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Abstract 

The increasing attention paid to urban air quality modeling places higher requirements on urban 
air quality datasets. This article introduces a new urban air quality dataset—the SmartAQnet2020 
dataset—which has a large span and high resolution in both time and space dimensions. The dataset 
contains 248,572,003 observations recorded by over 180 individual measurement devices, including 
ceilometers, Radio Acoustic Sounding System (RASS), mid- and low-cost stationary measuring 
equipment equipped with meteorological sensors and particle counters, and low-weight portable 
measuring equipment mounted on different platforms such as trolley, bike, and UAV. 
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1. Introduction 

Air pollution causes severe damage to human health. The WHO Air Quality Guidelines 
(Hoffmann et al., 2021) state that adverse health effects of air pollution can be observed not 
only in high exposures but also at very low concentration levels. Due to the large 
concentration of human activities in urban areas, information on urban air pollution is 
particularly interesting. However, fine-grained monitoring and forecasting of urban air 
pollution remain a major challenge. The Smart Air Quality Network (SmartAQnet) (Budde 
et al., 2017a) concentrates on recording urban meteorology and aerosol measurement data in 
fine granularity using heterogeneous measurement technology. Since 2017, this project has 
collected over 300 million observations in the model region of the City of Augsburg, 
Germany, and this number is still rapidly increasing as time goes on.  

In this paper, we share the data collected by SmartAQnet between 2017 and 2020 as the 
open SmartAQnet2020 dataset. The dataset contains 248,572,003 observations recorded by 
over 180 individual measurement devices, including ceilometers, Radio Acoustic Sounding 
System (RASS), mid- and low-cost stationary measuring equipment using meteorological 
sensors and particle counters, and low-weight portable measuring equipment mounted on 
different platforms such as trolley, bike, and UAV. 

2. Background 

Current urban air pollution models can be classified into two main types: physical and 
statistical models. The traditional process of the physical model is first to estimate the 
possible emission sources. Then take emission sources and meteorological data as inputs, 
input them into a series of physics equations, which simulate the transfer, diffusion, and 
chemical reactions of pollutants (Slørdal et al., 2003; Karl et al., 2019). 

Unlike physical models that pay more attention to physical and chemical rules, statistical 
models mainly focus on using methods such as machine learning to summarize the statistical 
characteristics of historical observation records (Singh et al., 2012), (Cheng et al., 2018). 
With the rapid development of machine learning technology, more and more researchers have 
paid attention to statistical models in recent years. Training for good statistical models is 
becoming more and more data-hungry. 

Traditionally, urban air quality data is usually collected by a few stationary, high-
precision professional measuring stations (Budde et al., 2014). They are accurate, well 
maintained, but expensive and need experienced personnel. Only relatively few organizations 
with sufficient technical and financial resources can establish such measurement networks. 
Although such stations can provide high-quality data, it is challenging to base fine-grained 
models on their data because of their scarcity in numbers. 

However, in urban areas, factors related to air quality, such as human activities, 
meteorology, and land use, are highly complex and may change rapidly. In order to meet the 
current needs, the paradigm of air quality monitoring has started to shift towards monitoring 
urban air quality by deploying a large number of low-cost measuring sensors (Budde et al. 
2013) to achieve higher spatial and temporal resolutions (Li et al., 2012; Snyder et al., 2013). 
Our measurement network, the Smart Air Quality Network (SmartAQnet), incorporates both 
data from high-quality measurement stations, as well as lower-cost and -fidelity measurement 
equipment. 



  

             
                

               
             

          
            

             
           

              
             

                
          
          

          
           
        

  

              
              

            
              

            
             

              
             

             
              

     
            

            
           

           
             

          
             
                

              
               
                

           
            

 

3. The SmartAQnet2020 Dataset 

The SmartAQnet2020 dataset includes all the data collected by the SmartAQnet project 
during the time interval from January 1, 2017, to December 31, 2020. The dataset contains 
248,572,003 observations collected in the model region of the City of Augsburg, Germany. 
Various aerosol and meteorological features are measured and collectively referred to as 
observed properties. Table 1 below shows the number of observations included in each 
observed property. There are sometimes multiple observed properties in the Table 
corresponding to the same measured object because the SmartAQnet 2020 dataset comes 
from a large number of heterogeneous sensors. 

As mentioned above, the SmartAQnet project contains a large number of low-cost 
sensors. These sensors are cheap and simple for massive deployment, but on the other hand, 
their working conditions are not as stable as those expensive sensors. Therefore, the actual 
deployment scale of our project and the number of observations fluctuate over time. Figure 
1(a) below shows how the number of observations included in each month in the dataset 
changes. Figure 1(b) shows the average number of daily available devices for each month. 

 
Fig. 1. (a). Counts of observations in each month. (b). Average counts of deployed devices in each month. 

 
Fig. 2. Characteristics of different parts in terms of time resolution, spatial resolution, and accuracy 



Table 1. The number of observations included in each observed property 

Abbreviation in dataset Counts Description 
saqn:op:absp 665,663 Attenuated Backscatter Profile 

saqn:op:bc 27,048 Black Carbon 

saqn:op:blh 1,262,184 Boundary Layer Height 
saqn:op:ca 665,669 Cloud Amount 
saqn:op:dp 4,470,887 Dew Point 
saqn:op:globalrad 283,541 Global Radiation 
saqn:op:hur 48,313,049 Relative Humidity 
saqn:op:irbcc 30,696 Infrared Particulate Matter (IRPM) 

saqn:op:mcpm 47,088 PM Total Mass Concentration 
saqn:op:mcpm1 14,760,604 PM1 Mass Concentration 
saqn:op:mcpm10 53,903,439 PM10 Mass Concentration 
saqn:op:mcpm2p5 53,759,429 PM2.5 Mass Concentration 
saqn:op:mcpm4 1,871,276 PM4 Mass Concentration 
saqn:op:mcpmtotal 120,517 PM Total Mass Concentration 

saqn:op:mcresp 120,519 PM4 Mass Concentration 
saqn:op:ncpm 27,048 PM Total Particle Number Concentration 
saqn:op:ncpm1 54,096 PM1 Particle Number Concentration 
saqn:op:ncpm10 9,465,732 PM10 Particle Number Concentration 
saqn:op:ncpm2p5 81,144 PM2.5 Particle Number Concentration 
saqn:op:plev 5,556,495 Air Pressure 

saqn:op:pnc0p2-1 177,075 Particle number concentration in size range 0.02 - 1 µm 
saqn:op:precip 310,545 Precipitation 
saqn:op:sigmaw 16,206 Sigma of the Vertical Wind 
saqn:op:ta 48,526,008 Air Temperature 
saqn:op:td 1,331,371 Temperature in Device 
saqn:op:theta_a 16,229 Acoustic Potential Temperature 

saqn:op:total 2,273 PM Total Particle Number Concentration 
saqn:op:uvbcc 30,696 Ultraviolet Particulate Matter (UVPM) 
saqn:op:wchill 15,104 Wind Chill 
saqn:op:wdir 404,999 Wind Direction 
saqn:op:wspeed 766,799 Wind Speed 
saqn:op:zcb 665,663 Cloud Base Altitude 

saqn:op:zcl 665,676 Cloud Layer Altitude 

So far, the measuring equipment involved in the SmartAQnet project could be categorized 
into four parts: 

• High accurate scientific measurement technology 
• Consumer-grade and Low-cost measurement sensors 
• Location- and period-fixed Mobile measurements 
• Intensive Sensing Campaigns 



           

     
     

    

     
    
    

    
    

      

      
     

     
     

     
      

     
       

      
      

      
    

            
   

       
    
     

     

       
      
    

    
    

     

     

             
   

      
      
      
    

Each of these four parts has its own characteristics of time resolution, spatial resolution, 
and accuracy. As shown in Figure 2, they cooperated in providing a detailed and 
comprehensive observation system. 

3.1 High accurate scientific measurement technology 

SmartAQnet is integrated into the existing measurement network in the Augsburg area. 
In other words, it incorporates the publicly available data of high-precision measurement 
equipment provided by local authorities.  

First of all, there are four state air quality monitoring stations provided by the LfU Bayern 
(Bavarian State Office for the Environment), which (among other parameters) collects PM10 
readings. 

The second existing measurement network is a ground-based remote sensing network 
consisting of a VAISALA CL51 ceilometer and a METEK Radio-Acoustic Sounding System 
(RASS) (see Emeis et al. (2009); Emeis et al. (2012)), both located on the campus of the 
University of Augsburg. This measurement network serves to observe cloud, wind, and 
temperature data by height profiles. 

The third existing network is a local meteorological station network consisting of 7 
stations, collecting various meteorology properties, such as Temperature, Wind, Pressure, 
Precipitation, etc. 

The three aforementioned networks provide observations with very high accuracy, as well 
as satisfactory temporal resolution. However, the spatial resolution is relatively poor due to 
the sparse number of stations. 

3.2 Consumer-grade and low-cost measurement sensors 

The inexpensive sensors involved in the SmartAQnet project could also be briefly 
classified into two different precision levels: Consumer-grade sensors and low-cost sensors. 
Consumer-grade sensors can be seen as a compromise between high-precision measuring 
stations and low-cost sensors. In terms of price and maintenance costs, they are somewhere 
between the above two. At the same time, the precision of the data they can provide is also 
high enough to be used as a reference device. We deployed 6 Grimm EDM-164OPC Sensors 
during the project as consumer-grade sensors, which serve as reference devices of the Grimm 
sensor network.  

Compared with high-precision stations and consumer-grade sensors, low-cost sensors 
reduce precision for lower price and maintenance costs, enabling them to be massively 
deployed to provide much higher temporal and spatial resolutions. In the SmartAQnet 
project, part of the low-cost sensors come from integrating existing local equipment, and a 
much more considerable amount was directly deployed during the project. We deployed 22 
Grimm EDM-80NEPH Sensors and 35 Grimm EDM-80OPC Sensors. Together with the 
above-mentioned 6 Grimm EDM-164OPC Sensors, these sensors form the so-called Grimm 
network, in which low-cost sensors could make intelligent signal evaluation through 
extensive comparison measurements to reference devices. We also have 84 Crowdsensing 
Nodes composed of a Nova SDS011 Ultrafine Particulate Sensor and a Bosch BME280 
Sensor. All the sensors mentioned above can provide PM and basic meteorological 
observations, and they together constitute the main body of this part. In addition to these 
newly deployed devices, two existing devices provided by Helmholtz Zentrum München 



(HMGU) are integrated into the project, known as HMGU EPI PM Container and HMGU 
EPI Meteo Container.  

In the SmartAQnet project, the locations of the deployed sensors were also carefully 
designed. We selected a rectangle area of about 4 x 6 km in the centre of Augsburg as the 
Central Activity Zone (CAZ), which northwest located at 48.39°N, 10.87°E and southeast 
located at 48.33°N, 10.92°E. We have consciously increased the deployment density of 
sensors in the CAZ since it contains three of the four high-precision stations so that the 
sensors deployed in this area can get better references. The following Figure 3 shows the 
locations of the CAZ and different kinds of stationary sensors. 

 
Fig. 3. Locations of the CAZ and different stationary sensors in and around the City of Augsburg, Germany. 

3.3 Location- and period-fixed mobile measurements 

Mobile measurements were carried out between December 2019 and September 2020 in 
a fixed period and location using two UAV systems. One is a self-constructed fixed-wing 
aerial vehicle, and the other is a rotorcraft of type DJI Matrice 600 pro. Both UAVs are 
equipped with a measuring device that integrates low-weight weather parameter sensors 
(Sensirion SHT75/SHT85) and particle counters (Alphasense OPC-N2/OPC-N3), special 
sensor inlets and pumps are installed to reduce the influence of the UAV. Thus, they could 
detect relative humidity, temperature, and PM concentrations data. 

Central Activity Zone (CAZ)

Crowdsensing Nodes

Grimm Network

Radio-Acoustic Sounding System

Ceilometer

Local Meteorological Station

State Air Quality Monitoring Station



              
    

             
                   

            
            
                
               

          

 
                  

      

            
              

                 
           
        

                
        

   

 

 

  

  

    

The mobile measurement data provided by the UAV observes the detailed three-
dimensional dynamics of the lower atmosphere with fine granularity, which can be used as a 
powerful supplement to the remote sensing measurement provided by the ceilometer and 
RASS. However, due to the limitation of UAV load capacity, these measurement data can 
only be collected with low-weight sensors, so the observation precision cannot match with 
the highly accurate scientific measurement technology. In addition, since the UAV flight 
requires the operation of the pilot on the ground, it can only be carried out regularly at a 
certain frequency, thus cannot fully cover the time dimension. 

3.4 Intensive Sensing Campaigns 

During the data collection period of SmartAQnet, several intensive sensing campaigns 
were held. Mobile measuring devices were installed on trolleys and bicycles during the 
campaigns and were carried through the city by participating personnel.  

Between August 2018 and June 2020, several intensive sensing campaigns were carried 
out using trolleys equipped with portable sensors. The trolleys are equipped with GPS 
(GPSMAP 64s, Garmin, USA), which records the position with the 1-second resolution, and 
is equipped with a variety of portable PM sensors, such as DustTrak DRX Aerosolmonitor, 
P-Trak Ultrafine Particle Counter 8525, Grimm 11e, Aethlabs microAeth MA200, Hand-
Held Condensation Particle Counter Model 3007, Testo DISCmini, Aerocet 531S, etc. Figure 
4(a) below shows the route of the trolleys’ measurements. 

Since January 2020, we have introduced another mobile measurement method. 
Backpacks equipped with GPS, low-weight weather parameter sensors (Sensirion 
SHT75/SHT85), and particle counters (Alphasense OPC-N2/OPC-N3) were installed on 
bicycles for mobile measurement. Measurements made with bikes are more frequent 
compared to measurements performed with trolleys. One could find multiple measurement 
activities in most months of 2020. Figure 4(b) shows an example route from the bike 
measurements. 

 
Fig. 4. (a). Route of the trolley measurements. (b). An example route from the bike measurements. 

The coverage in the time dimension is more limited due to the effort required to organize 
activities. However, this part of the data has extremely high coverage in the space dimension. 



4. Discussion 

In this section, we would like to discuss the further opportunities we believe the 
SmartAQnet 2020 dataset provides. Work already done based on data from the SmartAQnet 
project includes the performance evaluation of low-cost PM sensors (Budde et al., 2018), the 
development of novel calibration approaches (Schlund et al., 2020), spatial modeling (Shen 
et al., 2019) and interpolation (Tremper et al., 2021) approaches, and higher-level 
applications such as air-quality-based bike routing (Janßen et al., 2021). Even meta-level 
discussions have been informed by the experiences in collecting distributed air quality data 
from heterogeneous sensors, such as work towards sustainable business models for high-
resolution air quality assessment (Schäfer et al., 2021). 

The first opportunity the SmartAQnet 2020 dataset provides is modeling urban air quality. 
In our dataset, we have a large number of observations, observing the model area with high 
resolution. It can meet the requirements of statistical modeling very well. On the other hand, 
since we have also recorded various meteorological data, it could also be used for physical 
modeling. 

Secondly, the dataset can also be used to evaluate Spatial-temporal interpolation 
algorithms. The data provided by the high-precision measuring station and the intensive 
sensing campaigns offer multiple possibilities for evaluation. 

Thirdly, the dataset provides good opportunities for understanding the performance of 
low-cost sensors in the field. SmartAQnet features long-term, high-volume, low-cost sensor 
usage. Therefore, the dataset holds the possibility to illustrate problems or limitations in data 
quality (Budde et al., 2017b) when deploying low-cost sensors. It can potentially also be used 
to benchmark the real-world applicability of different existing (e.g., Budde et al., 2015) or 
newly proposed data cleaning or distributed calibration methods for low-cost sensors (e.g. 
(Hasenfratz et al., 2012; Markert et al., 2016; Delaine et al., 2019). 

Fourth, the dataset could be used for understanding how the Coronavirus (SARS-CoV-2) 
– or rather the accompanying changes in urban activity – affected urban air quality. Our 
dataset covers both the first wave of the Corona period, which means the second half of 2020, 
and the non-Corona-period. During the Corona period, with different restrictive policies in 
effect, reduced human activity possibly affected the distribution of particulate matter. By 
analysing the difference between these two periods, we could gain a deeper understanding of 
such effects. 

5. Accessing the Dataset  

The SmartAQnet 2020 dataset is publicly available with a CC BY 4.0 Attribution license. 
The latest version of the dataset as of this writing can be accessed with the following DOI: 
10.35097/540. All works that make use of the SmartAQnet 2020 data should include a 
reference using that DOI, as well as giving scholarly credit by citing both the SmartAQnet 
project (DOI: 10.1117/12.2282698) and this dataset paper itself (DOI: 
10.14644/dust2021.001). 

Since most of the sensors used in the SmartAQnet project are still in operation, we will 
release our new datasets at a certain frequency as a supplement to the SmartAQnet 2020 
Dataset. Information about the latest release of the dataset can be obtained by visiting the 
official homepage of the SmartAQnet project (www.smartaq.net). 

           
               

                 
           

    

               
           

           
          

          
          

              
           

                
            

  

  

              
        

 

                
           

              
       

                
           

                     
                 

         
                 

                
      

                     
               

    
                   
            
                

        
                  

          
                  

         
                

       
                  
               



  

              
             

              
            

            
            

             
           

        
             

                
               

               
 

           
            

       
           

           
              
               

              
            

            
            

               
                 

            
            

              
  

     

              
                 

              
               

         
 

                
               
               

       

The SmartAQnet 2020 dataset itself only includes PM- and meteorology-related records. 
Other datasets of factors closely related to the distribution of urban air pollutants, such as 
land use, traffic volume, etc., are not released together for distinct reasons. If there is a need 
for these data, we are willing to assist within our capacity. 

6. Conclusion   

In this paper, we presented the SmartAQnet 2020 Dataset. It was collected in the model 
region of Augsburg, Germany between 2017 and 2020 and contains 248,572,003 
observations recorded by over 180 individual devices, including ceilometers, Radio Acoustic 
Sounding System (RASS), mid- and low-cost stationary measuring equipment using 
meteorological sensors and particle counters, and low-weight portable measuring equipment 
mounted on different platforms such as trolley, bike, and UAV. 

We have used the dataset ourselves for a variety of analyses, including the development 
and evaluation of modeling, spatial interpolation, and distributed calibration approaches. We 
provide the dataset to the public under a permissive open data license as an opportunity to 
develop or benchmark existing or novel approaches based on heterogeneous, real-world air 
quality data. 
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