃

B∈B′ B ⊆ ⋃
B∈B B yields the first statement.

As everyflowgeodesicmeets ∂M ′+ at somepoint, the stability is equivalent to the following
property: a flow geodesic of a point x ∈ ∂M ′+ (flowing to the thin part, i.e. in the opposite
direction), is contained in

⋃
B∈B B until it leaves this set at some point and never enters it

again.
Let x ∈ ∂M ′+ and i ∈ {0, . . . , n} be minimal such that

x ∈ (
∂M ′+ ∩ (π(Si ))2μi

) \
⋃

j<i

(π(S j ))3μ j /2.

This is always possible: if i = n, then by Sn = M we get ∂M ′+ ∩ (π(Sn))2μn = ∂M ′+,
i.e. x lies in ∂M ′+ \ ⋃

j<n(π(S j ))3μ j /2—proving this statement –, or x ∈ ∂M ′+ ∩⋃
j<n(π(S j ))3μ j /2. In the latter case, we can chose j < n minimally such that x ∈

(π(S j ))3μ j /2. Since (π(S j ))2μ j ⊇ (π(S j ))3μ j /2, this means x ∈ ∂M ′+ ∩ (π(S j ))2μ j , hence
x /∈ ⋃

j ′< j (π(S j ′))3μ j ′/2 by minimality of j . So

x ∈ (
∂M ′+ ∩ (π(S j ))2μ j

) \
⋃

j ′< j

(π(S j ′))3μ j ′/2.

Thus we can always find a minimal i as described above.
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Let cx be the flow geodesic of x in direction of M−, where cx (0) = x . By the above
arguments, there is x ′ ∈ π(Si )with d(x, x ′) < 2μi . Denote the corresponding flow geodesic
(again in direction of M−) of x ′ by cx ′ , where cx ′(0) = x ′. Then d(cx (t), cx ′(t)) < 2μi

for t > 0, because the distance between the geodesics decreases when flowing towards
M−. Note that cx ′ is entirely contained in π(Si ), so cx (t) ∈ (π(Si ))2μi for t > 0. As

d(cx ′(0), M ′+) = d(x ′, M ′+) ≤ d(x ′, x) < 2μi , we see that cx ′(t) has not entered ∂(M ′+)8μi

for sufficiently small t > 0;moreover, cx (t) does not lie in (π(S j ))3μ j /2 for sufficiently small
t > 0 and j < i , as (similar to the above arguments) this would contradict the minimality
of i . With increasing t we will now flow towards M− (equivalently: towards ∂M+). If cx ′(t)
meets the boundary ∂(M ′+)8μi , we say that event I happened; if on the other hand cx (t) enters
some (π(S j ))3μ j /2 for j < i , we say that event II happened.

As ∂M ′+ ⊆ M ′+, x is already contained in some B ∈ B. Thus for sufficiently small t > 0,
we know that cx (t) lies inside

⋃
B∈B B and neither event I nor II has happened.

We will now show that for increasing t , cx (t) will remain inside
⋃

B∈B B if neither of
these events happen. To this end note that cx ′(t) /∈ ⋃

j<i (π(S j ))μ j has to hold, because
otherwise, for some j < i , we would find x ′′ ∈ π(S j ) with d(x ′′, cx ′(t)) < μ j . By

d(cx (t), π(S j )) ≤ d(cx (t), x
′′) ≤ d(cx (t), cx ′(t)) + d(cx ′(t), x ′′) < 2μi + μ j <

3

2
μ j

(recall 2μi ≤ μ j/6, as j < i) this would mean cx (t) ∈ (π(S j ))3μ j /2, contradicting the
assumption that event II hasn’t happened. Since we further assumed that event I hasn’t
happened—i.e. cx ′(t) still lies inside (M ′+)8μi –, we conclude

cx ′(t) ∈ (
(M ′+)8μi ∩ π(Si )

) \
⋃

j<i

(π(S j ))μ j .

By definition, this set contains Di as a maximal μi -discrete subset, so there is y ∈ Di with
d(y, cx ′(t)) < μi . This yields

d(cx (t), y) ≤ d(cx (t), cx ′(t)) + d(cx ′(t), y) < 2μi + μi = 3μi ,

i.e. cx (t) ∈ BM
3μi

(y) ⊆ ⋃
B∈B B, what we wanted to show.

So it only remains to check what occurs if event I or event II happen. Let us begin
with the case that event II happens first. Hence we can chose j < i minimally such
that cx (t) ∈ (π(S j ))3μ j /2 ⊆ (π(S j ))2μ j , where—by minimality of j—also cx (t) /∈⋃

j ′< j (π(S j ′))3μ j ′/2. As event II happened before event I, we get

d(cx (t), M
′+) ≤ d(cx (t), cx ′(t)) + d(cx ′(t), M ′+) < 2μi + 8μi < μ j < 8μ j

(recall j < i), so

cx (t) ∈ (
(M ′+)8μ j ∩ (π(S j ))2μ j

) \
⋃

j ′< j

(π(S j ′))3μ j ′/2.

Similar to the definition of cx ′ , we can find a flow geodesic cx ′′ which lies inside π(S j ) and
which fulfills d(cx ′′(t), cx (t)) < 2μ j after event II happened. As

d(cx ′′(t), M ′+) ≤ d(cx ′′(t), cx (t)) + d(cx (t), M
′+) < 2μ j + μ j < 8μ j ,

the analogously defined event I for this index j and the geodesics cx , cx ′′ hasn’t happened
yet; by minimality of j , the analogously defined event II for this data has also not happened.
So replacing i by j and cx ′ by cx ′′ in the above paragraphs, we can repeat the corresponding
arguments and deduce that cx (t) still lies inside

⋃
B∈B B.
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Let us now assume that event I happens first; hence cx ′(t) ∈ ∂(M ′+)8μi . Again, cx ′(t) /∈⋃
j<i (π(S j ))μ j , because

d(cx (t), π(S j )) ≤ d(cx (t), cx ′(t)) + d(cx ′(t), π(S j )) < 2μi + μ j <
3

2
μ j

(for suitable j < i) would once more mean that event II has already happened, contradicting
our assumption. Hence

cx ′(t) ∈ (
∂(M ′+)8μi ∩ π(Si )

) \
⋃

j<i

(π(S j ))μ j .

By definition, Di contains a maximal μi -discrete subset inside this set, so there is some y ∈
Di ∩ ∂(M ′+)8μi with d(y, cx ′(t)) < μi . Again, d(cx (t), y) < 3μi , thus cx (t) ∈ BM

3μi
(y) ⊆

⋃
B∈B B, what we wanted to show. Note that by our choice of stretched balls, BM

3μi
(y) is

the initial ball of some stretched ball U ; consequently, cx (t) lies inside U from this point
on. Using the second and third statement of Lemma 12, we see that we can flow along cx
(and thus remain inside

⋃
B∈B B) until we are in a distance of < μ−1 from ∂M+, where the

only remaining sets of the cover B are stretched balls, and no ordinary balls will be able to
intersect cx anymore on its way to the thin part. Since the stretched balls were constructed
using precisely such flow geodesics as cx , we conclude that cx will either remain outside of⋃

B∈B B after leavingU , or already lie inside some other stretched ballU ′; in the latter case,
we can repeat the argument, proving the statement. ��

The following lemmata state that the covering sets and their intersections are contractible.

Lemma 15 Elements of B are folded sets and thus contractible.

Proof The proof is similar to [7] Theorem 4.2 step 2). Let x ∈ Di and x̃ ∈ X be a preimage
of x in X ; moreover, let Y ∈ Σi be the singular submanifold containing x̃ . By choice of Di

we have d(x, π(S<i )) > μi−1 and thus d (̃x, S<i ) > μi−1. Note that since x ∈ Di ⊆ M+,
also x̃ ∈ X+, hence x̃ ∈ Y ∩ X+.

By the definition of the μi we have 24μi ≤ ε3(μi−1), so using Lemma 9 we conclude
that Γ24μi (̃x) fixes Y pointwise. Hence the assumptions of Lemma 4 and 6 are fulfilled; using
these, we see that the respective ball with (initial) center x̃ is Y -foldable, which proves the
statement. ��
Lemma 16 Nonempty intersections of the elements ofB are folded sets and thus contractible.

Proof The main idea is similar to [7] Theorem 4.2 step 3), although we have to work con-
siderably harder because of the presence of stretched balls.

Let x1, . . . , xk ∈ D, where x j ∈ Dn j for j = 1, . . . , k, such that the corresponding sets
Uj of B have a non-empty intersection. Note that these balls are either all ordinary balls, or
we have an intersection of stretched balls and possibly some ordinary balls. The proof for
the case of ordinary balls only is essentially the same as in [7] Theorem 4.2 step 3), so we
will skip it. Without restriction, let n1 be the maximum of the n j ( j = 1, . . . , k).

In a first step, we will treat the case where all the balls are stretched; so let BX
3μn j

(̃x j )

be the corresponding initial balls of the Uj and note that x̃ j ∈ X+ for all j = 1, . . . , k.
Denote the singular submanifold containing x̃ j by Y j ∈ Σn j . By definition of D j , we have
d (̃x j , S<n j ) ≥ μn j−1. Observe that by maximality of n1, the point x̃1 is the farthest away
from the thin part among all x̃ j : for j ∈ {1, . . . , k}with n1 > n j (i.e.μn j > μn1 ) this follows
from Lemma 11; and for those j with n1 = n j (i.e. μn1 = μn j ) the point x̃1 can be chosen
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to be the one maximizing the distance to the thin part (among all x̃ j with n j = n1), without

restriction. Let U ( j)
1 be the comparison ball of U1 at the height of x̃ j , with initial center x̃

( j)
1

and initial radius 3μ( j)
n1 . Note that x̃ ( j)

1 lies in the same singular submanifolds as x̃1, so in

particular x̃ ( j)
1 ∈ Y1. Since x̃1 had the largest distance to the thin part, we get 3μ( j)

n1 ≤ 3μn1
for all j = 2, . . . , k; by maximality of n1, we moreover have μn1 ≤ μn j for all j , hence

3μ( j)
n1 ≤ 3μn j . The construction of the comparison balls now allow the application of Lemma

5, which yields

d (̃x j , x̃
( j)
1 ) < 2 · 3μn j + 2 · 3μ( j)

n1 ≤ 12μn j .

Since 12μn j ≤ ε2(μn j−1) and d (̃x j , S<n j ) ≥ μn j−1, we can use Lemma 8 and deduce
Y j ⊆ Y1. Hence all initial centers lie in the same singular submanifold Y1, which already
contained the center of the Y1-foldable stretched ballU1. AsΓ24μn j

(̃x j ) (for all j = 1, . . . , k)
fixes x̃ j (see the proof of the previousLemma15), the statement follows after applyingLemma
7.

It remains to examine what happens if we have a mixed intersection of ordinary and
stretched balls. This situation can be reduced to the case of the intersection of a single
ordinary ball and a single stretched ball: if U1, . . . ,Uk are stretched balls as above such that
n1 ≥ n j for all j = 1, . . . , k, we saw that the initial centers of the Uj also lie in the singular
submanifold Y1, and a similar statement holds for ordinary balls U ′

1, . . . ,U
′
k′ (so the centers

of the U ′
j lie in Y

′
1, which contained the center of U

′
1); so if we can show that either Y1 ⊆ Y ′

1
or Y ′

1 ⊆ Y1, then all (initial) centers of the mixed intersection would be contained in the same
singular submanifold. Applying Lemma 7, this would yield the statement (the additional
assumption that Γ24μn j

(̃x j ) fixes the centers x̃ j can again be taken from the proof of Lemma
15).

So letU1 be a stretched ball with initial ball BX
3μn1

(̃x1) andU2 = BX
3μn2

(̃x2) be an ordinary
ball; denote the singular submanifolds containing x̃1 and x̃2 by Y1 ∈ Σn1 and Y2 ∈ Σn2 ,
respectively. We want to show that one of Y1 ⊆ Y2 or Y2 ⊆ Y1 always holds.

By the choice of centers, U1 can not intersect an ordinary ball of strictly smaller radius
(compare the proof of Lemma 11), so we already have 3μn1 ≤ 3μn2 , i.e. n1 ≥ n2. If the
initial ball ofU1 intersects (the ordinary ball)U2, then the above argument for the intersection
of ordinary balls can be used, giving Y2 ⊆ Y1, which proves the statement. Thus without
restriction, we can assume that the intersection ofU1 andU2 is outside the initial ball ofU1.
We will distinguish between two cases, depending on the proximity of x̃1 and x̃2 to the thin
part.

– In the first case, x̃1 is closer to the thin part than x̃2. In a first step, assume n1 = n2, i.e.
3μn1 = 3μn2 . Note that since U1 and U2 intersect, U1 also intersects the stretched ball
U ′
2 with initial ball U2; let U ′′

2 be the comparison ball of U ′
2 at height x̃1. As x̃1 is closer

to the thin part than x̃2, the initial radius 3μ′′
n2 of U ′′

2 satisfies 3μ′′
n2 ≤ 3μn2(= 3μn1).

If x̃ ′′
2 denotes the initial center of U ′′

2 (observe that x̃ ′′
2 ∈ Y2), then using Lemma 5 we

deduce

d (̃x1, x̃
′′
2 ) < 2 · 3μn1 + 2 · 3μ′′

n2 ≤ 12μn1 .

By definition, 12μn1 ≤ ε2(μn1−1) and d (̃x1, S<n1) ≥ μn1−1, so Lemma 8 yields Y2 ⊆
Y1, the statement.
Assume now that n1 > n2, i.e. 3μn1 < 3μn2 . Let x ∈ U1∩U2 and cx be the flow geodesic
towards the parabolic fixed point z, with parametrization cx (0) = x and cx (−∞) = z;
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moreover, let HS1 and HS2 be the horospheres around z containing x̃1 and x̃2, respec-
tively. As x̃1 is closer to the thin part and the initial ball of U1 does not intersect U2

– i.e. cx (coming from z) leaves U2 before entering the initial ball of U1 –, we have
cx (t1) ∈ HS1 and cx (t2) ∈ HS2 for suitable 0 < t1 < t2, where t2 < 3μn2 (recall
that x ∈ U2 = BX

3μn2
(̃x2)). Note that on its way from x to cx (t1), cx has to meet the

initial ball BX
3μn1

(̃x1) ofU1 (compare the proof of Lemma 11). Thus there is some t ′ with
0 < t ′ < t1 (hence t ′ < 3μn2 ) such that cx (t ′) ∈ BX

3μn1
(̃x1). We deduce

d (̃x1, x̃2) ≤ d (̃x1, cx (t
′)) + d(cx (t

′), cx (0)) + d(cx (0), x̃2)

= d (̃x1, cx (t
′)) + t ′ + d(x, x̃2)

< 3μn1 + t ′ + 3μn2

< 3μn1 + 3μn2 + 3μn2

< 7μn2 .

Since 7μn2 < 12μn2 ≤ ε2(μn2−1), we conclude d (̃x1, x̃2) < ε2(μn2−1). By definition
ofDi , we also have d (̃x2, S<n2) ≥ μn2−1; applying Lemma 8 gives Y2 ⊆ Y1, the desired
statement.

– In the other case we assume that x̃1 is farther away from the thin part than x̃2. So the
comparison ball U ′

1 of U1 at the height of x̃2 satisfies 3μ′
n1 ≤ 3μn1 , where BX

3μ′
n1

(̃x ′
1)

denotes the initial ball of U ′
1 (note that x̃

′
1 ∈ Y1, as above). Using Lemma 5 and 3μn1 ≤

3μn2 , we deduce

d (̃x ′
1, x̃2) < 2 · 3μ′

n1 + 2 · 3μn2 ≤ 12μn2 .

Since 12μn2 ≤ ε2(μn2−1) und d (̃x2, S<n2) ≥ μn2−1, applying Lemma 8 again yields
Y2 ⊆ Y1, which finishes the proof.

��
Our construction guarantees that we can control the number of covering sets and the

number of nonempty intersections between such sets linearly by the volume:

Lemma 17 There are constants C = C(n, η, ν), D = D(n, ν) > 0 satisfying the following
statements.

1. We have |B| ≤ C · Vol(M).
2. A set of B intersects at most D other sets of B.
Proof The proof of the first statement is a standard argument which is basically identical to
[7] Theorem 4.2 step 4). Note that our η corresponds to the m in [7], which explains the
dependency of C on η; the dependency of C on ν stems from the fact that we defined our
thick part using ν as a lower bound on the hyperbolic displacement (so the thin part consisted
only of cusps).

Note that in order to estimate the maximal number of intersecting sets, we can replace
the stretched balls by larger ordinary balls as in Lemma 13 and use the resulting value as an
upper bound. But for the (larger) ordinary balls, the argument is essentially the same as in
[7] Theorem 4.2, this time step 5)15.

Detailed proofs of these statements not omitting these details can also be taken from [9]
Lemma 3.50. ��
15 The usual proof shows that there is no dependency of D on η; the dependency on ν again comes from the
fact that we needed ν to put the tubes in the thick part.
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4.4 Nerve construction

Our goal is now to build the desired simplicial complex out of the covering via the nerve
construction. Let Bg ⊆ B be the set of all stretched balls in B; define

N+ :=
⋃

B∈B
B and N0 :=

⋃

B∈Bg

B.

We denote the nerve complexes (see also [1] section 2.2) associated to B and Bg by N (B)

and N (Bg), respectively; obviously, we can think of N (Bg) as a subcomplex of N (B). The
following lemma will be needed to prove the homotopy equivalence between the nerve
complexes and the thick part.

Lemma 18 There is a homotopy equivalence F : M+
�→ N+ which induces a commutative

diagram, with vertical maps given by the inclusions ∂M+ ↪→ M+ and N0 ↪→ N+:

∂M+ N0

M+ N+.

�
F |∂M+

�
F

Proof LetM ′′+ be the shrinking of the thick partM+ by 3μ−1/4, i.e.M ′′+ := M \(M−)3μ−1/4.
By the choice of the stretching length we know that every stretched ball B ∈ Bg intersects
∂M ′′+; on the other hand, no ordinary ball of B meets the boundary ∂M ′′+, see Fig. 5.

Similar to Lemma 1, the flow away from the thin part up to ∂M ′′+ (where we stop flowing)
induces a commutative diagram

∂M+ ∂M ′′+

M+ M ′′+.

�

�

Moreover, N+ is stable under this flow (compare Lemma 14); by the choice of the shrinking
3μ−1/4, the same is true for N0. Let N ′+ and N ′

0 denote the images of N+ and N0 under this
flow up to ∂M ′′+, then we get a commutative diagram

N0 N ′
0

N+ N ′+.

�

�

Fig. 5 Simplified depiction of the
position of the covering sets.
Ordinary balls do not exceed the
dashed line in the middle and
thus can not intersect ∂M ′′+.
Stretched balls always intersect
∂M ′′+, but do not meet the upper
dotted line. N+ consists of all
balls (ordinary and stretched),
whereas N0 ⊆ N+ is made up of
all stretched balls. Observe that
M ′′+ ⊆ N+
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Observe that N ′+ = M ′′+. On the other hand—by the construction of the stretched balls –,
N ′+ and N ′

0 are also stable under the flow in opposite direction (i.e. flowing towards M−) up
to ∂M ′′+; this yields a homotopy equivalence N ′+ � M ′′+, which itself induces a homotopy
equivalence N ′

0 � ∂M ′′+. Consequently, we get the commutative diagram

N ′
0 ∂M ′′+

N ′+ M ′′+.

�

�

The desired diagram of the statement is now obtained by composing the above diagrams,
where—if needed—the horizontal arrows can be reversed by taking the respective homotopy
inverses. ��

Our main result will depend on the following homotopy equivalence.

Lemma 19 (M+, ∂M+) is as a pair homotopy equivalent to (N (B), N (Bg)).

Proof By Lemma 15 and 16 we know that the (open) covers of N+ and N0 by B and Bg ,
respectively, are good covers16. Using [1] Theorem 2.7 we get a commutative diagram

N0 (N0)Bg N (Bg)

N+ (N+)B N (B),

j k

� �

�
G

�

where the vertical maps are given by the respective inclusions; here, the spaces (N0)Bg and
(N+)B are the generalized nerve spaces as in [1] section 2.2. Attaching the diagramof Lemma
18 on the left hand side yields the commutative diagram

∂M+ N0 (N0)Bg N (Bg)

M+ N+ (N+)B N (B),

�

j k

� �

�
F

�
G

�
(∗)

where the outer vertical maps are cofibrations, because ∂M+ ↪→ M+ is the inclusion of the
boundary and N (Bg) ↪→ N (B) the inclusion of a subcomplex.

The diagram (∗) can take the role of diagram (11) in step 4 of the proof of [1] Theorem
3.1. Note that the second column of that diagram (11) has no counterpart in our diagram (∗);
this is no issue, as that column was only needed to construct a diagram similar to the one
in our Lemma 18. Repeating the arguments of [1] Theorem 3.1 step 4 with our diagram (∗)
replacing diagram (11) there now yields the statement. ��

Of course the impact of Lemma 19 depends on if we can control the complexity of the
simplicial pair (N (B), N (Bg)); here, Lemma 17 will come into play. Before summarizing
all these statements in our main result, we will see that the case of arithmetic, non-uniform
lattices Γ is particularly nice, as all constants will only depend on the dimension n (and not
on the other constants η and ν):

Lemma 20 Let An be the class of arithmetic, non-uniform lattices in Isom(Hn), then:

16 In the sense that the covering sets and their non-empty intersections are contractible.
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1. There is a constant η = η(n) ∈ N only depending on n, such that for all Γ ∈ An, the
order of any finite subgroup G of Γ is bounded by η, i.e. |G| ≤ η.

2. There is a constant ν = ν(n) > 0 only depending on n, such that for all Γ ∈ An and
every hyperbolic γ ∈ Γ , the minimal displacement of γ is at least ν, i.e. dγ (x) ≥ ν for
all x ∈ H

n.

Proof These statements are straightforward consequences of [6] Lemma 13.1 and [6] Remark
5.7. ��

We will now state the main result in its general form; recall that a pair (S, S′) with a
simplicial complex S and (possibly empty) subcomplex S′ ⊆ S is an (A, B)-simplicial pair,
if S has at most B vertices and the degree at every vertex is bounded by A.

Theorem 3 As usual, let η ∈ N be an upper bound on the order of finite subgroups of
Γ and ν > 0 be a lower bound on the displacement of hyperbolic elements of Γ . Then
there are constants C = C(n, η, ν) and D = D(n, ν), such that (M+, ∂M+) is as a pair
homotopy equivalent to a (D,C ·Vol(M))-simplicial pair. For Γ ∈ An (i.e. Γ is arithmetic,
non-uniform) the constants C and D will only depend on the dimension n.

Proof This is a combination of Lemma 19 and 17, as well as 20 in the arithmetic, non-uniform
case. ��
Remark 2 Using the formulas given for the construction of the constant C of Theorem 3, it
can be shown that C = C(n, η, ν) grows exponentially in η. The dependency on ν can not
be deduced that easily, as it was also used for the definition of μ−1, and thus its influence
would have to be traced along the iterative construction of all the μi up to μn .

5 Applications

Using the main result Theorem 3 (and its notation), bounds on the homology of hyperbolic
orbifolds are an immediate consequence.

Theorem 4 LetK be an arbitrary field and let bk(M;K) = dimK Hk(M;K) denote the k-th
Betti number of M with coefficients in K. Then there is a constant E = E(n, η, ν) > 0 such
that

bk(M;K) ≤ E · Vol(M)

for all k ∈ N0. In the arithmetic, non-uniform case, the constant E will only depend on the
dimension n.

Proof With our main result Theorem 3, the proof is a standard argument utilizing the Mayer-
Vietoris sequence (see e.g. [8] Theorem 4.11 or [9] Satz 3.59); E will be given by E :=
(Dn−1 + Dn + 1) · C . ��

The similar result for the torsion part of the homology is given as follows.

Theorem 5 There is a constant F = F(n, η, ν) > 0 such that

log | tors Hk(M;Z)| ≤ F · Vol(M)

for all k ∈ N0. In the arithmetic, non-uniform case, the constant F will only depend on n.
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Proof By the main result Theorem 3, M � M+ is homotopy equivalent to a (D,C ·Vol(M))-
simplicial complex. Now [1] Lemma 5.2 yields the result. Note that—following the proof of
[1] Lemma 5.2 and assuming D ≥ 1 (without restriction)—the constant F will be given by
F := Dn · log(n + 2) · C . ��

Aswe see from the previous two theorems, the constants for the homology bounds depend
on the dimension n, the maximal order η of finite subgroups of the lattice and the minimal
hyperbolic displacement ν. Using a more general approach than the one presented in this
paper, the dependence on ν can be relaxed – yielding bounds independent of ν, but polynomial
in Vol(M) – and we suspect that it might be removed altogether. This more general approach
basically consists of replicating the construction of the stretched balls also near the tubes
(whichwebasically ignored byputting them into the thick part, using ν); a detailed description
of this procedure and the corresponding proofs are contained in [9] and might be a starting
point for future improvements of the results given here.
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