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ABSTRACT

This work addresses the problem of hyperspectral data compression and the evaluation of the reconstruction
quality for different compression rates. Data compression is intended to transmit the enormous amount of data
created by hyperspectral sensors efficiently. The information loss due to the compression process is evaluated by
the complex task of spectral unmixing. We propose an improved 1D-Convolutional Autoencoder architecture with
different compression rates for lossy hyperspectral data compression. Furthermore, we evaluate the reconstruction
by applying metrics such as SNR and SA and compare them to the spectral unmixing results.

Keywords: hyperspectral data compression, spectral unmixing, feature extraction, dimensionality reduction,
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1. INTRODUCTION

The demand for hyperspectral data in the fields of remote sensing and industrial visual inspection is continuously
increasing. Applications such as disaster management,1 land use classification,2 object detection,3 and spectral
unmixing4 benefit from the additional spectral information provided by hyperspectral data, which are material-
specific features. Hyperspectral sensors measure the electromagnetic spectrum in up to hundreds of narrow
and contiguous spectral bands. Depending on the field of application, the hyperspectral sensor is mounted
on different carrier platforms. In remote sensing, typical carrier platforms are drones, aircraft, or satellites.
According to the carrier system, different area coverages with different spatial resolutions can be achieved. The
common problem of the different systems is, that the many spectral bands lead to an enormous amount of data,
while the transmission bandwidth or storage space is limited. Both bandwidth and storage space can only be
expanded at great expense, especially in satellite-based systems. Thus, it is important to solve the problem of
data transmission and storage space.

Lossy data compression is one of the most promising approaches to achieve efficient data transmission. Lossy
compression methods can be broadly divided into the following two categories: signal processing methods and
machine learning methods. Classical signal processing methods use quantization techniques to compress the
hyperspectral data.5,6 Other algorithms rely on decorrelation transformations to exploit spectral correlation,
followed by a quantization stage and an entropy encoder. For the reduction of spectral correlation, methods
such as the discrete cosine transform, discrete wavelet transform (DWT), and principal component analysis
(PCA) are used.7,8 The 1D-spectral decorrelators are combined with JPEG 2000 as a spatial decorrelator.9–11

Current literature shows that PCA-based methods outperform the DWT in terms of reconstruction accuracy
and compression performance.12,13

Machine learning-based compression techniques show higher reconstruction accuracy compared to classical
signal processing techniques in compressing RGB image data.14,15 It has been shown that Autoencoder struc-
tures are particularly suitable for the compression of RGB images and even outperform state-of-the-art methods
such as JPEG and JPEG 2000.15,16 Due to the convincing performance of Autoencoder-based (AE) approaches
in image compression, they are increasingly used for hyperspectral data processing. Initially, Autoencoder-
based approaches were used for dimensional reduction of hyperspectral data and later extended to reconstruct
features.17–19 Several publications show, that Autoencoder-based methods achieve a higher reconstruction accu-
racy than PCA methods.20–22 Further development stages retain the Autoencoder structure and replace the fully
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connected layers with convolutional layers to increase reconstruction accuracy.23 Furthermore, 1D-Convolutional
Autoencoder (1D-CAE) achieve high reconstruction accuracy for various datasets and error metrics.24

Spectral unmixing is required if several materials are contained in one hyperspectral pixel, which means that
only a mixed spectrum is available. This happens when the observed material particles are small or the distance
between camera and object is large, which is often the case in remote sensing measurements. With spectral
unmixing, the material composition of such pixels can be examined.25

This work addresses the problem of hyperspectral data compression and the evaluation of the reconstruction
quality for different compression rates based on the spectral unmixing application. We propose an improved
1D-CAE architecture of the base version from Kuester et al.24 with the compression rates of CR = 4, CR = 8,
and CR = 16 for hyperspectral data compression. Since the applied compression methods are lossy methods, it
is important that the loss of information is assessed using metrics. It is important for a user to know the impact
of the compression loss for the application to be analyzed. For this purpose, we evaluate the performance of our
proposed lossy compression method on the complex task of spectral unmixing. The evaluation is performed on
data from material mixtures collected in the IIIT image processing laboratory named quartz-3 and quartz-4 as
well as the HYDICE Urban benchmark dataset from the remote sensing domain. All datasets consist of sample
sets with known mixture coefficients. In this contribution, we will show that tere is no correlation between the
signal-to-noise ratio, spectral angle, and the spectral unmixing results. Furthermore, the different compression
ratios have no significant effect on the unmixing.

2. PROPOSED COMPRESSION METHOD

Our proposed method is an extension of the 1D-CAE to compress the spectral dimension of hyperspectral data.
Since the majority of hyperspectral applications such as spectral unmixing use spectral information, accurate
reconstruction of spectral signatures is essential. For this reason, the possibility of compressing the spatial
dimension is not considered for now and the focus is on the spectral dimension. This approach ensures that
the reconstruction accuracy is not negatively affected by spatial compression effects. Thus, the quality of the
reconstruction accuracy can be directly related to the spectral compression. Since the information of the spatial
neighborhood is left out, the 3D hyperspectral dataset can be represented by a set of N discrete reflectance
spectra yn = [y1n, ..., yBn]

T ∈ RB .
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Figure 1. The basic structure of the 1D-CAE with a compression rate of four. Replicating the blue block increases the
compression rate by a factor of two. The orange blocks, inserted the same number of times as the blue ones, restore the
number of original features.

The Autoencoder structure has a fixed compression rate based on its components and has to be adapted
to produce different compression rates. Figure 1 shows the structure of the 1D-CAE for the compression rate
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CR = 4. The 1D-CAE model can be divided into an encoder and a decoder part. This also offers the advantage of
operating both components independently on different platforms. The encoder takes a single spectral signature
y as input and extracts the essential features during the compression process.

The Autoencoder structure proposed here also depends on the number of bands of the spectral signature.
Each band will be considered as a separate feature for the remainder of this paper. The input layer is followed by a
zero-padding layer that inserts features at the beginning or at the end of the spectrum such that the total number
of features can be divided by the previously selected compression rate without a residuum. The 1D-convolutional
layer has the purpose of recognizing and extracting local features from the spectral signature. To find a variety
of different features, we use multiple filters in parallel. The 1D-convolutional layer is followed by a batch
normalization layer, which is used especially for deeper networks to counteract the attenuation of the internal
covariate shift and to speed up the training as well as to generate more reliable models.26 Subsequently, the
Leaky Rectified Linear Unit (Leaky ReLU) activation function is applied to the output of the batch normalization
layer. We choose the Leaky ReLU as activation function for the hidden layers to avoid vanishing gradients for
negative inputs of the activation functions. The Leaky ReLU has a low slope for negative values, which is set
with the parameter α. Using non-linear activation functions allows an approximation of non-linear functions.
Afterwards, the max pooling layer calculates the maximum value of a local area of the feature map from the
output of the Leaky ReLU layer. Max pooling is used as a down-sampling operation to reduce the dimensionality
while simultaneously preserving the characteristic features. With each max pooling layer, the number of features
is reduced by two. These four layers can be combined to form a module, as shown by the blue box in Figure 1.
The compression rate is determined by how often this module occurs consecutively in the Autoencoder structure.
The subsequent 1D-convolutional layers reduce the parallel filters towards the bottleneck (BN). The individual
transformations of each layer are concatenated into an overall transformation for the encoder f . The encoder
transforms the spectral signature to a low-dimensional representation

h = f(WE,y) ∈ RB̂ , (1)

where WE indicates the encoder weights. The lossy compression is realized by transforming the input spectral
signature into a low-dimensional representation, using only B̂ ≪ B features in the BN to represent the spectral
information. The compression rate can be calculated as

CR =
B · Fin

B̂ · F̂BN

, (2)

where B and Fin denote the features and feature maps of the input layer and B̂ and F̂BN the number of features
and feature maps in the BN. The number of feature maps is one in the input layer as well as in the BN. The
compression rate depends entirely on the number of features in the BN, which is controlled by the number
of pooling layers. The compressed signal can be extracted from the BN and transmitted to the decoder with
the corresponding transformation g. The decoder transforms the compressed spectral information back to the
original representation according to

ỹ = g(WD,h) ∈ RB , (3)

where WD are the decoder weights. The task of the decoder is to reconstruct the input spectral signature
as accurately as possible. To increase the accuracy of the transformation of the decoder, the 1D-Transposed
Convolutional Layer (1D-TCL) is used as the upsampling operation instead of the upsampling layer. Compared
to the static upsampling method used so far, the 1D-TCL is trainable and more adaptable. The parameters
of the 1D-TCL are set to increase the number of features by a factor of two. Each 1D-TCL is preceded by
a 1D-convolutional layer whose task is to generate new features between the already existing ones. Together
with the batch normalization and the activation function, equivalent to the encoder, they can be combined to
modules, depicted as orange boxes in Figure 1, which increases the number of features. The cropping layer
removes features at the beginning and at the end to restore the original number of features. The subsequent
1D-convolutional layers are used to reduce the number of feature maps towards the output of the decoder. The

Proc. of SPIE Vol. 12267  122670H-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 01 Nov 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



final layer of the 1D-CAE architecture utilizes a Hardtanh activation, limiting the output value range to [0,1].
Since the mean-squared-error epsilonMSE is used as the loss function to calculate the reconstruction error, it is
necessary that the input and output value range is equal.

Another advantage of the Autoencoder structure is that the input spectral signature is also used as a ref-
erence to evaluate the reconstruction accuracy. This results in a semi-supervised learning paradigm without
the requirement for additional labelled data. Now it is to be examined how the presented compression method
affects spectral unmixing. For this purpose, the performance of spectral unmixing with different methods will
be compared between the uncompressed data and the compressed data. In the next section spectral unmixing
methods will be introduced.

3. SPECTRAL UNMIXING

This section introduces spectral unmixing and presents established methods that will later be used to evaluate
the compression results. Readers who are familiar with spectral unmixing can skip this section.

The estimation of relative material proportions (abundances) in a mixture of substances based on its spectrum
is called spectral unmixing.25 If the spectra of the pure substances are known, as it is the case with the datasets
used in this paper, it is referred to as supervised spectral unmixing. The estimation â = [â1, ..., âP ]

T ∈ RP of
the abundances a = [a1, ..., aP ]

T ∈ RP of the up to P pure substances involved must fulfill constraints in order
to preserve physical plausibility: The non-negativity constraint

âp ≥ 0 ∀p (4)

and the sum-to-one constraint
P∑

p=1

âp = 1 . (5)

To perform spectral unmixing, an inverse problem has to be solved, which is often achieved using a mixing
model.27 A straightforward mixing model that yields valid results for macroscopic scale mixtures is the linear
mixing model (LMM):28,29

y =

P∑
p=1

mp ap = Ma . (6)

Here, y = [y1, ..., yB ]
T ∈ RB is a discrete reflectance spectrum of a mixture of substances sampled at B spectral

bands. The matrix M = [m1, ...,mP ] ∈ RB×P contains the pure spectra of the up to P substances involved.

When light propagates along multiple paths, interacting with up to two pure substances on one path, the
mixing behavior can be modeled with a bilinear model. This is the case with the HYDICE Urban benchmark
dataset. In this work, the linear-quadratic mixing model (LQM)

y =

P∑
p=1

mp ap +

P∑
p=1

P∑
q=1

ξpq mp ⊙mq (7)

published for spectral unmixing in urban areas is used.30 Here ξpq ∈ R are the nonlinearity coefficients determined
together with the abundances ap.

When mixing takes place at a microscopic scale, as in the case of the colored quartz sands considered in this
work (see Section 4.1), the mixing is best described in the albedo domain. The single scattering albedo ω ∈ RB

describes the power scattered by a particle in relation to the incident power. The transformation R : R → R
between albedo and reflectance depends on the material properties and the imaging conditions.31 In this paper,
the transformation for the relative reflectance

yb = R(ωb) =
ωb

(1 + ι0
√
1− ωb)(1 + ι

√
1− ωb)

(8)
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is used, where ι0 and ι are the cosines of the incident and scattering angles, respectively. In equation (8),
isotropic scattering particles, a porosity coefficient of 1 and a negligible opposition effect are assumed. Despite
these simplifying assumptions, satisfying results can be achieved in practice.32–34 Assuming equal mean particle
sizes and densities, the mixing in the albedo domain can be described by the LMM, which can be used for
spectral unmixing.32–34

A commonly used unmixing method based on the LMM considering the constraints (4) and (5) is the Fully-
Constrained-Least-Squares method (FCLS).35 Here, the Lagrangian function L : RP+1 → R with

L(a, l) = ∥y −Ma∥22 − l

(
P∑

p=1

ap − 1

)
(9)

is minimized by tuning the abundances and the Lagrange multiplier l ∈ R. It is an iterative procedure in which
negative âp and the corresponding pure spectra in M are removed. If the spectral unmixing is carried out in the
albedo domain, only y must be replaced by R−1(y) and M by R−1(M). Note that the function R−1 is applied
to the individual elements of the vector or matrix.

So far, it is assumed that spectra of identical abundances are identical. However, this is not the case in
reality. Instead, spectral variability occurs.36,37 Spectral variability has many causes, such as surface topology
and the angles between the light source, object, and the camera (see (8)) or atmospheric effects.38 There are
methods that take spectral variability into account, such as the Extended Linear Mixing Model (ELMM):39

y = MΦa . (10)

Here, Φ ∈ RP×P is a diagonal matrix. The diagonal elements operate as scaling factors of the pure spectra.
With this, differences in illumination and topography can be modeled. The additional parameters are deter-
mined together with â in an optimization process. Spectral unmixing is used as an application to evaluate the
compression performance of the methods presented in the next section.

4. EXPERIMENTAL SETUP

4.1 Datasets

To evaluate the different compression methods by spectral unmixing, we use different real datasets. Two of them
were acquired in the image processing lab of IIIT.40 Thus, we precisely know the abundances. The datasets
consist of mixtures of colored quartz sands. The spectra of the datasets consist of 91 spectral bands from 450 nm
to 810 nm with an average width of 4 nm. Of each mixture, 400 spectra were captured. The first dataset contains
45 mixtures of at most 3 different colored quartz sands (quartz-3), which vary in abundance steps of 0.125. The
second one contains 56 mixtures of at most 4 different colored quartz sands (quartz-4), which vary in abundance
steps of 0.2. Both datasets include every abundance vector a that is possible with the given step size and does
not violate the constraints (4) and (5).

From the remote sensing domain, we use the widely used HYDICE Urban hyperspectral dataset.41,42 The
dataset consists of 307× 307 pixels and, thus, 94249 spectral signatures are available as samples. Each spectral
signature has 210 bands and covers the wavelength range from 400 nm to 2500 nm with a spectral resolution of
10 nm. Of the 210 bands, a total of 48 bands were removed due to dense water vapor and atmospheric effects,
leaving 162 bands available for experiments. The 4 pure substances of the spectral unmixing ground truth are
respectively asphalt, grass, tree, and roof.

4.2 Evaluation Metrics

As an evaluation metric for spectral unmixing, we use the root-mean-square error ϵRMSE ∈ R of the abundances
over a whole test dataset, that contains N samples:

ϵRMSE =

√√√√ 1

N

N∑
n=1

1

P

P∑
p=1

(âpn − apn)2 . (11)
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To determine the information loss caused by compression, we evaluate the reconstruction accuracy using
the signal-to-noise ratio43 (SNR) and Spectral Angle44 (SA) metrics. We aim to find correlations between the
two error measures SNR and SA and the results from spectral unmixing to better evaluate the reconstruction
accuracy. The evaluation algorithms are applied to the original and the reconstructed spectral signatures of the
different compression methods and compressions rates. The SNR is defined as

ϵSNR =
1

B

B∑
b=1

10 log10
σ2
b

ϵMSE,b
(12)

with the estimated variance per band

σ2
b =

1

N − 1

N∑
n=1

(ybn − ȳb)
2

(13)

and the mean squared error per band

ϵMSE,b =
1

N

N∑
n=1

(ybn − ỹbn)
2
. (14)

Here, ȳb is the mean band value over all spectra in the dataset. The second metric used to calculate the similarity
between the input and the reconstructed spectral signatures is the SA. We use the mean SA over all N samples
of a dataset:

ϵSA =
1

N

N∑
n=1

arccos
yT
n ỹn

∥yn∥ · ∥ỹn∥
. (15)

According to Licciardi et al.20 an SA below 3° indicates a high level of reconstruction accuracy.

4.3 Comparison Compression Method

To evaluate the reconstruction accuracy of the 1D-CAE, comparative lossy compression techniques that are also
based on machine learning are used in addition to the evaluation metrics. The first method is the state-of-the-art
NLPCA,20 which was re-implemented. The basic structure, as well as the activation function of the individual
layers have remained the same. The optimization method was changed from the original conjugate gradient
method to the Adam Optimizer,45 which increases the performance. The second comparison method is the
Deep Autoencoder (DAE).46 It is a deep neural network underlying an Autoencoder structure. It uses only fully
connected layers to reduce the spectral dimension.

4.4 Hyperparameter selection

For each of the three compression rates CR = 4, CR = 8, and CR = 16, a separate model is created and trained.
The compression rate depends on the number of features and feature maps from the input and the BN spectral
signature, as shown in Equation (2). The number of features corresponds to the bands of the input layer, which
are given by the sensor. As described in Section 2, a spectral signature is passed to the 1D-CAE as input, which
leads to Fin = 1. Furthermore, the number of feature maps in the BN is set to F̂BN = 1 to obtain a compressed
representation of the input signal. As a result, the compression rate depends entirely on the number of input
and BN features. Table 1 shows the number of features required in the BN to achieve the desired compression
rate of CR = 4, CR = 8, and CR = 16.

Table 1. Overview of the features required in the BN to achieve the desired compression rate for the different datasets.
Compression rate CR 4 8 16
BN features for HYDICE Urban 41 21 11
BN features for quartz-3 23 12 6
BN features for quartz-4 23 12 6
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The training and evaluation process for the compression models is carried out individually for the HYDICE
Urban and quartz-4 dataset since the datasets have a different number of bands. Both datasets are randomly
subdivided in 70% training data, 15% validation data, and 15% test data. Since quartz-4 has the same number of
bands and contains similar spectra as quartz-3, the complete dataset is used as test data for the network trained
with the quartz-4 training dataset. This also allows the verification of the transferability of the compression
methods. The following parameter set for the training process is equal for both datasets and each compression
model.

The number of epochs is set to 200 and the batch size to 32. The learning rate starts with 0.001 and is
multiplied by the factor 0.9 after five epochs in which the value of the loss function has not changed by more
than ∆ϵMSE = 10−7. The learning rate is reduced to ensure convergence to a local minimum. The weight
matrices of the compression methods are initialized with values generated by a Gaussian distribution. The
weights of the model in the epoch that gives the smallest error ϵMSE are stored. For the Leaky ReLU activation
function in the 1D-CAE model, α = 0.3 is selected.

4.5 Spectral unmixing

For evaluation of spectral unmixing, the results of the two best performing methods from Section 3 for each
dataset are presented. These are for the datasets quartz-3 and quartz-4 the FCLS algorithm and spectral
unmixing based on ELMM. In both cases, spectral unmixing is performed in the albedo domain (FCLS-AD and
ELMM-AD). It’s no surprise that spectral unmixing in the albedo domain works best, as these are fine powders
where mixing happens on a microscopic scale. As these datasets were captured in a laboratory, the incident and
scattering angles are approximately known here and set to 30° and 0°, respectively.

For the HYDICE Urban hyperspectral dataset, ELMM-AD also works best, with the LQM being second.
Since the angles for the transformation into the albedo domain are not known, they were assumed and set to the
same values as for the other datasets. It is not necessary to know the exact angles here, because the transfomation
changes significantly only for larger angles due to the cosine.

To determine abundances, the FCLS from Equation (9) was used as described in Section 3. For spectral
unmixing based on the ELMM, a and Φ are alternately minimized, where a is initialized with the result of
the FCLS. If spectral unmixing is performed in the albedo domain, all spectra are transformed into the albedo
domain beforehand and unmixed there, using FCLS and ELMM based unmixing, respectively. For spectral
unmixing based on the LQM, gradient-based optimization is used to determine a and all ξpq simultaneously.
Again, a is initialized with the result of the FCLS algorithm.

5. EXPERIMENTAL RESULTS

We evaluate the reconstruction accuracy of the different compression methods and compression rates using the
SA, SNR, as well as the spectral unmixing. The datasets introduced above from industrial applications and from
remote sensing are used. The results of the evaluation based on the SA and SNR metrics for datasets HYDICE
Urban, quartz-3, and quartz-4 are shown in Table 2. The best results are printed in bold. The proposed 1D-
CAE method outperforms the DAE and NLPCA for CR = 4 and CR = 8 and for all datasets. Furthermore, the
reconstruction accuracy of 1D-CAE is highest for compression rate CR = 16 on datasets HYDICE Urban and
quartz-4. For the HYDICE Urban dataset, the SA of the 1D-CAE is below 1° and SNR is above 100 dB for all
compression rates, which indicates a very high reconstruction accuracy.

For the quartz-4 dataset, the SNR values are slightly lower and SA values higher than for the HYDICE Urban
dataset, but show an acceptable accuracy. An interesting effect occurs with the quartz-3 data. Here, it can be
seen that the SA values are lower compared to quartz-4 and the SNR values are higher. This correlation can be
explained by the fact that the spectral signatures are smoothed during reconstruction. These smoothing effects
can have positive effects on the SNR metric. In the case of unknown datasets, such as quartz-3, smoothing
effects occur more frequently, which can explain the differences to quartz-4. Only for CR = 16 on quartz-3 the
accuracy of the 1D-CAE is lower compared to the reference methods. One possible explanation for this is that
the transferability of the filter weights found for the quartz-3 dataset is low. This may be because the learned
features are not representative enough for quartz-3.
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Table 2. Evaluation of the reconstruction accuracy for the test datasets based on the SNR and the SA metric.
HYDICE Urban quartz-3 quartz-4

model CR SA in ◦ SNR in dB SA in ◦ SNR in dB SA in ◦ SNR in dB
1D-CAE

4
0.77 103.39 1.64 93.07 1.07 89.91

DAE 0.87 102.70 2.52 90.50 1.35 88.17
NLPCA 1.00 101.03 2.34 90.65 1.39 88.07
1D-CAE

8
0.82 103.27 2.07 91.66 1.25 88.57

DAE 0.92 101.89 2.59 90.29 1.38 88.07
NLPCA 1.01 100.97 2.39 89.61 1.39 88.04
1D-CAE

16
0.95 101.77 2.65 87.98 1.34 88.26

DAE 1.19 99.70 2.63 90.04 1.39 88.04
NLPCA 1.23 98.58 2.42 88.63 1.40 87.98

The evaluation results of the different spectral unmixing methods are shown in Figure 2 for quartz-4, Figure 3
for quartz-3, and Figure 4 for HYDICE Urban. The original uncompressed data are used as reference and are
denoted as CR = 1 in the figure legends. It is important to mention that the scaling of the ϵRMSE was chosen
to make the tiny differences between the compression methods visible. Figure 2 shows the spectral unmixing
results of the FCLS-AD and ELMM-AD methods for dataset quartz-4, where the ELMM-AD method achieves
slightly better results. For CR = 4 and CR = 8, the 1D-CAE method performs best, and for CR = 16, the
DAE method performs best. However, the differences in the results occur only on the third and fourth decimal
places and are negligible. The same observation applies to the results in Figure 3, where the aforementioned
smoothing effect also occurs. For example, the unmixing error ϵRMSE in the FCLS-AD for CR = 4 and CR = 8
of the DAE is smaller than in the baseline. The smoothed spectral signature unintentionally improves unmixing.
Since the differences between the different compression methods and compression rates turn out to be small, the
effect of transferability to unknown datasets cannot be conclusively assessed. Figure 4 shows the results for the
HYDICE Urban dataset, where LQM achieves a higher error than the ELMM-AD, although the parameters for
the transformation into the albedo domain are not known. The results of the individual unmixing methods for
the different compression methods and compression rates are almost identical. The spectral unmixing results
show that no significant differences between the different compression methods and compression rates for all
three datasets exist.
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Figure 2. Spectral unmixing results of the quartz-4 dataset.

6. CONCLUSION AND OUTLOOK

We evaluated the information loss of the 1D-CAE for CR = 4, CR = 8, and CR = 16 with the SNR and SA
metric as well as spectral unmixing application. Since the training and test datasets contain only a small amount
of samples for machine learning based compression methods, the 1D-CAE achieved high reconstruction accuracy.
The 1D-CAE outperforms the comparison methods except for the CR = 16 case on the quartz-3 dataset. Since
the SA value is below 3°, the 1D-CAE approach produces sufficiently high quality in the reconstruction of the
spectral signatures.

The spectral unmixing results show, that there is little difference in the error measure between the baseline
and compression rates CR = 4, CR = 8, and CR = 16 of the 1D-CAE procedure, and this is true for all three
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Figure 3. Spectral unmixing results of the quartz-3 dataset. The training of the compression networks has been done with
the quartz-4 dataset.
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Figure 4. Spectral unmixing results of the HYDICE Urban dataset.

datasets. The difference between the 1D-CAE and the DAE, as well as the state-of-the-art NLPCA method,
is small. No direct correlation between the SA and SNR results with the unmixing results could be identified.
Spectral unmixing does not respond to reconstruction errors as strongly as the SA metric does. As a result, the
reconstruction accuracy of the 1D-CAE for small hyperspectral datasets is high and achieves useable performance
for the spectral unmixing task. Considering only the application of spectral unmixing, the user can choose a
compression rate of CR = 16 without significantly worsening the results.

In further investigations, we plan to increase the compression rates and evaluate the information loss based
on spectral unmixing. Furthermore, it would be of great interest how the results change when using more
complex datasets that have a higher number of training and test data and different materials. As the proposed
method only considers compression of the spectral dimension, spatial compression can be included to increase
the compression rate. A 2D-Autoencoder could be applied for the additional spatial compression.
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