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Abstract

The use of energy flexibility to balance electricity demand and supply is becoming
increasingly important due to the growing share of fluctuating energy sources. Electric
flexibility regarding time or magnitude of consumption can be offered in the form of
different products on electricity spot and balancing power markets. In the wake of the
energy transition and because of new possibilities provided by digitalization, the decision
intervals on these markets are becoming shorter and the controllability of electricity
consumption and generation more small-scale. This evolution opens up new chances for
formerly passive energy consumers.

This thesis shows how electric flexibility can be monetized using the application
example of commercial sites. These are often multimodal energy systems coupling
electricity, heat, and gas, and thus deliver high flexibility potential. To leverage this
potential, a comprehensive picture of demand-side flexibilization is provided and used
to propose an energy management system and optimization for cost-optimized device
schedules. The cost-optimization considers two simultaneous incentives: variable day-
ahead spot market prices and revenues for offering possible schedule adjustments to the
automatic Frequency Restoration Reserve (aFRR) balancing market.

To solve the formulated optimization problem, a genetic algorithm is presented,
tailored to the specific needs of consumers. In addition to addressing the trade-off
between the two competing markets, the algorithm inherently considers the uncertain
activation of aFRR bids and related catch-up effects. An analysis of the activation
behavior of aFRR balancing market bids, based on a developed ex-post simulation,
forms an important decision basis for the optimization. Finally, a simulation study
concentrating on battery energy storage systems and combined heat and power plants
on the consumer side enables the quantitative discussion of the optimization potential.

The results show that consumers considering both markets simultaneously can achieve
cost benefits that are up to multiples of those for pure day-ahead price optimization,
despite the stochastic nature of aFRR balancing power activations. In conclusion, this
thesis enables formerly passive electricity consumers to assume the role of alternative
balancing service providers, hence contributing to the economic and reliable operation
of power grids characterized by a high share of renewable energy sources.
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CHAPTER 1
Introduction

In the twenty-first century, electricity is the foundation for a high standard of living
throughout the world. We are used to benefit from electric energy independent of time
by simply plugging electric devices into a power socket connected to the public grid. The
complexity required to provide this freedom to individuals and businesses is well-hidden
behind the power socket. Behind it lies a complex, increasingly digitalized, system with
various entities and processes that are closely working together to provide the reliable
delivery of electricity around the time. This complex techno-socio-economical systemwas
initially built to cope with the challenges of the previous century. At that time, the primary
challenge was the distribution of electricity from large, central electricity generators to
distributed electricity consumers1. Nowadays, the general conditions are changing due to
rising awareness of the implications of the chosen energy mix. As global warming shapes
the earth in the long term, worldwide governmental goals aim at reducing greenhouse
gas emissions. This results in historic changes to the energy landscape. Targeting
lower greenhouse gas emissions, large fossil-fuel driven power plants are successively
replaced by electric power generation based on decentrally available renewable energy
sources such as photovoltaic and wind power. This disruptive development comes
along with far-reaching challenges. One of them is the high dependence of renewable
power generation on weather conditions, resulting in an intermittent and fluctuating
power supply. Before the extensive rollout of renewable energy sources, large stochastic
fluctuations could only be found in power demand, not in power supply. Consequently,
in earlier power grids, the permanently required balance of power demand and supply
could be implemented by controlling the supply of a comparatively small number of
large power plants according to the actual demand.

Information and communication technology bears great potential to efficiently handle
the nowadays increasing share of intermittent and fluctuating power supply [Sia14].

1In a closed system, electric energy is neither generated nor consumed, but instead converted from or to
other energy forms such as thermal or kinetic energy. In this thesis, we use the established wording of
generation and consumption of energy to refer to this process.
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The term Smart Grid summarizes digitalized power grids with intelligent coordination of
generation and consumption [AM13; Far10]. Digitalization in this context is discussed
on different system levels [Goe+14]. Examples range from single households with
Building Energy Management Systems that are, e. g., shifting the runtime of heat pumps
according to renewable generation, up to self-arranging energy communities whose
participants coordinate the exchange of energy by means of decentralized control
mechanisms. In this thesis, we focus on using flexibility regarding time and power of
electric consumption in a grid-supportive and monetarily rewarding way. The scenario
considered focuses on two aspects. Firstly, the German electricity and balancing power
market environment, and secondly, commercial facilities in terms of office building
complexes that bring together different forms of energy such as electricity, heat, cold, or
gas.

The rest of this chapter provides a more detailed view on the motivation for this thesis,
contributions added to the current state of the art, the core research questions, and
challenges tackled when answering them. Finally, the chapter ends with a roadmap
through the thesis.

1.1 Motivation
The introduction of fluctuating renewable energy sources puts the steady balance of
electric power demand and supply at risk. In alternating current (AC) grids, a global
indicator representing the demand-supply balance is the grid frequency. In the syn-
chronized grid of Europe, the nominal frequency is defined to be 50Hz. Apart from
limitation through a certain speed of propagation, the grid frequency is independent of
the geographic position within the grid. In the chapter on power system fundamentals,
we explain why the frequency decreases below 50Hz if the demand is higher than the
supply, and increases above 50Hz if the demand is lower than the supply. A primary
goal in the operation of AC power grids is the steady balance of demand and supply, and
hence keeping a stable grid frequency. As subsequently explained, electricity spot and
balancing power markets provide economic stimuli for reaching this goal by utilizing
the runtime flexibility of electricity generators and consumers.

1.1.1 Balancing Demand and Supply in Electricity Grids
There are two fundamental mechanisms that allow balancing electricity generation
and consumption to keep the grid frequency within a specific tolerance range. While
the technical motivation is the same for all power grids, their implementation can vary
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between grids. For instance, Germany belongs to the European synchronized grid
with a nominal frequency of 50Hz, while the synchronized grid in the United States of
America is operated at a nominal frequency of 60Hz. Furthermore, details regarding
market designs, regulatory paradigms, or timing behaviors may vary between different
grids. However, a common requirement for the stable operation of all AC grids are the
subsequent two major mechanisms (M1 and M2):

M1: Determining power schedules for demand and supply
The first mechanism addresses the temporal planning of electricity generation (feed-
in) and consumption (feed-out) and results in power schedules for generators and
consumers. A power schedule represents energy supply or demand per time step.
In public grids, this mechanism is, to a large degree, implemented by electricity
spot markets where energy is traded in different time granularities (per hour, per
quarter-hour) and with different lead times (days or even minutes ahead).
→ Realized through electricity spot markets.

M2: Managing power schedule fluctuations and deviations
The demand and supply schedules determined via Mechanism 1 are usually based
on energy amounts per time intervals of 15 minutes. Due to planning uncertainties,
deviations from the determined demand and supply schedules are inevitable, and
power fluctuations within a 15-minute time interval are common. Respective
deviations put the grid frequency and hence the physical grid stability at risk. In
such cases, a mechanism is required to close the gap between demand and supply.
In public grids, this is implemented by balancing (power) services and related
balancing (power) markets. At balancing markets, balancing service providers
(BSPs) offer to hold back the flexibility to adjust their consumption or generation
within seconds to minutes upon short-term activation requests. Balancing power is
also referred to as control reserve.
→ Realized through balancing power and balancing markets.

Demand and supply curves resulting from the schedule generation are illustrated
in Figure 1.1 whereby quarter-hour schedule intervals are common in most countries,
including Germany. If the energy feed-in and feed-out is uniformly distributed within
a 15-minute interval, the demand and supply curves overlap. If demand and supply
diverge, it can be recognized that demand and/or supply have to be increased and/or
decreased till the power gap is closed. This is realized by balancing power. In the
example, the power gap is denoted as 𝑝1 and 𝑝2 respectively. It is visible that one can
split balancing power measures into negative and positive balancing power. Negative
balancing power is needed when the demand is lower than the supply (i. e., the frequency
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demand < supply

t (quarter hours)

Negative balancing power:
↓ Decrease supply, and/or
↑ Increase demand

Positive balancing power:
↑ Increase supply, and/or
↓ Decrease demand

demand > supply

p2

Power

perfect match

00:15 00:30 00:45 01:00 01:15 01:3000:00

demand
supply

p1

Figure 1.1: Balancing power handles power schedule deviations and fluctuations to guarantee
a steady balance of demand and supply.

is above the default), and positive balancing power is needed when the demand is higher
than the supply (i. e., the frequency is below the default).

In Germany, the schedule generation in Mechanism 1 is mainly based on trading at
the European Power Exchange (EPEX), which is based in Paris, France. Large consumers
and generators use this wholesale market to trade electric energy in the form of different
products. These products mainly vary regarding their time interval length (representing
the duration of the offered power provisioning) and their lead times (representing the
minimum time between trade and delivery). However, due to the minimum required
trading amounts and the overall process complexity, smaller consumers and producers,
such as households or smaller commercial sites, do not directly participate in whole-
sale electricity markets. Instead, power suppliers aggregate their demands and act at
wholesale electricity markets in the form of large virtual consumers or producers.

For Mechanism 2, different balancing power products are established depending on
the speed of the reaction. For the willingness to adjust their schedules, BSPs usually
receive a capacity price [EUR/kW]. The maximum allowed time between the activation
request of a balancing power offer and the delivery of the power adjustment depends
on the balancing power product. Depending on the product, BSPs earn an additional
energy price for the energy delta they provide [EUR/kWh]. In the European grid, the
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European Network of Transmission System Operators for Electricity (ENTSO-E) specifies
a framework of boundaries within which participating countries can realize their own
balancing power mechanisms [Eur17; Eur18b]. According to the ENTSO-E guidelines,
Transmission System Operators (TSOs) are responsible for managing balancing power
mechanisms. Three categories of balancing power products are established to guarantee
schedule adjustments within seconds, minutes, or quarter hours. Traditionally, balancing
power is provided by conventional power plants that intentionally only operate at partial
load, e. g., only providing 90 percent of their maximum power output. Depending on
frequency deviations, and hence demand and supply imbalances, BSPs must adjust
their power schedules. The requirements for the schedule adjustments depend on the
balancing power product offered by the BSP. In the end, the sum of BSP schedule
adjustments minimizes the grid-wide gap between demand and supply.

1.1.2 Energy System Transition & Impacts on Grid Operation
Scientists agree that greenhouse gases are responsible for global warming resulting in
rising sea levels, regional changes in precipitation, and more frequent extreme weather
events [Int14]. Developed countries are responsible for a large share of greenhouse gas
(GHG) emissions. For this reason, 38 industrialized countries committed themselves
to the Kyoto Protocol in 1997, which aims at reducing human-made greenhouse gas
emissions [Uni98]. In the following years, more countries followed, and in 2020 the
agreement was ratified by 191 countries [Uni20]. During the first commitment period
(2008–2012), the participating countries agreed to reduce GHG emissions by at least
an average of five percent against 1990 levels, and in the second commitment period
(2013–2020), this target was increased to at least 18 percent [Uni17]. This was the
start of a successive worldwide shift from mainly coal-fired power generation to a power
system largely based on renewable and environment-friendly energy resources. In 2014
[Eur14a] and updated in 2018 [Eur18a], the European Union (EU) agreed on more
specific energy targets that have to be met by 2030: 40 percent reduction of the EU
greenhouse gas emission compared to 1990, a share of 32 percent of the EU’s final
energy consumption from renewables, and 32.5 percent improvement in energy efficiency.
In the Paris Agreement from 2016, 191 countries agreed on determining, planning,
and regularly reporting their contributions to mitigate global warming [Uni16]. The
agreement goes beyond previously set targets by pursuing the long-term goal of limiting
the global average temperature increase to 1.5 °C compared to pre-industrial levels.

Germany is often recognized as taking over a pioneering and leading role in transition-
ing from a fossil-fuel based to a sustainable, renewable energy system [Hak+15; Wor20].
Already in 2010, Germany set ambitious targets regarding renewable generation in
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the electricity sector [Bun10]: 35 percent by 2020, 50 percent by 2030, 65 percent by
2040, and 80 percent by 2050 (as a share of the gross electricity consumption). In the
electricity sector, the national goal for 2020 (35 percent) was met in 2018 with a share
of 37.8 percent and in 2019 with a share of 42.1 percent [Bun20a]. Nuclear power
plants do not emit greenhouse gases; however, they bear the risk of nuclear meltdowns
and carry unsolved issues regarding the permanent disposal of nuclear waste. Therefore,
in reaction to the Fukushima nuclear disaster in 2011, Germany decided to additionally
shut down all nuclear power plants in Germany by 2022 [Bun11]. Furthermore, in 2020,
Germany is discussing a draft law [Deu20i] for successively stopping coal-fired power
generation latest by 2038. Discussing such heavyweight changes, it is worth noting that
the electricity supply is a complex techno-socio-economical system. It consists of various
operational mechanisms, a diverse landscape of actors and markets, and extensive regu-
lation by laws and other instruments [Bun14; Bun15a] that have emerged as an answer
to relatively consistent requirements during the previous century. Consequently, the
historical transformation from a coal- and nuclear-driven power system to a sustainable,
renewable one comes along with numerous challenges for the operation of electricity
grids.
The work presented in this thesis mainly contributes to three of these challenges:

C1: The increased fluctuation and intermittency on the supply side increases the
need for a flexible demand side: Due to the strong dependence on weather con-
ditions, renewable energy sources are characterized by intermittency and power
fluctuations. The balance of demand and supply is reflected by energy prices. As
only limited flexibility is available on the demand side, the increased supply-side
intermittency and fluctuation tend to increase price variances at electricity spot
markets. [WGH16; Str08; SW14; Woo+11; Ket14]
→ Consequence: An increased potential for the economic exploitation of consump-
tion and generation flexibility via electricity spot markets can be recognized.

C2: The phase-out of conventional power plants decreases the available balancing
capacity: Traditionally, balancing power is mainly provided by conventional power
plants that are successively replaced by renewable energy sources. In addition,
the loss of conventional BSPs is aggravated by stochastic renewable energy sources
introducing new uncertainty. [Agr+14; ASH15]
→ Consequence: There is a need for alternative BSPs, which can be satisfied by
flexible electricity consumers and generators located at demand side entities.
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C3: The decentralization significantly increases the number of system entities
potentially participating in the demand-supply matching: Renewable energy
based on sun or wind is available spatially decentralized. It is not limited to rare
environmental conditions (such as in the case of coal, where the efficient transport
of resources is a major criterion for choosing the plant location). Due to limited
economies of density, installing smaller units is already lucrative. This naturally
increases the number of entities participating in the demand-supply matching
process. [AM13; PD11]
→ Consequence: The increased overall coordination effort can be managed by a
decentralized control realized by smaller sub-systems.

1.1.3 Commercial Facilities as Active Grid Participants
In this thesis, we use the term commercial facility to refer to a building complex made up
of office buildings with electricity, heating, and cooling demands. Commercial facilities
are often characterized by local on-site generation, e. g., via photovoltaics or combined
heat and power plants [Rie17]. Additionally, a solid trend towards on-site charging
infrastructure for electric vehicles can be recognized. Traditionally, from the grid view-
point, such commercial facilities take the role of pure energy consumers. However,
the capability to adjust their electricity consumption and generation to some degree
allows them to tackle the above-introduced challenges by utilizing electric flexibility
incentivized by electricity and balancing power markets. Utilizing flexibility can result
in decreased energy costs for the facility operator on the one hand, while the grid can
benefit from additional grid-supporting services on the other hand. The combination of
a traditional demand-side entity (consumer) with supply-side capabilities (producer)
is also referred to via the portmanteau word prosumer. Prosumers can be seen as grid
entities that can adjust demand and supply within certain boundaries according to local
or grid-side incentives.

A Facility Energy Management System (FEMS) enables the utilization of electric
flexibility by processing information from entities representing the grid side to control
energy consumers and generators located on-site. The above-elaborated consequences of
the energy transition support the introduction of FEMSs as follows. Firstly, the increased
price variance at electricity spot markets (→ challenge C1) allows facility operators to
realize economic benefits via a FEMS that automatically uses electric flexibility regarding
time and power for the optimized procurement of energy. In addition, the need for
alternative BSPs (→ challenge C2) tends to lower barriers to access the balancing power
market, hence opening it for facilities and resulting in an additional source of income
for facility operators. Finally, as natural aggregation instances, FEMSs can be seen as
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power grid sub-systems that autonomously can couple and coordinate different energy
forms based on local needs and external incentives. Consequently, by minimizing the
communication overhead and conducting a local optimization, FEMSs can contribute to
a simplification of the overall demand-supply matching process (→ challenge C3).

Figure 1.2 visualizes the concept of a FEMS utilizing on-site flexibility in electric
power consumption for acting at spot and balancing markets. It shows the facility
as natural aggregation instance at which energy demand, supply, and buffers come
together. Furthermore, this aggregation level brings together different forms of energy
and unites electricity, heat, cold, and gas such that they can be optimized together. In
particular, the coupling with existing buffering options allows devices to be operated
flexibly regarding their runtime and power level. This flexibility can be used for buying
or selling electric energy at the spot market while simultaneously providing balancing
power via balancing power markets. The daily day-ahead optimization results are
represented by the information flows marked with an 𝐴. This information flow includes
device schedules, bids to the spot, and bids to the balancing power market (i. e., the
offer of short-term schedule adjustments that can be activated within a lead time of
seconds to minutes). If a balancing power bid is activated (→ information flow 𝐵1), the
facility’s overall electricity demand has to be adjusted according to the bid. The FEMS
realizes this by adjusting device schedules and communicating them to the respective
devices (→ information flow 𝐵2). Depending on the activation of balancing power bids
and in order to guarantee the satisfaction of on-site energy needs, device schedules may
also be readjusted intraday via the intraday spot market (→ information flow 𝐵3).

1.1.4 Value Stacking of Flexibility at Spot and Balancing Markets
In the course of this thesis, we focus on the EPEX day-ahead (DA) spot market and
automatic Frequency Restoration Reserve (aFRR) provided via the aFRR market in
Germany. As electric flexibility has a value in both markets, jointly considering them
allows potentially increasing the monetary benefit for the facility operator. Therefore,
the optimization provided by this thesis simultaneously considers both markets. This
is also referred to as value stacking or multi-use of flexibility [Kla+18]. Traditionally,
balancing services are provided by generators on the supply side. In contrast, consumers
and generators that are directly located at demand side entities can be used to act as
alternative BSPs. A significant challenge of demand-side BSPs is that they must satisfy
local needs such as heating or cooling. Therefore, uncertain balancing power activations
of flexible devices on the demand side can result in catch-up effects after a balancing
power activation, i. e., the need for a later increase or decrease of the facility’s consump-
tion to satisfy the local needs. Potential catch-up effects resulting from balancing power
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Figure 1.2: Concept of a FEMS monetizing electric flexibility via spot and balancing markets.
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activation impact the facility’s previously determined device schedules. Consequently,
to minimize the imbalance of demand and supply (of a balancing responsible party, see
Section 2.2.1), known catch-up effects have to be considered in the spot-market based
schedule generation. In practice, catch-up effects through flexible demand-side BSPs
are not yet of high relevance. Due to the relatively low share of BSPs on the demand
side, the topic of balancing-power induced catch-up effects is not explicitly addressed by
regulation [Deu16]. However, as the active integration of the flexible demand side into
the electricity system is a declared goal of the government [Bun15a], the importance of
adequately managing catch-up effects can be assumed to increase in the near future
[Deu16]. We define that the whole electric energy demand of a facility, including the
demand from the devices controlled by the balancing-power providing FEMS, belongs to
one dedicated balancing group, which is kept balanced via the electricity spot market.

The proposed optimization takes advantage of the knowledge that the activation of an
aFRR bid (i. e., whether the bid is activated and, if yes, for how long) depends on the bid’s
aFRR energy price. Following the aFRR merit order list, cheap bids are always activated
prior to more expensive ones, and hence, they have a higher activation probability. This
way, an optimization can roughly influence the activation characteristics of balancing
power bids by adjusting their energy prices. In addition, information about expected
aFRR activations allows for considering potential catch-up effects already in the day-
ahead optimization. However, unforeseen schedule deviations through aFRR activations
are always possible due to the stochastic nature of balancing power. Consequently,
differences between planned and actual states of on-site devices and resulting catch-up
effects are likely. For example, the temperature of a hot water storage can get lower
than expected (if an activated balancing power bid turns off a combined heat and power
plant longer than expected). Alternatively, the state of charge of an electric vehicle
battery can get higher as expected (if an activated balancing power bid charges the
battery longer than expected).

Although information about expected balancing power activations can be used as
input for the optimization of spot and balancing market bids, it is crucial to preserve the
possibility of satisfying unexpected balancing power activations. For handling unforeseen
balancing power activations, it is possible to intentionally provide only a share of the
available flexibility as balancing power. For instance, if only a small range of a possible
storage capacity is considered as degree of freedom in the day-ahead device scheduling
(e. g., by only planning with a state of charge between 30 and 70 percent), an additional
buffer is available for handling unforeseen balancing power activations. Aiming at
maximum profit, the optimization proposed in this thesis dynamically weighs up the
trade-off between possible aFRR revenues and decreased cost savings at the day-ahead
spot market while guaranteeing unexpected aFRR activations.
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Another option for handling unforeseen balancing power activations is the intraday
schedule readjustment, e. g., via the intraday spot market. Here, we can distinguish two
cases. In the first case, balancing power activations lead tomore energy consumption than
expected (e. g., if a battery’s state of charge gets too high). Then, surplus energy already
procured day-ahead, which was not yet consumed, can be sold at the intraday spot
market. In the second case, balancing power activations lead to less energy consumption
than expected (e. g., if a battery’s state of charge gets too low). Then, missing energy
can be bought at the intraday spot market.

1.2 Research Objective & Contributions
Given the above motivation, this thesis provides a concept and optimization for a
FEMS that utilizes a facility’s consumption and generation flexibility. The proposed
optimization addresses two aspects. Firstly, it schedules devices according to prices
at the day-ahead spot market. Secondly, it provides aFRR capacity by leveraging the
facility’s ability to quickly increase or decrease the power demand upon stochastic
grid needs within five minutes. Potential catch-up effects resulting from balancing
power activations in the aftermath of an activation are already considered in the spot
market procurement. If not explicitly stated differently, this thesis refers to the German
power system. This particularly covers German electricity spot and German balancing
power markets. Although commercial facilities set the motivational scenario in this
thesis, the elaborated results have a broader validity and can be transferred to flexibility
aggregators in other domains.
To reach the overall goal, we define five research questions:

RQ1: System environment and information processing
What are information-processing system entities, communication links, character-
istics of information flows, and uncertainties that have to be managed by a FEMS
that utilizes electric flexibility in consumption and generation for participating in
spot and balancing markets? (→ Chapter 2 + Chapter 4)

RQ2: Modeling and simulation in the prosumer context
How can grid and facility side system entities in the context of a spot- and
balancing-market driven FEMS be modeled such that the flexibility potential can
be assessed by simulation? (→ Chapter 4)

RQ3: Analysis of aFRR balancing power activations
How are aFRR activations characterized, and to what extent can these character-
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istics be used as input for an optimization that enables balancing power provision
via alternative BSPs on the demand side? (→ Chapter 5)

RQ4: Optimization for value stacking of flexibility and market bids
How does an efficient algorithm have to look like that utilizes electric flexibility
on the demand side by simultaneously considering both the day-ahead spot and
the aFRR balancing market—and what are appropriate inputs? (→ Chapter 6 +
Chapter 7)

RQ5: Benefits of value stacking prosumer flexibilities
What is the monetary effect for flexibility owners of utilizing electric flexibil-
ity by value stacking the day-ahead spot and aFRR balancing market options?
(→ Chapter 8)

The thesis contributes to the research field of energy informatics, a research field in
the computer science community that brings together methods of computer science,
automation, economics, and electrical engineering to manage the increased complexity of
electricity grids [Goe+14]. This thesis makes three significant contributions. The first is
an efficient algorithm that utilizes electric flexibility by jointly considering the day-ahead
spot and the aFRR balancing market, embedded into an optimization approach that
can handle balancing power activation uncertainties. The design of the flexibilization
algorithm is partly guided by algorithm engineering methods [San09]. The second is a
simulation and analysis of the German aFRRmarket. This is based on an implemented ex-
post simulation using historical market data. The third contribution builds upon the first
two and is an assessment of the flexibilization potential from the facility operator’s view
in current and future scenarios. This evaluation of the overall optimization approach is
simulation-based.

Different challenges must be addressed to answer the above presented research
questions. The highly interdisciplinary thematic environment in particular requires a
sound overall system competency: characteristics of energy consumers and generators,
optimization methods, information and communication architectures, power system
mechanisms, and different markets have to be understood in detail, and gaps between
these areas have to be bridged with having the big picture in mind. Simulating the
involved system entities and information flows requires finding adequate time granulari-
ties, representations for the power system, and relevant device attributes. The design
of an algorithm that allows for a joint spot market and balancing power market driven
flexibilization has to handle various non-linear interdependencies and has to explore
a big solution space. In particular, the value stacking through managing the trade-off
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between the two concurrently incentivizing markets, in combination with the handling
of catch-up effects of demand-side BSPs, is not solved by prior work.

The content presented in this thesis is partially based on peer-reviewed publications
that have been previously published by this author as stated in Section A.1.

1.3 Thesis Structure
This introductory chapter motivated the scenario of commercial facilities acting at the
(day-ahead) spot and the (aFRR) balancing power market. The upcoming two chapters
deal with the basics required for answering the introduced research questions:

Ch. 2: Basic Theory of Smart Grid Operation and Optimization — presents funda-
mentals for an in-depth understanding of electric power systems. This includes
an explanation of operational mechanisms, different electricity and balancing
markets, and regulations that are relevant for market participants. Furthermore,
implications coming along with the energy transition are put into context.

Ch. 3: Related Work — gives an overview of related work covering different types of
flexibilities and provides a categorization and assessment of different flexibiliza-
tion options found in literature and practice.

After setting the foundations, Chapters 4–7 provide the required modeling, an analysis
of the impacts of the choice of aFRR energy prices, and the optimization that jointly
considers the day-ahead spot and aFRR balancing market:

Ch. 4: Modeling in the Context of a Grid-responsive FEMS — presents the modeling
and simulation of relevant system entities. Initially, information-processing
entities are identified and information flows between relevant stakeholders are
discussed. Based on this, selected grid and facility side entities are modeled and
implemented for the simulative assessment of the flexibility potential presented
later. On the grid side, focus is put on the German day-ahead spot market and the
German aFRR balancing market with its activation mechanism. On the facility
side, focus is put on typical consumers and generators.

Ch. 5: Analysis of aFRR Activations — provides a quantitative analysis of balancing
market characteristics based on the defined model for the German aFRR balanc-
ing market and the related activation mechanism. This includes a discussion of
drivers for demand and supply uncertainties. Particular focus is put on investigat-
ing the impact of the choice of aFRR energy prices on the activation probability.
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The results of this quantitative analysis are used as input for the later proposed
optimization.

Ch. 6: Formulation of Optimization Problem for Flexibility Value Stacking at Day-
ahead Spot and aFRR Balancing Markets — proposes the optimization for the
flexibilization of demand-side consumers and generators and mathematically
formulates the problem. The optimization outputs are device schedules and
offers to the day-ahead spot and aFRR balancing market. This chapter covers the
discussion of related uncertainties and different optimization methods regarding
their suitability.

Ch. 7: Design and Implementation of a Genetic Algorithm — puts the emphasis
on the design of a genetic algorithm to solve the defined optimization problem.
Besides the overall optimization scheme, the genotype-phenotype mapping
and exemplary bit representations are presented for the prior modeled facility
devices.

Building upon the above contributions, Chapters 8 and 9 evaluate the proposed opti-
mization, and conclude the thesis:

Ch. 8: Evaluation and Assessment of the Optimization Potential — provides an
assessment of the flexibility potential, evaluates the proposed optimization, and
compares the results with the current state of the art. Based on the definition
of a benchmark scenario, a sensitivity analysis is provided. It investigates the
impact of various parameters, such as price level changes or the dimensioning of
facility devices.

Ch. 9: Conclusion — concludes the thesis with a summary, a critical discussion of the
results, and an outlook on future research directions.
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CHAPTER 2
Basic Theory of Smart Grid
Operation and Optimization

The presented work is interdisciplinary, covering aspects from power system operation,
electricity and balancing markets, mathematical optimization, information and com-
munication architectures, and the operational control of devices. This chapter presents
the fundamentals required for this thesis and puts the work into the broader context.
Therefore, the general architecture of power systems is explained. Special focus is put
on the German power system, electricity and balancing markets, as well as underlying
operational mechanisms. Further, this chapter discusses actors, regulation, and impli-
cations of the energy transition in detail. This allows understanding newly emerging
options for flexible demand-side entities with regards to grid stability, environmental,
and monetary benefits.

2.1 Grid Architecture and Stability

Provisioning of electricity via public power grids can be separated into four major tasks:
generation, transmission, distribution, and retail. Generation describes the conversion
of primary energy sources (such as coal, natural gas, solar, or wind energy) via power
plants into electric energy (which after conversion from a primary energy source is
also referred to as secondary energy). Transmission describes the transfer of generated
electric energy over longer distances, and distribution describes the transfer to final
consumers; both is done via power lines. Retail describes the selling of electric energy
to final consumers.

Traditionally, in the operation of power systems the four segments generation, trans-
mission, distribution, and retail have been closely linked. Altogether they were provided
by vertically integrated utilities that have been accepted as natural monopolies also in
free market economies. However, over time the “essential facilities doctrine” gained
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Chapter 2 Basic Theory of Smart Grid Operation and Optimization

acceptance in the electricity sector [BK00]. It states that monopolists owning a facility
essential to other competitors should provide reasonable access to that facility. In 1996,
following the essential facilities doctrine, the liberalization of the electricity sector in
Europe started with the European Union (EU) directive on the “internal market in
electricity” [Eur96]. In 1998, Germany strictly separated the four segments generation,
transmission, distribution, and retail. This unbundling was done based on the amended
German Energy Industry Act1 (EnWG) which transposes the EU directive into national
law. Since then, the services of the four segments have legally to be provided by sep-
arated organizations. As a consequence, a competitive market environment can now
be found within the segments generation and retail. As the operation of two parallel
power grids is (in most cases) economically not reasonable, transmission and distribution
remains a monopoly. To prevent potentially negative impacts of a lack of competition,
government regulation is common for dealing with monopolies. In Germany, the German
Federal Network Agency2 (BNetzA) is in charge of protecting grid user interests and
setting rules for the discrimination-free usage of the infrastructure.

2.1.1 Interconnection of Generators and Consumers
via Different Voltage Levels

The vast majority of public power grids, including the synchronized European grid,
transports electric energy using alternating current (AC)—current that periodically
changes direction—rather than direct current (DC). For both AC and DC grids, the
transmission of electric energy over power lines results in energy losses due to Joule’s
first law (see [Jou41]). It states that electrical conductors generate heat due to their
resistance, and that these losses quadratically decrease with an increase in voltage.
Consequently, aiming at low transmission losses, a major advantage of AC grids in
contrast to DC grids is the fact that voltage can be adjusted relatively easily. With
transformers as passive components, the voltage can be increased for the transmission
and later on decreased for usage in, e. g., households, hence decreasing transmission
losses. Step-up transformers convert from grid segments that are operated at low voltage
(with high current) to grid segments operated at high voltage (with low current), and
step-down transformers vice versa. Figure 2.1 visualizes the structure of the German
(AC) power grid. It shows the different voltage levels with transformers in-between, and
maps typical generators and consumers. The following voltage levels are common:

1German: “Energiewirtschaftsgesetz” (EnWG)
2German: “Bundesnetzagentur” (BNetzA)
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Large power plants
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hydro, biomass

Small power plants
 solar, wind,

hydro, biomass

Large consumers
 large industry
 large cities
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 medium and small cities
 industry and business
 EV fast charging stations
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 small business
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 EV charging stations

Transmission & Distribution ConsumptionGeneration

Extra-high voltage (220–380 kV)

High voltage (60–110 kV)

Medium voltage (6–30 kV)

Low voltage (230/400 V)

Figure 2.1: Structure of the public power grid that connects generators and consumers via
different voltage levels.

• Extra-high voltage grids are usually operated at 220 kV or 380 kV. They are used
to connect the lower grid segments over longer distances. Larger coal, nuclear or
hydro power plants feed into this grid segment.

• High-voltage grids are operated between 60 kV and 110 kV, whereby in Germany
110 kV is most common. Small to medium power plants and large industrial
consumers are connected to this grid segment.

• Medium-voltage grids are operated between 6 kV and 50 kV. Urban power plants,
large wind and photovoltaic power plants, and industrial as well as commercial
consumers are connected to this grid segment.

• Low-voltage grids are operated at 230V (phase-to-neutral) or 400V (phase-
to-phase). This grid segment is intended for final consumers and particularly
challenged by the energy transition. Originally, it was planned for the pure
distribution of energy delivered via upstream grid segments. However, the share
of (rooftop) PV panels feeding into this grid segment is increasing. This partially
results in an inversion of the conventional top-down energy flow. Additionally,
electric mobility results in high loads that are added to this grid segment. See
Section 2.4.2 for a full discussion of related challenges.
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Table 2.1: Dimensions of public transmission and distribution grids; data: [Bun20c].

TSO DSO

Number of grid operators 4 883

Circuit length 36 800 km 1814200 km
thereof extra-high voltage grid 36 400 km 300 km
thereof high-voltage grid 400 km 94200 km
thereof medium-voltage grid 0 km 519200 km
thereof low-voltage grid 0 km 1200500 km

Number of customers 487 51405860
thereof industry & commercial 487 3011337
thereof residential households 0 48394523

In context of the energy transition, high-voltage direct current (HVDC) lines are
increasingly introduced to bridge between distant (AC) grid segments [Wan+13]. This
is due to the fact that the transport of electric energy over longer distances in the range
of hundreds of kilometers is cheaper via HVDC lines than via (high-voltage) AC lines.
In particular for the transmission of wind power from large (offshore) wind parks in the
north of Germany to consumption centers in the south of Germany, the German grid
development plan aims at the construction of multiple HVDC links [Bun16].

In Germany, four Transmission System Operators (TSOs)3 and 883 Distribution System
Operators (DSOs) are responsible for the operation of the above classified power grid
segments [Bun20c]. TSOs particularly operate extra-high voltage grids and a small share
of high-voltage grids, and DSOs particularly operate medium-voltage and low-voltage
grids. Table 2.1 clarifies dimensions of the power lines in different voltage levels in
Germany. It shows that the total length of extra-high voltage transmission lines is very
small compared to low-voltage lines that are used for distribution to final consumers.
Furthermore, the table confirms that the vast majority of consumers is connected to
distribution grids. Only few industrial and commercial consumers with a very high
energy demand are directly connected to transmission grids. Due to the high overall
number of DSOs, their largest share (803 of 883 DSOs) has less than 100 000 customers
[Bun20c].

3Four TSOs have responsibility for a control area; when including three off-shore organizations without
control area responsibility, the BNetzA counts seven TSOs [Bun20c].
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2.1 Grid Architecture and Stability

2.1.2 Global Grid Stability & Frequency Control
Grid frequency is one of the two major electric power quality indicators. The second
indicator is voltage as described in the next section. Worldwide, most of the public AC
power grids have a nominal grid frequency of either 50Hz or 60Hz. In Europe, the
nominal frequency defined by the European Network of Transmission System Operators
for Electricity (ENTSO-E) is 50Hz [ENT09], while, e. g., grids in the United Stated of
America use a nominal frequency of 60Hz. Electric consumers and generators are built
to work with the nominal frequency. Depending on the device, deviations of the nominal
frequency can be handled very generously or only in a very limited tolerance band.

The frequency represents the grid-wide balance between demand (feed-out) and sup-
ply (feed-in). It can be seen as a global indicator representing this balance independent
of the position within a synchronous grid.4 If the grid-wide demand is higher than the
grid-wide supply, the grid frequency decreases. If the grid-wide demand is smaller than
the grid-wide supply, the grid frequency increases. The technical reason lies in traditional
power plants (which still make up a large share of the power plants): they are converting
kinetic into electric energy by means of turbines with rotating masses. If the electricity
demand is too low, the surplus of energy in the system results in a faster rotation, i. e.,
in an increased frequency. If the electric demand is too high, the energy demand slows
down the rotation, i. e., lowers the frequency. As already described in the motivational
chapter, two major mechanisms are in place to reach a steady balance of feed-in and
feed-out. Firstly, electricity (spot) markets are the basis for the creation of feed-in and
feed-out schedules. Secondly, balancing services and related balancing markets are
the basis for handling uncertainty and deviations from the planned schedules. The
procurement and activation of balancing power lies in the responsibility of the TSOs.
The next sections provide a detailed explanation of electricity markets (Section 2.2) and
balancing services as well as related balancing markets (Section 2.3).

2.1.3 Local Grid Stability & Voltage Control
Voltage is a local grid state which is largely affected by the physical grid structure and
connected consumers and generators. The nominal voltage in European low-voltage
grids, including Germany, is defined to be 230V (phase-to-neutral) or 400V (phase-to-
phase). In Germany, voltage in the distribution grid is allowed to have a deviation of
maximum ±10% of the nominal value of 230V [Deu12]. Figure 2.1 presents different
voltage levels and parties involved. The output voltage of a transformer to the distribution
grid was traditionally set close to the upper limit. This is due to the expected voltage
4The frequency’s propagation speed, however, is limited by the speed of light.
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drop coming with each connected load. It can be clarified using the example of a linear
power line fed by a transformer on one side. If multiple loads are connected to the
power line at different positions (e. g., multiple buildings within a street), they result in
a continuous voltage drop over the power line. In the initial grid planning, power lines
have traditionally been planned such that all consumers, including, e. g., the last building
in a street, receive a valid voltage. Traditionally, the load closest to the transformer was
aligned close to the upper limit (i. e., 230V+10%) and the load furthest away from
the transformer was aligned close to the lower limit (i. e., 230V−10%). However, as
a result of the expansion of (rooftop) PV plants in low-voltage distribution grids, the
voltage drop due to consumers is complemented by a voltage rise due to generators.
This increases the uncertainty within distribution grids. As they originally have been
built based on different assumptions, this makes voltage control a more dynamic and
challenging task (see Section 2.4.2 for a full discussion).

Besides considering voltage in the static grid planning on the long time scale, it can
also be operationally adjusted on shorter time scales. DSOs operating low-voltage grids
can adjust the voltage in particular via controllable transformers, via reactive power
compensation, or via feed-in/feed-out management. Controllable transformers allow
adjusting the output voltage level at the transformer. This adjusting allows to move
from a potential critical voltage area to a non-critical one. Reactive power compensation
allows modifying the voltage drop via power factor adjustments. Feed-in and feed-out
management are the most relevant options with regard to prosumer flexibilization:
Feed-in management allows to limit the feed-in of decentralized generators (nowadays
mainly PV plants). Feed-out management, accordingly, allows to limit the feed-out
of decentralized consumers (nowadays mainly heat pumps). So far, in Germany and
many other countries, feed-in and feed-out management in distribution grids is usually
realized via ripple control systems5 based on one-way Power Line Communication (PLC)
[DBS11]. In PLC, a higher-frequency signal (usually between 150Hz and 1350Hz) is
superimposed onto the standard grid frequency of 50Hz, which means that the power
grid itself is used as a communication network. As of today, when a ripple control
receiver receives such a signal from the DSO, it disconnects or throttles the related feed-
in unit (e. g., PV plant), or the related feed-out unit (e. g., heat pumps) until another
signal is received. The implementations of control mechanisms in distribution grids, and
particularly details of ripple control, differ from distribution grid to distribution grid.

In Germany, feed-in management in distribution grids is nowadays mainly realized
via PV panels larger than 30 kWpeak. One prerequisite for receiving feed-in funding

5German: “Rundsteuertechnik”
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according to the German Renewable Energy Sources Act6 (EEG) is that DSOs have to
receive control authority over PV plants7. Four steps are common: 100% (default),
and throttling to 60%, 30%, or 0% of the maximum feed-in. By law, DSOs have to
remunerate the throttled feed-in energy such that the operator has no financial disad-
vantage. However, it is worth noting that renewables by law have a feed-in precedence
(§ 11 EEG), and hence throttling of renewable energy sources should be the last option
chosen by the DSO. Feed-out management in the distribution grid is nowadays mainly
realized via heat pumps. This is incentivized by § 14a EnWG which guarantees reduced
grid fees for final consumers that give control authority to the DSO.

2.2 Electricity Markets
Electric energy can be traded at electricity markets. Electricity markets bring together
representatives of power generation and consumption to buy or sell the obligation to
feed-in or feed-out electricity in the future. On this basis, schedules for generators
and consumers are created. Products at electricity markets differ in two major aspects:
firstly, the duration of the delivery time slots and, secondly, the lead time between
trading and the time of delivery. This section describes market segments and products
in detail. Direct trading bypassing official electricity markets is also possible. This is
called over-the-counter (OTC) trading. In this thesis, the focus in on the German market
environment.

2.2.1 Balancing Groups
At electricity markets, the smallest relevant entity that can exchange energy is a balancing
group. A balancing group describes an account maintaining a virtual quantity of energy
that is fed-in or fed-out per 15-minute time slot. Every grid user feeding in or feeding
out energy has to administer a balancing group, or has to belong to someone else’s
balancing group. Each balancing group has a balancing responsible party (BRP) that
is responsible for keeping the balancing group’s feed-out and feed-in in line with the
bought and sold energy.8 Therefore, each balancing group is composed of at least one
feed-in and one feed-out point. On the basis of quarter hours, each balancing group has
to guarantee the balance between energy flowing into the group and energy flowing out
of the group:
6German: “Erneuerbare-Energien-Gesetz” (EEG)
7PV plants smaller than 30 kWpeak are alternatively allowed to limit the maximum feed-in power to 70%.
8See § 4 of the German Electricity Network Access Regulation (German: “Stromnetzzugangsverordnung”
(StromNZV)).
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∀𝑡 ∶ 𝑒feedIn𝑡 + 𝑒import
𝑡 = 𝑒feedOut

𝑡 + 𝑒export𝑡 (2.1)

where 𝑒feedIn𝑡 or 𝑒feedOut
𝑡 represent the energy fed in or out in the respective quarter

hour 𝑡, and 𝑒import
𝑡 or 𝑒export𝑡 represent the energy imported from or exported to other

balancing groups in the respective quarter hour. For reaching this balance, the balancing
group’s feed-in (𝑒feedIn𝑡 ) or feed-out (𝑒feedOut

𝑡 ) can be adjusted, or energy can be imported
(𝑒import

𝑡 ) from or exported (𝑒export𝑡 ) to other balancing groups. Agreements for this
balancing group adjustment can be reached on basis of electricity spot market trading
or via bidirectional over-the-counter agreements.

2.2.2 Long-term and Short-term Electricity Markets
From an economic viewpoint, electricity prices on the one hand influence the long-term
investments into new power plants and also into energy-intensive consumption sites. On
the other hand, they also control the short-term resource scheduling for both generators
and consumers, i. e., the decision of when to feed-in or out energy. In order to meet these
two different needs, different electricity market segments exist. The closer the delivery
time, the better the market participants can estimate the real feed-in and feed-out, and
the more fine-granular are the time slots of the traded products. While energy is traded
in base load and peak load granularity years ahead, it is traded in 15-minute granularity
on the day of delivery. At a high level of abstraction, we can separate between two kinds
of wholesale markets:

• Derivatives markets are used to agree on prices in the range of years to weeks
before the delivery and payment [BP17]. They are in particular used to gain
calculation certainty and to control investment decisions. This enables long-term
planning for power plant operators and for energy-intensive consumers or utilities.
Futures and forwards describe two derivative instruments. At standardized mar-
kets, such long-term contracts are described by the term futures. When traded
over the counter, i. e., on basis of bilateral agreements and without an interme-
diary, the term forwards is used. In contrast to futures and forwards which are
unconditional agreements, options are derivative instruments with conditional
agreements: an option contract gives the buyer the right, but not the obligation, to
buy or sell a product at a specific price (called strike price) prior to or on a specified
date. Derivative instruments often define a financial and not physical settlement,
i. e., the traded energy does not have to be backed by actual assets that are able
to deliver or consume energy. As obligations to deliver or consume energy at a
certain price can be sold or bought later (at different prices), derivative markets
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can be used for speculation. Futures and options for the German market area
can be traded at the European Energy Exchange (EEX) which is based in Leipzig,
Germany, whereby futures can be traded up to six years ahead.

• Spot markets are used to trade energy short-term in the range of days to minutes
before the delivery [BP17]. They are used to schedule generators and flexible
consumers (mainly day-ahead) and to minimize balancing group deviations in
case of changing generation or consumption forecast (mainly intraday). Energy
traded at spot markets is physically settled, i. e., it must be backed by actual assets
that are able to deliver or consume energy. The electricity spot market for the
German market area is operated by the European Power Exchange (EPEX) which
is based in Paris, France.

Typical stakeholders participating at electricity wholesale markets are power suppliers,
power plant operators, large industrial enterprises, or aggregators. Due to relatively
large overheads (admission procedure, operational requirements, minimum trading
capacities), a direct market participation is usually not worthwhile for final consumers
[UR17]. Instead, they rely on intermediaries aggregating the demand of a large number
of consumers. Power suppliers operate a balancing group, take over the procurement
via electricity markets, and the responsibility for balancing group deviations. Therefore,
they add a profit margin to the final electricity price.

2.2.3 Electricity Spot Markets
Figure 2.2 shows the time sequence of the options that a flexibility owner (on the demand
or supply side) has to monetize its flexibility. Different segments of the balancing market
(upper half) and the electricity spot market (lower half) can be recognized. These
markets are often also referred to as flexibility markets as they allow turning flexibility
in consumption and/or generation into a monetary benefit [VBM18]. To begin with,
we focus on electricity spot markets (which we also refer to as simply spot markets).
Balancing markets are discussed separately in the upcoming Section 2.3. The Figure
visualizes a time scale covering two days (shown on the x-axis): the day before the
delivery of a respective product and the day of delivery. For each market segment (shown
on the y-axis), trading times are marked in dark blue, and related product time slots are
marked in light blue. The market characteristics summarized on the right side can be
explained as follows:

• Bid components describe the single components of a bid to the market. At
electricity spot markets, bids typically consist of a power value (kW) representing
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the power that has to be delivered over the duration of a product time slot and
an energy price (EUR/kWh). In context of markets, a ‘bid’ price generally refers
to the highest price a buyer is willing to buy and a ‘ask’ price refers to the lowest
price a seller is willing to sell.

• Market mechanism (call auction vs. continuous double auction) describes the
process of matching bids. At electricity spot markets, we can separate between
call auctions and continuous double auctions. In call auctions, buyers and sellers
can submit bids to the order book during a bidding period. After a well-defined
gate closure time, bids are matched by the central market operator. In continuous
double auctions, both buyers and sellers can continuously submit bids to the order
book, which are then directly matched as soon as possible. Call auctions tend
to result in a high market liquidity by providing fixed points in time in which
market participants are brought together. In contrast, continuous double auctions
allow for a continuous matching of bids, and hence allow for more short-term
decisions. At the EPEX electricity spot market, a day-ahead and intraday call
auction as well as an intraday continuous double auction are offered. This is a
pattern which is similarly also found at other stock markets (such as Xetra at the
German Stock Exchange [Deu20a]): trading is often opened with a call auction,
while a continuous market for trading operates the rest of the day.

• Market pricing (pay as bid vs. pay as cleared) describes how the price is
determined. In pay-as-bid pricing, the final price for a certain product (such as
one specific hour or quarter hour) represents the price that was actually bid by the
buyer and seller. In contrast, in pay-as-cleared pricing, the market clearing price is
the one single price at which most of the buy and sell bids in the respective order
book can be matched. In pay-as-cleared pricing, the price for both buyers and
sellers can be better than their original bids: for buyers it is lower or equal to their
bid, and for sellers it is higher or equal to their bid. The market clearing price
is determined by the intersection of the supply curve (mapping the accumulated
energy supply to the marginal energy prices), and the demand curve (mapping
the accumulated energy demand to the marginal energy prices). At the EPEX
electricity spot market, the day-ahead auction and the intraday auction follow the
pay-as-cleared principle, and the intraday continuous double auction follows the
pay-as-bid principle.

• Bid requirements focus on minimum power capacities and possible power steps.
At the EPEX electricity spot markets, trading is possible starting with a minimum
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power of 100 kW and in 100 kW steps. Consequently, one-hour products are traded
in 100 kWh steps, and quarter-hour products are traded in 25 kWh steps.

In the following, a more detailed overview of the different spot market segments is
given. Section 2.2.4 describes further cost components that have to be paid by final
consumers, Section 2.2.5 describes how grid constraints are taken into account, and
Section 2.3 describes the balancing services and markets in more detail.
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2.2.3.1 Day-ahead Call Auction

On the day before the physical delivery, demand and supply can be matched via trading
at the EPEX day-ahead call auction. Germany and Luxembourg build a coupled market
area in which electricity is traded without consideration of grid constraints (the ancillary
service redispatch provides a mechanisms for the consideration of grid constraints after
trading, see Section 2.2.5). The EPEX day-ahead auction allows to trade 24 one-hour
products in daily auctions with the gate closing the day before the delivery at 12:00 h.
Following the pay-as-cleared principle, the day-ahead auction results in a uniform hourly
energy price per one-hour product. The 24 prices for each day are published as soon
as possible after 12:50 h. The day-ahead call auction is also referred to as day-ahead
auction or day-ahead market.

Figure 2.3 visualizes the above explained principle of a call auction matching the
interests of buyers and sellers. It is based on actual bids to the EPEX day-ahead auction
for one single one-hour product of one exemplary day. The market clearance price is the
price of the most expensive offer which is required for satisfying the requested demand.
It is represented by the intersection of both curves. The market clearing price defines the
market equilibrium where the highest possible quantity of buy and sell bids is matched.
Furthermore, the figure visualizes two effects coming along with the energy transition.
The arrow marked with A indicates the implication of renewable energy sources: an
increased number of relatively cheap sell bids will result in a shift of the supply curve
to the right. The two arrows marked with B indicate the implication of an increasing
flexible demand: a higher price elasticity on the demand side will result in a tilt of the
demand curve [Han+17].

The demand curve visualized in Figure 2.3 may be misleading regarding the price
elasticity of the overall energy demand, i. e., the degree to which the energy requested
depends on the price. The figure suggest a high price elasticity on the demand side, i. e.,
that the energy requested depends on the price to a high degree. However, the visualized
day-ahead demand curve only represents the trading of positions by participants at this
particular market segment. It does not represent the overall electricity demand [KP16]
which is also satisfied via bilateral over-the-counter agreements and trading at earlier
and later markets.

While Figure 2.3 helps understanding the matching process via the day-ahead auction,
Figure 2.4 shows a box plot diagram with the resulting 24 hourly prices for each day of
the year 2019, categorized by the day of week. Looking at the interquartile range it can
be seen that 50% of the hourly prices of the whole year lie in a relatively small corridor
following a recognizable pattern: from Monday to Friday prices tend to be lower during
night hours (which are characterized by a relatively low demand) and around the early
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Figure 2.3: Price formation at the spot market day-ahead call auction: demand and supply
are matched resulting in one market clearing price per one-hour product; exemplary market
data: [EPE20a].

afternoon (which is characterized by a relatively high supply from photovoltaic plants).
On Saturday and Sunday, an overall lower price level can be recognized which may be
attributed to the overall lower energy demand on the weekend.

2.2.3.2 Intraday Call Auction

The intraday call auction closes at 15:00 h (i. e., three hours after the day-ahead auction
closes). The intraday call auction is also referred to as intraday auction. While the
day-ahead auction allows trading one-hour products, the intraday auction allows trading
of more fine-granular quarter-hour products. After the gate closure at 15:00 h, demand
and supply are matched for each of the 96 quarter-hour products as already explained
and visualized in context of the day-ahead auction. The intraday auction is a pay-as-
cleared auction (as the day-ahead auction, too), and hence results in a uniform energy
price per quarter-hour. The 96 prices for each day are published as soon as possible from
15:10 h. After the intraday auction, the continuous intraday trading starts. Therefore,
the intraday auction is also referred to as intraday “opening” auction.

Figure 2.5 opposes the prices of the day-ahead auction (1-h products) and the intraday
auction (15-min products) for two exemplary days: one winter and one summer day. It
can be seen that the prices resulting from the day-ahead auction (gate closure 12:00 h)
differ from the prices resulting from the intraday auction (gate closure 15:00 h). The price
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Figure 2.4: Distribution of electricity prices resulting from the EPEX day-ahead auction: box
plot based on all hourly prices from all days of the year 2019 (outliers are not visualized);
market data: [EPE20a].

differences can be explained by new information (such as better forecasts) considered in
the bidding at the intraday auction, or by limited liquidity at the intraday auction (not
all generators can technically be operated in 15-minute intervals). The recognizable
zigzag price pattern resulting from the intraday auction is the result of the quarter-hourly
correction of prior hourly traded products [BB18; MFN18]. It can be explained well
by means of the example of selling photovoltaic energy. Due to the high liquidity at
the day-ahead auction, photovoltaic energy is initially sold as one-hour product. The
depicted summer day shows that the prices of the day-ahead and intraday auction
particularly differ in the morning hours before noon (rising sun) and in the afternoon
hours (setting sun). If energy is sold at the day-ahead auction in form of a 1-h product,
the rising sun results in the fact that the available power in the first quarter hour is lower
than in the last quarter hour. Respectively, as balancing groups have to be balanced in
15-minute intervals, additional energy has to be bought (resulting in higher prices) or
surplus energy has to be sold (resulting in lower prices) via the intraday auction. In the
evening hours, the same pattern can be recognized vice versa, motivated by the setting
sun. The resulting zigzag price pattern at the intraday auction can, to some degree, also
be found in the night hours. Then, the pattern can be explained by intrahour changes
of the required power on the demand side rather than the supply side.
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2.2.3.3 Intraday Continuous Double Auction

After the intraday auction is closed, the intraday continuous double auction opens. It
allows trading energy with a shorter lead time of at least five minutes (within one of
the four TSO control areas) or thirty minutes (between different TSO control areas)
before the delivery. This market is also referred to as the continuous intraday market,
and it allows trading of 1-h, 30-min and 15-min products. It is described as continuous
double auction as ask and bid are continuously matched as soon as a matching is possible,
and as both the demand and the supply side can put bids into the (central, open and
anonymous) order book. At this market, a trade is directly executed if a buy bid is
added to the order book with a price that is at least as high as a fitting sell bid, or if a
sell is added to the order book with a price that is at least as low as a fitting buy bid.
Consequently, the pricing principle is pay-as-bid. Besides the direct trade execution, the
pricing principle is a major difference to the day-ahead and intraday auctions: while
the continuous intraday market is operated with pay-as-bid pricing, the day-ahead
and intraday auctions are operate with a pay-as-cleared pricing. An analysis of the
development of the trading behavior at the continuous intraday market has already
been published in [Rom+19]. Our analysis showed that, in recent years, the lead time
between trading and delivery, as well as the average volume per trade decreased. Among
others, we showed that prices and volumes are changing from transaction to transaction,
and especially close to the delivery time an increase of liquidity in the market can be
recognized.
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By law, BRPs are obligated to keep their balancing groups balanced. If they are not
able to do so via latest the continuous intraday market, the balancing services operated
by the TSOs will minimize the resulting deviations (see Section 2.3).

2.2.4 Composition of the Final Electricity Price
Electricity prices paid by final consumers are significantly higher than pure energy prices
resulting from the trading at electricity markets (or over the counter). In addition to
the pure energy price, final consumers have to pay for additional services required for
the power supply. This includes costs for the grid infrastructure, costs for ancillary
services required for a stable grid operation (such as redispatching and balancing
power), and taxes. Figure 2.6 visualizes electricity price components paid by final
consumers in Germany in 2019. It can be seen that the price components depend on
the total electricity demand. The bars in the front show price components for household
(2 500–5 000 kWh/a ∧= ⌀ 0.29–0.57 kW), the bars in the middle show price components
for commercial consumers (50MWh/a ∧= ⌀ 5.7 kW), and the bars in the back show price
components for industrial consumers (24GWh/a ∧= ⌀ 2.7MW). It can be seen that in
all three consumer classes, the actual price for the procurement of energy makes up
only a small share of the overall price that finally has to be paid for consuming electric
energy via the public grid.

The three largest price components of the electricity price paid by final consumers are
the “EEG reallocation charge”, “grid fees”, and “energy procurement, sales and margin”.
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The EEG reallocation charge is set by the government and used to finance the expansion
of renewable energies. Large energy-intensive consumers above 1GWh are (partly)
exempt from paying EEG reallocation charges (see § 64 EEG). Grid fees are based on
the individual power capacity provided at the grid connection; for large consumers
they can be based on monthly or annual power peak measurements, depending on the
utilization hours (defined as the annual energy demand in kWh divided by the maximum
quarter-hourly power demand in kW). The energy procurement costs are based on the
procurement strategy of the electricity supplier. Power suppliers usually buy a share of
the energy via electricity derivatives markets (which allows hedging against price risks)
and a share of the energy via electricity spot markets. Traditional electricity meters do
not allow to map energy measurements to the time of use. As a consequence, costs for
energy procurement are traditionally generalized by the electricity supplier such that
the final consumer’s electricity costs are independent of the time of use. So far, final
consumers did not experience electricity spot market based incentives for load shifting.
However, on the one hand, the increasing share of renewable energy sources results in
an increasing fluctuation of spot market prices and hence increasing incentives to utilize
electric flexibility. On the other hand, electric flexibility is more and more needed for
dealing with fluctuating and intermittent renewable energy sources (see Section 2.4.1).
Motivated by this, smart metering infrastructures are widely rolled out as they allow
linking energy consumption and the time of use (see Section 2.4.3).

Discussing time-variable price signals requires having a detailed look on the above
price composition: the monetary benefit of a pure spot market based flexibilization is
relatively low if the remaining components remain static. If only spot market based prices
are considered as load-shifting incentive, only a small share of the final electricity price
will be subject to fluctuation. To foster the integration of renewable energy sources and
the flexible demand side, current research and political discussions investigate adoptions
of the overall tax and fee system behind electricity prices paid by final consumers. Among
others, the way of splitting grid fees, e. g., to capacity-based and energy-based price
components is discussed [CF18]. Furthermore, research suggests the flexibilization
of further electricity price components [Fro16], such as grid fees [Con20] or the EEG
reallocation charge [Ago19; HNV17]. Discussions about the flexibilization of grid fees
particularly address the advancement of § 14a EnWG [Deu19a]: already today, this
paragraph guarantees reduced grid fees in exchange for control authority over flexible
consumers. Regulatory changes resulting in higher fluctuations of the final electricity
price paid by final consumers will increase the interest in load shifting due to increased
monetary benefits.
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2.2.5 Congestion Management and Redispatching

Electricity spot markets target the operational planning and scheduling of flexible
generators and consumers. They result in balanced feed-in and feed-out schedules that
match demand and supply. In the German system design, trading at these markets
is based on the assumption of a large copper plate without any physical constraints
with respect to the delivery of electricity. To consider grid constraints resulting from
limited operating resources, different concepts have been proposed [PPK15]. Grid
constraints originate from, e. g., power limits of transformers or transmission lines. The
two most prominent concepts for considering grid constraints are zonal pricing (with
redispatching) and nodal pricing. In the following, key concepts are summarized based
on reference [MZH18].

The two concepts differ regarding the spatial resolution of prices determined by
electricity markets. In the concept of zonal pricing, the same price applies to the entire
market zone independent of the spatial location within the market zone. In most
European countries, including Germany, zonal pricing is implemented. Market zones
are often aligned along country borders. However, some countries are divided into more
than one market zone, and some countries team up with further countries to form one
common market zone. At the EPEX, Germany forms one market zone together with
Austria and Luxembourg. Consequently, trading at electricity spot markets assumes
that energy can freely flow between the feed-in and feed-out locations of sellers and
buyers within this market zone as if it were a single copper plate. In the concept of
nodal pricing, an individual price is determined for each entry or exit point, e. g., of
the transmission grid. This way, grid constraints can be reflected in prices. In case of
free transmission capacities, the price level of zonal and nodal pricing will equalize.
Examples for countries implementing nodal pricing are Australia, Russia and parts of
the United States of America.

This way, in nodal pricing systems, grid constraints are already considered upfront
in the schedule generation. However, it is worth mentioning that he constraints are
only reflected in the prices and there is still no guarantee that physical constraints
are respected. In zonal pricing systems, in contrast, grid constraints are considered
after trading: this is done via the ancillary service redispatch which is operated by the
TSOs. Redispatching results in grid constraint motivated adjustments of power plant
schedules that are changing the spatial distribution of the feed-in. It can be separated
into preemptive redispatch aiming at preventing the violation of grid constraints, and
curative redispatch aiming at correcting grid constraint violations [BDE20b]. The overall
redispatching process is as follows: Daily, schedules of larger power plants have to
be reported to the TSOs (after the publication of the day-ahead auction results which
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in Germany is at 12:50 h). After the daily deadline, the TSOs conduct power flow
simulations based on grid models. These simulations may uncover the need for schedule
adjustments due to grid constraints (preemptive redispatch). Alternatively, the need
for schedule adjustments may be uncovered based on measurement within the grid
(curative redispatch). As a grid-wide steady balance of demand and supply is required,
power schedule adjustment should always be realized pairwise involving at least two
parties: if one power plant (in front of a grid congestion) is shut down due to grid
restrictions, another power plant (behind the grid congestion) is required to increase
the output by the same power in order to keep the required balance. As the ancillary
service redispatching is required for a stable grid operation, regulation defines that large
power plants9 have to adjust their (active or reactive) power feed-in upon TSO requests.
In Germany, power plant operators are compensated for redispatch-related costs, e. g.,
resulting from additional fuel consumption or balancing group deviations. However,
as of today, redispatching is not a market-based approach: according to § 13a Abs. 2
EnWG, power plant operators should be “economically neither better nor worse off” due
to redispatch measures.

In Germany, costs for the ancillary service redispatching have increased significantly
with the rollout of renewable energy sources during the last years [BDE20b]. This can
be explained by wind power related electricity surplus in the north of Germany. As
a consequence, the advancement to a new “Redispatch 2.0” is currently in progress
[Hir+20; BDE20a]. It is based on an amendment of § 13a EnWG which was announced
via the German Grid Expansion Acceleration Act10. According to this, from October
2021 onwards, redispatching should also include smaller generation units above 100 kW,
rather than only the large ones above 10MW. As smaller units are located in the
distribution grids and not in the transmission grid, this results in the need for a closer
cooperation between TSOs and DSOs.

2.3 Balancing Services & Balancing Markets
In the section on balancing groups, it was shown that each balancing group is obligated
to make the best possible decisions in order to realize the 15-minute based demand/sup-
ply schedules. It was shown that the schedules usually result from trading at electricity
markets or over the counter. If the planned schedules always matched the actual feed-in
and feed-out, the permanently required demand-supply balance would be given. How-
ever, deviations from agreed schedules are common due to prediction errors, noise, and
9in Germany above 10MW; see § 13a EnWG

10German: “Gesetz zur Beschleunigung des Energieleitungsausbaus”
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outages on both the supply and demand side. As already introduced in the motivational
chapter, balancing power is in place to close the gap between the actual feed-in and
feed-out (see Figure 1.1). Balancing power is also referred to as control reserve or
reserve power.

In the synchronized European power grid, the ENTSO-E defines the framework for
balancing services via its Operation Handbook [ENT09]. Building upon this framework,
the VDE Transmission Code 2007 provides concrete technical requirements for the im-
plementation in Germany [Ver07]. According to this, the TSOs are responsible to handle
unpredictable deviations from agreed schedules. In order to close demand and supply
gaps, the TSOs procure and activate three types of balancing services using balancing
markets. Balancing service providers bid to these markets and provide the capability
to deviate from their reported schedule upwards and/or downwards upon short-term
activation request. Depending on the type of balancing service, in Germany the required
reaction speed is in the range of max. 30 seconds (Frequency Containment Reserve),
max. 5 minutes (automatic Frequency Restoration Reserve), or max. 15 minutes (manual
Frequency Restoration Reserve). Balancing services are provided by generators or con-
sumers that are able and willing to adjust their schedules upwards and/or downwards
upon such short-term requests. This way, balancing services continuously close potential
demand and supply gaps, hence allowing for a steady grid frequency of (almost) 50Hz
even in case of deviations from the planned power schedules. Balancing services are
crucial to the grid stability as frequency deviations greater than ±0.2Hz may end up in
blackouts [ENT17].

2.3.1 Types of Balancing Services
Balancing services can be classified by two major characteristics [Con14]. Firstly, we
can distinguish the direction of balancing power, depending on whether feed-in is too
low or too high. Secondly, we can distinguish different temporal qualities of balancing
services, classified by the time till the provided balancing power is fully available after
an activation.

Depending on the direction of the imbalance, i. e., whether the feed-in is too low or too
high, we can separate between negative and positive balancing power. The difference
between the two balancing directions was already visualized and explained in Figure 1.1
in the motivational chapter. It can be recognized that negative balancing power (also
referred to as negative reserve) is required if the feed-in is higher than the feed-out
(frequency > 50Hz). Positive balancing power (also referred to as positive reserve)
is required if the feed-in is lower than the feed-out (frequency < 50Hz). A potential
gap between feed-in and feed-out can be closed by power adjustments on both the
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demand and the supply side. Consequently, both balancing directions can be provided
by generators and consumers. However, the traditional focus was on generators, based
on the assumption that consumption cannot be controlled.

Regarding the speed of power adjustments, different classes of power plants come
along with different capabilities. For the synchronized European grid, the ENTSO-
E specifies three types of balancing services regarding their temporal requirements
[ENT09]:

• Frequency Containment Reserve (FCR): fully available
within 30 seconds, also referred to as Primary Control Reserve (PCR)

• Automatic Frequency Restoration Reserve (aFRR): fully available
within 5 minutes, also referred to as Secondary Control Reserve (SCR)

• Manual Frequency Restoration Reserve (mFRR): fully available
within 15 minutes, also referred to as Tertiary Control Reserve (TCR)

In the European context, the terminology FCR, aFRR and mFRR gained acceptance
in recent years. This thesis focuses on German balancing services and uses this inter-
nationally established terminology which is also used by the ENTSO-E and in context
of European regulation [Eur17]. It is worth noting that the same types of balancing
services are also referred to as PCR, SCR and TCR.

Activation of balancing services follows the activation scheme visualized in Figure 2.7.
It can be seen that slower balancing services substitute faster balancing services. This
way, faster balancing services can recover to be ready for quickly reacting to new
imbalances. Subsequently, the three types of balancing services are described in more
detail. According to the ENTSO-E, the grid area for which a TSO has to operate balancing
services is defined as load-frequency control (LFC) area. In the following, we also refer
to an LFC area simply as control area.

Frequency Containment Reserve As already explained, the frequency measured
within a synchronized grid is a global indicator representing the balance of the over-
all feed-in and feed-out. In a fully balanced grid, the nominal grid frequency will be
measured. Frequency deviations larger than 10mHz (i. e., frequencies smaller than
50.01Hz, or larger than 49.99Hz) result in a direct activation of FCR [Deu19c; ENT09].
Therefore, all FCR-controlled generators and consumers measure the grid frequency
locally. Based on these decentralized frequency measurements, FCR activation follows a
frequency-based proportional-integral (PI) controller: the higher the frequency devia-
tion, the higher the activated power [ENT09]. This way, provisioning of FCR is done
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Figure 2.7: Balancing service activation scheme: in case of ongoing imbalances, faster balancing
services release slower balancing services to be able to quickly react to new imbalances (FCR is
released by aFRR and aFRR is released by mFRR); inspired by [ENT09].

collectively by all ENTSO-E control areas where the activation of FCR does not need any
explicit communication between the TSOs and the FCR providers as they are implicitly
synchronized by the frequency signal. Control areas are operated by TSOs and often
represent one country; sometimes countries are also split into multiple control areas
such as Germany, which is split into four control areas of which each is operated by a
dedicated TSO. The ENTSO-E specifies the required FCR power 𝑝FCR,total. Each control
area of the European synchronized grid has to provide a share of the overall required
FCR power. The FCR power 𝑝FCR,𝑖 which a certain control area 𝑖 has to provide is based
on the share of the respective control area’s electricity production on the ENTSO-E-wide
electricity production: 𝑝FCR,𝑖 = 𝑝FCR,total ⋅ 𝑝elGeneration,𝑖

𝑃elGeneration,total
. Hence, the higher the electricity

production in a control area, the higher the FCR power that has to be provided by the
control area. Traditionally, FCR is mainly provided by steam or gas driven plants as
changes of the steam or gas supply are reflected in the plant’s electric power output
within seconds. According to the ENTSO-E, FCR providers must be able to continuously
deliver their maximal FCR power for a maximum of a quarter hour. In recent years, FCR
provisioning by battery storage systems gained popularity [Deu15a] as they are also
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able to quickly change the power output within seconds. In Germany, the TSOs procure
about 500MW FCR (Q3/2020) [Deu20h].

Automatic Frequency Restoration Reserve aFRR provisioning has lower temporal
requirements than FCR provisioning. aFRR has to be provided within five minutes
upon explicit activation request by the TSO. The activation request is communicated
via the Internet. aFRR allows the faster FCR resources to stay available for short-term
adjustments. In contrast to FCR which is activated decentrally by BSPs continuously
monitoring the frequency, aFRR is activated via a control area specific controller. Each
control area is operated by the respective TSO. This controller calculates BSP-specific
control signals in four-second granularity which are then send directly to the BSP. The
central controller is implemented as PI controller with two inputs [ENT09]: the grid
frequency, and the deviation from all measured control area coupling points. The latter
considers the FCR power provided within the control area. Its output is the aFRR
power which has to be activated. The PI controller acts proportional to the temporal
integral of the deviation. Given a certain deviation, this means that the activated aFRR
power increases continuously until the deviation disappears. The activation of single
aFRR providers follows the aFRR energy price merit order list. Bids are activated till
the required aFRR power demand is satisfied, starting with the cheapest bid. As the
aFRR controller works in four-second granularity, the latest activated offer in the merit-
order list can change every four seconds. However, aFRR providers are free to react
within five minutes. Traditionally, aFRR is mainly provided by pumped storage hydro
power plants and gas driven power plants. The power output of these power plants
can be well-adjusted within five minutes without. In Germany, the TSOs procure about
1 900–2 000MW negative aFRR and about 2 000–2 100MW positive aFRR (Q3/2020)
whereas the exact capacity depends on the time of day [Deu20h]. The amount of the
procured balancing capacity is motivated by historical experiences and the requirement
of the 𝑛 − 1 stability which states that the failure of any power plant has to compensated
[ENT09]. In this context, it is worth mentioning that the increasing number of smaller
generation units may result in simultaneous failures of multiple smaller rather than one
large generation unit. Consequently, the increasing share of renewable energy sources
may require adaptions of the way of how the required balancing capacity is determined.

Manual Frequency Restoration Reserve mFRR provisioning has lower temporal
requirements than aFRR provisioning. mFRR has to be provided within a quarter hour
upon explicit activation request by the TSO. It is used to compensate larger imbalances
such as outages of large generators. The activation request is communicated via the
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Internet. mFRR allows the faster aFRR resources to stay available for more short-term
adjustments. mFRR is activated based on centralized decisions by TSO which are based
on the amount of aFRR activated [ENT09]. Activation is done in form of 15-minute power
schedule adjustments sent from the TSO to the BSP, i. e., the provided power remains
constant for a minimum of a quarter hour. In contrast to FCR and aFRR which are
both activated (almost) continuously, mFRR is activated only very seldom and in single
quarter hours. In particular, the trend of decreased lead times at intraday electricity
markets [Rom+19] results in a lower overall mFRR demand as it allows BRPs to handle
upcoming imbalances via trading at the continuous intraday market. In Germany, the
TSOs procure about 600–700MW negative mFRR and about 900–1 200MW positive
mFRR (Q3/2020) whereas the exact capacity depends on the time of day [Deu20h].

2.3.2 Product Characteristics at Balancing Markets
Characteristics of the three balancing service types and the associated balancing markets
are summarized in Table 2.2. Besides differences in the above described activation
mechanisms, the characteristics of the balancing service products can be recognized: in
the meanwhile all three balancing service types are offered over four hours. As FCR is a
symmetric product, there are six FCR products per day. In contrast, it can be seen that
aFRR and mFRR are asymmetric products, i. e., negative and positive balancing power
are offered separately. Therefore, there are twelve aFRR products, and twelve mFRR
products per day (six time slots of which each is separated into negative and positive
balancing power). Trading times, product time slots, major market characteristics, and
the temporal interaction with spot markets are also visualized in Figure 2.2. It is worth
noting that pooling of multiple balancing providing entities for reaching the minimum
volume is allowed for all three types of balancing services [For09b], and that dedicated
requirements for FCR provisioning via battery storage systems exist [Deu15a].

A dedicated prequalification is required for provisioning of balancing services and
participation at balancing markets. Within the prequalification, BSPs have to prove to the
TSOs that they are capable of reliably providing requested power adjustments considering
the power gradient, the maximum speed of activation, and the IT-based connectivity of
the respective balancing service [For09a]. Among others, the prequalification includes
the activation of an exemplary power profile.
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Table 2.2: Characteristics of balancing services and related balancing markets in Germany: FCR, aFRR, and mFRR.

Frequency
Containment Reserve

Automatic
Frequency Restoration Reserve

Manual
Frequency Restoration Reserve

Bid components power [MW],
capacity price [EUR/MW]

power [MW],
capacity price [EUR/MW],
energy price [EUR/MWh]

power [MW],
capacity price [EUR/MW],
energy price [EUR/MWh]

Activation time max. 30 seconds max. 5 minutes max. 15 minutes

Balancing direction symmetric
(i. e., one bid provides both
negative and positive power)

asymmetric
(i. e., one bid provides either
negative or positive power)

asymmetric
(i. e., one bid provides either
negative or positive power)

Product time slots 6×4-hour blocks:
0–4 h, 4–8 h, …, 20–24 h

6×4-hour blocks:
0–4 h, 4–8 h, …, 20–24 h

6×4-hour blocks:
0–4 h, 4–8 h, …, 20–24 h

Bidding volume at least 1 MW,
increments of 1MW

at least 1MW,
increments of 1MW

at least 1MW,
increments of 1MW

Bid submission daily till latest 8:00
for the upcoming day

daily till latest 9:00
for the upcoming day

daily till latest 10:00
for the upcoming day

Acceptance into pool cheapest first according to
capacity price MOL

cheapest first according to
capacity price MOL

cheapest first according to
capacity price MOL

Activation order equally provided by all BSP in the
pool

cheapest first according to
energy price MOL

cheapest first according to
energy price MOL

Activation mechanism continuous activation proportional
to frequency deviation based on
decentralized frequency
measurement by BSP

centralized decision by TSO based
on measured control area power
balance and frequency,
activation via four-second set point
sent from TSO to BSP

centralized decision by TSO based
on the amount of aFRR activated,
activation via quarter-hourly
schedule sent from TSO to BSP

Remuneration pay-as-cleared
(marginal capacity price)

pay-as-bid (capacity price +
energy price in case of activation)

pay-as-bid (capacity price +
energy price in case of activation)
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2.3.3 Settlement of Balancing Service Costs
For offering balancing services, BSPs earn a capacity price (EUR/MWh) in the case of
FCR, and both a capacity and an energy price (EUR/MWh) in the case of aFRR and
mFRR. The capacity price is paid for the provisioning, and the energy price is paid for
actual aFFR/mFRR activations depending on the actually provided energy.

Figure 2.8 visualizes the settlement of balancing service costs. The capacity price
based costs for holding back balancing power are socialized. They are fully allocated
to the grid fees and are consequently collectively paid by all grid users. The energy
price based costs have to be paid by the BRPs causing the imbalances that result in the
aFRR/mFRR activations. This cost settlement design distributes the costs for holding
back the technically required balancing services to all users of the grid, and also serves
as incentive to balancing groups to avoid schedule deviations.

Grid Users

Balancing 
Responsible Parties

Transmission System 
Operator

Balancing Service Providers

Frequency
Containment Reserve

Balancing capacity costs
Accruing 

balancing capacity 
costs (EUR/MW)

Accruing 
balancing energy 
costs (EUR/MWh)

Grid fees

Uniform 
imbalance energy 

price (reBAP)

Automatic Frequency 
Restoration Reserve

Balancing capacity costs

Balancing energy costs

Manual Frequency 
Restoration Reserve

Balancing capacity costs

Balancing energy costs

Figure 2.8: Settlement of balancing service costs: costs for holding back capacity are collectively
paid by grid users and costs for aFRR/mFRR activations are paid by the BRPs causing the
imbalance.

In case of FCR and aFRR, the costs for the actual activation of balancing power are
allocated to the BRPs causing the imbalances. In this context, the below introduced
Grid Control Cooperation resulted in the introduction of a uniform imbalance (energy)
price11 (reBAP) for all four German control areas. The reBAP is based on the energy
11German: “regelzonenübergreifender einheitlicher Bilanzausgleichsenergiepreis” (reBAP)
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costs resulting from all aFRR and mFRR activations in a certain quarter hour, i. e., the
costs resulting from the energy prices that had to be paid due to the activated bids. The
reBAP is a quarter hourly energy price (EUR/MWh) which can be positive or negative. It
is calculated by the TSOs [Deu20b] and has to be paid by each BRP with imbalances in a
certain quarter hour. As a result of the reBAP, all BRPs with balancing group deviations
in one quarter hour are equally priced with the same price in all German control area.
Consequently, the higher the deviations of a balancing group, the higher the reBAP
imbalance costs the respective BRP potentially has to pay.

BRPs can make use of the so called “day-after market” for minimizing their balancing
group imbalances after they occurred, i. e., after the time of delivery and after balancing
power was activated [BP17]. This is not a regulated market as the name may suggest.
Instead, it refers to OTC agreements that can be made by BRPs to adjust their balancing
group schedules after delivery. In Germany, ex-post balancing group adjustments can be
made till 16:00 h after the day of delivery. BRPs can use this option to minimize their
imbalances after the time of delivery: If one BRP had a higher supply in a dedicated
quarter hour and another BRP had a lower supply in the same quarter hour (or vice
versa) these two parties can agree to adjust their balancing groups in the aftermath
such that their individual imbalance is minimized.

2.3.4 Grid Control Cooperation
The grid control cooperation (GCC) is a control concept used by the four German TSOs in
order to technically and economically optimize the procurement and activation of aFRR
and mFRR. It is implemented by coupling the power-frequency controllers of multiple
control areas (each control area is represented by one power-frequency controller). The
functionality of the GCC is based on four modules. Each module aims at a specific
economical optimization of the balancing service provisioning process [Deu20d]:

• Module 1: Avoidance of opposed aFRR/mFRR activations (imbalance netting)
It is possible that one control area has a lack of power (i. e., is underfed) while at
the same time another control area has surplus power available (i. e., is overfed).
Without the GCC such two control areas would activate balancing power into
different directions: One would activate positive balancing power and the other
would active negative balancing power. Module 1 aims at preventing such situations
by balancing such control areas. The cost saving potential lies is the reduction of
the opposed balancing power activations for aFRR and mFRR [Con+19].

• Module 2: Joint dimensioning of the aFRR/mFRR balancing capacity
The dimensioning of the balancing capacity procured by the TSOs traditionally is
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done for each control area. Module 2 of the GCC introduced a joint dimensioning
of the balancing capacity procured by the TSOs: Considering multiple control
areas as one virtual control area allows minimizing the overall required balancing
capacity. The cost saving potential lies in the decreased balancing capacity that
has to be reserved, and hence the decreased costs for the provisioning of aFRR
and mFRR.

• Module 3: Joint procurement of aFRR/mFRR balancing power
Without the GCC, aFRR and mFRR were procured per control area, and BSPs could
only provide balancing power for their dedicated control area. Module 3 of the
GCC introduced that aFRR and mFRR providers of involved control areas can (to
some degree) also provide balancing power for other control areas independent
of the TSO they are connected to. The cost saving potential lies in the increased
competition between the affected BSPs which results in decreased aFRR and mFRR
costs.

• Module 4: Cost-optimal aFRR/mFRR activation
Traditionally, the activation of aFRR and mFRR is done by each TSO for its control
area. Even after the joint procurement introduced in Module 3, the activation
would still be done following the control area specific energy price merit-order
list. As it may be cheaper to activate a BSP located in a neighboring control area,
Module 4 introduced common aFRR and common mFRR merit-order lists. They
cover all bids within the control areas participating in the GCC. The cost saving
potential of jointly considering all available aFRR or mFRR bids when activating
balancing power lies in reduced activation costs.

The first module of the German GCC was introduced in 2008, since then in particular
Module 1 was extended by adding further European TSOs that collectively form the
International Grid Control Cooperation (IGCC) [Int16; Deu20c]. With the Platform for
the International Coordination of Automated Frequency Restoration and Stable System
Operation (PICASSO), the ENTSO-E works on continuing the cooperation between TSOs
in form of an European aFRR platform that enables the exchange of balancing power
between TSOs [Eur21b].

Figure 2.9 shows how Module 1 (imbalance netting) and Module 4 (cost-optimal aFRR
activation) are technically implemented. It shows the proportional-integral controllers
for three exemplary control areas. Each is operated by the responsible TSO. The inputs
and outputs of each controller can be recognized. When neglecting the higher-level
central aFRR optimization, each controller’s input is (besides the measured frequency)
the respective control area’s measured power balance, also referred to as Area Control
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Figure 2.9: Optimization of aFRR activations in the Grid Control Cooperation; based on
[Int16].

Error (ACE) [ENT09]. It is measured at the control area’s coupling points to other control
areas, at the so called tie lines. Each controller’s output are aFRR activation requests
that are sent to the single aFRR providers. After the introduction of the GCC, the control
area specific controllers stayed active. Instead of replacing the multiple controllers with
a single central controller, the higher-level central optimization (shown in the middle)
was introduced. Its input is the aFRR demand individually calculated by each connected
control area. On this basis, the central controller continuously calculates a correction
for the ACE of each connected control area in one-second resolution [Deu20d]. Based
on this central optimization, the input values for the control area specific controllers
are adjusted such that the single aFRR bids are activated in a way that avoids opposite
aFRR activations (Module 1) or that minimizes the overall activation costs by using a
common aFRR energy price merit-order list (Module 4).

An example clarifies how the GCC works in context of Module 4: In the extreme case,
the BSPs with the cheapest energy price bids could all be located in control area 1 which
at a given point of time may have no aFRR demand. At the same time, there could be
an aFRR demand in control area 2 and 3. Due to Module 4 of the GCC, the higher-level
central aFRR optimization would then adjust the ACE of control area 1 such that the
respective aFRR controller activates its connected BSPs. At the same time, the ACE of
control area 2 and 3 would be adjusted such that no activation takes place in these
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control areas. This decreases the overall activation costs while satisfying the overall
balancing power demand.

2.3.5 Overall Balancing Service Provisioning Process

Figure 2.10 graphically summarizes the balancing service provisioning process, which
was introduced in detail above. It shows the interaction between the three main actors
TSOs, BRPs, and BSPs, highlights their responsibilities, and shows the overall temporal
sequence. For each task, the color of the line indicates when the task is executed relative
to the actual delivery of balancing power (ex ante, in real time, or ex post).

Day-after 
market

Available balancing capacity (MW)

Activated
balancing energy (MWh)

1 Prequalification of BSP
2 Definition of the required balancing capacity
3 Tendering and determination of the

balancing activation merit-order
6 Balancing power activation (aFRR, mFRR)
9 Payment of the capacity and energy price
10 Calculation of the reBAP imbalance price

for the activated balancing energy

Responsibilities of TSOs

4 Registration of demand and supply schedule
5 Causing balancing power demand
8 Reduction of balancing group imbalances
11 Paying of the reBAP imbalance price

Responsibilities of BRP

7 Provisioning of balancing energy

Responsibilities of BSP

Ex ante Real time Ex post

Balancing
service 

provider (BSP)
• Demand
• Supply

5 7

2 6
11
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3

3

Balancing 
responsible 
party (BRP)
• Demand
• Supply

Transmission System Operators (TSOs)
in the Grid Control Cooperation (GCC)

TSO 1 TSO 2 ··· TSO n

Figure 2.10: Summary of the overall balancing service provisioning process with actors and
their interaction; based on [HZ13].

The TSOs as natural monopolies are responsible for the successful provisioning of
balancing services. Therefore, the BNetzA takes care of the correct and fair execution of
necessary tasks. This in particular includes the efficient, non-discriminatory design of
balancing markets and regulation regarding fees.
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2.3.6 Backup Mechanisms
For cases in which balancing services fail at bringing back the frequency to its nominal
value, there are twomajor backupmechanisms: one for the case of undersupply (handled
by positive balancing power), and one for the case of oversupply (handled by negative
balancing power). The first backup mechanism focuses on load shedding as backup
for positive balancing power, i. e., disconnecting loads if positive balancing power is
not able to bring the frequency back to the nominal value of 50Hz. Therefore, the
ENTSO-E defines different load shedding steps that connected TSOs have to enforce
on an obligatory basis [ENT17]: Below 49.8Hz, storage pumps must be disconnected
within 10 s, and below 49.2Hz they must be disconnected immediately. Afterwards,
between 49.0Hz and 48.0Hz, load is shed in minimum six different steps till a total
of 45% is shed at 48.0Hz. If these measures are not sufficient to keep the demand at
a healthy balance with the supply, generators are allowed to be disconnected below
47.5Hz in order to avoid sustainable physical damage for them.

Load shedding as back-up strategy fits well to the traditional control paradigm “supply
follows demand”: if the supply cannot follow, the demand is shed. However, due to the
high fluctuation of renewable energy sources, oversupply turned out to be a challenge as
well (see Section 2.4.1 for a full discussion). For this reason, in Germany, an additional
supply side backup mechanism for negative balancing power was introduced with the rise
of rooftop PV plants: In 2005, the German Association of Grid Operators12 (VDN) defined
that in cases where negative balancing power is not able to keep the frequency down at
50Hz, PV plants above 10 kW must disconnect from the public grid at 50.2Hz [Ver05].
However, once a certain share of PV power was reached, the abrupt disconnection of a
high share of PV plants was identified as a serious problem with regards to potential
frequency oscillation: disconnecting a high share of PV plants can decrease the frequency
to below 50Hz, as a consequence balancing services will increase the feed-in, PV plants
may reconnect, and frequency will increase again. As a consequence, in 2012, the
frequency limit for a hard disconnection was increased to 51.5Hz [Bun12a]. Nowadays,
between 50.2Hz and 51.5Hz, a stepwise throttling of the feed-in power is realized,
hence minimizing the threat of potential frequency oscillations.

2.4 Implication of the Energy Transition
In recent years, the increasing share of renewable energy sources on the overall energy
mix resulted in manifold changes. These changes are very challenging for multiple

12German: “Verband der Netzbetreiber” (VDN)
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reasons. Firstly, they require trade-offs between economic efficiency, environmental
sustainability, and the security of supply which is also referred to as the energy policy
target triangle [Sch17]. Secondly, they come along with multifaceted arguments due to
a high number of stakeholders with partly divergent interests [Rei+18]: interests of
TSOs, DSOs, utilities, power plant operators, the conventional and renewable energy
industry, aggregators, and final consumers have to be discussed and weighed up. Thirdly,
the energy transition involves multiple sectors such as electricity, heat, gas, and mobility
that should be considered in a holistic way [Bro+18]. Finally, the enhancement of
the energy system design does not happen on a green field. Instead, it is complicated
by well-established and organization-overlapping operational processes. The major
implications of the energy transition with relevance for the flexibilization of prosumers
are summarized in the following.

2.4.1 Need for Demand Side Management

The predominant control paradigm in power grids with a high share of conventional
generation by controllable power plants can be characterized as “supply follows demand”.
This control paradigm assumes that a large share of the electricity consumption is
assumed as inflexible. Given this assumption, the required demand-supply balance can
be realized by flexibilization of the generation. This control paradigm fits to energy
systems with a large share of conventional power plants that are well controllable.
However, in contrast to conventional power generation, the intermittent and fluctuating
generation of renewable energy sources (PV, wind or hydro power) is based on weather
conditions. Given a high share of such renewable energy sources, it becomes more
and more difficult to keep demand and supply balanced by solely adjusting the supply
side: once a certain share of the power generation is replaced with renewables, the
intermittent and fluctuating supply may not be able to (economically) satisfy the demand.
As a consequence, the energy transition results in a control paradigm shift from mainly
“supply follows demand” to additionally “demand follows supply”. Measures aiming at
the adjustment of the electricity consumption based on the electricity generation are
summarized under the term Demand Side Management (DSM) [PD11]. DSM may be
incentivized by time-variable price signals or other economic stimuli. The reaction of
the demand side is also referred to as Demand Response. It can result from manual
human intervention or from energy management systems automatically responding to
the DSM incentives by shifting device runtimes. Smart metering as described below is
the major technology enabling DSM.
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2.4.2 Increasing Share of Prosumers in Distribution Grids

It was already shown that electricity traditionally is fed into high-voltage grid segments
and transported down via transformers to low-voltage grid segments where it finally
is consumed (see Section 2.1.1). Hence, the traditional power flow direction can be
described as top-down. However, in recent years, the share of small generation units
installed in low-voltage grids increased. In Germany, the EEG incentivized the installation
of decentralized (rooftop) PV plants, and the German Act on Combined Heat and Power
Generation13 (KWKG) incentivized the installation of decentralized CHP plants. Both,
PV and CHP plants are often located on-site at traditional consumer places that are
directly connected to the low-voltage grid [GM17]. As a consequence, at times of high
on-site generation and low on-site consumption, electric energy can also be fed back
into the grid. If this happens to a large extent, energy will also flow bottom-up from
low-voltage to high-voltage grids. This challenges the voltage stability in distribution
grids. As they originally have been designed and dimensioned for coping with top-down
energy flows, operational mechanisms are designed for handling challenges coming
along with this assumption (see Section 2.1.3). In addition, the expansion of electric
mobility increases the share of high loads in distribution grids. As a consequence of this
development, DSOs are faced with two major challenges. Firstly, DSOs lack information
about the (time-dependent) stability within their grids. Secondly, DSOs lack control
options for efficiently managing the partially high power supply (provided by PV plants)
and the partially high power demand (requested by electric mobility and increasingly
by heatpumps which are replacing fuel-based heating devices in private homes). Smart
metering infrastructures are a major building block for handling these two challenges.
However, the coordination between grid-supportive and market-oriented DSM measures
comes along with new challenges [BDE15].

2.4.3 Rollout of Smart Metering Infrastructures

Smart metering infrastructures can be seen as a major step in the evolution of power
grid operation. They allow to link energy consumption and the time of use in the area
of hours or even quarter hours, hence setting the technical foundation for DSM (see
Section 2.4.1). In contrast, conventional electromechanical electricity meters are not
able to do so.14 Given conventional electromechanical electricity meters, electricity
suppliers have to generalize the electricity prices for final customers such that they are

13German: “Kraft-Wärme-Kopplungsgesetz” (KWKG)
14Traditionally, day and night time tariffs have been implemented by switching between two conventional

meters, resulting in a very limited time granularity.
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independent of the time of use. Billing can then be done based on the yearly sum of the
consumed energy. By linking energy consumption and the time of use, smart meters
allow verifying the reaction (i. e., the adjusted consumption) to load-shifting incentives
such as time-variable price signals or other economic stimuli. By allowing to verify the
reaction of flexible loads to grid needs or market prices, smart meters facilitate the
integration of renewable energy sources.

To foster the expansion of renewable energy sources, smart metering systems are
introduced in many countries worldwide. However, implementations differ largely
between countries. Among others, implementations differ regarding functionality and
interfaces, expected deployment strategies (partial rollout vs. full rollout), the market
model (market-driven vs. regulated), the targeted diffusion rates, rollout time frames, or
expected costs [Eur14b; Eur14c]. Subsequently, backgrounds and relevant aspects of the
German approach are summarized based on the paper [För+19]. In the European Union,
smart metering infrastructures have to be rolled out based on an EU directive from 2009
[Eur09]. Single member states can define own approaches satisfying their local needs
based on individual cost-benefit analyses. Germany evaluated different rollout scenarios
in 2010 [Ern13]. As a result, in 2016, the German Law on the Digitalization of the
Energy Transition15 (GDEW) was passed, which among others introduced the German
Metering Point Operation Law16 (MsbG).

The German smart metering approach puts a high emphasis on standardization and se-
curity [Bun13]. It is based on two major components: smart meters (German: “Moderne
Messeinrichtungen”) and Smart Meter Gateways (SMGWs), where the combination of
both is referred to as smart metering system (German: “Intelligentes Messsystem”). The
smart meter itself is a digital power meter capable of providing temporally fine-grained
power measurements. It has a display for visualizing energy values for different time
frames. The SMGW is a communication device with two major functionalities. Firstly, it
can automatically communicate measurements from connected smart meters to external
parties17. Secondly, it allows external parties to send incentives or commands for load
adjustments to local energy management systems. In Germany, according to the MsbG,
smart meters (i. e., the digital power meters) are compulsory for new installations. The
installation of SMGWs (i. e., the communication devices) follows a stepwise roll-out plan,
ultimately making it compulsory for consumers above 6 000 kWh/a or for prosumers
with renewable feed-in above 7 kWpeak. The compulsory rollout may result in new
business models that facilitate the integration of renewable energy sources or high loads,

15German: “Gesetz zur Digitalisierung der Energiewende” (GDEW)
16German: “Messstellenbetriebsgesetz” (MsbG)
17In context of German smart metering systems, these external parties are called “external market

participants” (German: “Externe Marktteilnehmer”).
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e. g., through electric mobility. Consumers falling below the thresholds are free to install
SMGWs whereby new business models may incentivize them to do so.

2.4.4 Advancements of Electricity and Balancing Markets
In recent years electricity and balancing markets have been advanced into two directions:
firstly, to better integrate the rising share of renewable energy sources and, secondly, to
better integrate the rising share of potentially flexible consumers. In the following we
have a closer look on concrete developments at the German markets.

2.4.4.1 Governmental Measures Regarding the Electricity System Design

The energy policy target triangle describes that the energy system design requires
trade-offs between affordability, the environmental sustainability and the security of
supply [Sch17]. In 2014, in order to navigate through the options, the BMWi started a
government-driven stakeholder consultation focusing the future electricity market design.
Therefore, it published a discussion paper (Green Paper) on “An Electricity Market for
Germany’s Energy Transition” [Bun14] in which fundamental future directions have
been proposed. On this basis, the BMWi invited affected stakeholders to submit their
opinions. In 2015, the outcome of the consultation on the Green Paper was published.
This was done in form of a White Paper that unites the interest of the participating
212 organizations and 484 private persons [Bun15a; Deu15b]. In the White Paper, the
BMWi proposed and justified concrete directions for the advancements of the electricity
market design. Proposed measures with relevance for the flexibilization of prosumers
are [Bun15a]:

Measure 3: Strengthening obligations to uphold balancing group commitments
Measure 4: Billing balancing groups for each quarter hour
Measure 6: Opening up balancing markets for new providers
Measure 8: Revising special grid charges to allow for greater demand side flexibility
Measure 10: Clarifying rules for the aggregation of flexible electricity consumers
Measure 13: Gradually introducing smart meters
Measure 16: Integrating combined heat and power generation into the electricity

market
Measure 17: Creating more transparency concerning electricity market data

In 2020, parts of the measure have already been implemented in form of market design
changes (as presented below), regulatory adaptations (e. g., regarding smart meters),
BNetzA resolutions (e. g., regarding the aggregation of flexible electricity consumers or
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the transparency of electricity market data), or they are subject to ongoing discussions
(e. g., regarding reduced grid fees for grid-supporting consumers).

2.4.4.2 Recent Advancements of Electricity Spot Markets

We start with the discussion of advancements of electricity spot markets as visualized
in Figure 2.11a. The discussion of balancing market advancements follows in the next
paragraph. As a steady balance of generation and consumption has to be guaranteed,
the rising share of renewable energies in the energy mix (characterized by a higher
fluctuation and uncertainty) makes balancing group management more difficult. Conse-
quently, the introduction of shorter product time slots and the reduction of the lead time
between trading and delivery allows for a more effective balancing group management
[MFN18]. Additionally, the introduction of the optional EEG market premium model18
sets incentives for directly selling PV energy via spot markets, instead of only relying on
the guaranteed feed-in tariffs by the grid operator. Consequently, the depicted changes
facilitate the integration of stochastic renewable energy sources into electricity spot
markets. At the same time, the shorter product time slots and the shorter trading
lead times set the basis for a better market integration of flexible loads. A remaining
challenge regarding the efficient integration of flexible loads is the composition of final
electricity prices paid by final consumers: While pure energy prices are characterized
by a relatively high fluctuation, the largest share of the final electricity price is made up
of additional—static—price components (see Section 2.2.4).

2.4.4.3 Recent Advancements of Balancing Markets

Recent balancing market changes with respect to DSM are visualized in Figure 2.11b.
Major changes occurred within recent years and do not date back that long as in the
case of electricity spot markets. In general, if all other conditions remain equal, the
demand for balancing power increases with stochastic generation. Research indicates
that each additional 1GW of PV and wind power requires 30–70MW of additional
balancing capacity, i. e., 3–7% of the additional PV and wind power [HZ13]. However,
the balancing power demand results from various parameters (see Chapter 5). For
instance, minimized lead times at spot markets may result in a shift to short-term
intraday trading [KH19], improved renewable energy generation forecasts may lower
the uncertainty [HZ13], or regulation may increase incentives to keep balancing groups
balanced.
18German: “Marktprämienmodell”
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Figure 2.11: Recent changes at German spot and balancing markets set the basis for the
integration of renewable energy sources and flexible prosumers.

Traditionally, balancing power of all three types is mainly provided by large generators
and partly by large consumers that directly participate at balancing markets [Deu19b].
In its White Paper, the BMWi states that all potential providers that are technically
able to provide balancing power should be enabled to do so in the future [Bun15a].
Concrete changes have been proposed via Measure 6 “Opening up balancing markets
for new providers” [Bun15a]. To a large degree, they have already been implemented
within the last years. Figure 2.11b visualizes the most relevant changes that aim at an
efficient market design also for alternative BSPs. It can be seen that, in 2016, the joint
aFRR procurement of Germany and Austria started. In 2017, a broader stakeholder
consultation by the four German TSOs addressed the German balancing market design.
Among others, this was incentivized by European regulation [Eur17], and resulted
in detailed discussions regarding details of balancing markets [Deu18b; Deu18c]. In
2015, a dedicated regulation was announced that simplifies FCR provisioning via battery
storage systems [Deu15a]. In 2018, due to increasing aFRR energy prices, the BNetzA
announced a mixed-price mechanism [Bun17d]. For acceptance into the aFRR pool, this
mechanism considers the aFRR energy price in addition to aFRR capacity price. However,
after a lawsuit by the German aggregator NEXT Kraftwerke GmbH, the newly introduced
mixed-price mechanism was rolled back in the same year [Deu19d]. Furthermore, in
2018, daily aFFR and mFRR auctions [Bun17a; Bun17b] started, and in 2019 daily FCR
auctions started. Prior to this, all auctions were conducted weekly. Additionally, aFFR
and FCR product time slots were adjusted to four hours (i. e., six product slots per day).
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Prior to this, aFFR and FCR product time slots were defined by daily peak and off-peak
tariff slots (i. e., two product slot changes per day). In November 2020, additional aFRR
energy auctions were introduced [Bun17c]: they allows submitting aFRR offers within
the day of provisioning. BSPs participating at this new market segments earn an energy
price only, i. e., no capacity price, and the bids are added to the respective four-hour
slot’s energy price merit-order list. This allows for more short-term aFRR offers, however,
also increases competition. In the end, the introduction of shorter product time slots
and shorter lead times makes it easier for alternative (demand-side) BSPs to participate
at balancing markets.

The resulting balancing markets characteristics have already been presented in Ta-
ble 2.2 and the market timing was already visualized in Figure 2.2. Although the
high-level structure of balancing service mechanisms and markets is set by the ENTSO-E,
it is worth mentioning that national implementations still differ [Eur20b]. However,
in recent years, strong efforts for a European harmonization of processes and rules in
context of balancing services can be recognized [Eur17; Eur18c; Int16]. In context of
aFRR provisioning, in particular the PICASSO project may result in a closer international
TSO cooperation in the upcoming years [Eur21b].

2.5 Mathematical Optimization
This thesis proposes an optimization that utilizes flexibility for value stacking of flexibility
options by simultaneously providing bids to the (day-ahead) spot and (aFRR) balancing
market. In order to understand the options, this section gives an overview about different
types of optimization problems and a provides a classification of optimization methods.

2.5.1 Classification of Optimization Problems
Mathematical optimization is a wide field extensively addressed by different communities
such as mathematics, computer science, or operations research. The single communities
are partly following very different goals, hence also putting their focus onto different
aspects and sub fields. In addition, optimization techniques are applied to problems from
very different domains such as engineering or economics. Depending on the pursued
goal, and as there are multiple links between single aspects and subfields, there exists a
wide range of classification schemes for optimization problems and related optimization
technologies.

In general, a mathematical optimization problem is characterized by several potential
solutions (described by one or more decision variables which can be allocated with
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different values), some means of assessing the quality of these alternative solutions (via
the objective function converting the allocation of values to the decision variables into
a quality metric), and conditions that the solution must satisfy (described in form of
constraints limiting the allocation of values to the decision variables). Common classes
of optimization problems found in literature are listed below. They are not exclusive
and do overlap:

• None vs. one vs. many objectives: While many optimization problems have a
single objective function (i. e., minimization or maximization of a value), there
are also optimization problems having no objective function. These are called
feasibility problems where the optimization goal is to find a feasible solution
without any particular objective. On the other side, there are also optimization
problems having more than one objective function. This results in multi-objective
optimization problems where trade-offs between multiple objectives such as mini-
mizing costs and minimizing CO2 emissions have to be met, resulting in a Pareto
front with the optimum solutions for the respective objectives. Multi-objective
optimization problems can be solved by explicitly searching for the Pareto front
[Ehr05], or by reformulation as single objective problems by either forming a
weighted combination of the different objectives (e. g., focusing on costs) or by
replacing some of the objectives by constraints (e. g., defining the maximum CO2
emission).

• Constrained vs. unconstrained optimization: A distinction can be made be-
tween constrained and unconstrained optimization where no constraints apply.
Depending on the problem structure and the optimization technique used, it may
be beneficial to rephrase a constrained problem to an unconstrained problem in
which the constraints are replaced with a penalty term in the objective function,
hence allowing to solve the problem as an unconstrained problem.

• Continuous optimization vs. discrete optimization: In continuous optimization
all variables used in the objective function must be continuous variables, i. e., vari-
ables that take an uncountable set of values (such as an variable over a non-empty
set of real values). In contrast, in discrete optimization at least one variable used
in the objective function is restricted to be a discrete variable, i. e., a variable that
takes a discrete set of values (such as a integer or binary variable). Continuous
optimization problems tend to be easier to solve than discrete optimization prob-
lems as the continuity assumption allows the use of calculus techniques for solving
the problem whereas discrete optimization leads to combinatorial explosion and
NP-hard problems.
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• Linear optimization vs. non-linear optimization: In linear optimization, the
objective function as well as constraints are linear. In non-linear optimization, in
contrast, the objective function or some of the constraints are non-linear. Linear
optimization gained a lot of recognition as many practical problems can be ex-
pressed this way, and as methods such as the simplex method or the interior-point
method allow efficiently solving linear problems. [LY+84]

• Optimization under uncertainty: Deterministic optimization assumes that data
for the allocation of variables of a given problem is known accurately. However, as
data often is fraught with uncertainty (e. g., due to measurement errors, environ-
mental influences, or as it is related to the future), exact data to be used as input
to an optimization problem is often not known beforehand. Two paradigms that
incorporate the uncertainty into the model are stochastic programming [KW94]
and robust optimization [BEN09]. Therefore, they are also referred to as op-
timization under uncertainty. In stochastic programming, two approaches can
be separated [Mad60]: Firstly, the “here-and-now” approach. In this approach,
each variable that is subject to uncertainty gets assigned its expected value based
on the underlying random distribution. Then, the problem can be solved in a
deterministic way. Secondly, the “wait-and-see” approach which is two-staged.
This approach is based on the assumption that the decision maker can wait till the
uncertainty is eliminated. In a first step, the optimum decision which is valid for all
uncertainty scenarios is calculated and realized. In a second (or 𝑛-th) step, if new
information is available, the overall optimization problem is solved by additionally
considering the new information. In contrast to stochastic programming which
assumes the probability distribution of uncertain data to be known or estimated,
robust optimization does not make this assumption [GYd15].

It is worth noting that a formal optimization model may differ from the real-world
problem. As a given optimization problem can be formulated in different ways, it may in
particular be intentionally transformed to a problem that is easier to solve. For instance, a
discrete optimization problem may be formulated as a continuous optimization problem
(relaxation), or a non-linear optimization problem may be approximated reasonably
well by a linear optimization problem.

Table 2.3 presents a common classification of problem types often found in engineering
and economics: constrained and deterministic optimization problems with one objective
(such as cost minimization or throughput maximization). For such problems, the linear-
ity/non-linearity of terms, and the continuity/discreteness of variables are crucial for
the choice of an optimization method. Applied mathematical optimization is historically
also described using the word “programming” [Dan02]: Linear Programming (LP),
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Table 2.3: Comparison of common classes of optimization problems.
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Terms Variables
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LP × ×
ILP × ×
MILP × × ×

NLP × ×
INLP × ×
MINLP × × ×

Integer-Linear-Programming (ILP), Mixed-integer Non-linear Programming (MILP),
Non-linear Programming (NLP), Integer Non-linear Programming (INLP), Mixed-integer
Non-linear Programming (MINLP). Characteristics of each problem class are shown in
the table. In general, a problem is non-linear if at least one term is non-linear, and a
problem is discrete if at least one variable is discrete. In the next section, we discuss the
choice of an optimization method based on the problem type.

2.5.2 The Choice of an Appropriate Optimization Method
An optimization algorithm takes the description of a mathematical optimization problem
(in form of objective function, constraints, and data) and calculates its solution(s).
An optimization method or technique, more abstract, describes the idea behind an
optimization algorithm. The choice of an optimization method for solving a given
optimization problem is specific to the type of the optimization problem. In general,
the modeling is a very important step in the optimization process. One way to classify
optimization methods according to the problem class is presented in Figure 2.12. It
shows that it is particularly important for the choice of an appropriate optimization
method whether the optimization problem is continuous or discrete, and whether it is
linear or non-linear.

First we have a look at continuous optimization problems (left branch in Figure 2.12).
Continuous linear optimization (left sub branch) problems can be solved by well-studied
methods which are in particular the simplex method or the interior point method. Con-
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Optimization methods

Continuous problems Discrete problems

Linear problems Non-linear problems

Approximate 
optimization
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optimization
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optimization
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Gradient-based 
methods

Cutting plane 
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Interior-point
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(M)ILPNLP (M)INLPLP

Figure 2.12: A classification for the choice of an optimization method based on the problem
class.

tinuous non-linear problems (right sub branch) can again be separated into local and
global problems. While global optimization methods can find the global optimum, local
optimization methods can only find the local optimum. Local optimization methods
for continuous non-linear problems are gradient-based methods. Global optimization
methods for continuous non-linear problems are mainly heuristics. Local optimization
methods are of special interest for convex optimization problems which are a superset
of continuous non-linear problems [Ste17a]. Convex optimization problems are charac-
terized by a convex (if minimizing) or concave (if maximizing) objective function, and
have only convex functions as constraints. Given a convex optimization problem, all
local solutions are global solutions.

Now we look at discrete optimization problems (right branch in Figure 2.12). Discrete
linear problems (right sub branch) can be solved with exact optimization algorithms
including the branch and bound method, variants of the branch and bound method
such as the branch and cut method, or cutting plane methods. In alternative to exact
optimization methods, approximate optimization (left sub branch)may be useful for both
discrete linear and discrete non-linear optimization problems. Approximate optimization
methods are heuristics that may be based on established metaheuristic techniques as,
e. g., provided by evolutionary algorithms, or approximation algorithms. While heuristics
allow finding approximate solutions without the possibility to quantify how close a found

57



Chapter 2 Basic Theory of Smart Grid Operation and Optimization

solution is to the optimum solution, approximation algorithms like Polynomial-time
approximation scheme (PTAS) provide guarantees on how far the found solution is to
the optimum [WS11].

In general, the class of non-linear problems is considered “difficult” to solve [BBV04].
However, within the last two decades, there has been significant progress [Kro+19], in
particular in solving convex problems (which are always continuous) [Ste17a]. While
non-linear problems that are convex can be solved by local optimization methods
[Ste17b], non-linear problems that are non-convex are usually solved by heuristics
that are specific to the problem.

Dedicated (commercial and open-source) solvers provide generically applicable op-
timization algorithms for solving certain types of optimization problems in practice
[AAK17]. As a given optimization problem can be modeled in different ways, the avail-
ability of solvers for certain kinds of optimization problems may influence the modeler’s
choice. Often recognized solvers for solving linear problems in form of LP, ILP and MILP
are the commercial IBM ILOG CPLEX Optimization Studio (CPLEX), the commercial
Gurobi Optimizer (Gurobi), or the open-source GNU Linear Programming Kit (GLPK).
These solvers are based on implementations of variants of the branch-and-cut method.
Furthermore, solvers for convex non-linear problems are available. However, they are
usually not based on single generically applicable optimization methods. Instead, they
combine several optimization methods and often heavily rely on sub-solvers from the
MILP field [Kro+19]. Often, they are used to find approximate instead of optimum
solutions.
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CHAPTER 3
Related Work on

Prosumer Flexibilization

The broader related work necessary for understanding power system mechanisms and
putting this thesis on prosumer flexibilization in proper perspective is presented in the
previous Chapter 2. On this basis, this chapter gives an overview of related work on
prosumer flexibilization and aFRR provisioning. Firstly, we categorize value creation
options for prosumers wanting to monetize their power consumption or generation flexi-
bility. Based on the literature, we discuss and categorize incentives that allow prosumers
to benefit economically from their flexibility. We show that flexibility provisioning is
motivated by local or external incentives. Secondly, we review the literature regarding
flexibility modeling. After discussing definitions of flexibility, we discuss flexibility mod-
els found in the literature. Thirdly, we have a closer look at optimizations targeting the
utilization of prosumer flexibility. This includes a discussion of prosumer aggregation
levels commonly found in the literature. In reviewing optimization approaches, we put
a focus on the multi-use of flexibility by simultaneously addressing spot market and
balancing market incentives.

3.1 Value Creation Options for Flexible Prosumers

This section presents a categorization of related work on the flexibilization of prosumer
loads regarding the underlying incentives. Incentives can be provided locally on the
prosumer side, or they can be provided externally by flexibility markets or grid operation
mechanisms. In addition to this categorization of related work, it is worth pointing to
the in-depth explanation of flexibility markets and system services presented in detail
in the previous Chapter 2.
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3.1.1 Locally Incentivized Flexibilization
In the following, we categorize and summarize related work on prosumer flexibilization
motivated by local incentives on the prosumer side.

Self-consumption Many publications address the potential of increasing self-con-
sumption to lower overall energy costs. Self-consumption describes the match of local
on-site generation and consumption. As a result, electricity consumption from the
public grid is minimized. Luthander et al. [Lut+15] present a literature review of the
self-consumption potential in the context of residential PV plants. The review quantifies
the potential from the prosumer’s viewpoint. It shows that self-consumption can be
significantly increased using a battery storage system (13–24% points given a battery
capacity of 0.5–1.0 kWh per installed kW PV power) or demand side management
measures (2–15% points depending on the scenario). Concrete potentials are specific
to demand and supply profiles, plant sizing, and regulation regarding surcharges (such
as the EEG reallocation charge in Germany). Consequently, related work addresses
different scenarios that are characterized by different flexibility characteristics such
as those found in the residential sector [FM20], the commercial sector [MM17], or
the industrial sector [PHM21]. In this value creation option, the monetary benefit of
flexibility provision corresponds to the electricity price for energy from the public grid
minus the opportunity costs in the form of revenues that would have been generated
by selling the energy, multiplied by the related electric energy. The monetary benefit
accrues directly to the prosumer.

Peak Shaving In Germany, the grid fee pricing scheme for commercial or industrial
consumers depends on the annual utilization hours (defined as the annual energy
demand in kWh divided by the maximum hourly power demand in kW). Below a
certain threshold (in Germany, usually 2 500 h), a large share of the final grid fees is
based on the consumed energy (EUR/kWh). Above this threshold, a large share of the
final grid fees is based on the measured peak load (EUR/kW per peak time window;
in Germany, usually per calendar month or year). Benetti et al. [Ben+16] provide a
literature review of 200 scientific papers focusing on load-shifting control strategies for
peak load reduction. The authors show that the peak load reduction investigated in most
of the analyzed papers is based on thermal applications in buildings, followed by (plugin
hybrid) electric vehicles and water heaters. In Rominger et al. [RLS19], the authors
analyze the charging behavior at a commercial office site and present different options
to use flexibility in the charging processes for reducing the peak load. We showed that
the peak load can be reduced by 44% without affecting the EV’s mobility and by 69%
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percent if less than 20% of the charging events are controlled. In this value creation
option, the monetary benefit of flexibility provision corresponds to reduced grid fees. The
savings are calculated as the reduced capacity multiplied by the grid fee’s capacity price
(EUR/kW) charged by the DSO. The monetary benefit accrues directly to the prosumer.

3.1.2 Externally Incentivized Flexibilization

In the following, we categorize and summarize related work on prosumer flexibilization
that is motivated by externally provided incentives from flexibility markets or grid
operation mechanisms. A detailed overview of spot and balancing markets was already
presented in the previous Chapter 2 (see Figure 2.2 for a market overview and Table 2.2
for details of balancing services).

Day-ahead and Intraday Auction Electricity prices at the day-ahead market are
determined by an auction (see Section 2.2.3.1) and the intraday market opens with an
auction, too (see Section 2.2.3.2). Lago et al. [Lag+20] andWeron et al. [Wer14] present
a literature review and show that day-ahead electricity prices can be predicted well using
machine learning or statistical methods. The difference in prices can be used to optimize
the prosumer’s load to decrease its cost. A large number of publications investigate
how to benefit from price fluctuation in these markets. For example, Cordinalesi et al.
[Cor+20] present a rolling horizon approach for trading end-user flexibility at day-
ahead and intraday spot markets. The results suggest that energy procurement costs can
be decreased by 8%, though at the same time, the energy consumption of the prosumer
is increased by 3.21% due to deviation from the energy-optimal device schedules. Iria
et al. [ISM17] present a stochastic programming approach for managing uncertainty
in the prosumer context when bidding to DA spot markets. In general, the monetary
benefit of flexibility provision incentivized by spot auctions is the difference between the
electricity procurement costs for the uncontrolled vs. the controlled load. The monetary
benefit accrues to the BRP, which may be the prosumer directly, the traditional electricity
supplier, or a flexibility aggregator. If the two latter act as an intermediary BRP, they
can communicate predicted cost forward curves to the prosumer. Then the prosumer’s
reaction is an important aspect of the BRP’s procurement strategy. Grimm et al. [Gri+21]
discuss the interaction between a supplier’s tariff design and the prosumer’s decisions.
In order to align the incentives of suppliers and prosumers in the context of time-variable
electricity tariffs, they propose a bilevel optimization model.
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Continuous Intraday Trading By continuously optimizing prosumer schedules, the
flexibility can generate multiple revenues if repeatedly reacting to price changes within
the continuous intraday market trading period. With the rise of the trading volume
at intraday spot markets within the last few years, an increased interest could also
be observed in the literature. For example, Martin et al. [MO18] propose a model for
simulating trading at the EPEX spot continuous intraday market. In Rominger et al.
[Rom+19], the authors analyzed the potential of a 100 kWh battery storage that has to
be charged from empty to full within a calendar day. The storage’s flexible consumption
and generation capabilities were traded at the continuous intraday market based on
a simulation with historic EPEX trades from 2015–2017. The results show that the
proposed optimization generates revenues that equal 3.4 times the pure wholesale
energy costs in the case of a unidirectional (charging) flexibility, and 12.4 times the pure
wholesale energy costs in case of an (bidirectional) charging and discharging flexibility.
In this option, the monetary benefit of flexibility provision corresponds to the trading
profits achieved between two alternative but valid prosumer load schedules. Again,
the monetary benefit accrues to the BRP, which may be either the prosumer itself, the
traditional electricity supplier, or a flexibility aggregator.

Balancing Group Management BRPs are charged for deviations from their reported
schedules by the balancing group coordinator, who in Germany is represented by the
TSOs. This is done in form of the imbalance energy price (“reBAP”, as presented in
Section 2.3.3). Using a real-time forecast of the deviation of a BRP’s reported balancing
group schedule from the actual feed-in and feed-out, flexibility can be used to reduce
the BRP’s deviation in the current quarter-hour for which there is no longer a trading
option. In this case, the flexibility provision’s monetary benefit corresponds to reduced
imbalance energy costs (based on the reBAP) resulting from lower plan deviations of the
BRP’s balancing group. The monetary benefit accrues to the BRP, which may be either
the prosumer itself or the electricity supplier. In Germany, imbalance energy prices
are only officially announced after delivery and are difficult to forecast as they are, by
their definition, a result of uncertainty. Balancing group compliance is an essential duty
of BRPs; however, utilizing prosumer flexibility potentially allows them to substitute
alternative options that may be more expensive. In the context of flexible demands,
Rayati et al. [Ray+20] investigate the potential of optimized balancing management via
aggregators that establish a common balancing group and cooperate to minimize their
imbalances. Haque et al. [HTN18] propose a dynamic clustering method to benefit from
small-scale residential prosumers in order to minimize imbalance cost. Their results
indicate significant potential for reducing imbalance costs. Burgio et al. [Bur+17]
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investigate the potential of using storages located on the prosumer side to reduce
imbalance charges in the context of a BSP’s high uncertainty when bringing renewable
energy sources to spot markets.

Balancing Markets We present the characteristics of balancing power markets in
detail in Section 2.3. There, we show that the suitability of these balancing services
for prosumers highly depends on the possible speed of reaction and that the monetary
benefit for flexibility provision at balancing markets is twofold: Firstly, it results from the
capacity revenues (EUR/MW) for the capacity held in reserve during the agreed period,
and secondly, from revenues for the energy supplied in case of activation (EUR/MWh,
except for FCR). The monetary benefit accrues to the BSP, which may be the prosumer
or an intermediary aggregator that may take a certain profit share for its services. In
Section 3.3, we have a closer look at the literature regarding alternative aFRR provision-
ing on the demand side. The literature regarding mFRR provision via prosumers is very
rare, which may be explained by the, in tendency, decreasing mFRR demand coming
along with shorter lead times and higher trading volumes at intraday spot markets. In
Germany, the overall available mFRR costs defrayed by the TSOs have steadily declined
in the years prior to 2019 [Bun20c], making mFRR provisioning less attractive for
prosumers. In this context, a high impact of regulation on the overall mFRR capacity
requested by the TSOs can be recognized [Bun21].

Distribution Grid Support Another practical option worth mentioning is reacting to
DSO control signals to reduce power in the event of grid bottlenecks temporarily. As
of today, the reaction to such DSO signals is monetarily incentivized by reduced grid
fees. In Germany, § 14 a EnWG sets the basis for reduced grid fees in the low-voltage
distribution grid when reacting to DSO control signals. In this case, the monetary benefit
of the flexibility provision results from the difference between the energy prices of the
regular and the reduced grid fees. The monetary benefit accrues directly to the final
consumer. In Germany, as of today, this option is mainly used for electric heating systems
such as heat pumps [Bun21]. Focusing on the German regulatory environment, Riedel
et al. [Rie+21] present potential development paths for the utilization of prosumer
flexibility incentivized by the situation in distribution grids. Among others, the authors
show that smart metering systems set the basis for implementing time-variable grid
fees or dynamic power limitation signals, which may provide additional load-shifting
incentives for flexible prosumers in the future.

The optimization problem presented in Chapter 7 uses flexibility in a prosumer’s load
to generate optimized device schedules. It is incentivized by simultaneously considering
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the external value creation options (day-ahead) spot market and (aFRR) balancing
market.

3.1.3 Value Creation in Potential Future Energy System Designs
The above-presented categorization of related work on prosumer flexibilization is practi-
cally motivated by prosumers who nowadays want to benefit from utilizing flexibility
in their load. In today’s and the near-future regulatory scheme, the above-presented
value creation options are essential. However, additional flexibilization incentives are
discussed in the context of newly proposed market and energy system designs. In
particular, the following development paths are worth mentioning as they may result in
new options for prosumer flexibilization.

Cellular Energy Systems In particular related work in the field of cellular energy
systems is worth mentioning, as it has attracted a lot of interest in recent years. The
concept of cellular energy systems addresses the challenge that current energy market
and grid operation principles are, in the long run, perceived to likely not be adequate to
deal with the envisioned share of renewable energies and new loads [Fla+21]. Flatter
et al. [Fla+21] define an energy cell (EC) as “a spatially delimited, balanceable part of
a multi-sector energy supply system. It consists of the relevant supply infrastructure of
various energy sectors, in which the sensible balancing of generation and consumption
is organized by an EC Management in coordination with neighbouring cells using all
available forms of energy”. This requires fundamental regulatory changes. However,
it will bring manifold opportunities for prosumers to offer their flexibility and take
an essential role in the energy system. Šikšnys et al. [Šik+19] propose a system for
flexibility modeling, management, and intra-cell trading in cellular energy systems.
Based on large-scale simulations that replicate pilot sites, the authors show how the
cellular system design allows for 100% self-utilization of renewable energy sources and
significant end-prosumer savings in all scenarios considered.

Local Flexibility/Energy Markets Local flexibility or energy markets are another
prominent concept aiming at the integration of the demand side into the grid operation.
The concept of these markets is interlinked with the concept of cellular energy sys-
tems, in which they may play a crucial role in coordinating flexibility within an energy
cell. Goldkamp et al. [GS20] emphasize that local flexibility markets are characterized
by a strong focus on the market-oriented, grid-supportive utilization of demand-side
flexibility. Mengelkamp et al. [EW19] discuss the value proposition of local energy
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markets identifying economic, social, technological, and environmental benefits. Jin
et al. [JWJ20] review the recent literature on flexibility markets and provide a discussion
of concepts and definitions. They find that participants in local flexibility markets may
take overlapping positions, such as the market operator, which may be the DSO, or the
aggregator, which may be the BRP. The authors emphasize the coordination between
local flexibility markets and central markets as well as between different grid segments
(TSO and DSO) as an important aspect. Based on their comprehensive review, the
authors predict a significantly rising trend for procuring flexibility from local flexibility
markets in the future. Consequently, potential adoptions of these concepts in practice
will create new incentives for flexible prosumers.

Ancillary Services New value creation options for flexible prosumers may also arise
through ongoing changes in ancillary services such as redispatch for congestion man-
agement in the public grid. In Germany, in 2021, redispatch was advanced to include
generators in the 100 kW class. It is worth mentioning that, as of today, redispatching
in Germany does not follow a market-based approach: according to § 13a EnWG, power
plant operators should be economically neither better nor worse off due to redispatch
measures (see Section 2.2.5). However, the ongoing developments to include smaller
generation units may incentivize prosumers to participate in such ancillary services. For
example, a mandatory redispatch order for an on-site generation plant could also be
realized by alternative flexibilization of on-site demand-side units, which potentially is
cheaper. Scientific literature discusses different advancements of redispatch processes
in the context of newly emerging potentials through flexible prosumers. For example,
Pantoš [Pan20] proposes a mechanism for market-based redispatch that aims at inte-
grating small-scale residential, commercial, or industrial prosumers. In the future, these
developments may result in new flexibilization incentives for prosumers.

3.2 Modeling of Flexibility
This section presents literature on the definition and modeling of flexibility and puts it
into the context of this work.

Flexibility Definitions The literature presents different definitions for flexibility in
energy consumption and generation. Mauser et al. [Mau+17] define (energetic) flexibil-
ity as “the collection of valid combinations of system inputs and their state dependent
outputs in terms of all energy carriers”. Further definitions put the focus on potential
changes from a current or normal load patterns in response to certain signals [CEN13],
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Figure 3.1: Different types of energetic flexibility; based on [Pet+13a].

on the shifting of consumption or generation under given constraints [NKS15], or on
the ability to deviate from planned consumption or generation [Pet+13a]. The CEN-
CENELEC-ETSI Smart Grid Coordination Group [CEN13] classifies flexibility providers
in terms of generators, storages, or demands as uncontrollable (non-curtailable), cur-
tailable (non-shiftable), shiftable (non-buffered), buffered (controllable within bounds),
or freely controllable.

Flexibility Models Peterson et al. [Pet+13a] formalize three abstract flexibility types
that are of high practical relevance as they can be applied to various devices in the
context of prosumer flexibilization. They are visualized in Figure 3.1. These flexibility
types can be mapped to the above presented classification of the CEN-CENELEC-ETSI
Smart Grid Coordination Group as variants of buffered flexibility (Figures 3.1a and
3.1b) and shiftable flexibility (Figure 3.1c). We use this classification to put related
work on flexibility modeling into context:

• Buffer-constrained: Figure 3.1a visualizes a buffer constrained flexibility. It can
be seen as an energy storage that is constrained by a minimum and maximum
bufferable energy amount (𝑒 and 𝑒) in which different temporal courses are possible
for the energy contained in the storage. The flexibility is defined by the minimum
and maximum amount that can be buffered in the energy storage. Commonly
found devices that can be assigned to this category are battery storage systems, heat
pumps, or combined heat and power plants. The two latter are usually modeled
as being associated with a thermal energy storage. Besides the energy limitation,
parameters of heat pumps, as they are commonly modeled in the literature, are
the coefficient of performance (COP), an energy loss over time, or minimum and
maximum runtimes. For CHP plants, the power-to-heat ratio, part-load efficiencies,
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an energy loss over time, or minimum and maximum runtimes are commonly
modeled parameters. Battery storage system models for prosumer flexibilization
are often characterized by charging and discharging efficiencies, aging parameters
based on the battery usage [Xu+18], an energy loss over time, or constant current
constant voltage (CCCV) characteristics. It is worth noting that different subclasses
of this abstract flexibility type can be recognized: e. g., in the case of a heat pump,
discharging the buffer may not be a control decision but instead be given by an
exogenous heat energy demand.

• Buffer-constrained and time-limited: Figure 3.1b visualizes a subclass of the
flexibility presented in Figure 3.1a. It is further restricted by a certain energy
amount that must be reached at a deadline 𝑡end. Devices modeled in the literature
that can be assigned to this class are mainly electric vehicles (EVs) or industrial
applications characterized by certain throughput requirements. For example,
in the case of EVs, commonly considered parameters for the refinement of this
flexibility model are: the arrival and departure time which may be fraught with
uncertainty [WJF20], the battery’s state of charge (SOC) at arrival and departure,
or a certain emergency SOC which should be reached as soon as possible after
arrival.

• Shiftable with fixed power profile: Figure 3.1c visualizes flexibility in the form
of a fixed load profile that can be started flexibly within a specific time frame
and must be finished by a deadline 𝑡end. In the figure, the fixed load profile has a
runtime of 𝑡run. Corresponding devices and applications found in the literature
are, e. g., household appliances or industrial processes that, once started, will
follow a fixed load profile. Appliances found in the literature are modeled using
fixed power profiles in different temporal granularities or, in case of interruptible
power profiles, by splitting up a fixed profile into multiple separable profile phases
[Mau+14].

It can be seen that flexibility in energy consumption and generation comes in different
forms. In the literature, the modeling of device characteristics and granularities is
very scenario specific. The device models presented in the upcoming Chapter 4 can be
assigned to the buffer-constrained flexibility type visualized in Figure 3.1a.

3.3 Optimizations for Utilization of Prosumer Flexibility
Prosumers are commonly seen as end consumers attributed to the traditional demand
side that take an active role in power generation, power grid operation, or energy market
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participation [Kot20]. Gough et al. [Gou+20] provide a state-of-the-art review with a
detailed scientometric analysis of research on prosumer flexibility. The review shows
that the number of scientific papers related to prosumer flexibility was relatively low
until 2016. In 2016, the number of published papers on prosumer flexibility was higher
than the cumulated number of all papers on this topic from 2008–2015. From 2016
ongoing, the number of related publications increased exponentially until it peaked in
the last considered year 2020.

Different manifestations of prosumers can be found in the literature. In the fol-
lowing, we categorize related work by the considered prosumer aggregation level (in
Section 3.3.1). Furthermore, due to this thesis’ focus, we have a closer look at the
multi-use of flexibility in the prosumer context (in Section 3.3.2). Finally, we present
an overview of related work focusing on aFRR provisioning and spot market based
scheduling (in Section 3.3.3).

3.3.1 Aggregation Levels for Prosumer Optimizations
Existing literature addresses prosumer optimizations utilizing energetic flexibility on
different aggregation levels. In the following, we put related work into the context and
give an overview of aggregation levels that are of interest for this thesis.

Buildings Prosumer flexibilization on the aggregation level of either residential or
commercial buildings is a topic extensively addressed in the literature. In this context
the terms “building energy management system” (BEMS) [Mis+14] or “home energy
management system” (HEMS) [Ozt+13] are commonly used. The devices considered
depend on the type of building. Generally, a strong focus on heating, ventilation, and
air conditioning (HVAC) applications can be recognized. Often, buildings equipped with
local generation via photovoltaics or combined heat and power plants are considered.
In the residential sector, we additionally can recognize the consideration of household
appliances, such as washing machines or dishwashers.

Microgrids and Commercial/Industrial Sites Microgrid is a term commonly used for
referring to a geographically delimited consolidation of energy consumers and generators
that are coordinated by an optimization [Par+15; HPG18]. Microgrids are studied in
different contexts, often emphasizing electrotechnical characteristics such as voltage
and frequency stability, or the option to operate the grid in islanded mode independent
from the public grid [Shu+16]. Depending on the definition, microgrids can be seen as
“private grids” in which energy consumers and generators are pooled for being connected
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to the public grid. In Germany, certain surcharges can be waived for on-site generated
energy consumed within a private grid1. Consequently, regulation is strict regarding
the operation of private grids. In the German market environment, the regulatory
interpretation regarding private grids depends on various characteristics, including the
geographic expansion, the (in)significance for competition, or the number of involved
entities [HM18]. Prosumer optimizations on the aggregation level of commercial and
industrial sites/facilities can be seen as a subclass of this category [CM16; HHL17].
In the literature, sites are often defined to be operated by one central operator that
is responsible for all on-site energy consumers and generators. In these cases, central
optimizations do not consider further sub-interests within a site.

Energy Communities In contrast to microgrids, which have a longer history in the
literature [JCR08], the term energy community has been increasingly used within recent
years [SFV21; EPC18]. As in the case of microgrids, the term energy community also
refers to a consolidation of energy consumers and generators with the goal of energy-
related optimizations. The term can relate to a local aggregation of geographically
neighboring entities. However, it is often also used for scenarios where geographic
restrictions do not apply [SFV21]. Based on a literature review, Sao et al. [SFV21]
identify 17 different types of energy communities, including communities in the form of
building clusters, multi-modal energy systems, or peer-to-peer trading. On this basis,
the authors define four categories of energy communities. They are distinguished by
the geographic relation (place-based vs. non-place based energy communities) and the
purpose of the energy community (single-purpose vs. multi-purpose communities that
address further objectives in addition to energy objectives). In practice, the economic
potential of flexibilizing consumption and generation within an energy community
highly depends on the regulation. Furthermore, the term energy community is often
used in the context of energy cooperatives acting as democratic mergers of entities
that collectively invest in energy equipment and distribute profits and losses within the
community in a democratic way [Eur21a]. Finally, it is worth mentioning that, in recent
years, an increased usage of the term “energy community” can be recognized in the
marketing of electricity suppliers. However, considering today’s regulatory framework,
the economic value creation behind corresponding business models is mostly based on
the traditional value creation options presented in Section 3.1. Newly emerging business
models in this context [Loo20] are challenged by the established regulation [LP17].
Nevertheless, in the future, regulatory adaptions and new business models potentially

1German: “Kundenanlage”
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result in new aggregation levels in which flexible prosumers may unite to optimize their
energy assets.

3.3.2 Multi-use of Flexibility
In the literature, the multi-use of flexibility simultaneously incentivized by different value
creation options is, so far, mainly investigated with a focus on battery energy storage
systems. This focus seems reasonable as battery storage systems are gradually reaching
the mass market [Fig+20]. Furthermore, they are characterized by high flexibility to
adjust power demand and supply, consequently qualifying for a relatively large number
of value creation options. Englberger et al. [Eng+19] discuss different options for the
flexible operation of battery energy storage systems for different purposes, which the
authors refer to as “applications”. This allows for multiple types of revenue streams.
They separate between sequential, parallel, and dynamic multi-use as visualized in
Figure 3.2:

• Sequential multi-use (Figure 3.2a) describes considering different value creation
options in sequence, one after the other (e. g., PV self-consumption around noon
and in the evening, FCR provisioning otherwise).

• Parallel multi-use (Figure 3.2b) describes that certain flexibility shares are re-
served for different value creation options. For example, a certain SOC range
of a battery storage system may be reserved for PV self-consumption and the
remaining SOC range may be reserved for FCR provisioning. In sequential and
parallel multi-use, the disposition of the flexibility can be made based on rather
static decisions.

• Dynamic multi-use (Figure 3.2c) describes dynamically deciding which flexibility
share to use for which value creation option. In contrast to the two other options,
dynamic multi-use requires a more comprehensive optimization.

While Englberger et al. [Eng+19] use the wording multi-use of flexibility, Klaasen
et al. [Kla+18] refer to the same concept using the wording value-stacking of flexibility
options, and Braeuer et al. emphasize the aspect of parallel revenue streams [Bra+19].
Klaasen et al. [Kla+18] discuss processes, rules, and interactions to enable value-stacking
for aggregators of flexible demand-side resources. They introduce the role of a “flexibility
requesting party” (FRP). Taking the point of view of an aggregator, they distinguish
three types of value stacking that are in line with the classification of Englberger et al.
[Eng+19]: Firstly, value stacking by time describes serving different FRP; however, only
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Figure 3.2: Options for multi-use / value stacking of flexibility incentivized by different value
creation options, based on [Eng+19].

one at a time. Secondly, value stacking in pools describes splitting up an aggregation
pool and treating the sub-pools or assets differently. Thirdly, double serving multiple
FRP at the same time. On the basis of stakeholder roles such as prosumers, aggregators,
suppliers, BRPs, DSOs, or TSOs, the authors discuss the value-stacking options in detail.

Early work focuses on sequential bidding to different flexibility markets. It is worth
noting that a sequential optimization addressing different incentives one after the other
can also result in a dynamic multi-use as visualized in Figure 3.2c. However, if the
incentives from the different value creation options are not considered in a predictive way,
it is possible that the resulting usage of the flexibility will be suboptimal with respect
to the overall profit optimization potential. For example, Petersen et al. [Pet+13b]
propose a three-stage market model including DA, ID, and balancing markets. The
single optimization problems are solved one by one, each time using the latest available
information. Based on abstract flexibility types and historical Danish market data, the
authors show that profits increase with the number of considered markets; however,
highly depending on the type of the considered flexibility.

3.3.3 aFRR Provisioning and Spot Market Scheduling
In this thesis, we focus on aFRR provisioning as one option for monetizing prosumer
flexibility. The choice of aFRR out of the three balancing services is motivated by the
technical fit of aFRR activation patterns to the characteristics of flexible devices. In
contrast to FCR provisioning, aFRR provisioning comes with temporal requirements that
can technically be handled well by a large share of prosumer devices such as CHP plants
or other HVAC-related devices. aFRR also seems more interesting than mFRR as the
mFRR demand tendered by the TSOs has decreased in recent years [Bun20c]. This
development may continue due to shorter lead times and higher trading volumes at
intraday spot markets. In the literature review, it has to be considered that the balancing
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market conditions have changed significantly in recent years. Furthermore, national
implementations still differ despite the ongoing European harmonization approaches,
as discussed in Section 2.4.4.

Olk et al. [OSM19] propose a bidding strategy for a battery energy storage system
in the German aFRR balancing market. Their evaluation is based on quarter-hourly
activation data. In the discussion of possible data sets for the aFRR activation simulation
in Section 4.3.2, we decided not to use the quarter-hourly data set in order to achieve a
better mirroring of the actual aFRR activation behavior. The author’s simulation results
show that aFRR provisioning via battery storage systems is not economically beneficial for
standalone batteries, given battery prices from 2019. The authors used the spot market
for a recharge strategy that returns the SOC to a default state. The joint optimization
of the aFRR and spot market bids is suggested as a further research direction. The
identification of this research gap fits to the work presented in the thesis in which we
not only combine both markets but also inherently consider unexpected catch-up effects
and prosumer demands.

Jargstorf et al. [JW13] investigate the case of aFRR provisioning via an aggregated
pool of electric vehicles (EVs) in the German aFRR balancing market, given the regulatory
market conditions from 2013. Based on the simulation results, the authors argue that
aFRR provisioning is not economically interesting for EVs and that easier accessible
markets should be considered instead. Strictly regulated availability levels and the need
for high SOC levels have been identified as major challenges for aFRR provisioning.
The authors use fixed aFRR activation prices and fixed activation times per year. This
separates the publication from this work in which the aFRR energy price is a decision
variable and in which the actual aFRR activation is simulated on a one-minute basis
using historical data from the TSOs.

Merten et al. [Mer+20] present a description of the German aFRR balancing market,
including the changes in the last years. Their contribution is a prediction of the marginal
aFRR mixed price (see also Section 2.4.4.3), the average energy price of aFRR bids,
and the aFRR activation duration (in terms of the average aFRR activation duration
for a block of bids in the aFRR energy price merit order). In particular, the work on
predictions of aFRR activation can be seen as an extension of our work regarding the
relation between aFRR energy prices and aFRR activations, as presented in [Lös+18].

Braeuer et al. [Bra+19] model the usage of a battery energy storage system operated
at an industrial site. Focus is on peak shaving, FCR provision, and the DA and ID spot
markets. In a linear optimization in 15-minute granularity, they decide per time interval
for which market opportunity to use which share of the available capacity. The results
show that none of the single revenue streams individually is economically attractive when
considering the investment costs. However, a profitable operation could be achieved
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when value-stacking the single revenue streams. The largest share of the overall revenue
was identified to come from peak shaving and FCR.

Biegel et al. [Bie+14] discuss the integration of flexible consumers into balancing
markets. They identify two main barriers: firstly, the long duration of balancing market
products, and secondly, the necessity of accurate consumption baselines. As a conse-
quence, they propose a new market model in which a flexibility aggregator can change
the balancing market bid in case of changing consumer situations.

Bessa et al. [BM14] propose a day-ahead optimization for day-ahead energy and aFRR
balancing power bids of an EV aggregator. The balancing power bids are assumed to be
possible in the granularity of sub-hourly time slots that are aligned to the needs of electric
vehicles. Based on Iberian market data, the results indicate cost savings between 30%
and 35%, compared to a strategy that only optimizes the energy bids. Furthermore, the
authors show that forecast errors due to the stochastic nature of markets and EV states
may result in a shortage of balancing power. Therefore, a market settlement scheme
with a penalty term for balancing power shortage is proposed.

In a recent publication, Nitsch et al. [Nit+21] provide an economic evaluation of
battery energy storage systems bidding to DA spot and aFRR balancing markets. In
contrast to this thesis, the results are not evaluated towards the actual aFRR activations,
and the optimization of standalone battery energy storage systems is not subject to
non-linear efficiency values. The presented results are in line with the results presented
in this thesis; however, a detailed comparison is not possible due to divergent scenario
assumptions.

On a higher level of abstraction, the possibility for combined bidding to spot and
balancing markets also raises questions regarding new market models. For example, Lie
et al. [LT14] propose a demand response market model where prosumers can bid energy
as a price-responsive shiftable demand in an energy market while bidding balancing
power into the balancing market via a bid that is coupled with the energy bid.

3.4 Research Gap
We showed that the broad topic of utilizing prosumer flexibility gained significant
interest in the literature in recent years [Gou+20]. After studying the literature and
discussing the multiple value creation options a prosumer is exposed to, we found the
multi-use of flexibility incentivized by different value creation options as an exciting field
with unanswered research questions. We showed that recent literature indicates higher
benefits for prosumers simultaneously considering multiple value creation options for
flexibilizing device schedules, compared to only reacting to one value creation option.
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Consequently, we argued our focus on the choice of the simultaneous consideration of
the DA spot and aFRR balancing market. The presented literature that emerged during
the course of this thesis confirms the high relevance of the addressed research questions.

In summary, the research gap identified for this thesis is managing the trade-off
between the DA spot and the aFRR balancing markets as twomarkets that simultaneously
provide demand side management incentives to prosumers. In this context, this thesis
contributes to the existing literature in multiple dimensions. Taking the viewpoint
of a prosumer, we consider the trade-off between the two markets and provide a
corresponding optimization. It inherently and realistically considers uncertain aFRR
activations, catch-up effects that can be expected due to aFRR activations, device-specific
flexibility limits, and on-site demands that have to be satisfied.
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CHAPTER 4
Modeling in the Context

of a Grid-responsive Facility
Energy Management System

This chapter models grid and facility side entities in the context of a grid-responsive
Facility Energy Management System (FEMS). The goal is the operation of electric devices
in a flexible way regarding runtime and power, such that the flexibility can be offered to
the (day-ahead) electricity and (aFRR) balancing markets. This chapter discusses the
system environment and analyzes the information flows, covering information-processing
entities, communication links, related triggers, and granularities. Then, after the system
is understood, mathematical models are defined. On the grid side, the focus is put on
modeling the aFRR market, the activation mechanism for aFRR bids, and the DA and ID
spot market. On the facility side, the focus is put on modeling flexible devices commonly
found in commercial and industrial settings. The defined models lay the foundation for
1) the later proposed optimization that flexibilizes electricity consumption, and 2) the
related simulation that quantifies the flexibility potential. This chapter also discusses
traditional non-flexibilized operating strategies as they set the baseline for the later
evaluation.

4.1 System Environment and Information Flows

The FEMS aims at monetizing electric flexibility via an optimization that jointly considers
the DA and aFRR market. Figure 4.1 gives an overview of the system environment and
categorizes it into four columns. The left column (facility) shows the facility side with
flexible devices. The two rightmost columns show the grid side: one shows the electricity
and balancing markets (flexibility markets), and the other shows the balancing activation
mechanism, which is based on the grid state (grid). The second column (Facility EMS)
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Figure 4.1: Information flows in the context of a FEMS utilizing electric flexibility via spot
and balancing markets.

in-between these two sides shows the FEMS handling the interaction between the facility
and the grid/market. Its optimization exploits local on-site flexibilities (on the left side)
according to grid-side incentives (on the right side). Based on Figure 4.1, the detailed
system environment and related information flows are explained in the following.

4.1.1 Facility
Information processing entities on the facility side are presented in the first column of
Figure 4.1 (facility). A facility can be seen as a prosumer with the potential to locally
coordinate the consumption and generation of electricity, heat, cold, and gas to provide
flexibility in the facility’s electric load.

Demands As depicted on the left side of the first column (demands), a facility is
characterized by an electricity, cold, and heat demand that must be satisfied. We assume
that a share of these final energy demands is uncontrollable and exogenously given. Gas
and on-site generators can be used to contribute to the satisfaction of these demands.
The presence of thermal buffer storages and a share of on-site electricity generators and
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consumers that can be operated in a flexible way regarding runtime and power, allow
adjusting/shifting the facility’s overall external electric load. Usually, a facility’s electric
demand is higher than its local on-site generation capacities, such that missing energy is
delivered via the public power grid. In this thesis’ scenario, the electric demand that
cannot be covered by on-site generation is procured via the DA spot market.

Flexible Devices Regarding the flexible devices, we focus on the four depicted devices
on the right side of the first column (flexible devices). That is a combined heat and
power (CHP) plant, a condensing boiler, an air condition (AC) system with a chiller,
and a battery energy storage (BES) system. These devices are chosen as the largest
share of the final energy consumption in the commercial and industrial sector is used
for heating and cooling [Arb20]. For the exemplary chosen facility setup, the physical
connection between the facility devices, related thermal and electric energy storages,
and the resulting final facility demands is shown in Figure 4.1. A reason for choosing the
given set of devices is that they cover a broad set of energy forms, as depicted in Table 4.1.
The table summarizes the energy forms each device deals with. Using the example of
the CHP plant, it can be recognized that it converts gas (demand) to electricity and heat
(supply). The table also shows the related storages that provide the flexibility regarding
runtime and power. It can be seen that in the case of the CHP plant, the flexibility
originates from a thermal heat energy storage that allows buffering heat. In this case,
flexibility limits are set by a minimum and maximum amount of bufferable thermal
energy (kWh), resulting in a minimum and a maximum temperature of the storage’s
medium (°C). In the case of the battery storage system, the flexibility limits are set by
the maximum bufferable amount of the battery (kWh). Mathematical models of the
devices and related storages are presented in Section 4.4. In the evaluation, we quantify
the optimization potentials of the BES system and the CHP plant. The closer focus on
these two devices is motivated by the increased commercial availability of BES system
in different dimensions in recent years [VMd17; KJF16] (in particular in Germany,
where the continuous decrease of the EEG feed-in premium increases the monetary
benefit of self-consumption) and the fact that CHP plants serve as good examples for the
coupling of multiple energy forms (electricity, heat, gas). Furthermore, a BES system
is a good-to-investigate flexibility that simplifies the demonstration of the introduced
concepts and the analysis of flexibility aspects.

4.1.2 Facility Energy Management System
The FEMS turns a facility that traditionally acts as a passive electricity consumer into an
active prosumer capable of locally coordinating on-site energy demand and supply. By
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Table 4.1: Demand and supply of flexible devices separated by energy forms.

Device Related flexibility Energy form

Electricity Heat Cold Gas

Battery storage system electric storage demand+supply - - -
CHP plant thermal heat storage supply supply - demand
Condensing boiler thermal heat storage - supply - demand
Air conditioning thermal cold storage demand - supply -
Uncontrollable demand - demand demand demand -

utilizing on-site flexibility and responding to DSM incentives provided by electricity and
balancing markets, the FEMS can contribute to the overall demand-supply matching
process in a decentralized way. On the one hand, this can contributes to grid stability,
and on the other hand, it allows realizing monetary benefits for the facility operator.

Flexibilization Incentives Different options to turn electric flexibility into monetary
value are discussed in Section 3.1. It was shown that a pure local optimization without
any communication with external (grid-side) parties is possible, e. g., in the case of
self-consumption. In contrast, the optimization presented in this thesis acts as an
intermediary between the on-site devices on the one side and external DSM incentives
on the other side. As dynamically stacking different options for the exploitation of
flexibility may result in a higher monetary benefit (as presented in Section 3.3.2), we
decided to focus on utilizing prosumer flexibility by simultaneously considering options
at the DA spot and aFRR balancing markets. Based on the flexibilization incentives
provided by these two markets, the FEMS optimizes runtimes and power levels of flexible
on-site consumers and generators such that electric flexibility is turned into a monetary
benefit for the facility operator.

FEMS Inputs & Outputs A FEMS optimization can turns inputs as presented in
Table 4.2a into outputs as presented in Table 4.2b. The following sections present details
regarding the assumed market interfaces and timing. An optimization that results in
bids to the DA spot and the aFRR balancing market must submit the bids before the
respective market’s gate closures. Bids to the aFRR market have to be submitted by
9:00 h and bids to the DA market by 12:00 h on the day before delivery (see Figure 2.2).
This means a joint optimization can be conducted before the first gate closure. In
Chapter 5 we show how an optimization can consider information about expected aFRR
activations (i. e., activation probabilities given an aFRR energy price) for dynamically
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Table 4.2: Inputs and outputs of a FEMS and linked information sources and sinks.

(a) Information consumed by the FEMS

Information source → Input to FEMS Purpose

Fa
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y

Each device

Device model Initial setup
Static parameters
according to device model Initial setup
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Day-ahead bid generation
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schedule adjustment
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ns Demand
predictions for
electricity,
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Hourly energy demand for each
hour of the next optimization,
period (i. e., the upcoming day)

Day-ahead bid generation
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ts aFRR controller
(TSO) Activation of a submitted aFRR bid

Adjustment of device schedule
according to activation
of submitted aFRR bid

Pr
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tio

ns DA spot market
price prediction

Energy price prediction for each
hour of the next optimization,
period (i. e., the upcoming day)

Day-ahead bid generation

aFRR activation
estimation

Estimation of aFRR activation
shares based on aFRR energy prices Day-ahead bid generation

(b) Information provided by the FEMS

Purpose Output of FEMS → Information sink

Realization of DA spot market schedule Command to run device
according to its device model Each device
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ci
lit
yRealization of potential

aFRR activation
Realization of potential
intraday schedule adjustment
Daily submission of optimized
DA spot market bids DA spot market bids DA market
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m
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Daily submission of optimized
aFRR balancing market bids aFRR balancing market bids aFRR market

Submission of ID spot market bids
when unexpected aFRR activations or
other unexpected schedule changes
endanger the satisfaction of local
energy needs

ID spot market bids ID market
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weighing up between the two considered market options. In the optimization problem
formulated in Chapter 6, the ID spot market is not further considered. However, as
this market segment allows us to realize intraday schedule adjustments to keep the
balancing group of the facility balanced, it bears interesting options for handling the
uncertainties discussed in Section 6.3. In this context, it is worth mentioning that we
assume that the FEMS manages the consumption and generation of devices belonging to
one dedicated balancing group, which the facility operator as BSP has to keep balanced
(see also Section 1.1.4).

Need for Predictions The optimization requires multiple predictions as bids to the
DA and aFRR market have to be submitted one day in advance. Predictions address
the remote grid side (upper box in the FEMS column in Figure 4.1) and the local facility
side (lower box in the FEMS column). On the grid side, two predictions are used: firstly,
the expected electricity prices at the DA market, and secondly, the expected aFRR ac-
tivation probability in dependence on different aFRR energy prices. Furthermore, the
proposed optimization assumes (see Section 4.3.1, assumption AaFRR6) that aFRR capac-
ity prices are chosen such that aFRR bids are accepted into the aFRR pool, i. e., below
the marginal aFRR energy price. On the facility side, predictions of the uncontrollable
(i. e., exogenously given) electricity, heat, and cold demands are used.

4.1.3 Flexibility Markets
In this thesis, we take the perspective of an aggregator of flexibilities. The third column
in Figure 4.1 (flexibility markets) shows the electricity (DA and ID) spot market and the
(aFRR) balancing market. The theoretical concepts of these markets are explained in
detail in Chapter 2. In the following, we focus on the options for flexibility aggregators
and related market interfaces that can be used.

Direct vs. Indirect Market Participation Large prosumers can either participate
directly in the DA and ID spot market or indirectly benefit from price variations via
a third-party energy supplier. Furthermore, they can participate directly in the aFRR
balancing market or indirectly provide their potential schedule adjustments to a third-
party aggregator that combines them with other offers before offering them to the aFRR
balancing market. In both cases, the intermediary may add a risk premium and take
a certain profit margin for abstracting the process complexity and providing market
access. In this thesis’ scenario, the FEMS maintains a balancing group and directly bids
to the electricity spot market. Potential adjustments of the balancing group schedule
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are offered to the aFRR balancing market according to the assumptions introduced in
Section 4.3.1.

Day-ahead Spot Market The market model of the DA spot market is an auction (as
presented in Section 2.2.3). Per one-hour product, it results in one common energy
price for all participants. At the EPEX DA spot market, bids for the 24 one-hour products
of the upcoming day can be submitted till the auction gate closes at 12:00 h noon. A DA
market bid ℬDA

𝑡 for hour 𝑡 is defined by the following tuple [Eur20c]:

ℬDA
𝑡 = (𝑝DA𝑡 , 𝜋DA

𝑡 ) (4.1)

where 𝑝DA𝑡 represents the power over the one-hour product time slot which should be
bought (positive values represent buy bids) or sold (negative values represent sell bids),
and 𝜋DA

𝑡 representing the energy price.
An alternative day-ahead incentive for scheduling flexible prosumer devices is the

intraday (opening) auction with quarter-hour products (as explained in Section 2.2.3).
In this thesis, we chose the day-ahead instead of the intraday auction as its gate closure
is closer to the aFRR balancing market gate closure and as it has higher market liquidity.

Continuous Intraday Spot Market In this chapter, we discuss the concept of a
flexibility-utilizing FEMS on a broader level than in the pure algorithmic optimiza-
tion proposed later. In the proposed optimization, we do not optimize and submit bids
to the continuous ID spot market. However, interfaces to the continuous intraday spot
market are worth specifying in more detail, as they can be used for controlled intraday
schedule adjustments. This possibility allows for decreasing the limitations coming along
with the uncertainty introduced by the required predictions, as discussed in Section 6.3.

The market model of the continuous ID market is a continuous double auction, i. e.,
trading is possible continuously (as presented in Section 2.2.3). In the continuous ID
market, bids for the 96 quarter-hour products of the upcoming day can be submitted
starting at 15:00 h till latest five minutes (within a TSO control area) or thirty minutes
(between two TSO control areas) before the start of the respective quarter-hour. An
EPEX continuous ID market bid for quarter-hour 𝑡 can be limited (with a price) or
unlimited (without a price), where unlimited orders are matched at the best possible
price without a price limitation [Eur20c]:

ℬ ID
𝑡 =

⎧{
⎨{⎩

(𝑝ID𝑡 , 𝜋ID
𝑡 ) for limited orders

(𝑝ID𝑡 ) for unlimited orders
(4.2)
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with 𝑡 referring to the quarter-hour and 𝑝ID𝑡 to the power that should be bought
(positive values represent buy bids) or sold (negative values represent sell bids) within
the respective quarter-hour. In the continuous IDmarket, the trading system continuously
matches orders in the central, open, and anonymous order book aiming at the lowest
price when buying and the highest price when selling. Consequently, a trade’s resulting
price depends on the counterparty bids that are available in the order book for matching.

aFRR Balancing Market The potential to adjust the facility’s load on spontaneous
short-term activation requests (within a maximum of five minutes after the request)
can be offered as capacity to the aFRR market. The focus on aFRR as a balancing
service was already reasoned in Section 3.3.3. Negative aFRR market bids offer to
increase the facility’s electric load, and positive aFRR bids offer to decrease the facility’s
electric load. The rightmost column in Figure 4.1 (grid) shows the TSO, which activates
aFRR bids based on its control area balance. We already showed that, in Germany,
the four TSOs virtually operate one central control area (in Section 2.3.4). The TSOs
continuously monitor the control area balance and activate aFRR bids of the facility if
necessary (assuming they have been accepted into the aFRR pool based on the aFRR bid’s
capacity price). Participation in the aFRR market is possible directly or indirectly via
flexibility aggregators acting as third parties between the aFRR market and BSPs. Due
to the pooling of multiple flexible devices, aggregators can offer divergent participation
conditions, such as smaller minimum power levels. However, aggregators may want
to take a certain profit share or offer price conditions divergent from the actual aFRR
market prices. The aFRR market model represents a pay-as-bid auction (see Section 2.3).
Bids for the six four-hour products of the upcoming day can be submitted till the auction’s
gate closure at 9:00 h. A negative aFRR bid (i. e., increasing the facility’s demand) is
defined by Equation 4.3 and a positive aFRR bid (i. e., decreasing the facility’s demand)
by Equation 4.4:

ℬaFRR−

𝑡 = (𝑝aFRR−

𝑡 , 𝜋aFRR−,energy
𝑡 , 𝜋aFRR−,capacity

𝑡 ) (4.3)

ℬaFRR+

𝑡 = (𝑝aFRR+

𝑡 , 𝜋aFRR+,energy
𝑡 , 𝜋aFRR+,capacity

𝑡 ) (4.4)

In both cases, 𝑝aFRR+/−

𝑡 refers to the balancing power, 𝜋aFRR+/−,energy
𝑡 to the aFRR energy

price, and 𝜋aFRR+/−,capacity
𝑡 to the aFRR capacity price in time slot 𝑡. For negative balancing

power we use positive power values, and for positive balancing power we use negative
power values.

Table 4.3 summarizes the above-explained market interfaces. The modeling of these
markets is presented in the following sections.
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Table 4.3: Interfaces for flexibility aggregators acting at day-ahead spot, intraday spot, and
aFRR balancing markets.

Market Options
for action

Decisions

Max. frequency Bids

Composition Per

DA spot market buy energy daily ℬDA = (𝑝DA, 𝜋DA) hoursell energy

ID spot market buy energy unlimited ℬ ID = (𝑝ID) , or
ℬ ID = (𝑝ID, 𝜋ID) quarter-hoursell energy

aFRR balancing market

offer power
demand
increase

daily
ℬaFRR− = (𝑝aFRR−,
𝜋aFRR−,energy,
𝜋aFRR−,capacity)

four hours

offer power
demand
decrease

daily
ℬaFRR+ = (𝑝aFRR+,
𝜋aFRR+,energy,
𝜋aFRR+,capacity)

4.2 Modeling of the Electricity Market
This section presents how we use historical DA market prices for evaluating the flexibi-
lization potential. Above, we showed that a bid to the DA spot market is composed as
follows:

ℬDA
𝑡 = (𝑝DA𝑡 , 𝜋DA

𝑡 ) (4.5)

Focusing on the day-ahead auction, we assume perfectly predicted day-ahead prices
coming in the form of a price forward curve. In the proposed optimization, the DA
spot market bids’ power component 𝑝DA𝑡 is defined as a decision variable, and the bids’
energy price 𝜋DA

𝑡 is assumed to be already known (i. e., exogenously given) at the time
of making the bid. As stated below, this is a realistic assumption resulting in the fact that
bids with the predicted price will always be accepted. In detail, we make the following
assumptions regarding the DA spot market:

ADA1 No impact of market participation on market conditions — We assume that a
facility’s market participation has no impact on both electricity prices and trade-
able energy amounts. This means that the market is assumed to be sufficiently
liquid, in terms of traded energy, to always satisfy bids submitted by the facility.
As the energy dimensions of facilities are relatively small compared to the overall
energy amounts traded at the DA and ID spot market, facility bids can be seen as
small enough to have no impact on the formation of market prices. As long as the
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overall structure of market participants remains similar, this is an appropriate
assumption. However, it is worth noting that the participation of a large share
of prosumers would affect the formation of market prices by shifting the price
matching point (due to a flatter demand curve in Figure 2.3).

ADA2 Static grid fees and surcharges — We showed that specific surcharges must
be added to each kilowatt-hour delivered via the public grid to account for grid
fees and further taxes (see Section 2.2.4). We assume a fixed amount for these
surcharges for energy bought via the spot market and consequently physically
consumed via the public grid; however, not for energy sold to the market. This
assumption reflects today’s regulation and results in asymmetric prices for buying
and selling energy. In this context, it is worth noting that prosumer loads are
characterized by a certain uncontrollable base load. Consequently, turning on a
flexible on-site generator (such as a CHP) may not necessarily result in a sell bid.
Instead, it may only decrease the energy amount that has to be bought via a buy
bid.

ADA3 Predictability of day-ahead prices — We assume that the electricity prices are
available and known at the moment of deciding about the procurement. The EPEX
day-ahead market is implemented as a call auction in which bids from buyers and
sellers are collected by the central market authority till the gate closure at 12:00 h
noon (as shown in Section 2.2.3.1). Then, the central trading system matches
the prices, resulting in one price per day-ahead product (i. e., one kWh price per
one-hour slot). We assume this price to be known at the time of optimization in
the form of a price forward curve. The predicted price is at the cutting point of
the demand and supply curve, as visualized in Figure 2.3. Given predicted prices
for the upcoming day, the FEMS can perform the optimization and place the final
buy bid such that it will be accepted (i. e., such that the buy bid’s price will be
above the cutting point of the demand and supply curve). If the buying price
prediction for a certain hour is too low (i. e., a price below the cutting point),
the bid will not be accepted. If the buying price prediction is too high (i. e., a
price above the cutting point), the bid will be accepted but result in lower costs
than expected. To avoid the risk of unaccepted bids, a facility operator could
rely on a third-party intermediary that guarantees time-variable hourly energy
prices instead of maintaining an own balancing group and directly acting at the
spot market. However, such a third-party instance may add a profit margin and
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risk premium for the imperfect power demand forecast. 1 Due to identifiable
price patterns and known fundamental influences (e. g., based on weather and
time of day), accurate energy price prediction mechanisms for day-ahead spot
markets are available [Wer14; Lag+20; LDD18; Kel+16]. Furthermore, EPEX
day-ahead price predictions are commercially offered by prediction providers
[Ene20; Pro20]. Therefore, this assumption can be seen as reasonable. It allows
placing bids with the certainty that they get accepted.

ADA4 Submission of bids at 0:00h — The proposed optimization optimizes DA spot
and aFRR balancing market bids. In Germany, the gate closure of the aFRRmarket
(9:00 h) is three hours before the gate closure of the DA market (12:00 h noon).
In our scenario, DA and aFRR market bids mutually depend on each other, and
consequently, we assume the two kinds of bids to be optimized simultaneously.
Furthermore, we assume that the daily bids are made directly before delivery.
Therefore, the proposed optimization submits both the DA and aFRR market
bids for the starting day at 0:00 h. This is a simplifying assumption that does
not reflect practical requirements as this point in time lies outside the respective
trading periods (as presented in Figure 2.2). This way, uncertainty potentially
emerging between the day-ahead bid submission and delivery (e. g., regarding a
device’s state of charge) is eliminated. However, this simplifying assumption can
be seen as realistic when a power supplier is used as an intermediary providing
time-variable tariffs based on the DA spot market.

4.3 Modeling of the aFRR Balancing Market &
aFRR Activations

Regarding the aFRR balancing market, we show how (publicly available) historical data
sets can be combined for an ex-post simulation of the activation of aFRR market bids.

4.3.1 Assumptions
In the course of this thesis, the market design of the aFRR market has changed from
weekly to daily tendering periods and from 12-hour product time slots to 4-hour product
time slots. These changes were introduced to facilitate the participation of alternative
1As the balance of the third-party’s balancing group suffers from imperfect power demand forecasts,
the power supplier has to carry reBAP imbalance energy costs for deviations of the procured from the
actually consumed electric energy.
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balancing providers (see Section 2.4.4.3), as proposed within this thesis. The overall
trend and consultations within the energy industry made these changes foreseeable.
Consequently, the following assumptions regarding the aFRR market have already been
made early enough:

AaFRR1 Daily tendering periods — Till 2018, the aFRR market was characterized by
weekly tendering periods. After that, the market design was changed to daily
tendering periods to integrate alternative BSPs better into the aFRR market.
A daily instead of a weekly tendering period comes along with two major
advantages. Firstly, BSPs that rely on forecasts (such as CHP plants that have to
satisfy local on-site demands) benefit from improved forecasts as they only have
to look one day rather than one week into the future. Secondly, BSPs benefit as
it becomes easier to meet the trade-off between acting at the DA market and
providing aFRR. Within this thesis, we assume the tendering period to be one
day. In the meanwhile this fits to the conditions in practice (as presented in
Table 2.2).

AaFRR2 Four-hour product time slots—Till 2018, the aFRR market was characterized
by two time slots: peak tariff (6–22 h) and off-peak tariff (22–6 h). After that,
the market design was changed to four-hour slots to integrate alternative BSPs
better into the aFRR market. Consequently, each calendar day is separated
into six positive and six negative aFRR products. Such a commitment that lasts
for a smaller period of time improves the planning certainty. This, in particular,
counts for demand-side BSPs that rely on predictions of local demands. We
assume that aFRR bids can be made for individual four-hour slots. In the
meanwhile, this reflects the conditions found in practice (as presented in
Table 2.2).

AaFRR3 Submission of bids at 0:00h — With the change to daily aFRR tendering
periods, the daily gate closure was set to 9:00 h on the day before delivery.
As defined by assumption ADA4, we optimize and submit the DA spot market
and aFRR market bids for the starting day simultaneously at 0:00 h. This
simplifying assumption eliminates uncertainty between the day-ahead bid
submission and the actual aFRR provision. As third-party aggregators can offer
“virtual” balancing products independent of the actual aFRR market products,
this can be seen as realistic.

AaFRR4 Bids with continuous power steps — We assume that aFRR bids are possible
in continuous power steps and that no minimum power requirement for an
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aFRR bid exists. This means that aFRR bids can be submitted that are lower
than currently required in practice (as of today, the minimum required power
is 1MW in cases where a BSP provides only one offer per aFRR product, or
5MW in cases where a BSP provides more than one offer per aFRR product).
This assumption supports the market participation of alternative BSPs on the
demand side as their power capacities are smaller than the ones of conventional
power plants. In addition to neglecting the minimum power limit, we assume
that there are no restrictions on the power increment delta (as of today, the
power increment is a multiple of 1MW). While this does not directly reflect the
aFRR market conditions, it can be seen as realistic: already today, aFRR bids
with characteristics differing from the official market conditions are possible
via aggregators acting between the aFRR market and the BSP.

AaFRR5 One-minute based balancing power activation — We assume that aFRR bids
are activated minute-based according to the aFRR energy price merit order
and that single aFRR bids are either activated with the total offered capacity or
not at all. In borderline cases where the TSO’s aFRR demand would partially
activate an aFRR bid, the respective aFRR bid will be activated with its full
power band. Therefore, partial activations of aFRR bids do not occur in our
modeling. Furthermore, using averaged one-minute instead of four-second
activation signals results in the fact that ramping times do not have to be
considered in the bid’s activation signal. Neglecting the special case of partial
aFRR activations is reasonable, particularly in combination with assumption
AaFRR4 (no minimum power requirement for an aFRR bid).

AaFRR6 aFRR capacity prices scaled down based on historical market design —
The presented aFRR modeling focuses on the impact of aFRR energy prices
on the activation of aFRR bids. For the activation of an aFRR bid, the aFRR
capacity price is not further relevant once an offer is accepted into the aFRR
pool. The proposed optimization assumes that aFRR bids are accepted into the
aFRR pool, i. e., that a price is chosen below the marginal aFRR capacity price.
In the evaluation, we use historical marginal aFRR capacity prices. However,
due to market design changes, available historical capacity prices are based
on different conditions: they are based on tendering periods of one week and
peak and off-peak product slots (HT/NT). As we assume the tendering period
to be one day (instead of one week; assumption AaFRR1) and the time slot size
to be four hours (instead of peak and off-peak slots; assumption AaFRR2), we
linearly scale down historical aFRR capacity prices based on the temporal share
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of the four-hour product slots. Therefore, we use �̂�aFRR+/−,capacity
𝑡 to represent

the (positive or negative) marginal aFRR capacity price for one hour of aFRR
provisioning in hour 𝑡. This allows considering realistic aFRR capacity prices
that fit the assumed—and in the meanwhile implemented—market design with
four-hour aFRR product slots.

4.3.2 Ex-post Simulation of aFRR Activations & Data Processing
In Section 2.3, we showed that the capacity price of an aFRR bid decides whether the
bid is accepted into the aFRR pool. Once accepted, the aFRR energy price merit order
is used to decide whether a bid is activated. Furthermore, we showed that the TSOs
continuously (on a four-second basis) determine the aFRR power demand for the GCC.
We explained that this results in continuous activations of aFRR bids and a continuously
changing marginal position within the aFRR energy price merit order. Now, we present
an ex-post simulation that allows determining the activation of an aFRR bid in the past.
For a given aFRR bid, our ex-post simulation results in activation signals on a one-minute
basis (see AaFRR5). This allows for deriving the activated aFRR energy and the monetary
impact through aFRR energy price revenues. Our simulation uses the following data
sets (whose interfaces and formats were subject to multiple changes in recent years2):

Data set 1: Marginal aFRR capacity prices — The marginal aFRR capacity price for
each product period is the highest aFRR capacity price accepted into the
pool. Given historical marginal aFRR capacity prices, we can derive whether
a bid with a given capacity price is accepted into the aFRR pool (if the
bid’s capacity price is below or equal to the marginal capacity price) or not
(if the bid’s capacity prices is above the marginal capacity price). We use
marginal aFRR capacity prices regularly published by the TSOs [Deu20h].

Data set 2: aFRR energy price merit order lists — For each aFRR product, we can
generate aFRR energy price merit-order list by sorting the accepted bids
according to their energy prices. Therefore, we use anonymized aFRR bids
composed of the offered aFRR balancing power, the requested aFRR energy
price, and the requested capacity price. The anonymized bids are regularly
published by the TSOs [Deu20h].

Data set 3: aFRR power demand of the Grid Control Cooperation — We already
showed that aFRR controllers within the GCC are coupled via a superior

2See Measure 17 of the BMWi White Paper [Bun15a], which aims at creating more transparency
concerning market data, as discussed in Section 2.4.4.1.
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controller, such that the activation of aFRR bids follows a common aFRR
energy price merit order (see Section 2.3.4). Two options can be recognized
for approximating the latest activated aFRR bid within the common aFRR
energy price merit order. Firstly, the aFRR power demand of the GCC can be
used in 4-second granularity as provided by the TSOs based on operational
measurements [Deu20g]. Secondly, the aFRR power actually delivered by
BSPs can be used in 15-minute granularity [Deu20h]. The TSOs provide
both data sets, and we use the first data set for the reasons discussed below.

Regarding data set 3, we preferred the aFRR power demand in 4-second granularity
over the actually delivered aFRR power in 15-minute granularity. It is important to
understand that the 4-second aFRR power demand does not directly reflect the finally
provided aFRR power, as BSPs have certain flexibility in reacting to an aFRR activation
signal. Pursuing the goal of simulating aFRR activations, we chose the high-resolution
aFRR power demand, as the alternative low temporal resolution in quarter-hour granular-
ity comes with two major disadvantages. The first disadvantage is that the distribution
of activations within a quarter-hour slot cannot be derived without further assumptions.
For instance, a quarter-hour averaged aFRR power demand of 50MW may be the result
of a 7.5-minute activation of 25MW, and a 7.5-minute activation of 75MW, or various
other possible distributions. As the requested aFRR power is crucial for determining
the activated aFRR bids (according to the aFRR energy price merit order), assumptions
regarding the activation characteristics within a quarter-hour slot can have a significant
effect. The second disadvantage when using the quarter-hour data is that negative and
positive balancing power is never activated simultaneously. Therefore, an additional
assumption regarding the distribution of the negative and positive activation time within
each quarter-hour slot would be required. Consequently, based on the quarter-hour
data, a detailed evaluation of aFRR activations on a minute basis is impossible without
further assumptions. As the introduction of such assumptions may potentially result
in serious deviations from the actual aFRR activation behavior, we decided to use the
four-second aFRR power demand values.

For determining whether a given aFRR bid was activated, we define the minutely
marginal aFRR energy price �̂�aFRR,energy

𝑡 . It is specific to the activation direction in
the given minute 𝑡, and defined as the highest aFRR energy price at which an aFRR
bid in a given minute was activated. Consequently, given the activation direction, all
respective offers with an aFRR energy price below this marginal price have been activated.
Figure 4.2 illustrates how the anonymized aFRR bids (data set 2) and the aFRR power
demand (data set 3) are processed. It results in an average aFRR power demand for
a specific minute 𝑡 and the respective marginal aFRR energy price for the resulting
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Negative aFRR, sub tariff

Negative aFRR, main tariff

1) aFRR power demand of the GCC
Input: aFRR demand in four-second granularity

Output: average aFRR demand in one-minute granularity
Positive aFRR, sub tariff

Positive aFRR, main tariff
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2) Anonymized aFRR market bids
Input: all aFRR bids (power and energy price) per product

Output: merit-order list per product (as visualized below)

Result per minute:

3) Lookup
Input: aFRR power demand (per minute)

and merit-order lists (per week)

Output: marginal aFRR energy price

aFRR power demand (MW)

Marginal aFRR energy price (EUR/MWh)
t (min)

Figure 4.2: Calculation of the minutely marginal aFRR energy price based on publicly available
data.

balancing direction in this minute. Hence, for each minute, we have either a marginal
aFRR energy price for negative or positive balancing power. The calculation follows the
following three high-level steps, which are concretized in more detail in Algorithm 4.1:

Step 1: Calculation of the minutely averaged aFRR power demand of the GCC (using
data set 3)

Step 2: Generation of the aFRR energy price merit order lists based on anonymized
aFRR bids (using data set 2)

Step 3: Lookup of the marginal energy price based on steps 1 and 2

In the above discussion on market interfaces (in Section 4.1.3), we showed that
negative and positive aFRR bids for a four-hour slot are defined as follows:

ℬaFRR−

𝑡 = (𝑝aFRR−

𝑡 , 𝜋aFRR−,energy
𝑡 , 𝜋aFRR−,capacity

𝑡 ) (4.6)

ℬaFRR+

𝑡 = (𝑝aFRR+

𝑡 , 𝜋aFRR+,energy
𝑡 , 𝜋aFRR+,capacity

𝑡 ) (4.7)
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Assuming that an aFRR bid is accepted into the aFRR pool based on the capacity
price, we can ex-post simulate the bid’s activation. Using the calculated minutely aFRR
power demand (𝑝aFRRdemand) and the calculated minutely marginal aFRR energy price
(�̂�aFRR,energy

𝑡 ) for the respective balancing direction, we determine the activated negative
and positive balancing power for a given minute 𝑡 as follows:

𝑝aFRR
−,act

𝑡 =
⎧{
⎨{⎩

𝑝aFRR−

𝑡 if (𝑝aFRRdemand > 0) ∧ (𝜋aFRR−,energy
𝑡 ≤ �̂�aFRR,energy

𝑡 )
0 in all other cases

(4.8)

𝑝aFRR
+,act

𝑡 =
⎧{
⎨{⎩

𝑝aFRR+

𝑡 if (𝑝aFRRdemand < 0) ∧ (𝜋aFRR+,energy
𝑡 ≤ �̂�aFRR,energy

𝑡 )
0 in all other cases

(4.9)

4.4 Modeling of the Facility Side
In this section, we provide mathematical models for the facility side. In general, we can
distinguish white box, black box, and gray box models [SB17]. White box models are
completely based on the replication of the physical behavior of the real system, which
bears the potential for high accuracy, but also comes with high complexity. Black box
models are based on a more abstract description of the relations between input and
output parameters of the system, e. g., based on measurements that implicitly allow
mimicking the physical behavior. Gray box models are a mix of white and black box
models: they combine knowledge about the physical behavior of the real system with
further information, such as measured data. To reduce the modeling complexity, we
focus on gray box models. This is supported by practical requirements, as devices
are usually operated without explicit knowledge of physical details and parameters.
Furthermore, predictive DSM optimizations are subject to uncertainty, hence reducing
the need for very high accuracy. The presented models serve as a basis for the later
proposed optimization and the simulation-based evaluation. The CHP and battery model
build upon the modeling elaborated in [Huf15].

Notation We denote devices as 𝑑name ∈ 𝔻 with name being a unique device name as
defined in the following sections and 𝔻 being a set with all devices considered in the
optimization. Within sections that clearly focus on variables related to a certain device,
we do not explicitly tag the variables with an index describing the device. Otherwise, to
distinguish variables of different devices, we add an index describing the device. Indices
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Algorithm 4.1 Calculation of minutely marginal aFRR energy prices.
Inputs:

1. 𝑝𝑤,𝑠,𝑑
𝑖 : Multi-dimensional array containing the power of the 𝑖-th accepted aFRR

bid of the energy price sorted merit-order list for each tendering week 𝑤 (be-
tween 𝑡start and 𝑡end), tariff slot 𝑠 ∈ {peak, offPeak}, and balancing direction
𝑑 ∈ {aFRR−, aFRR+}.

2. 𝜋𝑤,𝑠,𝑑
𝑖 : Multi-dimensional array containing the energy price of the 𝑖-th accepted

aFRR bid of the energy price sorted merit-order list for each tendering week 𝑤
(between 𝑡start and 𝑡end), tariff slot 𝑠 ∈ {peak, offPeak}, and balancing direction
𝑑 ∈ {aFRR−, aFRR+}.

3. 𝑝aFRRdemand,𝑡: Array containing the averaged aFRR power demand for each one-
minute slot 𝑡 (between 𝑡start and 𝑡end).

Steps:
for each minute 𝑡 between 𝑡start and 𝑡end do

𝑤 ← tendering week that covers minute 𝑡
𝑠 ← tariff slot ∈ {peak, offPeak} that covers minute 𝑡
if 𝑝aFRRdemand,𝑡 < 0 then

𝑑 ← aFRR+

else if 𝑝aFRRdemand,𝑡 > 0 then
𝑑 ← aFRR−

else
𝑑 ← ∅

end if
if 𝑑 == ∅ then

�̂�aFRR,energy
𝑡 ← ∅

else
𝑛activated ← 0 ▷ number of activated bids
𝑝activated ← 0 ▷ sum of activated power
while 𝑝activated ≤ ∣𝑝aFRRdemand,𝑡∣ do

𝑛activated ← 𝑛activated + 1;
𝑝activated ← 𝑝activated + ∣𝑝𝑤,𝑠,𝑑

𝑛activated ∣
end while
�̂�aFRR,energy

𝑡 ← 𝜋𝑤,𝑠,𝑑
𝑛activated

end if
end for

Outputs:
1. 𝑑𝑡: Array containing the aFRR activation direction for each one-minute slot 𝑡

(between 𝑡start and 𝑡end).
2. �̂�aFRR,energy

𝑡 : Array containing the marginal aFRR energy price for each one-minute
slot 𝑡 (between 𝑡start and 𝑡end).
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written in non-italic text describe the related variable more closely, and indices written in
italics refer to variables. We write device names as subscript indices and energy forms as
superscript indices. Taking the perspective of prosumers, we follow the load convention
(also referred to as passive sign convention) and use positive power and energy values
for referring to demand, and negative power and energy values for referring to supply.

4.4.1 Facility Demands
We define a facility’s electricity, heat, and cold demands as positive power values (W)
denoted as follows, with 𝑡 referring to the respective time step:

• 𝑝eldemand,𝑡: The facility’s exogenously given electric power demand in time step 𝑡.

• 𝑝heatdemand,𝑡: The facility’s exogenously given heat power demand in time step 𝑡.

• 𝑝colddemand,𝑡: The facility’s exogenously given cold power demand in time step 𝑡.

In office building settings, thermal heat and cold demands usually result from space
heating and cooling devices that aim at keeping the room temperature at a desired
level [Arb20]. In industrial settings, these demands usually result from process heating
(such as drying or melting) or process cooling (such as cooling of equipment). Heat
demands are satisfied by heating devices, and cold demands are satisfied by cooling
devices. Concrete power values in the facility context are presented in Chapter 8. There,
the granularity of the exogenously given demands is assumed to be Δt = 1h. As cold
physically represents the absence of heat, cooling describes the process of removing
heat from a system. Therefore, we use the term cold energy to refer to negative heat
energy (meaning that a cold demand of 1 kWh physically represents a heat demand of
−1kWh).

4.4.2 Battery Storage System
A battery energy storage (BES) is a buffer for electric energy, which is based on electro-
chemical reactions. Batteries can consume electric energy, referred to as charging, for
later generating electric energy, referred to as discharging. A battery’s state of charge
(SOC) describes the ratio of charged energy and the overall chargeable energy in a per-
centage value [ZL11]. Batteries are operated between their lower SOC bound (storage
empty) and their upper SOC bound (storage full), and with a certain loss between the
energy charged and the energy discharged [SS14]. A battery consists of one or more
electrochemical cells. Research addresses different cell technologies and today’s most
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commonly used cell technology is based on lithium-ion. Battery Management Systems
(BMSs) manage the cells by monitoring and controlling voltage, current, temperature,
and coolant flow, and calculating values such as the SOC. Depending on the battery’s
cell technology, adjusting the charging and discharging is possible in a very flexible way
regarding power and the speed of reaction to the power level.

BES systems differ concerning the maximum charge and discharge power (in W), the
capacity (in Wh), the BMS strategy, or the expected lifetime performance. The relation
between the charge/discharge power and the capacity is sometimes also described by
the C factor (which usually is defined as a battery storage system’s ratio of ampere to
ampere hour). The lifetime performance can be measured using the number of possible
full charging-discharging cycles till the capacity falls below a certain threshold such as
80% of the original capacity. Depending on the cell technology, in order to keep the
battery healthy, BMSs may limit the nominal capacity to a lower usable capacity. For
lithium-ion batteries, we distinguish the nominal capacity representing the theoretical
maximum capacity, and the usable capacity. Commercial available BES systems for
households aim at increasing the self-consumption of primarily rooftop PV generation;
they have a capacity in the range of approximately 5–10 kWh. BES systems for electric
vehicles are primarily used to drive an electric engine and have a capacity in the range
of approximately 30–100 kWh. Battery storages for commercial purposes range from
hundreds of kilowatt-hours to tens of megawatt-hours and today often aim at providing
on-site backup power or FCR. Batteries are charged and discharged in direct current
(DC). As public grids and the vast majority of local grids are operated in alternating
current (AC), a power inverter from AC to DC is required for charging the battery, and a
power inverter from DC to AC for discharging. A special case are batteries charged via
local PV systems. They can be DC-coupled with the local PV system, hence eliminating
DC-AC-DC conversion losses [Wen+20]. Furthermore, in the context of PV systems,
hybrid DC-to-AC inverters are available that can convert both DC power from a battery
and DC power from PV panels.

We define a BES system as a bundle composed of the battery, the BMS, and the (AC-to-
DC and DC-to-AC) power inverter. This allows the BES system to consume and generate
electric energy in AC. Battery energy storage systems are commonly also referred to as
battery storage systems.

4.4.2.1 Operating Strategies & Flexibilization Potential

In Germany, most of today’s battery storages found on the demand side follow the
goal to increase the self-consumption of surplus on-site PV or wind power, to minimize
power peaks, or to increase the autarky from the external grid by providing backup
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Algorithm 4.2 Naive operating strategy for increasing the self consumption of on-site
provided energy via a battery storage system.
while true do

𝑝balance ← power balance measured at the grid coupling point
▷ negative in case of power supply to the public grid
▷ positive in case of power demand from the public grid

if 𝑝balance < 0 and 𝑆𝑂𝐶battery < 𝑆𝑂𝐶battery then
charge battery: 𝑝battery = −1 ⋅ max(𝑝balance, 𝑝battery)

else if 𝑝balance > 0 and 𝑆𝑂𝐶battery > 𝑆𝑂𝐶battery then
discharge battery: 𝑝battery = −1 ⋅ min(𝑝balance, 𝑝battery)

end if
wait for a predefined time interval Δt

end while

power [Hop+14]. In the absence of time-variable electricity prices, an increase in self-
consumption of on-site provided energy can be realized by a simple operating strategy.
Such as strategy is exemplified in Algorithm 4.2, where 𝑆𝑂𝐶battery and 𝑆𝑂𝐶battery repre-
sent the minimum and maximum accepted SOC, 𝑝

battery
the maximum discharge power

as negative power value, and 𝑝battery the maximum charge power as positive power value.
More advanced operating strategies depend on the scenario.

In recent years, FCR provisioning via battery storage systems gained popularity. In
2015, dedicated prequalification requirements were introduced to enable them to par-
ticipate in the FCR market [Deu15a]. The minimum (aggregated) power capacity is
1MW. As of today, FCR provisioning with batteries is mainly implemented via aggrega-
tors interconnecting multiple smaller battery storage systems and abstracting market
access barriers. In 2020, 60MW of battery storage systems were prequalified for FCR
[Deu20f], which lies in the area of about 10% of the overall FCR capacity acquired by
the TSOs. FCR provision is based on decentralized proportional controllers that use the
frequency to determine the activated power (as explained in Section 2.3.1). Therefore,
local measurements of the grid frequency are sufficient.

The flexibilization potential concerning DA and aFRRmarket participation is as follows.
Energy can be bought or sold via the DA market as long as charging or discharging with
the required power is possible over one full hour. The power required to satisfy the DA
market schedule determines the remaining flexibility for potential aFRR provisioning.
Negative and positive balancing power can be offered as long as the battery’s remain-
ing capacity allows increasing or decreasing the power level accordingly: after a full
activation over four hours, the SOC must still be within the battery’s capacity limits.
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Today’s common use cases (increasing self-consumption, minimizing power peaks,
providing backup power, or providing FCR balancing power) can be realized by solely
reacting to local measurements, e. g., of power or frequency. In contrast, the economic
optimization incentivized by DA spot and aFRR balancing markets requires more predic-
tive operating strategies and additional information exchange (of spot market prices or
aFRR activation signals) between the FEMS and facility-external entities.

4.4.2.2 Formalization

In this thesis, we model a battery storage system using the following parameter set:

𝒟battery = (𝐶, 𝑝, 𝑝, 𝑛, 𝜂(𝜆)) (4.10)

The parameters are described in the following. 𝐶 refers to the usable capacity indicat-
ing how much energy the battery can buffer, measured in kWh. The maximum discharge
power (negative power value) and the maximum charge power (positive power value)
are denoted as 𝑝 and 𝑝 respectively, where 𝑛 ∈ ℕ+ discrete power levels are possible
for both charging and discharging. For referring to concrete power levels we introduce
a variable 𝜆 ∈ {−𝑛, … , 𝑛} where −𝑛 ≤ 𝜆 < 0 represents discharging, 𝜆 = 0 represents
being idle, and 0 < 𝜆 ≤ 𝑛 represents charging. The charge and discharge efficiency
depend on the power level. It is defined as function 𝜂(𝜆) ∶ {−𝑛, … , 𝑛} → [0, 1]) that
maps the power level 𝜆 to the charge efficiency (if 𝑛 > 0) or discharge efficiency (if
𝑛 < 0), including both the efficiency of the power inverter and the battery. In Chapter 8,
these parameters are set using data from real batteries.

We assume that the state of charge has no impact on the charge or discharge power.
This, in particular, means that we do not separate between constant power and constant
voltage phases, which is a simplified modeling. This allows us to calculate the battery’s
power based on the power level 𝜆 ∈ {−𝑛, … , 𝑛} via the function 𝑝(𝜆):

𝑝(𝜆) =

⎧{{
⎨{{⎩

𝑝 ⋅ 𝜆
𝑛 if 𝜆 > 0 (charging)

0 if 𝜆 = 0 (idle)
𝑝 ⋅ ∣𝜆𝑛 ∣ if 𝜆 < 0 (discharging)

[W] (4.11)

On this basis, the energy delta Δ𝑒𝑡 provided in time step 𝑡 can be described in depen-
dence of the power level 𝜆𝑡 in this time step:

Δ𝑒𝑡 = 𝑝(𝜆𝑡) ⋅ 𝜂(𝜆𝑡) ⋅ Δ𝑡 [Wh] (4.12)

with Δ𝑡 representing the duration of the time step.
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The energy contained in the battery storage at the end of time step 𝑡 can be calculated
recursively by Equation 4.13. The state of charge 𝑆𝑂𝐶𝑡 of the battery storage with a
usable capacity 𝐶 at the end of time step 𝑡 can be calculated by Equation 4.14:

𝑒𝑡 = 𝑒𝑡−1 + Δ𝑒𝑡 [Wh] (4.13)

𝑆𝑂𝐶𝑡 =
𝑒𝑡
𝐶 ⋅ 100% [%] (4.14)

The restrictions regarding the state of charge 𝑆𝑂𝐶𝑡 which have to be satisfied over all
time steps 𝑡 are based on the minimum accepted 𝑆𝑂𝐶 (we define 𝑆𝑂𝐶 = 0%) and the
maximum accepted 𝑆𝑂𝐶 (we define 𝑆𝑂𝐶 = 100%):

𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑡 ≤ 𝑆𝑂𝐶 [%] (4.15)

Further restrictions of the battery storage are the maximum charge and the maximum
discharge power, which also have to be met in all time steps 𝑡:

𝑝 ≤ 𝑝𝑡 ≤ 𝑝 [W] (4.16)

with 𝑝 being the maximum discharge power (i. e., the lowest possible negative power
value) and 𝑝 being the maximum charge power (i. e., the highest possible positive power
value).

4.4.3 Thermal Energy Storage

Thermal energy storages (TESs) allow buffering thermal heat or cold energy and hence
decoupling the related generation and consumption [AHP12; Ene+20]. To buffer the
thermal generation of a CHP plant or a condensing boiler, a thermal heat energy storage
can be used. To buffer the thermal generation of a chiller, a thermal cold energy storage
can be used. In the context of the heating and cooling of commercial facilities, thermal
energy storage tanks are usually containers made of steel, (fibre-reinforced) plastic,
or concrete. Usually, they contain a medium such as water whose temperature can be
heated up (heat storage) or cooled down (cold storage) to a temperature level required
to satisfy the facility’s thermal on-site demands. The most widely used liquid for thermal
storage is water (in the liquid phase) [TBH09]. Cold storages may also use brine to lower
the freezing point of water. Thermal energy storage tanks come in sizes of about 0.1m3

(domestic hot water storages) up to 12 000m3 (district heating) [TBH09]. Depending on
the use case and the required temperature level, thermal energy storages with different
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materials and target temperatures can be recognized, such as high-temperature energy
storages (operated at temperatures above 500 °C) or ice storages.

We focus on thermal energy storages used as a buffer between a facility’s on-site
heat or cold generators on the one side, and the final heating and cooling demands on
the other site. Being used to buffer thermal energy, thermal energy storages are also
referred to as thermal buffer storages. We also refer to them simply as heat storages or
cold storages.

4.4.3.1 Flexibilization Potential

The thermal energy that can be buffered by a certain medium can be calculated using
its specific heat capacity 𝑐 and its density 𝜌. For example, the following two equations
present the thermal energy that can be buffered using the mediumwater and the medium
air (based on physical constants [HMS17] and assuming a constant temperature of 20 °C
and a constant pressure):

𝑐water [J/(kgK)] ⋅ 𝜌water [kg/m3] = 4173.64 kJ/(m3K) = 1.16 kWh/(m3K) (4.17)

𝑐air [J/(kgK)] ⋅ 𝜌air [kg/m3] = 0.119833 kJ/(m3K) = 0.000333 kWh/(m3K) (4.18)

It can be seen that water in thermal energy storages, compared to air in buildings,
can buffer a significantly higher amount of energy per volume:

thermal energy buffering potential of air
thermal energy buffering potential of water

=
0.000333 kWh/(m3K)

1.16 kWh/(m3K)
= 0.029%

(4.19)
Alternatively, the building mass (e. g., concrete) could be used as a thermal buffer. In

this thesis, for flexibilizing the runtime and power of heat and cold generating devices,
we focus on the temperature within thermal energy storages and not on the temperature
within buildings. The proposed optimization adjusts the thermal energy flowing into the
thermal storages and assumes the building’s final thermal demands as uncontrollable and
exogenously given (see Section 4.4.1). This results in a less invasive control compared
to the utilization of the temperature range in buildings.

Table 4.4 shows how well thermal generators and storages can be used for shifting
electric energy generation and consumption [KG17]. We can distinguish between electric
energy consumption (in the case of heat pumps or chillers) and electric energy generation
(in the case of CHPs).3 The electric load shifting potential of these devices is limited
3The electric and thermal efficiency (𝜂el and 𝜂th) and the coefficient of performance (COP) are explained
in the later modeling of the respective devices.
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Table 4.4: Potential of thermal generators to shift electric energy consumption (in the case of
heat pumps or chillers) or electric energy generation (in the case of CHPs), quantified with
typical values.

Thermal storage Thermal generator Ratio of electric to thermal load (𝑝el / 𝑝th)

Heat storage CHP 𝜂el
chp / 𝜂th

chp ≈ 40%
Heat pump 1 / 𝐶𝑂𝑃heatPump ≈ 20%

Cold storage Chiller 1 / 𝐶𝑂𝑃chiller ≈ 20%

by the size of the thermal energy storage. The table clarifies that a CHP can shift up
to 0.4 kWh of electric energy generation with each 1 kWh of shifted thermal energy
generation. A heat pump that can shift up to 0.2 kWh of electric energy consumption
with each 1 kWh of shifted thermal energy generation. A chiller can shift up to 0.2 kWh
of electric energy consumption with each 1 kWh of shifted thermal energy generation.
As an order of magnitude, it is worth noting that 100 kWh of thermal energy can be
stored in a thermal water storage with a volume of approximately 8.6m3 in form of a
temperature delta of ΔT = 10K (see Equation 4.17).

The thermal buffering potential can be increased by increasing the temperature band
accepted in the thermal buffer [Lös+14]. However, the temperature of pure water can
only be increased in a limited range as water only provides an operation range between
0 °C (freezing) and 100 °C (boiling) [TBH09]. Furthermore, an increased temperature
can come along with decreased efficiencies of the thermal generators and increased
storage losses.

4.4.3.2 Formalization

We define a thermal energy storage by the following parameter set:

𝒟thBuffer = (𝑉, 𝑇, 𝑇, 𝜌, 𝑐) (4.20)

The parameters are described in the following. To begin with, the energy 𝑒𝑡 stored in
a thermal energy storage at the end of time step 𝑡 can be formalized as follows:

𝑒𝑡 = 𝑒𝑡−1 + Δ𝑒final𝑡 [Wh] (4.21)

with Δ𝑒final𝑡 = Δ𝑒in𝑡 − Δ𝑒out𝑡 , i. e., the sum of the thermal energy added to the thermal
storage and the thermal energy removed from the thermal storage in the respective time
step.
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We first look at the case of a hot water storage. In our exemplary facility setup,
on the one hand, thermal heat can be added by the CHP plant and the condensing
boiler (see Sections 4.4.4 and 4.4.5), as presented in Equation 4.22. On the other hand,
thermal heat can be removed by the uncontrollable final on-site heating demand (see
Section 4.4.1), as presented in Equation 4.23:

Δ𝑒in𝑡 = 𝑝heatchp,𝑡 ⋅ Δ𝑡 + 𝑝heatcondBoiler,𝑡 ⋅ Δ𝑡 [Wh] (4.22)

Δ𝑒out𝑡 = 𝑝heatdemand,𝑡 ⋅ Δ𝑡 [Wh] (4.23)

Now we look at the cold water storage. In our exemplary facility setup, on the
one hand, thermal cold can be added by the air conditioning system’s chiller (see
Section 4.4.6), as presented in Equation 4.24. On the other hand, thermal cold can
be removed by the uncontrollable final on-site cooling demand (see Section 4.4.1), as
presented in Equation 4.25:

Δ𝑒in𝑡 = 𝑝coldchiller,𝑡 ⋅ Δ𝑡 [Wh] (4.24)

Δ𝑒out𝑡 = 𝑝colddemand,𝑡 ⋅ Δ𝑡 [Wh] (4.25)

For both the hot and cold water storage, we assume the thermal storage medium
to be water in the liquid aggregate state, i. e., water with a temperature > 0 °C and
< 100 °C. This way, we do not have to consider phase changes in the modeling. In
general, the temperature of the medium in the thermal storage can be calculated based
on the thermal energy added to or removed from the thermal storage. This requires
the medium’s specific heat capacity 𝑐. It describes the thermal energy (J) required to
raise the temperature of a certain mass (kg) by 1K. Consequently, the specific heat
capacity is defined by the unit J/(kgK). For a thermal storage tank with a volume 𝑉
(m3) which is filled with a medium with the density 𝜌 (kg/m3) and the specific heat
capacity 𝑐 (J/(kgK)), the temperature 𝑇𝑡 (K) at the end of time step 𝑡 can be calculated
as follows:

𝑇𝑡 =
𝑒𝑡

(𝑉 ⋅ 𝜌) ⋅ 𝑐 [K] (4.26)

The following constraint guarantees that the minimum temperature 𝑇 and the maxi-
mum temperature 𝑇 defined for the medium in the thermal storage are not violated:

𝑇 ≤ 𝑇𝑡 ≤ 𝑇 (4.27)
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The thermal storage’s temperature can also be represented as a percentual state
of charge. As our model only addresses a limited temperature range, we assume a
constant density and specific heat capacity. Then, the temperature changes linearly
to the added or removed energy. For a hot water storage, 𝑇 equals an empty thermal
storage and 𝑇 equals a full thermal storage. For a cold water storage, 𝑇 equals an empty
thermal storage and 𝑇 equals a full thermal storage. This is represented by the following
Equation, which is valid for all temperatures within the specified temperature range:

𝑆𝑂𝐶𝑡 =

⎧{{{
⎨{{{⎩

𝑇𝑡 − 𝑇
𝑇 − 𝑇

⋅ 100% for a hot water storage

∣(𝑇𝑡 − 𝑇)∣

𝑇 − 𝑇
⋅ 100% for a cold water storage

[%] (4.28)

Our modeling does not consider thermal losses via the exterior wall or transportation
losses from the heat or cold generating devices to the thermal energy storage.

4.4.4 Combined Heat and Power Plant

A combined heat and power plant (CHP) consists of an engine and a generator. The
fuel used for driving the engine is usually natural gas or diesel. The engine drives the
generator, which then generates electricity. During the combustion of the fuel, heat
is generated, which can meaningfully be used to satisfy heating demands. CHPs are
available in different sizes in terms of generation capacity. Use cases range from small
residential houses up to large industrial facilities or the heating of whole city districts
(via thermal district heating grids) [Wol14]. Simultaneously generating electricity
and heat is also referred to as cogeneration. In contrast to pure fuel-based electricity
generation, cogeneration represents a more efficient use of fuel because it allows for the
productive utilization of heat arising from electricity generation, which otherwise would
be wasted. By simultaneously generating both thermal and electric energy, CHPs achieve
an overall efficiency of about 90% [Qua20; ASU14]: usually out of the energy provided
by the fuel (100%), about 30% can be converted to electricity and about 60% to heat;
the remaining 10% are dissipation. This represents a relatively high overall efficiency
compared to large and centralized conventional power plants. Large coal power plants,
in contrast, have an electric efficiency of about 35–45% as the accruing heat usually is
lost and not meaningfully used to satisfy nearby heat demands [Qua20].
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4.4.4.1 Operating Strategies & Flexibilization Potential

The decision of how to operate a CHP depends on the heat and electricity demands that
have to be satisfied. From the viewpoint of a CHP plant operator, a CHP’s profitability is
determined by the alternative costs for electricity and heat, the feed-in compensation
for electricity (and potentially heat), the fuel costs, the CHP plant’s runtime, and the
procurement costs for the CHP plant. In the traditional view, with the absence of DSM
incentives, CHPs are often only profitable if they run for a reasonably long time of the
year. The two traditional operating strategies are as follows [ASU15; Zap15]:

• Heat-driven: In the heat-driven operation, the on-site heat demand determines
the runtimes of the CHP plant. The CHP plant is turned on to satisfy the heat
demand, and the generated electricity is seen as a by-product. This is the most
common operation mode, which is particularly useful if the local heat demand
and buffer are limiting elements.

• Electricity-driven: In the electricity-driven operation, the on-site electricity de-
mand determines the runtimes of the CHP plant. The CHP plant is turned on to
satisfy the on-site electricity demand. This is particularly useful if the primary
goal is satisfying the local electricity demand. Incentives for this may be external
electricity prices or grid fees based on peak loads.

Traditionally, CHPs are dimensioned to run a reasonably long time of the year. For the
dimensioning, the thermal load duration curve (in case of heat-driven operation) or the
electric load duration curve (in case of electricity-driven operation) can be consulted. For
profitability reasons, it is common to intentionally dimension the CHP plant too small to
cover the entire on-site heat demand over the whole year and to use an additional peak
load burner (i. e., a condensing boiler as presented in Section 4.4.5) to satisfy the high
heat demand in winter. Considering the higher procurement costs for a larger CHP, the
additional usage of a peak load burner usually turns out to be more profitable.

The flexibilization potential concerning DA and aFRRmarket participation is as follows.
As long as the heat generated by the CHP plant in one hour can be used or buffered
in an appropriately dimensioned thermal storage, the related electric energy can be
used to adjust the DA market schedule (i. e., probably to increase the facility’s overall
schedule such that less electric energy has to be bought). The power scheduled via the
DA market can be adjusted in both directions if the CHP is on and the chosen power
level is between the minimum and the maximum. In cases where the CHP is operated
together with a condensing boiler, the CHP plant’s generation can be decreased without
further constraints as the condensing boiler can substitute the CHP’s heat generation.
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However, increasing the CHP plant’s generation requires a corresponding heat demand or
a thermal storage that can buffer the heat generation coming with a full aFRR activation
over four hours. In recent years, market participants targeting the aFRR optimization of
on-site CHPs can be recognized [Nex19].

The implementation of traditional heat or electricity driven operating modes can be
realized by solely reacting to local measurements. In a heat-driven operation, the flow
and return temperature can be used to determine the heat demand. In an electricity-
driven operation, the electric power demand can be measured. In contrast, the economic
optimization incentivized by the DA and aFRR markets requires a predictive operating
strategy interacting with the market side. Significant restrictions for such an economic
optimization come from the requirement that the on-site heat demand always has to
be satisfied and that only limited heat buffer capacity is available. Furthermore, power
level adjustments may influence the CHP plant’s efficiency.

4.4.4.2 Formalization

In this thesis, we consider a CHP with a stepwise controllable fuel consumption. It is
modeled by the following parameter set:

𝒟chp = (𝜔, 𝑝fuel, 𝑝fuel, 𝑛, 𝜂el(𝜆), 𝜂th(𝜆)) (4.29)

The parameters are described in the following. The parameter 𝜔 ∈ ℕ+ describes the
number of successive time steps for which the CHP plant can be either switched on or
off. 𝑝fuel describes the minimum selectable fuel consumption (in W) if the CHP is on,
and 𝑝fuel describes the maximum selectable fuel consumption (in W) if the CHP is on. In
order to satisfy practical limitations on the controllability, we assume that the CHP can
be controlled in 𝑛 equally-distributed power levels between the minimum and maximum
fuel consumption power (with the minimum and the maximum fuel consumption power
being considered as one power level, too). A control band of about 50–100% is common
[ASU14].

The state of the CHP plant in time step 𝑡 can be described by Equation 4.30. In the
later proposed optimization and evaluation the length of a time step is defined to be
Δ𝑡 = 1min. Our modeling, however, is independent of the time step length.

𝑠𝑡 =
⎧{
⎨{⎩

1 CHP is on
0 CHP is off

(4.30)
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Figure 4.3: The control band of a device as defined by its discrete power levels.

We assume that the CHP plant can switch between the two states every 𝜔 time step,
whereas in-between the CHP can be either on in all time steps or off in all time steps.
This means the CHP is always on or off for a multiple of 𝜔 time steps:

∀𝑡 ∈ {0, 𝜔, 2𝜔, 3𝜔, … } ∶ ⎛⎜
⎝

𝑡+𝜔−1
∑

𝑡
𝑠𝑡

⎞⎟
⎠

∈ {0, 𝜔} (4.31)

If the CHP plant is in the state on, the fuel consumption can (in each time step) be
stepwise regulated within a certain control band defined by the minimum and maximum
fuel consumption. This is visualized in Figure 4.3 in which we assume 𝜔 = 60min. In
practice, smaller time frames for state changes (off to on and on to off) are possible
depending on the concrete CHP. However, a high number of switching cycles may
influence the CHP’s wear.

When in the state on, the upper control band bound 𝑝 represents the maximum fuel
consumption, and the lower control band bound 𝑝 the minimum:

𝑝fuel ≤ 𝑝fuel𝑡 ≤ 𝑝fuel [W] (4.32)

The regulation within the control band is possible in 𝑛 power levels, with 𝑛 ∈ {2, … , ∞}
depending on the concrete CHP’s technical capabilities (in Figure 4.3, 𝑛 = 5 is assumed).
In order to separate between the 𝑛 power levels in each time step 𝑡, we introduce the
variable 𝜆𝑡 ∈ {0, … , 𝑛 − 1} for referring to the power level. We restrict the power level
to 𝜆𝑡 = 0 in the state 𝑠 = 0 and to 𝜆𝑡 ∈ {1, … , 𝑛 − 1} in the state 𝑠 = 1. On this basis,
the fuel consumption of a CHP can be calculated based on the power level:
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𝑝fuel(𝜆) =
⎧{
⎨{⎩

𝑝fuel + (𝑝fuel − 𝑝fuel) ⋅ 𝜆+1
𝑛−1 if 𝑠 = 1

0 if 𝑠 = 0
[W] (4.33)

Based on the combustion of fuel, the resulting electric output 𝑝el𝑡 and thermal output
𝑝th𝑡 can be calculated for each time step 𝑡. This is done analogously to the calculation of
the fuel consumption. However, for both the electric and the heat output, the power
level (𝜆𝑡) dependent energy conversion efficiency has to be considered. This power level
dependent efficiency is provided by the function 𝜂el(𝜆) ∶ {0, … , 𝑛 − 1} → [0, 1] (fuel
to electric) and 𝜂th(𝜆) ∶ {0, … , 𝑛 − 1} → [0, 1] (fuel to thermal). Both functions map a
given power level 𝜆 to the related efficiency.

Based on the power level dependent efficiency, the electric output 𝑝el and the thermal
output 𝑝th can be calculated as follows:

𝑝el(𝜆) =
⎧{
⎨{⎩

𝑝fuel(𝜆) ⋅ 𝜂el(𝜆) if 𝑠 = 1
0 if 𝑠 = 0

[W] (4.34)

𝑝th(𝜆) =
⎧{
⎨{⎩

𝑝fuel(𝜆) ⋅ 𝜂th(𝜆) if 𝑠 = 1
0 if 𝑠 = 0

[W] (4.35)

Consequently, the fuel energy delta, the electric energy delta, and the heat energy
deltas arising from a specific time step 𝑡 can be described in dependence of the power
level 𝜆𝑡 within this time step:

Δ𝑒fuel𝑡 = 𝑝fuel(𝜆𝑡) ⋅ Δ𝑡 [Wh] (4.36)

Δ𝑒el𝑡 = 𝑝el(𝜆𝑡) ⋅ Δ𝑡 [Wh] (4.37)

Δ𝑒heat𝑡 = 𝑝heat(𝜆𝑡) ⋅ Δ𝑡 [Wh] (4.38)

Figure 4.3 shows that the delta between two consecutive power levels for the fuel
consumption is constant: the fuel consumption is linear to the power level 𝜆𝑡. However,
this is different for the (electric and thermal) output: the non-linearity introduced
in Equation 4.34 (electric power output) and Equation 4.35 (thermal power output)
between the power level 𝜆 and the power output results in the fact that the (output)
power delta between two neighboring power levels can differ.

In addition to the above technical restrictions, the degree of freedom for operating the
CHP plant is restricted by the connected thermal storage. As described in Section 4.4.3,
the thermal energy storage has to be operated in a certain temperature range (see
Equation 4.27). It is heated up by the CHP and the condensing boiler (see Equation 4.22),
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and cooled down by the facility’s uncontrollable final heat demand (see Equation 4.23).
In the evaluation, we consider a CHP using gas as fuel.

4.4.5 Condensing Boiler
Condensing boilers are (water) heaters usually fueled by natural gas or diesel. They burn
fuel and use a heat exchanger to transfer the resulting heat energy to water, consequently
raising the water temperature. In contrast to conventional boilers, condensing boilers
extract additional heat from waste heat in flue gases by condensation of the water vapor,
which otherwise would be lost [HG15]. Condensing boilers are commonly used in
combination with CHP systems as it usually is not lucrative to dimension a CHP such
that it can satisfy all heat demand peaks occurring over the year. Instead, driven by
investment costs, CHPs are often dimensioned such that they only cover a share of
the heat demand peaks, and condensing boilers are supplementarily used to cover the
remaining demand [ASU15]. Therefore, condensing boilers operated in the context of
CHPs are also referred to as peak load burners. A sufficiently dimensioned condensing
boiler is able to substitute a CHP’s thermal generation. Today’s condensing boilers can
achieve energy conversion efficiencies (natural gas to heat) of up to about 95–97%
[Vie19].

4.4.5.1 Operating Strategies & Flexibilization Potential

Condensing boilers usually follow a rule-based operating strategy that solely reacts to
local measurements. The flow and return temperatures reflect the need for heat supply,
which sets the basis for an on-off control: The condensing boiler is turned on as soon as
a defined minimum temperature bound is reached and turned off as soon as a defined
upper temperature bound is reached.

The flexibilization potential of peak load burners concerning DA and aFRR market
participation has already been addressed in the context of the CHP plant operation (see
Section 4.4.4). It was shown that the condensing boiler’s capability to substitute the
heat generation of a CHP is beneficial as it increases the potential of a CHP to provide
negative balancing power (i. e., to be financially rewarded for offering to turn off the
CHP). This is because condensing boilers may take over the heat production and hence
guarantee the satisfaction of the final on-site heat demand independent of balancing
power activation requests. Furthermore, an optimized scheduling may theoretically
prefer the heat supply provided by the condensing boiler to the heat supply provided by
the CHP as it allows the CHP to provide positive balancing power (i. e., to be financially
rewarded for offering to turn on the CHP). However, in contrast to today’s operating
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strategies, the economic optimization incentivized by the DA and aFRR markets requires
predictive operating strategies interacting with the market side.

4.4.5.2 Formalization

We define a condensing boiler by the following parameter set:

𝒟condBoiler = (𝑝fuel, 𝜂th) (4.39)

The parameters are described in the following. 𝑝fuel describes the maximum possible
power value (W) up to which the condensing boiler can be controlled. Reflecting the
relatively good controllability of condensing boilers (via a valve adjusting the fuel
supply), we model condensing boilers as continuously controllable:

0 ≤ 𝑝fuel𝑡 ≤ 𝑝fuel [W] (4.40)

The efficiency factor for the fuel-to-heat conversion of the condensing boiler is de-
scribed by 𝜂th ∈ [0, 1]. It is assumed to be independent of the thermal storage’s
temperature, which is a simplifying assumption. It is chosen due to the relatively small
efficiency range mainly based on the return water temperature and only to a slight
degree on the power level [Bal+17]. Consequently, the thermal power within a time
step 𝑡 and the resulting energy delta can be calculated as follows:

𝑝th𝑡 = 𝑝fuel𝑡 ⋅ 𝜂th [W] (4.41)

Δ𝑒th𝑡 = 𝑝th𝑡 ⋅ Δt [Wh] (4.42)

We assume the condensing boiler to be sufficiently dimensioned (i. e., that 𝑝fuel is
high enough) to cover the facility’s peak heat demand in any time step 𝑡. This means
that in case of an empty thermal storage (i. e., when the minimum storage temperature
is reached) and the absence of other heat-generating sources (i. e., when the CHP
plant is off), the condensing boiler can be used to satisfy the heat demand such that
the minimum thermal storage temperature is never undershot. In the evaluation, we
consider a condensing boiler using gas as fuel.

4.4.6 Air Conditioning
In the following, we model an air conditioning (AC) system to demonstrate how a
device associated with the energy form cold can be integrated into the FEMS and the
overall optimization. It is worth mentioning that, within this chapter, we present the
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Figure 4.4: Components of a chiller-driven air conditioning system.

interfaces and relations between different energy forms on a comprehensive systemic
level. In contrast, in the quantitative in-depth evaluation of the proposed algorithmic
optimization, we do not further consider the AC system in favor of a clear focus on the
battery storage system and the CHP plant.

The subsequently presented modeling addresses a central AC system as depicted in
Figure 4.4. Such AC systems are commonly used for cooling purposes in commercial and
industrial facilities [Alb18; Wan01]. They cool air (e. g., in office rooms) by circulating
it through cooling coils that are filled with a circulating fluid which is distributed from a
central (compression) chiller [Wan01]. The most common fluid for thermal storage and
transfer is water [TBH09]. On the right side in the Figure, we see the space cooled down
via coils filled with the circulating fluid, hence resulting in a “heat discharge” of the room.
The depicted cold distribution circuit is driven by circulating pumps. The cooling coils
use the circulating fluid delivered from the cold storage to cool down the space. This
heats up the circulating fluid and consequently the thermal energy storage. The circuit
left to the thermal energy storage is connected to the chiller, which uses electricity to
remove heat from the circulating fluid via vapor compression to the outside environment,
e. g., via cooling towers. Therefore, the chiller uses the condenser and evaporator, and
a compressor driven by an electric motor [Wan01]. This way, the electricity-consuming
chiller cools down the circulating fluid’s temperature and, consequently, the chilled
water in the thermal energy storage.
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The system boundary of the modeled chiller is clarified in Figure 4.4. It is motivated
by an abstracted scheme generalizing the variety of individual air conditioning system
setups [KHT16]. It is worth noting that this is a simplified illustration: real AC systems
are equipped with various pumps, and cooling circuits may be nested (e. g., for various
cooling zones) or interlinked via controlling valves (e. g., for mixing the cold flow from
the thermal energy storage with the untreated heat return from the cooling coils, or for
bypassing the cold storage). Furthermore, different technical realizations of the chiller
itself and different ways for combining heating, ventilation, and air conditioning (HVAC)
as well as for cascading multiple chillers exist [Wan01]. Consequently, a wide range
of different air conditioning systems fitting individual cooling needs can be found in
practice. We assume the cold demand to the right of the cold storage tank (i. e., the
facility’s cold demand, including transmission losses occurring during the distribution)
as exogenously given (see Section 4.4.1). Accordingly, an optimization focusing on
flexibilizing the runtime and power level of the chiller is meaningful. Due to the relatively
small share of the electric energy required by auxiliary AC system components such
as the circulating pumps, we do not further consider their electricity demand in our
modeling.

For describing the efficiency of chillers, the coefficient of performance (COP) is used.
It describes the relation of the useful thermal power output to the required electric
power input:

𝐶𝑂𝑃 =
𝑝th

𝑝el
(4.43)

In contrast to efficiency values, COP values can be larger than 1 ( ∧= 100%). This is due
to the fact that a chiller (or a heat pump which is described using a COP, too) transfers
heat from one place to another place, instead of just converting the electric power input
to the thermal power output. Common COP values for chillers are in the range of about
3–5 [Yu+14; YH19; Alo+19]. This means that the chiller removes 3–5 kilowatt-hours
of heat from the building’s air per 1 kilowatt-hour of electric energy provided to the
chiller. Factors influencing the COP are presented in the following modeling.

4.4.6.1 Operating Strategies & Flexibilization Potential

On a high level of abstraction, chillers are operated using an on-off operating strategy,
potentially running in partial load. Depending on the cold demand derived from the
flow and return temperatures, they start and stop cooling down the liquid medium in
the cold storage circuit. If a specific maximum temperature bound is reached, the chiller
starts operating, and if a specific minimum temperature bound is reached, it stops. The
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decision for running in partial load may be based on the level of the overall cold demand.
Further downstream components such as pumps and valves may be controlled based on
additional measurements, e. g., of temperature and pressure.

The flexibilization potential concerning DA and aFRRmarket participation is as follows.
Participation in the DA market scheduling is possible as long as a power level can be kept
for multiples of one-hour slots without violating the thermal cold storage’s minimum
temperature. Depending on the power level scheduled via the DA market, the power
level can theoretically be adjusted in both directions. However, providing aFRR must
also be possible without violating the connected thermal storage restrictions in case of a
full aFRR activation over four hours. The chiller’s ability to provide aFRR depends on
the cold storage size and the cold demand. In contrast to the CHP and condensing boiler,
cold generation can usually not be substituted. Therefore, to prevent thermal discomfort,
only comparatively small power levels are possible for positive aFRR provisioning (i. e.,
for the provision to turn off the chiller).

The economic optimization of the chiller based on the DA and aFRR market requires
a predictive operating strategy interacting with the market side. Significant restrictions
for such an economic optimization are similar to the ones the CHP plant has to deal
with: the on-site cold demand always has to be satisfied, the cold buffer capacity is
limited, and the decisions to adjust runtimes and power levels influence the efficiency.
In addition to the CHP plant, the chiller’s efficiency (represented by the COP) depends
on the temperature lift (as a chiller not solely converts the provided input energy but
uses it to move existing heat).

4.4.6.2 Formalization

We model an AC system’s chiller by the following parameter set:

𝒟chiller = (𝜔, 𝑝el, 𝑝el, 𝑛, 𝐶𝑂𝑃(𝜆, 𝜏)) (4.44)

The parameters are described in the following. The parameter 𝜔 ∈ ℕ+ describes the
number of successive time steps for which the chiller can be either switched on or off.
𝑝el and 𝑝el describe the minimum and the maximum power demand if the chiller is on,
and 𝑛 describes the number of controllable power levels between 𝑝el (inclusive) and 𝑝el

(inclusive). We chose this discretization to satisfy potential practical limitations on the
controllability. The function 𝐶𝑂𝑃(𝜆, 𝜏) ∶ {0, … , 𝑛 − 1} × 𝕋 → ℝ+ describes a function
representing the chiller’s COP. It is based on two inputs: the power level 𝜆 ∈ {0, … , 𝑛−1}
and the reference temperature delta 𝜏 ∈ 𝕋 between the heat exchanger and the cold
storage, measured in Kelvin. In an operational optimization, the temperature deltas
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used as input to the COP function will be discretized as the chiller’s COP usually is
only available for selected temperature deltas. However, this discretization does not
result from a technical limitation; instead, it is a simplification of the COP analysis
motivated by the goal of being easily adaptable to different facilities with different
chillers. Consequently, 𝕋 describes the set of all temperature deltas for which reference
COP measurements are available, and 𝜏 ∈ 𝕋 [K] describes one specific reference
temperature delta.

The state of the chiller in minute 𝑡 can be described as:

𝑠𝑡 =
⎧{
⎨{⎩

1 Chiller is on
0 Chiller is off

(4.45)

We assume that the chiller can switch between the two states every 𝜔 time steps,
whereas in-between the chiller can be either on in all time steps or off in all time steps
(as in the case of the CHP plant, see Section 4.4.4). This means the chiller is always on
or off for a multiple of 𝜔 time steps:

∀𝑡 ∈ {0, 𝜔, 2𝜔, 3𝜔, … } ∶ ⎛⎜
⎝

𝑡+𝜔−1
∑

𝑡
𝑠𝑡

⎞⎟
⎠

∈ {0, 𝜔} (4.46)

The possibility of state changes (off to on and on to off) differs depending on the
concrete chiller. It may be possible in the areas of down to minutes; however, a high
number of switching cycles may influence the chiller’s wear. The chiller’s COP is based on
both the power level 𝜆𝑡 and the temperature difference 𝛿𝑡 between the heat exchanger
and the cold storage. This temperature difference in time step 𝑡 is calculated as follows:

𝛿𝑡 = 𝑇heatExchanger
𝑡 − 𝑇thBuffer,cold

𝑡 [K] (4.47)

where 𝑇heatExchanger
𝑡 is the temperature at the heat exchanger and 𝑇thBuffer,cold

𝑡 the
temperature in the cold storage in time step 𝑡.

Based on a given power level 𝜆 and a given temperature difference 𝛿, the chiller’s
electric power consumption 𝑝el and its thermal power generation 𝑝th can be calculated
as follows (the interpolated COP function 𝐶𝑂𝑃interpol(𝜆, 𝛿) is described below):

𝑝el(𝜆) =
⎧{
⎨{⎩

(𝑝el + (𝑝el − 𝑝el) ⋅ 𝜆
𝑛−1) if 𝑠 = 1

0 if 𝑠 = 0
[W] (4.48)

𝑝th(𝜆, 𝛿) =
⎧{
⎨{⎩

𝑝el(𝜆) ⋅ 𝐶𝑂𝑃interpol(𝜆, 𝛿) if 𝑠 = 1
0 if 𝑠 = 0

[W] (4.49)
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Consequently, the electric energy delta (consumption) and the thermal energy delta
(generation) in a certain time step 𝑡 can be calculated as follows:

Δ𝑒el𝑡 = 𝑝el(𝜆𝑡) ⋅ Δt [W] (4.50)

Δ𝑒th𝑡 = 𝑝th(𝜆𝑡, 𝛿𝑡) ⋅ Δt [W] (4.51)

The chiller’s COP is based on the power level 𝜆 and the temperature difference 𝛿
between the heat exchanger and the cold storage temperature. The COP function
𝐶𝑂𝑃(𝜆, 𝜏) used as input for the modeling of the chiller assumes discretized temperature
deltas 𝜏𝑖 ∈ 𝕋. As already stated, this is due to the fact that a chiller’s COP is usually only
known for selected temperature deltas. For a better understanding, the set of possible
parameter combinations for the COP function 𝐶𝑂𝑃(𝜆, 𝜏) can also be depicted in the
form of the following matrix:

power level ⟶

⎛⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟
⎠

𝐶𝑂𝑃(0, 𝜏1) 𝐶𝑂𝑃(1, 𝜏1) … 𝐶𝑂𝑃(𝑛 − 1, 𝜏1)
temperature delta ↓ 𝐶𝑂𝑃(0, 𝜏2) 𝐶𝑂𝑃(1, 𝜏2) … 𝐶𝑂𝑃(𝑛 − 1, 𝜏2)

⋮ ⋮ ⋱ ⋮
𝐶𝑂𝑃(0, 𝜏|𝕋|) 𝐶𝑂𝑃(1, 𝜏|𝕋|) … 𝐶𝑂𝑃(𝑛 − 1, 𝜏|𝕋|)

(4.52)

At this 𝜏𝑖 describes the 𝑖-th reference temperature delta from the (ascending) sorted set
𝕋 with the available reference temperature deltas. Due to the practical limitation of the
available COP reference measurements to |𝕋| temperature deltas, COP values between
two available temperature levels (i. e., between two rows in one column in the matrix
shown in Equation 4.52) can be interpolated. More concrete, the chiller’s COP for time
step 𝑡 is either known due to available reference measurements or it can be interpolated
if the temperature delta is in the range [min(𝕋),max(𝕋)]. However, an extrapolation
below the minimum or above the maximum temperature delta does not seem realistic
due to the unpredictable COP behavior outside the reference measurements. Therefore,
the closest available COP value can be used in such cases.
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The interpolation function maps the power level 𝜆 ∈ {0, … , 𝑛 − 1} and the actual
temperature delta 𝛿 ∈ ℝ [K] to the COP:

𝐶𝑂𝑃interpol(𝜆, 𝛿) =

⎧{{{{{
⎨{{{{{⎩

𝐶𝑂𝑃(𝜆, 𝛿) if 𝛿 ∈ 𝕋
𝐶𝑂𝑃(𝜆,min(𝕋)) if 𝛿 < min(𝕋)
𝐶𝑂𝑃(𝜆,max(𝕋)) if 𝛿 > max(𝕋)
(𝐶𝑂𝑃(𝜆, 𝜏)+ if (𝛿 ∉ 𝕋)∧

(𝐶𝑂𝑃(𝜆, 𝜏) − 𝐶𝑂𝑃(𝜆, 𝜏)) ⋅ 𝛿−𝜏
𝜏−𝜏) (min(𝕋) < 𝛿 < max(𝕋))

(4.53)
with 𝜏 ∈ 𝕋 representing the reference temperature delta (used for the COP mea-

surement) below the temperature delta 𝛿, and 𝜏 ∈ 𝕋 the reference temperature
delta above the temperature delta 𝛿 (which means 𝜏 = max({𝑥 ∈ 𝕋 ∣ 𝑥 < 𝛿}) and
𝜏 = min({𝑥 ∈ 𝕋 ∣ 𝑥 > 𝛿})).

After providing a detailed understanding of the system environment of a FEMS, the
following chapter analyzes the characteristics of the aFRR balancing market.
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CHAPTER 5
Analysis of aFRR Activations

In this chapter, we analyze the nature of aFRR activations. As balancing power is used
to handle power schedule deviations that cannot be handled via electricity spot markets
anymore, it is immanent to balancing power that the activation cannot be perfectly
predicted. However, in the cases of aFRR and mFRR, the energy price of a balancing
power bid determines the position in the merit order list, and hence the activation
probability: a cheap balancing power bid is always more likely to be activated than a
more expensive one. We start this chapter with a qualitative discussion of demand and
supply uncertainties resulting in the need for balancing power. After understanding
the fundamental reasons for balancing power activation, we use the aFRR modeling
presented in Section 4.3 to map historical aFRR energy prices to the historical activation
duration. The elaborated statistically expected aFRR activation duration within a given
time frame in dependence of the aFRR energy price is used as input for the optimization
presented in the next chapter. Furthermore, we analyze the related activation uncertainty
from the viewpoint of a BSP, and the historical development of the relation between aFRR
energy prices and aFRR activations. Finally, the chapter concludes with a discussion of
how the gained insights can be used for the optimization of aFRR bids. Core contributions
presented in this chapter have already been published in [Lös+18], as stated in the
respective sections.

5.1 Uncertainties Resulting in the Need for
Balancing Power

In the following, we discuss factors with impact on the need for balancing power. Firstly,
we look at technical reasons and, secondly, we look at the impact of major regulatory
aspects. Finally, we discuss the expected development of the future need for balancing
power.
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5.1.1 Technical Reasons

The generation of schedules for flexible generators and consumers (and trading at elec-
tricity markets) is based on predictions of the expected feed-in and feed-out. Deviations
from planned schedules to the actually realized schedules are common. The major
technical reasons resulting in the need for balancing power are as follows (see [Con08]):

• Demand side forecast errors: Forecast errors of the power demand result in devi-
ations from planned schedules. In Germany, forecasting power demand schedules
is either based on standard load profiles or registering power measurements. For
forecasting the demand of consumers with a demand below 100000 kWh/a, BRPs
use standard load profiles [VB99] in quarter-hour granularity.1 For consumers
above this threshold, BRPs use registering power measurement to monitor actual
quarter hour profiles for improving the quarter-hourly procurement schedules
and hence minimizing demand deviations. Self-consumption (e. g., via on-site
PV or CHP plants, potentially coupled with local battery storage systems) and
automated optimization of the energy consumption (e. g., according to external
load-shifting incentives) increase the uncertainty in demand schedules and make
accurate forecasts more complicated. Consequently, smart metering systems that
provide more accurate consumption data allow minimizing forecast error.

• Demand side noise: Average power deviations of the predicted quarter-hour
power schedule from the actual quarter-hour power schedule are considered as
forecast errors (as described above). In contrast, deviations of the actual power
from the quarter-hourly average power are considered as noise. In other words,
noise refers to the feed-out uncertainty within quarter-hour balancing group slots.
Although stochastic averaging effects due to a large number of consumers in a grid
decrease the noise within a quarter hour, it cannot be fully avoided.

• Supply side forecast errors: Feed-in of renewable energy sources such as PV,
wind, or hydro power relies on stochastic weather conditions. As the generation
of respective supply schedules requires forecasts, these schedules are fraught
with uncertainty, and deviations of the actual feed-in from these forecasts result
in imbalances. Consequently, in particular the increasing share of volatile and
uncertain generation of renewable energy resources on the overall power plant
mix influences the level of forecast errors [HZ13].

1See § 12 of the German Electricity Network Access Regulation (German: “Stromnetzzugangsverordnung”
(StromNZV)).
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• Outages on the supply side: In particular the feed-in of electric energy can be
subject to unexpected outages. Outages are manifold and can concern different
grid resources such as power plants, transmission lines, or transformers. The age
of grid equipment as well as its maintenance influence the probability of outages.
In particular outages of large conventional power plants that are characterized by
relatively high power capacities can have a high impact on the need for balancing
power. Consequently, to be prepared for outages of large conventional power
plants, relatively high balancing power capacities have to be reserved.

• Schedule leaps between spot market time slots: Balancing group schedules are
based on quarter-hour time slots (which, as of today, represent the finest product
granularity at electricity spot markets). Depending on the technical unit, targeted
power changes between two quarter hours do not immediately take effect, but
follow a certain ramp. Power ramps occurring when increasing or decreasing
generation or consumption result in schedule leaps, and hence feed-in and feed-out
imbalances that have to be handled by balancing power.

Noise is mainly handled by FCR, prediction errors are mainly handled by aFRR and
mFRR, and longer lasting outages are mainly handled by mFRR. As already presented
in more detail in Section 2.3.1, mFRR releases aFRR such that aFRR becomes available
again for more short-term forecast errors, and aFRR releases PCR as PCR is required for
quickly handling noise.

5.1.2 Impact of Regulation
Technically, the need for balancing power is mainly caused by the above discussed
reasons. In addition, regulation influences the demand for balancing capacity as follows:

• Incentives to keep balancing groups balanced: BRPs should be incentivized
to keep balancing group imbalances as low as possible. This can be reached
economically by regulation that requires BRPs to pay for schedule imbalances
in form of the imbalance energy price (reBAP, see Section 2.3.3). The higher
the imbalance energy price, the higher the incentive for balancing responsible
parties to improve forecast accuracy for minimizing schedule deviations. In case of
imbalances that emerge early enough such that an intraday schedule adjustment
still is possible, a BRP can eliminate or at least minimize the imbalance by trading
at the intraday market. The price level of the imbalance energy price, and hence
the resulting incentives for BRPs to keep their balancing groups balanced, can be
controlled by adjusting its calculation method. In Germany, to better incentivize
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BSPs to actively counteract balancing group imbalances, the BNetzA adjusted the
reBAP calculation method in 2020 (by coupling reBAP imbalance energy prices
to spot market prices such that reBAP costs cannot be cheaper than spot market
costs) [Bun20b].

• Control area size: Due to averaging effects, the potential for mutual compensa-
tions of demand and supply side forecast errors increases with the control area
size. For example, one balancing group may be overfed while another balancing
group is underfed, hence resulting in a mutual compensation and a lower need
for balancing power. Consequently, due to averaging effects, larger control areas
need to hold back only a smaller share of the overall power capacity as balancing
capacity (see Section 2.3.4 on the Grid Control Cooperation).

• Definition of safety level: One way to represent the safety level of balancing
power provision is by means of a metric representing the timely share (e. g., over
a year) in which the required balancing power is allowed to be higher than the
balancing capacity procured by the TSOs. If the grid frequency cannot be hold at
the acceptable level via balancing power measures, the backup scheme presented
in Section 2.3.6 is used. In Germany, in addition to balancing power, the German
Ordinance on Agreements on Disconnectable Loads2 allows to additionally dis-
connect so called “disconnectable loads” or “fast disconnectable loads”. Adjusting
the timely share in which the actually required balancing power is allowed to be
higher than the purchased balancing capacity indirectly influences the balancing
demand.

5.1.3 Outlook on Future Development
As of today, conventional power plants still provide a significant share of balancing
power [Deu20f]. Due to the replacement of nuclear and coal power plants by renewable
power plants, multiple adjustments of balancing market conditions to facilitate the
integration of renewables have already been made in recent years, as already discussed
in detail in Section 2.4.4.3. The further development of the demand for balancing
power (by TSOs) and the supply of balancing power (by BSPs) will be influenced
by the above discussed technical and regulatory aspects. Table 5.1 discusses current
developments that can be recognized as crucial for the demand and supply of balancing
power. Out of the shown factors, studies in particular expect the variability and/or
uncertainty of renewable generation to be responsible for an increased need for balancing
2German: “Verordnung über Vereinbarungen zu abschaltbaren Lasten” (AbLaV)
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Table 5.1: Influences on balancing power demand and supply; based on [Deu13; ASH15] and
enriched by further factors.

(a) Balancing power demand

Factors influencing the balancing power demand Direction

•Increasing share of fluctuating renewable energy sources demand ↑•Increasing share of uncertain loads introduced by electric mobility

•Increasing scope of the Grid Control Cooperation

demand ↓•Increasing short-term intraday trading volume
•Increasing forecasts quality of renewable feed-in
•Increasing insights into demand side behavior via smart metering systems

(b) Balancing power supply

Factors influencing the balancing power supply Direction

•Decreasing product time slots and minimum required power levels
supply ↑•Increasing market entrance of new BSPs due to lower barriers and pooling

•Increasing share of conventional power plants operated in partial load

•Increasing share of grid bottlenecks and need for grid expansion supply ↓

power capacities [HZ13; EMK11]. Furthermore, variable renewable energy sources are
expected to change the relation between available balancing power capacities on the
one hand, and their activation on the other hand [Agr+14]. However, balancing power
capacities that are required by the TSOs and offered by BSPs, as well as their activation
and the overall balance, are difficult to quantify. This is aggravated by the presence
of different temporal granularities of balancing services (FCR, aFRR and mFRR) and
different balancing power directions (negative, positive). In the end, the balance of
the factors presented in Table 5.1 will determine the future price levels at the different
balancing market segments.

5.2 Implications of aFRR Energy Prices Choices
After we have seen that multiple stochastic (and by nature not perfectly predictable)
reasons for the activation of aFRR exist, we subsequently analyze the impact of the aFRR
energy price onto the share of balancing power bid activations and derive the revenue
potential. Figure 5.1 visualizes the aFRR demand (of the GCC) over an exemplary
15-minute time slot and shows the activation times of three exemplary BSPs whose
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Figure 5.1: Activation of three exemplary aFRR bids with different aFRR energy prices (EP)
based on the TSO’s aFRR power demand.

aFRR bids are characterized by a “low”, a “medium”, and a “high” aFRR energy price. It
can be seen that activation depends on the position within the aFRR energy price merit
order as bids with low energy prices are always activated prior to bids with high energy
prices.

In recent years, aFRR market conditions were subject to multiple changes. As already
explained in Section 2.4.4.3, the change of tendering periods and time slot sizes, the
introduction of the mixed-price mechanism (which was rolled back within a year after its
introduction), or the introduction of additional aFRR energy auctions came along with
weighty changes to either the market interface or the behavior of market participants.
The limitation of the time spans quantitatively investigated within this section results
from our focus on the assumptions and modeling presented in Section 4.3.

During the realization of this thesis, key aspects of this section on the implications of
aFRR energy price choices have already been published in [Lös+18]. Large parts of the
rest of this section are taken verbatim from this publication, including Figure 5.2.
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Figure 5.2: Impact of aFRR energy prices on aFRR bid activation and the related activation-
based revenues; based on the modeling and data sources presented in Section 4.3.

5.2.1 aFRR Activations

Based on the ex-post aFRR simulation introduced in Section 4.3, we analyze impacts
of the choice of the energy price as well as their historical developments. Assuming a
continuous 1MW aFRR bid in each weekly auction of the years 2012–2016, Figure 5.2a
shows the relation between the energy price and the share of activations over the
respective whole year. We distinguish between positive balancing power (blue line) and
negative balancing power (red line); differences between peak and off-peak products3
are not further investigated in this thesis. It can be understood that, over any auction
period, a cheap balancing power bid is always activated for at least the same duration
as a more expensive bid. The figure shows that a positive balancing power bid with an
exemplary energy price of 50 EUR/MWh would have been activated 25% of the year
2016, whereas a negative balancing power bid with the same price would have been
activated 5% of the same year.

Further, it can be recognized that for negative balancing power the cheapest energy
price bids are negative (i. e., direction of payment not from TSO to BSP, but from BSP to
TSO). This is due to the fact that balancing power traditionally is provided by power
plants, and negative balancing power corresponds to ramping down their generation

3German: “Haupttarif (HT), Nebentarif (NT)”
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which results in the avoidance of fuel costs. The curve for positive balancing power
does not contain any negative balancing power prices as power plants providing positive
balancing power have to pay additional fuel costs to increase their power output. Hence,
from the viewpoint of the TSOs, negative balancing energy can be seen as cheaper than
positive balancing energy. It can also be recognized that the cheapest negative and the
cheapest positive balancing power bid of each year, i. e., the two leftmost data points,
sum up to a share of activations of approximately 100%. This means that the cheapest
balancing power bid of each direction has (almost) always been activated in case of
respective grid needs (while, e. g., in year 2016 positive balancing power was activated
more often).

5.2.2 aFRR Revenue Potential

Given the goal of ex-post analyzing the impact of the energy price choice, it is assumed
that an examined balancing power bid is added into the existing merit order list. In
retrospect, a fictional balancing power bid with an energy price cheaper than the actually
occurred cheapest balancing power bid would have been activated prior to it, resulting in
the same share of activations.4 Based on this assumption, Figure 5.2b shows the energy
price based balancing power revenues that could have been realized by a BSP that bids
1MW of positive balancing power (blue line) or 1MW of negative balancing power (red
line) with the same energy price for all weekly auctions in the respective year. For each
aFRR product 𝑖, the revenue is calculated as follows (with 𝑝aFRR representing the offered
aFRR power, Δact

t representing the activation time, and 𝜋aFRR,energy representing the
aFRR energy price):

Activation-based revenue [EUR] = 𝑝aFRR𝑖 ⋅ Δact
t,𝑖 ⋅ 𝜋aFRR,energy

𝑖 (5.1)

As the activation of bids follows the energy price MOL, the following essential trade-off
in optimizing an aFRR bid’s energy price can be recognized. A higher energy price
increases the revenue per time unit, however results in a shorter activation time. A lower
energy price decreases the revenue per time unit, however results in a higher activation
time. In Figure 5.2b it can be recognized that with an increase in the energy price,
the balancing power revenue first increases until a peak is reached, then it decreases.
During the incline left to the peak, a higher energy price increases revenues because the
energy price outweighs the lower activation time. After the peak, a higher energy price

4Represented graphically, this means that the curves in Figure 5.2a could be continued horizontally on
their leftmost point, till -∞.

122



5.2 Implications of aFRR Energy Prices Choices

decreases the revenues because the lower activation time outweighs the higher energy
price.

5.2.3 Historical Development
Figure 5.2a additionally shows the development of the share of activations of a con-
tinuous 1MW bid in the years 2012–2016. When looking at a certain energy price, a
clear tendency to a decreased share of activations for positive balancing power can be
recognized. It can be seen that a positive balancing power bid with an energy price of
100 EUR/MWh was activated 20% of the year 2012, over the years decreasing down to
5% in the year 2016. From the TSO viewpoint, the left-shift of the activation share curves
represents decreased costs for a certain amount of balancing energy. Consequently, over
the last years, the decreased share of activations for given energy prices resulted in
decreased aFRR revenues for BSPs. Assuming a continuous bid of 1MW in each single
weekly auction, the development of the annual energy price based aFRR revenues is
depicted in Figure 5.2b.

Various factors are responsible for the visualized changes in the relation between
energy price and the share of activations. Subsequently, we discuss four major factors
(whereby it has to be noted that, traditionally, the largest share of BSPs is found on the
generation side):

• Fuel costs: Traditionally, costs for satisfying balancing power activations are
mainly fuel-related. A separation can be drawn between positive and negative
aFRR. For the provision of positive aFRR, a flexible power plant has to increase its
power output, and hence the operator is motivated to set the energy price such
that at least the additional fuel costs are covered in case of an activation of her
aFRR bid. Over the last years decreasing fuel costs result in a tendency to lower
aFRR energy prices and to shift the activation share curve for positive balancing
power to the left. For the provision of negative aFRR, a flexible power plant has
to decrease its power output, which results in fuel cost savings for the operator.
Hence, as negative balancing power providers could save less fuel costs, there was
a decreased willingness to pay for activations of negative balancing power bids,
hence increasing aFRR energy prices and shifting the activation share curve for
negative balancing power to the right.

• Competition between aFRR providers: It can clearly be recognized that the
number of prequalified aFRR providers significantly increased over the last years
[Deu19b]. In a competitive market under otherwise equal conditions, the higher
amount of competitors tends to lower aFRR energy prices and hence to shift both
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activation share curves to the left. However, this is attenuated by the subsequently
described strategic bidding behavior and the fact that aFRR providers benefit from
capacity prices as additional income component.

• Strategic bidding behavior of aFRR providers: Analyzing single aFRR bids
(independent of whether they are activated or not) shows that the power-weighted
energy prices of bids have increased during the last years for both positive and
negative balancing power [OEO18]. This may be explained by strategic market
participants that are deliberately trying to place their bids at the end of the energy
price MOL in order to avoid activations while still earning the capacity price. To
some degree, an increase in strategic aFRR bids tends to increase aFRR energy
prices and hence to shift both activation share curves to the right. In 2020, the
intraday aFRR energy auctions were introduced to counter the impact of strategic
bids due to a higher energy price competition [Bun17c].

• aFRR demands by TSOs: Mainly due to the increased quality of feed-in forecasts,
the weekly aFRR demand procured by the TSOs has slightly decreased over the
last years [HZ15]. In a properly functioning aFRR market with a stable number of
market participants, the lower aFRR demand tends to lower aFRR energy prices
and hence to shift both activation share curves to the left. Predictions, however,
show that an increasing share of renewable energy resources, potentially may turn
this trend around within the next decades [Agr+14].

The above discussed trends contributed significantly to the development of aFRR
activation shares and the aFRR revenue potential as visualized in Figures 5.2a and 5.2b.

5.3 Uncertainty of aFRR Activations
In the previous sections, the impact of the aFRR energy price on the activation share
(Figure 5.2a) as well as on the activation-based revenue (Figure 5.2b) was analyzed
on a one-year basis. As refinement of this, Figure 5.3 shows a box plot diagram for
selected aFRR energy prices. It is based on all four-hour slots (which represents today’s
product time slot size at the aFRR market; see Section 4.3.1) of the exemplary year
2016 and shows the distribution of the timely shares of aFRR activations. Each data
point represents the activation share within one four-hour slot. Consequently, from the
viewpoint of a BSP, the box plot diagram shows the actually experienced activation
uncertainty when bidding a certain aFRR energy price. In this context, it is worth
mentioning that a BSP must be able to always deliver a full activation over the full
product slot, independent of the historically experienced activation share.

124



5.3 Uncertainty of aFRR Activations

0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e 
ac

ti
va

ti
o

n
 s

h
ar

e 
o

f 
4-

h
 p

ro
d

u
ct

 (
%

)

-20 -10 0 10 20 30 40 50 60 70 80 90 100110120130140150
aFRR energy price (€/MWh)

(a) Negative aFRR

0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e 
ac

ti
va

ti
o

n
 s

h
ar

e 
o

f 
4-

h
 p

ro
d

u
ct

 (
%

)

-20 -10 0 10 20 30 40 50 60 70 80 90 100110120130140150
aFRR energy price (€/MWh)

(b) Positive aFRR

Figure 5.3: Distribution of historically experienced aFRR activation shares given a certain aFRR
energy price: each data point represents the percentage activation share within a four-hour
aFRR product slot; data basis is all four-hour slots of the year 2016, based on the modeling
presented in Section 4.3.

We start with a closer look at negative balancing power (Figure 5.3a). It can be seen
that for high energy prices above 60EUR/MWh the activation share turned out to be
below 2% or 4.8min of a four-hour slot for more than 75% of all four-hour slots of
the year. Furthermore, it can be seen that the interquartile range (i. e., the 50% area
between the lower and the upper quartile) decreases with an increasing aFRR energy
price. From the viewpoint of an BSP this means that the certainty to be activated for a
certain time share increases with higher aFRR energy prices. This can be explained by
the fact that aFRR bids are activated more seldom/shorter the closer they are located
at the end of the aFRR energy price merit order. As expected, bids with rather low
aFRR energy prices are activated more often/longer. It can be seen that the activation
shares of bids that are located closer to the beginning of the aFRR energy price merit
order were more distributed over the different four-hour slots. For example, the median
activation of a bid with a relatively low energy price of 10 EUR/MWh is about 7min
(3%) within a four-hour slot, where in 75% of all investigated four-hour slot the bid’s
activation lies between 34min (14%) and 0min.

Now, we take a closer look at positive balancing power (Figure 5.3b) where the
situation is similar. Again, it can be seen that the distribution of the activation shares
is relatively low for high energy prices. For example, bidding an energy price above
100EUR/MWh resulted in an activation share below 2% or 4.8min of a four-hour slot
in more than 75% of all four-hour slots of the year. Again, it can also be seen that the the
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activation uncertainty a BSP is faced with (which can be represented by the interquartile
range representing the 50% area between the lower and the upper quartil) decreases
with higher aFRR energy prices. Furthermore, it can also be seen that bids with rather
low aFRR energy prices are activated more often and with a higher uncertainty. For
example, the median activation of a bid with an energy price of 30 EUR/MWh (i. e.,
a bid located close to beginning of the aFRR energy price merit order) was about 2 h
29min (62%) of an four-hour slot, where in 50% of all investigated four-hour slots the
bid’s activation was between 1h 41min and 3h 0min (42–75%). The reason why the
box plots for energy prices below 30EUR/MWh do not differ is caused by the fact that
we take the viewpoint of the aFRR provider: our ex-post simulation integrates an aFRR
bid that should be examined into the historically experienced aFRR energy price merit
order (see Section 4.3). Consequently, if a BSP had submitted an aFRR bid with an
energy price below the historically lowest occurred energy price, it would have been
added prior to the original bid, and hence always be activated as often as the cheapest
bid.

For both balancing directions, we can see outliers resulting from the stochastic nature
of aFRR activation. It can be recognized that their absolute impact is minimized with
increasing aFRR energy prices. This can be explained by the fact that higher aFRR energy
prices are closer to the end of the merit order list, and are hence by nature activated
less often. Furthermore, it is worth mentioning that an increasing competition at the
aFRR market resulted in the rather steep decrease of the relative activation share with
increasing aFRR energy prices. In the above discussion of the historical development
over the years, we already showed that the decrease of the activation share coming with
higher aFRR energy prices historically used to be more flat.

In addition to the aFRR energy price, further features with influence on an aFRR bid’s
activation can be recognized. They can be used to minimize the activation uncertainty
a BSP is faced with when bidding a certain aFRR energy price. In [Spa15] and [Hol16]
we ex-post investigated the impact of the time (month of year, hour of day) on the
relationship between aFRR energy prices and related aFRR activations. It was shown
that certain patterns can be recognized, e. g., between peak and off-peak tariff slots.
In [Wag17] we investigated the potential of additionally (to the aFRR energy price)
considering data from the ENTSO-E transparency platform (such as spot market trading
volume, or renewable feed-in) to predict aFRR activation shares by using the machine
learning techniques Random Forests and Gradient Boosting. In [Wag17], out of the
investigated features, the most relevant ones for increasing the prediction quality of the
activation share (of four-hour aFRR slots) turned out to be the respective aFRR energy
price’s activation share from the prior week, the spot market day-ahead base volume
and the spot market day-ahead base price. It was shown that the confidence interval of

126



5.4 Provisioning of Balancing Services via the Demand Side

a certain aFRR energy price’s activation share (within a four hour aFRR slot) could be
significantly improved when additionally considering these features. However, as the
optimization scheme presented in this work is generically independent of the concrete
input data, we do (due to focus reasons) not provide a more detailed quantitative
discussion of additional features that influence the aFRR activation. Within this thesis,
we focus on the relation between aFRR energy prices and aFRR activations.

5.4 Provisioning of Balancing Services
via the Demand Side

Traditionally, balancing services are provided by generators on the supply side [Deu20f].
In recent years, the share of alternative BSPs located on the demand side increased.
Providing balancing power via consumers or generators that are located on-site at
traditional demand side entities comes along with two major challenges. Firstly, aFRR
activations may result in balancing groups imbalance, and the BRP and the BSP may be
different entities. Secondly, aFRR activations may result in later catch-up effects. In the
following, these two challenges are discussed in more detail.

5.4.1 Balancing Group Allocation
Final consumers that want to provide balancing power are usually located within the
balancing group of their electricity supplier. Consequently, balancing power activations
have an impact on the balance of the supplier’s balancing group (and hence its reBAP
imbalance costs). With the rise of demand-side BSPs and related questions, the BNetzA
defined that electricity suppliers have to allow final consumers allocated to their balanc-
ing groups to provide aFRR and mFRR [Bun17e]. With the introduction of a so called
“corrected model”, the BNetzA states that the aFRR activation energy can be subtracted
from the BRP’s balancing group. This in particular means that a BRP does not have to
deal with balancing group deviations directly caused by balancing power activations
within its balancing group. To correct the balancing group schedules accordingly after
an activation, a schedule exchange between the BSP and the BRP is required (according
to the BNetzA, the BRP may charge the BSP for this service). In practice, the BSP may
be an aggregator instead of the final consumer himself. Therefore, the definition of
the market communication in context of the “corrected model” [Bun17e] allows that
the energy delta directly resulting from a aFRR/mFRR activations of a final consumer
that is allocated to its electricity supplier’s balancing group, does not result in monetary
disadvantages for the respective BRP. However, in addition to direct schedule adjustments
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Figure 5.4: Balancing power provision via alternative BSPs resulting in catch-up effects.

of aFRR activations, activations may also have temporal delayed impacts on schedules,
hence potentially resulting in future balancing group imbalances as described in the
upcoming section.

5.4.2 Catch-up Effects
The activation of balancing power has no impact on the further power schedules for
traditional generators. However, for consumers or generators on the demand side,
balancing power activations may result in catch-up effects5. Catch-up effects describe
power schedule adjustments that are required to satisfy on-site needs after unplanned
schedule adjustments due to the activation of balancing power [50H+16]. Such on-site
needs may, e. g., be the heat demand satisfied by a combined heat and power plant, the
cool demand satisfied by an air conditioning unit, or the mobility demand satisfied by
an electric vehicle. If, for example, a CHP plant was turned off for a quarter hour due to
a negative balancing power activation, this comes along with a lack of heat generation
within this quarter hour. Therefore, as the on-site heating demand still has to be satisfied,
this may have an impact on the CHP runtime resulting in the fact that the CHP later may
run a quarter hour longer than originally expected. Potential implications of balancing
power activations in form of catch-up effects are visualized in Figure 5.4. The left side
visualizes the power schedule of a traditional BSP, i. e., a generator on the supply side.
It can be seen that a reverse activation has no further impact on the power schedule.
5German: “Nachholeffekte”
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The right side visualizes an alternative BSP located on the demand side. It can be seen
that a balancing power activation may have further impact on the power schedule: the
quantity of energy which was increased/decreased due to the activation, may later be
decreased/increased in order to satisfy the local on-site needs. However, it is difficult to
state how exactly (power and energy dimension) a catch-up effect and its implication
on involved parties will look like. Therefore, the German Federal Ministry for Economic
Affairs and Energy6 (BMWi) accompanied a stakeholder consultation regarding the
handling of catch-up effects [50H+16]. As result, among others, the introduction of
three classes of catch-up effects has been proposed for further analysis [50H+16]:

• Class 1: No catch-up effect
In this class, it was suggested that a white list should name processes that do not
result in catch-up effects. This may in particular be industrial generation units
that are continuously operated at a high utilization rate, or heat processes that
can be substituted.

• Class 2: Catch-up effect within 24 to 48 hours
This class was suggested as default class if neither Class 1 nor Class 3 do fit. In this
case, it is assumed that balancing power activation results in schedule adjustments
within the same day or within up to the next day. It was suggested that directly
after the activation, an updated schedule for this time span should be provided
by the BSP to the BRP. Hence, depending on the time of activation the schedule
will cover between 24 and 48 hours. Based on this updated schedule, the BRP
can adjust its trading activities at the spot markets to keep its balancing group
balanced.

• Class 3: Catch-up effect within 12 hours
This class was suggested for BSP that can demonstrate that catch-up effects always
occur within 12 hours after the activation. In this case, the updated power schedule
can always be limited to this time frame.

As of today, regulation does not explicitly consider the handling of implications of
catch-up effects [Bun17e]. This can be explained by the fact that demand-side BSPs are
still the minority, and as the largest share of BSPs is located on the traditional supply
side [Deu20f]. However, the fact that catch-up effects bring a high uncertainty into the
power schedule of the corresponding balancing group is recognized as a problem by both,
industry [50H+16; Deu16] and the regulator [Bun17e]. Therefore, the importance
of properly managing catch-up effects is assumed to increase with a rising number of
6German: “Bundesministerium für Wirtschaft und Energie” (BMWi)
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BSPs on the demand side. This is confirmed by the BNetzA, which explicitly states that
there are only limited experiences regarding the impact of catch-up effects. Quantifying
catch-up effects is a challenging task as they are not only based on technical parameters,
but also on economic decisions of the final consumer, thus requiring further analyses by
the energy industry [Bun17e]. Consequently, the BNetzA states that further insights
are required to decide about potential regulatory measures aiming at obligating final
consumers to manage catch-up effects in the aftermath of balancing power activations
[Bun17e].

5.5 Utilization of Insights for the Optimization
of aFRR Bids

Above, we showed that the choice of the aFRR energy price has a great impact on the
bid’s activation. We also examined a BSP’s revenue potential through aFRR activations
and discussed challenges for demand-side BSPs. Based on these insights, this section
discusses three major aspects that have to be considered when optimizing the aFRR
energy price of a demand-side BSP:

1. Activation costs: The profit of a BSP results from the aFRR revenues minus the
actual aFRR activation costs that the BSP has to bear for fulfilling the activation.
Consequently, profit-seeking BSPs have to consider their actual aFRR activation
costs in the bid generation.

2. Opportunity costs: A BSP’s commitment to hold back a certain flexibility for aFRR
provisioning limits its freedom for spot market based scheduling. Consequently,
BSPs striving for profit maximization should consider opportunity costs at spot
markets.

3. Catch-up effects: Demand-side BSPs are characterized by catch-up effects, i. e.,
implications of aFRR activations on future loads. Consequently, in order to satisfy
local on-site needs (electricity, heat, cold) and to fulfill the responsibility to keep
the balancing group balanced at any point in time even after an aFRR activation,
demand-side BSPs should consider catch-up effects already in the bid generation.

When addressing these aspects, BSPs can use the elaborated relation between an
aFRR bid’s energy prices and its activation for their benefit. In the following, we discuss
the three aspects in more detail.
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5.5.1 Consideration of aFRR Activation Costs

During the realization of this thesis, key aspects of this section on aFRR activation costs
have already been published in [Lös+18]. Large parts of the rest of this section are
taken verbatim from this publication, including Figure 5.5.

Activation costs may be positive in case of real costs, or negative in case of savings.
Considering activation costs, a BSP’s activation-based aFRR profit for each aFRR product
𝑖 can be calculated as follows (with 𝑝aFRR representing the offered aFRR power, Δact

t
representing the activation time, 𝜋aFRR,energy representing the aFRR energy price, and
𝜋act representing the activation price (EUR/MWh) a BSP has to pay in case of an aFRR
activation7):

Activation profit [EUR] = 𝑝aFRR𝑖 ⋅ Δact
t,𝑖 ⋅ 𝜋aFRR,energy

𝑖 − 𝑝aFRR𝑖 ⋅ Δact
t,𝑖 ⋅ 𝜋act

𝑖 (5.2)

In the case of traditional BSPs, positive balancing power requires ramping up a power
plant resulting in additional fuel costs (i. e., positive activation costs), and negative
balancing power requires ramping down a power plant resulting in fuel savings (i. e.,
negative activation costs). For illustration, we subsequently stick with this traditional
scenario, although the presented results can also be applied to technical units where
the composition of activation costs may be significantly different, such as in the case
of aFRR-providing demand-side units. Given the traditional scenario of a power plant,
Figure 5.5 shows the annual activation-based aFRR profits after subtracting the accruing
activation costs in form of fuel costs (i. e., positive activation costs for positive balancing
power, and negative activation costs for negative balancing power). The graph shows
results for four different fuel costs again assuming continuous bids of 1MW for all
products in all weekly auctions in year 2016.8

It is visible that activation costs greatly influence a BSP’s profits, and that the energy
price to achieve maximum profit varies depending on the activation cost. For positive
balancing power, higher fuel costs lead to a shift of the profit curve to the right as higher
energy prices are necessary to generate profits. Furthermore, the profit curve for positive
balancing power is flatter with higher fuel costs as less profit is generated per activated
time unit. For negative balancing power, higher fuel costs lead to a shift of the curve
to the left as they can be saved when being activated, hence allowing for profits with
lower energy prices. In addition, the profit curve for negative balancing power gets
more steep with higher fuel costs as higher savings can be achieved per activated time

7The activation price may, e. g., reflect the price for additionally required fuel in case of a generator.
8Activation costs of 0 EUR/MWh represent the scenario discussed in Section 5.2 (which focuses on pure
revenues resulting from aFRR activation).
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Figure 5.5: Annual activation-based profit for different aFRR energy prices after considering
different activation costs, based on continuous 1MW bids over the whole year 2016; in the
traditional case of aFRR provisioning via a power plant, activation costs represent additional
fuel costs (for positive aFRR) or fuel cost savings (for negative aFRR).

unit. This example illustrates the importance of incorporating individual activation cost
when placing bids at the aFRR market. It demonstrated how the presented simulation
of historical aFRR bid activations as well as the derived insights regarding the relation
between energy prices and the activations can be utilized to increase aFRR profits.

5.5.2 Consideration of Opportunity Costs:
Trade-off Between aFRR and Spot Market

Demand-side devices have to be operated for a certain share of the time in order to
satisfy the local on-site needs. Generated energy (in the case of, e. g., CHP plants) or
consumed energy (in the case of, e. g., a chiller) has impact on the aggregated load
schedule (of the facility). In our scenario the required energy is bought via the DA spot
market. Consequently, generating an aFRR bid (composed of aFRR capacity and energy
price) has to consider the opportunity costs at the DA spot market. Runtime, power
level and the offered capacity have to simultaneously weigh up between the day-ahead
spot market (decision per one-hour slot) and the aFRR market (decision per four-hour
slot). An aFRR bid requires holding back the potential to adjust the power up- and/or
downwards. Consequently, offering upwards balancing power, price valleys at the DA
market cannot be fully utilized. Alternatively, offering downwards power, price peaks
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① Day-ahead spot market based power:
The power level can be optimized in one-hour
granularity based on predicted day-ahead spot
market prices and aFRR opportunity costs.

② aFRR capacity and aFRR energy price:
The offered aFRR capacity and aFRR energy
price can be optimized depending on spot
market opportunity costs, where the choice
of the aFRR energy price allows steering
towards a desired aFRR activation share.

③ Catch-up effects:
aFRR activations can result in an excess or
shortage of energy, which can already be
considered in the optimization of ① and ②,
in order to always satisfy local needs and to
fulfill the responsibility to keep the balancing
group balanced.

Figure 5.6: Optimization of aFRR energy prices: demand-side aFRR providers are faced
with opportunity costs and catch-up effects; opportunity costs address the trade-off between
opportunities at the aFRR balancing market and the spot market; catch-up effects address the
responsibility to always satisfy local needs and to keep the balancing group balanced.

at the DA market cannot be fully avoided. Both result in lower cost savings at the DA
market, also referred to as opportunity costs. Opportunity costs describe the loss of
potential cost savings (via the DA market or the aFRR market) when one particular
alternative is chosen over the other. Consequently, when aiming at profit maximization,
it is essential to simultaneously weigh up between the two market opportunities. The
change from weekly aFRR auctions with peak and off-peak tariff slots to daily auctions
with four-hour time slots during the course of this thesis, makes this decision more
dynamical and considerably increases the scope for decision making, in particular for
demand-side BSPs. Traditional aFRR providers (i. e., power plants that are operated for
satisfying external demands) are faced with this challenge, too, but only to a limited
degree. While traditional power plant operators have to weigh up between which power
level to provide to the day-ahead market and which power level to provide to the aFRR
market, they do not have to additionally consider the local on-site energy needs that
have to be satisfied (and which are flexible, e. g., due to local buffer storages).
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The trade-off between using the available flexibility for providing aFRR vs. for the
cost-optimal purchase at the DA market is visualized in Figure 5.6. Point 1 illustrates
the DA market based schedule, and point 2 the aFRR activation (the explanation of
point 3 follows in the next section). The above explained trade-off between the two
market alternatives that depend on and limit each other can be recognized.

5.5.3 Consideration of Catch-up Effects
One major difference between traditional BSPs on the supply side (power plants) is
that alternative BSPs on the demand side have to satisfy local on-site demands, as
discussed in detail in Section 5.4. In general, balancing power activation must not have
any influence on the system balance at a later point in time [50H+16]. Consequently,
energy deltas resulting from aFRR activations at a later point in time (= catch-up effect)
should be considered in the balancing group. While catch-up effects are not yet a clearly
regulated topic, due to the still limited share of demand-side BSPs, their relevance
increases [Deu16; Bun17e]. In the scenario considered in this thesis (see Section 1.1.4),
we assume that the BSP (i. e., the aFRR provider) takes the energy deltas arising from
aFRR activations into his own balancing group. Therefore, the expected catch-up effects
based on the expected aFRR activations (which are by nature fraught with uncertainty)
can already be considered in the bid generation. This is visualized and explained in
Figure 5.6 in which point 3 illustrates the expected catch-up effect which can be flexibly
scheduled.

These elaborated findings regarding aFRR provisioning are integrated into the problem
formulation in the upcoming Chapter 6. Taking the perspective of a prosumer, we
formulate an optimization problem in which aFRR activation costs, opportunity costs at
the DA spot market, and catch-up effects are inherently integrated.
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CHAPTER 6
Formalization of the Optimization

Problem for Value Stacking
of Flexibility at Day-ahead Spot

and aFRR Balancing Markets

The previous chapters provided detailed insights into spot and balancing markets, inter-
faces in the context of a multi-modal Facility Energy Management System, characteristics
of flexible facility devices, and the aFRR activation behavior. Building on this knowledge,
this chapter proposes an optimization for flexibility value stacking and presents the
corresponding mathematical formulation. The optimization algorithm is intended to
be deployed within the proposed FEMS. It couples the energy forms of electricity, heat,
cold, and gas to turn on-site flexibility in electricity consumption and generation into
a financial benefit. In the considered scenario, the facility operates its own balancing
group with access to the DA spot and aFRR balancing market. Consequently, the op-
timization task is to schedule the runtime and power of flexible devices, motivated by
two competing incentives. Firstly, energy prices at the DA spot market motivate shifting
electricity consumption and generation. Secondly, the aFRR balancing market motivates
providing capacity in the form of potential short-term schedule adjustments in order
to realize additional revenues. We discuss the optimization problem’s constraints and
interdependencies concerning devices, storages, energy forms, and market bids, as well
as its complexity. Due to the need for predicted inputs and the stochastic nature of
aFRR bid activations, we also address the resulting issue of uncertainty. This chapter
completes with a discussion of the suitability of different algorithmic approaches to
efficiently solve the introduced problem.
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6.1 Problem Formulation
In this section, we formulate the optimization problem covering the objective function,
decision and non-decision variables, and constraints for the optimization. The modeling
of facility devices, the DA spot market, and the aFRR balancing market, as well as related
assumptions, was presented in detail in Chapter 4.

6.1.1 Decision Variables
The goal of the optimization is to use the flexibility regarding runtime and power of
electricity consumers or generators to decrease the overall energy costs of a facility
(which can be seen as a natural aggregation instance of a prosumer). By simultaneously
considering both the DA spot market and the aFRR balancing market, cost savings
cannot only be achieved by price-based scheduling, but also by generating additional
revenues via the balancing market. The foundation for the optimization is provided by
the models presented in Chapter 4. There, we presented the overall system environment
(see Figure 4.1) and the market interfaces to the DA and aFRR markets (see Table 4.3).
We assumed daily bidding periods for both the DA spot market (see Section 4.2) and
the aFRR balancing market (see Section 4.3). Furthermore, we showed that the device
capabilities regarding power adjustments differ strongly between different device classes
(see Section 4.4). Therefore, aFRR bids are made per device, if at all. The output of the
daily optimization for each facility device 𝑑 ∈ 𝔻 is represented by the decision variables
visualized in Figure 6.1.

Hour of day

0 4 8 12 16

Negative aFRR market

𝑝𝑝𝑑𝑑,𝑡𝑡
el,DA 𝑝𝑝𝑑𝑑,𝑡𝑡

el,aFRR−

𝜋𝜋𝑑𝑑,𝑡𝑡
aFRR−,energy

20
Positive aFRR market

Day-ahead spot market

𝑝𝑝𝑑𝑑,𝑡𝑡
el,aFRR+

𝜋𝜋𝑑𝑑,𝑡𝑡
aFRR+,energy

24

Figure 6.1: Decision variables of the optimization problem for each device 𝑑 ∈ 𝔻.

Figure 6.1 shows two kinds of bids resulting from the day-ahead optimization:

• Bids to the day-ahead spot market: DA spot market bids can (but do not have
to be) be made for each of the 24 one-hour slots. Each time slot consists of one
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power value, which is assumed to be constant over the whole time slot. The power
values over multiple time slots represent the planned day-ahead schedule. We
decided to use power instead of energy values for device schedules as it simplifies
the integration of aFRR bids and activations. DA market energy prices are not
defined as decision variables as we assume perfectly predicted energy prices in the
form of a price forward curve (see Section 4.2, assumption ADA3).

• Bids to the aFRR balancing market: aFRR bids can be made for each of the six
aFRR four-hour product slots. Per aFRR product time slot either no aFRR bid, a
negative aFRR bid, a positive aFRR bid, or both can be submitted. Each aFRR bid
consists of one power value (representing the possible schedule deviation) and
one aFRR energy price (which we use to represent the expected aFRR activation
share). aFRR capacity prices are not defined as decision variables as we assume
perfectly predicted marginal aFRR capacity prices (see Section 4.3, assumption
AaFRR6).

The relation between an aFRR bid’s energy price and its activation was analyzed
in Chapter 5. We showed that the choice of the aFRR energy prices, to some degree,
allows steering the bid’s expected activation share (of the aFRR product time slot). By
mapping the aFRR bid’s energy price to its expected activation durations, an expected
aFRR activation schedule can be generated for each aFRR bid (see Section 6.2.3). This
expected schedule can be used to calculate the costs or revenues expected at the time
of the daily bid optimization. Although the temporal share of aFRR activations can
approximately be controlled by choice of the aFRR energy price, it is worth mentioning
that they cannot be perfectly predicted due to the stochastic nature of balancing power.
Consequently, after the bid submission, deviations from expected aFRR activations can
occur at any time. Therefore, we introduce restrictions guaranteeing that a submitted
aFRR bid can always be fully activated even though an activation is not expected based
on the chosen aFRR energy price.

6.1.2 Objective Function
The objective function for the daily optimization is defined as follows:

min 𝑐total = 𝑐DA − 𝑟aFRR + 𝑐gridFees + 𝑐gas + 𝑐wear (6.1)

For an intuitive understanding, we distinguish between costs (𝑐) and revenues (𝑟).
In the given scenario, two aspects are important to understand. Firstly, the DA market
does not necessarily result in costs. It may also result in revenues (i. e., negative costs) if
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the facility sells and not only buys energy or in the case of negative spot market prices.
Secondly, the aFRR market does not necessarily result in revenues. It may also result
in costs (i. e., negative revenues) as aFRR bids can be characterized by negative aFRR
energy prices and hence result in costs for the BSP in the case of aFRR activations (see
analysis in Section 5.2). Based on the traditionally common case, we label DA market
cost components as costs, while we label aFRR market cost components as revenues.

The individual cost components are defined by Equations 6.2 to 6.7. For a better
understanding, we highlight decision variables in these equations by framing them.
Taking the viewpoint of prosumers, we follow the load convention and use a positive sign
for power and energy values to indicate demand and a negative sign to indicate supply.
We start with the DA spot market based costs that depend on the device scheduling.
They are defined as follows:

𝑐DA =
23
∑
𝑡=0

⎛⎜
⎝

⎛⎜
⎝

𝑝eldemand,𝑡 ⋅ Δt + ∑
𝑑∈𝔻

( 𝑝el,DA𝑑,𝑡 ⋅ Δ𝑡)⎞⎟
⎠

⋅ 𝜋el,DA
𝑡

⎞⎟
⎠

(6.2)

where: 𝑝eldemand,𝑡 = the facility’s expected uncontrollable electric power demand in time
slot 𝑡 (see Section 4.4.1)

Δt = length of a time slot (in the considered market setup 1 h)
𝑝el,DA𝑑,𝑡 = the electric power requested from or provided to the DA spot market

by a flexible device 𝑑 ∈ 𝔻 in time slot 𝑡
𝜋DA

𝑡 = the expected DA spot market energy price in time slot 𝑡

The expected aFRR market based revenues are composed of revenues that are paid
for the provision of capacity (based on the aFRR capacity price) and revenues that are
paid in the case of bid activations (based on the aFRR energy price). The overall aFRR
market based revenues are defined as follows, separated by negative and positive aFRR:

𝑟aFRR = 𝑟aFRR− + 𝑟aFRR+
(6.3)

𝑟aFRR− =
23
∑
𝑡=0

∑
𝑑∈𝔻

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑝el,aFRR
−

𝑑,𝑡 ⋅ Δt ⋅ 𝜋aFRR−,energy
𝑑,𝑡

⋅ 𝑓 aFRR−

𝑡 ( 𝜋aFRR−,energy
𝑑,𝑡 )

⎫}
⎬}⎭

Revenues via
aFRR energy price

+ 𝑝el,aFRR
−

𝑑,𝑡 ⋅ 𝜋aFRR−,capacity
𝑡 } Revenues via

aFRR capacity price

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

(6.4)
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𝑟aFRR+ =
23
∑
𝑡=0

∑
𝑑∈𝔻

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∣ 𝑝el,aFRR
+

𝑑,𝑡 ∣ ⋅ Δt ⋅ 𝜋aFRR+,energy
𝑑,𝑡

⋅ 𝑓 aFRR+

𝑡 ( 𝜋aFRR+,energy
𝑑,𝑡 )

⎫}
⎬}⎭

Revenues via
aFRR energy price

+ ∣ 𝑝el,aFRR
+

𝑑,𝑡 ∣ ⋅ 𝜋aFRR+,capacity
𝑡 } Revenues via

aFRR capacity price

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.5)

where: 𝑝el,aFRR
+/−

𝑑,𝑡 = the electric power offered as (positive or negative) aFRR ca-
pacity for device 𝑑 ∈ 𝔻 in time slot 𝑡

𝜋aFRR+/−,energy
𝑑,𝑡 = the aFRR energy price of a (positive or negative) aFRR bid for

device 𝑑 ∈ 𝔻 in time slot 𝑡
𝑓 aFRR+/−

𝑡 (𝜋) = a function ℝ → [0, 1] that maps the aFRR energy price of a
(positive or negative) aFRR bid for time slot 𝑡 to the expected
temporal activation share within Δt (see Section 6.2.3)

𝜋aFRR+/−,capacity
𝑡 = the expected marginal capacity price for (positive or negative)

aFRR in time slot 𝑡

Grid fees and related taxes (see Section 2.2.4) have to be paid for electric energy
drawn from the public grid but not for electric energy provided to the public grid. For
final consumers that provide negative aFRR (i. e., increasing on-site consumption or
decreasing on-site generation), aFRR activations result in a higher consumption from
the public grid. Due to the increasing share of demand-side BSPs, regulation in recent
years has addressed the question of which fees and related taxes demand-side BSPs
have to pay for this grid-supportive increase in the consumption [Bun15b; Bun17e]. As
of today, demand-side BSPs have to pay grid fees and related taxes for the additional
consumption in the case of aFRR activations. However, consumption peaks introduced
through aFRR activations are neglected in the calculation of the capacity-based grid fees
[Bun12b]. The complexity and diversity of grid fee regulation and the rising share of
demand-side BSPs resulted in exceptions in individual cases [Deu18a]. Consequently,
we distinguish both cases in the evaluation in Chapter 8: provisioning of negative aFRR
with and without accruing grid fees and related taxes.

The expected grid fees and related taxes depending on the day-ahead optimized
schedules are presented in Equation 6.6. The equation depicts the case in which grid
fees and related taxes for negative aFRR activation have to be paid. For the case
where negative aFRR activation is not subject to grid fees and related taxes, the middle
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summand of the inner summation loop is omitted:

𝑐gridFees =
23
∑
𝑡=0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑝eldemand,𝑡 ⋅ Δt +

∑
𝑑∈𝔻

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑝el,DA𝑑,𝑡 ⋅ Δt

+ 𝑝el,aFRR
−

𝑑,𝑡 ⋅ Δt ⋅ 𝑓 aFRR−

𝑡 ( 𝜋aFRR−,energy
𝑑,𝑡 )

+ 𝑝el,aFRR
+

𝑑,𝑡 ⋅ Δt ⋅ 𝑓 aFRR+

𝑡 ( 𝜋aFRR+,energy
𝑑,𝑡 )

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⋅ 𝜋gridFees
𝑡

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.6)
where: 𝜋gridFees

𝑡 = the grid fees and related taxes per unit of consumed energy for time
slot 𝑡

It is important to note that the energy-based grid fees and related taxes may be
time-variable, e. g., in the case of atypical grid usage1 or in future regulatory scenarios.
Regarding the considered grid fee surcharges, it is furthermore worth mentioning that
the grid fee pricing scheme in Germany depends on the annual utilization hours (defined
as the annual energy demand in kWh divided by the maximum quarter-hourly power
demand in kW). Below a certain threshold (usually 2 500 h), a large share of the final
grid fees is based on the consumed energy (EUR/kWh), and above this threshold, a large
share of the final grid fees is based on the actually measured (quarter-hourly averaged)
power peak (EUR/kW per month or year). This was also discussed in Section 2.2.4. In
the evaluation presented later, we focus on the first case and do not further investigate
the capacity-based grid fee component. We do not optimize the facility’s power peak,
although this can be expressed monetarily by the capacity-based grid fee component. To
consider peak load based costs, a further cost component can be added to the objective
function. When introducing such a cost component, so far realized power peaks have to
be tracked such that new power peaks will result in additional costs.

The expected gas consumption and hence the resulting gas costs can be derived from
the DA market schedules and the expected aFRR activations. The expected gas costs are
defined as follows:

𝑐gas =
23
∑
𝑡=0

∑
𝑑∈𝔻

(𝑝gas𝑑,𝑡 ⋅ Δ𝑡 ⋅ 𝜋gas) (6.7)

where: 𝑝gas𝑑,𝑡 = the gas power consumed by device 𝑑 ∈ 𝔻 in time slot 𝑡
𝜋gas = the gas energy price (which we assume to be independent of the time of

consumption)

1German: “Atypische Netznutzung”, see § 19 of the German Electricity Grid Charges Ordinance (Strom-
netzentgeltverordnung (StromNEV))
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In practice, adjusting device schedules may result in additional wear costs 𝑐wear. They
are device-specific and can additionally be considered in the optimization by introducing
related cost terms, e. g., for ramping up or down a CHP plant. For clarity and focusing
on the core contributions, we do not consider wear costs in the following.

6.2 Constraints
This section presents constraints for the optimization. We divide them into constraints
related to devices and storages, aFRR bids, (expected and unexpected) aFRR activations,
and demands.

6.2.1 Devices and Storages
Devices and storages were modeled in Section 4.4. In the following, we summarize the
key characteristics of the presented models with respect to the optimization.

6.2.1.1 Controllable Devices

We define the set of controllable devices subject to the optimization as 𝔻. Table 4.1
outlines the high heterogeneity of the considered devices and shows that our modeling
and the proposed optimization are very generic regarding the energy forms a device
consumes or generates. In the following, the device-related constraints modeled in
Section 4.4 are summarized with respect to common interfaces.

We showed that each device is associated with one or more energy forms 𝜉 ∈
{el,heat, cold, gas}. While the constraints introduced in the following are mainly re-
lated to electricity, we presented further constraints establishing a link between a
device’s electric power value 𝑝el𝑑,𝑡 and its power value for additional energy forms (po-
tentially 𝑝heat𝑑,𝑡 , 𝑝cold𝑑,𝑡 , 𝑝gas𝑑,𝑡 ). We showed that the relations between electric, heat, cold,
and gas power can come along with non-linearities, e. g., due to non-linear efficiencies
concerning the power level. We defined the power level 𝜆𝑑,𝑡 of a device 𝑑 in time step 𝑡
and showed how the power level is used to derive a device’s power 𝑝𝜉

𝑑,𝑡 and the resulting
energy delta Δ𝜉

𝑑,𝑡 for each energy form 𝜉 a device is associated with.
It is common for flexible devices that their control band is limited by minimum and

maximum power bounds 𝑝𝜉
𝑑

< 𝑝𝜉
𝑑,𝑡 < 𝑝𝜉

𝑑. These are indirectly represented by the
minimum and maximum power level 𝜆𝑑 < 𝜆𝑑,𝑡 < 𝜆𝑑 (see Figure 4.3). We showed that
both power bounds can be negative or positive, depending on the device and energy
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form. For example, considering a chiller, both 𝑝el
chiller

and 𝑝elchiller are positive (electricity

consumer). For of a battery storage system, 𝑝elbattery is positive for charging (electricity
consumer) and 𝑝el

battery
is negative for discharging (electricity generator). Considering a

CHP, 𝑝el
chp

and 𝑝elchp are both negative (electricity generator).

6.2.1.2 Storages

We consider storages as a special type of devices. In the considered scenario, the
flexibility of each considered device originates from an associated energy storage, also
referred to as a buffer. Electric energy storages are modeled in Section 4.4.2 and thermal
(heat and cold) energy storages in Section 4.4.3. In contrast to electric energy storages,
whose SOC is directly controllable via the power level (charging/discharging), the SOC
of thermal energy storages is only indirectly controllable via thermal generators and
the thermal demand. Subsequently, storage-related constraints are summarized with
respect to common interfaces. Figure 4.1 visualizes the physical connection between
devices and energy storages and Table 4.1 summarizes the involved energy forms.

For the calculation of the SOC, we differentiate between electric battery energy
storages and thermal heat or cold energy storages. The basis for the calculation of a
storage’s SOC is the energy delta Δ𝜉

𝑑,𝑡 provided by a device based on its power level step
𝜆𝑑,𝑡. Common to energy storages is that their SOC must always remain within the lower
and upper SOC bounds 𝑆𝑂𝐶𝑑 and 𝑆𝑂𝐶𝑑. Consequently, at the time of the day-ahead
optimization, the expected SOC of the energy storage related to a device 𝑑 is constrained
as follows, whereby we define the start of the daily optimized time period as time step
𝑡 = 0 and its end as time step 𝑡 = 23:

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 1, … , 23} ∶ 𝑆𝑂𝐶𝑑 ≤ 𝑆𝑂𝐶exp
𝑑,𝑡 ≤ 𝑆𝑂𝐶𝑑 (6.8)

Constraints that address aFRR bids and ensure a valid SOC in the case of unexpected
aFRR activation are introduced later.

For the optimization, we define the initial SOC for the first time step of the optimization
period to be the actually measured (or simulated) SOC. Without additional constraints,
the SOC at the end of the optimization period would indirectly result from the cheapest
schedule of the considered day. However, it may be advantageous to accept higher costs
in one optimization period (e. g., due to intentionally charging a battery to a higher SOC
in the last time step). This is meaningful if it allows decreasing costs in the following
optimization period by a higher level (e. g., due to discharging cheap energy of the
previous day in times of high spot market prices). With respect to the optimal SOC at the
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end of a day, different options can be recognized to utilize potential synergies between
two consecutive days. Firstly, it is possible to choose an explicit SOC for the last time step
based on a pattern analysis of DA spot market prices. For example, Figure 2.4 shows that,
on average, the first hours of a new day (i. e., the hours after 0:00 h) are characterized
by relatively low energy prices. Therefore, an appropriate choice could be to start a new
day with an empty buffer storage. Secondly, it is possible to assign a monetary value
to the energy contained in the storage in the last time step of the optimization period.
This will dynamically result in different end SOCs for different days, depending on the
occurring prices. We choose this second approach as the freedom for dynamic end SOCs
allows us to deal with dynamic market situations. Thirdly, a rolling optimization horizon
can be applied to optimize the day under consideration for the market bids and a specific
time period afterward. Optimizing over a longer optimization period, e. g., of two days,
the cheapest schedule over both days would indirectly determine the resulting SOC for
the end of the first day. However, the drawback of this third approach is that it requires
looking further into the future. Therefore, the required price and demand predictions
come along with a higher uncertainty (as they have to cover, e. g., two days instead of
only one).

6.2.2 aFRR Bids

In the given scenario with a high heterogeneity regarding the flexibility characteristics
of the considered devices, we decided to choose the aFRR energy price (and hence the
desired aFRR activation share) per device. We can distinguish between constraints
related to the aFRR product slot size (each aFRR bid is valid for a four-hour slot) and
constraints related to the aFRR power level (aFRR and DA market bids are constrained
by the minimum and maximum power bounds).

As aFRR is provided in four-hour slots, constraints have to guarantee that an aFRR bid
is always made for all hours within an aFRR product time slot or for none. Concerning
the aFRR bid’s power component, this is defined as follows:

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 4, 8, … , 20} ∶

𝑝el,aFRR
−

𝑑,𝑡 = 𝑝el,aFRR
−

𝑑,𝑡+1 = 𝑝el,aFRR
−

𝑑,𝑡+2 = 𝑝el,aFRR
−

𝑑,𝑡+3
(6.9)

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 4, 8, … , 20} ∶

𝑝el,aFRR
+

𝑑,𝑡 = 𝑝el,aFRR
+

𝑑,𝑡+1 = 𝑝el,aFRR
+

𝑑,𝑡+2 = 𝑝el,aFRR
+

𝑑,𝑡+3
(6.10)
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Likewise, aFRR energy prices are defined to be equal for each hour within the four-hour
aFRR product slot:

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 4, 8, … , 20} ∶

𝜋aFRR−,energy
𝑑,𝑡 = 𝜋aFRR−,energy

𝑑,𝑡+1 = 𝜋aFRR−,energy
𝑑,𝑡+2 = 𝜋aFRR−,energy

𝑑,𝑡+3
(6.11)

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 4, 8, … , 20} ∶

𝜋aFRR+,energy
𝑑,𝑡 = 𝜋aFRR+,energy

𝑑,𝑡+1 = 𝜋aFRR+,energy
𝑑,𝑡+2 = 𝜋aFRR+,energy

𝑑,𝑡+3
(6.12)

For each device 𝑑 and each time step 𝑡, the aFRR capacity that can be offered to the
aFRR market is limited by the device’s lower and upper power bound, 𝑝el

𝑑
and 𝑝el𝑑 , and the

device’s power level based on the DA spot market. This is represented by the following
two constraints for negative aFRR (Equation 6.13) and positive aFRR (Equation 6.14):

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 1, … , 23} ∶ 𝑝
𝑑

≤ 𝑝el,DA𝑑,𝑡 + 𝑝el,aFRR
−

𝑑,𝑡 ≤ 𝑝𝑑 (6.13)

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 1, … , 23} ∶ 𝑝
𝑑

≤ 𝑝el,DA𝑑,𝑡 + 𝑝el,aFRR
+

𝑑,𝑡 ≤ 𝑝𝑑 (6.14)

6.2.3 aFRR Activation

We can distinguish between constraints related to expected and unexpected aFRR
activations. We use expected aFRR activation to refer to a historically expected temporal
activation share based on the aFRR energy price (as analyzed in Section 5.2). In contrast,
we use unexpected aFRR activations to refer to deviations thereof.

6.2.3.1 Expected aFRR Activation

The expected electric energy delta provided by the different devices can be calculated
based on their DA and aFRR market bids. Therefore, we define the expected temporal
aFRR activation share using the two functions 𝑓 aFRR−

𝑡 ∶ ℝ → [0, 1] and 𝑓 aFRR+

𝑡 ∶ ℝ →
[0, 1]. They map the energy price of a negative or positive aFRR bid for time step 𝑡 to
the expected temporal activation share within Δt = 1h, based on the insights gained in
Chapter 5. Using these functions, Equation 6.15 calculates the expected energy delta
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for device 𝑑 in time step 𝑡:

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 1, … , 23} ∶ Δ𝑒el,exp𝑑,𝑡 = 𝑝el,DA𝑑,𝑡 ⋅ Δ𝑡

+ 𝑝el,aFRR
−

𝑑,𝑡 ⋅ Δ𝑡 ⋅ 𝑓 aFRR−

𝑡 (𝜋aFRR−,energy
𝑑,𝑡 )

+ 𝑝el,aFRR
+

𝑑,𝑡 ⋅ Δ𝑡 ⋅ 𝑓 aFRR+

𝑡 (𝜋aFRR+,energy
𝑑,𝑡 )

(6.15)

It can be seen that we assume aFRR bids to be activated uniformly distributed over
the individual hours within an aFRR product time slot. The impact of the discrepancy
between the expected and activated aFRR capacity is evaluated in Chapter 8.

While Equation 6.15 refers to the expected energy delta based on the expected aFRR
activation, the upcoming section presents additional constraints that guarantee that a
submitted aFRR bid can also be activated in the case of unexpected aFRR activation.

For devices dealing with different energy forms 𝜉 ∈ {heat, cold, gas} in addition to
electricity, the modeling in Section 4.4 shows how the expected heat, cold, and gas
energy deltas (Δ𝑒heat,exp𝑑,𝑡 , Δ𝑒cold,exp

𝑑,𝑡 , and Δ𝑒gas,exp𝑑,𝑡 ) can be calculated in parallel to the
expected electric energy delta (Δ𝑒el,exp𝑑,𝑡 ). Out of the considered devices, the condensing
boiler is a special case in which only the energy forms gas and heat are involved, but no
electric energy. Therefore, the condensing boiler only results in an expected gas and
heat energy delta.

6.2.3.2 Unexpected aFRR Activation

Although our aFRR activation analysis in Chapter 5 showed that the aFRR activation
share can be steered within a certain range by adjusting the aFRR bid’s energy price, it is
essential for a BSP to guarantee that a submitted aFRR bid can always be activated upon
request within the whole aFRR product time slot (i. e., shorter or longer than expected).
In the most extreme unexpected cases, an aFRR bid with a very low energy price (that
results in a position at the beginning of the merit order list) would not be activated at
all within the whole four-hour slot, or an aFRR bid with a high energy price (that results
in a position at the end of the merit order list) would be activated continuously over
the whole four-hour slot. Consequently, we differentiate between two extreme cases for
aFRR activation:

• Extreme activation case 1: Maximum negative aFRR activation.
A negative aFRR bid is continuously activated with the maximum offered power
over the whole aFRR product slot, and positive aFRR is not activated at all.
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• Extreme activation case 2: Maximum positive aFRR activation.
A positive aFRR bid is continuously activated with the maximum offered power
over the whole aFRR product slot, and negative aFRR is not activated at all.

Depending on whether a device is an electricity generator or consumer, negative aFRR
activation or positive aFRR activation result in an increase or decrease of the energy
delta for the different energy forms associated with the device. For example, for a
chiller (electricity consumer, cold generator), the activation of negative aFRR results
in a positive cold energy delta. In contrast, for a CHP plant (electricity generator, heat
generator), the activation of negative aFRR results in a negative heat energy delta.

Figures 6.2a, 6.2b and 6.2c visualize three potential courses of a storage’s SOC over
time (e. g., of an battery storage system or a thermal energy storage associated with
a chiller) based on different expected aFRR activations. The upper chart is based on
one bid for negative aFRR, the middle chart is based on two simultaneous bids, one
for negative aFRR and one for positive aFRR, and the lower chart is based on one bid
for positive aFRR. The two extreme aFRR activation cases are visualized by the three
red upper lines (continuous maximum negative activation) and the three lower red
lines (continuous maximum positive activation). It has to be guaranteed that these
two extreme activation cases can always be realized, which allows for every possible
aFRR activation combination. Consequently, the optimization has to be constrained such
that the whole SOC band between the two SOCs bounds resulting from the extreme
activation cases is guaranteed to be within the storage’s minimum and maximum SOC
bounds, 𝑆𝑂𝐶 and 𝑆𝑂𝐶, in each time step.

We introduce the following two constraints to ensure that the SOC remains within the
valid SOC band in the case of any aFRR activation between the two extreme activation
cases. It depends on the device (electricity generator or consumer) whether a specific
aFRR direction increases or decreases the SOC. We denote the maximum reachable
SOC in the case of either continuous negative or continuous positive aFRR activation as
𝑆𝑂𝐶maxUpAct

𝑑,𝑡 . Similarly, the minimum reachable SOC in the case of either continuous
negative or continuous positive aFRR activation, is defined as 𝑆𝑂𝐶maxDownAct

𝑑,𝑡 :

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 1, … , 23} ∶ 𝑆𝑂𝐶𝑑 ≤ 𝑆𝑂𝐶maxUpAct
𝑑,𝑡 ≤ 𝑆𝑂𝐶𝑑 (6.16)

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 1, … , 23} ∶ 𝑆𝑂𝐶𝑑 ≤ 𝑆𝑂𝐶maxDownAct
𝑑,𝑡 ≤ 𝑆𝑂𝐶𝑑 (6.17)

𝑆𝑂𝐶maxUpAct
𝑑,𝑡 and 𝑆𝑂𝐶maxDownAct

𝑑,𝑡 are based on the energy added to or removed from
the storage in the two extreme aFRR activation cases. Regarding electricity, we can dif-
ferentiate between the maximum electric energy delta resulting from extreme activation
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t
t t + 4 h

SOC

Expected SOC

SOC in case of
continuous aFRR– activation

SOC in case of
no aFRR activation

Negative aFRR bid
with a certain energy price

Required guarantee on SOC
band / flexibility reserved

SOC

SOC

(a) Required SOC band guarantee in the case of one aFRR bid for negative aFRR.

t
t t + 4 h

SOC

Expected SOC

SOC in case of
continuous aFRR– activation

Negative aFRR bid + positive aFRR bid,
each with a certain energy price

Required guarantee on SOC
band / flexibility reserved

SOC in case of
continuous aFRR+ activation

SOC in case of
no aFRR activation

SOC

SOC

(b) Required SOC band guarantee in the case of two simultaneous aFRR bids,
one for negative aFRR and one for positive aFRR.

Legend: Expected SOC changes

t
t t + 4 h

SOC

Expected SOC

SOC in case of
no aFRR activation

Positive aFRR bid
with a certain energy price

Required guarantee on SOC
band / flexibility reserved

SOC in case of
continuous aFRR+ activation

due to positive aFRR activation
due to negative aFRR activation

SOC

SOC

(c) Required SOC band guarantee in the case of one aFRR bid for positive aFRR.

Figure 6.2: Expected aFRR activations and required SOC band guarantees: demand-side BSPs
have to guarantee that the two extreme aFRR activation cases (represented by the upper and
lower red lines) can always be realized, which allows for every possible aFRR activation in
between.
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case 1 (Equation 6.18) and the minimum electric energy delta resulting from extreme
activation case 2 (Equation 6.19):

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 1, … , 23} ∶ Δ𝑒el𝑑,𝑡 = 𝑝el,DA𝑑,𝑡 ⋅ Δ𝑡 + 𝑝el,aFRR
−

𝑑,𝑡 ⋅ Δ𝑡 (6.18)

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 1, … , 23} ∶ Δ𝑒el𝑑,𝑡 = 𝑝el,DA𝑑,𝑡 ⋅ Δ𝑡 + 𝑝el,aFRR
+

𝑑,𝑡 ⋅ Δ𝑡 (6.19)

These two electric energy deltas set a maximum and minimum bound for all possible
electric energy deltas resulting from all potential aFRR bid activations. In addition to
electricity, devices can be associated with other energy forms. Depending on the device,
the extreme heat, cold, or gas energy deltas (Δ𝑒heat𝑑,𝑡 and Δ𝑒heat𝑑,𝑡 , Δ𝑒cold𝑑,𝑡 and Δ𝑒cold𝑑,𝑡 , and
Δ𝑒gas𝑑,𝑡 and Δ𝑒gas𝑑,𝑡 ) are calculated in parallel to the electric energy deltas, based on the
device-specific equations presented in Section 4.4. We define Δ𝑒𝑑,𝑡 as the minimum and
Δ𝑒𝑑,𝑡 as the maximum supply regarding the respective energy form.

The calculation of the expected SOC (in Equation 6.8) is based on the expected energy
delta (Equation 6.15). Analogously, the calculation of the extreme SOCs (Equations 6.16
and 6.17) is based on the extreme energy deltas (Equations 6.18 and 6.19). The expected
SOCs and energy deltas are used to determine the expected costs that are minimized
according to the objective function. In contrast, the extreme SOCs and energy deltas
resulting from the two potential extreme aFRR activation cases are needed to guarantee
that aFRR bids can be activated at any point in time within the respective product slots.

6.2.4 Demands
Demands of the facility were introduced in Section 4.4. This section puts those demands
into the context of the optimization problem. In addition to guaranteeing the potential
activation of aFRR bids at any point in time, it is crucial that the facility’s electricity,
heat, cold, and gas demands are always satisfied. No dedicated constraints are required
to cover the facility’s electricity or gas energy demand. We define that the sum of the
facility’s electric energy demand that is not satisfied on-site is procured via the DA
market and hence drawn from the public grid, as clarified by the objective function
component defined in Equation 6.2. In parallel, no additional constraints are required
regarding the gas demand as we define that it is exclusively satisfied by the public gas
grid, as clarified in Equation 6.7.

In the given facility setup, in contrast to the electric or gas energy demand, the heat
or cold energy demand can only be satisfied via on-site devices. For this purpose, the
energy contained in the local heat or cold storage is adjusted according to the supply
(based on related device schedules) and the demand (based on the facility’s exogenously
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given demand, see Section 4.4.1). Consequently, the facility’s final energy deltas for
the energy form 𝜉 ∈ {heat, cold} can be calculated as follows. Equation 6.20 shows
the facility’s maximum final energy delta (in the case of maximum generation through
aFRR activation) and Equation 6.21 the minimum (in the case of minimum generation
through aFRR activation):

∀𝑡 ∈ {0, 1, … , 23} ∶ Δ𝑒𝜉,total
𝑡 = ( ∑

{𝑑∈𝔻 ∣ 𝑑 associated
with energy form 𝜉}

Δ𝑒𝜉
𝑑,𝑡) − 𝑝𝜉

demand,𝑡 ⋅ Δt (6.20)

∀𝑡 ∈ {0, 1, … , 23} ∶ Δ𝑒𝜉,total
𝑡 = ( ∑

{𝑑∈𝔻 ∣ 𝑑 associated
with energy form 𝜉}

Δ𝑒𝜉
𝑑,𝑡) − 𝑝𝜉

demand,𝑡 ⋅ Δt (6.21)

For each related device, Δ𝑒𝜉
𝑑,𝑡 and Δ𝑒𝜉

𝑑,𝑡 represent the expected hourly maximum and
minimum energy deltas resulting from the two extreme aFRR activation cases (as calcu-
lated above in Equations 6.18 and 6.19). The facility’s predicted uncontrollable hourly
demand 𝑝𝜉

demand,𝑡 is defined to be given as exogenous input (in Section 4.4.1). Conse-
quently, for the facility’s central heat and cold storages, we relate the SOC constraints
introduced in Equations 6.16 and 6.17 to the resulting maximum and minimum final
energy deltas Δ𝑒𝜉,total

𝑡 and Δ𝑒𝜉,total
𝑡 . This way, given accurate demand predictions, the

introduced constraints ensure the satisfaction of the facility’s heat and cold demands
also in case of arbitrary activations of submitted aFRR bids.

6.3 Discussion of Uncertainty
Providing bids to the DA spot market and potential schedule deviations to the aFRR
balancingmarket one day in advance is accompanied by uncertainty. Figure 6.3 visualizes
the uncertainty at the time of the day-ahead optimization (left side) and potential impacts
during the execution of the optimized schedules after the day-ahead optimization (right
side). Variables subject to uncertainty during the day-ahead optimization are highlighted
in red. We can distinguish uncertainties at the time of the day-ahead optimization as
follows:

• Uncertainty in optimization input: Regarding the optimization inputs, two
types of uncertainty can be found at the time of the optimization. Firstly, the
predictions of the uncontrollable electricity, heat, and cold demands are uncertain.
They are distorted by changing weather conditions or unexpected facility usage.
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Secondly, the elaborated relation between aFRR energy prices and aFRR activations
is subject to the stochastic nature of aFRR activations. Both types of inputs to the
optimization cannot be perfectly predicted. In addition, as the optimization uses
predicted DA spot market prices (see Section 4.2, assumption ADA3) and predicted
marginal aFRR capacity prices (see Section 4.3.1, assumption AaFRR6), submitted
bids may not be accepted.

• Uncertainty in optimized schedules: The two above-discussed causes for un-
certainty may influence the optimized device schedules. Firstly, the uncertain
energy demands result in uncertainty in the day-ahead optimized schedules as
more or less energy than required may be procured. Secondly, the uncertain aFRR
activation results in uncertain expected energy deltas.

• Uncertainty in expected costs and revenues: Finally, the two above-discussed
causes for uncertainty may influence the expected costs. Firstly, the uncertain
energy demands result in uncertain spot market procurement and potentially in
imbalance energy costs if the schedules are not further corrected via intraday
trading (see also Section 2.3.3). Secondly, the uncertain aFRR activation results
in uncertain aFRR revenues or costs.

The uncertainties at the time of the day-ahead optimization, potential impacts, and
their relations are visualized in Figure 6.3. It shows how the discussed uncertainty
potentially leads to a discrepancy between the expected and actually realized costs.

6.4 Characterization of the Optimization Problem
In this section, we compare optimization methods regarding their suitability to effi-
ciently solve the presented problem. We start by discussing the characteristics and
requirements concerning the optimization problem formulated in the previous sections.
In Section 2.5, we already presented the fundamentals of mathematical optimization,
covering a classification of optimization problems and a general discussion of how to
choose an appropriate optimization method.

6.4.1 Mathematical Properties

In this section, we discuss properties that influence the choice of the solving method.
The following properties are based on the mathematical nature of the problem:
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Uncertainty at time of day-ahead optimization Potential impacts of uncertainty
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Figure 6.3: Uncertainty at the time of the day-ahead optimization (left side) and potential
impacts on the execution of the device schedules (right side).
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• Non-linearity in objective function and constraints: Non-linearity can be found
in both the objective function and the constraints. In the objective function’s cost
components regarding the aFRR market, some decision variables are multiplied
by each other: Equations 6.4 and 6.5 show that the aFRR market revenues are
based on the expected timely aFRR activation share, which is a function of the
aFRR energy price. Additionally, non-linear constraints can be found in the device
modeling (in Section 4.4). For example, for the CHP, the (electric and thermal)
output depends on the chosen power level and the energy conversion efficiency,
which is a function of the former (see Equations 4.34 and 4.35). Furthermore,
in the case of an AC system or heat pump, the COP may non-linearly depend on
the delta between a source and sink temperature as well as the power level (see
Equation 4.49). In this case, the non-linearity is complicated by the fact that the
COP additionally depends on actions chosen previously. Consequently, by nature,
the optimization problem is non-linear. We discuss options for a linearization by
introducing certain assumptions in Section 6.5.1.

• Discreteness of decisions: We showed, in Section 4.4, that (at least some) elec-
tricity consumers and generators are controlled stepwise and not continuously. In
order to incorporate this technically given stepwise controllability of devices, we
use discrete instead of continuous decision variables, which classifies the problem
as a discrete optimization problem.

• Indivisibility of the problem: Regarding the indivisibility of the optimization
problem, we can distinguish three aspects. The first aspect is the indivisibility
regarding the cost components in the objective function. Although the objective
function has multiple cost components, they cannot be separated and solved
independently. This is because aFRR bids represent power schedule changes that
are always relative to the DA spot market based schedules. Although an iterative
optimization could generate bids for the two markets (DA spot, aFRR balancing)
one after another, this would not automatically lead to the global optimum of bids.
The second aspect is the indivisibility of the optimization problem regarding single
devices. Devices cannot be optimized individually as soon as maximum power
bounds for the whole facility are relevant for technical or economic reasons. Within
this thesis, a facility-wide maximum power threshold is not explicitly considered;
however, it is a common requirement resulting from capacity-based grid fees or
technical restrictions. Consequently, dividing the overall optimization problem into
multiple optimization problems for individual devices is not possible, and a joint
optimization of all devices is required. Finally, the third aspect is the indivisibility
of the optimization problem regarding time. The optimization problem cannot be
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split time-wise within a bidding period as decisions regarding the storages’ SOCs
and the devices’ runtime constraints are related to decisions in previous time steps.

• Dimension of decision space: In the visualization of decision variables in Fig-
ure 6.1, 24 one-hour product time slots and 12 four-hour product time slots can be
recognized. Each one-hour time slot requires one decision for the DA spot market
per device (𝑝el,DA𝑑,𝑡 ). Each four-hour time slot requires two decisions for the aFRR

balancing market per device (𝑝el,aFRR
+/−

𝑑,𝑡 , 𝑝el,aFRR
+/−

𝑑,𝑡 ). Consequently, the dimension
of the daily decision space can be expressed as follows:

Dimension = (1 decision
DA slot ⋅ 24 DA slots + 2 decisions

aFRR slot ⋅ 12 aFRR slots) ⋅ |𝔻| (6.22)

It is worth mentioning that the dimension of an optimization problem is only one
aspect of determining its computational difficulty. Further factors include non-
linearity, discreteness, the number of local minima, or constraint characteristics.

6.4.2 Non-functional Requirements
In addition to the mathematical properties detailed in the previous section, the nature
of the given optimization problem requires the following non-functional requirements
to be considered in the choice of an optimization method:

• Time-constrained optimization period: The daily day-ahead optimization output
consists of bids to the DA spot and aFRR balancing markets. These markets are
characterized by time-constrained bidding periods (see Figure 2.2). Therefore,
it must be guaranteed that the optimization is either finished before the gate
closure time or that it provides a valid solution when stopped. Furthermore, the
optimization requires SOCs for the beginning of the optimization period as inputs.
However, they are subject to uncertainty (due to demand predictions, uncertain
aFRR activations, and deviation of the reality from models). Consequently, as SOC
assumptions are more accurate the later the optimization starts, short optimization
times are beneficial.

• Extensibility regarding further devices: Aiming at demand and supply flex-
ibilization in the context of facilities, a wide range of relevant devices can be
considered. In Chapter 4, representative devices for facilities are presented. How-
ever, other flexible devices and variants of the presented devices exist. For this
reason, the FEMS optimization must be easily adjustable for the application in
different facilities with different devices and different device configurations. It
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should be easily possible to adjust the optimization to new devices that are not yet
considered, bearing in mind that appropriate linearizations to handle potential
non-linearities introduced by these devices may not be available.

• Extensibility regarding additional objectives: This thesis focuses on utilizing
electric flexibility for monetization via the DA spot and aFRR balancing markets.
In practice, additional objectives are worth considering in the optimization. In
particular, minimizing the facility’s power peak (which can be expressed mone-
tarily through the capacity component of the grid fees) may be of high interest.
Further aspects worth considering may be costs for additional wear (e. g., through
influences of the optimization on the aging processes of devices), explicit eco-
logical goals (e. g., concerning reduced greenhouse gas emissions), or further
market segments. The optimization method should be flexible enough to handle
extensions to include additional incentives for prosumer flexibilization.

6.5 Options for Solving Non-linear
Optimization Problems

Awide range of optimizationmethods can be found in the existing literature (as presented
in Section 2.5). We showed that a clear classification of optimization problems is
complicated by the fact that research looks at optimization from different disciplines and
with different foci, often either motivated by theoretical consideration or by the desire
to solve practical problems. One way of deciding which optimization method to choose
for which problem is presented in Figure 2.12. It shows that a common way to solve
non-linear optimization problems efficiently is using heuristic optimization methods.
However, if the introduction of additional assumptions allows simplifying a non-linear
problem to a linear problem with a precision that is good enough with respect to the
specific application, linear optimization methods can be beneficial. In the following,
we discuss different options well-suited for optimizing non-linear problems as the one
presented.

6.5.1 Linearization and Application of Exact Solving Methods
Solving linear optimization problems has evolved into a mature discipline of mathemati-
cal optimization over the last decades. As presented in Section 2.5, linear optimization
covers well-studied standard methods for finding global optimums, such as the simplex
method or the interior-point method. Concerning practical application, we showed that
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Linear Programming (LP) addresses linear optimization problems in which both the
objective function and all constraints are linear and which exclusively exhibit continuous
decision variables. In contrast, we showed that Mixed Integer Linear Programming
(MILP) deals with linear optimization problems with at least one discrete decision
variable.

The introduced problem has a non-linear objective function, non-linear constraints,
and discrete decision variables, as shown in Section 6.4.1. Despite this non-linearity,
it is often possible to approximate objective functions and constraints with sufficient
quality through the linearization of the original model. Linearization can be achieved
by replacing non-linear relationships with approximated linear relationships, e. g., by
piecewise linearization via additional binary variables [Hu+13] or via Special-Ordered-
Set (SOS) variables [Mil+15]. For many problems, linear optimization methods such
as the simplex or interior-point methods tend to require relatively low computational
effort compared to other methods. In practical applications, the formulation and solving
of problems using MILP gained popularity, which is also driven by the availability of
corresponding standard software solvers such as CPLEX or Gurobi.

However, linearization also comes with disadvantages. The linearization of problems
is not always practicable as it comes with the need for additional helper variables and
additional mathematical terms. This not only increases the modeling complexity and
hence decreases the comprehensibility and extensibility of the problem, but it also
increases the computational effort. Furthermore, using commercially available solvers
can be seen as outsourcing the solving of an optimization problem. Some “black box”
software solvers provide freedom to configure the used optimization algorithm; however,
the detailed implementations may not be publicly available. This can be well-suited for
one-time use in theoretical studies and potential analyses. Nevertheless, when used for
optimizations deployed within operational energy management systems, it comes with
disadvantages such as licensing, platform requirements, and external dependencies.

6.5.2 Dynamic Programming
Dynamic Programming describes an optimization method for problems that require
sequential decisions made over time [Bel66]. The term is in line with the historically
established terminology in the field of Linear Programming (see Section 2.5). “Dynamic”
refers to the multistage and time-varying aspects of the considered problems [Bel84].
Two fundamental principles of Dynamic Programming are recursion and memoization.
Recursion means that Dynamic Programming aims at identifying a collection of sub-
problems of the overall optimization problem. These subproblems are tackled one by
one, starting with the smallest and using the results of subproblems to optimize larger
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problem parts until all of the subproblems are solved [DPV06]. Memoization means that
if a problem has been solved, the result is saved for future reference to avoid solving the
same problem again.

Dynamic Programming requires optimization problems to fulfill Richard Bellman’s
principle of optimality [Bel52]. It describes that for some optimization problems, each
optimal solution can be composed of optimal subsolutions. For example, this is the case
for the traveling salesman problem, which aims at finding the shortest path connecting
multiple locations 𝑥i within a geographical area. In this case, each partial path 𝑥l, … , 𝑥m
within the overall shortest path 𝑥1, 𝑥2, … , 𝑥n is a shortest path itself. In such cases,
the overall optimization problem can be separated into smaller subproblems that can
be solved independently. A major challenge for Dynamic Programming is dividing a
problem into efficiently solvable smaller subproblems that can be assembled to the overall
solution [DPV06; Cor+09]. The definition of appropriate subproblems is a non-trivial
task, and for the problem at hand, the separation into subproblems is not easy, as also
discussed in Section 6.4.1.

6.5.3 Application of Metaheuristics
The use of heuristics is a common way for approximately solving non-linear optimization
problems. A heuristic is an algorithm that is not guaranteed to find an optimal solution;
instead, it searches for a sufficiently good solution. Heuristics are well-suited for many
practical applications. In particular, in scenarios where the input data is associated with
uncertainty, only finding a close-to-optimal solution is often sufficient. metaheuristics
are defined as abstract sets of structures, objects, and methods that can be adjusted to
different optimization problems. A major challenge in designing optimization algorithms
based on metaheuristics is finding an adequate mapping from the abstract structures,
objects, and methods to the concrete problem [Kru+15]. Naive optimization methods
such as a random or exhaustive search over all possible solution candidates are unsuitable
for solving larger problems due to the combinatorial explosion [Kle14]. This is also the
case for the presented optimization problem which is characterized by 48⋅|𝔻| dimensions,
as derived in Section 6.4.1. The metaheuristics discussed in the following execute a
directed search that aims at finding solutions that are good enough despite evaluating
only a limited set of solution candidates.

6.5.3.1 Swarm Algorithms

Swarm algorithms are inspired by the collective intelligence found in colonies of various
animal species, such as birds, fishes, or ants. They solve optimization problems in a
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probabilistic way by following three basic principles of the swarm behavior that can also
be observed in nature [GB18]. The first principle is coherence, which describes that
individuals orient themselves roughly toward the swarm’s center. The second principle
is diffusion, which describes that individuals are motivated not to collide with their
environment and neighbors and hence make their own decisions regarding their direc-
tions, resulting in an expansion of the swarm. The third principle is alignment, which
describes that individuals orient themselves based on their direct environment’s behavior,
following their local neighbors. The combination of these three general principles leads
to swarm behavior. As swarm algorithms conduct a directed random search for the
optimal solution, they can be classified as stochastic optimization methods. Two promi-
nent representatives of swarm algorithms are Particle Swarm Optimization (primarily
for numerical optimization problems over continuous sets) and Ant Colony Optimiza-
tion (primarily for combinatorial optimization problems over discrete sets). Particle
Swarm Optimization comprises probabilistic algorithms inspired by the foraging behav-
ior of birds and fishes [KE95; ES01]. Ant Colony Optimization comprises probabilistic
algorithms inspired by the foraging behavior of ants [Bon99; Dor04].

Due to the presented problem’s discrete nature, we briefly shed light on the example
of ant colony optimization and demonstrate how the basic principles could be applied
to the given problem. Ant colony optimization is a probabilistic optimization method
for solving problems that can be reduced to finding good paths through a graph. To
transfer the concept of ant colony optimization to our problem, we can define a graph
with different possible states for each hour of the bidding period (i. e., hours 1 to 24).
The transitions between the hours could represent an allocation of all discrete decision
variable combinations. This way, one state in hour 𝑡 would result in multiple new states in
hour 𝑡 + 1, depending on the number of possible decision variable allocations. A possible
solution candidate could be the path through the generated graph, with each transition
representing a set of decision variable assignments with concrete values, and the states
representing the SOC in the respective hour (after executing the schedule with the
decision variables previously chosen). Using the concept of ant colony optimization, this
graph could be traversed sequentially from hour 1 to hour 24, whereby the probability
of choosing a path could depend on a weight for each transition. This weight could
be adjusted each time after one specific path from hour 1 to hour 24 was chosen, and
the overall solution candidate quality was evaluated. It could be adjusted such that
good solutions have a higher probability of being chosen. One advantage of ant colony
optimization is its inherent parallelism, as the individual routes through the solution
graph can be evaluated independently. Another advantage is that the algorithm can
be used in dynamically changing systems, as it can adapt well to changes, such as new
energy demands or price information.
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6.5.3.2 Evolutionary Computing

The field of evolutionary computing studies evolutionary algorithms that mimic the
process of biological evolution as presented by Darwin [ES15]. Evolutionary algorithms
optimize a set of individual solution candidates using evolutionary principles, such
as variation (crossover and mutation) and selection, in order to find a sufficiently
good solution to an optimization problem. Evolutionary algorithms are based on a
population of individual solution candidates with different characteristics. According
to the Darwinian theory of evolution, the most well-fitted individuals have a higher
chance of surviving and reproducing. This way, an offspring population with new
individuals is generated from the genetic material of survivors, and advantageous
properties resulting from random variation are preferred by natural selection. As
evolutionary algorithms conduct a directed random search for the optimal solution, they
can be counted to stochastic optimization methods. Historically, different types and
subfields of evolutionary algorithms emerged in parallel. In particular, the following four
(non-exhaustive) categories of evolutionary algorithms can be distinguished [Wei15;
Bäc96]:

• Genetic Algorithms (GAs): Genetic algorithms are a prominent representative of
evolutionary algorithms. Typically, they solve optimization problems using binary
encodings for solution candidates. Natural evolution is mimicked by crossover,
mutation, and selection.

• Evolutionary Strategies: Evolutionary strategies solve optimization problems by
using vectors of real numbers to encode solution candidates. Typically, they focus
on potentially self-adaptive mutation and survival selection.

• Evolutionary Programming: Evolutionary programming solves optimization
problems by focusing on the natural representation of the problem instead of
focusing on a particular encoding of solution candidates. Typically, evolutionary
programming puts a high emphasis on selection.

• Genetic Programming: Genetic programming solves optimization problems pri-
marily by developing computer programs in an evolutionary way, e. g., representing
code by trees. The fitness is determined by the computer program’s ability to solve
a problem.

The terminology used in the context of evolutionary algorithms is based on biological
evolution and briefly summarized in the following, where we focus on the subclass of
genetic algorithms [ES15; Wei15]. In biology, the genotype describes an organism’s
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complete set of genetic material, while the phenotype describes an organism’s observable
appearance. Similarly, in GAs, the genotype describes the digital representation of an
individual solution candidate (in the search space), and the phenotype describes the
individual solution candidate’s decision variables (in the solution space). Mimicking
natural evolution, GAs operate on a population, i. e., a set of individuals, also referred to
as a generation. In both biology and GAs, a genotype represents an individual’s fitness
only indirectly via the resulting phenotype. In biology, natural selection is driven by
environmental conditions and causes individuals with high environmental strength (i. e.,
a high fitness) to be more likely to pass on their genes to the offspring generation. In
GAs, the selection (also referred to as survival or environmental selection) of individuals
is based on the fitness function. Evolutionary pressure results in the fact that individuals
with low fitness tend to be eliminated in the transition to a new generation, while
individuals with high fitness are retained with a higher probability. Important aspects
in the design of a GA are the genotypic encoding describing the solution candidate’s
phenotype and the related genotype-phenotype transformation.

Motivated by the good adaptability to a wide range of scenarios with potential further
objective function components and non-linearities, we chose to solve the introduced
problem using a genetic algorithm. The implementation is detailed in the upcoming
Chapter 7. Concluding this chapter and the discussion of options for solving non-linear
optimization problems, it is worth mentioning stochastic programming and robust
optimization (as introduced in Section 2.5.1), which provide alternative approaches for
dealing with uncertainty in the optimization.
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CHAPTER 7
Design and Implementation

of a Genetic Algorithm

In this chapter, we propose a genetic algorithm that can be deployed in the proposed
Facility Energy Management System. The genetic algorithm solves the optimization
problem of turning electric flexibility regarding time and power intomonetary benefits via
bidding to the day-ahead spot and aFRR balancing markets, as formulated in Chapter 6.
After discussing major design choices and evolutionary operators in the context of
genetic algorithms, we present their choice and configuration, the genotype-phenotype
transformation, and the restriction handling. Then, focusing on a binary representation,
we present exemplary bit string encodings suited for the exemplary chosen facility
devices and show how they are embedded into the overall optimization scheme. The
optimization builds upon the FEMS interfaces and simulation models presented in
Chapter 4, and the aFRR activation insights gained in Chapter 5.

7.1 Methodology

Genetic algorithms are metaheuristics providing a blueprint in the form of an abstract
set of structures, objects, and methods that can be adjusted to different optimization
problems [BR03]. General rules guaranteeing the design of an effective and efficient
genetic algorithm are not available [Kru+15]. However, a methodological guideline
can be described as follows [Wei15]: Firstly, clarity regarding requirements and design
alternatives can be achieved by conducting a detailed requirements analysis covering
a definition of the problem with a description of the phenotypic search space, the
optimization goal, requirements on the optimization, and a description of problem-
specific knowledge. For the given optimization problem, a detailed problem analysis
was already presented in Chapter 6. Secondly, insights regarding the suitability of
a genetic algorithm can be gained by a problem analysis and risk assessment that
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comprises a literature review (as presented in Chapter 3) as well as a discussion of
the characteristics of the optimization problem and its complexity (as presented in
Chapter 6). Finally, suppose the choice of a genetic algorithm turns out to fit well for
solving a given problem. In that case, the genetic algorithm, appropriate operators, and
different alternatives for the genotypic representation of the phenotypic search space
can be designed, implemented, and comparatively evaluated.

This chapter addresses the design and implementation of the proposed genetic al-
gorithm, which can be considered as an iterative process composed of two sub-steps
[Wei15]. The first step addresses the design and implementation of genetic operators,
the genotype-phenotype transformation, and the fitness function. The second step
addresses the parameterization of the genetic algorithm and the genetic operators,
including an analysis of the search dynamic. We iteratively executed these steps to com-
pare alternative encodings and achieve effective and efficient genotype representations
and parameterizations. While our initial choice for genetic operators is based on the
literature, details of the parameterization are presented in Section 8.3 of the upcoming
chapter.

7.2 Design Choices and Genetic Operators
In this section, we give an overview of important design choices and operators in the
context of genetic algorithms and discuss them with respect to their adequacy for the
given problem.

7.2.1 Optimization Cycle and Encoding
Genetic algorithms mimic natural evolution in the form of an evolutionary optimization
cycle, as illustrated in Figure 7.1. The figure also maps the different constraint handling
options discussed later in Section 7.4.1.

The optimization cycle is based on a population of solution candidates. It improves
the quality of solution candidates in multiple iterations using the operators selection,
crossover, and mutation, as described below. A fitness function allows rating solution
candidates by assigning them a fitness value. The evaluation describes the transforma-
tion of the genotype (i. e., the genetic constitution represented by a bit string) to the
phenotype (i. e., the resulting solution). The genotype-phenotype transformation is
described in more detail in the upcoming Section 7.3.

For an efficient search of solutions, the balance between exploration and exploitation
is important [ČLM13; HM20]. Exploration describes covering as much of the search
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Figure 7.1: Evolutionary optimization cycle and mapping of different constraint handling
approaches; based on [Wei15].

space as possible, and exploitation describes focusing on improving the already found
best solutions. In genetic algorithms, the balance between exploration and exploitation
is reached by proper parameterization of the genetic operators crossover and mutation
(mainly for exploration) and selection (mainly for exploitation). A common view is
that the degree of exploration should decrease with search time, and the degree of
exploitation should increase with search time. The literature discusses the impact
of different parameters on exploration and exploitation [ES98] and suggests different
strategies for controlling exploration and exploitation via the parameterization of genetic
operators [ČLM13].

Different options are available for encoding a solution candidate’s phenotype [ES15].
The classical encoding used in genetic algorithms is binary encoding, which uses a bit
string to represent the decision variables. Alternatives are, e. g., floating point repre-
sentations. As we are optimizing discrete values (see Section 6.4.1), binary encoding is
the native and most efficient way of representing information in a digital system. An
exemplary bit-string based encoding is visualized in Table 7.1. The example shows two
decision variables denoted as variables 𝑎 and 𝑏. The bits describe the genotype (i. e.,
the genetic constitution), and the decision variables describe the phenotype (i. e., the
resulting solution as visualized in Figure 6.1). The transformation from a genotype
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to a phenotype is called genotype-phenotype transformation (or genotype-phenotype
mapping). Using binary encoding, a genotype composed of 𝑛 bits can, at maximum,
encode 2𝑛 different phenotypes.

Table 7.1: Concept of the binary encoding of a phenotype.

Phenotype ... Variable a Variable b ...
Genotype ... 1 1 0 1 0 1 1 0 ...

As genetic algorithms are metaheuristics providing a framework with abstract building
blocks that must be adjusted to a concrete problem, a key aspect in designing genetic
algorithms is finding adequate representations for the problem. Generic rules that
guarantee to find suitable encodings do not exist; however, it is worth striving for the
following three characteristics of an encoding [Kru+15]:

1. Similar phenotypes should be encoded by similar genotypes.

2. Similar genotypes should result in a similar fitness.

3. The valid search space should be closed for the genetic operators applied to
the genotypes (i. e., the genetic operators should preferably not result in invalid
solutions).

It is worth noting that these characteristics are only guiding principles and, depending
on the specific problem, it may be beneficial to deviate from these rules [Kru+15]. In
the case of bit string encodings, one aspect supporting the first point is the usage of
Gray codes rather than classical binary encoding [Wei15]. For example, in the case of a
classical binary encoding, a mutation from the genotype value 011 (representing the
decimal value 3) to the genotype value 100 (representing the neighboring decimal value
4), requires flipping all three bits, also referred as a Hamming distance [Ham50] of
three. Gray codes can be used to minimize the Hamming distance. In Gray codes, each
two directly neighboring values of the solution space are represented by two genotype
bit strings with a Hamming distance of one, thus supporting that similar phenotypes
are encoded by similar genotypes. The encodings presented later make use of Gray
encoding.

Before presenting the genotype-phenotype transformation for the problem at hand (in
the upcoming Section 7.3), we now first discuss different genetic operators in detail. The
summary of the operators presented in the Sections 7.2.2 to 7.2.4 is based on standard
literature [Wei15; ES15].

164



7.2 Design Choices and Genetic Operators

7.2.2 Initialization and Termination
Initialization refers to the generation of the initial population and termination refers
to how the evolutionary optimization cycle is stopped, resulting in the finally chosen
(optimal or near optimal) solution candidate.

Initialization It is common to define the initial population of a genetic algorithm as
a set of randomly generated individuals, each represented by a genotype. Population
sizes depend on the nature of the problem, and sizes commonly found in the literature
are two-digit up to multiple hundreds or thousands [ES15]. Throughout the genetic
optimization cycle, the genotype is altered in multiple generations. The fitness function
can rate the actual solution by mapping the genotype to the phenotype. In the literature,
two ways for determining the initial population are commonly found [Wei15; ES15]:

• Random: Individuals for the initial population are randomly generated using a
random number generator.

• Pre-calculation: Individuals for the initial population are pre-calculated to decrease
the search time or increase the solution quality. In this way, the algorithm can
focus on areas of the search space with a high probability of containing the optimal
solution (resulting in higher exploitation vs. exploration). However, this requires
that a set of known solution candidates can be efficiently generated. A potential
drawback of pre-calculating solutions is that by emphasizing exploitation early,
the exploration may be restricted too early.

Pre-calculating solution candidates with a high initial fitness may not be worth the
effort. This is because fitness improvements that can be reached between two genera-
tions are relatively high in the first generations while decreasing over time in further
generations [Wei15]. Due to the lack of pre-calculated solution candidates, we choose to
populate the first generation with randomly generated individuals. The typical behavior
with relatively high fitness improvements in the first generations can be well recognized
in the evaluation in Figure 8.5.

Termination Different ways are possible to decide when to end the evolutionary
optimization cycle. The most common ways are [Wei15; ES15]:

• Number of generations or time: The optimization cycle is stopped after a cer-
tain number of generations or a certain time. This is a commonly chosen way,
particularly useful in the presence of restrictions to the available optimization
time.
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• Fitness threshold: The optimization cycle is stopped after reaching a certain fitness
threshold. For example, this can be done if the best possible fitness of an optimum
solution can be estimated or if it is possible to define the fitness of a sufficiently
good solution.

• Stagnating fitness improvement delta: The optimization cycle is stopped if the
fitness of, e. g., the best solution candidate of a generation is not improved by more
than a certain threshold compared to the previous generation.

• Allocated budget threshold: The optimization cycle is stopped if the allocated bud-
get in the form of computing power, such as CPU time or related costs, is reached.
This may be particularly interesting for computation-intensive optimizations that
are outsourced following the cloud computing paradigm.

Due to the time restrictions introduced by the fixed gate closures at the DA and aFRR
markets (see Section 6.4.2), we choose to stop the optimization after a fixed number
of generations. This highly correlates with the optimization time. Therefore, in the
evaluation in Section 8.3.3, we analyzed the fitness development over time and decided
after how many generations to stop.

7.2.3 Selection, Crossover, and Mutation
The three main operators of a genetic algorithm are the selection operator, the crossover
operator, and the mutation operator. The selection operator results in an evolutionary
pressure and steers the population towards solutions with high fitness. The crossover
and mutation operators are responsible for variation within the population of solution
candidates.

Parent Selection The selection operator is used for nominating parents for the
crossover. Mimicking the concept of survival of the fittest, the parent selection and
the survival selection described below are the only directed part in the evolution of
the solution candidates. The following three selection operators for choosing parent
individuals are commonly found in the literature [Wei15; ES15]:

• Fitness-proportional selection: The solution candidates of a population are sorted
according to their fitness. Then, the selection is made with a probability pro-
portional to the individuals’ fitness. Consequently, solution candidates with high
fitness have a higher probability of being selected.
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• Rank-based selection: Again, the solution candidates of a population are sorted ac-
cording to their fitness. Then, the selection is made with a probability proportional
to the rank (in contrast to the fitness score, as in the case of the fitness-proportional
selection).

• Tournament selection: Multiple solution candidates are randomly chosen, e. g.,
two in case of binary tournament selection. Then, they are compared in a deter-
ministic competition and the fittest solution candidate is chosen as the winner.

Parent selection can happen with or without returning the selected solution candi-
dates into the pool of possible solution candidates, whereby returning selected solution
candidates is a way commonly chosen in the existing literature. We choose binary
tournament selection (and return selected solutions candidates into the pool) as it is an
established default operator repeatedly recognized to result in a good evolution of the
solution candidates. Furthermore, using tournament selection results in performance
benefits as the fitness rating is only required for the tournament candidates rather than
for the whole population as in the case of the two other presented selection operators
[ES15].

Survival Selection While the parent selection chooses parent individuals to extend
the population by newly combined offspring individuals (generated via the crossover
operator), the survival selection chooses individuals who survive into the next generation.
Consequently, survival selection comes with a trade-off between the exploitation of
individuals with high fitness and the exploration of the search space. In the literature,
survival selection is also referred to as replacement or environmental selection [ES15].
Survival selection can be implemented in two manifestations defining how individuals
are brought into the next generation [Wei15; ES15]:

• Generational replacement: In each generation, the offspring individuals replace
their parent individuals. If the offspring generation is the same size as the parent
generation (which is the commonly recommended case [ES15]), an additional
selection operator for the survival selection is not required. Then, only a parent
selection operator is required to determine the parent individuals as described
above.

• Steady-state replacement: In steady-state replacement, in each generation, only a
few individuals in the population are replaced by the offspring. These replaced
individuals are not necessarily the parent individuals. In this case, an operator
for the survival selection (or replacement) is required. In principle, the selection
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operators for parent selection presented above can be used; however, the existing
literature suggests dedicated survival operators, e. g., depending on age or fitness
[ES15].

Survival selection can be enhanced by the concept of elitism, which is also referred to
as elitist selection. Elitism describes the idea of always keeping one or more of the fittest
individuals in the population. It allows for protecting individuals with an already high
fitness from further potentially destructive mutation. Consequently, applying elitism
guarantees that the quality of the fittest solution candidate(s) will never decrease from
one generation to the next. In the implementation presented later, we use the classical
generational replacement, enhanced by the concept of elitism.

Crossover The crossover operator combines selected parent individuals to generate
offspring individuals. Crossover is also referred to as recombination. Commonly, two
parent individuals are combined to generate two offspring individuals. In genetic
algorithms, crossover probabilities are typically in the range of 60–90% [Wei15]. Once
the parent individuals are chosen by a selection operator, the crossover operator decides
how they are combined for generation of the offspring individuals. The following three
crossover operators are commonly found in the literature [Wei15; ES15]:

• One-point crossover: Parent 1 and parent 2 are cut at the same randomly chosen
point, and then one of the two parts of each parent is interchanged with the
respective part from the other parent. If 𝑎1, 𝑎2 and 𝑏1, 𝑏2 are the two individuals 𝑎
and 𝑏 after the cut, the result of the crossover would be the individuals 𝑎1, 𝑏2 and
𝑏1, 𝑎2.

• 𝑛-point crossover: This crossover variant is analogous to the one-point-crossover,
however, with 𝑛 instead of one crossover points. The offspring individuals inherit
parts from each of their parent individuals in an alternating way.

• Uniform crossover: For each heritable part (i. e., each bit) of the offspring individ-
ual, it is individually decided from which parent individual it is inherited. This
choice can be made with the same probability for each parent or with different
probabilities per parent. The latter allows steering towards inheriting more genetic
information from one parent than the other.

While the literature suggests further variants, high success rates are often reported for
the two-point crossover. An increased ability to interchange selected parts of a solution
candidate that potentially decrease the fitness can explain this. We choose the 𝑛-point
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crossover, which we adapt to the given problem as presented in Section 7.6. The impacts
of different crossover probabilities are discussed in Section 8.3.

Mutation In order to maintain genetic diversity in the population, mutation allows for
exploring the search space by randomly changing individuals. The mutation operator is
usually applied with a relatively low probability to not endanger the inheritance of the
parental characteristics. If the mutation probability is too high, the search is equal to a
pure random search. Then, the benefits of a directed search do not come into effect.
The classical mutation operator for bit string encoded solution candidates is the bit
flip. It changes a single bit from 0 to 1 or vice versa. For a bit string with length 𝑛, the
existing literature, with a high consensus, suggests bit flip probabilities in the area of
1/𝑛 [Wei15]. Consequently, we mutate individuals by bit-wise flipping and discuss the
impact of different bit flip probabilities in Section 8.3.

7.2.4 Fitness Evaluation

In order to achieve a directed rather than a random search, the selection operators
require calculating the solution candidates’ fitness values. This is done using a problem-
specific fitness function applied to the phenotype. Consequently, the first step of the
fitness evaluation is the transformation of a genotype to its phenotype. Commonly, the
genotype-phenotype transformation and the application of the fitness function are the
most time-consuming parts of the whole optimization cycle. Therefore, lazy evaluation
can be used to improve evaluation performance. It describes the idea of not evaluating
all solution candidates of the whole population but only the ones that require a fitness
rating as the selection operator chooses them. Consequently, whether a lazy evaluation
is possible depends on the selection operator. For example, in the case of tournament
selection, only a selected set of solution candidates has to be compared. In contrast,
fitness-proportional selection requires the evaluation of all solution candidates in order
to sort them by their fitness.

After laying the foundation with a detailed overview of the relevant concepts, the
upcoming Sections 7.3 to 7.5 describe the overall genotype-phenotype transformation
and the fitness evaluation for the problem at hand.
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7.3 Genotype-Phenotype Transformation:
Profile Generation

We showed that a genotype represents an individual’s complete set of genetic material,
and a phenotype represents the individual’s complete observable set of characteristics.
The genotype is the bit string processed by the previously explained optimization cycle.
We define the phenotype as device-specific DA power level profiles, aFRR capacity level
profiles, and aFRR energy price profiles. The fitness function can rate these profiles to
reflect the resulting cost savings. The phenotype of a device consists of one or more of the
named profiles, with the number of profiles depending on the energy forms (electricity,
heat, cold, gas) to which a device is linked.

The overall genotype-phenotype transformation can be separated into three categories,
which in turn can be separated into multiple steps as visualized in Figure 7.2:

• Profile generation: steps P1 to P3 (explained in this section)

• Constraint handling: steps C1 to C3 (explained in Section 7.4)

• Fitness evaluation: steps F1 and F2 (explained in Section 7.5)

We start by explaining the profile generation represented by the first three steps P1–P3.
For each device, these steps transform a part of the bit string to a DA power level profile,
two aFRR capacity level profiles (one for negative and one for positive aFRR), and two
aFRR energy price profiles (again, one for negative and one for positive aFRR).

We previously investigated alternative versions of the presented genetic algorithm
[Huf15; Hol16]. It is worth noting that the version presented in the following strongly
differs, e. g., regarding the overall structure, assumptions, and encodings. In the broader
context of GA-based energy management, it is worth referring to Allerding [All14]
and Mauser et al. [Mau17; Mau+16; Mau+14]. They propose optimizations and GA
encodings for scheduling flexible devices in the context of buildings, mainly incentivized
by price signals. However, in contrast to pure price-based scheduling, the provision of
potential schedule deviations in the form of aFRR balancing power comes along with
strongly different requirements, as presented in the previous Chapter 6.
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7.3.1 Handling of Devices and Storages

In general, we represent each device with a dedicated energy storage in the genotype as
visualized in Figure 7.2. However, if multiple devices are connected to the same energy
storage, and one of them does not directly consume or provide electric energy, this device
can be treated differently. In the given setup, both the CHP and the condensing boiler
are connected to the same thermal energy storage, which in turn is connected to the
facility’s heat demand via the local heat grid (see Figure 4.1). Consequently, concerning
heat generation, the CHP plant and the condensing boiler can be used to substitute each
other. For the combined optimization of both devices, we make use of the fact that the
facility’s heat demand can be satisfied by the sum of the CHP plant’s and the condensing
boiler’s heat generation. Therefore, we abstain from introducing an additional degree
of freedom for the condensing boiler by indirectly deriving the decisions regarding
the condensing boiler from the decisions regarding the CHP. This way, only the CHP
plant is explicitly represented in the genotype, and during the genotype-phenotype
transformation, we define that the condensing boiler always satisfies the remaining
heat demand. This allows for reducing the size of the genotypic search space. The
implementation of this particular case is explained in more detail in the context of the
fitness evaluation in Section 7.5.1.

7.3.2 P1: Mapping to Day-ahead Power Level Profiles

Table 7.2: Generation of the DA power level profile 𝜆𝑑,𝑡 for device 𝑑 in hour 𝑡.

(a) Encoding for devices with bidirectional power
flow (e. g., battery storages)

𝑏DA
𝑑,𝑡,2 𝑏DA

𝑑,𝑡,1 𝑏DA
𝑑,𝑡,0 𝜆DA

𝑑,𝑡

0 0 0 +3
0 0 1 +2
0 1 1 +1
0 1 0 +0
1 1 0 –0
1 1 1 –1
1 0 1 –2
1 0 0 –3

(b) Encoding for devices with unidirectional
power flow (e. g., CHP plants)

𝑏DA
𝑑,𝑡,2 𝑏DA

𝑑,𝑡,1 𝑏DA
𝑑,𝑡,0 𝜆DA

𝑑,𝑡

0 0 0 0 (off)
0 0 1 1
0 1 1 2
0 1 0 3
1 1 0 4
1 1 1 5
1 0 1 6
1 0 0 7

In this step, for each device 𝑑 ∈ 𝔻, we convert a part of the genotype to a DA power
level profile. A DA power level profile is a vector with 24 power levels 𝜆DA

𝑑,𝑡 that indirectly
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represent the hourly DA spot market power per device per day.1 In the device modeling
in Section 4.4, we showed that the considered devices are controllable in different steps
in the range of [𝑝𝜉

𝑑
, 𝑝𝜉

𝑑]. We also showed that the power level 𝜆DA
𝑑,𝑡 can be converted to

power values (see, e. g., Figure 4.3) for all energy forms with which a device is associated
(see Table 4.1). Consequently, a device’s power level profile can be converted to power
profiles for all related energy forms. For example, in the case of a CHP, the DA power
level profile can be converted to a DA power profile for electricity, a DA power profile for
heat, and a DA power profile for gas.

The bit string encoding for determining the power level for the DA scheduling for one
single hour is depicted in Table 7.2. In the table, 𝑏𝑑,𝑡,𝑖 refers to the 𝑖-th bit of the bit
string part for device 𝑑 in time slot 𝑡. The exemplary depiction in the table assumes that
3 bits suffice for specifying the available power levels. We can distinguish two kinds of
devices. For devices with bidirectional electric power flows (Table 7.2a), such as battery
energy storage systems, 𝑝el

𝑑
is negative and 𝑝el𝑑 is positive. For devices with unidirectional

electric power flows (Table 7.2b), such as CHP plants or AC units, 𝑝el
𝑑
and 𝑝el𝑑 are both

either negative (CHP generating electric energy) or positive (chiller consuming electric
energy).

Given a device that can be controlled in 𝑛 power levels within its power range, these
power levels can be represented by ⌈log2 𝑛⌉ bits using a binary representation. As
DA spot market decisions are made per hour, we use ⌈log2 𝑛𝑑⌉ bits per hour for each
controllable device 𝑑. Consequently, a device that is controllable in, e. g., 𝑛 = 8 power
level steps requires ⌈log2 8)⌉ = 3 bits/hour or 72 bits/day for the power level profile, as
shown in Table 7.2.

7.3.3 P2: Mapping to aFRR Capacity Level Profiles
In this step, for each device 𝑑 ∈ 𝔻, a part of the genotype is converted to one aFRR−

capacity level profile, and another part to one aFRR+ capacity level profile. An aFRR
capacity level profile is a vector representing the power level deltas Δ𝜆aFRR−

𝑑,𝑡 for negative
aFRR or the power level deltas Δ𝜆aFRR+

𝑑,𝑡 for positive aFRR, relative to the power level
profile resulting from step P1 and per four-hour aFRR product slot. Consequently, the
aFRR− capacity level profile and the aFRR+ capacity profile each result in six capacity
values per device per day.

The maximum possible downwards and upwards delta of the power level represents
the aFRR capacity range. For each aFRR direction, 𝑛 different power level deltas can
be represented by ⌈log2 𝑛⌉ bits using a binary representation. Depending on the device
1In the device modeling presented in Chapter 4, this entails a minimum runtime of 𝜔 = 60min.
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Table 7.3: Generation of the aFRR capacity level profiles Δ𝜆aFRR−

𝑑,𝑡
and Δ𝜆aFRR+

𝑑,𝑡
for device 𝑑 in

four-hour aFRR slot 𝑡 ∈ {0, 4, 8, … , 20}.

(a) Encoding for negative aFRR capacity:
power level increase

𝑏aFRR−

𝑑,𝑡,1 𝑏aFRR−

𝑑,𝑡,0 Δ𝜆aFRR−

𝑑,𝑡

1 0 +3
1 1 +2
0 1 +1
0 0 +0

(b) Encoding for positive aFRR capacity:
power level decrease

𝑏aFRR+

𝑑,𝑡,1 𝑏aFRR+

𝑑,𝑡,0 Δ𝜆aFRR+

𝑑,𝑡

0 0 –0
0 1 –1
1 1 –2
1 0 –3

and the related energy storage capacity, it may be beneficial to limit the aFRR capacity
by not considering the full range of possible power level deltas for aFRR provisioning.
This, in particular, makes sense for devices for which it is likely that continuous aFRR
provisioning with a certain power level over a full four-hour aFRR slot is not possible
due to buffer limitations. We take a closer look at the usable aFRR capacity ranges in
the evaluation. In step F1, which we present later in Section 7.5.1, we show how the
power level delta is used for calculating the resulting energy deltas.

For each device 𝑑 that provides 𝑛 possible power level deltas as aFRR capacity, ⌈log2 𝑛𝑑⌉
bits per four-hour aFRR slot are required. In our modeling, we limit the aFRR capacity to
one-half of the full power band, resulting in the need for ⌈log2 𝑛/2⌉ bits per four-hour slot.
Consequently, a device with four potential aFRR power level deltas requires ⌈log2 4⌉ = 2
bits per four-hour slot and aFRR direction, or 12 bits per day and aFRR direction, or
24 bits per day for both aFRR directions. The bit string decoding for the determination
of the power level deltas, Δ𝜆aFRR−

𝑑,𝑡 and Δ𝜆aFRR+

𝑑,𝑡 , resulting in the aFRR capacity for one
four-hour time slot is depicted in Table 7.3. It determines an aFRR capacity Δ𝜆𝑑,𝑡 for
each four-hour slot 𝑡 ∈ {0, 4, 8, … , 20}. On this basis, we define the hourly aFRR capacity
profile of device 𝑑 as follows:

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 1, … , 23} ∶ Δ𝜆aFRR−

𝑑,𝑡 = Δ𝜆aFRR−

𝑑,⌊𝑡/4⌋⋅4 (7.1)

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 1, … , 23} ∶ Δ𝜆aFRR+

𝑑,𝑡 = Δ𝜆aFRR+

𝑑,⌊𝑡/4⌋⋅4 (7.2)

7.3.4 P3: Mapping to aFRR Energy Price Profiles
In this step, for each device 𝑑 ∈ 𝔻, we convert a part of the genotype to two aFRR
energy price profiles. One aFRR energy price profile is generated for aFRR− and one
aFRR energy price profile is generated for aFRR+Ġiven four-hour aFRR product slots, an
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Table 7.4: Generation of the aFRR energy price profiles 𝜋aFRR−,energy
𝑑,𝑡

and 𝜋aFRR+,energy
𝑑,𝑡

for device
𝑑 for four-hour aFRR slot 𝑡 ∈ {0, 4, 8, … , 20}.

(a) Encoding for negative aFRR energy prices

𝑏𝜋aFRR−

𝑑,𝑡,2 𝑏𝜋aFRR−

𝑑,𝑡,1 𝑏𝜋aFRR−

𝑑,𝑡,0 𝜋aFRR−,energy
𝑑,𝑡

0 0 0 𝜋aFRR−

1
0 0 1 𝜋aFRR−

2
0 1 1 𝜋aFRR−

3
0 1 0 𝜋aFRR−

4
1 1 0 𝜋aFRR−

5
1 1 1 𝜋aFRR−

6
1 0 1 𝜋aFRR−

7
1 0 0 𝜋aFRR−

8

(b) Encoding for positive aFRR energy prices

𝑏𝜋aFRR+

𝑑,𝑡,2 𝑏𝜋aFRR+

𝑑,𝑡,1 𝑏𝜋aFRR+

𝑑,𝑡,0 𝜋aFRR+,energy
𝑑,𝑡

0 0 0 𝜋aFRR+

1
0 0 1 𝜋aFRR+

2
0 1 1 𝜋aFRR+

3
0 1 0 𝜋aFRR+

4
1 1 0 𝜋aFRR+

5
1 1 1 𝜋aFRR+

6
1 0 1 𝜋aFRR+

7
1 0 0 𝜋aFRR+

8

aFRR energy price profile results in six aFRR energy prices per day and aFRR direction.
This way, an aFRR bid is based on the combination of an aFRR capacity level profile and
an aFRR energy price profile.

The analysis of aFRR energy prices conducted in Chapter 5 showed a high uncertainty
in the mapping of aFRR energy prices to expected aFRR activations (see Figure 5.3). The
option to choose from a large set of possible aFRR energy prices increases the possibility
of steering toward the desired activation behavior. However, due to the associated
uncertainty (particularly for low aFRR energy prices), a fine-granular distinction between
different aFRR energy prices is not required. Furthermore, limited options imply a smaller
solution space.

We can represent 𝑛 different aFRR energy prices using ⌈log2 𝑛)⌉ bits. Due to the
above reasons, we decided to choose from a set with eight different aFRR energy
prices per aFRR direction. We denote the sets of aFRR energy prices to choose from
as ℿaFRR−

and ℿaFRR+
, and use 𝜋aFRR−

𝑖 ∈ ℿaFRR−
and 𝜋aFRR+

𝑖 ∈ ℿaFRR+
to refer to

the 𝑖-th reserve energy price of the respective ascendingly ordered set of aFRR energy
prices. Consequently, as bids to the aFRR market are made per four-hour slot and when
assuming eight different aFRR energy prices (i. e., |ℿaFRR− | = 8 and |ℿaFRR+ | = 8), we
can use ⌈log2 8⌉ = 3 bits per four-hour-slot per aFRR direction. Table 7.4 presents the
chosen encoding for negative aFRR energy prices (Figure 7.4a) and positive aFRR energy
prices (Figure 7.4b). It results in 3 bits per four-hour aFRR slot and aFRR direction, or
36 bits per day to represent all possible aFRR energy prices for both directions.
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7.4 Genotype-Phenotype Transformation:
Constraint Handling

The previous section described the generation of the initial DA power level profiles, aFRR
capacity level profiles, and aFRR energy price profiles. These profiles are generated
independently in the first place. Nevertheless, the encoding itself already handles
some constraints, such as minimum runtimes or the discretization of power levels. The
handling of further constraints not already handled via the encoding is discussed in the
following. To begin with, we give a focused overview of different methods to handle
constraints in genetic algorithms. This overview sets the basis for a profound discussion
of options for constraint handling in the given problem.

7.4.1 Discussion of Approaches for Constraint Handling

Constraint-handling methods in genetic algorithms can be separated into two main
classes: restrictive and tolerant methods.

The first class represents restrictive methods that conduct an optimization on an
unrestricted search space, but introduce measures to prevent the generation of invalid
solution candidates [Wei15]:

• Crib death: Invalid individuals are deleted directly after their generation. This
approach works well, given constraints with a simple structure. However, it may
not be well suited in the case of rugged solution spaces. In order to reach areas
of the solution space that are constrained in a complex way, allowing for invalid
parents may be beneficial.

• Genetic repair: Invalid individuals are repaired to satisfy the constraints. Con-
sequently, fewer individuals have to be created as in the case of the crib death.
However, depending on the problem, it may be challenging to design a suitable
repair algorithm. Genetic repair can be seen as a particular case of adding a local
search to the genetic algorithm.

• Method of valid individuals: Invalid individuals are avoided by design, which
can be reached by two measures. Firstly, the initial population has to be popu-
lated with valid individuals only. Secondly, the mutation and crossover operators
must be designed to always result in valid individuals. However, meeting these
requirements may be very challenging.
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The second class of constraint handling methods represents tolerant methods. They
allow for invalid solution candidates in the population that are, however, discriminated
against other solution candidates in the course of the simulated evolution [Wei15]:

• Legal parent selections: Invalid individuals are strongly disadvantaged by choos-
ing only valid individuals (or individuals with low constraints violation) as parents.
This method may suit well for problems with high difficulty in satisfying the
constraints, such as fulfillment problems.

• Legal replacement: Legal replacement is intended to work with (steady-state)
algorithms that put individuals generated in a new generation back into the parent
population. This method disadvantages invalid individuals by considering the
constraint violation in deciding which individual to replace. Individuals with a
high degree of constraint violation are preferably replaced. This method can be
seen as universally suitable for problems with limited information about constraint
characteristics.

• Adaptive mutation: This method dynamically adjusts the mutation operator to
generate valid individuals predominantly. In summary, the method divides the
search space into multiple parcels. Individuals in each parcel are classified as
valid or invalid. Depending on the ratio of valid and invalid individuals, a parcel
is classified as unknown, invalid, valid, or half-valid. The mutation in unknown,
valid, and half-valid parcels is adapted so that individuals stay within the parcel as
much as possible. The mutation in invalid parcels is adapted such that individuals
preferably jump into a valid parcel. This method may be well suited for problems
without knowledge about valid areas.

• Legal decoding: Legal decoding is a tolerant variant of genetic repair. It also
requires a repair algorithm to convert an invalid to a valid individual. However,
in legal decoding, the repair algorithm is used only for evaluating individuals,
and the genotype is not adjusted. Furthermore, in contrast to genetic repair,
the decoder in legal decoding should be deterministic such that individuals with
small modifications in future generations are repaired equally, resulting in similar
phenotypes.

• Penalty function: Penalty functions are the most popular constraint-handling
method. Penalty functions allow invalid individuals to exist in the population.
However, they penalize infeasible solutions by reducing their fitness values in
proportion to the degree of constraint violation. Two approaches for fitness calcu-
lation can be separated. Firstly, the violation of constraints may make it impossible
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to calculate the fitness. Then, a fitness value can be determined independently of
the normal fitness calculation. Secondly, using the normal fitness function may be
possible despite the constraint violations. Then, the result of the penalty function
can be added to the original fitness. In parameterizing the penalty function, the
degree to which artificial fitness values falsify the resulting fitness should be taken
care of.

Out of the methods for handling constraints in genetic algorithms discussed above,
we use the concepts of genetic repair, legal decoding, and penalty functions. In the
following Sections 7.4.2 to 7.4.4, we present why we chose these concepts and how we
finally implemented them for handling the constraints of the problem at hand.

7.4.2 C1: Genetic Profile Repair According to Power Restrictions

In this step, we handle the constraint that the DA power and the related aFRR capac-
ity must not exceed a device’s maximum possible power generation or consumption
(see Equations 6.13 and 6.14). In the previous sections, the DA power level profiles
(granularity: one hour) and the aFRR capacity level profiles (granularity: four hours)
are generated independently in the first place. The maximum possible offered aFRR
capacity depends on the committed DA spot market schedule and the device’s minimum
and maximum power restriction.

Consequently, if a solution candidate violates these power constraints (e.g., 3/4 𝑝el for
day-ahead charging + 1/2 𝑝el for negative aFRR > 𝑝el), we repair the power values of
these invalid solutions to valid power pairs. We decided to do this by adjusting the power
level determined by the DA power profile to the maximum technically possible power
level. The correction of a device’s DA power level profile based on its aFRR capacity
level profiles for negative and positive aFRR is calculated as follows (with 𝜆𝑑 referring
to the maximum and 𝜆𝑑 to the minimum possible power level):

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 1, … , 23} ∶ 𝜆DA
𝑑,𝑡 =

⎧{{
⎨{{⎩

𝜆𝑑 − Δ𝜆aFRR−

𝑑,𝑡 if 𝜆DA
𝑑,𝑡 + Δ𝜆aFRR−

𝑑,𝑡 > 𝜆𝑑

𝜆𝑑 − Δ𝜆aFRR+

𝑑,𝑡 if 𝜆DA
𝑑,𝑡 + Δ𝜆aFRR+

𝑑,𝑡 < 𝜆𝑑
𝜆DA

𝑑,𝑡 otherwise
(7.3)

Given the above example, the DA power would be corrected to 1/2 𝑝el. In Equation 7.3,
we can recognize that at maximum, one of the three conditional clauses evaluates to
true; this is the case as we limited the capacity available for negative and positive aFRR
to one-half of the technically available power band (in Section 7.3.3).
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We chose to adjust the DA power level profile instead of the aFRR capacity level
profile due to the computational complexity: Adjusting DA power level profiles is
computationally easier than adjusting aFRR capacity level profiles. The latter cover
four hours, introducing interdependencies to neighboring time slots, while DA power
level profiles only cover one hour. Therefore, the presented repair comes along with
relatively low overhead. We chose the genetic repair, which adjusts the genotypic bit
string according to the repaired power level, which can be seen as a particular case of
adding a local search to the genetic algorithm. We decided not to use crib death due to
the relatively high share of repaired solution candidates and to allow for a more directed
rather than random search.

7.4.3 C2: Legal Decoding Concerning aFRR Product Slot Duration
In this step, we handle the constraint that some devices are only controllable in a limited
power band as long as they are in state 𝑠𝑑,𝑡 = 1 (on), which is represented by a power
level 𝜆 > 0. This device characteristic is visualized in Figure 4.3 (for the example of the
CHP). This step only addresses devices that need to be in the state “on” to be controllable.
For example, this applies to the CHP (change from 𝜆 = 0 to 𝜆 = 1 is not possible within
the minimum runtime 𝜔 = 1h) but not to the battery storage system (change from 𝜆 = 0
to 𝜆 = 1 is possible without a minimum runtime). Consequently, for these devices, aFRR
provisioning is only possible if the device is in the state “on” in each of the four hours of
the aFRR product slot. Therefore, we use the mechanism of legal decoding to adjust
the genotype interpretation in the genotype-phenotype transformation as described in
Algorithm 7.1. Suppose, according to the DA power level profile, a device is not turned
on in all four hours of an aFRR product slot. In that case, the algorithm decodes the
aFRR capacity level profile such that it does not provide aFRR capacity in any of the four
hours of the related aFRR product slot.

We decided to use legal decoding, i. e., to adjust the phenotype in a deterministic
way without changing the genotype. Legal decoding allows keeping respective invalid
solution candidates in the population as they may have a high chance of evolving to valid
solution candidates in subsequent generations due to the limited number of involved
genotypic bits.

7.4.4 C3: Penalty Function for SOC Constraints
In the two previous sections, we explained how to use genetic repair to adjust the DA
power level profile (C1) and legal decoding for adjusting the interpretation of the aFRR
capacity level profile (C2). Yet, constraints guaranteeing that SOCs are never violated
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Algorithm 7.1 Adjustment of a device’s aFRR capacity level profile: Do not offer aFRR
capacity in aFRR product slots in which the device is not “on” in all four hours.
Inputs:

1. 𝑠DA𝑑,𝑡 : A DA device state profile of a device 𝑑 for all hours 𝑡 ∈ {0, 1, … , 23}, based on
the initial part of the genotype-phenotype transformation as depicted in Table 7.2.

2. Δ𝜆aFRR−

𝑑,𝑡 , Δ𝜆aFRR+

𝑑,𝑡 : Negative and positive aFRR capacity level profiles of a device 𝑑
for all hours 𝑡 ∈ {0, 1, … , 23}, based on the initial part of the genotype-phenotype
transformation as depicted in Table 7.3.

Steps:
for each four-hour slot 𝑘 in {0, 4, 8, … , 20} do

𝑑𝑒𝑣𝑖𝑐𝑒𝑂𝑓 𝑓 𝐼𝑛𝐴𝑡𝐿𝑒𝑎𝑠𝑡𝑂𝑛𝑒𝑆𝑙𝑜𝑡 ← false

for each one-hour slot 𝑡 in {𝑘, 𝑘 + 1, 𝑘 + 2, 𝑘 + 3} do
if 𝜆DA

𝑑,𝑡 = 0 then
𝑑𝑒𝑣𝑖𝑐𝑒𝑂𝑓 𝑓 𝐼𝑛𝐴𝑡𝐿𝑒𝑎𝑠𝑡𝑂𝑛𝑒𝑆𝑙𝑜𝑡 ← true

break
end if

end for
if 𝑑𝑒𝑣𝑖𝑐𝑒𝑂𝑓 𝑓 𝐼𝑛𝐴𝑡𝐿𝑒𝑎𝑠𝑡𝑂𝑛𝑒𝑆𝑙𝑜𝑡 == true then

for each one-hour slot 𝑡 in {𝑘, 𝑘 + 1, 𝑘 + 2, 𝑘 + 3} do
Δ𝜆aFRR−

𝑑,𝑡 ← 0
Δ𝜆aFRR+

𝑑,𝑡 ← 0
end for

end if
end for

Outputs: Δ𝜆aFRR−

𝑑,𝑡 , Δ𝜆aFRR+

𝑑,𝑡 : The updated negative and positive aFRR capacity level
profile of device 𝑑 for all hours 𝑡 ∈ {0, 1, … , 23}, which is set to 0 for all hours within an
aFRR product slot if the device is off for at least one of the four hours according to 𝜆DA

𝑑,𝑡 .

and that aFRR can always be provided, even in the two extreme activation cases (see
Equations 6.16 and 6.17), have not been considered. We use a penalty function to
handle the 𝑆𝑂𝐶 and 𝑆𝑂𝐶 constraints in the extreme activation cases (which also covers
the expected activation case). The penalty function devalues solution candidates that are
not capable of realizing the expected schedule or that cannot guarantee the provision of
aFRR capacity over the whole four-hour aFRR product slot.

We quantify the penalty for solution candidates whose SOC potentially (in case of
extreme aFRR activations) exceeds 𝑆𝑂𝐶𝑑 or falls below 𝑆𝑂𝐶𝑑. Therefore, in the first
step, we calculate the theoretical hourly excess SOC points above 𝑆𝑂𝐶, which we denote
Δ𝑆𝑂𝐶excess

𝑑,𝑡 , and the theoretically hourly shortage SOC points below 𝑆𝑂𝐶, which we
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denote as Δ𝑆𝑂𝐶shortage
𝑑,𝑡 :

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 1, … , 23} ∶

Δ𝑆𝑂𝐶excess
𝑑,𝑡 =

⎧{
⎨{⎩

𝑆𝑂𝐶maxUpAct
𝑑,𝑡 − 𝑆𝑂𝐶𝑑 if 𝑆𝑂𝐶maxUpAct

𝑑,𝑡 > 𝑆𝑂𝐶𝑑

0 otherwise

(7.4)

∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 1, … , 23} ∶

Δ𝑆𝑂𝐶shortage
𝑑,𝑡 =

⎧{
⎨{⎩

𝑆𝑂𝐶𝑑 − 𝑆𝑂𝐶maxDownAct
𝑑,𝑡 if 𝑆𝑂𝐶maxDownAct

𝑑,𝑡 < 𝑆𝑂𝐶𝑑
0 otherwise

(7.5)

where 𝑆𝑂𝐶maxUpAct
𝑑,𝑡 and 𝑆𝑂𝐶maxDownAct

𝑑,𝑡 represent the theoretical SOC in the case of
maximum upwards and downwards activation based on the extreme aFRR activation
energy deltas (see Section 6.2.3.2). For each evaluated solution candidate, these extreme
energy deltas are calculated using a simulation based on the DA power level profiles
and the aFRR capacity level profiles (see Equations 6.18 and 6.19).

Afterwards, we minimize the fitness of solution candidates that potentially violate the
SOC band, i. e., where Δ𝑆𝑂𝐶excess

𝑑,𝑡 > 0 or Δ𝑆𝑂𝐶shortage
𝑑,𝑡 > 0, by defining penalty costs

that are added to the cost function. In order to prioritize the penalty costs accordingly,
we define them as the result of multiplying the hourly excess or shortage SOC points
with a weight 𝑤penalty:

𝑐penalty𝑑 =
𝑇

∑
𝑡=0

(Δ𝑆𝑂𝐶excess
𝑑,𝑡 + Δ𝑆𝑂𝐶shortage

𝑑,𝑡 ) ⋅ 𝑤penalty (7.6)

This way, the penalty for an individual solution candidate increases with the degree
of possible SOC band violations: the higher the constraint violation, the higher the
penalty costs. We decided to use a penalty function instead of a repair algorithm due to
the resulting computational effort of repairing a solution candidate (composed of DA
power, aFRR capacity, and aFRR energy price profiles for two different aFRR directions).
Considering penalty costs in the fitness function, the evolution simulated by the genetic
algorithm devalues solution candidates in invalid areas of the solution landscape.
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7.5 Genotype-Phenotype Transformation:
Fitness Evaluation

Above, we showed how profiles are generated for DA power levels (P1), aFRR capacity
levels (P2), and aFRR energy prices (P3). Furthermore, we showed how they are
modified to handle constraints regarding power restrictions (C1), aFRR product slot
durations (C2), and SOC limits (C3). The following two steps convert these profiles to
expected energy delta profiles (step F1), which are finally used to calculate the fitness
of solution candidates (step F2).

7.5.1 F1: Calculation of Expected Energy Delta Profiles

In this step, we use the device-specific profiles introduced in the previous sections (DA
power level profiles, aFRR capacity level profiles, and aFRR energy price profiles) to
calculate each device’s expected hourly energy delta. We calculate DA energy delta
profiles, aFRR− energy delta profiles, and aFRR+ energy delta profiles. These three
profiles are generated for each energy form 𝜉 ∈ {el,heat, cold, gas} to which a device
is linked. This step relies on the insights on the aFRR activation behavior gained
in Section 5.2. The expected aFRR activation share is estimated using the functions
𝑓 aFRR+

𝑡 (𝜋aFRR+

𝑑,𝑡 ) and 𝑓 aFRR−

𝑡 (𝜋aFRR−

𝑑,𝑡 ). As explained in Section 6.2.3.1, we assume that
the expected aFRR activation share (based on the analyzed yearly activation share)
is equally distributed over the single one-hour time slots. It is worth mentioning that
the energy deltas represented via the aFRR energy delta profiles are only expected.
The finally realized energy deltas based on the actual aFRR activation may differ (see
Section 6.3). In contrast, the energy deltas represented via the DA energy delta profiles
are not accompanied by external activation uncertainty.

As visualized in Figure 7.2, the DA energy delta profiles (Δ𝑒𝜉,DA
𝑑,𝑡 ) and the aFRR energy

delta profiles (Δ𝑒𝜉,aFRR−

𝑑,𝑡 , Δ𝑒𝜉,aFRR+

𝑑,𝑡 ), can be calculated as follows. The finally resulting
expected energy delta is represented by Δ𝑒𝜉,exp

𝑑,𝑡 . All profiles are specific to the device 𝑑
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and energy form 𝜉 ∈ {el,heat, cold, gas}, ∀𝑑 ∈ 𝔻, 𝑡 ∈ {0, 1, … , 23}:

Δ𝑒𝜉,DA
𝑑,𝑡 = 𝑝𝜉

𝑑(𝜆DA
𝑑,𝑡) ⋅ Δ𝑡, (7.7)

Δ𝑒𝜉,aFRR−

𝑑,𝑡 = (𝑝𝜉
𝑑(𝜆DA

𝑑,𝑡 + Δ𝜆aFRR−

𝑑,𝑡 ) − 𝑝𝜉
𝑑(𝜆DA

𝑑,𝑡)) ⋅ Δ𝑡 ⋅ 𝑓 aFRR−

𝑡 (𝜋energy,aFRR−

𝑑,𝑡 ), (7.8)

Δ𝑒𝜉,aFRR+

𝑑,𝑡 = (𝑝𝜉
𝑑(𝜆DA

𝑑,𝑡 + Δ𝜆aFRR+

𝑑,𝑡 ) − 𝑝𝜉
𝑑(𝜆DA

𝑑,𝑡)) ⋅ Δ𝑡 ⋅ 𝑓 aFRR+

𝑡 (𝜋energy,aFRR+

𝑑,𝑡 ), (7.9)

Δ𝑒𝜉,exp
𝑑,𝑡 = Δ𝑒𝜉,DA

𝑑,𝑡 + Δ𝑒𝜉,aFRR−

𝑑,𝑡 + Δ𝑒𝜉,aFRR+

𝑑,𝑡 (7.10)

These energy deltas serve as input to the fitness function presented in the next step F2.

Relation Between Devices and Storages

Device configurations where multiple devices are connected to one storage and are
represented by one device genotype can be treated as a particular case, as presented in
Section 7.3.1. We showed that the condensing boiler is a special case in the considered
scenario. Divergent to the energy delta calculation above, we derive two profiles for
the condensing boiler based on the CHP plant’s genotype: a DA heat energy delta profile
and a DA gas energy delta profile. We use the CHP plant’s expected hourly heat supply
Δ𝑒heat,expchp,𝑡 as calculated above to derive the condensing boiler’s heat demand within the
genotype-phenotype transformation: If on the basis of the CHP plant’s genotype, the
sum of energy contained in the related thermal heat storage (𝑒heat,expchp,𝑡 ) and the CHP
plant’s expected heat delta (Δ𝑒heat,expchp,𝑡 ) minus the facility’s heat demand (𝑝heatdemand,𝑡 ⋅ 1h)
results in a SOC below 𝑆𝑂𝐶, the condensing boiler is used to cover the lacking heat
supply (Δ𝑒heat,expcondBoiler,𝑡) for the corresponding time step 𝑡. Then, the condensing boiler’s
day-ahead expected gas demand can be calculated as follows (based on the modeling of
the condensing boiler in Section 4.4.5):

∀𝑡 ∈ {0, 1, … , 𝑇} ∶ Δ𝑒gas,DAcondBoiler,𝑡 =
Δ𝑒heat,expcondBoiler,𝑡

𝜂th
condBoiler

(7.11)

In this particular case, the other profiles introduced in the previous sections are
irrelevant, as the condensing boiler is only associated with the energy forms heat and
gas.

183



Chapter 7 Design and Implementation of a Genetic Algorithm

7.5.2 F2: Fitness Function
The genotype-phenotype mapping separates the overall bit string into different problem
parts and converts them to profiles. These profiles serve as the basis for the market
bids. The expected energy costs of a solution candidate can be calculated based on the
derived expected energy delta profiles (as calculated in step F1). In the terminology of
genetic algorithms, the classical objective is increasing the fitness of individuals. In our
scenario, lower costs represent higher fitness. Consequently, we define fitness as the
negation of the expected energy costs.

The objective function depicted in Equation 6.1 allows calculating a solution candi-
date’s overall expected energy costs. For a better understanding, Table 7.5 illustrates
the single parts of the genetic algorithm’s cost function structured by the previously
determined profiles that (indirectly) represent the decision variables. Inputs to the
fitness function are shown in the first two columns. The first column shows the decision
variables optimized by the genetic algorithm, and the second column shows the related
exogenous inputs required for calculating the resulting cost components. The last four
columns show the outputs of the fitness function based on the given profiles. The first
of them shows the calculation of costs regarding the DA spot and the aFRR balancing
market. The second shows the calculation of grid fees. It has to be noted that the sum of
all grid fee components within a time slot cannot turn negative (see Equation 6.6). The
third column shows the calculation of gas costs. The last column shows the calculation
of the penalty costs. Finally, the sum of the cost components represents a solution’s
overall expected energy costs.

Additional cost components can be added to the fitness function without fundamental
changes to the genetic algorithm’s overall problem structure or complexity. For example,
cost components may be introduced to cover power-peak dependent grid fees, costs
due to additional wear introduced through increased deviations from device-optimal
operating states, or investment costs. For example, suppose a battery storage system
can perform a certain number of charging cycles over its lifespan. In that case, this
information can be utilized to attribute investment costs to a charging cycle.
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Table 7.5: Fitness function input and output structured by the GA-optimized profiles.

Input to fitness function: Profiles Output from fitness function: Costs

Optimized profiles Predictions Market costs Grid fees Gas costs Penalty costs

D
A
sc
he

du
le DA power level profiles

(↪ 24 power levels per
device participating in the
DA scheduling)

Uncontrollable
facility demand
(↪ 24 power
values)

∑24
𝑡=1

((𝑝el
demand,𝑡 ⋅ Δt

+ ∑𝑑∈𝔻 Δ𝑒el,DA𝑑,𝑡 ) ⋅ 𝜋DA
𝑡 )

∑24
𝑡=1

((𝑝el
demand,𝑡 ⋅ Δt

+ ∑𝑑∈𝔻 Δ𝑒el,DA𝑑,𝑡 )

⋅𝜋gridFees
𝑡 )

∑24
𝑡=1 ∑𝑑∈𝔻

(Δ𝑒gas,DA𝑑,𝑡

⋅𝜋gas)
Energy prices for
DA market
(↪ 24 energy
prices)

N
eg

at
iv
e
aF

RR

aFRR– capacity level
profiles
(↪ 6 power level deltas
per device providing
aFRR–)

Mapping of
aFRR– energy
prices to the
expected aFRR–

activation shares

∑24
𝑡=1 ∑𝑑∈𝔻

(Δ𝑒el,aFRR
−

𝑑,𝑡 ⋅ 𝜋aFRR−,energy
𝑑,𝑡

+𝑝el,aFRR−

𝑑,𝑡 ⋅ 𝜋aFRR−,capacity
𝑑,𝑡 )

∑24
𝑡=1 ∑𝑑∈𝔻

(Δ𝑒el,aFRR
−

𝑑,𝑡

⋅𝜋gridFees)

∑24
𝑡=1 ∑𝑑∈𝔻

(Δ𝑒gas,aFRR
−

𝑑,𝑡

⋅𝜋gas)

∑
𝑑∈𝔻

𝑐penalty𝑑

aFRR– energy price
profiles
(↪ 6 energy prices per
device providing aFRR–)

Po
si
tiv

e
aF

RR

aFRR+ capacity level
profiles
(↪ 6 power level deltas
per device providing
aFRR+)

Mapping of
aFRR+ energy
prices to the
expected aFRR+

activation shares

∑24
𝑡=1 ∑𝑑∈𝔻

(Δ𝑒el,aFRR
+

𝑑,𝑡 ⋅ 𝜋aFRR+,energy
𝑑,𝑡

+𝑝el,aFRR+

𝑑,𝑡 ⋅ 𝜋aFRR+,capacity
𝑑,𝑡 )

∑24
𝑡=1 ∑𝑑∈𝔻

(Δ𝑒el,aFRR
+

𝑑,𝑡

⋅𝜋gridFees)

∑24
𝑡=1 ∑𝑑∈𝔻

(Δ𝑒gas,aFRR
+

𝑑,𝑡

⋅𝜋gas)
aFRR+ energy price
profiles
(↪ 6 energy prices per
device providing aFRR+)

Overall expected costs = ∑ of the cost components above185
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7.5.3 Generation of DA Market and aFRR Market Bids
After the genetic optimization cycle is terminated, the solution candidate with the highest
fitness is converted into the final DA spot market and aFRR balancing market bids. These
bids can be submitted directly to the markets or indirectly via a third-party intermediary
that acts as an aggregator and abstracts market access barriers. In Section 4.1.3, we
presented the general format of the aggregated one-hour DA spot market bids (ℬDA

𝑡 )
and the device-specific four-hour aFRR balancing market bids (ℬaFRR−

𝑑,𝑡 and ℬaFRR+

𝑑,𝑡 ).
Consequently, the daily optimization submits tuples in the following form to the market:

ℬDA
𝑡 = (𝑝el,DA𝑡 , 𝜋DA

𝑡 ) (7.12)

ℬaFRR−

𝑑,𝑡 = (𝑝el,aFRR
−

𝑑,𝑡 , 𝜋aFRR−,energy
𝑑,𝑡 , 𝜋aFRR−,capacity

𝑡 ) (7.13)

ℬaFRR+

𝑑,𝑡 = (𝑝el,aFRR
+

𝑑,𝑡 , 𝜋aFRR+,energy
𝑑,𝑡 , 𝜋aFRR+,capacity

𝑡 ) (7.14)

In Equation 7.12, 𝑡 represents a one-hour slot, and in Equations 7.13 and 7.14 it
represents a four-hour slot, as visualized in Figure 6.1.

We submit none or one DA spot market bid per one-hour product slot. The energy
price 𝜋DA

𝑡 is set to the predicted energy price (see Section 4.2, assumption ADA1). The
bid’s power 𝑝el,DA𝑡 is set to the sum of the facility’s uncontrollable electric power demand
plus the aggregated power based on the DA power level profiles of all optimized devices
𝑑 ∈ 𝔻.

We submit none or one aFRR market bid per aFRR direction and four-hour product
to the aFRR market. For each device, the bid’s aFRR capacity price 𝜋aFRR−,capacity

𝑑,𝑡 or

𝜋aFRR+,capacity
𝑑,𝑡 is set to the predicted aFRR capacity price (see Section 4.3.1, assumption

AaFRR6). The bid’s aFRR capacity 𝑝el,aFRR
−

𝑑,𝑡 or 𝑝el,aFRR
+

𝑑,𝑡 is set based on of the device’s aFRR
capacity level profile. In parallel, the bid’s aFRR energy price 𝑝el,aFRR

−

𝑑,𝑡 or 𝑝el,aFRR
+

𝑑,𝑡 is set
based on the device’s aFRR energy price profile.

7.6 Problem-specific Crossover Operator
In contrast to the mutation operator, which is primarily intended to bring randomness
and variation into the population, the crossover operator is intended to mix parts of
solution candidates that are characterized by a high fitness. We already showed that the
typical way of implementing the mutation is by flipping bits and explained that we chose
the 𝑛-point crossover (in Section 7.2.3). Unlike the mutation operator, the crossover
operator should maintain the selected characteristics of the corresponding individuals.
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As visualized in Figure 7.2, the overall bit string consists of multiple interdependent
problem parts: aFRR capacity level profiles relate to DA power level profiles, and aFRR
energy price profiles relate to aFRR capacity level profiles. Consequently, a 𝑛-point
crossover cutting the whole bit string (composed of multiple problem parts) at random
positions would remove the interdependency between the different profiles. Therefore,
we implemented a problem-specific crossover. It considers knowledge about the problem
structure and allows for keeping the interdependencies between the different problem
parts.

Figure 7.3 visualizes the concept of the proposed crossover operator: Figure 7.3a
shows the profiles of two-parent solution candidates, and Figure 7.3b shows the resulting
profiles of the two offspring solution candidates. As all genotypic problem parts represent
profiles over time, the crossover takes two randomly chosen times 𝑖, 𝑗 ∈ {4, 8, 12, … , 20}
and cuts each schedule before the respective hours 𝑖 and 𝑗. The crossover points are
chosen as multiples of four hours as this is the aFRR product time slot. This way, aFRR
capacities (defined by the aFRR capacity level profiles) and aFRR energy prices (defined
by the aFRR energy price profiles) are not divided, and the relation to the DA power
schedule (defined by the DA power level profile) is maintained. Based on the two
randomly chosen crossover points 𝑖 and 𝑗, the offspring individuals are generated as
visualized by inheriting parts from each of the two parents in an alternating way.

After a detailed explanation of the genetic algorithm, we parameterize and evaluate
the optimization in the upcoming Chapter 8.
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Figure 7.3: Problem-specific n-point crossover that maintains interdependencies between
related profiles: each dedicated profile of two solutions candidates is cut at the two identical
randomly chosen hours that define the positions at which the respective profiles are mixed in
an alternating way.
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CHAPTER 8
Evaluation and Assessment
of the Optimization Potential

In this chapter, we evaluate the proposed optimization that utilizes energetic on-site
prosumer flexibility incentivized by the DA spot and aFRR balancing market. The
evaluation is based on the implemented simulation of the grid and facility side entities
(presented in Chapter 4), the analyzed aFRR activation uncertainties (presented in
Chapter 5), the formulated optimization problem for prosumer flexibilization (presented
in Chapter 6), and the proposed and implemented genetic algorithm for solving it
(presented in Chapter 7). We begin the chapter with an overview of the simulation flow
and the parametrization of the defined models and the genetic algorithm, including
corresponding data sources. The subsequent assessment of the optimization potential
focuses on four major aspects. At this, we concentrate on the battery storage (as a
generic representation of a flexibility buffer) and the CHP plant with the condensing
boiler (as an example for coupling the energy forms electricity, heat, and gas). The four
major aspects are as follows. Firstly, we provide a qualitative discussion of resulting
device schedules and market bids, and identify optimization patterns. Secondly, after
understanding the optimization and the behind trade-offs, we provide a quantitative
discussion of the realized cost savings. In doing so, we examine how the different cost
components contribute to the overall cost-saving potential. Thirdly, we analyze the
impact of the device dimensioning on the optimization potential, hence giving insights
into the scalability of the economic benefits. Fourthly, we conclude the evaluation with a
sensitivity analysis that sheds light on the optimization potential in future DA spot and
aFRR balancing market scenarios. The investigated market scenarios are motivated by
the highly dynamic market environment and changing competition due to new actors
entering the market.
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8.1 Simulation Flow

The simulation flow and the integration of the optimization are presented in Figure 8.1.
We simulate a whole year in one-minute granularity. This covers the simulation of the
devices and market side, including the activation of aFRR bids as presented in Section 4.3.
Each day, in the first simulation step at 0:00 h, we trigger and execute the optimization
(see assumptions ADA4 and AaFRR3 in Sections 4.2 and 4.3.1). The resulting DA spot
and aFRR balancing market bids are logged in for the simulation of the upcoming day.
In an operational optimization, the bids would be submitted to the DA spot and aFRR
balancing market (or an intermediary aggregator).

1 year (day by day)

01/01

t (days)

31/12

…
day by day

1 day (minute by minute)

Device n
Device 2

Device 1 (example associated with three energy forms)
Power

t (minutes)

Schedules

Electric

Heat

Gas

Cold

Each minute of day: Simulation of devices and aFRR activations
a) Check for activation of submitted aFRR bids according to aFRR demand
b) Potentially adjust schedules according to the offered aFRR capacity
c) Execute the potentially adjusted, alternatively the expected, schedules

Minute 0:00 h: Optimization and submission of market bids

aFRR+

activation
aFRR–

activation

0:00 h 23:59 h

Figure 8.1: Simulation flow and the integration of the optimization.

The assumptions for the simulation and optimization have already been presented in
Sections 4.2 and 4.3. We showed that, in particular, the lead time between trading and
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provisioning is a simplifying assumption (see also Figure 2.2). The minute-based aFRR
simulation checks whether submitted aFRR bids are activated. In the case of activation
of an aFRR bid, the requested aFRR capacity is provided by adjusting the corresponding
device schedule(s). Depending on the device, an aFRR activation may involve further
energy forms than electricity (i. e., heat, cold, and gas). As visualized in Figure 8.1, all
profiles of a device must be adjusted according to the aFRR activation. For example, if a
CHP plant’s electric power level is reduced, it consumes less gas and generates less heat.
Following this procedure, aFRR activations may result in deviation of the day-ahead
expected from the finally activated device schedule.

In the evaluation scenarios presented below, we simulate a whole year. The daily
optimizations are based on the devices’ simulated SOCs based on the realized device
schedules. The final uncontrollable facility demands are assumed to be perfectly pre-
dicted (see Section 4.4.1). We do not quantitatively investigate discrepancies between
the predicted and actual final facility demands. Instead, for a qualitative discussion of
uncertainties, we refer to Section 6.3.

For quantifying the financial optimization potential, we use historical market data.
We investigate how the presented optimization would have behaved in the past if it
had been executed. Using historical data for evaluating optimization potentials is a
common strategy referred to as backtesting [Sch18]. Following this approach, we
simulate an operational prosumer optimization based on the replication of device and
market interfaces found in practice, which among others, involves the reaction to aFRR
activation signals (see Section 4.1). This distinguishes this work from more abstract
potential analyses found in the literature.

8.2 Parameter Definition & Data Sources
In the following, we parametrize device models, facility demands, and the market and-
grid side models, which leads to the definition of the investigated evaluation scenarios.

8.2.1 Flexible Facility Devices
Devices commonly found in commercial facilities are modeled in Section 4.4. We showed
that the exemplary modeled devices cover a wide range of energy forms (see Table 4.1).
In the evaluation, we focus on the battery storage system (which can be considered as
a generic representation of a flexibility buffer that is constrained by a minimum and
maximum SOC) and the CHP plant (which is a device coupling multiple energy forms).
As commonly found in practice, we assume the CHP plant to be operated in combination
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with a condensing boiler. Consequently, in the evaluation setup, the heat energy storage
is shared by the CHP plant and the condensing boiler. After the introduction of the
device models in Section 4.4, we now present their parametrization for the evaluation
in Table 8.1.

Table 8.1: Default configuration of the device models in the baseline scenario.

Parameter Definition

Battery storage system

𝐶 1000 kWh
𝑝 200 kW
𝑝 −200kW
𝑛 3 steps/direction
𝜂(𝜆) {−3, −2, −1, +1, +2 + 3} ↦ 0.95

Heat energy storage

𝑉 40000 L
𝑇 90 °C
𝑇 50 °C
𝜌 𝜌water = 998 kg/m3

𝑐 𝑐water = 4182 J/(kgK)

CHP plant

𝜔 60min
𝑝gas 1000 kWgas
𝑝gas 0 kWgas
𝑛 8 steps
𝜂el(𝜆) {1, 2, 3, 4, 5, 6, 7} ↦ 0.36
𝜂th(𝜆) {1, 2, 3, 4, 5, 6, 7} ↦ 0.54

Condensing boiler

𝑝gas 2474 kW
𝜂th 0.9

The choice of parameters is reasoned as follows:

• Battery storage system: The power-to-capacity ratio is chosen based on common
values for battery storage systems [Fig+20]. It also represents typical power-to-
capacity ratios for AC-charged electric vehicle batteries. The maximum charge and
discharge power and the capacity are chosen to represent large industrial battery
storage systems [Fig+20]. The charge and discharge efficiency 𝜂(𝜆) is presented
as one-way efficiency and is based on a literature review [Luo+15; Fer+13]. The
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discretization of the power level steps results from our modeling, and we decided
to distinguish three power levels for each direction, charging and discharging.

• Heat energy storage: We define the thermal energy storage volume following
traditional sizing guidelines based on the below chosen CHP plant. Given the
chosen temperature range of 40K, this represents a thermal storage potential of
1 856 kWhheat (see Section 4.4.3.1 for an explanation of the calculation). The
physical constants are based on standard literature [HMS17].

• CHP plant: We define a gas-driven CHP plant with a constant power-to-heat-
ratio (i. e., constant electric and thermal efficiencies independent of the power
level). The relation between gas consumption and electric and thermal generation
is derived from a real CHP plant (Viessmann Compact CHP unit Vitobloc 200,
EM-238/363). It is in line with values from the literature [ASU15]. We set the
minimum gas power 𝑝gas = 0 kW, which means the CHP plant can reduce its gas
power down to zero also within a time slot of 𝜔 = 60min. This is a simplifying
assumption that simplifies the qualitative schedule analysis. The discretization of
the power level steps results from our modeling, and we decided to distinguish
eight power levels. The CHP plant sizing is based on the conventional sizing
recommendation, according to which CHP plants should run about 6 000h per
year. We used the load duration curve to determine the corresponding CHP plant
size based on the facility demands (presented in Section 8.2.2). In the case of a
heat-driven operation and the assumed power-to-heat ratio, a runtime of 6 000 h/a
is reached with a CHP plant characterized by 𝑝gas = 322 kW and in case of an
electricity-driven operation by a CHP plant with 𝑝gas = 1294 kW. We define
𝑝gas = 1000 kWh and analyze the impact of the CHP plant sizing in Section 8.6.2.

• Condensing boiler: The condensing boiler’s efficiency is based on average ef-
ficiency values from literature [SB18]. It is dimensioned to be able to always
satisfy the facility’s maximum heat energy demand 𝑝heatdemand,𝑡 (as presented in the
upcoming Section 8.2.2).

It is worth mentioning that the large number of interlinked decision variables and
parameters relevant for the DA spot and aFRR balancing market optimization makes
the optimization results very parameter-sensitive. Consequently, we focus on the core
contribution of this thesis (the simultaneous DA scheduling and aFRR provisioning) and
do not further consider part-load dependent efficiencies in the evaluation. However, it is
notable that we considered part-load dependent efficiencies in both the device modeling
introduced in Chapter 4 and the optimization algorithm proposed in Chapter 7.
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8.2.2 Facility Demands

The facility’s electricity demand 𝑝eldemand,𝑡 and heat demand 𝑝heatdemand,𝑡 (see Section 4.4.1)
are based on measured one-hour demands from an exemplary office building complex
in Germany [Fac09]. Both demands are scaled to an electricity demand of 5GWh/a.
Figures 8.2a and 8.2b visualize the final uncontrollable electricity and heat energy
demands over the considered exemplary year. It can be seen that the final uncontrollable
electricity demand has a similar pattern around the year. The final uncontrollable
heat energy demand results from space and process heating. Consequently, it can be
recognized that it is significantly higher in winter months than in summer months. Key
characteristics of the energy demand are summarized in Table 8.2.

(a) Electric energy demand

(b) Heat energy demand

Figure 8.2: Uncontrollable electric and heat energy demands used in the evaluation in one-hour
granularity; based on measurements from a office building complex in Germany [Fac09].

8.2.3 Market and Grid-Side Characteristics

The modeling of the DA spot market (see Section 4.2) and the aFRR balancing market
including the simulation of aFRR bid activations (see Section 4.3.2) has already been
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Table 8.2: Characteristics of the hourly energy demands used in the evaluation.

Electricity demand (kWh) Heat demand (kWh)

Minimum 342.5 0.0
Maximum 1121.4 2 226.0

Mean 570.8 514.8
in winter (01/12 – 29/02) 537.0 1 085.3
in spring (01/03 – 31/05) 563.2 418.9
in summer (01/06 – 31/08) 624.7 120.0
in autumn (01/09 – 30/11) 557.2 446.1

Standard deviation over whole year 149.1 445.8

Total yearly demand 5000.0MWh 4509.3MWh

presented. Table 8.3 summarizes the introduced parameters representing the grid and
market side and presents the corresponding data sources used in the evaluation.

Reflecting realistic conditions, we define the energy-related surcharges for grid fees and
further taxes as well as the gas energy price as constant over the year (see Section 6.1.2).
We do not consider the EEG reallocation charge in the energy-related surcharges as
this parameter is subject to changes based on relatively short-term political decisions.
As of today, depending on the year of commissioning and the number of utilization
hours, CHP plants are subject to the EEG reallocation charge. However, depending on
the applicable regulatory scheme, CHP plants may only be charged a percentage of
the EEG reallocation charge. Consequently, focusing on the relevant contributions, we
assume a fixed energy-related surcharge for grid fees and further taxes (𝜋gridFees) that
is attributed to each kilowatt-hour the facility consumed from the grid. To properly
account for potential interdependencies between DA spot and aFRR balancing market
conditions, we chose market data from a year for which we had all data available
(year 2016). The minute-based simulation of aFRR activations is based on the data
consolidation presented in Section 4.3.2. The expected activation share used as input to
the optimization is assumed to be constant over the whole year.

We limit the set of aFRR energy prices that are considered as decision variables by the
optimization to realistic aFRR energy prices. Therefore, we define the set of possible
aFRR energy prices for negative and positive aFRR as follows (EUR/MWh):

ℿaFRR− = {−40, −20, 0, 20, 40, 60, 80, 100} (8.1)

ℿaFRR+ = {−40, −20, 0, 20, 40, 60, 80, 100} (8.2)
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Table 8.3: Evaluation parameters for the DA spot and aFRR balancing markets.

Parameter Granularity Parametrization / data source

DA spot market prices 𝜋DA
𝑡 hourly Historic EPEX DA auction prices, year 2016

[EPE20a] (see Figures 8.3a and 8.21b)

Expected hourly aFRR
activation share
𝑓 aFRR+/−(𝜋aFRR+/−,energy

𝑡 )

yearly Historic aFRR bids [Deu20h] and historic aFRR
demand, year 2016 [Deu20g]

Marginal aFRR energy price
�̂�aFRR+/−,energy

𝑡

minutely Combination of historic aFRR bids [Deu20h] and
historic aFRR demand [Deu20g], year 2016

Marginal aFRR capacity prices
�̂�aFRR+/−,capacity

𝑡

hourly Historic aFRR capacity prices, year 2016 [Deu20h]
(see Figure 8.3b)

Grid fees and related
surcharges 𝜋gridFees

constant Historic price for target group, year 2020 [Bun21]:
10.32Ct/kWh;

Gas energy price 𝜋gas constant Average historic price for target group, year 2020
[Bun21]: 4.56Ct/kWh

This selection covers the relevant range of expected percentage activation shares
(as visualized in Figure 5.2a). We choose eight prices represented by three bits in the
genetic algorithm (see Section 7.3.4). We did not choose a higher granularity as a
more fine-granular differentiation of activation shares is not expected to result in further
benefits (see Figure 5.3)

Figure 8.3a provides insights into the DA spot market energy prices of the exemplary
considered year. Due to potential interdependencies between the DA spot and the aFRR
balancing market, the same time frame was chosen. In the considered year, the DA
spot market price was characterized by an average of 28.98 EUR/MWh, a minimum
of −130.09 EUR/MWh, a maximum of 104.96 EUR/MWh, and a standard deviation of
12.48 EUR/MWh. A closer look at the distribution of the DA spot market energy prices
over the considered year in presented in Figure 8.21b.

Figure 8.3b provides insights into the aFRR balancing market capacity prices of the
exemplary considered year. It is worth noting that the used aFRR capacity prices (from
year 2016) are based on weekly tendering periods as well as peak tariff (HT) and off-peak
tariff (NT) products. In order to fit the available market data to the assumed and, in
the meanwhile, available market design with daily tendering periods and four-hour
product slots, we linearly scaled down the historical aFRR capacity prices (as described
in Section 4.3.1 in assumption AaFRR6).

The energy-based grid fees and related surcharges chosen in Table 8.3 are common for
facilities with less than 2,500 annual utilization hours. In this context, it is worth noting
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that the facility’s uncontrollable electricity demand presented in Figure 8.2a is subject
to (seasonal) adjustments depending on the CHP plant operation. Capacity-based grid
fees are not in the focus of the evaluation. However, in the case of annual utilization
hours above 2 500h, they provide financial incentives for peak load reductions (see also
discussion in Section 3.1.1).

(a) DA spot market energy prices (data: [EPE20a])

(b) aFRR balancing market capacity prices (data: [Deu20h])

Figure 8.3: Overview of the prices used in the evaluation in one-hour granularity.

8.2.4 Investigated Scenarios

Based on the above parameter definitions, we define different scenarios. An unoptimized
baseline scenario sets the reference for the cost saving potential. The baseline is compared
to different optimized scenarios. In the course of the evaluation, we distinguish the
following three types of optimized scenarios:

1. EPEX-only optimized: The optimization is only incentivized by the EPEX DA spot
market.
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2. Combined EPEX+aFRR optimized, expected: The optimization is simultaneously
incentivized by the EPEX DA spot market and the aFRR balancing market. The
results are represented as expected by the optimization.

3. Combined EPEX+aFRR optimized, realized: The optimization is simultaneously
incentivized by the EPEX DA spot market and the aFRR balancing market. The
results are represented as realized after the one-minute simulation of aFRR bid
activations. This requires a transformation from expected EPEX+aFRR schedules
to realized EPEX+aFRR schedules (as explained in Section 8.1).

Orthogonal to the combined EPEX+aFRR optimizations, we distinguish two regula-
tory schemes regarding energy-related surcharges for the facility’s increased electricity
consumption in the case of negative aFRR activation (for a further discussion of the
regulatory schemes, please refer to Section 6.1.2):

a. Energy-related surcharges for negative aFRR energy: Electric energy consumed
via negative aFRR activation is subject to energy-related surcharges for grid fees
and further energy-related price components.

b. No energy-related surcharges for negative aFRR energy: Electric energy con-
sumed via negative aFRR activation is not subject to energy-related grid fees and
further energy-related price components.

In the following evaluation, we compare the results of the different optimized scenarios
to the unoptimized baseline scenario. In the unoptimized baseline scenario, we consider
the facility’s uncontrollable electric and heat energy demand (𝑝eldemand,𝑡 and 𝑝heatdemand,𝑡) as
well as the CHP plant (𝑑chp) and the condensing boiler (𝑑condBoiler) with a corresponding
heat buffer (𝑑thBuffer,heat) to satisfy these demands. No battery storage is used in the
unoptimized baseline scenario.

For the operation of the CHP plant and the condensing boiler in the unoptimized base-
line scenario, we define a naive predictive optimization. It guarantees the satisfaction
of the facility’s heat energy demand as follows: The CHP plant checks hour by hour
whether the associated heat buffer is expected to fall below the minimum temperature
in the upcoming hour. Therefore, it uses the (perfect) thermal demand prediction for
the upcoming hour. If the minimum temperature is expected to be undercut within the
upcoming hour 𝑡, the CHP plant is turned on to the highest power level, i. e., 𝜆chp,𝑡 = 𝜆chp.
If the generated thermal heat energy is not enough to satisfy the heat energy demand,
the condensing boiler is additionally used to satisfy the lacking demand that is required
to reach the minimum storage temperature 𝑇heat. The unoptimized baseline scenario
does neither consider potential cost savings through time-variable DA spot market prices
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nor potential cost savings through aFRR provisioning. The cost savings in the upcoming
sections are compared to this naive baseline scenario. As the facility’s absolute energy
costs depend on the overall uncontrollable facility demands, the evaluation focuses on
the cost difference compared to the baseline scenario.

8.3 Parametrization of Genetic Operators

In this section, we present the parametrization of the implemented genetic algorithm.
We start with insights into the implementation (in Section 8.3.1), followed by the choice
of crossover and mutation probabilities (in Section 8.3.2), and end with an analysis of
the convergence of the optimization (in Section 8.3.3).

8.3.1 Implementation Details

We implemented the genetic algorithm using the “Java-based framework for multi-
objective optimization with metaheuristics (jMetal)” [DN11; NDV15]. The parametriza-
tion of the genetic algorithm’s building blocks and parameters (as presented in Sec-
tion 7.2) is summarized in Table 8.4. The problem-specific crossover operator (as
presented in Section 7.6) is implemented in two different versions. For the combined
EPEX+aFRR optimization, the crossover time points are aligned to the aFRR product
time slots, i. e., considering intervals in multiples of four hours. For the EPEX-only
optimization, the crossover time points are aligned to the DA spot market product time
slots, i. e., considering intervals in multiples of one hour.
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Table 8.4: Implementation details of the genetic algorithm.

Parameter Implementation

Core algorithm GenerationalGeneticAlgorithm1

Selection BinaryTournamentSelection2

Mutation BitFlipMutation3

Crossover TimeBasedTwoPointCrossoverEpexReserve

and TimeBasedTwoPointCrossoverEpex,
as presented in Section 7.6

Solution encoding BinarySolution4

Fitness function EpexReserveFitnessFunction,
as presented in Table 7.5

Population size 50 (common literature value [Has+19])
Mutation probability as evaluated in Section 8.3.2
Crossover probability as evaluated in Section 8.3.2
Maximum evaluations as evaluated in Section 8.3.3

Corresponding jMetal packages:
1 org.uma.jmetal.algorithm.singleobjective.geneticalgorithm
2 org.uma.jmetal.operator.impl.selection.BinaryTournamentSelection
3 org.uma.jmetal.solution
4 org.uma.jmetal.solution

8.3.2 Crossover and Mutation Probabilities

Figure 8.4 visualizes the impact of different crossover and mutation probabilities on the
fitness of the best solution candidate. Figure 8.4a represents the EPEX-only optimization
and Figure 8.4b the combined EPEX+aFRR optimization. Each data point represents
the cost savings of a full one-year optimization for different mutation probabilities in
the range 0.004–0.020 (Δ = 0.002) and different crossover probabilities in the range
0.0–1.0 (Δ = 0.1). Due to the difference in the bit string length for the EPEX-only
and the combined EPEX+aFRR optimization, we investigated the two cases separately.
Table 8.5 provides an overview of the number of bits. It can be seen that, in the
considered configuration, the EPEX-only optimization is represented by 𝑛 = 72 bits and
the combined EPEX+aFRR optimization by 𝑛 = 132 bits.
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Figure 8.4: Parametrization of crossover and mutation probability: fitness of best solution
candidate after 10 000 evaluations; example of CHP plant.

Table 8.5: Parametrization of the bit string length for the considered devices.

Optimized profiles Bits per device

EPEX-only opt. EPEX+aFRR opt.

DA power level profile 24 ⋅ 3 24 ⋅ 3
aFRR− capacity level profile 0 6 ⋅ 2
aFRR+ capacity level profile 0 6 ⋅ 2
aFRR− energy price profile 0 6 ⋅ 3
aFRR+ energy price profile 0 6 ⋅ 3

Total 72 bits 132 bits

1 / total number of bits 0.013 88 0.007 58

A common recommendation is setting the mutation probability to 1/𝑛, with 𝑛 rep-
resenting the bit string length [Wei15]. In Figure 8.4, we visualized the surrounding
probability areas. After a comprehensive analysis of the promising probability areas, we
decided to use the following probabilities in the evaluation runs. For both optimization
scenarios, we use the crossover probability of 0.9. For the EPEX-only optimization,
we use the mutation probability of 0.011 (comparison: 1/𝑛 = 0.013 88) and for the
EPEX+aFRR optimization we use the mutation probability of 0.009 (comparison: 1/𝑛

= 0.007 58). While optimum crossover and mutation probabilities are specific to the
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problem, the identified values are in line with experiences reported in the literature
[Has+19].

8.3.3 Convergence of the Optimization
Figure 8.5 visualizes the fitness of the solution candidate with the highest fitness, i. e.
the highest cost savings, after different numbers of evaluations. Figure 8.5a represents
the EPEX-only optimization and Figure 8.5b the combined EPEX+aFRR optimization.
Each data point represents the average of ten one-month optimization runs based on a
population size of 50. Both scenarios point out that the fitness improvement between
two generations is relatively high in the first generations and then slowly decreasing
in the following, until ending in stagnation once a certain number of evaluations is
reached.

0 €

50 €

100 €

150 €

200 €

250 €

300 €

0 10,000 20,000 30,000 40,000 50,000

C
os

t s
av
in
gs

Number of evaluations

Average of 10 monthly optimization runs (with
indicators representing ± 2 standard deviations)

(a) EPEX-only optimization

-400 €

-200 €

0 €

200 €

400 €

600 €

800 €

1,000 €

0 10,000 20,000 30,000 40,000 50,000

C
os

t s
av
in
gs

Number of evaluations

Average of 10 monthly optimization runs (with
indicators representing ± 2 standard deviations)
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Figure 8.5: Analysis of the impact of the number of evaluations on the solution quality;
example of battery storage system.

Comparing the EPEX-only and the combined EPEX+aFRR optimization, it is observable
that the EPEX-only optimization converges faster. Furthermore, it can be seen that the
standard deviation of the ten optimization runs is significantly lower in the case of the
EPEX-only optimization. In addition, it can be seen that the combined EPEX+aFRR
optimization results in a cost increase compared to the unoptimized baseline reference
scenario in the case of a small number of only 1 000 evaluations. These differences
between the EPEX-only and the combined EPEX+aFRR optimization can be explained
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by the larger search space of the latter. Based on these findings, we decided to stop
the optimization runs after 35 000 evaluations in both optimization scenarios. After
this point, only very slight fitness improvements can be recognized. On this basis,
the time required for the daily optimizations and the minute-by-minute simulation of
aFRR activations over one year lies in the area of a few minutes using an up-to-date
personal computer. However, it can be seen that, depending on time and resource
requirements, the number of evaluations could be decreased, in particular for the
EPEX-only optimization.

In this qualitative discussion we only look at the predominant regulatory scheme
of energy-related (grid fee) surcharges for the increased consumption resulting from
negative aFRR activation.

8.4 Qualitative Discussion of Optimized Schedules &
Identification of Patterns

We start the discussion of the optimization potentials with a qualitative analysis of
selected schedules, which allows for identifying recurring optimization patterns. Then,
in the upcoming Section 8.5, we provide a quantitative analysis of the realized cost
savings and different cost components.

For a better understanding, the charts presented in the following show the EPEX
power schedules, the expected and realized aFRR− power schedules, and the expected
and realized aFRR+ power schedules separately. Regarding a device’s final power level,
it is essential to understand that the power values of the expected and realized aFRR
schedules have to be seen relative to the power values of the related EPEX schedule.
Consequently, for a given point in time in the presented charts, the sum of the three
power schedules (DA power + aFRR− power + aFRR+ power) results in the overall
power demand or supply of the respective device.

As constraint handling using a penalty function (as presented in Section 7.4.4) is a
soft constraint handling technique for which no formal guarantee is provided, it is worth
mentioning that the SOC constraints have been ensured in all final solution candidates.

8.4.1 Battery Storage System

In this section, we analyze schedules resulting from the EPEX-only optimization and the
combined EPEX+aFRR optimization. This allows us to provide a summary of identified
optimization patterns.
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It is important to understand that the considered prosumer scenario assumes that
the flexible devices are placed on-site behind the facility’s meter. Therefore, charging
the battery results in grid fees (through an increased facility demand), and discharg-
ing results in reduced grid fees (through a decreased facility demand) as long as the
discharging reduces the facility’s electricity demand (see also Section 4.2, assumption
ADA2).

EPEX-only Optimization Given the cost minimization objective function, the EPEX-
only optimization of the battery storage is exposed to the following situation: Due to
the charge and discharge efficiency 𝜂battery, it is beneficial to charge one kilowatt-hour
for a price of 𝜋DA

𝑡 if the energy available after subtracting the energy losses can later be
sold at a higher price, i. e., a price above 𝜋DA

𝑡 /(𝜂battery(𝜆charge) ⋅ 𝜂battery(𝜆discharge)).

(a) Schedule

(b) Resulting SOC

Figure 8.6: EPEX-only optimized battery storage system: six exemplary one-day charging
schedules and the resulting SOC.

Figure 8.6a shows the optimized battery schedule based on the EPEX prices, and
Figure 8.6b shows the corresponding SOC curve. It can be seen that the battery is
charged in price valleys and discharged in price peaks. It also can be seen that less
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energy is discharged than charged due to the charging inefficiencies that result in a loss
of energy. In Section 6.2.1.2, we explained that we assign a monetary value to the energy
contained in the storage in the last time step of the optimization period to account for
the potential shift of energy from day 𝑡 to day 𝑡 + 1. We rate the energy contained in the
battery storage at the end of optimization period with a value of 2.1 + 𝜋gridFees Ct

kWh . In
the fitness function, this resulting monetary value is subtracted from the expected costs
of a solution candidate. We chose this value based on an analysis of the average DA spot
market price level (as presented in Figure 2.4 for the year 2019) and as 2.0 Ct

kWh is one
of the discretized aFRR energy prices (as presented in Equations 8.1 and 8.2). We found
that, on average, energy procured for 2.1 + 𝜋gridFees Ct

kWh in day 𝑡, is likely to reduce the
costs for the upcoming day 𝑡 + 1 by at least this amount, thus increasing the overall cost
saving.

It can be recognized that the optimization favors a low SOC at the end of the opti-
mization period in the case of high prices towards the end of the day. In contrast, in
the case of low prices towards the end of the day, it can be seen that cheap energy is
charged for the upcoming day. As discussed in Section 6.2.1.2, an alternative option for
determining a target SOC for the end of an optimization period would be using a rolling
optimization horizon that additionally considers the day after the actual optimization
period in the scheduling.

Combined EPEX+aFRR Optimization The simultaneous EPEX+aFRR optimization
has to weigh up between two multiple incentives. On the one side, the overall costs
of a schedule can benefit from aFRR capacity based revenues and aFRR energy based
revenues. However, on the other side, aFRR bids introduce limitations for the usable
SOC band for the DA spot market based scheduling (due to the uncertainty regarding
the aFRR activation, as presented in Section 6.2.3.2).

In the following, we discuss the schedules of two exemplary days. The first day shown
in Figure 8.7 is characterized by a DA spot market price valley followed by a price peak,
both in the second half of the day. The second day shown in Figure 8.8 is characterized
by a DA spot market price valley followed by a price peak, both in the first half of the
day. In both figures, we present the schedules expected at the time of optimization (in
sub figure a), the schedules realized after the minute-based activation of the submitted
aFRR bids (in sub figure b), and the corresponding expected and realized SOC (in sub
figure c).

We see that aFRR is offered on both days, predominantly in the last aFRR slots within
the optimization period. aFRR bids towards the end of the day are a pattern that can
be realized over the whole year. This can be explained by the SOC band limitations
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(a) Expected schedule

(b) Activated schedule

(c) Resulting SOC

Figure 8.7: Combined EPEX+aFRR optimized battery storage system:
exemplary one-day charging schedule with neg. and pos. aFRR bids.

resulting from aFRR bids. The optimization makes this decision as the corresponding
activation uncertainty limits the usable flexibility band: The earlier the product slot
for which an aFRR bid is made, the more restricted the following SOC band that is
available for the EPEX-based scheduling. This effect was also visualized in Figure 6.2.
Consequently, offering aFRR at the end of the one-day optimization periods allows for
better exploitation of EPEX-incentivized charging and discharging in early time steps.
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(a) Expected schedule

(b) Activated schedule

(c) Resulting SOC

Figure 8.8: Combined EPEX+aFRR optimized battery storage system:
exemplary one-day charging schedule with only neg. aFRR bids.

On both exemplary days, we recognize that the optimization results in different end
SOCs for the end of the daily optimization periods. In Figure 8.7, it can be seen that the
optimization results in a relatively high end SOC of about 60% due to the price valley
around 15:00 h, which incentivized charging the battery. Given the relatively high end
SOC, it is possible to offer schedule deviations into both directions and, consequently,
both negative and positive aFRR is offered. In contrast, in Figure 8.8, the optimization

207



Chapter 8 Evaluation and Assessment of the Optimization Potential

results in a relatively low end SOC of about 20%. It can be seen that the energy charged
in the first price valley around 3:00 h is monetized by discharging during the directly
following price peak around 9:00 h. As there is no notable DA spot market price valley
in the second half of the day1, the optimization results in a relatively low SOC for the
end of the day, consequently allowing to benefit from negative aFRR provision. On this
exemplary day, positive aFRR is not offered as it would require a higher SOC at the end
of the optimization period, which the optimization decided to be not worth striving for,
given the competing DA spot market incentives.

Overall, it can be seen that the optimization substitutes energy procurement via the
DA spot market by offering negative aFRR with an energy price below the average
spot market price level. Analogously, it can be recognized that positive aFRR is offered
when it is beneficial compared to a discharging incentivized by DA spot market prices.
Furthermore, it can be seen how the optimization keeps a SOC buffer for handling
the potential extreme aFRR activation cases. The practical implications of the analysis
presented in Section 5.3 can be recognized when comparing the expected and activated
schedules as well as their resulting SOCs.

The discussion of these exemplary schedules clarifies the trade-offs handled by the
optimization. We see how the optimization weighs up between a variety of potential
decisions, simultaneously incentivized by DA spot market prices, aFRR capacity prices,
aFRR energy prices, different aFRR directions, and related activation probabilities, while
considering the device constraints.

Patterns Recognized in the Optimization Analyzing the cost-optimized schedules
reveals the following patterns:

• aFRR is primarily offered in late aFRR product time slots within the optimiza-
tion period: Analyzing device schedules reveals that aFRR is mostly offered in the
last one to three aFRR product slots, depending on the course of DA spot market
prices over the day. As discussed above, this can be well explained by the fact that
providing aFRR capacity limits the freedom for DA scheduling in all time steps after
aFRR provisioning. Therefore, aFRR provision significantly limits the potential
to benefit from EPEX DA price fluctuations. This is presented in Figure 6.2: For
example, when providing 200 kW of negative aFRR with an empty battery with
SOC = 0%, the aFRR-induced energy delta at the end of a four-hour aFRR slot
can be 0 kWh (i. e., SOC = 0%) or 800 kWh (i. e., SOC = 80%). Therefore, at the
end of the four-hour aFRR slot, only a SOC range of 20% points remains available

1Note that the optimization considers charging and discharging inefficiencies.
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for other scheduling incentives. Consequently, the relation between power and
storage capacity is a determining factor for the cost saving.

• DA spot market price valleys in the second half of the optimization period
tend to result in positive aFRR bids: Low spot market prices at the end of the
optimization period tend to result in relatively high end SOCs, as the battery storage
is charged in times of low prices. Consequently, due to the available flexibility to
decrease the SOC, the pattern can be recognized that the optimization benefits
from capacity and energy related aFRR revenues by providing positive aFRR. The
exact aFRR bids depend on the course of the spot market prices. Depending
on the end SOC, positive and negative aFRR can be recognized to be offered
simultaneously.

• DA spot market price peaks in the second half of the optimization period tend
to result in negative aFRR bids: Analogously, high spot market prices at the end
of the optimization period tend to result in relatively low end SOCs, as the battery
storage is discharged in times of high prices. Consequently, due to the available
flexibility to increase the SOC, the pattern can be recognized that the optimization
benefits from capacity and energy related aFRR evenues by providing negative
aFRR.

• Regulation regarding grid fees and energy-related surcharges in case of neg-
ative aFRR activation is crucial for the optimum energy price of negative
aFRR bids: If no energy-related surcharges arise for the increased consumption
based on negative aFRR activations, charging via aFRR activations is significantly
cheaper than charging via DA spot market prices. Then, the optimization sub-
stitutes charging via the DA spot market by charging via negative aFRR energy.
The optimization enforces this by bidding low, i. e., negative aFRR energy prices
for negative aFRR. This represents paying for negative aFRR activations, which
however, due to the savings of energy-related grid fees and surcharges is cheaper
than DA spot market procurement.

• Attributing a monetary value to the SOC at the end of the optimization period
is crucial for benefiting from negative aFRR energy: We introduced the strategy
to attribute a monetary value to the energy in the battery storage at the end of
the optimization period (in Section 6.2.1.2). This allows the shifting of cheap
energy from one day to the other. As a consequence, it can be recognized that
the optimization steers the energy price of negative aFRR bids such that negative
aFRR activations substitute DA spot market procurement. However, it is crucial
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to attribute a monetary value to the energy contained in the storage at the end
of the optimization period. Otherwise, as aFRR bids are preferably made in the
last aFRR time slots within a day (see above), they are submitted with high aFRR
energy prices, as no benefit can be realized in the optimization period under
consideration. In contrast, when attributing a monetary value to the SOC at the
end of the optimization period, the optimization is able to achieve higher cost
savings by intentionally charging via negative aFRR activations, instead of only
benefiting from the aFRR capacity price based revenues.

• Most days are characterized by at least a partial charge-discharge cycle, also
in case of aFRR provisioning: In tendency, DA spot market prices are low at
night (low demand) and around noon (high PV supply), and high in the morning
and evening hours (as shown in Figure 2.4). As a result, in tendency, the time
periods characterized by relatively low prices around 4:00 h and 15:00 h are used
for spot market incentivized charging. In contrast, discharging can be recognized
in the relatively expensive morning and evening hours around 9:00 h and around
19:00 h. As aFRR bids are primarily made for the late aFRR product time slots
within an optimization period (see above), aFRR provisioning still keeps flexibility
and realizes spot market based scheduling.

This qualitative discussion of the optimization results is supplemented by the quanti-
tative analysis of the realized cost savings in the upcoming Section 8.5.

8.4.2 CHP Plant
In this section, we analyze the optimized CHP plant schedules. Again, we discuss the
EPEX-only and the combined EPEX+aFRR optimization, and in the end, we sum up
identified optimization patterns.

EPEX-only Optimization In Figure 8.9, we see EPEX-only optimized CHP plant sched-
ules of four exemplary summer days that are characterized by a low heat demand.
Figure 8.9a shows the EPEX-only optimized CHP plant and Figure 8.9b the tempera-
ture of the related heat storage, which represents the SOC2. It can be seen that the
optimization successfully shifts the CHP plant runtime into DA spot market price peaks.
The optimization chooses this as it allows substituting energy procurement via the DA
spot market with cheaper on-site generation via the CHP plant. Furthermore, we can
2Note that we defined the lower temperature bound 𝑇 = 50 °C (representing a SOC of 0%) and the
higher temperature bound 𝑇 = 90 °C (representing a SOC of 100%) in Section 8.2.1.
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(a) EPEX-only optimized schedule

(b) Resulting SOC (represented by the heat buffer’s temperature)

Figure 8.9: EPEX-only optimized CHP plant schedules: four exemplary summer days.

recognize that the optimization, in tendency, decides to operate the CHP plant at a high
power level (note the allowed temperature range 40–90 °C of the thermal buffer).

Figure 8.9b shows, as expected, that the SOC (represented by the heat storage’s
temperature) increases in times when the CHP plant is operated. In contrast, the
facility’s endogenously given heat demand results in a reduction of the SOC. In the
visualized days, the thermal buffer’s SOC at the end of each optimization period, i. e. the
end of the day, is close to the maximum allowed SOC. This can be explained by the fact
that one-site CHP-generated electricity is mostly cheaper as soon as the heat is required.
This counts for the vast majority of price situations at the DA spot market. To better
understand the related price levels, we summarized the relevant device parameters and
related costs in Table A.1.

Combined EPEX+aFRR Optimization Analogously, Figure 8.10 shows the combined
EPEX+aFRR optimized CHP plant schedules and the resulting SOC of the same four ex-
emplary summer days (that are characterized by a low heat demand). When comparing
these schedules with the EPEX-only optimized schedules (presented in Figure 8.9), it
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(a) Combined EPEX+aFRR optimized schedule

(b) Resulting SOC (represented by the heat buffer’s temperature)

Figure 8.10: Combined EPEX+aFRR optimized CHP plant: four exemplary summer days.

can be recognized that the CHP plant is operated in DA spot market price peaks, too.
However, it can be recognized that the CHP plant operates at lower power levels and
for a longer time. This means that DA spot market price peaks cannot be utilized as
advantageously as in the case of the EPEX-only optimization, hence resulting in higher
DA spot market procurement costs for the facility. However, operating the CHP plant
at a lower power allows for offering negative aFRR and hence benefiting from aFRR
capacity price and aFRR energy price based revenues. It can be seen that negative
aFRR is offered, which comes along with lower SOC bound requirements as the heat
generation can always be substituted by the condensing boiler. Furthermore, it can be
seen that the optimization ends the optimization periods with relatively high SOCs,
too, as it allows for lowering the EPEX energy procurement costs. In the considered
four days, the optimization does not submit positive aFRR bids. The optimization’s
expectation to lower the CHP plant’s power level through negative aFRR activation can
also be recognized in the expected gas schedule.

In Figure 8.10b, we see the SOC expected during the optimization and the SOC
realized after the simulation of aFRR bid activations. The impact of discrepancies
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between expected and realized aFRR activations on the SOC can be recognized: In some
time slots in which aFRR is offered, the expected and realized SOC drift apart slightly.
Furthermore, it can be seen that each day at 0:00 h, the expected SOC is set to the
real SOC. This is the time when the daily optimization is executed using the simulated
real-time SOC.

Patterns Recognized in the Optimization In Figure 8.11, we provide insights into
the EPEX+aFRR optimized schedules over the whole year considered. Figure 8.11a
shows the EPEX DA spot market power, the negative and positive aFRR power, and the
gas power for the CHP plant. Figure 8.11b shows the related expected SOC as well as
the realized SOC after the simulation of aFRR bid activations.

(a) CHP plant schedules

(b) Resulting SOC

Figure 8.11: Seasonal behavior of the EPEX+aFRR optimized CHP plant schedules.
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In summary, the optimization reveals the following patterns:

• The SOC is optimized to a low level in winter times and a high level in summer
times: This can be explained by the fact that, in winter, the CHP plant’s heat
generation will be directly consumed by the heat demand. There is no incentive
for the condensing boiler to generate more heat than required. In summer, the
CHP plant’s utilization and the resulting cost savings can be increased by utilizing
the buffer storage.

• Negative aFRR is offered around the year: If the CHP plant is operated at a
power level that can technically be decreased, negative aFRR can be offered as the
condensing boiler can substitute the reduced heat generation. Consequently, if it
is economically meaningful, the optimization decides to offer negative aFRR.

• Positive aFRR is offered in times characterized by low EPEX spot market
prices and high heat demands: This can be recognized around the year. If EPEX
DA spot market prices are low, the benefit of substituting DA procurement via the
CHP plant is lower, too. Consequently, if there is enough heat demand or safety
buffer available, the optimization can decide to offer the capacity to turn on the
CHP plant as positive aFRR.

• Positive aFRR is offered in times characterized by relatively high positive aFRR
capacity prices: In the exemplarily presented year presented in Figure 8.11a,
positive aFRR was in particular offered between April and July. This can be
explained by the relatively high marginal aFRR capacity prices in this time frame,
as visualized in Figure 8.3b. The impact of the aFRR price level on the overall cost
saving potential is further analyzed in Section 8.7.1.

• No positive aFRR is offered in times characterized by a low heat demand:
This can be explained by the fact that the heat generated in the extreme aFRR
activation case, i. e. the continuous generation over four hours, has to be either
used or buffered. Otherwise, positive aFRR provision is not possible. In this context,
it is worth mentioning that aFRR activations should not result in the waste of
energy, which to a certain degree is already requested by today’s prequalification
requirements [Deu20e].

• The thermal buffer is a limiting factor for the CHP plant’s utilization rate:
The CHP plant’s utilization is significantly reduced in summer times even if the
operation of the CHP plant would be economically cheaper after weighing up all
cost components (see also Table A.1). In the case of lacking heat demand, the size
of the thermal energy storage is a limiting factor for the maximum utilization rate.
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• In case of low heat demand, the EPEX-only optimization tends to result in
high power levels over a short time period, while the combined EPEX+aFRR
optimization results in lower power levels over a longer time period: This
effect can be well recognized when comparing the exemplary schedules presented
in Figures 8.9a and 8.10a. As reasoned above, this can be explained by the aFRR
product slot size. Due to four-hour aFRR product slots, aFRR capacity can only
be offered over time periods that are a multiple of four hours. Consequently,
decreasing the power level and running over a longer time period increases the
chance to potentially offer aFRR.

Again, this qualitative discussion of the optimization results is supplemented by the
quantitative analysis of the realized cost savings in the upcoming Section 8.5.

8.5 Quantitative Analysis of Realized Cost Savings

In this section, we quantify and discuss the realized cost savings. We show how the
cost savings can be attributed to different cost components and discuss trade-offs made
by the optimization. This allows for a profound understanding of the optimization’s
manifold parameter-sensitive decisions.

8.5.1 Battery Storage System

In the following, we quantify the cost-saving potential resulting from the EPEX-only and
the combined EPEX+aFRR optimization.

EPEX-only Optimization We start with a closer look at Figure 8.12 that represents the
results of the EPEX-only optimization (compared to the baseline scenario without battery
storage system). We can recognize that the EPEX-only optimization reduces the facility’s
day-ahead procurement costs while at the same time increasing the grid fees, in the end
resulting in cost savings. The increased grid fees result from the inefficiency coming
along with charging and discharging, which increase the total amount of consumed
energy compared to the baseline scenario. The EPEX-only optimization on average
results in an increased energy consumption of 63.93 kWh/d. This fits to the fact that
the optimization, on average, results in less than one full charge-discharge cycle (i. e.,
charging from minimum to maximum and back to minimum SOC) per day.
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Figure 8.12: Composition of cost savings of the optimized battery storage system:
EPEX-only optimization vs. baseline

Combined EPEX+aFRR Optimization (surcharges for neg. aFRR energy) In Fig-
ure 8.13 we look at the combined EPEX+aFRR optimization results, given the regulatory
scheme of energy-related surcharges for increased consumption through negative aFRR
activation. Figure 8.13a represents the result as assumed by the optimization (compared
to the baseline operation), i. e., prior to the aFRR simulation. It can be seen that the
EPEX DA spot market cost savings are further increased when additionally providing
aFRR. This can be explained by the fact that the provision of negative aFRR results in
additionally charged energy, hence reducing DA spot market procurement. The aFRR−

energy savings of 0 EUR indicate aFRR− energy prices of 0 EUR/MWh, which means that
the optimization enforced charging energy for free, plus grid fee related surcharges.3.
This allows benefiting from aFRR− capacity based revenues and the discharging in times
of high EPEX prices. In the qualitative discussion, we showed how the required aFRR
guarantee limits the remaining flexibility. Additionally, it can be observed that aFRR+

was provided. Providing aFRR+ is beneficial when corresponding earnings compensate
both the alternative discharging that would lower DA spot market costs and the reduced
cost saving potential caused by holding back the required flexibility for potential aFRR ac-
tivations. In total, the expected cost savings in the combined EPEX+aFRR optimization,
compared to the EPEX-only optimization, are increased by a factor of 2.14.

Figure 8.13b represents the results of the combined EPEX+aFRR optimization after
the minute-based simulation of the activation of submitted aFRR bids (compared to the
baseline operation). It can be seen that the realized aFRR+ energy revenues are lower
compared to the expected aFRR+ energy revenues (in Figure 8.13a). This means less than
expected aFRR+ was activated. In the case of aFRR− no difference can be recognized.
In turn, the grid fees are higher and the overall cost savings are lower than expected.
The discrepancy between the expected and realized aFRR energy revenues results
from wrong aFRR activation share estimations as represented by the aFRR activation

3Note the discretization of the aFRR energy prices as presented in Section 8.2.3
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share function 𝑓 aFRR+/−(). Positive aFRR represents discharging the battery and hence
decreasing the facility’s load. Consequently, when the facility’s load is decreased less
often than expected, more grid fees have to be paid for the energy consumed from
the public grid. It can be seen that the realized total cost saving, in contrast to the
expected, is 5.23% lower. Compared to the EPEX-only optimization, the cost savings of
the realized combined EPEX+aFRR optimization are increased by a factor of 2.02.

(a) Combined EPEX+aFRR optimization (expected) vs. baseline

(b) Combined EPEX+aFRR optimization (realized) vs. baseline

Figure 8.13: Composition of cost savings of the optimized battery storage system
(regulatory scheme: surcharges for neg. aFRR energy).

Combined EPEX+aFRR Optimization (no surcharges for neg. aFRR energy)
Analogously, Figure 8.14 presents the results given the regulatory scheme of energy-
related surcharges for increased consumption through negative aFRR activation. Fig-
ure 8.14a shows the results as expected by the optimization. It can be seen that in this
regulatory scheme, significantly more negative aFRR energy is provided at a negative
aFRR− price. For the facility operator, negative aFRR− prices result in costs in the case
of aFRR− activation (payment direction BSP to TSO). However, as grid fees are omitted
for aFRR− energy, this was identified by the optimization to be cheaper. In contrast, it
can be seen that aFRR+ is only provided to a very limited extent, which can be explained
by the restrictions introduced through aFRR bids. In this regulatory scheme, there is a
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very high incentive for consumption of aFRR−. Therefore, holding back a SOC buffer for
potential aFRR+ activation is a limiting factor.

From Figure 8.14b we can deduce that less aFRR+ and more aFRR− was activated than
expected, due to wrong activation estimations via the aFRR activation share function
𝑓 aFRR+/−

𝑡 (). In the end, more energy than expected had to be consumed from the public
grid. This explains the slight increase of the grid fee costs (compared to Figure 8.14a).
The realized total cost savings, in contrast to the expected total cost savings, are 0.69%
lower, which can be attributed to the discrepancy between the expected and realized
aFRR activation. Finally, it can be stated that the regulatory scheme has a large impact
on the cost savings. In this regulatory scheme, the realized cost savings of the combined
EPEX+aFRR optimization outperform the EPEX-only optimization by a factor of 6.25.

(a) Combined EPEX+aFRR optimization (expected) vs. baseline

(b) Combined EPEX+aFRR optimization (realized) vs. baseline

Figure 8.14: Composition of cost savings of the optimized battery storage system
(regulatory scheme: no surcharges for neg. aFRR energy).

Comparison with Frequency Containment Reserve Finally, it is worth making a
comparison with FCR provisioning. In 2015, the German TSOs published dedicated
prequalification requirements that allow battery storage systems to participate in the FCR
market [Deu15a]. Since then, FCR provisioning via battery storage systems has gained
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interest in research and practice [Gre+17]. Comparing the remuneration of aFRR and
FCR provisioning, it has to be noted that FCR provisioning is remunerated at higher
prices. Assuming FCR price levels in the order of 300EUR/MW/d [Deu20h], a battery
storage system continuously providing 200 kW FCR will earn about 21 900EUR/a, which
is above the presented aFRR cost saving potential in both regulatory schemes. However,
depending on the use case, FCR provisioning may technically be less suitable than aFRR
provisioning, e. g., in the case of electric vehicle pools equipped with unidirectional
charging infrastructure.

8.5.2 CHP Plant
Analogously to the discussion of the cost savings resulting from the battery optimization,
we now discuss the cost savings resulting from the optimization of the CHP plant and
condensing boiler. For the combined EPEX+aFRR optimization, we again distinguish
the two regulatory schemes: with and without energy-based surcharges for increases
consumption through negative aFRR energy. Regarding aFRR we concentrate on the
cost savings realized after the simulation of the aFRR bid activation (in contrast to the
cost savings expected by the optimization).

Figure 8.15 shows the composition of the cost savings for the CHP plant optimization
in different scenarios that are discussed below.

EPEX-only Optimization In Figure 8.15a we can recognize that the EPEX based
optimization reduces the facility’s day-ahead procurement costs as the optimization
schedules the CHP to time slots with high EPEX prices such that less expensive energy
has to be procured via the EPEX DA spot market (compared to the unoptimized baseline
scenario). Further it is notable that the CHP plant operation results in higher gas costs.
This can be explained by a higher utilization of the CHP plant. As a fixed uncontrollable
heat demand of the facility has to be satisfied, the gas consumption of the condensing
boiler is reduced accordingly (note that the CHP plant and the condensing boiler are
characterized by different efficiency values). The grid fees are reduced due to the higher
electric output of the CHP, which reduces the delivery of EPEX DA spot market procured
electricity via the public grid.

Combined EPEX+aFRR Optimization (surcharges for neg. aFRR energy) Fig-
ure 8.15b represents the results of the combined EPEX+aFRR optimization, after the
minute-based simulation of the aFRR bid activation, compared to the baseline operation.
This chart considers the regulatory scheme in which energy-related surcharges have to
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(a) EPEX-only optimization vs. baseline

(b) Combined EPEX+aFRR optimization (realized) vs. baseline
(regulatory scheme: surcharges for neg. aFRR energy)

(c) Combined EPEX+aFRR optimization (realized) vs. baseline
(regulatory scheme: no surcharges for neg. aFRR energy)

Figure 8.15: Composition of the cost savings of the flexibilized CHP plant operation.

be paid for negative aFRR activation. The overall cost savings are increased by a factor
of 2.02, compared to the EPEX-only optimization. It can be observed that the EPEX
spot market procurement costs are lower than in the EPEX-only optimization. However,
this enables the optimization to realize further cost savings through aFRR− and aFRR+

revenues. The largest cost savings can be attributed to aFRR− capacity revenues. This is
due to the fact that in case of negative aFRR (i. e., decreasing the CHP’s power level),
the heat generation can be substituted by the condensing boiler. Having the condensing
boiler as backup is beneficial because of the required SOC guarantees (see Figure 6.2).
Whether the provision of aFRR− this profitable depends on the expected aFRR− capacity
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price, the DA spot market price, and the actual heat demand. Furthermore, it can be
recognized that aFRR+ is offered (i. e., increasing the CHP’s power level). In order
to benefit from aFRR+ capacity revenues, in contrast to the pure EPEX-optimization,
the combined EPEX+aFRR optimization in tendency results in lower power levels such
that the CHP plant is flexible enough that its power level can be increased. Due to the
adjusted runtimes of the CHP plant, its gas costs are lowered, compared to the baseline
operation. Consequently, as a fixed endogenous heat energy demand has to be satisfied,
a cost increase of the gas costs for the condensing boiler is observable.

Combined EPEX+aFRR Optimization (no surcharges for neg. aFRR energy)
Analogously, Figure 8.15c shows the optimization results for the regulatory scheme
in which negative aFRR energy is not charged with energy-related surcharges. This
regulatory scheme results in the fact that aFRR− is offered at low aFRR− energy prices,
hence steering towards aFRR− activations (see Figure 5.2a). The fact that aFRR− is
offered at negative aFRR energy prices results in aFRR− payments from the BSP to
the TSOs, which can be recognized in the significantly increased aFRR− energy based
costs. Through the negative aFRR activations, the CHP plant’s gas consumption (and its
heat and electricity generation) is significantly decreased, which is reflected in the CHP
plant’s gas costs. As a fixed exogenous heat demand has to be satisfied, the condensing
boiler’s gas costs are in turn increased in order to cover the CHP plant’s reduced heat
output. Furthermore, it can be recognized that, the savings at the EPEX DA spot market
are significantly higher than in the alternative regulatory scheme with no energy-based
surcharges for negative aFRR energy (as shown in Figure 8.15b). This can be explained
by the increased share of negative aFRR activations. Negative aFRR reduces the CHP
plant’s gas consumption and the related electric and thermal output. In consequence,
as the EPEX DA spot market schedules are fixed (i. e., the corresponding energy is
consumed as procured), the facility’s load at the grid connection point increases and
more energy is consumed from the public grid (i. e., negative aFRR is provided). This
energy is remunerated or in the case of negative aFRR− energy prices paid for via the
aFRR− energy price. As in this scenario significantly more negative aFRR energy is
provided, this results in the fact that less energy has to be procured via the DA spot
market. This is consequently reflected in the grid fees. Furthermore, due to the strong
incentive to offer aFRR−, the provision of aFRR+ is reduced. Finally, the total realized
cost savings are increased by a factor of 3.59, compared to the results in case of the
alternative regulatory with energy-related surcharges and grid fees for negative aFRR
energy. This illustrates the high impact of the regulatory scheme on the overall cost
saving.
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8.6 Impact of Device Dimensioning
In this section, we discuss the impact of the device dimensioning on the cost saving
potential. We define four scenarios for each: the battery storage system, the CHP plant,
and the heat buffer. We compare both the EPEX-only and the realized EPEX+aFRR
optimization results (i. e., after the activation of aFRR bids through the aFRR simulation)
to the baseline scenario. By analyzing these scenarios regarding the impact on different
cost components, we show how the sizing of devices contributes to improving the DA
spot and aFRR balancing market optimization results.

In the following discussion, we distinguish the two regulatory schemes with and
without energy-related surcharges for negative aFRR energy. Each chart distinguishes
the EPEX-only and the combined EPEX+aFRR optimization as realized after the aFRR
activation. In order to cover a wide range of device sizes, we increase the device sizes
exponentially by a factor of 2. For approximate reference, the charts show an exponential
trend line for the cost savings.

8.6.1 Battery Storage System
Figure 8.16 presents the optimization results for four different sizes of the battery storage
system.
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Figure 8.16: Impact of battery storage system sizing on the cost savings.

In Figure 8.16a, a linear correlation of the cost savings with the battery sizing can
be observed (note the exponential x-axis and the linear y-axis). Given the constant
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power-to-capacity ratio of the battery storage, this can be explained by the optimum
schedule, which is independent of the battery sizing. The optimum schedule only differs
in the power level. For example, given a different battery size, instead of charging 50 kW
over one hour, 100 kW are charged over one hour, resulting in the same percentual
SOC increase. No difference can be recognized in the two charts for the EPEX-only
optimization, as the regulation regarding surcharges for negative aFRR has no effect in
this case.

Figure 8.16b shows that the absolute cost savings in the combined EPEX+aFRR
optimization are higher, compared to Figure 8.16a. For the same reasons stated above,
a correlation between cost savings and battery sizing can be observed based on the
battery size. In general, slight cost savings differences between multiple optimization
runs are possible due to the non-deterministic nature of the genetic algorithm and due
to the realistically simulated aFRR activation (which potentially can lead to differences
between solutions with the same expected costs).

8.6.2 CHP Plant

Figure 8.17 presents the optimization results for four different CHP plant sizes. We
define the CHP plant sizes based on the CHP plant’s gas demand. We then scale the
electricity and heat supply linearly using the power-to-heat ratio defined in the baseline
scenario in Table 8.1.
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Figure 8.17: Impact of CHP plant sizing on the optimized cost savings.
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In Figure 8.17a, it can be seen that an increasing CHP plant size in tendency results
in higher cost savings in both optimization scenarios. However, a linear relationship
cannot be recognized. The higher cost savings coming along with higher CHP plant
sizes can be explained by the increased capability to run the CHP plant in expensive
DA spot market time slots (in the EPEX-only optimization scenario) and to additionally
benefit from higher aFRR capacity and aFRR energy related revenues (in the combined
EPEX+aFRR optimization scenario). It has to be noted that we compare the cost savings
versus the baseline scenario with the naive CHP plant operation strategy, which already
results in higher cost savings in case of higher CHP plant sizes. The smaller the CHP
plant is dimensioned, the more the CHP plant will run to satisfy the heat energy demand.
Consequently, the smaller the CHP plant size, the better are the potential cost savings
already utilized in the baseline scenario. The cost saving potential can be seen stagnating
with an increasing CHP plant size. This stagnation can be explained by the fact that
only a limited heat energy demand has to be satisfied, and once a certain CHP plant
size is reached, the CHP plant cannot be operated longer (see also the discussion below
in Section 8.6.3). This can be recognized in the EPEX-only optimization, which shifts
the CHP plant runtimes into EPEX DA market price peaks, and to a lower extent also in
the combined EPEX+aFRR optimization, which in addition to the generated energy can
also benefit from higher capacities.

In Figure 8.17b the effect of the regulatory scheme that does not attribute energy-
related surcharges to negative aFRR energy can be recognized. It can be recognized
that the absolute cost savings are higher as, in this regulatory scheme, the activation
of negative aFRR bids allows substituting energy-related grid fees. In the considered
facility setup, restrictions regarding the lower SOC bound in the case of negative aFRR
provisioning are relaxed by the condensing boiler, which can substitute the CHP plant’s
heat supply. Analogous to Figure 8.17a, it can be recognized that, due to the limited
heat energy demand, the realizable cost savings stagnate with an increasing CHP plant
size in both the EPEX-only and the EPEX+aFRR optimization. Once a certain CHP plant
size is reached, the CHP plant cannot run longer as the heat supply cannot be used
on-site by the facility. In the EPEX-only optimization, this point is reached earlier as the
combined EPEX+aFRR optimization can additionally benefit from higher capacities.

8.6.3 Thermal Energy Storage
Figure 8.18 presents the optimization results for different sizes of the thermal energy
storage. In the EPEX optimization scenario, it can be seen that an increase in the
buffer size leads to higher cost savings, which however stagnate. This stagnation
can be explained by the limited heat energy demand. In Table 8.2, we showed that
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Figure 8.18: Impact of thermal energy storage sizing on the optimized cost savings.

the hourly average heat energy demand over the whole year is 514.8 kWh. Given a
thermal energy storage with a volume of 80 000 L and the assumed temperature delta of
Δ𝑇 = 40K, the thermal energy storage can buffer 3 712 kWhth of heat energy (as derived
in Section 4.4.3.1). Consequently, a larger thermal energy storage in the EPEX-only
optimization is still limited by the heat demand (discharging the heat storage), which
explains the trend to stagnation of the increased cost savings.

In contrast, in the combined EPEX+aFRR optimization presented in Figure 8.18a,
the increase in the cost saving potential can be explained by the larger thermal energy
storage, which brings a higher potential to provide positive aFRR capacity by offering to
ramp up the CHP plant and, hence, to benefit from aFRR capacity prices. In Figure 8.18b,
a trend to stagnation of the cost savings (coming alongwith higher thermal energy storage
sizes) can be recognized in the EPEX+aFRR optimization scenario. An explanation of
this observation is that the major cost savings source in this scenario is negative aFRR
activation (as discussed in the context of Figure 8.15c), which is limited by the facility’s
heat demand.

8.7 Impact of Market Development in Future Scenarios
This section defines potential future scenarios regarding the DA spot and aFRR balancing
market. For the aFRR balancing market, we analyze the impact of adjusted aFRR capacity
and aFRR energy price levels. For the DA spot market, we analyze the impact of the spot
market price fluctuation. The impact is discussed concerning the optimization potential

225



Chapter 8 Evaluation and Assessment of the Optimization Potential

of the battery storage system and the CHP plant. We compare both the EPEX-only and
the realized EPEX+aFRR optimization results (i. e., after the activation of aFRR bids
through the aFRR simulation) to the baseline scenario.

8.7.1 aFRR Capacity Price Levels

Due to the dynamic developments in the context of balancing markets, we evaluate the
impact of different aFRR capacity price levels on the optimization potential.

Scenario Definition

In Section 2.4.4.3 we presented recent developments of the balancing market, and
in Table 5.1 we highlighted factors influencing the demand and supply of balancing
power. On the one side, the balancing market opening will likely attract new BSPs and
thus increase the balancing power offered. On the other side, handling the fluctuation
and intermittency introduced by renewable energy sources will likely increase the
needed balancing power. Consequently, we investigate three scenarios representing low,
medium, and high aFRR capacity prices to give insights into the effects of potential
market developments. The scenarios are derived from historical aFRR capacity prices
using a fluctuation factor 𝐹 as presented in Equation 8.3. The medium aFRR capacity
price level represents the actual aFRR capacity prices from the year 2016 (𝐹 = 1.0). For
the low aFRR capacity price level scenario we define 𝐹 = 0.5, and for the high aFRR
capacity price level scenario we define 𝐹 = 2.0:

∀𝑡 ∈ {0, 1, 2, … } ∶ 𝜋aFRR+/−,capacity,adjusted
𝑡 = 𝐹 ⋅ 𝜋aFRR+/−,capacity

𝑡 (8.3)

An overview of the resulting aFRR capacity prices over the considered year is presented
in Figure 8.19. Relying on historical market data, it is worth noting that the shown aFRR
capacity prices are based on weekly tendering periods as well as peak (HT) and off-peak
(NT) products. To adjust for the assumed and nowadays available market design with
four-hour product slots, we linearly scaled down the historical aFRR capacity prices as
described in Section 4.3.1 (in assumption AaFRR6). Please refer to Figure 8.3b for the
resulting hourly aFRR capacity prices.

It is worth noting that, in contrast to the aFRR capacity price scenarios, the DA spot
market price scenarios presented later in Section 8.7.2 are defined differently. In order to
reflect an increasing share of renewable energy sources, we let the DA spot market price
fluctuate around the average spot market price level. In contrast, the development of the
competition in the aFRR market is driven by the future aFRR demands and potentially
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(b) Medium aFRR capacity prices
(𝐹 = 1.0)

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000

1 6 11 16 21 26 31 36 41 46 51

EU
R

 p
er

 M
W

 a
nd

 p
ro

du
ct

Week
pos/main pos/sub
neg/main neg/sub

(c) High aFRR capacity prices
(𝐹 = 2.0)

Figure 8.19: aFRR capacity price level scenarios based on marginal aFRR capacity prices from
year 2016 (𝐹 = 1.0).

new actors participating in the market (see discussion in Section 5.1.3). These changes
will mainly decrease or increase the absolute aFRR capacity price level rather than its
fluctuation.

Implications of aFRR Capacity Prices

The cost savings realized by dedicated optimization runs based on the presented aFRR
capacity price levels are shown in Figure 8.20.
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Figure 8.20: Impact of aFRR capacity price levels on the optimized cost savings.
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As expected, the defined aFRR capacity price levels do not impact the EPEX-only
optimization. It can be seen that the absolute impact of the aFRR capacity price is
significantly higher in the case of the CHP plant optimization. The CHP plant can
benefit more from high aFRR capacity prices than the battery storage. This is due to
the corresponding heat buffer’s less restricted lower SOC bound as heat generation
can be substituted with the condensing boiler. As negative aFRR revenues make up a
large share of the cost savings in the optimized CHP plant operation (see Figure 8.15),
the CHP plant’s optimization potential in the combined EPEX+aFRR optimization
correlates with the aFRR capacity price level to a high degree. In contrast, the battery
storage’s flexibility is more restricted due to the required aFRR guarantees (presented
in Figure 6.2). Consequently, as aFRR is only offered in late aFRR product slots within
the daily optimization period, the impact of aFRR capacity price levels on the battery
storage is not as high as in the case of the CHP plant. Summarizing, it can be stated
that the CHP plant benefits better from high aFRR capacity price levels than the battery
storage. Vice versa, lower aFRR capacity prices have a higher negative impact on the
cost saving potential of EPEX+aFRR optimized CHP plants.

8.7.2 DA Spot Market Price Fluctuation

We define different day-ahead spot market price scenarios to understand the impact of
energy price fluctuations on the optimization result.

Scenario Definition

Generally, a flat merit order curve supports a low price fluctuation, and a steep merit
order curve supports a high price fluctuation. Consequently, the introduction of CO2
prices may result in a higher price fluctuation by increasing the price distance between
(cheap) renewable energy sources and (expensive) coal or gas driven power plants
[Böi+18]. On the other hand, increased flexibility on the demand side tends to lower
price fluctuation. In order to get a better understanding of the robustness of the presented
cost savings concerning spot market price fluctuations, we define the following three
scenarios. Based on historical EPEX DA prices, we let the EPEX DA prices fluctuate
around the average using a factor 𝐹 as follows (where 𝜋DA,avg represents the average
price of the original year):

∀𝑡 ∈ {0, 1, 2, … } ∶ 𝜋DA,adjusted
𝑡 = 𝜋DA,avg + (𝜋DA

𝑡 − 𝜋DA,avg) ⋅ 𝐹 (8.4)
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(a) Low DA spot market price
fluctuation (𝐹 = 0.5)

(b) Medium DA spot market price
fluctuation (𝐹 = 1.0)

(c) High DA spot market price
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Figure 8.21: DA spot market price fluctuation scenarios: distribution of hourly DA energy
prices over one year.

This way, we investigate the optimization potential concerning three scenarios. The
resulting distribution of the day-ahead energy prices in the three considered scenarios
is presented in Figure 8.21. The original EPEX day-ahead auction price fluctuation
from the year 2016 [EPE20a] defines the medium scenario (𝐹 = 1.0, Figure 8.21b).
In addition, we define a scenario with a lower (𝐹 = 0.5, Figure 8.21a) and a higher
(𝐹 = 2.0, Figure 8.21c) price fluctuation.

Implications of DA Spot Market Prices

Figure 8.22 quantifies the impact of the price fluctuation on the optimization results in
the two scenarios with the battery storage system and the CHP plant.

It can be seen that a higher price fluctuation increases the cost savings in all scenarios.
In the case of battery storage, the relative benefits of an increased price fluctuation are
higher. In the case of the CHP plant, an increased price fluctuation increases the benefit
of substituting external electricity procurement with on-site generation. Figures 8.13
(battery) and 8.15 (CHP plant) show the composition of cost savings in the baseline
scenario with fluctuation factor 𝐹 = 1.0. Relatively seen, it can be recognized that the
battery storage can utilize the DA spot market price fluctuation better. However, the total
cost savings are higher in the investigated CHP plant scenarios. This can be attributed
to the fact that the battery storage optimization can actively decide to discharge energy
(EPEX and/or aFRR incentivized), while the heat energy charged into the heat buffer by
the CHP plant cannot be discharged by active decisions. Instead, heat energy is removed
from the thermal energy storage through the exogenously given heat energy demand,
which remains equal independent of the price fluctuation.
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Figure 8.22: Impact of DA spot market price fluctuation on the optimized cost savings.

8.8 Concluding Remarks
The qualitative discussion of the optimized schedules and the quantitative analysis of the
cost savings showed that the optimization results (and the composition of cost savings)
are susceptible to multiple highly interdependent parameters. The high sensitivity
of the results to parameter adjustments makes it very hard to quantify the financial
potential in future scenarios. This is aggravated by the changing market environment
with balancing markets that are opening up for new actors (see Sections 2.4.4.2 and
5.1.3), intraday spot markets that are experiencing an increase in trading volume
[Rom+19], and the European market harmonization, e. g., in context of the PICASSO
platform [Eur20a]. Due to these substantial, ongoing market advancements, detailed
monetary potential quantifications can be expected to have a rather short-term validity.
Instead, the presented overall optimization approach and the revealing of patterns,
parameter sensitivities, and orders of magnitudes are expected to have a higher impact
and longer-term validity.
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CHAPTER 9
Conclusion

This concluding chapter summarizes the presented work, draws a conclusion, and
presents the consequences of the elaborated results. This makes it possible to outline
further research directions and to provide a broader outlook on the future provision of
electric flexibility in an increasingly digitalized energy system.

9.1 Summary of Results

In Chapter 1 we presented the idea of a Facility Energy Management System (FEMS)
that locally coordinates on-site energy consumption and generation. After discussing
multiple options for monetization of electric flexibility. We focused on the research
gap of a simultaneous DA spot and aFRR balancing market driven flexibilization of
devices located on the traditional demand side. We showed how energetic flexibility
regarding time and power can be used to optimize the procurement of electric energy on
(day-ahead) spot markets while at the same time offering the potential for remunerated
short-term schedule adjustments to the (aFRR) balancing market. This comes with two
advantages: On the one side, facility operators can reduce energy costs. On the other
side, grid operators can benefit from additional system services to ensure grid stability.

Overall, this thesis delivers a comprehensive picture of prosumer flexibilization. In
particular, three significant contributions can be recognized. The first is an efficient
(genetic) algorithm that utilizes electric flexibility on the prosumer side. The algorithm
generates device schedules and market bids that inherently consider the requirements
of the consumer side. This is achieved by realistically taking into account uncertain
aFRR activations, catch-up effects to be expected due to aFRR activations, device-specific
flexibility limits, and on-site demands that have to be satisfied. The second contribution
is a simulation and analysis of aFRR activations based on the German aFRR market
using publicly available data. Based on the first two contributions, the third contribution
is an assessment of the flexibilization potential from a prosumer’s point of view in the
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currently given, but also in possible future scenarios. We identified that especially the
value stacking by managing the trade-off between the two simultaneously incentivizing
markets, in combination with managing catch-up effects of demand-side BSPs, has not
been addressed and solved by prior work.

In the following, we recapitulate the research questions RQ1–5, which we defined in
the motivational Chapter 1 and provide a summary of the answers developed in this
thesis.

RQ1: System environment and information processing
What are information-processing system entities, communication links, character-
istics of information flows, and uncertainties that have to be managed by a FEMS
that utilizes electric flexibility in consumption and generation for participating in
spot and balancing markets?

The first question was answered in Chapters 2 and 4. In Chapter 2, we provided detailed
insights into the environment of a prosumer EMS and presented a detailed overview
of flexibility markets. We demonstrated that spot and balancing markets are places
where flexibility regarding time and power of electricity consumption and generation
can be converted into monetary profit. We examined and explained the trend towards
more short-term and more small-scale usage of flexibility. Communication links and
information flows in the context of a FEMS were presented in Chapter 4. Given the
identified research gap, we focused on the interface to DA spot and the aFRR balancing
markets. We showed that flexibility can be offered directly in these markets or through
intermediary third-party aggregators that may offer divergent product characteristics.
Uncertainties related to the proposed optimization were presented in Chapter 7. There,
we identified sources of uncertainty and showed that deviations from predicted demands
and expected aFRR activations can be compensated via intraday schedule adjustments,
e. g., based on intraday spot markets.

RQ2: Modeling and simulation in the prosumer context
How can grid and facility side system entities in the context of a spot- and balancing-
market driven FEMS be modeled such that the flexibility potential can be assessed
by simulation?

After presenting fundamentals of power systems and flexibility markets in Chapter 2,
selected entities in the context of a grid-responsive FEMS were modeled in Chapter 4.
Regarding the prosumer side, we focused on flexible devices that are characterized by
electric or thermal flexibility buffers constrained by minimum and maximum possible
states of charges. The modeling of exemplary devices in Chapter 4 is based on technical
possibilities found in practice and physical properties, e. g., regarding energy conversion.
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We intentionally chose a set of devices that covers a broad range of energy forms, namely
electricity, heat, cold, and gas (see Table 4.1), and explained the role of non-linearities
caused by part-load operation or temperature differences. The devices are modeled
via power levels that can be switched at different time intervals. We showed how the
power level of a device is interlinked to one or more energy forms and explained how
related efficiency values result in non-linearities. In Chapter 6, we collect the relevant
characteristics with respect to the proposed optimization algorithm, which we presented
in Chapter 7. The modeling of the grid and market side was presented in Chapter 4.
There, the DA spot market is modeled using a price forward curve, which could also be
provided by an intermediary electricity supplier. The modeling of activations of aFRR
market bids is based on publicly available data in the form of anonymous aFRR bids and
the TSO’s overall aFRR power demand. This way, we were able to simulate historical
conditions at the aFRR balancing market and to quantify potentials by virtually placing
simulated prosumers with optimized devices into past merit order lists.

RQ3: Analysis of aFRR balancing power activations
How are aFRR activations characterized, and to what extent can these characteristics
be used as input for an optimization that enables balancing power provision via
alternative BSPs on the demand side?

Using the aFRR market modeling presented in Chapter 4, we were able to merge
historical aFRR bid data with the historical aFRR power demand of the TSO’s Grid
Control Cooperation. In Chapter 5 we presented results of an ex-post analysis of aFRR
activation characteristics. We showed that in cases of aFRR and mFRR, the energy price
of a balancing market bid determines the position in the merit order list and thus the
activation probability. Taking a prosumer’s perspective, we analyzed the aFRR activation
uncertainty for given aFRR energy prices and quantified the activation uncertainty. We
showed that the activation uncertainty in terms of a shorter or longer aFRR activation
is higher the closer a bid is positioned at the beginning of the merit order list. An
analysis of the development over several years showed that aFRR energy prices decreased
continuously from the TSOs’ point of view, which we attribute to the market opening
and entry of new market actors. We presented how these market insights, which were
not yet understood per the existing literature, can be used for optimizing aFRR bids of
prosumers. Furthermore, we showed how prosumers differ from traditional BSPs on the
supply side and how they must consider catch-up effects for ensuring the satisfaction of
local demands in addition to aFRR activation and opportunity costs. In the optimization
problem formulated in Chapter 6, we used the insights regarding aFRR activations in
the form of a function that maps aFRR energy prices to a statistically expected aFRR
activation share per (one-hour) time slot. In Chapter 8, we were able to show that this
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is a viable approach for balancing power provision via alternative BSPs on the demand
side, despite the high aFRR activation uncertainty.

RQ4: Optimization for value stacking of flexibility and market bids
How does an efficient algorithm have to look like that utilizes electric flexibility on
the demand side by simultaneously considering both the day-ahead spot and the
aFRR balancing market—and what are appropriate inputs?

The optimization problem presented in Chapter 6 was solved using the genetic algorithm
proposed in Chapter 7. A genetic algorithm was chosen both to be easily adaptable
to further prosumer incentives and to natively deal with non-linearity in the objective
function and constraints. In Chapter 7, we presented design options for implementing
genetic algorithms and, based on this, proposed a genetic algorithm that generates DA
power level profiles, aFRR capacity level profiles, and aFRR energy price profiles. We
showed how these profiles can be merged to expected device schedules and converted
to market bids, considering the constraints introduced in Chapter 6. Since prosumers
may likely seek to add other cost components to support further prosumer incentives,
the simulative nature of the genetic algorithm brings with the advantage that it can
easily be extended without changes to the overall problem structure. Targeting cost
savings by bidding to the DA spot market and the aFRR balancing market, in particular
the following three inputs turned out to be relevant for the optimization: Firstly, the
algorithm uses a price-forward curve to represent the predicted DA spot market prices.
Secondly, it uses a forecast of aFRR capacity prices that is good enough for acceptance
into the pool of aFRR BSPs. Thirdly, we showed how expectations regarding the aFRR
activation are crucial for the aFRR revenues and, due to catch-up effects of demand-side
BSPs, for keeping the balancing group balanced. Therefore, based on the answer to
RQ3, the algorithm uses a function that maps a negative or positive aFRR bid’s energy
price into the hourly expected aFRR activation share of the bid.

RQ5: Benefits of value stacking prosumer flexibilities
What is the monetary effect for flexibility owners of utilizing electric flexibility by
value stacking the day-ahead spot and aFRR balancing market options?

By implementing the genetic algorithm and the simulation of aFRR bid activations
and devices, we were able to quantify the optimization potential in Chapter 8. We
focused on a battery energy storage system, as it can be seen as representative of a
generic flexibility, as well as a CHP plant and a condensing boiler, as they serve as
exemplary devices for coupling multiple energy forms (electricity, heat, and gas). In the
evaluation, we distinguished a pure day-ahead (EPEX) spot market optimization and a
combined day-ahead EPEX and aFRR optimization. Due to the uncertainty regarding
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aFRR activations, we further distinguished optimization results as expected by the
optimization vs. optimization results as finally realized after the simulation of the
minute-based aFRR activation. We differentiated two regulatory schemes: including and
excluding energy-based surcharges (for grid fees and further static cost components)
for additionally consumed energy in case of aFRR-induced increases of the facility load.
We showed that the combined optimization simultaneously incentivized by the DA spot
and aFRR balancing market could achieve cost savings that outperformed the pure DA
spot market driven price optimization by more than a factor of 2 for both the battery
storage system and the CHP plant. Despite the high uncertainty regarding the activation
of submitted aFRR bids, the costs expected in the optimization and the costs actually
realized after the simulation of aFRR activation did not differ significantly. We explained
how this can be attributed to the compensation of shorter and longer aFRR activations
and fixed aFRR capacity price based revenues. Finally, we showed that the regulatory
scheme regarding energy-based surcharges for energy consumed during negative aFRR
activation is crucial for the height of the realizable cost savings. The absence of such
surcharges for negative aFRR energy causes the optimization to steer towards negative
aFRR activations. Compared to the predominant regulatory scheme in which additional
energy consumed via negative aFRR activation is subject to energy-related surcharges,
this leads to a further increase of the cost savings by more than a factor of 3, depending
on the scenario.

9.2 Outlook and Further Research Directions
This thesis focused on the research gap of a multi-use optimization that utilizes flexibility
simultaneously incentivized by the DA spot and the aFRR balancing markets. Based on
the presented results, we would like to point in three major research directions:

• Consideration of intraday spot market options: We showed that the uncertainty
regarding aFRR activations, in combination with the required aFRR guarantees, is
a strongly limiting factor in monetary rewarding aFRR provisioning on the demand
side. Consequently, one major extension to the work presented in this thesis is the
integration of intraday spot market trading options. At the intraday spot market, in
case of unexpected aFRR activations, deviations from the planned state of charge
can be managed, i. e., lacking energy can be bought and surplus energy can be
sold, with a lead time of down to five minutes (when trading within a TSO control
area in Germany). Assuming a sufficient intraday spot market liquidity, this allows
lowering the aFRR guarantees presented in Figure 6.2. The increasing liquidity of
intraday spot markets and the introduction of the German intraday aFRR balancing
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energy market in 2020, which now allows placing aFRR bids intraday, contribute
to such developments. Considering intraday trading options at both the spot and
balancing market will further increase the potential for prosumers with limited
flexibility as intraday decisions allow to lower the required SOC band guarantees
significantly.

• Value-stacking given further flexibilization incentives: We presented a variety
of options for monetizing flexibility and demonstrated how a prosumer EMS allows
benefiting from simultaneous reaction to different load-shifting incentives. Due to a
dynamic system environment that is subject to fundamental changes, the proposed
optimization is designed to be easily enriched with cost components and constraints
representing further flexibilization incentives. For example, the optimization
could additionally weigh up between different balancing market segments or local
incentives, such as decreased grid fees through peak load reduction. Furthermore,
changing regulations may bring new options for value creation, e. g., regarding
incentives fromDSOs or dynamic grid fees. The simulation-based fitness calculation
in the context of the genetic algorithm supports corresponding extensions without
changing the overall problem structure. The optimization of self-consumption is
already inherently supported by the proposed optimization. In the end, assessing
and comparing different options for flexibility owners requires a holistic and
harmonized view. In this context, unified and comparable prosumer scenarios
would be beneficial.

• Aggregation of prosumer bids: We assumed to participate in the markets inde-
pendent of trading amounts or capacity intervals. However, as presented, this is a
simplifying assumption as access to spot and balancing markets comes along with
specific requirements on the bids. Taking the perspective of an aggregator that
directly participates in the markets, a crucial question is, how market-compliant
bids based on small-scale flexibility can be aggregated with respect to trading
amounts and capacity. In particular, when a larger aggregation of potentially het-
erogeneous and complementing devices is given, interesting synergies may arise
due to newly emerging flexibility characteristics. Related effects seem interesting
to analyze.

In conclusion of this thesis, it is worth to again shed light on further possibilities to
monetize flexibility in a prosumer’s electric load. After discussing various flexibilization
options in the Chapters 2 and 3, the focus of this thesis was put on providing clarity about
the potential and the technical feasibility of jointly considering the DA spot and the aFRR
balancing markets at the same time. Despite this focus, we showed that further incentives
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for prosumer optimizations are evident. Given the controllability of flexible devices via
a prosumer EMS, from the point of view of a prosumer, it makes sense to firstly focus
on low-hanging fruits that enable considerable monetary benefits with only relatively
moderate implementation and communication effort. Such relatively easy-to-implement
optimizations address the self-consumption of locally provided energy or the reduction
of power peaks. Concerning economic benefits for prosumers, these flexibilization
incentives serve as a good starting point. In further steps, the established digitalization
can then be enriched according to new developments fostering the prosumers’ active
participation in the grid operation.

In particular, three major developments can be expected to boost the grid-serving
and market-oriented provision of prosumer flexibility: Firstly, the increasing availability
of smart metering systems serves as a fundamental basis for monitoring and billing
demand response measures. In particular, smart metering systems equipped with an
additional communication channel have the potential to serve as an enabler for efficiently
communicating external load-shifting incentives in a standardized manner. Secondly,
the necessary interfaces to control flexible devices are increasingly available and adopted
through standardization, e. g., in the context of EEBus or ISO 15118. Thirdly, flexibility
markets and power grid system services are subject to ongoing fundamental changes to
manage the increasing fluctuation of the increasing share of renewable energy sources.
This results in a clear trend towards active prosumer participation and more small-scale
as well as short-term markets and grid services. Consequently, it can be assumed that
the increasing availability of technical control options will raise the interest in multi-
use of flexibility as flexible prosumers may want to respond to different flexibilization
incentives to achieve maximum profit. On this path, new research questions will arise
on the one hand concerning prosumer optimizations and interfaces, and on the other
hand concerning the overall system design and regulatory framework.

A look into the future indicates that the developments described are likely to perma-
nently change the way energy is traded and balanced: The trend to more short-term and
more small-scale provision of flexibility can already be clearly recognized. In context of
the continuing digitalization, the presented results serve as one building block that will
enable previously passive energy consumers to actively participate in energy markets and
system services, hence contributing to a reliable, economical, and sustainable renewable
energy system.
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APPENDIX A
Appendix

A.1 Preliminary Work
The content presented in this thesis is partially based on work that has been previously
published by the author. In the following, peer-reviewed contributions from the author
to scientific conferences and journals are presented. Each section in which previously
published work is presented is preceded by a declaration that states its source of origin.
Relevant publications by the author can be thematically separated into two major
categories.

The first category of publications focuses on the design of optimization algorithms for
utilizing electric flexibility as well as the quantification of the related potentials. In sum,
these publications provide a broad set of prosumer optimizations and related potential
analyses for different spot and balancing market segments:

• Demand Side Management in Smart Buildings by Intelligent Scheduling of
Heat Pumps – Manuel Lösch, Dominik Hufnagel, Sebastian Steuer, Tillmann
Faßnacht, and Hartmut Schmeck – in Proceedings of the International Conference
on Intelligent Energy and Power Systems (IEPS), IEEE, 2014 [Lös+14]
This publication presents a genetic algorithm for scheduling of heat pumps together
with further devices in buildings, incentivized by cheaper self consumption of local
photovoltaic power and a day-ahead price forward curve. This thesis benefits from
the insights regarding the genetic algorithm, although it addresses a different
scenario and proposes a different encoding.

• Simulation Study of a Heuristic Predictive Optimization Scheme for Grid-
Reactive Heat Pump Operation – Tillman Faßnacht, Manuel Lösch, and Andreas
Wagner – in Proceedings of the REHVA Annual Conference on Advanced HVAC and
Natural Gas Technologies, 2015 [FLW15]
This publication presents a heuristic for the flexibilized operation of a real heat
pump system with a two-level hot water storage for both heating and hot water
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supply. A detailed sensitivity analysis is provided regarding the impact of the
quality of required forecasts. In this thesis, a simplified model of the thermal
energy storage is used focusing on one temperature zone, and the gained insights
regarding the uncertainty are used in the uncertainty discussion.

• Optimizing Bidding Strategies for the German Secondary Control Reserve
Market: The Impact of Energy Prices – Manuel Lösch, Sandeep Nainappagari,
Julian Rominger, and Hartmut Schmeck – in Proceedings of the 15th International
Conference on the European Energy Market (EEM), IEEE, 2018 [Lös+18]
This publication analyses the relation between energy prices for automatic Fre-
quency Restoration Reserve and related balancing power activations, motivated by
the goal to optimize the energy price of balancing power bids of flexible consumers
and generators. The analysis of aFRR activations is revisited in Chapter 5 for which
this paper builds the basis.

• Utilization of Local Flexibility for Charge Management of a Battery Energy
Storage System Providing Frequency Containment Reserve – Julian Rominger,
Patrick Ludwig Fabian Kern, Manuel Lösch, and Hartmut Schmeck – in Proceedings
of the 12th International Renewable Energy Storage Conference (IRES), Elsevier,
2018 [Rom+18]
This publication proposes an optimization that improves the charge management
of a battery energy storage system providing Frequency Containment Reserve. It is
motivated by a 7MW battery storage system located at an industrial site together
with further electric on-site flexibility. In this thesis, the insights regarding FCR
provisioning support the decision regarding the focus on aFRR balancing services
which we made due to limited speed of reaction of a large share of common facility
devices.

• Analysis of the German Continuous IntradayMarket and the Revenue Potential
for Flexibility Options – Julian Rominger, Manuel Lösch, Sebastian Steuer, Katrin
Köper, and Hartmut Schmeck – in Prooceeding of the 16th International Conference
on the European Energy Market (EEM), IEEE, 2019 [Rom+19]
This publication proposes an optimization for a continuous asset-backed trading
at the continuous intraday spot market and analysis the monetary potential. The
evaluation is based on historic trades and simulated batteries as, e. g., found in
electric vehicles. In this thesis, the gained quantitative insights into intraday spot
market characteristics support the qualitative discussion of the options for handling
catch-up effects in Chapter 5.
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The second category of publications focuses on the implementation of energy manage-
ment systems. This work bridges the gap between prosumer optimizations as introduced
in the publications above and the actual control of devices via communication architec-
tures and protocols:

• Building Energy Management in the FZI House of Living Labs – Birger Becker,
Fabian Kern, Manuel Lösch, Ingo Mauser, and Hartmut Schmeck – in Energy
Informatics, Lecture Notes in Computer Science, Springer, 2015 [Bec+15]
This paper presents the EMS developed for the FZI House of Living Labs which
is characterized by a heterogeneous device landscape. The presented EMS sets
the technical foundation for prosumer flexibilization incentivized by different
optimization goals. In this thesis, insights regarding interfaces and capabilities of
devices and protocols are used for the realistic modeling in Chapter 4.

• Smart Meter Gateways: Options for a BSI-Compliant Integration of Energy
Management Systems – Kevin Förderer*, Manuel Lösch*, Ralf Növer, Marilen
Ronczka, and Hartmut Schmeck – in Applied Sciences, Special Issue State-of-the-Art
of Smart Metering in Electricity Grids, MDPI, 2019 [För+19]
This paper discusses architectural options for the communicative integration of
energy management systems into the German smart metering and control archi-
tecture with Smart Meter Gateways (SMGWs). With respect to this thesis, the
publication shows how the required communication between the proposed facility
EMS and the grid and market side can be implemented using a standardized
communication infrastructure.

• State-of-the-Art Integration of Decentralized Energy Management Systems
into the German Smart Meter Gateway Infrastructure – Nils Kroener*, Kevin
Förderer*, Manuel Lösch*, and Hartmut Schmeck – in Applied Sciences, MDPI,
2020 [Kro+20]
This paper presents an SMGW-based prototype implementation of a control archi-
tecture for a decentralized prosumer optimization that enables the flexibilization
of devices on basis of the Smart Grid Traffic Light Concept. It can be seen as ex-
tension to the theoretical discussion presented in the above publication [För+19],
focusing on the control of electric vehicle charging processes. Regarding this thesis,
the implementation of the presented Smart Grid Traffic Light Concept could be
enriched with respect to the aFRR prosumer optimization presented in this thesis
in order to reconcile TSO, DSO, and supplier incentives.

*These authors contributed equally as stated in the respective publication.
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Further peer-reviewed publications by the author are not directly related to the work
presented in this thesis and partly address prior research on Cloud Computing platforms
[KLK14; KL14; LK13; Stü+20].

A.2 Price Levels in Context of the CHP Plant Operation
Table A.1 summarizes price levels in the context of the flexibilization of the CHP plant
operation, as used in the evaluation.

Table A.1: Price levels in the context of the CHP plant optimization.

CHP plant operation Alternative to CHP plant operation

Costs for 1 kWh
electricity

𝑐1 kWhel,chp = 𝑒elchp / 𝜂el
chp ⋅ 𝜋gas

= 1.00 kWh / 0.36 ⋅ 4.56 Ct
kWh

= 12.67Ct

Public grid:
𝑐1 kWhel,grid = 𝑒elgrid ⋅ 𝜋gridFees + 𝑒elgrid ⋅ 𝜋DA

= 10.32Ct + 𝜋DA
𝑡 Ct

Associated
heat generation

𝑒heatchp = 𝑒elchp / 𝜂el
chp ⋅ 𝜂heat

chp
= 1.00 kWh /0.36 ⋅ 0.54
= 1.50 kWhheat

Condensing boiler:
𝑐1.5 kWhheat,condBoiler = 𝑒heatcondBoiler / 𝜂heat

condBoiler ⋅ 𝜋gas

= 1.50 kWh /0.90 ⋅ 4.56 Ct
kWh

= 7.60Ct

Total costs 1.00 kWhel + 1.50 kWhheat
cost 12.67Ct

1.00 kWhel costs 10.32Ct + 𝜋DA
𝑡 Ct

1.50 kWhheat costs 7.60Ct
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