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Kurzfassung 

Die Partikelabfuhr ist ein Schlüsselprozess, der die Plasmakerndichte und das Ab-

pumpen der Heliumasche, die aus den Kernreaktionen resultiert, steuert. In Fusionsanla-

gen wie dem Tokamak in seiner Divertorkonfiguration, steht die Partikelströmung im Di-

vertor und in der Subdivertor-Region in Zusammenhang mit dem Druck und dem Gas, 

welches durch das Toruspumpensystem abgepumpt wird. Deshalb ist die vorausschau-

ende Modellierung der Neutralpartikel-Abfuhr von entscheidender Bedeutung für das 

Verständnis sowie für die Optimierung des Betriebs von Vakuumsystemen in Fusionsan-

lagen. 

Das Hauptziel der hier vorliegenden Dissertation ist die Entwicklung eines nume-

rischen Tools, das auf der Direct Simulation Monte Carlo Methode basiert ist. Dieses soll 

die Neutralgasströmung in Fusionsanwendungen beschreiben. Der im Funktionsumfang 

der Open-Source C++ Toolbox für Computational Fluid Dynamik, OpenFOAM, enthal-

tene DSMC Solver dsmcFoam wird erstmals im Rahmen der Kernfusion zur Modellie-

rung, Simulation und Validierung von Neutralgas-Strömungen im Divertorbereich ange-

wendet.  

Ein erforderlicher erster Schritt für die Anwendung des dsmcFoam in der Divertor-

region ist es, sicherzustellen, dass der Solver die Gasströmungen in einer einfachen Geo-

metrie vorhersagen kann. Hierzu wird dsmcFoam mit theoretischen Vorhersagen verifi-

ziert und mit unabhängigen numerischen Berechnungen abgeglichen. Die 

Sensitivitätsanalyse der Modellierungsparameter zeigt die Auswirkungen auf das Strö-

mungsfeld in Abhängigkeit von Zeitschritt, Zellgrößenabhängigkeit und Anzahl der mo-

dellierten Partikel. Im zweiten Schritt werden die Solver-Funktionalitäten weiterentwi-

ckelt, um die Gasabsorption an Oberflächen über die Stickingkoeffizient 

(Haftwahrscheinlichkeit) zu modellieren. 

Mit dieser neuen Funktionalität des dsmcFoam-Solvers wird die Analyse der Parti-

kelabfuhr im Subdivertor des Tokamaks JT-60SA durchgeführt. Die Analyse umfasst die 

Studie der Gasströmung mit und ohne Wechselwirkungen von Neutralteilchen. Die Stu-

die bestätigt, dass die Berücksichtigung von Kollisionen zwischen Teilchen eine wesent-

liche Rolle in der Beschreibung des Neutralgastransports und der Gasströmungsentwick-

lung in Tokamak-Subdivertoren spielt. Dies zeigt sich in den Druckwerten des DSMC-

Kollisionsmodells, welche im Vergleich zu den Druckwerten vom kollisionslosen 

DSMC-Modell um etwa 25% bzw. 40% ansteigen. Dieser Vergleich ist der erste seiner 

Art im Anwendungskontext der Kernfusion. 

Die zweite Anwendung des dsmcFoam besteht in der Analyse der Gasströmung in 

einem Divertor-Hochdruckszenario im Tokamak ITER. Die Neutralgasströmung wird für 

einen 10 Pa Divertordruck in der ITER-2009-Designgeometrie untersucht. Dabei wird 

gezeigt, dass die Gaszirkulations-Effekte durch den Divertor in direkter Abhängigkeit 
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zum Druck am Pumpenauslass stehen. Der Zusammenhang zwischen dem Gas, das zur 

Plasmahauptkammer strömt und dem Druck am Pumpenauslass, wird festgestellt. Die 

Simulationen haben ergeben, dass der Druckanstieg am Pumpenauslass die Gasströmung 

auf der Niederfeldseite (LFS) verstärkt, während auf der Hochfeldseite (HFS) kein Effekt 

zu beobachten ist. Die Studie zeigt, dass sich die Erhöhung der Gasströmung auf der Nie-

derfeldseite durch eine Rückströmung am Pumpenausfluss ergibt.  

Durch die Kombination von Experimentaldaten mit DSMC-Modellierung wird die 

Berechnung der Gasströmung im gesamten Subdivertor des Tokamaks ASDEX Upgrade 

(AUG) ermöglicht. Mit dem installierten Divertor III in AUG wurden Experimente, die 

mit Fokus auf die Partikelabfuhr im Betrieb des Tokamaks bei voller Leistung der kryo-

genen Pumpen durchgeführt wurden, mit DSMC modelliert. Die Modellierung zeigt, dass 

die Partikelflüsse unterhalb der Divertordome-Region und am LFS mit den experimen-

tellen Messungen vergleichbar sind. Zwischen den kalkulierten Gasströmungen in der 

Modellierung und den Messungen an den HFS-Manometern wurde hinter den Divertort-

arget eine Diskrepanz festgestellt. Die Sensitivitäten zur AUG-Modellierung haben die 

Abhängigkeiten zwischen den Subdivertor-Parametern aufgezeigt, die für den Divertor-

betrieb von Bedeutung sind. 
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Summary 

Particle exhaust is a key process that controls the plasma core density and the pump-

ing of the helium ash resulting from the nuclear reactions. In fusion machines such as the 

tokamak in its divertor configuration, the particle flow in the divertor and sub-divertor 

region is related to the pressure and the gas being pumped by the torus pumping system. 

This is why predictive modelling of the neutral particle exhaust is crucial for understand-

ing and optimizing the operation of vacuum systems in fusion devices.  

The main objective of this dissertation is to develop a numerical tool based on the 

Direct Simulation Monte Carlo (DSMC) Method that describes the neutral gas flow in 

fusion applications. Within the framework of the open-source C++ toolbox for computa-

tional fluid dynamics OpenFOAM, the in-built DSMC solver dsmcFoam is employed for 

modelling, simulation and validation of the neutral gas flows in the divertor region for 

the first time in a context of nuclear fusion. A necessary step to apply dsmcFoam in the 

divertor region is to first assure that the solver can predict gas flows in a simple geometry. 

Therefore, dsmcFoam is verified against theoretical predictions and benchmarked against 

independent numerical calculations. The sensitivity analysis on the modelling parameters 

shows the effect on the flow field as a function of time step, cell size dependence and 

number of modelled particles. As second step, the solver capabilities are further devel-

oped in order to model gas absorption at surfaces via the sticking probability. 

With this new capability of the dsmcFoam solver, the analysis of the particle ex-

haust in the sub-divertor of the JT-60SA tokamak is performed. The analysis has been 

carried out by studying the gas flow with and without neutral particle interactions. The 

study confirms that the inclusion of collisions between particles plays a significant role 

in the description of the neutral gas transport and the gas flow development in tokamak 

sub-divertors. This is reflected in the pressure values of the DSMC collisional model, 

which increase by around 25% and 40% when comparing them with the pressure values 

obtained with the DSMC-collisionless model. The comparison is the first of its type in 

the application context of nuclear fusion. 

The second application of dsmcFoam consists of the analysis of the gas flow of a 

high-divertor pressure scenario in ITER tokamak. For a 10 Pa divertor pressure, the neu-

tral gas flow in the ITER 2009-design geometry is studied. Here the gas recirculation 

effects through the divertor are shown to have a direct dependency with the pressure at 

the pumping port. The relation between the gas flowing towards the plasma main chamber 

and the pressure at the pumping port is obtained. The simulations have shown that the 

pressure increase at the pumping port enhances the gas flow at the low-field side (LFS), 

whereas at the high-field-side (HFS) no effect is observed. The study shows that flow 

reversal near the pumping port occurs, leading to an increase of the particle flow at the 

LFS. 
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The combination of experimental data and DSMC modelling allows the calculation 

of neutral gas flow in the entire sub-divertor of ASDEX Upgrade (AUG) tokamak. With 

the installed Divertor III in AUG, dedicated experiments focusing in the particle exhaust 

by operating the tokamak with full cryogenic pumping is modelled with DSMC. The 

modelling shows that particle fluxes below the divertor dome region and at the LFS are 

comparable to the experimental measurements. A mismatch is found between the calcu-

lated gas fluxes in the modelling and the measurements at the HFS manometers, behind 

the divertor target. The sensitivities on the AUG modelling have shed light onto depend-

encies among sub-divertor parameters, which are of relevance in divertor operation. 
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F(r) [N] Force with only a radial dependence (in-
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FL [N] Lorentz force 
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p [Pa] Pressure  
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𝑟 [m] Distance between particles (Potential en-

ergy) 

r0 [m] Initial vector position of particle in space 

R [m-3s-1] Rate per unit volume 

R, R’ [m] Major radius (plasma in tokamaks) 

u [-] Random number between 0 and 1 

ℜ𝑈 [-] Random number from a uniform distribu-

tion function U 

s = V [-] Speed ratio 

S [m3/s] Pumping speed  

tres [s] Residence time of a particle in a computa-

tional cell 

T [K] Temperature 

𝑇𝑗(𝐫, 𝑡) [K / m3] Temperature per volume cell, j = transla-

tional, rotational or vibrational 

𝑇𝑜𝑣𝑒𝑟𝑎𝑙𝑙, 𝑇𝑜𝑣 [K] Overall temperature 

𝑇𝑘 [K] Temperature of k = wall, reference, trans-

lational modes, rotational modes 

U(r) [J] Potential energy as a function of radius 

(conservative central forces) 

U[0, 1] [-] Uniform probability distribution function  
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v∗
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vr [m/s] Relative velocity between two particles 
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boundary “j” 
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𝜏𝑟𝑒𝑙 [s] Relaxation time (BGK operator) 

𝜑[rad] Toroidal direction (coordinate system) 

𝜑̂ [any combination of MKS units] Macroscopic parameter 

𝜒 [rad] Deflection angle of the relative velocity 

(collision theory) 

𝜔 [-] Viscosity index 

d rad Differential element of solid angle 

 

Operators 

 
 

 

coll

f
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 
 
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Collision operator (Boltzmann Equation) 

( )xF x  [-] Cumulative distribution function (proba-
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〈𝐴〉 [-] Expectation value, mean value of A 
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Gradient operator r , ,
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v   
Gradient operator 
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2

1

v i

i

v
=
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Magnitude of a vector v 

O( ) Order of magnitude 
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( )collP i, j  [-] Collision probability between particle “i” 

and particle “j” 

 

( )P v⊥ ⊥
 [-] Probability distribution function of a parti-
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( )P v  [-] Probability distribution function of a parti-
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1 Introduction 
 

1.1 Nuclear fusion, MCF and neutral particle interac-

tions in fusion devices 

 

 Nuclear fusion occurs when two light nuclei form a heavier element. To trigger a 

fusion reaction, two nuclei have to move at sufficient relative velocity, so that the inter-

particle Coulomb barrier can be overcome with a non-zero probability via quantum tun-

neling [1]. The fusion cross section 𝜎𝑓𝑢𝑠 gives the probability for a fusion reaction to 

occur between the nuclei. Typically, the expression of the cross section includes a geo-

metrical factor which is inversely proportional to the relative energy between particles 

𝐸rel [2] and also terms involving the Coulomb barrier that is direct proportional to an 

exponential factor of the form ( )1 2

relexp E −− [3].  

 From the reactions involving the two hydrogen isotopes deuterium (D) and tritium 

(T), the one with a 50%-50% mixture of D-T is the most promising for fusion reactor 

assessments, because its highest fusion cross section at the lowest energy [4] (65 keV in 

the center-of-mass, which corresponds to approximately to 700 Mio °C). The reaction 

reads   

 ( ) ( )4D      T       He 3.5 MeV      n 14.1 MeV+ ⎯⎯→ + . (1.1) 

 

 Helium, also known as  − particle, is then a fusion product that will remain in the 

system and it will provide its energy to maintain the fusion reaction. Once its energy is 

deposited, the helium ash needs to be removed in order to avoid a dilution process. This 

point will be recalled later on. However, from a fusion reactor perspective it is the number 

of fusion reactions per unit volume and unit time that is relevant to the energy production. 

Thus, the rate per unit volume R involving nuclei 1 and 2 is given by [5] 

 

 
1 2 fus relR n n v=  , (1.2) 

 

where the average of 𝜎𝑓𝑢𝑠𝑣rel is taken over the velocity space 𝑣rel ∝ √𝐸rel at a given 

temperature T.  

For a reactor system with temperature in the range of 10-100 keV, nuclear fusion is 

feasible. Thus, for the nuclear fusion to succeed one needs (i) to heat the fuel (D, T) at 

temperatures to the order of 106 K and (ii) the fuel should be enclosed in a vessel that can 
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sustain high-temperature conditions. At such temperatures the electrons are striped from 

their parental atoms in the fuel such that 𝑛𝑒 ≈ 𝑍𝑖𝑛𝑖 (quasi-neutrality condition), forming 

a state of matter called plasma [6]. Plasmas are characterized for being globally neutral 

and by its collective behavior provided electromagnetic forces that couples charged par-

ticles. Thus, a way to confine the plasma for future fusion power generation is by means 

of magnetic fields under high-vacuum conditions. This leads us to the magnetic confine-

ment fusion (MCF) concept.  

 The main idea behind MCF is that charged particles q are confined by magnetic 

fields B due to the Lorentz force F𝐋 = 𝑞𝐯 × 𝐁 acting on charge carriers moving with 

velocity v. The Lorentz force FL forces the charge carriers to have circular and perpen-

dicular path to the magnetic field lines. The resulting helical motion of the charged parti-

cles attaches the particles along the magnetic field lines, where the particles gyrate in a 

counter- and clockwise manner for positively and negatively charged particles, respec-

tively.  

 

 However, magnetic field lines with open ends will not confine the particles at all. 

Therefore, one needs to close the field lines in order to keep the particles inside the sys-

tem. This idea is employed in MCF and thus a common feature of the different confine-

ment concepts is the toroidal topology that characterizes the plasmas (i.e. a donut-shaped 

vacuum vessel encloses the plasma). Two confinement concepts have been widely devel-

oped in MCF and plasma physics research, namely the tokamak and the stellarator. The 

concepts differ on the principles behind their operation. For instance, the tokamak relies 

on the induction of a current to confine the plasma whereas the stellarator does not. The 

subject of the thesis is mainly concerned with the applications in tokamaks and therefore 

these are described here.  

 

The word tokamak is taken from the russian acronym of тороидальная камера с 

магнитными катушками, which stands for “toroidal chamber with magnetic coils” [7]. 

The tokamak operation is based on the transformer principle, thus once the gas is ionized 

inside the vessel, an electric current (plasma current Ip) is induced in the toroidal direction 

𝜑 by a central solenoid or primary transformer coil, as a consequence of the Faraday’s 

law of induction, see Figure 1.1. A magnetic field in the toroidal direction Bt is generated 

by the toroidal field coils which restrict their motion to the field lines.  
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Figure 1.1 Schematic view and relevant component of a simplified Tokamak device. Figure 

adapted from [6]. 

 

 Apart from the ions and electrons which are confined in the vessel, the neutral par-

ticles constitute an important component in the dynamics of the core and the periphery of 

a tokamak. Located at the plasma periphery, the neutral particles can either refuel the 

plasma by re-entering the core region and thereafter being ionized by collisions with the 

plasma particles or leaving the plasma chamber. This process provides momentum and 

energy to the plasma, altering the global power and particle balance [8], [9].  

 

 To achieve the particle balance and plasma density in tokamaks usually one com-

bines particle fueling and exhaust. The former requires external sources such as gas puff-

ing, pellet and neutral beam injection; whereas the latter involves the torus exhaust sys-

tem. Both are interlinked by the overall gas throughput [10], [11] that can be handled by 

the exhaust system. Thus, the torus exhaust system has a considerable impact in the over-

all performance of tokamaks due to its inter-connections with additional systems in a 

reactor. The particle exhaust can be performed via a pumped divertor which bridges the 

tokamak throughput with further stages in the fuel cycle in fusion reactors for tritium 

recovery and isotope separation [12]. At the divertor region in a tokamak, the magnetic 

field lines are diverted to a location far from the plasma by shaping the magnetic field. 

The divertor is therefore a key component in tokamaks since not only serves as first stage 
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for the particle removal but also allows impurity control (plasma contamination), extrac-

tion of heat and helium ash produced by the fusion reaction.  

 The main focus of this thesis is the study of neutral particle flows in tokamak di-

vertors and therefore, the domain of interest is hereby introduced. In the tokamak config-

uration, particles leaving the plasma core, ions and electrons, cross the magnetic surface 

named separtrix and enter a region called scrape-off layer (SOL). There, the particles 

follow the magnetic field lines that direct them to the divertor region, where the particle 

pumping occurs. The divertor geometry can have a “w”-form and its structure typically 

consists of 4 main parts, see Figure 1.2: 

 

• cassette body, 

• dome,  

• vertical targets (inner and outer), 

• reflector plates. 

 

 
Figure 1.2 Example of the divertor geometry and its different components (ITER tokamak): cas-

sette body, dome, inner and outer vertical targets and both reflector plates: inner and outer [13]. 

 

 The sub-divertor domain is defined as the volume below the dome together with the 

ducts behind the vertical targets up the pumping port. In some existing sub-divertors, the 

region also includes the pump (in most cases a cryopump or a turbo-molecular pump). 

Since the plasma particles are already neutralized in this region, the magnetic field does 
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not affect their motion at all. However, the pressure distribution between the ducts behind 

the targets, pumping port and region below the dome can establish the neutral gas flow 

across the sub-divertor domain.  

 

 During tokamak operation, the sub-divertor and the divertor regions are coupled by 

the transparency apertures located between the dome and the reflector plates, see area 

with dashed line in Figure 1.2. The transparency allows the particles to move from the 

strike points to the sub-divertor due to the pressure gradients or to move between inner 

and outer reflectors. The neutral gas flows between the main chamber and the sub-divertor 

are also interlinked by the small gaps or apertures located at the end of the ducts behind 

both vertical targets.  

 

 The sub-divertor region is the main domain of interest in all the analyses in this 

doctoral thesis. The understanding and description of neutral gas dynamics in the sub-

divertor demands the use of sophisticated models that can treat the transport of mass, 

momentum and energy of neutral flows. In this dissertation, a step in this direction is done 

by modelling the neutral gas flow in high- and mid-sized tokamak sub-divertors: JT-

60SA, ITER and ASDEX Upgrade. 
 

 From the modelling perspective, one option is to employ analytical models based 

on first principles analysis or based on the solution of the Boltzmann equation, which 

dictates the dynamics of the particle distribution function in neutral transport studies. 

However, due to the complexity of the collision integral, which is a 7-dimensional inte-

gral, the integro-differential equation is not always solvable for practical applications. 

Alternatively, one can greatly profit by the introduction of particle-based models for the 

simulation of gas dynamics that either numerically solves the Boltzmann equation or di-

rectly simulates the motion of the particles in the gas. The description of neutral gas flow 

is the main subject of chapter 2. As next step, the tokamak parameters and the periphery 

of the plasma and its relation to the neutral gas flow in the divertor are introduced. 

1.2 Tokamak parameters, SOL plasma flows and di-

vertor neutrals  
 

 The tokamak in its divertor configuration is shown in Figure 1.3. Regarding its ge-

ometry, the tokamak device is characterized by two parameters. The first is the major 

radius R, defined as the distance measured from the toroidal axis of symmetry. The second 

parameter is the minor radius r, the distance from the geometric or magnetic axis to the 

poloidal plane. In praxis, the major radius R is employed as geometric coordinate and as 

a figure of merit of each specific tokamak. The Z- and -directions complete the coordi-

nate system of the tokamak. The midplane is taken as the surface defined at Z = 0, which 

is employed for the boundary conditions between the core and plasma edge. 
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 For the plasma on the other hand, its topology is determined by the magnetic field 

geometry. The magnetic field in the system results from the superposition of the toroidal 

and the poloidal magnetic fields B = 𝐵𝜑𝐞̂𝜑 + 𝐵𝜃𝐞̂𝜃 , where 𝐞̂𝜑 and 𝐞̂𝜃 are the normal unit 

vectors in the toroidal and poloidal directions respectively. The toroidal field, generated 

by the toroidal field coils, is inversely proportional to the major radius 𝐵𝜑 ∝  𝑅−1, ob-

tained by Ampère’s law, see [14] Chapter 3, whereas the poloidal magnetic field is di-

rectly proportional to the plasma current 𝐵𝜃 ∝  𝐼𝑝. The sum of both magnetic field forms 

helicoidal field lines centered at the magnetic axis.  

 By means of external coils placed below the divertor (not shown), a poloidal mag-

netic field is generated such that at the so-called x-point inside the vessel the poloidal 

magnetic field 𝐵𝜃, generated by the plasma, vanishes. Therefore, the poloidal magnetic 

field inside the vessel is said to be diverted and hence, the name divertor configuration.  

 

Figure 1.3 Poloidal cross section of a modern tokamak plasma configuration incorporating a 

lower divertor and relevant dimensional quantitites and its figures of merit. Particles and heat 

fluxes, blue and yellow arrows respectively, diffuse from the plasma core towards the exterior of 

the plasma crossing the separatrix and interacting with the divertor targets. Image modified from 

[15]. 

 The last closed field magnetic surface (LCFS or separatrix), where the x-point is 

located, defines the boundary between the core and the edge plasma. The plasma edge 

region is called the scrape-off layer (SOL), shown in green color in Figure 1.3, where 

open magnetic field lines intersect the divertor vertical targets (outer and inner divertor). 

The SOL width is typically of the order of few centimeters, which contrasts the size of 
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the minor radius of medium-sized tokamaks to the order of meters. The region below the 

x-point is called the private flux region (PFR), depicted in orange in Figure 1.3. Here 

particle transport from the SOL occurs, which is then directed to the divertor targets. 

 In addition to the power and particle fluxes in the SOL, a key parameter in fusion 

devices is the average of the neutral pressures in the divertor region comprising both the 

divertor and sub-divertor volumes. These two regions are depicted in Figure 1.4, see yel-

low and red colored regions below the dome. The particle balance building the neutral 

pressure in the divertor region is strongly dependent in the recycling conditions, i.e. the 

ionization and recombination of hydrogenic ions and atoms. As presented in [16] pp 35, 

the neutral particles can also result from the interactions between ions and surfaces (e.g. 

divertor targets, reflectors). For instance, ions striking the divertor surfaces can be re-

scattered back as neutral atoms or the ions are first adsorbed as a neutral by the surface 

followed by a thermally desorption process with a second neutral atom impinging the 

surface, re-ejecting both particles as a single molecule. A second mechanism is the Frank 

Condon process, where a molecule dissociates after colliding with an electron, forming 

two neutral atoms. Thus, the population of neutrals in the divertor and sub-divertor region 

is closed related to the ion and electron fluxes at the targets. In order to achieve a desired 

particle balance in the tokamak, the particle control is performed by pumping out the 

neutrals in the divertor region.  

 
Figure 1.4 Physical domains in the divertor region. As before the SOL is depicted in green, where 

the plasma particles exit the core plasma and are directed to the targets. The PFR above the di-

vertor dome is also shown (orange region) and both the divertor and the sub-divertor regions, 

depicted in yellow and red colors, where mainly neutral particles are found. 

 In current tokamaks, hydrogen isotopes and impurities injected or generated during 

plasma operations are primarily pumped out and trapped by a cryogenic pump, namely: 

JET, ASDEX-Upgrade, DIII-D, MAST and JT-60SA (upgrade of JT-60U). In the case of 

future fusion devices like ITER in its DT operation phase, the corresponding exhaust 

pumping system will comprise three stages: 1) cryopumps as primary pumps [17] [18]; 
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2) cryogenic roughing pumps [10]; and 3) modified piston pumps [19]. For a DEMO 

device, alternative approaches to the particle exhaust are preferred due to the due to the 

limitations of the pumping technologies and substantially enlarged requirements for a 

DEMO device compared to ITER. Different pumping technologies are currently under 

discussion, making the subject an active research field, for a complete review on this topic 

the reader is referred to [19].  

 Thus, for present and furture fusion devices plasma egde conditions, divertor neu-

tral pressure, impurity concentration, particle fuelling as well as particle removal are in-

trinsically related. For example, in [20] it is shown that the combination of impurity seed-

ing and high neutral pressure reduces the power loading of the target. Recent experimental 

observations at JET showed a linear dependence between the sub-divertor pressure and 

the tokamak particle fuelling [21]. However, geometrical factors of the divertor cassette 

can also influence the tokamak particle balance at the divertor, especially the particle 

pumping. In [22] is highlighted the influence of the pumping port location and the exist-

ence of the dome on the developed flow field in a DEMO divertor cassette, where a factor 

of 2-3 of increase in the pumped particle between the studied pumping port locations.  

1.3 Objective of work 

 The main focus of this dissertation is to develop a computational tool based on the 

Direct Simulation Monte Carlo (DSMC) method to describe the neutral particle flow in 

tokamak divertors.  

 The code is first verified against a well-established internal flow problem of a gas 

flow across a rectangular channel. Based on this verification, a validation process is con-

ducted by analyzing the impact of boundary conditions, simulation parameters and un-

certainties. For instance, the DSMC method accuracy depends on the number of particles, 

cell size and time step, which are taken as the main parameters to be studied. The DSMC 

modelling is compared against analytical expressions and a code-to-code comparison 

with an independent code [23] [24] closes the validation and verification chapter. 

 Once verified and validated, the DSMC tool is applied to three tokamak divertors 

to demonstrate its capabilities. First, for the JT-60SA divertor the analysis of a collision-

less flow in the view of a code-to-code comparison in terms of local quantities is per-

formed. Based solely on the DSMC approach, as next step the impact of the gas flow 

collisionality is assessed for a typical operational condition in terms of the Knudsen num-

ber and macroscopic variables.  

 The second application focuses on the analysis of the gas flow in the ITER divertor. 

Different pressure boundary conditions at the pumping port are applied. This is done in 

order to quantify the effect on the macroscopic field variables of the particle flow at the 
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divertor outlets and thus identifying the sensitivity of the assumed operation configura-

tions.  

 The gas flow in ASDEX Upgrade divertor is the main subject of the third applica-

tion. The essential difference with ITER is the type of boundary condition applied as 

pumping surface, which is based on the concept of sticking probability. Different models 

for describing the particle flow in the sub-divertor are employed for comparision purposes 

against experimental data. This allows to identify the fundamental contributions to the 

gas flow in terms of pump and pressure conditions at the divertor boundaries. 

1.4 Structure of work 

Based on the objective of the thesis, the dissertation is structured as follows: 

 In Chapter 1, the concept of magnetic confinement fusion is introduced. This allows 

the reader to focus on the physical domain of interest: the divertor structure. The most 

important aspects related to the neutral gas in the divertor are introduced.  

 Chapter 2 copes with the concepts that describe the neutral gas transport by means 

of the deterministic and statistical methods. By doing this, the introduction of the DSMC 

method can be done and the reader can put in context the DSMC method as an statistical 

approach. The chapter provides a summary of the current modelling of neutral gas flow 

in tokamak divertors. 

 The physical foundations as well as the numerical methodologies underlying the 

DSMC method are explained in Chapter 3. An overview of the DSMC algorithm is first 

introduced, which allows the reader to familiarize with the steps involved in the DSMC 

calculations. With this overview, it is possible to follow the rest of the chapter, which 

describes in detail the DSMC algorithm steps.  

 Chapter 4 introduces the general statement of the problem of the gas flow through 

two parallel plates. The solution of the problem is presented for different collisionality 

regimes in terms of the flow rates and the pressure distribution. The comparison with 

closed-formed expressions and external codes is presented. Additionally, the dependence 

of the solution with the cell size, time step and number of simulated particles is given. 

This explicitly shows the relation of the parameter choice and calculated macroscopic 

variables in DSMC. 

 The description of the neutral gas flows in tokamak divertors with the DSMC code 

is the main focus of Chapter 5. The chapter is divided in three subchapters devoted to the 

divertors: JT-60SA, ITER and ASDEX Upgrade (AUG), respectively. In this chapter, 

many aspects of the DSMC code capabilities such as the modelling of collisionless and 

collisional flows as well as the application of new developed boundary conditions are 

presented.  
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 First, the gas flow in JT-60SA modelled with DSMC is benchmarked against a 

Monte Carlo code, for collisionless flow conditions. Next, the neutral-neutral intrerac-

tions are turn on in order to model the collisional flow with DSMC. In the ITER calcula-

tions, the characterization of the neutral gas flows in ITER sub-divertor in relevant oper-

ation scenarios is presented. Effects of gas recirculation and pressure rise at the pumping 

port on the overall behavior of the gas flow are addressed. As third application of the 

DSMC code, the neutral gas flow of experiments through the sub-divertor are modelled 

on the Divertor III in AUG. The analysis of the corresponding macroscopic quantities of 

the pumped working gas is performed in terms of pressure, particle fluxes and flow pat-

terns. The results of the DSMC modelling provide further insights on the interpretation 

of the gas signals measured in AUG experiments. 

 In Chapter 6 are given the concluding remarks and summary of the work followed 

by the outlook for possible next steps in this field of research. The structure of the work 

is summarized in Figure 1.5.  
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Figure 1.5 Structure of present work. 
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2  Neutral particle transport in divertor 

tokamaks 
 

 

The purpose of this chapter is to cover the neutral particle transport ideas and concepts 

which the author has found useful in dealing with gas dynamics in the sub-divertor of a 

tokamak. First, the concept of rarefied gases, the degree of rarefaction of a gas flow via 

the Knudsen number and the classification of the flow regimes are introduced. This leads 

to a natural introduction of the particle-based modelling, where both deterministic and 

stochastic models are presented. The chapter ends with the description of the proposed 

approach which combines a particle-based method with input of a plasma solver or ex-

perimental data of a tokamak device. 

2.1 Knudsen number and flow regimes 

 

 In dealing with the physics of gas modelling, one is faced with the situation to 

choose between the continuum model and the molecular-based description. In the former, 

the macroscopic variables are the dependent variables whereas the spatial coordinates and 

time are the independent ones. The molecular models on the other hand consider the fluid 

as a set of discrete particles, which can be molecules, atoms and electrons. To decide 

which approach suits better to a particular problem, depends on the local fluid properties, 

fluid microscopic structure and thermodynamic equilibrium.  

 One way to introduce the degree of rarefaction (flow regimes) is to define the Knud-

sen number (Kn), which relates the traveled distance by the particles between collisions, 

i.e. the mean free path 𝜆, to the characteristic length scale of the physical system (L) which 

reads to  

 
Kn

L


= . 

(2.1) 

Equation (2.1) serves as a criterion to characterize the flow regime which is beneficial in 

the case of simple geometries, e.g. pipes, slits, orifices, capillaries or channels, since only 

the mean free path, the inner diameter of pipe or the distance between channels are re-

quired as input.  

 

 A more general criterion that indicates the degree of rarefaction can be defined in 

terms of local flow properties. The criterion is quantified by the mean free path 𝜆 and a 

length scale based on the local variation of a macroscopic parameter 𝜑̂, such as density 

or temperature. Thus, a measure of distance L can be written as  
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 ˆ

ˆ
L




=


. 

(2.2) 

In this way, a local Knudsen number 𝐾𝑛loc can be defined as follows 

 

 
loc

ˆ ˆ
Kn



 
=


. 

(2.3) 

 If not otherwise stated, in this work the relations (2.1) and (2.3) are employed in the 

characterization of the flow regime. The flow regimes can also be defined by the dimen-

sionless rarefaction parameter  describing the degree of gas rarefaction as the reciprocal 

of the Knudsen number 

 1

Kn
 . 

(2.4) 

Depending on the range in which the value of δ lies, one may have free molecular (δ →
0), transitional (δ~1) and continuum (δ ≫ 1) regime. 

 

 Thus, one can describe the flow regime either by means of the Knudsen number or 

by the rarefaction parameter. In Figure 2.1 the flow regimes together with their corre-

sponding physical model and local Knudsen number are shown:  

 

 
Figure 2.1 Knudsen number and the flow regimes. The continuum and particle model describe 

the flow in different flow regimes. Adapted from [25]. 

According to [25] pp. 3 and [26], the flow regimes are classified as: 

 

Continuum regime (0 ≤ Kn < 0.001). Euler equations, which describe how the flow ve-

locity u, pressure p and density  of a moving fluid relate to each other. These equations 

are derived from a more general relations, the Navier-Stokes (N-S) equations. The Euler 

equations are defined in the limit of the zero Knudsen number.  

 

Continuum slip- flow regime (0.001 ≤ Kn < 0.1). Here the N-S equations with slip bound-

ary conditions govern the flow. In a layer of the order of a mean free path, also known as 

a Knudsen layer, viscous effects are dominant between the bulk fluid and the wall surface. 

Here, the no-slip boundary conditions (BCs) in the N-S equations seemed to fail, making 
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the N-S approach not suitable anymore and the introduction of a slip length or setting the 

velocity at the wall is necessary. 

 

Transition regime (0.1 ≤ Kn < 10). Rarefactions effects become more important as the 

Knudsen number increases and the relationships that define the stress tensor and the heat 

flux vector break down [27]. Higher-order corrections in these relations results in the 

Burnett or Woods equations [28]. The Boltzmann equation can be utilized at the micro-

scopic level in order to describe the flow and via the Chapman-Enskog expansion, the 

Burnett equations can be also derived. However, in cases of practical interest the Boltz-

mann equation cannot be solved easily unless the so-called nonlinear collision integral is 

simplified. This gives us the chance to introduce alternative methods of solution, which 

will be covered in the next section. 

 

Free-molecular regime (Kn ≥ 10). Typically for high-Knudsen numbers 𝜆 𝐿⁄ ≫ 1, the 

probability of interaction between particles and physical walls, for internal flows, is 

greater than the corresponding interaction between particles. Collisionless flows are as-

sociated with high values of the mean free path, which are encountered at very low den-

sities, such as the phenomena occurring in high-altitude aerodynamics, or small charac-

teristic dimensions. The flow in this regime can be described by the collisionless 

Boltzmann equation (collision operator is zero). 

2.2 Current state of research of particle-based model-

ling of neutral gas flows 

 

 In contrast to the continuum modelling of a fluid, embodied in the analytical or 

numerical solution of the hydrodynamic equations, the particle-based approaches com-

pute the trajectories and velocities of the particles that model the atoms (or molecules) of 

the fluid or gas. Typically, in a particle-based approach the description can be grouped in 

two types of methods: deterministic and statistical. Specific properties of both methods 

are here highlighted and no attempt is made to have a rigoruous mathematical proof of 

every single concept of each method. However, the text should permit the reader to easily 

identify the key concepts in order to find additional information in theory textbooks if 

required. 

 

Deterministic methods: Molecular Dynamics (MD) [29][30][31], which belongs to the 

set of deterministic approaches, is a very popular numerical approach for molecular sim-

ulations to study fluids. First, a set of N particles (atoms/molecules) located in a region of 

space are assigned with a random velocity corresponding to a Boltzmann distribution at 

the temperature of interest. The particles are allowed to interact in a pairwise sense in 

terms of a two-body potential and the time evolution of the particle positions is deter-

mined by integrating Newton’s equation of motion. To pick an appropriate potential and 

to validate the simulation results with experiments or with available analytical/computa-

tional results is part of the art of the MD approach. Typically, the potential between two 

particles is the generalized Lennard–Jones potential, where an attractive and a repulsive 

term constitute the interaction between particles separated by a distance r.  
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 The Lattice Boltzmann methods (LBM) are also used regularly in the simulation of 

fluids. In LBM a fluid is assumed to be composed of virtual fluid particles, which move 

and collide with other fluid particles in a simulation region conserving mass and momen-

tum. A simulation area is regarded as a lattice system, and fluid particles move from site 

to site; that is, they do not move freely in a region. The most significant difference of this 

method in relation to the MD method is that the lattice Boltzmann method treats the par-

ticle distribution function of velocities rather than the positions and the velocities of the 

fluid particles.  

 

 The most serious limitation of molecular dynamics simulations is the number of 

molecules N that can realistically be modelled. Because the computation of an element of 

trajectory for any particular molecule requires consideration of all other molecules as po-

tential collision partners, the number of operations required by the MD method is propor-

tional to N2. By imposing a cut-off in the potential, i.e. the potential has a finite radius of 

influence, only the nearest-neighbor particles are treated as potential collision partners 

reducing the amount of operations to O(N) or even O(N lnN).  

 

 An alternative to the MD and LBM models is to compute the probability of finding 

a molecule at a particular position and state by solving the kinetic equation. Relevant 

quantities such as the particle number, momentum or energy of the molecules within an 

element of volume can be computed from the probability distribution f. Ludwig Boltz-

mann [32] deduced the kinetic equation, which determines the evolution of the distribu-

tion function f at any point in phase-space and in time, it reads to: 
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(2.5) 

The equation describes the evolution over time of the distribution function f of a particle 

of type 𝛼 with mass 𝑚𝛼 and velocity v subjected to external forces F. The following 

notation is also employed for the spatial derivative ∇= (𝜕 𝜕𝑥⁄ , 𝜕 𝜕𝑦, 𝜕 𝜕𝑧⁄⁄ ), which acts 

in real space (x, y, z), whereas the velocity derivate ∇v= (𝜕 𝜕v𝑥⁄ , 𝜕 𝜕v𝑦⁄ , 𝜕 𝜕v𝑧⁄ ) oper-

ates in velocity space (v𝑥, v𝑦, v𝑧). The collisions with other particles of type i are included 

in the collisional operator (right-hand side of Eq. (2.5)). The variables without tilde are 

pre-collision quantites, whereas the variables with tilde are post-collision quantities and 

the sub-index i describes a quantity of a particle of type i. Also important is the term 𝜎′ 

which describes the probability for a collision to occur between particles of type 𝛼 and 𝑖. 

In the absence of collisions, the term at the right-hand side of Eq. (2.5) is zero. 
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 All the information of the physical state of a single particle is described by the dis-

tribution function. For example, the number of particles of type 𝛼 at r + 𝑑r with velocities 

v + 𝑑v in a particular time t is given by: 

 ( ) 3 3, ,r vf t d rd v =
number of particles in 

3 3d rd v  at time t (2.6) 

 On the other hand, integration of the distribution function f over the velocity varia-

ble leads to: 

 ( ) ( ) 3, , ,r r v
v

n t f t d v   , 
(2.7) 

which is the number of particles of type 𝛼 per unit volume (particle or number density). 

Moreover, the mean velocity V of a particle at position r and time t is calculated as: 

 
( ) ( )

( )
( ) 31

, ,  , ,
,

v

t t f t d v
n t





 = V r v r v r v
r

, 
(2.8) 

which is just the macroscopic velocity of the fluid, described by the equations of hydro-

dynamics. For a gas in equilibrium, the distribution function has the following form: 

 

( )
2

3 2

/224
2

Bmv k T

eq

B

m
f v v e

k T




− 
=  

 
. 

(2.9) 

The above expression is called the Maxwell-Boltzmann distribution function. This distri-

bution allows us to calculate three relevant quantities in a gas in equilibrium conditions: 

 

1. Average speed 

 

0

0

( ) 8
.

( )

eq
B

eq

v f v dv k T
v

mf v dv 




= =




 

(2.10) 

2. Most probable speed (where the maximum value of the Maxwell-Boltzmann dis-

tribution is found) 

 
( ) 0

2
.

eq

B
mp

d
f v

dv

k T
v

m

=

 =
 

(2.11) 

 

3. Root-mean square speed or rms speed 
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2
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0

( ) 3

( )

eq
B

rms

eq

v f v dv k T
v v

mf v dv




= = =




. 

(2.12) 

In all the expressions above, m is the particle’s mass, T its temperature and 𝑘𝐵 the Boltz-

mann constant. 

 The major concern when solving the Boltzmann equation is the treatment of the 

nonlinear collision term in Eq. (2.5). However, some approximations are possible in order 

to linearize this term. In the following, it is assumed that a function 𝑓0 exists and satisfies 

the Boltzmann equation (2.5) in both equilibrium and steady state. 

Let 𝑓0 be a known equilibrium distribution of our system, the solution f can be expressed 

as 𝑓0 and small perturbation 𝛿f: 

 ( )0 1 ,f f f= +  (2.13) 

If the perturbation f is small enough, the term
2( )O f can be neglected and the equation 

is linear with respect to the new unknown 𝛿f. By far one of the most used approaches to 

numerically solve the Boltzmann equation is to replace the collision operator by a much 

simpler function 

 ( ) ( )0

coll rel

f ff
,

t

− 
= 

  

v v
 

(2.14) 

as before 𝑓0 is the equilibrium solution of the Boltzmann equation, Eq. (2.5), and 𝜏𝑟𝑒𝑙 is 

the relaxation time which is inverse proportional to the density and governs the rate of 

change of 𝑓(𝐯). Introducing Eq. (2.14) into the right-hand side of Eq. (2.5), the resultant 

equation is referred as the BGK equation, named after those who first proposed it, 

Bhatnager, Gross and Krook [33].  

 The introduction of the BGK operator notably reduces the original complexity of 

the Boltzmann equation, however the equation to be solved is still a non-linear integro-

differential equation. Typically, a numerical solution of the BGK equation makes life 

easier, making the problem more tractable than a similar assault on the Boltzmann equa-

tion, due to the absence of the exuberant number of integrals. From its definition in Eq. 

(2.14), one can see that the BGK approximation possesses only a single parameter, 

namely the relaxation time (or its reciprocal: collision frequency).  

 This parameter can be tweaked to provide the correct gas viscosity, μ, or the correct 

thermal conductivity,  , but both cannot be correct simultaneously. Hadjiconstantinou 

[34] highlighted this issue by noting that a direct analysis of the BGK equation provides 

a Prandtl number 
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Pr

pC
,




=  

(2.15) 

equal to 1 for a monatomic gas, rather than the correct value of Pr = 2/3. In the above 

equation, 𝐶𝑝 is the specific heat at constant pressure, 𝜇 is the viscosity and 𝜅 the thermal 

conductivity of the gas. A generalization of the BGK model, known as the Ellipsoid Sta-

tistical (ES) Model [35] overcomes some of the issues of the BGK approximation by 

introducing a rather complex expression of the local velocity distribution function 𝑓(v). 

However, in the process some of the properties which make the BGK approximation use-

ful, namely its simplicity, are lost. Thus, essentially, by correctly recovering the Pr num-

ber, the collision frequency (through viscosity and conductivity) of the process is properly 

modelled. 

 An application of the BGK approach in tokamak divertors has been done with the 

EIRENE [36] code. EIRENE is a 3D Monte Carlo code simultaneously solving a system 

of time dependent or stationary linear kinetic transport equations. EIRENE has been cou-

pled to SOL fluid plasma equations (B2 code [37]), resulting in a coupled code named 

B2-EIRENE, which has been employed for the description of considerable number of 

fusion experiments, see [38] and the references therein. The main drawback of EIRENE 

is that the Pr number is not recovered for monoatomic gases, resulting in inexact collision 

frequency based upon the viscosity of the gas.  

 The SOLPS code (versions 4.x), based on B2-EIRENE, has been chosen to be the 

main tool to describe the ITER divertor modelling [39]–[42], [43]. As described in [43], 

major efforts have been made in order to include non-linear neutral models (e.g. elliptic 

BGK model) for ITER calculations. However, this upgrade is not always available for 

older versions of B2-EIRENE, thus adding an interrogative whether the non-linear treat-

ment of neutrals influences previous calculations that served as comparison with experi-

mental data. Nevertheless, despite the non-linear treatment of neutrals in the old or new 

EIRENE codes, the fact that it includes a vast physics makes EIRENE a very valuable 

approach to describe neutrals in fusion devices. 

 Semi-empirical deterministic approaches have been also developed for the descrip-

tion of neutral flows and conductance studies in vacuum and divertor systems in toka-

maks. ITERVAC, developed at Karlsruhe Institute of Technology, models complex vac-

uum systems as a network of channels with a predefined constant shape and length. The 

network construction fulfills the conservation of mass and the gas flow properties are 

based on known expressions and correlations of ducts and pipes with different cross-sec-

tions. Main parameters for the simulations are gas type, temperature, inlet and pump pres-

sures and pumping speeds of the pumps. To simulate the vacuum system of a tokamak, 

ITERVAC needs a background plasma (gas sources), previously calculated by SOL 

plasma fluid codes like SOLPS. In [44] the ITER torus vacuum system is analyzed and 

identification of pumping optimization addressed. The standard three-dimensional nature 
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of ITERVAC allows the study of divertor gaps affecting the divertor operation and pump-

ing scenarios [45]. Despite ITERVAC versatility of 3D and 2D calculations, the main 

concern is the geometry approximation used in describing the divertor flows and the va-

lidity of the employed expressions of the particle flow. This poses the problem of select-

ing the proper channel geometry, which represents the complex geometries such as a di-

vertor or sub-divertor of a tokamak and thus affecting the resulting gas flow through the 

system. 

Statistical methods: As an alternative to the aforementioned models that numerically 

solve the Boltzmann equation, numerical schemes based on Monte Carlo methods offer 

a powerful and robust techniques for solving rarefied gas flows.  

  The MC technique is based on sequences of random numbers to obtain sample 

variables of the macroscopic properties of the problem. This technique is widely used in 

in particle transport applications, such as neutron and radiation physics. In collisionless 

gas flows in the free-molecular flow regime, the Test Particle Monte Carlo (TPMC) ap-

proach includes such MC techniques. In the TPMC mehod, the particles are defined by 

its position 𝐫, its direction of travel Ω, and its energy E at time t. The domain of interest 

is divided into a grid, where the particles inside the system can move in straight lines. 

During the complete simulation, the particles inside the system are tracked and their in-

teractions with the solid surfaces applied, such as reflection and absorption. As a particle 

moves along its trajectory, several results (called tallies) are updated so that, after many 

histories, some desired property of the flow field can be estimated. 

 Developed by JAEA (Japan Atomic Energy Agency), NEUT2D is a TPMC code 

for neutral particles [46]. In NEUT2D, the particles in the system only interact with the 

surfaces of the main chamber, divertor and sub-divertor structures. In the past, character-

ization of divertor particle pumping has been simulated for experimental conditions in 

JT-60U tokamak [47], where potential design parameters optimization, such as pumping 

speed under gas saturated wall conditions, is addressed as an outcome of the numerical 

study. However, since the neutral–neutral collisions are not included in NEUT2D, the 

effects of collisionality in the divertor due to neutrals remains unanswered. 

 The DEGAS2 is also a 3D Monte-Carlo neutral transport code [48] based on the 

TPMC method. Transient calculations can be run being aware that the minimum time step 

should depend by a typical transit time for a neutral particle across a so called "zone". In 

[49] a “zone” might be used to represent the vacuum region around the plasma which is 

comprised of several (possibly disconnected) polygons. Or, a plasma flux surface on 

which density and temperature are constant might be a single zone. Benchmark studies 

between EIRENE and DEGAS2 have been performed with identical input yielding dif-

ferent outcomes, mainly due to the different primary source terms that are employed in 

the transport equation [36]. However, the main drawback of this approach is that in high-
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collisional and transitional flows, the TPMC is not appropriate to describe such flow con-

ditions. 

 The DSMC method, developed between 1960 and 1980 mainly by G.A. Bird [25], 

has become one of the most effective numerical techniques to tackle gas flows in rarefied 

conditions. Particularly, the DSMC method has been preferred by the gas dynamics com-

munity as the numerical approach to study gas flows in the transition regime. DSMC 

remains valid, though extremely expensive to use, for much lower values of Kn. In the 

DSMC method, each model particle represents an effective number of real atoms (and/or 

molecules) in the physical system. The model particles are sorted into cells and the parti-

cles’ time evolution is done in time steps of duration Δt in which their free motion and 

collisions between them are uncoupled, see Figure 2.2. 

 

Figure 2.2 The concept of DSMC particles: each simulated particle in a DSMC simulation rep-

resents a finite number of physical particles of the gas. In the figure of the right side is depicted 

the case when 14 physical particles are simulated with 7 DSMC particles, i.e. FN = 2.  

 However, the DSMC method does not deal with the analytical or numerical solution 

of the Boltzmann equation directly. Instead, the DSMC approach treats the movement of 

individual particles in a similar fashion as the MD calculations. The DSMC generates 

collisions stochastically with scattering rates and post-collision velocity distributions de-

termined from the kinetic theory of dilute gases, which contrasts the MD calculations 

where the collisions are exactly calculated.  

The versatility of the DSMC method for defining different collisions models, particle-

wall interactions as well as its applicability in all flow regimes, have made the DSMC 

method the selected approach to analyze the gas flows during the dissertation. On the 

other hand, the simplicity of the DSMC algorithm allows for straightforward incorpora-

tion of additional physical models and for its application to complex geometries such as 

the tokamak divertors. For the conditions of interest in this dissertation, the current DSMC 

code is not able to describe particle pumping at surfaces and therefore, a boundary con-

dition has been specially developed and added to the DSMC code library.  
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2.3 Neutral gas flow modelling with a background 

plasma and experimental data as inputs 

 By applying the DSMC approach to a background plasma calculation at defined 

interfaces between the divertor and sub-divertor domains, the neutral gas flow in the di-

vertor is modelled in this dissertation, see Figure 2.3. The approach allows to simulate 

the gas flow which corresponds to relevant operational scenarios using the reference di-

vertor geometry of a tokamak device.  

 

 
Figure 2.3 (a) Cross-section of a tokamak showing the plasma core, separatrix and SOL. (b) Grid 

of the background plasma calculation: the plasma code, e.g. SOLPS, calculates the particle and 

energy fluxes at the plasma edge including at the divertor region (surfaces and below the dome). 

The resulting macroscopic variables of the neutrals are applied as BCs for DSMC solver at the 

interfaces between the divertor and sub-divertor (red lines). (c) The neutral gas flow domain of 

the DSMC solver is shown (black region). 

 Typically, two grids are employed in plasma edge analysis, namely: the grid for the 

plasma edge and a second grid for the neutrals. The latter surrounds the plasma up to the 

main chamber wall as shown in Figure 2.3(b). Therefore, overlapping grids are necessary 

in order to transfer information between the edge of SOL/PFR and the following regions: 

the vacuum, main chamber wall, divertor structures as well as apertures (e.g. transparen-

cies and reflectors introduced in chapter 1).  
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Strategy to describe the neutral gas flow in sub-divertors with DSMC 

 

 First, based on the plasma solution at each computational cell of the SOL and PFR 

the physical state of the plasma particles, i.e. position, velocity, temperature and pressure, 

is transferred to the grid of neutral domain in order to calculate the macroscopic states of 

the neutrals. In a second step, the neutral sources for the plasma edge flows are updated 

and transferred back to the plasma (fluid) grid. An iterative process between the plasma 

(fluid equations) and the kinetic approaches is usually performed in order to obtain a final 

global solution. Once obtained the macroscopic state of the neutrals at the divertor region 

with the background plasma, the analysis with the DSMC solver can be started since all 

the information at the inlets and outlets are known at this point, see Figure 2.3(c). At the 

end of the next chapter, a detailed description of additional parameters needed for the 

neutral gas flow simulation with a DSMC solver is introduced. 

 

 In addition to the proposed use of a background plasma or neutral calculation as 

input of the DSMC solver, in this dissertation experimental data is also employed as inlet 

boundary conditions to the divertor gas modelling at the corresponding interface surface. 

By doing this, the same input between modelling and experiment is set, which together 

with information of the experimental setup or plasma discharge, the DSMC approach can 

provide further insights in the interpretation of the experimental measurements.  

 

 While many challenges in the field of neutral gas flow modelling have already been 

addressed regarding both plasma-neutral and particle-surface interactions with traditional 

plasma codes, some important questions remain unanswered. The systematic study of 

collisionality in the tokamak divertor for a given plasma scenario needs to be evaluated 

in order to provide insight of the influence of neutral-neutral collisions in the divertor 

flows. This open question is addressed in this dissertation by means of the modular capa-

bilities of the DSMC code by switching on and off the collision kernel of the DSMC 

algorithm. A second aspect treated in this work is to improve the understanding in the 

governing dynamics in the divertor gas flow in order to aid the interpretation of current 

experiments in tokamaks. By focusing in the aforementioned it is possible to address the 

level of neutral gas flow modelling sophistication for present and future fusion devices. 
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3 The DSMC modelling 

3.1 Overview of the DSMC method 

 The DSMC method is based on the physical concept of rarefied gases and on the 

physical assumptions that form the basis for the derivation of the Boltzmann equation, 

i.e. molecular chaos and restrictions related to dilute gases. The former dictates that the 

collision operator can be written solely in terms of a one-particle distribution function 

whereas in the latter the mean molecular diameter is much smaller than the mean mole-

cular space in the gas.  

 Before starting the description of the DSMC algorithm, let us recall that the idea of 

the DSMC method is to model the movement and collisions of a group of particles. In the 

DSMC method each simulated particle represents a group of physical particles. Denoted 

by FN, the conversion factor is defined as the physical-to-simulated-particle ratio 𝐹𝑁 =

𝑁𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑁𝐷𝑆𝑀𝐶⁄ . With FN = 1, a simulated particle represents a single physical particle 

and thus the assumption of the MD approach is recovered (in the sense that single parti-

cles are simulated). 

 As in most numerical models, in DSMC a physical domain of interest needs to be 

defined first. Then, a computational grid representing the physical space is generated for 

the method to be executed. The selection of the cell size involves certain requirements 

derived from physical quantities of the problem under consideration. The properties of 

the cell size are described in sub-chapter Chapter 3.2. The cells of the grid are used as a 

control volume in order to sample the macroscopic states of the gas flow.  

 At time 𝑡 = 0 in a DSMC simulation the computational grid is filled with N simu-

lated particles, randomly distributed with uniform density throughout the domain. There-

after, the DSMC algorithm can be regarded as a 4-step process. At each time step ∆𝑡: 

first, the particles in the domain are moved ballistically from their initial position or with 

their assigned velocity v according to the equation  

 
or r v t= +  . (3.1) 

 Thus, the particles follow straight line trajectories as if they do not interact with 

each other. This step is here referred as the free-flight step. 

 Secondly, the boundary conditions are executed once the particles are moved, 

namely: the particle inflow at open boundaries and the particle-wall interactions are per-

formed. As the third step, the calculation of the intermolecular collisions takes place in a 

cell-wise strategy: collisions are performed among particles sorted in the same cell. Fi-

nally, in the fourth step, the macroscopic variables of interest, such as velocity of the flow, 

temperature and pressure are sampled in the computational domain. Here, a DSMC 
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algorithm based on a 4-step process is described for clarity purposes, however, in the 

literature the boundary-condition- and the macroscopic-variable-sampling-steps are of-

ten omitted when describing the DSMC algorithm. This is done in order to stress that in 

the DSMC method the particle movement (advection or free-stream stage) and collisions 

are decoupled. 

 In summary, the 4-step process in the DSMC method reads to: 

 

1.  Movement of the DSMC particles via the equation of motion 𝐫 = 𝐫o + 𝐯 ∆𝑡. 

 

2.  Application of boundary conditions such as inserting particles at inlets or deleting 

them at outlets is performed. In this step also the interaction between particles 

with wall boundaries is executed. 

 

3.  Once the particles are moved, the particles are sorted in the computational grid 

and the collision step between DSMC particles is performed. A criterion is defined 

for a collision to take place between two DSMC particles.  

 

4.  In this step the macroscopic variables as pressure, temperature and bulk velocity 

are calculated. Then, the DSMC algorithm repeats from the step number one. 

The overview of the DSMC algorithm is illustrated in Figure 3.1. Three key parameters 

define the DSMC simulation, the time step, the number of particles in the system and the 

cell size. The time parameter ∆𝑡 in a DSMC simulation is identical with the physical time 

of the real flow. Therefore, the decoupling between the free-flight step and the collision 

process is assured if the chosen time step ∆𝑡 is small compared to the average time be-

tween collisions, or local mean collision time 𝜏𝑐𝑜𝑙𝑙 [25] [50]. The physical reason behind 

this constraint is that if ∆𝑡 >  𝜏𝑐𝑜𝑙𝑙 is selected, more than one collision can occur during 

a time step and thus the decoupling assumption breaks.  

 Additional to the selection of the time step, the number of simulated particles N and 

the cell size ∆𝑥 of the employed grid also affect the simulation of the neutral gas flow. 

Details on the selection criterion of these three parameters will be specially discussed in 

the following sub-chapter. By convergence of the DSMC method one needs to differen-

tiate from the same term used in the context of the discretization of differential equations 

(such as the hydrodynamic ones), where the so-called Courant stability criterion imposes 

strong restrictions on the time step: ∆𝑡 should be less than a relevant time scale of the 

process to be simulated [51]. In this sense, any DSMC simulation will always converge 

or in other words, it will not crash due to t-dependent numerical instabilities. 
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Figure 3.1 A general DSMC method flow chart. 

3.2 Neutral particle collision dynamics  

 For the collisions to take place, a computational grid representing the physical do-

main is used as reference for the collision and sampling process in DSMC. The cell size 

x should be smaller than the mean free path  [25]. Thus, in DSMC simulations it is 

required that  

 x   . (3.2) 

 

 Situations where the criterion has not been fulfilled [52] have led to the appearance 

of unphysical behavior of the flow as pointed out in [53]. More recently, studies [54] of 

the dependency of transport coefficients, such as viscosity or thermal conductivity, on the 
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cell size have confirmed the empirical findings and it has been addressed that significant 

errors occurred when the criterion is violated. This suggests that an a priori analysis of 

the flow is required in order to define an optimum cell size if the flow gradients and the 

mean free path are not well known. If there is available experimental data, it is possible 

to estimate the change on 𝜆 in the domain of interest by means of pressure and tempera-

ture values, since for the majority of the collision models employed in DSMC the mean 

free path is a function of the temperature and pressure 𝜆 = 𝜆(𝑇, 𝑝).  

 The appropriate time step is deduced from the above relation Eq. (3.2). Dividing 

both side of this equation by the most probable thermal speed v 2mp Bk T m= , intro-

duced in chapter 2, it is obtained: 

 

v v

,

mp mp

coll

x

t

 


     

 (3.3) 

where 𝜏𝑐𝑜𝑙𝑙 and 𝜆 are the mean collision time and mean free path introduced in previous 

chapter. Here 𝑘𝐵 is the Boltzmann constant, T is the temperature and m is the particle’s 

mass. The condition (3.3) means that the simulation time step is selected such that only a 

single collision between a particle A with some particle B inside the cell of size Δ𝑥 within 

a time step is possible. With the simulation time step chosen, the first step of the DSMC 

that involves the solution of the linear equation (3.1) can be performed. Additionally, 

once the cell size is fixed, it can happen that during the complete time step Δ𝑡, a DSMC 

particle might not leave the cell, called here residence time in a cell (time required to 

travel the whole cell). Therefore, the residence time can also be treated as an additional 

parameter. Then, by selecting a time step that satisfies:  rest min t , t   , both criteria 

are met.  

The molecular interactions are typically based on the type of forces 𝐅(𝑟) = − 𝑑𝑈 𝑑𝑟⁄  

between particles populating the system, in which ( )U r  is their corresponding potential. 

In DSMC short-ranged, repulsive potentials are implicitly employed, where the potential 

U is a function of r only, i.e. it is restricted to the use of conservative central forces. This 

type of force can be exemplified with the inverse power law model according to: 

 

( ) r
ˆr

r


=F e , (3.4) 

where r is the distance between particles, 𝛼 and 𝜂 are positive constants. Furthermore, the 

positive sign of the equation indicates that force is directed in the radial unit vector 𝐞̂𝑟, 

outwards the center of force. Classically, for impenetrable particles under the action of a 

central potential, the differential collision cross-section 𝜎 is determined by the distance 

of the closest approach, or impact parameter, 𝑏(𝜒) and the projection of the differential 

area of the ring 𝑏𝑑𝑏𝑑𝜀 along the solid angle 𝑑Ω  after collision, as shown in Figure 3.2(a) 
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and (b). Thus, the total collision cross-section 𝜎𝑡𝑜𝑡 can be obtained from the differential 

one if the contribution of the entire solid angle is taken into account, namely: 
 

( ) ( )
Ω 0 0

Ω=2 sin 2tot

d

d d b db.

=

=

 =      =      (3.5) 

This relation is useful only when the relation between the deflection angle 𝜒 and the im-

pact parameter b is known, so that the terms inside the integral sign can be expressed in 

terms of 𝜒. In addition to the total cross-section and relevant to the transport properties of 

the gas, the so-called viscosity and diffusion cross sections play an important role in the 

treatment of practical problems of molecular motion. Thus, by means of the Chapman 

Enskog theory [55] the viscosity cross-section reads to: 

 

( ) ( ) ( )2 2

Ω 0

sin Ω 2 sin
d

d b db.

=



=

 =   =      (3.6) 

In the framework of the Chapman-Enskog theory [27],[55] the importance of the viscosity 

cross-section is that it appears in the first approximation of the viscosity coefficient, 

which for a pure substance (single gas with molecular mass m) at a temperature T is given 

by: 

 
( )

( ) ( )
4 7 2

0

5 8

4 exp 4

B

B r r B r

mk T
.

m k T v mv k T dv





 =

    −   
 (3.7) 

In equation (3.7) rv  is the magnitude of the relative velocity, sometimes also denoted as 

‖v𝑟‖. In this equation 𝑘𝐵 is the the Boltzmann constant as before and 𝜎𝜇 the viscosity 

cross-section. Thus, different expressions for the coefficient of viscosity will appear since 

the evaluation of the Eq. (3.7) relies on the quantities inside the integral in the denomina-

tor, which in turn depends on the molecular model under consideration as presented later 

on this chapter. 
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Figure 3.2 Calculation of the differential cross-section for the scattering process of particle 1 

relative to particle 2 (being the center force source). (a) Impact parameter b, the differential db 

and the arc-length along the zenith angle . (b) The differential cross-section contributions in all 

directions. Adapted from [30], [56] and [57]. 

 In terms of the inverse power law model of Eq. (3.4), the associated potential 

𝑈(𝑟) = 𝛼 [(𝜂 − 1)𝑟𝜂−1]⁄  and by a transformation from the laboratory to the Center of 

Mass frame of reference, the differential cross-section can be written in terms of the rel-

ative translational energy 21 2r r rE m v=  as [58]: 

 2

1

0 02

1
Ω

2 1 2 r r

d W dW d
m v

− 
 =  

 
, (3.8) 
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where 

1
2 1

0
r rm v

W b
− 

=  
 

. While the total collision cross-section reads to: 

 2

1
2

0 2

1

2 1 2
tot ,m

r r

W
m v

− 
 =   

 
. 

(3.9) 

 

 Here 0 ,mW , 𝛼 and 𝜂 are constants whereas the reduced mass of the two colliding 

particles is given by 1 2 1 2rm m m m m= + . 0 ,mW  is chosen to be an arbitrary constant in 

order to stipulate a truncation value of 𝜒. This assures the convergence of the differential 

cross-section integral of Eq. (3.8). 

 The Maxwell model is a special case of Eq. (3.4) with 𝜂 = 5 . One characteristic 

is that its collision cross-section is inversely proportional to the relative velocity, this 

makes the collision frequency for this model 𝑓𝑐𝑜𝑙𝑙 independent of the relative velocity 

since 𝑓𝑐𝑜𝑙𝑙 ∝ 𝜎𝑣𝑟. For analytical studies this independence simplifies the analytical meth-

ods for the collision integrals. Nevertheless, the Maxwell model yields an unrealistic de-

pendence of the viscosity coefficient with the temperature, where a linear behavior is 

found: Maxwell T  , leading to some limitations in practical applications. 

 The Hard Sphere (HS) model is one of the simplest molecular models available in 

DSMC. According to Eq. (3.4) the model is the limiting case for 𝜂 → ∞. Then, the model 

considers a particle as an impenetrable sphere of radius r with mass m and the collisions 

are completely elastic. Consider a binary collision as in Figure 3.3, where particle 1 trav-

eling from the left hits particle 2 (regarded as fixed). The deflection angle 𝜒 of the relative 

velocity is given by 𝜒 = 𝜋 − 2𝜃𝐴. In the HS model the collision cross section does not 

depend on the relative velocity since as seen in  Figure 3.3, the deflection angle is given 

by: 

 

1 2

cos
2

b

r r

 
= 

+ 
, (3.10) 

 

with a differential and total cross section given by, 

 2

4

HS d
 = , (3.11) 

and, 
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 2HS
tot d =  . (3.12) 

In the last two equations it is assumed that identical particles are involved in the collision, 

i.e. 1 2m m m= = and 1 22d r r r= = + . By introducing Eq. (3.12) into the first equality of the 

viscosity cross-section of Eq. (3.6), the following is obtained  

 2

3
HS
tot =  . (3.13) 

 

Figure 3.3 Scattering process between two particles with mass m1 and m2. The particle 2 is con-

sidered as fixed and thus the particle 1 moves towards 2.  

The above result is also achieved if Eq. (3.10) is used in the second equality of Eq. (3.6) 

or by means of Eq. (3.8) by taking the limit 𝜂 → ∞ and then integrating over the solid 

angle. The viscosity coefficient in the HS model is obtained by introducing the above Eq. 

(3.13) into the first approx. of the viscosity coefficient, Eq. (3.7): 

 
( )

1 2 1 2

HS 2

5 5

16 16

B B

HS

tot

mk T mk T

d

  
 = =  

  
. (3.14) 

In the HS model the post-collision velocities are calculated with ease, since *

r rv v=  and 

the scattering is independent of the angle of incidence as seen in Eq. (3.11). However, the 

fact that the power of ½ in T differs from the real gases, where typically a power in the 

range 0.73-0.77 is found (O2, N2, air) [25][59][58], makes the HS model in some cases 

not suitable to use. The reason behind the mismatch of the exponent of T of is that the 

total cross-section depends on the relative velocity. 

 In the Variable Hard Sphere (VHS) model the particles possess scattering that is 

angle independent as the HS model as in Eq. (3.11). However, the total cross-section is a 

function of the relative velocity, in a similar fashion as in the inverse power law model. 

The angle independent scattering is chosen since the generation of the post-collision ve-

locities can be performed in a very simple manner and the dependence of the relative 
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velocity of the cross-section is chosen in order to appropriate model the viscosity coeffi-

cient. 

The VHS model is constructed by the following relations: 

 2 2

tot r r

tot ,Ref Ref r ,Ref r ,Ref

d v E

d v E

−  −

     
= = =                

. (3.15) 

 For the total cross-section, molecular diameter, relative velocity and relative trans-

lational energy a reference value is introduced. The reference values 𝜎𝑡𝑜𝑡,𝑅𝑒𝑓 tot ,Ref  and 

𝑑 𝑅𝑒𝑓 are defined in terms of 𝑣𝑟,𝑅𝑒𝑓 in order to have an unambiguous relation between 

them. The inflection angle in the VHS model is the same as the HS model reading to: 

 

cos
2

b d
 

=  
 

, (3.16) 

assuming identical particles. By introducing ( )
2

tot rtot ,Ref r ,Refv v
− 

 =  in the first ap-

proximation of the viscosity coefficient in Eq. (3.7), the VHS-viscosity can be written as: 

 
( )

( )

1

2
2

415

8 Γ 4

B B

VHS

tot ,Ref r ,Ref

mk k m
T

v


+




 =

−  
. (3.17) 

Thus, if the particular power dependence of the viscosity with the temperature of the gas 

is known, the value of   can be adjusted in such a manner as to model the viscosity 

coefficient appropriately. In practice, it is usual to refer to the parameter  , or viscosity 

index, as a function of   as: 

 1

2
  +  , (3.18) 

such that one has VHS T   and therefore, Eq. (3.17) can be the rewritten for practical 

applications as follows, 

 

( )( )
Ref

2

Ref Ref

15 1

2 7 2 5 2

B
VHS

mk T T

d T


  

 =    −  −     
. (3.19) 

Finally, a list of relations between 𝜔, 𝜉 with the power 𝜂 of the inverse power law Eq. 

(3.4) can be set. A comparison between the third equality in Eq. (3.15) 2

tot rv −   and the 

total cross-section of the inverse power law Eq. (3.9) 4 1

tot rv − −   leads to: 
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 2

1
 =

 −
. (3.20) 

Adding ½ in both sides in the above relation and using Eq. (3.18), it can be seen that 

 1 3

2 1

+
 =

−
. (3.21) 

With the above definitions, the previously discussed models can be recovered: 

i. The Maxwell model requires 𝜂 = 5, giving the values of 𝜔 = 1 and 𝜉 = 1/2 . 

ii. The Hard Sphere (HS) model is obtained in the limit 𝜂 → ∞, which yields 𝜔 = 1/2 

and 0 = . 

iii. Some common exponents in the VHS model can be found in Bird’s book [59] which 

span the range of [𝜔1,  𝜔2] = [0.6, 0.9]. The corresponding range of 𝜉 and 𝜂 reads 

0.1 ≤ 𝜉 ≤ 0.4 and 6 ≤ 𝜂 ≤ 21. 

 The assumptions of the above models allow us to naturally introduce the way col-

lisions are implemented in DSMC. As shown in Figure 3.4, after all particles in the com-

putational domain have been moved and the application of the BCs performed, at each 

cell a given number of particles are randomly selected for collisions as discussed below. 

 

Figure 3.4 Part of the DSMC algorithm. Here the move, BC application (interaction of the gas 

with open boundaries and surfaces) and collision stages are shown. 

First, in Figure 3.5 are depicted N particles contained in a cell volume V, such that  𝑛 =

𝑁 ∙ 𝑉−1. For binary collisions, the reaction between two particles with relative velocity 

vr takes place, if and only if, during the time interval Δ𝑡 both particles are located in the 

same volume element 𝐴 ∙ 𝐿 = 𝜋𝑑2 ∙ 𝐿 = 𝜎 ∙ (𝑣𝑟Δ𝑡 ) with base area σ (collision cross-

section). In the last equality Eq. (3.12) has been employed. The reaction probability 

( )R rP v  between the two particles can be written as the ratio of the volumes 

 

( )
( )r r

R r

v v t
P v

V

  
=


. (3.22) 
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Figure 3.5 Frame reference at rest for both the orange and the green particles, which have the 

same relative velocity vr to the dark blue particle. During the time interval t, the collisional 

volume, cylinder of volume A L =  vr t, encloses only the blue and the orange particles, making 

a collision between them possible. Since the green particle is located outside this collision volume, 

it is not taken into account for possible collision partners. 

 The total collision probability, which is the expectation value of the total number 

of collisions
collN , is the sum of all individual probabilities. Therefore, the mean num-

ber of collisions for one single particle 
coll s

N  and using 1N N−  for large N >>1 is, 
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= =
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 
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



, (3.23) 

and altogether the mean number of collisions is: 
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. (3.24) 

Here, rv  is the average of all products ( ) ( )i ,k i ,k

rv of particles i and k.  

 In DSMC the collisions are treated in a stochastic manner. A pair of potential col-

lision partners in a cell, say particles i and j, are chosen randomly from the total number 

of particles Ncell within the cell. The probability of a collision to occur between particles 

i and j, or ( )collP i, j , depends only on the rate ( )rv i, j . This means that for the aforemen-

tioned VHS model, the product rv  is a again function of rv , making the magnitude of 

the relative velocity rv  the only parameter used in the determination of the collision 
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probability of particles i and j, even if the particles are moving away from each other. 

This yields a collision probability which can be expressed by 

 

( )
( )

( )
1

1 1

cell

r

coll N m

r

m n

v i, j
P i, j

v m,n
−

= =


=


, 

(3.25) 

for a pair of particles i and j. The job of the denominator is to normalize the discrete 

probability distribution. Thus, in each time step a product of   and ( )rv i, j  is calculated 

and the single collision rate is weighted to the total collision rate in a cell. 

However, if at each time step the double summation of ( ) ( )m,n m,n

rv  needs to be performed 

for all possible collision pairs, the process gets computationally expensive as the calcula-

tion time scales with (Ncell)
2 in this case. Instead, Bird [25] proposed a scheme where the 

collision probability follows the relation, 

 

( )
( )

( )
r

coll

r max

v i, j
P i, j

v


=


, (3.26) 

where the largest value of the rate in a cell ( )r max
v is introduced. By an acceptance-rejec-

tion procedure, the collision is accepted if ( ) ( )r r umax
v i, j v    , where u  is a ran-

dom number between 0 and 1, generated from a uniform distribution. If the pair is ac-

cepted, the collision takes place, the velocities of the particles are reset and the post-

collision velocities generated as discussed below. The process starts all over again (selec-

tion of a pair within the cell) until the required number of candidate pairs are fulfilled.  

 To calculate the required number of candidates is equivalent to knowing the total 

number of collisions, given by Eq. (3.24). Thus, the average number of real particles in 

the cell is cellnV , which can be written in terms of the average number of simulated par-

ticles as 
DSMC cell Ncell

N nV F= by using the definition of the conversion factor FN. By 

taking the maximum value of the rate ( )r max
v  in Eq. (3.24), the number of collisions in 

a cell during a time step is: 

 

( )
( )

( )
r

coll

r max

v i, j
P i, j

v


=


. (3.27) 

It can be seen that for each cell in the domain the local-cell rate ( )r max
v  needs to be stored 

and updated at each time step 𝛥𝑡. Thus, a value of ( )r max
v is set initially for a given cell 

and as the simulation advances, this value is corrected such that in Eq. (3.26) one reaches 
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r max
v . The above equation can be also obtained if one looks the ratio of total accepted 

to the total candidates ratio  

 

( )
coll r

cand r max

N v

N v


=


, (3.28) 

where the equality holds since the probability of accepting a pair is proportional to their 

rate  rv  according to the acceptance-rejection procedure. Thus, solving the above equa-

tion for Ncand and using the relation of FN, one obtains Eq. (3.26). The above procedure: 

pair selection and total number of collisions in a cell is called the NTC scheme, developed 

by Bird [60] and widely described [25]. Alternative schemes employed in DSMC are the 

Time Counter (TC) [25], Null Collision [61], [62] and Generalized Scheme [63], which 

differ from the NTC scheme in the way it is calculated the number of collisions and the 

computational efficiency. The reader is referred to [56] for a review of further insights in 

several collision procedures in DSMC. Bird later updated the above version of the NTC 

scheme, where instead of 
DSMC DSMCN N , it is used ( )1DSMC DSMCN N −  as in the third 

equality of Eq. (3.23). By doing this, a microscopic collision does not depend in a mac-

roscopic variable such as the number density n via DSMC N cellN F V and the value of the 

number of collisions does not depend on an average value of 〈𝑁𝐷𝑆𝑀𝐶〉, which takes some 

time to be established. Here, the updated version of the NTC scheme has been employed 

in this work. 

 The final step in the DSMC collision procedure is to derive the post-collision ve-

locities of the pair of particles. This is done via the conservation of linear momentum 

applied to the velocity of the Center of Mass (CM) of the 2 particles where the velocity 

remains unchanged by the collision i.e.  

 
CM CMv v

*= . (3.29) 

According to the conservation of energy, the magnitude of the relative velocity suffers no 

modification by the collision: 

 
CM CMv v

* .=  (3.30) 

Eqs. (3.29) and (3.30) provide 4 constraints for the 6 unknowns. The two remaining un-

known variables are set by the angles 𝜒 and  of the relative velocity as shown in Figure 

3.6. 



The DSMC modelling 

36 

 

Figure 3.6 Post-collision velocity in the CM frame of reference. 

 For the HS and VHS collision model a random scattering angle is applied. To do 

this, the angles are randomly distributed along the unit sphere and the sampling tech-

niques introduced in previous chapters can be used. For instance, the azimuthal angle 
is uniformly distributed between 0 and 2𝜋 and thus, the angle can be generated as 𝜀 =

2𝜋ℜ𝑢.  

 The polar angle 𝜒 is distributed according to the probability 𝑃(𝜒)𝑑𝜒 =

1 2⁄ sin(𝜒) 𝑑𝜒 and by changing variable to ( )cosx =  , the distribution is now uniformly 

distributed in [-1,1]. By doing this change of variable, there is no necessity to calculate 

the angle directly but the values of sin(𝜒) and cos(𝜒) in terms of a random number u  

as,  

 cos 2 1ux ,=  =  −  (3.31) 

and, 

 2sin 1 x . = −  (3.32) 

Once the post-collisions velocities in the CM frame of reference are calculated, the ve-

locities of particles i and j are transformed to the laboratory frame of reference via: 
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j* * *
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i j

m
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m m

 
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 (3.33) 
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i j

m
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m m

 
= +  
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 (3.34) 
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3.3 Boundary conditions: particle generation at open 

boundaries 

Once the computational grid is defined, the DSMC simulation starts at time t = 0 s when 

a finite number of particles N are randomly distributed in the computational domain. Ac-

cording to the DSMC flow chart of the previous chapter, the particles are then moved 

ballistically as if they do not interact with each other and the boundary conditions (BCs) 

are executed. In DSMC there are two main BCs: particle inflow/outflow and the particle-

wall interaction. The former involves the generation of particles at open boundaries en-

tering the domain with a certain velocity while particles reaching an exit are removed 

from the domain. The particle-wall interaction is performed accordingly to the defined 

reflection mechanism. 

 The use of some results of kinetic theory (see Appendix B) and some basic consid-

erations are needed for the introduction of the inflow BCs. First, consider particles of 

mass m whose velocity relative to the macroscopic stream velocity is given by v – V. This 

difference, sometimes called thermal or random velocity, is denoted by v’. Second, the 

reciprocal of the most probable molecular thermal speed v𝑚𝑝, denoted as 𝛽, is: 

 

2 B

m
.

k T
 =  (3.35) 

 Finally, it is useful to define a dimensionless quantity, the ratio of the magnitude of 

the stream velocity to most probable molecular thermal speed as: 

 

vmp

V
s V .= =   (3.36) 

With the above to definition, the particle flux (inflow) in the positive x-direction across a 

surface element dS in an equilibrium gas is given by: 

 

( ) ( )( )2 21
Γ exp cos cos 1 erf cos

2

in
in

in in

ndN
s s s

dSdt

   = = −  +   +     
, (3.37) 

where 
2

in

B in

m

k T
 =  and in ins V=  . The flow quantities at the surface element, enter-

ing the domain are denoted with the subscript “in”, see Figure 3.7. 
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Figure 3.7 Particle flux crossing a surface element dS part of the boundary S. In the present con-

struction, the coordinate system is such that the unit normal vector to the surface element 𝑛̂ =
−𝑒̂𝑥 is anti-parallel to the positive x-direction. The macroscopic stream velocity Vin lies on the 

xy-plane and the surface element dS on the yz-plane. 

The Eq. (3.37) is one of the central equations in DSMC and it is employed for calculating 

the prescribed inflow BCs. It is worth noting that for stationary gas conditions 0=inV  

and s = 0 thus Eq. (3.37) now reads to: 

 1
Γ

4
in inn v= . (3.38) 

Here, v is the average molecular speed given by the expression:  

 
8 B ink T

v
m

=


. (3.39) 

Thus, the fundamental result of stationary gas conditions is recovered.  

 In the DSMC method, the particle occurence itself at a given inflow cross-section 

is a completely randomly chosen distribution which follows a univariate probability func-

tion, while the particle velocity is a property following a Boltzmann-distribution. Thus, 

the generation of particles at the inflow BC requires a uniform distribution (Poisson pro-

cess) to avoid non-physical non-equilibrium effects [64]. Typically, Poisson processes 

are employed to model the number of events that occur independently of each other at a 

constant average rate in a fixed time interval or spatial area, in this case the generation of 

particles at random positions (x, y, z) at the inflow surface. 
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Regarding the inflow BCs, the velocity generation at open boundaries follows a Maxwel-

lian distribution1,  

 

( )
3 2

2

0 exp
2 2B B

m mv'
f v'

k T k T

   
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   
, (3.40) 

where v’ is the magnitude of the thermal velocity. For certain models of particle-wall 

reflection, such as the Diffuse-Wall, the particles are thermalized after impinging with the 

wall. Therefore, a velocity generation is required, typically following a Maxwell-Boltz-

mann distribution centered at the temperature T of the wall. Moreover, in the collision 

process one also needs to define the post-collision angles in terms of an appropriate ran-

dom sampling. 

 In practice, sampling the above distributions: uniform, Gaussian or Poisson (also 

known as probability density functions PDF) has its own strategies and involves the cal-

culation of invertible functions.  Thus, for a given PDF ( )f x  and knowing that its cu-

mulative distribution ( )F x  is given by, 

 

( ) ( )
x

xF x f d
−

=   , (3.41) 

the problem reduces to finding the target variable x (position, particle speed, post-colli-

sion angles).  

 One way to proceed is by first equating Fx(x) to a random number between 0 and 1, 

followed by solving the integral and then, an inversion of the equation is executed. This 

will allow us to have x in terms of the inverted function
1f −
, known as the inverse-cumu-

lative method [65].  

 An application of this method is found in DSMC for the generation of particles 

uniformly and randomly distributed across the domain at the beginning of a simulation, 

see flowchart in Figure 3.1. However, there are cases in which the inversion fails because 

one encounters non-invertible distributions or it is not suitable for certain distributions. 

Then, methods such as the Acceptance-Rejection [66] are widely employed.  

 The procedure for the acceptance-rejection method reads: first, let the variable of 

interest x be defined in an interval [a, b], say a particle velocity that lies between v dv+ , 

and its corresponding PDF  a bf f , f . Since for continuous functions in a closed and 

 
1 This equation is the solution of the steady-state and force-free Boltzmann equation of Eq. (2.5), introduced earlier.  

The equation has been used as f0 in the description of the approximations for the solution of the Boltzmann equation in 

Chapter 2. The constant appearing before the exponential function is the result of normalization and the exponent 3/2 

reflects the fact that 3 degrees of freedom are considered.  
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bounded interval, the maximum and minimum values of f are attained at least once in that 

interval, a maximum of the distribution fmax can be defined. Then, a random number 

 trialx a,b  is generated and the ratio trial maxf f is equated to a second random number

 0 1R , . If one has trial maxf f R , the value of x (velocity, angles) is accepted and is re-

jected otherwise. In other words, a pair of random variables (xtrial, ftrial) is generated and 

accepted if the pair lies within the shaded region below the PDF f (x) envelope, otherwise 

the pair is rejected and the process of pair generation is repeated until a value is accepted, 

see Figure 3.8. In this way it is possible to sample the particle velocity components, say 

vx, with its corresponding Maxwell-Boltzmann distribution. 

 

Figure 3.8 The procedure of the acceptance-rejection method. By knowing both the image of the 

distribution f(x) and its maximum value in the domain of interest, the generated random variable 

x (speed, post-collision angles) and its corresponding f(x) are accepted if the pair (xtrial, ftrial) lies 

within the shaded region. 

 

3.4 Boundary conditions: particle-surface interaction 
 

During their motion, the DSMC particles can strike surfaces, obstacles or interfaces 

within the domain. Therefore, various gas-surface interaction models are employed in 
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DSMC, namely: specular surfaces, periodic boundary conditions, thermal walls and more 

complex models based on accommodation coefficients.  

 For instance, when a particle strikes a specular surface, the model considers that the 

particle rebounds elastically as if hitting a flat surface. Thus, the model assumes that both 

the gas and solid molecules are rigid elastic spheres and the collision results in an inver-

sion of the particle’s velocity component normal to the surface. The velocity component 

parallel to the surface remains unchanged. Because in real applications the specular re-

flection conditions are not always met, one might employ the diffuse wall BC. 

 The diffuse wall BC assumes that the particles leaving the surface scatter with an 

equilibrium Maxwell-Boltzmann distribution centered at the temperature of the surface 

Tw. Hence, the velocity components of the particle are reset after colliding with the sur-

face with the velocity component normal to the wall distributed as 
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k T k T
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⊥ ⊥ ⊥

 
= − 
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, (3.42) 

whereas the parallel velocity component is distributed as 
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 The generation of these velocity distributions is computed by means of the two 

procedures for the perpendicular velocity, the Acceptance-Rejection method is used while 

the inversion-cumulative is employed for the generation of values of the parallel compo-

nent of the velocity. DSMC calculations with diffuse wall BC have shown good agree-

ment with experimental data of rarefied gases in hypersonic conditions [67]. One can 

consider this BC as if the reflected particles are the flux of a fictitious equilibrium gas on 

the opposite side of the surface.  

 Real surfaces however are neither completely specular nor fully diffusive. Maxwell 

formulated the problem in the following manner [68], first let 𝑃𝑤(v'→v;  r) be a function 

describing the probability that a particle, which strikes a wall at a position r with a veloc-

ity v’,will be reflected at r with velocity v. It is also assumed that no particle absorption 

at the wall takes place and that an instant emission of the particles from the surface hap-

pens after these have impinged on it. In the Maxwell model, two types of particle-surface 

interaction were identified. In the first place Maxwell considered particles that strike a 

surface can be specularly reflected, so that their velocity after impinging the wall is given 

by v = v′ − 2𝑛̂(𝑛̂ ∙ v′) for 𝑛̂ ∙ v′ < 0, see Figure 3.9. This means that the horizontal com-

ponent of the velocity does not change and only the component normal to the wall has 

changed direction but not magnitude. The second type of interaction distinguished by 

Maxwell considers that after impinging with the wall, a particle is re-emitted back to the 
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system in its ground state with a velocity sampled from a Maxwellian distribution cen-

tered at the wall temperature Twall. The velocities are then sampled from equations (3.42) 

and (3.43) introduced previously. Thus, the diffuse reflection can be interpreted as a type 

of interaction where a complete loss of memory by the reflected particle occurs. One can 

generalize the Maxwell model by considering that a fraction   of the incident particles 

are reflected diffusively (diffuse wall BC) and the remaining incident particles (1−  ) are 

assumed to reflect specularly as: 

 ( ) ( ) ( ) ( )ˆ ˆ ˆ;   1 2v' v r v v v v' v'w wP n f n n→ =  + − − +      , (3.44) 

where ( )wf v  is given by equation ( ) ( ) ( )
2 22 exp 2w w wf v m kT mv kT= − . Thus, two 

contributions in the Maxwell Model are included, as shown in Figure 3.9(a): 

• Specular reflection, where the change of momentum occurs only for the component 

of velocity normal to the surface. 

 

• Diffuse reflection, after striking the wall the particles are reflected equally in all 

directions. The velocity of the particles after reflection is randomly assigned ac-

cording to a half-range Maxwellian distribution determined by the surface tem-

perature. 

 

Figure 3.9 Gas-surface interaction model. (a) The Maxwell model considers two types of bound-

ary conditions where incident particles can be reflected diffusely and a second interaction is de-

fined as specular reflection with the surface. (b) The CLL model considers the normal and tan-

gential accommodation coefficients for the sampling of the Maxwellian distribution of the 

velocities after reflection. Figure adapted from [69]. 

 However, the predicted angular distributions of the Maxwell model do not agree 

with the observed scattering distributions in beam experiments [70][71], which turn out 

(a) (b) 
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to be petal-shaped. This behavior leads to the development of further models and among 

all of them, the Cercignani-Lampis (CL) model [72] and its implementation in DSMC by 

Lord [73] (CLL-model) have produced the best numerical agreement with both hyper-

sonic [69] and beam experiments [74]. The CLL model is based in the so-called accom-

modation coefficients and it is depicted in Figure 3.9(b). In general, an accommodation 

coefficient of a particle property Q is defined in terms of incident and reflected fluxes as 

follows: 

 

w

Γ Γ

Γ Γ

i r
Q

i

a
−

=
−

, (3.45) 

where Γ i and Γ r  are the incident and reflected fluxes of Q and Γw  is the reflected flux 

related to the diffuse wall BC. The fluxes are calculated by equations (3.37) and (3.38). 

The property Q can be for instance, the particle momentum P or the particle energy E. If 

one takesQ = P , then for each velocity component two accommodation coefficients are 

calculated: a normal one related to the velocity components perpendicular to the surface 

and the tangential ones related to the velocity component parallel to the surface. This is 

the heart of the CLL model. If now one takes Q E=  and 1Ea = , both the reflected and the 

wall energy fluxes are the same Γ Γr w= , thus the diffuse wall BC is recovered and the 

velocities sampling can be done via Eqs. (3.42) and (3.43). 

 Typically, in cryogenic surface applications this particular accommodation coeffi-

cient is referred as the thermal accommodation coefficient and its value ranges  0 1Ea , .  

A physical situation often encountered in gas dynamics applications and particularly in 

vacuum systems is the physical adsorption of particles on a surface or sorbent. With a 

defined probability  0 1p ,  that the particles impinging on the surface are absorbed 

called as sticking probability BC. Here, the sticking probability BC is numerically imple-

mented due to its important role as a pumping process. In Table 3.1 the outline of the 

algorithm is presented.  

 As the particle hits the surface, a random number is generated between 0 and 1 

representing the probability of being absorbed at the moment of the impact. If this prob-

ability lies below the defined sticking probability p, the particle will be absorbed by the 

surface. Otherwise, the particle is reflected with a Maxwell-Boltzmann distribution ac-

cording to the wall surface temperature, just as in the diffuse wall BC. For the sampling 

of distributions in the sticking probability BC, namely the uniform and normal (Maxwell-

Boltzmann) distributions, the numerical strategies shown in the last section are employed. 

 



The DSMC modelling 

44 

Table 3.1 Implementation of the sticking probability BC for the particle wall collisions   

User-defined sticking probability p is read. 

When particles impinge a surface (at temperature Tw) a random number is first generated: u , which 

lies between 0 and unity  

• If u p    

Delete the particle from domain, i.e. the particle is absorbed by the surface 

 

• If u p   

Store the mass, velocity and energy of the particle in the variables m, v and E 

Generate a vector normal to the wall n̂⊥ and compute the normal velocity magnitude n̂⊥v  

By doing this, it can be computed the normal component of the Maxwellian distribution (Eq. 

(3.42)) 

Next, compute the wall tangential velocity  n̂⊥= − ||v v v  

While the  ||v  with 1  , add a perturbation   to the incoming velocity v and 

compute again the normal and tangential velocities 

Compute a tangential unit vector n̂ =|| || ||v v  

Calculate the velocity based on Eqs. (3.42) and (3.43) with T=Tw, via the procedures described 

in this chapter then return the reflected velocity rv  

 

3.5 Macroscopic states in DSMC 

Once all the particles have been moved and collided, the macroscopic states are calculated 

in DSMC. Most of the physical quantities are computed as averages as 
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 (3.46) 

Here, a cell of volume Vc located at r contains NDSMC-particles, thus the density n , linear 

momentum, flow velocity V of the bulk and translational temperature trT  are estimated by 

counting all the particle contributions in that cell. Thus, the DSMC method uses a cell 
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system for sampling the macroscopic variables. As an inherent stochastic process, the 

macroscopic variables are fluctuating until steady state conditions are locally established, 

and thus statistics can be performed on the variables. The temperature trT  is estimated 

from the equipartition theorem, where 3 degrees of freedom are considered in the above 

equation. The local pressure ( )rp ,t  is evaluated via the ideal gas law using the transla-

tional temperature. If rotational and vibrational modes (here referred as internal modes) 

are involved, like in polyatomic molecules, the overall temperature ovT  has to be invoked:  

 3
 

3

tr int
ov

T fT
T

f

+
=

+
, (3.47) 

where f denotes the degrees of freedom of the internal modes. For example, for atoms the 

rotational degrees of freedom are zero whereas for diatomic molecules a value of 2 is 

assigned. Other physical quantities such as mean free path and mean collision time are 

also sampled in each cell during the DSMC calculation. The calculation of the macro-

scopic variables in Eq. (3.46) is based on the number of DSMC particles at each cell, thus 

the physical value of each quantity is recovered by introducing the conversion factor NF .  

 As in any study that involves the calculation of averaged physical quantities, the 

appearance of statistical fluctuations is of natural consequence. Typically, in a DSMC 

simulation the fluctuations in a cell are inversely proportional to the square root of the 

number of particles located on it [75] and for the case of steady flows, the fluctuations 

are also dependent of the number of independent samples employed [75], [76]. As a re-

sult, it is necessary to determine the optimum number of particles in each cell; enough to 

promote statistical accuracy while maintaining a non-prohibitive computational time. At 

least 20 particles per cell have been traditionally employed in DSMC studies [25], [59], 

but as indicated in [77] a factor of 5 greater could be favorable not only to decrease the 

error but also to increase the efficiency of the calculation. It is clear that upon available 

computational resources, one may choose the former or the latter option. Thus, one needs 

to find a compromise of the cell dimensions because the smaller the cell size gets, the less 

DSMC-particles will be contained on it and thus achieving poor cell statistics. This leads 

us to define a criterion on DSMC that establishes a certain convergence and accuracy 

level during the simulations. 

3.6 Convergence criterion of DSMC simulations 

 For each DSMC analysis a convergence criterion is needed in order to decide 

whether the DSMC simulation has converged to a statistical stationary state everywhere 

throughout the domain. The criterion employes the total number of particles in the system 

and it takes the form at the time step k: 
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 ( )tot k tot
N t t N= −   . (3.48) 

In a typical DSMC simulation, at the simulation start t = 0 N particles are already set 

inside the domain. As mentioned before in this chapter, once the particles are moved at 

each time step, the appropriate number of particles enters the domain at the inlet whereas 

at the outlet the particles are deleted. This process has the effect that the total amount of 

particles in the system changes in time. The temporal evolution of the total number of 

particles has three possibilities  

 ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

Case 1: 0 0

Case 2: 0 0

Case 3: 0 0

tot k tot tot

tot k tot tot

tot k tot tot

N t t N t N N t

N t t N t N ~ N t

N t t N t N N t

= = = −   =

= = =   =

= = = +   =

. (3.49) 

For instance, if the total number of particles in the system is initially underestimated, then 

its temporal evolution monotonically increases until a final value (Case 3), rea-ching a 

plateau, see Figure 3.10. 

 

Figure 3.10. Example of the temporal evolution of the total number of DSMC particles in a sim-

ulation as a function of the time steps (Case 3). 

The convergence of the DSMC simulation is hereby referred to a simulation which the 

maximium variation of the total number of particles is less than 2% after reaching the 

plateau region, as described above. A simulation that has converged in this sense, if 

stopped and restarted again, the time variation of the number of particles typically has 

temporal evolution as shown in Figure 3.11, resembling case 2 of Eq. (3.49). Subse-

quently, the statistics are then accumulated over substantial period of time in order to 
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reduced the local variation of the macroscopic variables, which leads us to the statistical 

error in DSMC macroscopic variables. 

 

Figure 3.11 Stationary conditions with respect to the total number of particles in a DSMC simu-

lation: the value of the number of particles in the system fluctuates around a mean value. At this 

point the convergence criterion is applied. 

3.7 Statistical error analysis in DSMC  

The errors can be determined via confidence intervals and the calculation of the standard 

deviation. However, it is possible to determine the deviations from the mean value by 

applying equilibrium statistical mechanics [57], [78] as in [79], [80] where a framework 

for the application of the fluctuations was employed and verified by molecular simula-

tions. In the following paragraphs the key concepts are presented to describe the fluctua-

tion relations based on the derivation of [57].  

 In equilibrium statistical mechanics, the statistical error in DSMC of a macroscopic 

variable A is taken as the ratio of its standard deviation A to the value of the macroscopic 

variable A . Hence, the main idea in the deduction of the fluctuations is to estimate the 

variance of a macroscopic variable 〈(Δ𝐴)2〉via the Maxwell-Boltzmann statistics, where 

𝜎𝐴 ∝ √〈(Δ𝐴)2〉. In DSMC the average values are estimated over M independent samples 

and in steady state scenarios, and these sequential realizations are taken in different times 

t. The standard deviation for a macroscopic variable A is given by [57]: 
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A
,

M
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 (3.50) 
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and the error in the estimate of the macroscopic variable A is taken as, 

 
A

AE .
A


=  (3.51) 

Equation (3.51) provides a way to define expressions for the statistical error in the mac-

roscopic variables in DSMC. These expressions are summarized in the following table. 

Table 3.2 Statistical error of macroscopic variables A employed in the present DSMC 

simulations, as derived in [75] 
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Here i
ˆV e  means the i-th component of the flow velocity with  i x, y,z= . In the above 

expressions ( )1

T T
V V p− = −    has been introduced, the isothermal compressibility at 

constant temperature and i

T is the compressibility of the reference dilute gas at same 

density and temperature. Also, the heat capacity per particle at constant volume is defined 

as 𝑐𝑉 = 𝐶𝑉 𝑁0⁄  and Ac is the ratio of the fluids’s speed of sound to the speed of sound of 

a reference ideal gas at the same temperature. Finally, the quantity 0

ip  is the pressure of 

an ideal gas under the same conditions and 𝛾 = 𝑐𝑝 𝑐𝑉⁄  is the adiabatic exponent.  

 In addition to the described statistical errors, deterministic errors due to finite values 

of the chosen parameters in DSMC, namely: ∆𝑡, ∆𝑥 and 𝐹𝑁  do play a role for the accuracy 

of the macroscopic states of the flow. Assuming that in a DSMC simulation the three key 

parameters are carefully chosen employing the criteria given in Chapter 3.1, it can be 

assured that the estimated macroscopic variable of the flow A has already minimized their 

influence and the sampling as well as the employed physical models (intermolecular col-

lisions and particle-wall interaction) are the leading contributions to the uncertainty. For 

instance, it has been shown [54] that the employed intermolecular collision model may 

alter the transport coefficients of the flow by some factors, but the functional dependence 

with the cell size remains the same. 
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3.8 The DSMC code  

 The numerical code employed in the analysis of sub-divertor gas flows is imple-

mented within the framework of an open-source C++ toolbox for computational fluid 

dynamics: OpenFOAM [81], freely available for download under the GNU general public 

license [82]. The corresponding DSMC solver: dsmcFoam, which is based on Bird’s al-

gorithm described in this chapter, is capable to execute simulations for steady and transi-

ent conditions as well as gas flows in arbitrary geometries.  

 For the geometry and mesh generation, in OpenFoam two in-built grid generators 

are available: snappyHexMesh and blockMesh. However, in these mesh utilities, the user 

introduces manually each vertex and line of the computational domain of interest. Due to 

the complexity of the divertor geometry, it is rather cumbersome to define each node and 

lines forming the divertor cassette contour. Therefore, the compatibility of OpenFOAM 

with additional grid generators software is used. Mesh utilities such as GMSH [83], the 

grid generator included in SALOME [84] or the in-built generators in ANSYS [85], eases 

the inclusion of complex geometries and grids in dsmcFoam. In the present work, GMSH 

has been employed as grid generator for the analysis of sub-divertor gas flows. For simple 

geometries such as a rectangular channel, blockMesh is preferred.  

 The workflow of a simulation is illustrated in Figure 3.12. First, the geometry rep-

resenting the physical domain of the flow is analyzed. Complex geometries as fusion di-

vertors require access to engineering files to define the flow domain. To do this, one needs 

to identify and define first the interfaces between the main chamber and the neutral region 

of the sub-divertor. Thus, the physical domain is carefully analyzed in order to define a 

computational domain which is then meshed. The meshing or the grid generation is then 

applied to the chosen computational domain. As final stage of the workflow, the boundary 

conditions and DSMC parameters are again verified in order to start the simulation.  
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Figure 3.12 Workflow employed in the present thesis for the study of neutral gas flows in sim-

ple and complex geometries.  

 In the present work, the neutral gas flow in the sub-divertor is modelled employing 

an updated version of dsmcFoam, where the capabilities of its original release have been 

extended [86]. One of the new features that is employed in this thesis is the pressure 

boundary condition. This boundary condition is quite important for the work of this thesis 

because in some cases, as in the gas flow studies in the rectangular channel and ASDEX 

Upgrade, there is no available information of the velocity profile of the neutral particles 

at the inlets or outlets of the sub-divertor. 

 In applying the boundary conditions for the gas-surface interactions, in this thesis 

the specular reflection and the diffuse wall boundary conditions available in the 

dsmcFoam solver. In order to model the effect of particle absorption in surfaces, the stick-

ing probability boundary condition is developed and employed in this dissertation. In the 

DSMC code it is possible to include atoms and molecules as type of gas particles, which 

includes their properties as mass, diameter and degrees of freedom (translational, rota-

tional). The collisional kernel in the DSMC code include the hard sphere model, which 

assumes a dependency with the distance between the pair particles involved in the colli-

sion. The VHS model included in the code calculate the collision cross section with the 

dependency with the relative velocity between particle pairs. The temperature depend-

ence of the viscosity as a power law is included in the DSMC code, which results in a 

solely input parameter i.e. the exponent or also called the viscosity index 𝜔.  

 Thus, the DSMC simulations need many parameters, which can be condensed in 

three main types: boundary type, DSMC properties (time step, conversion factor) and 



The DSMC modelling 

51 

particle attributes. Throughout the dissertation for each modelled problem of gas flows, a 

table summarizing all the parameters is given in the following format: 

Table 3.3 Template of table for input of DSMC simulations (the column “Value” is left 

in blank on purpose) 

  

 Type / Parameter Value Unit 

Boundary name    

Inlet, outlet, wall, pump Pressure type (inlet)    

 Pressure  Pa 

 Temperature  K 

 Pressure type (outlet)    

 Pressure  Pa 

 Velocity type (inlet)    

 Velocity   m/s 

 Temperature (transl., rot., vib.)  K 

 Number density   m-3 

 Wall   

 Velocity   m/s 

 Temperature  K 

 Pump   

 Sticking probability  - 

 Velocity   m/s 

 Temperature  K 

DSMC properties    

Time step ∆𝑡  s 

Conversion factor 𝐹𝑁  - 

Particle-wall interaction Specular, diffuse reflection   

Binary collision model VHS   

 Reference temperature  K 

Particle attributes    

Particle name (Argon, Deuterium, …)   

mass m  kg 

diameter d  m 

rotational DoF Rotational DoF  - 

viscosity index  𝜔  - 
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4 Verification and benchmark: flow in 

channel 

4.1 Rarefied gas flow in a rectangular channel 

 

The first objective of the thesis is to verify and benchmark the computational tool 

(dsmcFoam) by applying the DSMC code to rarefied gas flows in simple geometries. A 

well-known problem in rarefied gas dynamics community is the gas flow through a rec-

tangular channel [87]. The system consists of a monoatomic gas Argon (Ar) flowing 

through a channel of height H and length L, connecting two semi-infinite reservoirs. If 

the width of the channel in z-direction is much greater than its height, the influence of the 

lateral wall located at z= ± z0 is negligible, and thus the problem can be considered two 

dimensional as shown in Figure 4.1. 

 

Figure 4.1 Scheme of the flow, coordinates and regions: inlet (pressure value of pL) and outlet 

(pressure value of pR). 

 The same gas is contained in side the channel (inlet and outlet), where the constant 

pressures pL and pR are defined, respectively. For the computation pL > pR is assumed and 

the temperature T0 is set at the inlet, outlet and wall surface. The solution of the problem 

is determined by the dimensionless rarefaction parameter describing the degree of gas 

rarefaction 𝛿 = 𝑝𝐿𝐻 𝜇v𝑚𝑝⁄ , where 𝜇 is the dynamic viscosity of the gas. Moreover, the 

solution is also dictated by the ratio length-to-height L/H and the reservoirs pressure ratio 

pR/pL. The aim of the simulation is to calculate the macroscopic variables along the chan-

nel including the reduced mass flow rate W which is defined as 
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where 𝑀̇ is the mass flow rate through the channel at any value of L/H, pR/pL and 𝛿, 

whereas  
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(4.2) 

is the mass flow rate through a slit (L/H = 0) with an expansion into vacuum pR = 0 Pa in 

the free-molecular limit. In the case of the parallel plates for the two-dimensional prob-

lem, the mass flow is calculated as the intergral across the height of the channel at one 

position x. 

 The performed simulations have been conducted for different rarefaction parame-

ters. 10-3, 1 and 10. The ratio length-to-height L/H is set to 5 and a value of the pressure 

ratio R Lp p  of 0.1 is chosen. The selection of the pressure ratio is justified based on 

findings in Ref. [87] that reveal large statistical scattering for pressure ratios close to 

unity. Moreover, in [24] suggest that for a pressure ratio range between 0.5 and 1 a nu-

merical solution of the Boltzmann equation is more appropriate to describe this system.  

 

 In order to define the cell dimensions in x- and y-direction, first the mean free path 

with the highest-pressure value is calculated (left-hand side of the channel, pL). This sets 

the minimum cell size in the DSMC calculation (∆𝑥 =  𝜆 3⁄ , Chapter 3.4). By employing 

the thermal or random component of the flow velocity vth =  V∞ + vmp  and the cell 

size ∆𝑥, the residence time of a particle in a cell is calculated as 𝑡res = ∆𝑥 𝑣𝑡ℎ⁄ . From 

Chapter 3, the value of the time step does not exceed the mean collision time 𝜏𝑐𝑜𝑙𝑙 =

𝜆 𝑣𝑚𝑝⁄ . This latter condition is assured by calculating the collision time at the inlet and 

relative to this value a time step is defined. This procedure is applied to each DSMC 

simulation for the different rarefaction parameters. The diffuse reflection boundary con-

dition presented in Chapter 3.3 is employed as gas-surface interaction in the simulations, 

whereas the VHS collision model has been employed in all stuy cases. In the following, 

the DSMC simulation refers to the results of the dsmcFoam solver unless otherwise 

stated. 
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Table 4.1 The summary of the model parameters for 𝛿 = 1 is presented in the following 

table  

 

In the present analysis the rarefaction parameter ranges from the free molecular to the 

near-continuum gas flow regime and thus, expressions for the pressure profile and mass 

flow rate through the channel are needed in order to compare with theoretical expressions. 

The gas flow can be analyzed from the perspective of a continuum-fluid framework in 

terms of the Navier-Stokes equations for Kn < 0.1, as mentioned in Chapter 2.1, where 

generally, the average gas velocity at the wall is different from that of the surface due to 

the interactions between the gas and wall molecules, and thus a velocity slip occurs. The 

Navier-Stokes equations in one dimension with the slip condition at the wall for a gas 

flow through parallel plates read 
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Where the y is the cartesian coordinate along the channel height and the x-direction along 

the flow direction, i.e. the channel length. The coefficients A are dependent on the velocity 

 Type / Parameter Value Unit 

Boundary name    

Inlet Pressure type (inlet)    

 Pressure 8 × 10−2 Pa 

 Temperature 300 K 

Outlet Pressure type (outlet)    

 Pressure 8 × 10−3 Pa 

Wall Wall   

 Velocity  0 m/s 

 Temperature 300 K 

DSMC properties    

Time step ∆𝑡 1 × 10−5 s 

Conversion factor 𝐹𝑁 5 × 1010 - 

Particle-wall interaction Diffuse reflection   

 Temperature 300 K 

Binary collision model Variable Hard Sphere model   

 Reference temperature 300 K 

Particle attributes    

Particle name Argon (Ar)   

mass m 66.3 × 10−27 kg 

diameter d 4.17 × 10−10 m 

rotational DoF Rotational DoF 0 - 

viscosity index  𝜔 0.81 - 
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slip coefficients and the molecular interaction model. Gallis et al. [88] employs approxi-

mate close-formed expressions based on the Navier-Stokes equations to describe the 

steady flow of an ideal gas through tubes and channels which agree with the experimental 

measurements of [89]. In [88] the expression of the pressure profile along the channel is 

a function of the mean Knudsen number Knm, the accommodation coefficient (a value of 

unity for full accommodation i.e. diffuse reflection) and three dimensionless coefficients 

which are related to the flow behaviour in the different flow regimes. The expression of 

the pressure profile along the channel length reads 
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where 𝑝𝐿 and 𝑝𝑅 are the pressure at the left (inlet) and right (outlet) reservoir and the rest 

of the variables is defined as 

 

2

Kn

L R
m

m

m

p pp

H

+  
    

=   
   

    

and 
0 specular reflection

1 diffuse reflection



= 


, (4.5) 

where the Knudsen number Knm is calculated as the ratio of the average mean free path 

to the channel height at the inlet. Depending on the flow regime of the problem to solve, 

the expression of {… } in Eq. (4.4) has the following limits in the continuum and the free 

molecular regimes: 
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 (4.6) 

where px can take the value of p in the expression of {… } in the numerator of Eq.(4.4)  

whereas it takes the value of pR (outlet) in the corresponding expression of {… } in the 

denominator of Eq. (4.4). Therefore, the coefficient b1 is related to the near continuum 

regime, b0 to the free molecular and the coefficient b2 controls the transition between the 

continuum and the free molecular flow regime. These coefficients are selected such that 

the mass flow rate proposed in [88] 
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matches the flow rate calculated with the DSMC method. These values read: 𝑏0 = 6.5 

× 10−4, 𝑏1 = 0.5 and 𝑏2 = 0.01. In Eq. (4.7) the quantity 𝑀̇𝐶 represents the mass flow 

rate defined in the continuum regime whereas the expression in {… } is defined by Eq. 

(4.6).  

 The different inlet pressure at each rarefaction parameter dictates the necessary time 

step to be employed. The time step does satisfy the DSMC requirements that it be less 

than the mean collision time for all test cases. For the highest collisionality case with 𝛿 =

10 a ratio of ∆𝑡 𝜏𝑐𝑜𝑙𝑙⁄ = 3.57× 10−2 is employed. As shown in Table 4.1 for the analysis 

with the rarefaction parameter 𝛿 = 1 a ratio of ∆𝑡 𝜏𝑐𝑜𝑙𝑙⁄ = 5.29 × 10−2 is found. Finally, 

for the case 𝛿 = 10−3 a ratio of ∆𝑡 𝜏𝑐𝑜𝑙𝑙⁄ = 5.29 × 10−6 is used.  

 The averaging process at each cell in the system starts once the stationary conditions 

in the simulation are reached. This condition is reached approximately after N-time steps: 

150,000 ( = −), 20,000 ( = ) and aprox. 100,000 ( = ). In the low collisional case 

 = − the total number of particles reaches a minimum after 50,000 time steps and its 

value remains approximately constant after 150, 000 time steps, as shown in Figure 4.2. 

In Figure 4.3 is shown the variation in time of the total number of the DSMC particles for 

the anaysis with = 1 and = 10. In Figure 4.3(b) is shown the aforementioned plateau 

appearing in the behaviour of a DSMC simulation.  

 

Figure 4.2 Number of DSMC particles in the system for the rarefaction parameter  = 10-3, for 

the parallel plates studies of Argon gas, VHS collision model, gas temperature of 300 K, L/H=5, 

outlet/inlet pressure ratio of 0.1. 

 



Verification and benchmark: flow in channel 

57 

 

Figure 4.3 Number of DSMC particles in the system for the rarefaction parameter (a)  = 1 and 

(b)  = 10, for the parallel plates studies of Argon gas, VHS collision model, gas temperature of 

300 K, L/H=5, outlet/inlet pressure ratio of 0.1. 

 The numerical calculation of the pressure along the channel length (at y = 0) with 

dsmcFoam and the closed expression developed by Gallis et al. are shown in Figure 4.4. 

For the comparison 100 points equally distributed along the x-axis in the DSMC 

calculation have been sampled and plotted.  

The analysis showed that along the majority of the channel length a relative difference of 

5% between DSMC and the expression of Eq. (4.4) is found, representing 66% of the 

total sampled points for the studies with  =  In the case of  =  is observed that 82% 

of the sampled points have a relative difference of 6%. At the channel entrance the values 

of DSMC and the closed expression have the maximum deviation in all the study cases 

(a) 

 

(b) 
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and around the value 0.2 of x/L, the difference between both values is considerably 

reduced, as an example of this observation in Figure 4.5 is shown the percentage 

difference distribution between the dsmcFoam solver and Eq. (4.4) for the case mid- and 

high-collisionality. As reported in [88], by increasing the pressure the concavity of the 

profile varies, which is exactly what is here observed. This gives the author the confidence 

that the DSMC solver captures the main characteristics of the gas flow in the channel for 

different flow regimes.  

 

Figure 4.4 Normalized pressure as a function of the normalized position along the x-axis (channel 

length): gas Argon, VHS collision model, full accommodation coefficient at the wall (diffuse 

scattering), temperature of 300 K, L/H=5, outlet/inlet pressure ratio of 0.1, rarefaction parameters 

of 10-3, 1 and 10.  
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Figure 4.5 Percentage difference between DSMC and Eq. (4.4) for the values of the pressure 

along the channel axis (y = 0) for the DSMC analysis for rarefaction parameter (a) and (b)  = 10. 

The plot is generated by sampling the pressure values along the the x-axis: The DSMC simulations 

employs Argon as working gas, VHS collision model, full accommodation coefficient at the wall 

(diffuse scattering), temperature of 300 K, L/H=5 and outlet/inlet pressure ratio of 0.1. 
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As next step, the DSMC solution obtained with dsmcFoam is benchmarked with numer-

ical analysis obtained in [24] studying the same geometry. The numerical studies in [24] 

focuses on the numerical simulation of the gas flow through parallel plates with DSMC 

for a wide range of conditions which includes the ratios pR/pL and L/H here studied. The 

present comparison focuses on the ratio length-to-height L/H of 5 and a value of the pres-

sure ratio 𝑝𝑅 𝑝𝐿⁄  of 0.1. 

 In Figure 4.6 are shown the pressure profiles predicted by the dsmcFoam and the 

values reported in [24] along the channel length and at the channel axis (y = 0). The plots 

shown in Figure 4.6 are normalized to the pressure values found at the channel inlet. The 

pressure evolution is well-captured by the DSMC code, where the values for 𝛿 = 10 lie 

above the ones of the case 𝛿 = 1 across the whole channel length. The axial profile of 

pressure increases its curvature with the increase of the rarefaction parameter, as seen in 

[24] and in [90].  

 The results for the reduced flow rate W in terms of rarefaction parameter  are 

shown in Figure 4.7. As expected, the reduced mass flow in the present work tends to its 

value at free molecular conditions as  goes to zero. However, the present dsmcFoam 

solver predicts higher values of the reduced mass flow rate by 20% to 30%. Since the 

model in [24] employs a different mesh strategy, three-level grid, for the same flow con-

ditions, as a second step a finer grid for the the flow in the dsmcFoam solver is employed. 

The refinement is applied to the study case  = 10-3. The same geometry boundary con-

ditions i.e. L/H = 5, 𝑝𝑅 𝑝𝐿⁄ = 0.1 for the “finer mesh” case for 𝛿 = 10−3 are employed. 

The temperature is taken as 300 K as before. For this case, the structured mesh consisted 

only of 700 divisions in the horizontal and 120 in the vertical direction are employed. A 

comparison of the computed reduced flow rates with those in [24] is given in Table 4.2. 

Results show that the calculated values of the reduced mass flow rate W are in numerical 

agreement within 10% for the coarse mesh. By employing the grid refinement, the relative 

different between the reduced mass flow rates is 2%. 
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Figure 4.6 (a) Pressure evolution along the channel at the channel axis (y = 0) calculated with the 

dsmcFoam code for the cases 𝛿 =  10−3, 1, 10 for the pressure ratio 𝑝𝑅 𝑝𝐿 = 0.1⁄  and L/H = 5. 

(b) The reference values in [24] are sampled at the axis of the channel L/H = 5 and 𝑝𝑅 𝑝𝐿 = 0.1⁄ . 

 

(a) 

 

(b) 
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Table 4.2 Reduced flow rate W as function of 𝛿, 𝑝𝑅/𝑝𝐿 = 0.1 aspect ratio L/H = 5 

  W     (a) (%)
W

W


 (b) (%)

W

W


 

 (a) Coarse 

Mesh 

(b) Fine  

Mesh 

Ref. [24]   

310−
 0.3531 0.3145 0.321 9.1 2.02 

 

 

Figure 4.7 Reduced flow rate W as a function of the rarefaction parameter  for pR/pL = 0.1 and 

L/H = 5. 

 It is concluded that the reduced mass flow rate of this system is very sensible to the 

employed computational grid. A gain of 8% relative to the target value of Ref. [24] is 

achieved when a denser grid is employed (factor of 1.4 in x and 1.2 y). The founding 

is crucial, since at the beginning of the chapter, the sensitivity of the cell size suggests 

that a 500x100 grid yields the minimum variation of the macroscopic variables. As sug-

gested in [24], a multi-level grid is suitable for axy-symmetric flows in order to capture 

the gradients near the wall.  

 By following the strategy of a single-level grid in a flow with preferential direction, 

a reduction of 30% on the cell size translates in a reduction of 12% in the mass flow rate. 

This means that for this type of flow configuration, a necessary condition for the DSMC 

method to provide an accurate solution (lower bound) is given by ∆𝑥/𝜆 < 0.01 , which 

is less than unity, as stated in chapter 3. For the time step it is here suggested, once the 

cell size is selected, to choose a simulation time step such that ∆𝑡 < 𝜏𝑐𝑜𝑙𝑙, which ensures 

that only one collision can occur during a simulation time step and the decoupling 
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assumption of DSMC between movement and collision steps is fulfilled. The collision 

time is dependent on the mean free path which is related to the cell size of the mesh. In 

our case, 1/10 𝜏𝑐𝑜𝑙𝑙 is more than sufficient to fulfill the DSMC condition. Additional to 

the timestep, care must be taken by selecting the cell size and the number of particles in 

the cell, because by maintaining the number of particles constant in the system and by 

increasing the number of computational cells, the fluctuations are expected to increase 

since ∆ ∝ 1 √𝑁⁄  and thus the statistical noise of the flow field variables increases too. 

Therefore, the effects of the deterministic errors on the macroscopic flow variables Ai, i.e. 

𝐴𝑖  are analyzed as a second step. The deterministic errors are based on the analysis of a 

system by modifying the DSMC parameters and therefore the rest of the chapter will treat 

the deterministic erros in the following order: 

1. Real-to-DSMC particle ratio FN. 

2. Cell size ∆𝑥 . 

3. Time step ∆𝑡 . 

 

For the analyses, the working gas is Argon, the ratio of out-to-in pressure is 0.1, the ratio 

L/H is 5 as before. The temperature at inlet, outlet and wall is set to 300 K. The rarefaction 

parameter at inlet is defined as 𝛿𝑖𝑛 = 10−3 such that the Knudsen number is much greater 

than 10, in order to have free-molecular flow conditions (Kn ~ 886). In such rarefied flow 

conditions, the mean collision time 𝜏𝑐𝑜𝑙𝑙 of 1.89 s.  

4.2 Particle number effects 

The reduction of number of particles in the system has been done by modifying the real-

to-simulated particle rate FN. Thus, in order to address the effect of the number of DSMC 

particles in the system, two study cases are compared against the reference simulation, 

where the 𝐹𝑁 is a factor of 10 and 100 the reference simulation.  

The sampling procedure has been performed in all cases, once achieved the steady state 

conditions, where the number of iterations of the simulation 𝑁∆𝑡 of the order of 104 have 

been conducted. The importance of the number of particles N0 is directly related to the 

statistical errors shown in Table 3.2 in Chapter 3.7,where a functional dependence of 

0~ 1StatisticalE N  is found. Figure 4.8 illustrates the effect of the total number of DSMC 

particles on the magnitude of the flow velocity at the channel center where the profile has 

a parabolic-shape. In all the simulations the time step and the cell size are kept constant 

and equal to the reference case. A maximum variation of 7% in the flow speed profile as 

a function of the transverse coordinate-y between the reference simulation and the two 

simulations with 10 and 100 times the real-to-simulated ratio is observed. For the latter 

simulations, the profiles scatter around the reference solution and the relative differences 

are enhanced in the interval 𝑦 = [−0.2, 0.4]. 



Verification and benchmark: flow in channel 

64 

 

Figure 4.8 Influence of the total number of particles employed in DSMC simulations for 

Poiseuille flow. Left: DSMC particles across the domain for three simulations, each with different 

FN. Right: The flow speed profile at the middle of the channel for the different FN case studies.  

 Moreover, the suggested 30-40 DSMC particles per cell for a good DSMC practice 

has been accomplished for the reference case (average ~ 160 DSMC particles) and the 

DSMC simulation with 𝐹𝑁 = 𝐹𝑁,𝑅𝑒𝑓 × 10 (16 DSMC particles). For the case of the real-

to-simulated particle ratio 𝐹𝑁 = 𝐹𝑁,𝑅𝑒𝑓 × 100, cells with less than 2 particles have been 

detected in the area near the outlet (low pressure side of the channel) and barely 3 particles 

per cell have been identified near the inlet. In Figure 4.9 the evolution of the number of 

DSMC particles along the channel axis (center line, y = 0) is shown for stationary condi-

tions. In the reference study case, by summing the number of collisions over all the cells 

an average of 20 collisions in the whole system is obtained. For the case 𝐹𝑁 =

𝐹𝑁,𝑅𝑒𝑓 × 10, a total of 3 collisions across the whole channel are calculated, reflecting the 

reduction of total number of particles available for defining a collision partner (pairs). 

This underlines the importance of setting the minimum particles per cell. For the present 

flow conditions, the reference case fulfills the condition of more than 20 DSMC particles 

at each cell in the domain, see in Figure 4.9 the shadowed region in green.  
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Figure 4.9 Number of DSMC particles along the center line of the channel (y = 0) plotted from 

inlet to outlet. The green shadowed region depicts the range where the number of particles is 

greater than 20, whereas the yellow region encloses the range where the number of particles 

ranges between 10 and 20.  

 Along the x-axis variations between the temperature and velocity profiles are pre-

sented in Figure 4.10 and Figure 4.11, respectively. The evolution along the x-axis of the 

temperature T, normalized to the inlet temperature in the reference simulation, is shown 

in Figure 4.10. No significant variations are found in the temperature profiles (~ 1% rel-

ative difference between the three cases). Same dependence for the temperature is found 

along the axis in [24], i.e. in all studies a decrease of the temperature is observed, as 

expected for a gas subject to an expansion (gas flowing from a higher to a lower pressure 

region, pR < pL).  



Verification and benchmark: flow in channel 

66 

 

Figure 4.10 Variation of total number of DSMC particles for a Poiseuille flow and its effects on 

the macroscopic variables along the channel. The temperature normalized to the maximum tem-

perature at inlet of reference case is plotted along the x-axis at y = 0 (axis of channel). 

 The axial velocity (x-direction) is shown in Figure 4.11(a). According to the de-

crease on the temperature values shown in Figure 4.10 due to the expansion, the flow 

speed increases by a factor of 5.5 relative to the inlet speed (initial speed at the channel 

entrance x = 0), see Figure 4.11(a) and (b). Fluctuating values around the reference solu-

tion are observed and enhanced in the beginning and the mid-part of the channel length, 

as shown in Figure 4.11(b). 

 



Verification and benchmark: flow in channel 

67 

 

Figure 4.11 Variation of total number of DSMC particles for a Poiseuille flow and its effects on 

the macroscopic variables along the channel: (a) Flow velocity magnitude in the x-direction and 

(b) an enhanced view of the velocity in the x-direction (first half of the channel). 
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4.3 Cell size ∆𝒙 effects 

The macroscopic variables in the DSMC method are obtained as mean values of quantites 

over the cell volume in the computational domain. Thus, deviations can be found if the 

cell dimensions are comparable or larger than a mean free path. Here, the reference sim-

ulation is compared with two coarser meshes: one with the number of elements reduced 

by a factor of 4 (250x50 cells, coarse mesh) and one by a factor of 16 (125x25 cells, 

maximum coarse mesh). For all the cases, the time step and real-to-simulated particle 

ratio were constant and equal to the reference simulation, namely ∆𝑡Ref = 1 × 10−5 s and 

𝐹𝑁,Ref = 4.95 × 107 respectively. Figure 4.12 presents the behavior of the flow speed 

ploted along the y-axis at the center of the channel (x = 2.5 m) as a function of the cell 

size. In examining the relative differences of the flow speed profiles  

obtained in the three cases, two main observations are found: 

 1) First, although no significant differences are observed in the flow speed pro-

files, see Figure 4.12(a), the relative values of the flow speed between neighboring 

cells increase as the cell size decreases as shown in Figure 4.12(b) and (c). At first 

sight this could be misleading since it is expected a converged behavior of a mac-

roscopic variable A if one has in the limits ∆𝑡 → 0, ∆𝑥 → 0 and 𝐹𝑁 → ∞. However, 

the total number of DSMC particles is constant for three simulation and thus, at the 

same geometrical point, increasing the cell size translates in a reduction of the sta-

tistical scattering, because more DSMC particles contribute to the average of the 

macroscopic variable than the reference simulation. This suggests, that for the pre-

sent rarefied gas conditions a coarser mesh can contribute to the reduction of the 

variation of macroscopic variables across the computational domain, see Figure 

4.12(b)-(c). 

 2) The second observation has to do with the offset between velocity profiles. 

The velocity in the x-direction along the channel length (midplane y = 0, channel 

axis) is shown in Figure 4.13. The profiles show no anomalous behavior following 

a parabolic form and all the profiles of coarser meshes lie above the reference solu-

tion as seen in Figure 4.12. The requirement for the mean free path (Δ𝑥 < 𝜆) in all 

the three study cases is accomplished.  
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Figure 4.12 Calculated streamwise velocity of a Poiseuille flow as a function of the spanwise 

coordinate y in the plane x = 2.5 m for different spanwise resolutions for ∆𝑡 = 1 × 10−5 s, 𝐹𝑁 =
4.95 × 107. b) close-up of a) in the same x-plane for -0.2 m < y < 0 m. c) close-up of a) in the 

same x-plane 0.1 m < y < 0.3 m. 

(a) 

(b) 

(c) 
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 In all cases the rate of change of the speed is positive and only the two cases with 

coarser meshes differ on the value of the initial velocity with the reference simulation by 

11%. This difference remains constant around the point x = 3 m and from this location 

the relative difference between cases is reduced to < 5 %. The figures suggest an overes-

timation of the flow speed with coarser grids.  

 

Figure 4.13 Streamwise velocity (a) of a Poiseuille flow as a function of x in the midplane y = 0 

for ∆𝑡 = 1 × 10−5 s, 𝐹𝑁 = 4.95 × 107 and different spanwise resolutions. (b) Enhanced view of 

the velocity at the first half of the channel. 

 

(a) 

(b) 
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 In Figure 4.14 the calculated pressure along the channel midplane (y = 0) for dif-

ferent spanwise resolutions is shown. A maximum deviation of 1.7 % relative to the ref-

erence value is found between the case studies. The observed weak dependence of the 

pressure with the cell size is reported in [54]. Such independence follows from the fact 

that in the DSMC method the positions of the colliding particles are uncorrelated with the 

change in their velocities, as expected for ideal gases, where the particles do not interact 

with one another [57] pp 352. For flows at high vacuum conditions, where the collisions 

between particles do not play a predominant role, the selection of the cell size can be 

more flexible. In any case, the DSMC criterion for the cell size and the mean free path 

Δ𝑥 < 𝜆 should always be met. 

 

Figure 4.14 Pressure profiles for a Poiseuille flow at the midplane y = 0 for ∆𝑡 = 1 × 10−5 s, 

𝐹𝑁 = 4.95 × 107 and different spanwise resolutions. 

 

4.4 Time step ∆𝒕 effects 

The time-step Δ𝑡  plays a key role in decoupling the movement and collisions steps in the 

DSMC method. Regarding the reference simulation, the time step fulfilled the DSMC 

criterion of having ∆𝑡 < 𝜏𝑐𝑜𝑙𝑙 = 𝜆/𝑣𝑚𝑝 at the physical domain. For comparison purposes, 

three additional simulations have been executed using time steps of  5 × Δ𝑡𝑅𝑒𝑓, 

10 × Δ𝑡𝑅𝑒𝑓 and 100 × Δ𝑡𝑅𝑒𝑓, respectively. In these additional simulations, the employed 

computational mesh and the real-to-simulated particle ratio remained the same as the ref-

erence case. 

The effect of the time step on the macroscopic flow variables is shown in Figure 4.15 and 

Figure 4.16. The flow speed at the channel center (x = 2.5 m) as a function of the y-
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coordinate for the three case studies is plotted in Figure 4.15(a). A parabolic profile is 

observed in all the cases, with a maximum flow speed value at y = 0, the mean relative 

errors of 24.6 and 29.8% between the reference study and the cases with Ref10t t =    

and  5 × Δ𝑡𝑅𝑒𝑓 are found, respectively. Between the reference scenario and the highest 

value chosen for the time step, i.e. Δ𝑡 = 100 × Δ𝑡𝑅𝑒𝑓, a percentage difference of 19.6 % 

(mean) is observed (see Figure 4.15(b), black line). 

 The comparison between velocity profiles along the x-axis is plotted in Figure 

4.16(a) in the midplane y = 0. For the reference case and the studies with Δ𝑡 = 5 × Δ𝑡𝑅𝑒𝑓 

and Δ𝑡 = 10 × Δ𝑡𝑅𝑒𝑓it is observed that the axial velocity increases with the similar rate 

and at x = 4.5 m the curves of the reference and the case with Δ𝑡 = 10 × Δ𝑡𝑅𝑒𝑓 intersect. 

This is in contrast with the results of the study with Δ𝑡 = 100 × Δ𝑡𝑅𝑒𝑓, where the axial 

velocity at the inlet is 3.5 times the value found in the reference scenario. Moreover, its 

corresponding axial profile does not show the monotonic behavior as the reference sce-

nario, since the slope of the axial velocity changes sign at a distance 𝑥 ≈ 2.5 𝑚 (blue 

dashed line in Figure 4.16(a)). 
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Figure 4.15 (a) Calculated streamwise velocity distribution of a Poiseuille flow as a function of 

y in the plane x = 2.5 m for four different temporal resolutions. (b) Calculated relative spanwise 

distribution of the statistical error of the stramwise velocity corresponding to figure (a). 

 The calculated temperature profiles in the channel mid plane y = 0 as a function of 

the axial coordinate x are shown in Figure 4.16(b). The results of the study cases with 

∆𝑡 = 5 × ∆𝑡Ref as well as ∆𝑡 = 10 × ∆𝑡Ref show good agreement with the reference case. 

The values of 
Ref5 tT   and 

Ref10 tT   oscillate around the reference temperature solution. 

The difference exhibits an overstimation at the channel outlet of 8.2% (value of 
Ref10 tT 

relative to RefT ) and 4.9% (
Ref5 tT  relative to RefT ). Additionally, the value of 

Ref100 tT   at 

the inlet is also affected by the unexpected velocity behavior previously described, since 

(a) 

(b) 
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the temperature value is directly related with the particle velocity, i.e. 𝑇 ∝ 𝑣′2 (see Chap-

ter 3.5). Thus, an increase of the velocity at the inlet will be reflected in higher tempera-

ture at the entrance of the channel, which is captured by the DSMC code. The temperature 

profiles showed similar dependence with the x-coordinate, a plateau region follow by an 

enhanced temperature drop at the outlet.  

 

Figure 4.16 (a) The dependence of the axial velocity along the channel for a Poiseuille flow for 

different time steps. (b) Temperature profiles for three DSMC simulations with different time 

steps: ∆𝑡5×∆𝑡(Ref), ∆𝑡10×∆𝑡(Ref) and ∆𝑡Ref. 

 However, the calculated temperature 
Ref100 tT   yields an exponential drop along the 

channel depicted in Figure 4.16(b), which contrasts 
Ref5 tT  , 

Ref10 tT   and RefT . This unex-

pected behavior can be explained by the fact that by employing higher time step values, 

more than a single collision can occur during ∆𝑡 which means that the DSMC criterion 

(a) 

(b) 
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regarding the collision time is not met and the separation between movement and collision 

cannot be treated as a two-step process, as discussed in the previous chapter. 

 Since the mean free path reflects the collisionality of the gas flow, it is important 

that the DSMC code predicts the correct interaction beween the particles in the system. 

In Figure 4.17 the evolution of the mean free path along the channel axis is plotted as 

function of x for the DSMC simulations with different time steps. All the simulations, 

except the one with ∆𝑡 = 100 × ∆𝑡Ref, showed the expected monotonic increase of 𝜆VHS 

along the channel axis, due to the fact that the pressure at the inlet is ten times higher as 

the outlet. Thus, the expected profile of the mean free path is captured by DSMC simula-

tion with time steps Δ𝑡 < 10 × ∆𝑡Ref. On the contrary, the simulation with the highest 

value of time step shows a rather non-physical behavior. The values of the mean free path 

at the inlet and outlet are almost identical, this means that the pressure at inlet and outlet 

is equal. This cannot occur, since a pressure difference is needed for a pressure driven 

flow. 

 

Figure 4.17 Mean free path evolution along the channel length (x direction) for different study 

cases at the channel axis (y = 0). 

 The time step variation has the most drastical effect on the macroscopic flow vari-

ables among the studied parameters (FN and ∆𝑥). For comparison purposes, three addi-

tional simulations have been executed using time steps of 5 × Δ𝑡𝑅𝑒𝑓, 10 × Δ𝑡𝑅𝑒𝑓 and 

100 × Δ𝑡𝑅𝑒𝑓, respectively. The flow speed at the channel center as a function of the y-

coordinate for the three case studies has a parabolic profile. The maximum flow speed as 

expected is found at y = 0, the mean relative errors of 24.6 and 29.8% between the 
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reference study and the cases with ∆𝑡 = 10 × ∆𝑡𝑅𝑒𝑓 and ∆𝑡 = 5 × ∆𝑡𝑅𝑒𝑓 are found, re-

spectively. Between the reference scenario and the highest value chosen for the time step, 

i.e. ∆𝑡 = 100 × ∆𝑡𝑅𝑒𝑓, a percentage difference of 19.6 % (mean) is calculated. For the 

reference case and the studies with ∆𝑡 = 5 × ∆𝑡𝑅𝑒𝑓 and ∆𝑡 = 10 × ∆𝑡𝑅𝑒𝑓it is observed 

that the axial velocity increases with the similar rate and at the end of the channel (x = 4.5 

m) the curves of the reference and the case with ∆𝑡 = 10 × ∆𝑡𝑅𝑒𝑓 intersect. This is in 

contrast with the results of the study with ∆𝑡 = 100 × ∆𝑡𝑅𝑒𝑓, where the axial velocity at 

the inlet profile does not show the monotonic increasing behavior as the reference sce-

nario, since the slope of the axial velocity changes sign at the middle of the channel, 

which lacks of physical sense, since this implies that the fluid is at rest in the middle of 

the channel. Thus, this means that the net forces at the particles are zero which translates 

globally in a no-net pressure difference between inlet and outlet. 
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5  Application of the DSMC method to 

JT-60SA, ITER and ASDEX-Upgrade 

tokamaks  

5.1 Particle flows in JT-60SA: comparison between 

DSMC and NEUT2D codes and the effects of parti-

cle collisions 

This sub-chapter focuses on testing the solver capabilities of dsmcFoam in its first appli-

cation on a tokamak divertor: 

1.  The flow field of a collisionless flow is calculated in the sub-divertor of JT-60SA 

by NEUT2D and DSMC solvers. The former is a test particle Monte Carlo code 

for neutrals employed in JT-60SA studies, introduced in Chapter 2.2, whereas the 

latter, dsmcFoam, is set to its collisionless setup. The rationale behind this com-

parison is to show that the capability of the DSMC solver to be set as a pure test 

particle Monte Carlo code, i.e. with no intermolecular collisions. This can be done 

by switching off the DSMC collision kernel in the solver (see the DSMC flow 

chart, Chapter 3). As a consequence, the particles will not interact with each other, 

moving along straight lines and colliding only with the sub-divertor solid walls. 

In this framework, a direct comparison between both codes is performed.  

 

2.  For a high-density operation scenario in JT-60SA, the sub-divertor gas flow is 

modelled solely by means of the DSMC method. The aim of the analysis is to 

quantify the effect of the intermolecular collisions in the flow variables in the 

whole sub-divertor domain. The analysis is first-of-its-kind, since the neutral-neu-

tral interaction has not been yet addressed in JT-60SA by the time the present 

analyses have been peformed. The versatility of the DSMC code makes possible 

to address the relative difference between both collisionless and collisional flows. 

The analysis serves also as basis to understand the physics of the sub-divertor 

flows in realistic scenarios and to quantify the collisionality regime by means of 

the Knudsen number, which is relevant to the vacuum system of JT-60SA. 

 

The dsmcFoam solver in its original form does not include a boundary condition for par-

ticle-surface interaction that models the effect of “absorption” of the particle. Therefore, 

as part of this dissertation the solver capabilities have been extended by developing the 

sticking probability boundary condition. The main idea of the algorithm is to give a prob-

ability to a particle to be absorbed. At each collision of a particle with a pump surface, a 

random number between 0 and 1 is generated, if the number if lower than the sticking 
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probability the particle is absorbed, otherwise reflected back to the domain. The detailed 

description of the boundary condition is found in Chapter 3.4. To guarantee that the 

boundary condition is working properly, it is necessary to check the particle absorption 

at the pumping surface in the DSMC code. This is done via a parametric analysis in the 

sticking probability value. The rationale of the numerical experiments is that a fixed num-

ber of particles impinges the pump and with a given probability they are be removed from 

the domain. By monitoring the particle flux at the pump relative to the incoming flux, a 

comparison with the initially defined sticking probability can be performed. 

5.1.1 Geometry and boundary conditions 

The JT-60SA divertor cassette is depicted in Figure 5.1(a). The plasma facing compo-

nents include the baffles and targets (inner and outer) and dome. The neutral particle flow, 

represented by yellow arrows, coming from the main chamber enters to the sub-divertor 

region via the transparencies and moves towards the cryogenic pump located at the bot-

tom of the vacuum vessel. 

 

 The benchmark study examines the D2 gas flow inside the geometry of the JT-60SA 

sub-divertor, where a simplified 2D-representation has been adopted as indicated in Fig-

ure 5.1(b). The sub-divertor includes two inlets and a single outlet. The inlet at the inner 

divertor target is here referred as Gate 2 (high field side), whereas the inlet near the outer 

target Gate 1 (low field side). The outlet surface is here referred as pump surface. 
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Figure 5.1 (a) The JT-60SA divertor geometry and pumping system: individual components. The 

yellow arrows represent the gas inflow and outflow in the sub-divertor. (b) The sub-divertor do-

main is denoted in light green color. The boundaries at the inlet and the outlet are shown with 

blue dashed lines. The yellow arrows represent the particle flow. 

 Figure 5.2(a) depicts the physical domain of the sub-divertor and its discretization 

into cells, the vertices between cells are denoted by the black nodes and the black perim-

eter in bold line represents the physical boundary of the sub-divertor. In NEUT2D, the 

macroscopic variables are calculated in the sub-divertor region at the location of the black 

nodes. The node locations are then employed in DSMC, in order to evaluate the flow 

variables at the same coordinate. For the benchmark, the chevron baffle located below 

Gate 1 is not included in the sub-divertor geometry. The reason is to keep the geometry 

(a) 

(b) 
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as simple as possible, since further geometrical elements in the system introduce unnec-

essary complexity in the analysis.  

 

Figure 5.2 (a) The JT-60SA grid: plasma, divertor und sub-divertor region. Sub-divertor region 

is marked in bold line. At the black nodes (grid vertices) NEUT2D evaluates the flow variables. 

The same locations are employed in DSMC for the benchmark. (b) Simplified geometry of the 

sub-divertor domain and the location of the imposed boundary conditions for DSMC and 

NEUT2D. The direction of the gravity is also shown. 

 For the second part of the analysis, the collisional effects in deuterium gas flow, a 

major challenge is the definition of the interfaces (divertor/sub-divertor) as well as the 

boundary conditions between the sub-divertor and the neutral particles influx from the 

vessel. This means that the presence of the neutrals coming from the private region and 

divertor targets towards the sub-divertor has to be introduced by a proper choice of 

boundary conditions, as explained in Chapter 1.2. Thus, at Gate 1 and Gate 2, i.e. 

interfaces between plasma main chamber and sub-divertor, the values of the flow field 

(a) 

(b) 
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variables from NEUT2D are set as boundary conditions for DSMC. In the comparision 

analysis between DSMC with and without collisions, the simplified structure representing 

the chevron is included in the model. The pumping surface (Pump) located at the bottom 

part of the physical domain absorbs the particles with a certain probability, yielding a 

desired ratio of absorbed-to-incoming-particles at the pump. 

 As mentioned before, the dsmcFoam solver in its original release does not include 

such boundary condition for particle-surface interactions. Therefore, the developed 

sticking probability boundary condition needs to work properly, and therefore it is 

necessary to check the particle absorption at the pumping surface in the DSMC code. To 

do this a parametric analysis of the sticking probability values is performed. By 

monitoring the particle flux reflected back from the pump relative to the incoming flux, 

an statement can be given regarding the amount of particles absorbed at the pumping 

surface.  

 The DSMC solver has the capability to monitor on-the-fly the particle fluxes at 

particular surfaces. The use of structured meshes as shown in Figure 5.3 facilitates the 

placement of the virtual surfaces at specific locations in the sub-divertor domain, where 

the monitoring takes place. Three virtual surfaces are placed across the domain: the two 

virtual surfaces near Gates 1 and 2 and a third surface is placed close to the pumping 

surface as shown in Figure 5.3.  

 

Figure 5.3 An example of a 2D rectangular mesh employed. The red lines are virtual surfaces 

placed on top of the rectangular cells at that location, which monitor the particle rate at any time 

during the DSMC simulation. 

 The results of the sticking probability variation are shown in Figure 5.4. The stick-

ing probability is varied from unity (all particles are absorbed by the pump, trivial case) 

to the minimum value of 0, where all the particles arriving to the pump are reflected back 
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to the sub-divertor. A total of twelve simulations, all with a constant particle rate of 

1.485 × 1018 part/s flowing towards the pump, are conducted. In Figure 5.4 the linear 

relation between expected sticking probability and the DSMC modelling suggests that the 

boundary condition simulates the desired number of pumped particles. For values of the 

sticking probability lower than 0.02, it was found that the relative difference between 

DSMC and the expected value ranges between 9% and 15%. The simulations involving 

sticking values between 0.03 and 0.1 yield a difference from the expected sticking prob-

abilities between 1.8% and 4.2%. The rest of the simulated the sticking probabilities has 

a maximum difference of 10% and a minimum of 3%. 

 

Figure 5.4 Sticking probability modelled at the pump surface: DSMC results (ratio pumped-to-

input particles) as a function of the sticking probability (expected). 

 In this collisionless framework, further analysis is carried out by comparing the 

macroscopic variables stored at each cell in the sub-divertor domain in both NEUT2D 

and DSMC as follows: an alternative coordinate system (R’, Z’) is defined by rotating 

clockwise 45° the R- and Z-coordinates, as depicted in Figure 5.5(a). The R’-axis lies 

along the pump boundary and the Z’-axis is oriented towards Gate 1.  
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Figure 5.5 (a) The R- and Z-coordinates are rotated clockwise through an angle of 45°, defining 

a second coordinate system (R’, Z’). The domain inlet and outlet boundaries are denoted as Gate1, 

Gate 2 and Pump. The direction of the gravity is also shown. (b) Rotated system, where the pump 

surface as well the inlet boundary Gate 1 are parallel to the R’-coordinate. 

5.1.2 Macroscopic variables NEUT2D and DSMC 

 For the benchmark, the particle influx (D2) is generated only at Gate 2 and has a 

Maxwellian velocity distribution centered at an average temperature of T = 1122.16 K. 

Both gates are set as open surfaces with a sticking probability of 1.0, this means that the 

particles impinging these surfaces are absorbed instantly and thus, they are deleted from 

the domain. The sticking probability at the pumping surface is set to 3% of the total in-

coming flux. The rest 97% is reflected back to the sub-divertor domain with a cosine 

distribution at a temperature of 293.16 K. As particle-wall interaction model, in NEUT2D 

and DSMC the D2 molecules are diffusely reflected from the sub-divertor walls at a tem-

perature of Tw = 293.16 K. The summary of the DSMC parameters is found in Table 5.1. 

(a) 

(b) 
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Table 5.1 The summary of the DSMC model parameters for the comparison between 

dsmcFoam and NEUT2D for deuterium gas in its molecular form 

 

To facilitate the understanding of the flow development, the sub-divertor is further 

divided in 4 different sub-domains as shown in Figure 5.6. At the shown nodes both 

DSMC and NEUT2D codes sample the values of the flow macroscopic variables Ai, 

which are compared at a later stage. An enhancement of specific part of each region is 

shown inside colored boxes. At its first stage, once introduced in the domain, the particles 

move across a large duct (region I) and flow to region II (transit region) and continue their 

movement towards region III (outlet region), where the particles exit the sub-divertor 

domain. The region IV can be regarded as a two-dimensional short vertical channel. The 

neutral particles impinge the pump region, where a sticking coefficient is set, thus certain 

particles are reflected back to the sub-divertor and the rest deleted from the system. 

 At each region, the nodes are given a sub-indexing for post-processing reasons. For 

example, in region I the flow variables receive the sub-indexing (i, j), regions II (k, l), 

 Type / Parameter Value Unit 

Boundary name    

Gate 2 Pressure type (inlet)    

 Pressure 1.24 Pa 

 Temperature 1122.61 K 

Gate 1 Pressure type (outlet)    

 Sticking probability 1.0 - 

    

Wall Wall    

 Temperature 293.16 K 

Pump Pump   

 Sticking probability 0.03 - 

 Temperature (reflection) 293.16 K 

DSMC properties    

Time step ∆𝑡 5 × 10−7 s 

Conversion factor 𝐹𝑁 1 × 1011 - 

Particle-wall interaction Diffuse refl. (walls)   

 Temperature 293.16 K 

 Accomodation coefficient 1.0 - 

Binary collision model No binary collisions   

Particle attributes    

Particle name Deuterium (D2)   

mass m 6.69 × 10−27 kg 

diameter d 2.92 × 10−10 m 

rotational degrees  

of freedom (DoF) 

rotational DoF 2 - 

viscosity index  𝜔 0.73 - 
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region III (q, r) and region IV (k l). In region I, where the sampling nodes are described 

by the sub-index (i, j), the i-index runs along the R’-axis and the j-index along Z’-axis. In 

the case of region 2, where the nodes are specified with indices k and l, their values 

increase with R- and Z-axis, respectively. 

 

Figure 5.6 The JT-60SA sub-divertor is divided in 4 regions (I-IV). DSMC and NEUT2D values 

of the macroscopic variables Ai are compared at the same node location.  

 To illustrate the behaviour of the gas across the entrance and transit regions (Re-

gion I and II), the flow velocity is sampled, see the profiles along the selected nodes 

shown in Figure 5.7. The figure shows the Z’-variations of the flow speed at different R’ 

positions. The particles enter the domain at Gate 2, some of the particles are directed 

towards the sub-divertor wall and reflected back to the Gate 2, being deleted from the 

domain. Other particles will ultimately leave the entrance region I, crossing the surface 

A shown in Figure 5.7(a). The flow speed along region I shows a parabolic-like profile 

with a maximum around Z’= -0.30 m right after the surface A. As the particles approach 

region II, the profile broadens due to the non-zero flow velocity contributions of the par-

ticles moving parallel to the sub-divertor walls. In Region I, the magnitude of the velocity 

in DSMC is systematically greater than the values of NEUT2D for 𝑍′ <  −0.26 m as seen 

in Figure 5.7(b). A maximum and minimum difference between the approaches of 19% 

and 2%, respectively. In Appendix 8-C, additional plots in region I depicts this observa-

tion. Once the gas particles have crossed region I, the gas flow moves towards pump, 

Gate 1 or continues its trajectory in straight line. Towards the pump in region IV, the flow 

velocity at each cell has two main contributions: particles moving downwards (negative 

Z’-direction) coming from the region I and a second contribution from the particles re-

flected back at the pump surface moving in the +Z’ direction towards region II. Since the 

particle velocity is sampled at the pump with a Maxwellian distribution centered at 293.16 

K, the gas has zero-flow velocity as any gas in equilibirum, as depicted in Figure 5.7(a). 
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Figure 5.7 (a) Flow speed distribution across JT-60SA, deuterium flow enters the domain at Gate 

2 (far-most left inlet), Gate 1 has a sticking coefficient of unity and at the pump 97% of the total 

of the incoming particles are reflected back. Here both grids are superposed, the structured grid 

of DSMC and the cell center of NEUT2D grid. (b)-(d): the DSMC and NEUT2D values of the 

flow speed are sampled at the same computational locations defined by the mid-point of 

NEUT2D. The node locations, black dots in (a) are associated to a specific sub-indexing (see 

main text for further details). JT-60SA sub-divertor flow speed profiles in locations across Re-

gions I and II as a function of Z’-coordinate, see (b), (c) and (d).  

 In Region II, the flow speed profile flattens out within its parabolic shape, see Fig-

ure 5.7(c) and (d). The calculated relative difference node-wise between both approaches 

is less than 5 %, the profiles along selected nodes are found in Appendix 8-C. In a similar 

fashion to the region II, at the exit near gate 1 in region III, the flow velocity calculated 

with both codes has relative differences below 10%. Additional profiles are compared 

(a) 

(b) 

(d) 

(c) 
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and presented in Appendix 8-C. By analyzing the region IV from its beginning until the 

position of the pumping surface, it was found that the profiles show qualitatively the same 

shape, see Figure 5.8. Near the pumping surface, the magnitude of the velocity decreases 

considerably in both codes (factor of 10). In region IV, the particles are being thermalized 

either by the walls or by the pump. The particle flux being diffusely reflected by the pump 

(97% of incident flux) have a thermal speed of ~ 1x103 m/s and moves in +Z’-direction, 

which is the opposite direction of the incident particle flux coming from region II, result-

ing in a reduced net flow velocity calculated at each computational cell. The results show 

that the profiles in region IV near region II have a better agreement at least qualitatively. 

In this case, NEUT2D profiles show a maximum around R’= 3.52 m and minimum at R’ 

= 3.7 m as the DSMC outcome.  

 The dsmcFoam solver determines the translational temperature at each cell as the 

average kinetic energy associated with the thermal motion of the particles. Rewriting the 

expression Eq. (3.46) introduced in Chapter 3.5 in terms of the peculiar or thermal veloc-

ity v′of the particle as: 
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The thermal velocity v' is related to the particle velocity v and the bulk velocity V by v′ =

v – V. NEUT2D on the other hand expresses the kinetic energy of the particles in eV units, 

which can be converted to temperature by 𝐸[𝑒𝑉]11608  𝐾 𝑒𝑉⁄ . Once this is done, the 

temperature fields are compared between both approaches and shown in Figure 5.9. Sim-

ulations show that higher temperatures of DSMC are obtained compared to those of 

NEUT2D, particularly at Gate 2 (inlet), where a factor of 3 between both codes is found. 

At the entrance of region II, a difference of 10% between TDSMC and TNEUT2D is found and 

in region IV an homogenization of the temperature is observed. In both approaches a 

value about T ~ 293 K is obtained as a consequence of a thermalization with the sub-

divertor walls and the pump region. A maximum difference of 2% between DSMC and 

NEUT2D is obtained in region IV. In both approaches in region III (outlet) a particular 

temperature distribution can be seen in Figure 5.9(a) and (b), which is depicted in more 

detailed in Figure 5.10 for DSMC. Three zones are identified, one at the exit of the region 

I, where a minimum of the temperature in DSMC is found with a value of T ~ 210 K. A 

second zone with constant temperature of T ~ 272 K is found which separates with an 

isoterms the region III with the third zone, where a temperature range of T ∈ [300, 334] 

K is obtained.  
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Figure 5.8 Results of the comparison between flow speeds calculated with NEUT2D and DSMC 

(without collisions). (a) Flow speed profile evaluated at each node (k, l) at constant l-value in 

region IV. (b) Region IV of the sub-divertor JT-60SA. Here the nodes are given a sub-indexing 

(k, l). The sub-index k can take values from 1 to 16, whereas the l-index takes the values between 

1 and 10. Note: the range of the l-values differs from the ones in region II. 
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Figure 5.9 Temperature field in JT-60SA domain calculated with a) NEUT2D and b) DSMC 

method. 

Figure 5.10(a) shows the nodes in region III where the flow field is sampled in NEUT2D. 

At these points the DSMC results are also evaluated. Between the approaches the differ-

ence in the temperature increases for values near to the exit of the sub-divertor (outlet), 

yielding up to 35% relative difference. This is explicitly shown in the temperature profile 

in Figure 5.11(a) and (b). At the entrance of region III, the difference in the temperature 

values shows up to 11% between DSMC and NEUT2D, see Figure 5.11(c) and (d).  
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Figure 5.10 JT-60SA sub-divertor region III (near Gate 1, outlet). (a) At the nodes the macro-

scopic variables between both codes are evaluated. (b) DSMC temperature profile across the re-

gion III. The arrows indicate the flow velocity vector of the gas.  

 

(a) 

(b) 
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Figure 5.11 Temperature profile of NEUT2D (black) and DSMC (red) in region III: (a) near Gate 

1 (outlet) and (c) entrance of region III. Relative difference between both approaches sampled at 

NEUT2D node locations. The node locations are referred to Figure 5.10. 
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In Figure 5.12(a) the number density is plotted along a line placed between Gate 2 and 

Gate 1 and a second line between the pump region and Gate 1. Thus, the arc length spans 

the regions I, II and III of the sub-divertor domain. Reasonably agreement is found: both 

codes predict the decrease rate of the density for the position values greater than 0.15 m 

of the arc length (R´ > 3.29 m), with a relative difference less than 30%.  

 

 

Figure 5.12 Number density calculated with NEUT2D and DSMC. The density is sampled along. 

Top figure: arc length between Gate 2 and Gate 1. Bottom figure: vertical line located at a position 

R’ = 3.64 m, which spans the pump region and outlet (Gate 1). 
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 Also shown in Figure 5.12(a) for both codes, the change in the density occurs at the 

value of the arc length of 0.45 m (R´ = 3.58 m), which is exactly at the boundary between 

region II and region III. The level of scatter appears similar in both results, however a 

ratio about 3 between codes at the Gate 2 is found. Once the pressure and temperature are 

defined at the boundary in DSMC, the density follows the ideal law of gases in order to 

maintain the inflow boundary conditions, whereas in NEUT2D the number of particles 

per second is fixed defining the number density at the inlet. It follows that at the inlet 

region NEUT2D calculates higher number density -relative to DSMC- and lower temper-

atures of about a factor of ~ 3 relative to DSMC, see Figure 5.9. This results on the desired 

target pressure of about 1 Pa (boundary condition). Similar observations are obtained by 

anaysing the arc length shown in Figure 5.12(b). The arc length spans the pump region 

(IV), passing throught region II and ending in region III (near to Gate 1). Qualitatively 

agreement is found between codes, a constant value of the number density across region 

IV is calculated with a relative difference 30-33% followed by a drop towards the outlet 

in region III.  

5.1.3 Effect of collisions in JT-60SA sub-divertor 

gas flows 

Having benchmarked the DSMC code in the previous section in collisionless conditions, 

the introduction of neutral-neutral interactions in the JT-60SA sub-divertor is studied for 

two cases by activating the collision kernel in dsmcFoam.  

 

• Case I: By means of a sensitivity analysis on the pressure values at Gate 2, the 

effect of the collisions on the sub-divertor flow is first analyzed. Here, it is fo-

cused on the capability of dsmcFoam to calculate collisions rates, which are 

then compared to analytical expressions. A second aspect is also studied by 

comparing binary collision models and the effects on the flow field. 

 

• Case II: The simulation is based on the JT-60SA Scenario #2, see [91] and [92], 

where a dedicated SONIC calculation has been performed for this task in order 

to properly set the boundary conditions at the sub-divertor interfaces. A com-

parison between the collisional and collisionless DSMC solutions is perfomed. 
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Table 5.2 Case I: summary of the DSMC model parameters for a gas flow in JT-60SA 

for the sensitivity analysis of pressure at Gate 2 to address collisional effects 

 

  

 Type / Parameter Value Unit 

Boundary name    

Gate 2 Pressure type (inlet)    

 Pressure  Case I.a = 1.2 

 Case I.b = 0.8 

 Case I.c = 0.6  

 Case I.d = 0.55 

 Case I.e = 0.5 

 Case I.f = 0.2 

Pa 

 Temperature 1122.61 K 

Gate 1 Pressure type (outlet)    

 Sticking probability 1.0 - 

Wall Wall    

 Temperature 293.16 K 

Pump Pressure type (outlet)   

 Pressure 0.12 Pa 

DSMC properties    

Time step ∆𝑡 4 × 10−7 (I.a) 

1 × 10−5(I.b-c) 

1 × 10−4(I.e, I.f) 

s 

s 

s 

Conversion factor 𝐹𝑁 9 × 1012 (I. a,e,f) 

1 × 1013 (I. b,c,d) 

- 

- 

Particle-wall interaction Diffuse reflection (wall)   

 Temperature 293.16 K 

Binary collision model Variable Hard Sphere 

Hard Sphere Model 

Maxwell Model 

No binary collision 

I. a-f 

I.a (variant 1) 

I.a (variant 2) 

I.a (variant 3) 

 

 Reference temper-

ature 

273 K 

Particle attributes    

Particle name Deuterium (D2)   

mass m 6.69 × 10−27 kg 

diameter d 2.92 × 10−10 m 

rotational DoF Rotational DoF 2 - 

viscosity index  𝜔 0.73 (I.a-f) 

0.5 (I.a variant 1) 

1.0 (I.a variant 2) 

- 
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Table 5.3 Case II: summary of the model parameters for JT-60SA for the collisional ef-

fects by employing the operational conditions of Scenario #2 

 

Case I: Sensitivity analysis of pressure at Gate 2 and model parameters 

 The objective of this analysis is two-fold. First, the collision frequency of the 

DSMC simulations is compared to the analytical expression found in literature. Second, 

the intention is to assess the influence of input parameters on the flow, such as pressure 

at inlet boundary and binary collision model (via the viscosity index 𝜔). 

 The flow to be modelled is the expansion of deuterium gas entering from Gate 2 

and exiting at the pumping surface and Gate 1 in the JT-60SA sub-divertor. The 

Maxwellian gas centered at 1122.61 K enters the domain at Gate 2 whereas at the outlet 

at Gate 1 the particles going out of the sub-divertor are removed from the domain. Six 

different pressure values at Gate 2 are tested and identified with the following 

nomenclature:  

• Case I.a: 1.2 Pa (Gate 2),  

• Case I.b: 0.8 Pa (Gate 2), 

 Type / Parameter Value Unit 

Boundary name    

Gate 2 Pressure type (inlet)    

 Pressure 4.44 Pa 

 Temperature 2002.515 K 

Gate 1 Pressure type (inlet)    

 Pressure 1.2 Pa 

 Temperature 1118.57 K 

Wall Wall and chevron   

 Temperature 293.16 K 

Pump    

 Sticking probability 0.03 - 

 Temperature (reflection) 293.16 K 

DSMC properties    

Time step ∆𝑡 5 × 10−7 s 

Conversion factor 𝐹𝑁 1 × 1011 - 

Particle-wall interaction Diffuse refl. (walls & chevron)   

 Temperature 293.16 K 

Binary collision model Variable Hard Sphere model   

 Reference temperature 273 K 

Particle attributes    

Particle name Deuterium (D2)   

mass m 6.69 × 10−27 kg 

diameter d 2.92 × 10−10 m 

rotational DoF Rotational DoF 2 - 

viscosity index  𝜔 0.73 - 
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• Case I.c: 0.6 Pa (Gate 2), 

• Case I.d: 0.55 Pa (Gate 2), 

• Case I.e: 0.5 Pa (Gate 2) and 

• Case I.f: 0.2 Pa (Gate 2).  

 The VHS collision model has been employed as binary collision model. In the VHS 

model the total collision cross-section depends on the viscosity index 𝜔 which has been 

calculated from the deuterium data of [93] as before. Dedicated simulations of Case I.a 

are also performed by considering the hard sphere and Maxwellian binary collision 

models, which is discussed in the second part of the present analysis. Particles are 

reflected diffusely from the sub-divertor wall based on a Maxwellian velocity distribution 

centered at a temperature of 293.16 K. In the DSMC calculations stationary conditions of 

the flowfield are detected by means of the number of simulated particles present in the 

computational domain. Once the number of particles has reached stationary conditions, 

the sampling of the flow properties is begun, see Figure 5.13 for the case I.a.  

 

Figure 5.13 Exemplary evolution of the total number of DSMC particles in the system as function 

of the time steps for the case I.a with a pressure of 1.2 Pa at Gate 2.  

 The sub-divertor domain is divided into hexahedral cells for all the study cases. In 

Figure 5.14 is shown the distribution of DSMC particles in the domain where the size of 

the cell is such that on average at least 20 or more DSMC particles are contained at each 

cell in most of the domain where high-pressure values are expected (regions I, II and IV). 

In the cells located in region III near Gate 1 an average of 8.7 and 7.6 DSMC particles 

per cell are found for the simulation I.a. and I.f respectively.  
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Figure 5.14 Number of DSMC particles in the computational domain for collisional flows in JT-

60SA: Top figure: Case I.a with 1.2 Pa at Gate 2. Bottom figure: Case I.f with 0.2 Pa at Gate 2. 

In both plots on the top right: an enhancement of region III shows the number of DSMC particles 

near the Gate 1. 
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In the present analysis the collision frequency and flow variables are plotted along arc 

lengths shown in Figure 5.15. The spatial change of temperature, number density and 

flow velocity along these lines is expected to be significant due to the gas expansion.  

 

Figure 5.15 Arc length definition across the sub-divertor JT-60SA. The arc length #1 is defined 

by a line starting at the Gate 2 crossing regions I, II and III ending at the Gate 1. The second arc 

length spans regions IV, II and III starting at the pumping surface and ending near Gate 1. 

 In Figure 5.16 the number density is plotted along arc length #1 for the cases I. a-f. 

It is seen that a maximum value of the number density at R’ = 3.2 m is found, with the 

exception of case I.f with the lowest pressure at Gate 2. Similar to the collisionless flow, 

around the coordinate R’ = 3.6 m the density undergoes a sudden change at the boundary 

between region II and III, decreasing to a density value at the outlet of 1 × 1019 m-3.  

 The degree of thermal nonequilibrium in the flow can be observed in the divergence 

between translational and rotational temperature profiles. Let us recall that both 

translational and rotational temperatures are related to an overall temperature defined in 

Chapter (3.5) as 

 

overall

3

3

tr rotT fT
T .

f

+
=

+
  

Simulation for the case I.a shows that close to the Gate 1 departure between the 

translational and rotational modes ocurrs at R’ = 3.6 m, which is the boundary between 

region II and III in the sub-divertor, see Figure 5.16. As shown in Figure 5.17(a) once the 

gas reaches the outlet, it undergoes an expasion into vacuum and thus, the translational 

temperature of the gas decreases about 20%, from 300 K to 244 K. The energy associated 

with the rotational modes does not change during this process, resulting on an overall 

decrease of the temperature, which is captured by the DSMC solver. Regarding the rest 
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of the cases I.b-f, the divergence also occurs about the radial coordinate R’ = 3.6 m.  

 In Figure 5.17(b) it is shown the temperature profile along the arc length #2, where 

a constant value of 300 K in the pumping region is found, which is a trivial finding since 

only confirms that DSMC correctly set the boundary condition. A temperature divergence 

between rotational and translational temperature occurs in region III, near Gate 1. In the 

last third of the arc length, the translational temperature decreased from 300 K to 227 K, 

which differs by 7% from the value of Ttr along arc length #1. This has to do with the 

position of the arc length relative to the maximum value of the velocity profile, which is 

discussed later in this chapter. The temperature plots of cases I.b-f are here omitted, since 

the ratio of translational to overall temperature as well as the ratio rotational to overall 

temperature are qualitatively similar showing the same order of magnitude as the obtained 

profile from case I.a. 

 

Figure 5.16 Number density of cases I. a-f plotted along the arc length #1 defined between Gate 

1 and Gate 2. The DSMC analysis of the deuterium gas flow considers the intermolecular colli-

sions by means the VHS model. 
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Figure 5.17 (a) Distribution along the arc length #1 for the case I.a for the overall, translational 

and rotational temperature for the deuterium gas. (b) Overall, translational and rorational temper-

ature distributions along arc length #2. The DSMC analysis of the deuterium gas flow considers 

the intermolecular collisions by employing the VHS model. 
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 The number of collisions that occur within a DSMC cell during the simulations is 

directly linked to the local transport properties of the gas. Therefore, for any collisional 

solver it is essential that the simulated collision frequency recovers the analytical 

expression from a gas in equilibrium. Here the collision frequency (𝜈𝑝𝑞) obtained with 

the dsmcFoam solver is compared to the expression given by Eq. (4.74) in Bird’s book 

[25]: 
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 (5.2) 

where p an q represents different gas species, dref, Tref and 𝜔𝑝𝑞 are the parameters of Table 

5.2 for reference diameter, temperature and viscosity index, respectively. np represents 

the number density, T the gas temperature, kB the Boltzmann constant and mr the reduced 

mass. The equation (5.2) gives the number of collisions per unit time, which considers 

the collision between the pairs pq and qp. In the present work since only deuterium is 

considered as working gas, a factor of 0.5 needs to be included to obtain the correct 

frequency. 

 Comparing the collision frequency of Case I.a calculated with dsmcFoam for the 

VHS model and equation (5.2), reveals that the implementation of the binary collision 

model correctly predicts the analytical rate since the relative difference between 

simulation and theory lies below 0.1 %. This is plotted along the arc lengths in Figure 

5.18. The profile shape is mainly determined by the product of the radius squared with 

the density, whereas the amplitude of the expression is dominated by the product inside 

the square-roots. In the present work the temperature ratio elevated to the power of 1 − 𝜔 

is typically of the order of unity.  

The results of study cases b-f (Gate 2 pressure: 0.8 to 0.2 Pa) reveals that the collision 

frequency decreases by lowering the pressure as one can expect, see Figure 5.19. Near 

the region of the pumping surface, where all the cases share the same outlet pressure value 

of 0.12 Pa, the profile derived from Cases I.a and I.f along the arc length #2 relative to 

the Cases I.b-e d shows a deviation about a mean (𝜈𝐼.𝑏−𝑒 ~ 6711.83 s-1) of 2.6% and 2.5%, 

respectively. The prediction of the analytical expression of collision frequency is found 

to be in good agreement along the two sampled arc lengths for all the study cases. In 

Figure 5.20, the relative difference between each DSMC simulation and its corresponding 

expression (5.2) is sampled along the two arc lengths as before. The plot shows that the 

maximum deviation value occurs in the first 0.15 m of the arc length #1, where the 

amplitude of the deviation monotonically decreases with the inlet pressure of Gate 2 and 

a maximum deviation of 0.06% is found. Along the rest of the arc length #1 the relative 

difference varies around 0.025% for all the runs and systematically it is observed that 

once the gas reaches the entrance of region III, a pronounced peak in the relative 
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difference is found. The result sobtained may be regarded as consistent, since the 

amplitude of this difference is directly correlated to the local flow boundary conditions. 

For instance, the same pressure value is set at the pumping surface and therefore the 

collision frequency shall be in the same order of magnitude. 

 

 

Figure 5.18 Bottom figure: Comparision between DSMC simulations and theoretical expression 

of the collision frequency sampled along the arc length #1, where 100 points are sampled along 

this line. The relative difference in percentage between simulation and analytical expression is 

also shown. The DSMC analysis of the deuterium gas flow considers the intermolecular collisions 

by employing the VHS model. 
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Figure 5.19 Collision rate calculated with dsmcFoam for the cases I.a-f along the arc length #1 

and #2 (see Figure 5.15). The DSMC analysis of the deuterium gas flow considers the intermo-

lecular collisions by employing the VHS model. 
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Figure 5.20 Relative difference between DSMC calculations and their corresponding analytical 

expressions for the collision frequency plotted along two arc lengths: (a) Cases I. a-f along arc 

length #1 which spans the domain region between Gate 2 and Gate 1. (a) Cases I. a-f along arc 

length #2 defined at the pumping surface and Gate 1. The DSMC analysis of the deuterium gas 

flow considers the intermolecular collisions by employing the VHS model. 
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Having analyzed the number density, temperature and collision frequency, let us turn our 

attention to the gas behaviour as a function of viscosity index 𝜔, which is associated with 

the binary collision model employed in the simulation. For the analysis three values of 𝜔 

have been compared: 

i. 𝜔= 1.0 (Maxwell model) 

ii. 𝜔= 0.73 (variable hard sphere model, value calculated from viscosity data [93]) 

iii. 𝜔= 0.5 (hard sphere model) 

 In all three cases the maximum collision frequency value is found at Gate 2 around 

0.5 m of the arc length #1 as before. It was found that the number of collisions for the 

VHS model is greater than the Maxwell model and lower values than those obtained by 

the HS model, as shown in Figure 5.21.  

 

Figure 5.21 Collision frequency calculated with three binary collision models: Maxwell (ω= 1.0, 

blue line), hard sphere (ω= 0.5, black line) and variable hard sphere (ω= 0.73, red line). The 

boundaries conditions are set the same at Gate 2 (1.2 Pa), pumping surface (0.3 Pa) and Gate 1 

(open boundary, sticking probability of unity). The particle-wall interaction is diffusely with full 

accommodation with a wall temperature of 293.16 K and Tref of the gas is set to 273.16 K. 

 The relative difference between models is found in Figure 5.22. The simulation 

reveals that in regions II, III and IV the difference between models is of the order of +/-2 

%. In these regions the temperature is typically of the order of 273 K and therefore the 

ratio of temperatures in the expression (5.2) is close to unity. This means that in these 

regions, the collision frequency is mainly driven by the density for the case I.a.  
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Figure 5.22 Relative difference between collision frequency obtained from Case I.a. employing 

three binary collision models: Maxwell (ω= 1.0), hard sphere (ω= 0.5) and variable hard sphere 

(ω= 0.73). The boundaries conditions are set the same at Gate 2 (1.2 Pa), pumping surface (0.3 

Pa) and Gate 1 (open boundary, sticking probability of unity). The particle-wall interaction is 

diffusely with full accommodation with a wall temperature of 293.16 K. 

 In contrast to regions II-IV, both temperature and density define the number of 

collisions experienced by the neutrals in region I near Gate 2. This is true particularly for 

the location in the sub-divertor with R’< 3.25 m. Assuming the change of the density is 
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negligible when different binary collision models are employed, then the ratio T/Tref is 

the only parameter affecting the value of the collision rate 𝜈. Therefore, it is of parti-cular 

interest to quantify the introduced error in the collision rate 𝜈 between binary collision 

models. Figure 5.23 depicts the percentage difference of both 1 − 𝜈𝑀𝑎𝑥𝑤𝑒𝑙𝑙 𝜈𝑉𝐻𝑆⁄  and 1 −
𝜈𝐻𝑆 𝜈𝑉𝐻𝑆⁄ . The following observations for the case I.a. are summarized: 

• The range of temperature ratio T/Tref in the flow field restricts the possible devia-

tions of the collision rate between collision models. For the analysis of case I.a., 

the box in yellow color in Figure 5.23 denotes this range found in most of the sub-

divertor domain.  

• Although the plot of Figure 5.23 looks quite symmetrical at first sight, actually 

the curve Maxwell-VHS (red) increases with a lower rate than the decrease rate 

of the HS-VHS curve (blue) for high temperatures. This means that if the viscosity 

index of VHS and Tref are maintained constant, at higher temperatures of the gas 

flow (T ≫ Tref) the deviations relative to the VHS model of the collision rate are 

higher for the HS model than those calculated with the Maxwell model.  

• In practice, if T > Tref or T ≫ Tref occurs, the HS-sphere model overestimates 

the number of collisions in a high-temperature region, whereas the Maxwell 

model underestimates the collision rate as shown before. For ratios T/Tref lower 

than unity, the above observations are opposite (see Figure 5.23 for values T/Tref 

< 1). 

 

Figure 5.23 Relative difference expressed in % of collision frequency between binary collision 

models as a function of the temperature ratio T/Tref. The relative difference is taken between the 

following collision models: Maxwell-VHS and HS-VHS. For the Case I.a. the temperature range 

of interest at the sub-divertor is depicted in the yellow box. 
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Case II: Scenario #2 of JT-60SA 

The study is performed by switching on the collision module in the DSMC code and 

comparing the outcome with the collisionless DSMC results. Here, pressure, temperature 

and the collisionality regime in terms of the Kn number are presented.  

 The simulation is based on the JT-60SA Scenario #2, see [91] and [92], where a 

dedicated SONIC calculation has been performed for this task in order to properly set the 

boundary conditions at the sub-divertor interfaces. Deuterium influx in its molecular form 

is considered in this scenario. By considering single gas species flow, it is possible to 

isolate the effect of the collisions on D2.  

 The influx of deuterium takes place at both gates with a flow speed of 314.3 m/s 

(Gate 1) and 589 m/s (Gate 2). The temperatures associated to the translational motion of 

the particles at Gate 1 and 2 are 1118.57 K and 1335.67 K, respectively. At the sub-

divertor walls the temperature is set to 293.16 K. Pressure values of 1.24 Pa and 4.4 Pa 

are imposed at Gate 1 and Gate 2. The diffuse reflection model with full accommodation 

coefficient is used as before and at the pumping surface, 3% of the particles impinging 

the boundary are absorbed (deleted from the domain). The rest, 97%, is reflected back to 

the sub-divertor domain. To model the chevron in JT-60SA sub-divertor, a group of 4-

sided structures is now included in front of the pumping duct. The temperature of the 

chevron structure is set to the value of the wall temperature. Here the collisionality regime 

is defined as the ratio of the VHS mean free path to the characteristic length of the sub-

divertor, i.e. the narrowest distance between the dome sub-divertor wall in region I (0.045 

m), see Figure 5.24. 

 

Figure 5.24 JT-60SA simplified sub-divertor domain within the chevron shielding (at same tem-

perature as the walls). The incoming neutral particles from the plasma chamber enter the domain 

at Gate 1 and Gate 2. The pressure values at Gate 1 and Gate 2 are 1.24 Pa and 4.4 Pa respectively. 

The pump reflects 97% of the incoming particles as a diffuse boundary condition with a temper-

ature of 293.16 K. 
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 The calculated spatial Kn number distribution is plotted in Figure 5.25. The influ-

ence of collisions can be neglected for Kn > 10, whereas here the Kn numbers below 0.5 

in the whole sub-divertor domain are observed. This implies the occurrence of a transi-

tional flow, where neither a free collisional nor a continuum approach sufficiently exact 

describe the flow dynamics. On top of that, by the inclusion of atomic deuterium in the 

calculations where high-energetic atoms coming from the private flux region will en-

hance the momentum exchange at both gates, enhancing the collisional effect and modi-

fying the flow field in region II and as consequence region IV. 

 

Figure 5.25 The Kn number profile along the JT-60SA sub-divertor. The regions I-IV are referred 

to Figure 5.6. 

 Figure 5.26 illustrates the contour plots and isobars along the JT-60SA sub-divertor 

for both study cases. The calculations suggest that the flow conditions in this case are 

strongly affected by the collisions between the neutrals. Simulations shown that when-

ever the collisions are taken into account the pressure in the sub-divertor is increased by 

20-40% in regions far from the gates, namely in region I (below the dome at around R’= 

3.49 m and Z’ = -0.291 m) ~ 30% and II ~ 25% (at around R’= 3.66 m and Z’ =-0.211 

m). In region IV, the discrepancy between the collisionless and collisional case is in-

creased furthermore where 40% difference is found.  
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Figure 5.26 (a) Isobars in DSMC simulations (collisions off). (b) Isobars in DSMC (collisions 

on). For both DSMC analyses the JT-60SA scenario #2 boundary conditions is considered, where 

neutral particles enter the domain at Gate 1 and Gate 2 and the pump absorbs 97% of particles 

impinging this boundary. The temperature of the wall and structures (chevron) is set to 293.16 K.  

 

 The effect of collisions can also be seen in the temperature distribution of the flow. 

For this, the ratio of temperatures across the domain is sampled in order to calculate the 

(a) 

(b) 
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relative difference between collisionless and collisional approaches. In Figure 5.27 it is 

shown that near both gates, the difference between temperatures reaches its maximum. It 

is worth noting that in this region the highest value of pressure is found. For the simulation 

without collisions, the overall temperature in the sub-divertor is at least a factor of 0.5 

and 0.8 lower than the collisional simulation near Gate 1 and 2, respectively. In region II, 

the relative difference between DSMC analyses ranges between ~ 3% and ~ 30% where 

the highest difference is found above the chevron that lies directly below Gate 2, see 

Figure 5.28. Almost constant temperature ratio is found in region IV, since in this region 

the gas is thermalized within the chevron and the pumping surface. 

 

Figure 5.27 The temperatures TColl-on and Tcoll off are sampled across the JT-60SA domain and the 

relative difference (%) between collisionless and collisional DSMC calculations estimated. 
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Figure 5.28 The temperatures Tcoll ON and Tcoll OFF are sampled across region II in JT-60SA do-

main. It can be seen the relative difference (%) of the translational temperature between colli-

sionless and collisional DSMC calculations. 

 The present analysis demonstrates the capabilities of dsmcFoam to handle colision-

less and collisional gas flows. The major outcomes of this section are: 

•  By turning off the collision kernel in DSMC, a comparison between NEUT2D 

and DSMC is performed. Good agreement between NEUT2D and DSMC regard-

ing flow speed profiles are only found in region II in JT-60SA (node wise). How-

ever, in regions I, III and IV only partial agreement is found between approaches. 

•  NEUT2D calculates a colder gas than DSMC. With the available information it 

has not been possible to explain the reason of this observation. 

•  For collisional flows, it has been demonstrated that the collision frequency ob-

tained with DSMC and the theoretical expression are in good agremment since 

the results differ by less than 1% across the sub-divertor. In this study the VHS 

binary collision model has been employed.  

•  As a result of the sensitivity analysis, for regions in the sub-divertor where the 

conditions T/Tref > 1  or T/Tref ≫ 1 hold, it has been observed that the follow-

ing relation for the collision frequency between models is true: 

𝜈𝐻𝑆 > 𝜈𝑉𝐻𝑆 > 𝜈𝑀𝑎𝑥𝑤𝑒𝑙𝑙 

This can be used to estimate the introduced error on the number of collisions by 

using a particular collision model. 

•  The effects of collisions in JT-60SA for the so-called Scenario #2 have been stud-

ied solely with DSMC. Deviations in the pressure of 20% and 40% between a 

collisionless and a collisional DSMC are obtained. Temperature deviations of 3% 

to 46% are also found, with the maximum differences at the inlet and outlet re-

gions. 
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5.2 Particle exhaust in ITER divertor  

 Having established confidence in the DSMC solver for calculating collisional and 

collisionless flows in tokamak divertor and simple geometries, the application of the 

DSMC method to present fusion devices in operation and reactor-relevant devices cur-

rently being built is addressed.  

 

 First, the analysis of the neutral gas flow in ITER sub-divertor is introduced. Once 

again, the investigation is based on a two-dimensional flow of a single gas. The boundary 

conditions resulted from the a SOLPS analysis for the ITER high-divertor pressure sce-

nario with a total average gas pressure of 9.9 Pa above the dome. The resulting pressure 

distribution along the divertor cassette facing the plasma SOL and PFR, defines the 

boundary conditions of the DSMC simulations.  

 

 The main aim of this sub-schapter is to quantify the effect of the pumping condi-

tions on ITER sub-divertor flows. This has been done by analyzing the flow field varia-

bles as function of the pressure at the entrance of the pumping port. Collisional effects 

have been observed and correlated to the pumping conditions. Part of the analysis also 

focuses on the pressure value comparison across the flow domain between the DSMC 

approach and the ITERVAC code, which is a known tool for calculating vacuum flows. 

5.2.1 Gas flow modelling in ITER divertor 

geometry and boundary conditions 

 The simulated ITER divertor geometry is based on the 2009 3D-design [41] illus-

trated in Figure 5.29. The DSMC simulation domain is simplified to a 2D-cut in the sub-

divertor region in order to apply the input of the SOLPS, which is also two-dimensional. 

The DSMC domain is shown in Figure 5.29 (red domain). The pressure is imposed at the 

five main contributions to the particle exhaust coming from the SOL and private flux 

region (positions I-V). The pressure at the pumping port is taken as parameter (position 

VI). The arrows shown in yellow depict the possible flow path directions of the neutral 

gas. Therefore, the pressure values employed in DSMC shown in Table 5.4, are the output 

of the plasma calculation defined at the sub-divertor interfaces I-V. 

 

During ITER operation the particles are pumped through the transparencies and slots lo-

cated between dome (position III), reflectors and small slots near the target corners (po-

sitions II and IV). Additionally, two gaps are located at positions I and V, which serve as 

paths for the gas flow between the sub-divertor region and the main chamber. The pres-

sure at these gaps is typically orders of magnitude lower than the pressure below the 

dome. The particles that do not follow the path behind the vertical targets move towards 

the pumping duct (position VI). 
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 Similar to the previous analysis of JT-60SA, in order to obtain the boundary condi-

tions of the DSMC calculation at the locations I to V depicted in Figure 5.29, first a back-

ground plasma simulation is performed with the SOLPS code. The SOLPS analysis in-

cludes the following species: D2 molecules, D (representing both hydrogen isotopes D 

and T), He, C ions and atoms. 

 

 
 

Figure 5.29 Diagram of the ITER divertor geometry [94]. The sub-divertor flow domain (red) is 

extracted from the 3D CATIA model. For the DSMC calculations an axial cut through an ITER 

divertor cassette is done. The inlet boundary conditions are imposed at the positions I-V. The 

exhausted gas flow directions are shown in yellow. Figure taken from [41], [94]. 

 For the DSMC simulations the gas composition is simplified to be only deuterium 

in molecular form, as this makes up for about 80% of the working gas in the investigated 

scenario. The ITER high-divertor pressure scenario with a total average gas pressure of 

9.9 Pa above the dome (~ 8 Pa D2 average partial pressure at region III) is selected as the 

scenario for the DSMC the analysis. Moreover, it is assumed that the neutrals at all inlet 

locations (I-V) have a reference temperature of 420 K. The same temperature is set in the 

sub-divertor walls. The temperatures of the neutral particles entering the sub-divertor are 

typically a factor 3 higher than the ones here applied. However, the value of the temper-

ature is set to 420 K, since ITERVAC analyses are available at this temperature for the 

same ITER geometry and pressure boundary conditions, allowing a comparison between 

DSMC and ITERVAC code results, which are shown later in this section. 
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 The present analysis of the neutral flow is conducted by varying the pressure at the 

pumping port entrance VIp  (position VI) maintaining the same divertor conditions. The 

pressure VIp  takes the following values:  

• 0 Pa (case #1, referred also as ideal case) 

• 10-3 Pa (case #2) 

• 10-2 Pa (case #3) 

• 10-1 Pa (case #4) 

• 1.0 Pa (case #5) 

 In the present work the DSMC algorithm based on the No-Time Counter (NTC) 

scheme is implemented for simulating the gas flow. The variable hard-sphere (VHS) 

model is employed and the time increment is taken as ∆𝑡 = 1 × 10−6 s; other values 

smaller than the selected are disregarded, as they do not essentially change the results. 

The computational mesh shown in Figure 5.30 is unstructured with a total number of 

triangular cells of 4.6 x104.  

 

Figure 5.30 A 2D ITER sub-divertor unstructured grid and a close-up to the region near location 

IV. Particle fluxes enter the sub-divertor at positions I-V, where the pressure boundary conditions 

are applied. At the pumping duct (VI) the pressure values are varied. 

The mesh is chosen as a result of preliminary grid studies with different number of ele-

ments. Since the study cases employed the same boundary conditions at locations I-V, 

the grid employed throughtout the analyses has not been modified. Care has been taken 

for the region near the pumping port (position VI) where the chosen grid meets the re-

quirement that at least 10-20 DSMC particles are found at each cell for all simulations, 

as shown in Figure 5.31 for the extreme cases #1 and #5. This assures that for the rest of 

the cases #2 to #4, the number of DSMC particles per cell lie in between this range. 
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Figure 5.31 Number of DSMC particles in the computational domain for the ITER divertor for 

divertor pressure of 9.9 Pa (~ 8 Pa D2 average partial pressure at position III) for two cases: (a) 

Case #1 with 0 Pa at position VI and (b) case #5 with 1.0 Pa at position VI.  
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Table 5.4 The summary of the modelling parameters for ITER type divertor  

 

5.2.2 Effects of increasing the pressure at the 

pumping port: velocity and pressure fields 

 It is intuitive that the particle interaction in terms of collisionality has to increase as 

the pressure value at the pumping duct is increased. However, the question remains 

whether the gas flow is sensitive to these changes and if this is the case, which fundamen-

tal mechanisms are involved. For the modelled divertor conditions, neutral particle flow 

towards the plasma vessel is observed to take place via the upper gaps I and V. Figure 

5.32 shows a typical neutral gas flow pattern found in ITER sub-divertor.  

 The net particle flow at the upper gaps I and V is estimated once the steady condi-

tions are reached, i.e. at the point in time where the avering process in the DSMC simu-

lation starts. As before, this state is reached by monitoring the total number of DSMC 

particles in the system, as shown in Figure 5.33 exemplary for the cases #1 and #4 with a 

 Type / Parameter Value Unit 

Boundary name    

I Pressure type (inlet)    

 Pressure 8.82×10-4 Pa 

II Pressure type (inlet)    

 Pressure 23.6 Pa 

III Pressure type (inlet)   

 Pressure 7.82 Pa 

IV Pressure type (inlet)   

 Pressure 15 Pa 

V Pressure type (inlet)   

 Pressure 8.12×10-4 Pa 

VI Pressure type (outlet)   

 Pressure 0,10-3, 10-2, 10-1, 1  Pa 

DSMC properties    

Time step ∆𝑡 1 × 10−6 s 

Conversion factor 𝐹𝑁 8 × 1012, 1 × 1013 - 

Particle-wall interaction Diffuse reflection    

 Temperature 420 K 

Binary collision model Variable Hard Sphere model   

 Reference temperature 273 K 

Particle attributes    

Particle name Deuterium (D2)   

mass m 6.69 × 10−27 kg 

diameter d 2.92 × 10−10 m 

rotational DoF Rotational DoF 2 - 

viscosity index  𝜔 0.73 - 
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pressure at location VI of pVI = 0 Pa and pVI = 0.1 Pa, respectively. Following the criterion 

defined in Chapter 3.6, in ITER simulations the plateau of the DSMC particles is reached 

around 200, 000 timesteps and the peak-to-valley is less than 2% during the run. 

 

Figure 5.32 Velocity flow field in the ITER sub-divertor domain for the case #1 with a pressure 

of 0 Pa at location VI (pumping port). The boundary conditions at positions I-VI read 𝑝I =
8.82 × 10−4 Pa, 𝑝II = 23.6 Pa, 𝑝III = 7.82 Pa, 𝑝IV = 15  Pa, 𝑝V = 8.12 × 10−4 Pa and 𝑝VI = 0 

Pa. The wall temperature of the sub-divertor is set to T = 420 K and VHS is the employed binary 

collision model.  
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Figure 5.33 Stationary conditions with respect to the total number of particles in a DSMC simu-

lation for ITER. The temporal evolution of the ITER cases is shown for the analysis (a) with a 

pressure value of 0 Pa at the boundary number VI and (b) with a pressure value of 0.1 Pa at the 

boundary number VI. The analyses are focused on deuterium gas in its molecular form with VHS 

as binary collision model. The diffusion-reflection wall with full accommodation is employed as 

particle-wall interaction in the sub-divertor domain. 
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 In Table 5.5 the net average rates at locations I and V are normalized to those found 

in the ideal case, 𝑝VI = 0, namely 
214.64 10  D2 m

-1s-1 and 
202.85 10  D2 m

-1s-1 for the 

inner (I) and outer locations (V), respectively. In Table 5.5, the superscript k denotes the 

location of interest while the subscript m the study case number. Relative to the case with 

back pressure pVI = 0 Pa, a maximum difference of ~ 3 % (case pVI = 10-2 Pa) is found 

with the net flow at location I, for all the other cases the difference is less than 1 %. The 

particle flows at positions I and V show an asymmetry as the pressure at the pumping port 

increases. This observation is discussed below together with the introduction of the pres-

sure distribution in the sub-divertor. 

Table 5.5 Average particle fluxes at locations I and V. The results of Cases #2, #3, #4 

and #5 are normalized to the respective average fluxes found in the Case #1 with pVI = 0 

Pa 

Ratio of particle flux (case 2, 3, 4, 5) to particle flux of Case #1 pVI = 0 Pa  

at locations I and V 

〈D2 m−1s−1〉𝑚
𝑘 〈D2 m−1s−1〉0 Pa

𝑘⁄  

k m (case #) 

(Location) Case#2/Case#1 Case#3/Case#1 Case#4/Case#1  Case#5/Case#1  

I 1.0003 1.0279 0.9914 0.9959 

V 1.0438 1.0689 1.2293 8.3173 

 

 To provide a better idea of the impact of the values of Table 5.5, the ratio RD2 of the 

exhausted particles to the particle at positions (sum of I and V) is calculated by 𝑅𝐷2
=

Γ𝑉𝐼 ΓI+V⁄ . This ratio reflects the competition between the gas conductance of both bound-

ary positions of the divertor legs (I+V) and that of the pumping port (VI). The ratio reads 

for the 0.1 Pa- and 1 Pa-cases 23.04 and 18.18, respectively. The rest of the cases have a 

maximum of 2 % difference relative to the 0.1 Pa-case. The results tell us that the pump-

ing conditions dominates the flux distribution in the sub-divertor, which can be shown in 

terms of quantitative numbers by modifying the back pressure at the pumping duct of 

ITER.  

The modelling also shows that for pressures below the 1 Pa the ratio inner-to-outer fluxes 

between the two outlet boundaries behind the divertor targets ranges 9.2 < ΓI ΓV⁄  < 15.6. 

An increase of the pressure to 1 Pa at the pumping port leads to an increase flux only at 

the outlet boundary V (outer region) with no significant change at location I. In contrast, 

the fluxes at position V show a rather monotonic increase for all cases with a drastic 

increase of the particle flux when the pressure is 1 Pa at the pumping port. A value of 
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8.31 is obtained for the ratio of fluxes between case #5 and case #1 at position V, see 

Figure 5.34. At this condition, the value of the flux at location V is of particular interest, 

since it means that by enhancing the back pressure at the pumping port, the number of 

neutral particles flowing towards the plasma at the low-field side increases, feeding the 

plasma with the same order of magnitude of fluxes as the high-field side (position I).  

 

Figure 5.34 Particle fluxes in ITER sub-divertor sampled at the end of the ducts behind the ver-

tical targets (position I and V). The pressure boundary conditions for all cases read 𝑝I =
8.82 × 10−4 Pa, 𝑝II = 23.6 Pa,  𝑝III = 7.82 Pa,  𝑝IV = 15 Pa,  𝑝V = 8.12 × 10−4 Pa. The tem-

perature of the gas at the boundary locations (I-V) and the sub-divertor walls is set to 420 K.   

 It has been observed that the particle flux at location I and V is altered by increasing 

the value of the back pressure at position VI. However, there must be a more fundamental 

mechanism that helps to understand such findings. To answer this, the streamlines of the 

particle flow are now the subject of our attention. Figure 5.35 depicts the velocity stream-

lines of two extreme study cases: Case #1 with 𝑝VI = 0 Pa and Case #5 with  𝑝VI = 1.0 

Pa.  
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Figure 5.35 (a) Streamlines in ITER sub-divertor, divertor pressure 9.9 Pa and case pVI = 0 Pa. 

(b) D2 streamlines in ITER sub-divertor for a high divertor pressure case (9.9 Pa) for the case 

study with pVI = 1.0 Pa. 

 A common phenomenon in gas dynamics is the separation of the streamlines due to 

pressure gradients in the flow field. This effect is typically seen at the so-called boundary 

(a) 

(b) 
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layer. This boundary layer separation is occurring on the rear surface of a streamlined 

shape where the flow is expanding due to the curvature of the solid surface and the flow 

velocity increase whereas the pressure decreases in the flow direction. This process sets 

up a pressure gradient such that each fluid element experiences a force opposing its mo-

tion in the direction of the flow as depicted in Figure 5.36 (a). Thus, gas particles close to 

the solid surface have a low momentum and can be brought to rest or even moved in a 

counterflow direction by the pressure gradient.  

 By using the boundary-layer equations, see Chapter 7 in [95], applied to Figure 

5.36(a) for a flow in steady state conditions, force-free (external) and with a zero-velocity 

at the wall located at y = 0, it is obtained: 

 2

2

wallwall

V dp
,

y dx

   
 =   

   
 (5.3) 

where 𝜇 is the dynamic viscosity and the derivatives are evaluated at the wall. This rela-

tion shows that the velocity profile at the wall is determined by the pressure gradient and 

that the curvature of the profile is influenced by the sign of the pressure changes. Two 

particular conditions are relevant for the gas flow at ITER pumping port: 

• 𝑑𝑝 𝑑𝑥⁄ < 0 which results in 𝜕2𝑉 𝜕𝑦2⁄ < 0 giving a negative curvature of the ve-

locity profile. This means that the slope of the velocity is decreasing for y-values 

towards the wall. In this case, it is said that a favorable pressure gradient acts on 

the flow.  

 

•  𝑑𝑝 𝑑𝑥⁄ > 0 results in a positive curvature of the velocity profile, thus 𝜕2𝑉 𝜕𝑦2⁄ >

0. In this case, a pressure increase or adverse pressure gradient acts on the flow. 

Additionally, there exists a point inside the boundary layer where the second de-

rivative of the velocity is zero, i.e. an inflection point of the velocity profile exists. 

Although the velocity has two components in the present study, the same phyiscal mech-

anism applies. The velocity flow field and pressure profile are plotted along 5 different 

straight lines, which are defined along the width of the ITER pumping duct as shown in 

Figure 5.36 (b). The position of the vertical lines is defined in such a way that it is covered 

the expansion region of the gas while exiting the sub-divertor domain. Since the study 

cases #1 to #4 exhibit no practical difference on the values of the fluxes at locations I and 

V, and thus a comparison between case #1 and case #5 is necessary (extreme cases). Re-

sults for the velocity components along the vertical lines for the study case #1 and #5 are 

shown in Figure 5.37 and Figure 5.39, respectively. Both pressure profiles along the ver-

tical lines are depicted in Figure 5.38 and Figure 5.40. 
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Figure 5.36 (a) Schematic of the flow separation over a curved surface. The flow velocity profile 

at four different points along the curve is depicted, where a favorable (𝑑𝑝 𝑑𝑥⁄ < 0) or adverse 

(𝑑𝑝 𝑑𝑥⁄ > 0) pressure gradient acts at the point of contact between the fluid and the wall. (b) The 

flow quantities for ITER Case #1 and Case #5 are plotted along 5 different paths in order to 

identified the flow separation along the pumping duct of the sub-divertor. 

 It can be seen in Figure 5.37 that the velocity profile has parabolic-like shape near 

the exit of the pumping duct, which is consistent with the results shown in Figure 5.34(a) 

where the streamlines are colored by the magnitude of the flow speed. As the vertical line 

is moved away from the exit of the duct, the value of the slope of the velocity component 

VR decreases along the vertical line. It can also be appreciated by comparing the results 
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along lines #5, #4 and #3 that both velocity components have a change in their curvature, 

i.e. an inflection point exists, which is a characteristic of a flow with adverse pressure 

gradient.  

 A closer look to the vertical line #3 in Figure 5.37 and Figure 5.38 shows that at the 

wall (position Z ~ -4.1 m) a zero-slope condition for the velocity and pressure is met, 

indicating that critical adverse conditions are set for flow separation. The transition of 

sign change in the velocity is appreciated in the plot of line #2 in Figure 5.37. Here at 

around the value of the vertical length of 1.0 m or (R, Z) = (6.29, -4.24) the velocity 

becomes negative, meaning that the fluid moves in the negative R-direction. This can also 

be observed in Figure 5.35(a), where at a corner the separation of streamlines takes place 

forming a region of closed lines. In the case of the z-component of the velocity, the change 

of sign has occurred between line #5 and #4 and its amplitude increases from line #4 to 

#1.  

 The results obtained for the ITER case #5 (pVI = 1.0 Pa) seem to offer the best 

opportunity for the analysis of flow separation conditions. In Figure 5.39 it is seen that 

the change of sign in the velocity profile in the z-direction occurs already at line #5, next 

to the outlet of the pumping duct, which can be confirmed by looking also at the stream-

lines in Figure 5.35(b). Along line #4, the radial component of the velocity shows flow 

reversal, accompanied with a positive change of the pressure shown in Figure 5.40 (see 

lines #3 to #5). The calculated results towards line #2 and line #1 show a decrease in the 

pressure at the wall and as a consequence the magnitude of the velocity components are 

also reduced, lowering the momentum of the counterflow (negative R-direction).  
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Figure 5.37 Deuterium gas flow velocity distribution (VR, VZ) along straight lines located across 

the pumping duct for the ITER high divertor pressure case (9.9 Pa) and for the case study with 

pVI = 0 Pa (case #1) at the exit of the pumping duct (close to the vertical line #5).  
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Figure 5.38 Pressure profiles sampled along the vertical lines defined at the pumping duct of 

ITER sub-divertor. The plots correspond to a high divertor pressure case (9.9 Pa) and for the case 

study with the ressure at the location VI pVI = 0 Pa (case #1). The boundary conditions at positions 

I-V read 𝑝I = 8.82 × 10−4 Pa, 𝑝II = 23.6 Pa, 𝑝III = 7.82 Pa, 𝑝IV = 15  Pa and 𝑝V =
8.12 × 10−4 Pa. The wall temperature and the reference temperature of the gas at the inlets is set 

to T = 420 K and T = 273 K, respectively. 
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Figure 5.39 Deuterium gas flow velocity distribution (VR, VZ) along straight lines located across 

the pumping duct for the ITER high divertor pressure case (9.9 Pa) and for the case study with 

pVI = 1.0 Pa (case #5) at the exit of the pumping duct (next to the vertical line #5).  
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Figure 5.40 Pressure profiles sampled along the vertical lines defined at the pumping duct of 

ITER sub-divertor. The plots correspond to a high divertor pressure case (9.9 Pa) and for the case 

study with the pressure at the location VI pVI = 1.0 Pa (case #5). The boundary conditions at 

positions I-V read 𝑝I = 8.82 × 10−4 Pa, 𝑝II = 23.6 Pa, 𝑝III = 7.82 Pa, 𝑝IV = 15  Pa and 𝑝V =
8.12 × 10−4 Pa. The wall temperature and the reference temperature of the gas at the inlets is set 

to T = 420 K and T = 273 K, respectively. 
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 Thus, the above results show that the pressure increase at the pumping duct is trans-

lated in a reduction of the maximum velocity achievable at the exit of the sub-divertor as 

well as flow separation. Additional physical mechanisms in the flow that have to do with 

vorticity in the gas flow is present in the LFS of the sub-divertor (see “corners” in Figure 

5.35(a) and (b)). The vorticity involves fluid movement in a domain with bended walls 

or sharp corners. Moreover, not only the the sharp corners but the density and pressure 

gradients in the gas flow are generators of vorticity.  

 In Figure 5.41(a) and Figure 5.42(a), the pressure distribution, the isobars and the 

pressure gradient (vectors) for the study cases with 𝑝VI = 0 Pa and 𝑝VI = 1.0 Pa are 

shown. As the neutral gas expands from “dome” region to the pumping port, a variation 

of pressure, density and temperature takes place. Analog to the pressure, the density also 

varies in Z- and R-directions (distribution not shown). The combination of these forces 

generates a torque proportional to ∇𝑝 × ∇𝜌 which induces the flow circulation. This oc-

curs if the lines of constant density are not parallel to the lines of constant pressure (baro-

clinic effect). The situation is depicted in Figure 5.41(b) and Figure 5.42(b) for the study 

cases with 𝑝VI = 0 Pa and 𝑝VI = 1.0 Pa. In these figures, it is also appreciated that at the 

duct sections of HFS (towards boundary I) and LFS (towards boundary V) the baroclinic 

contribution is negligible since the isolines of pressure and density are parallel to each 

other.  
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Figure 5.41 (a) Pressure distribution, isobars and pressure gradient direction for the case study 

#1 with 𝑝VI = 0 Pa at the pumping port. (b) Isobars and isopycnals (constant mass density) dis-

tribution. The boundary conditions at positions I-VI read 𝑝I = 8.82 × 10−4 Pa, 𝑝II = 23.6 Pa, 

𝑝III = 7.82 Pa, 𝑝IV = 15  Pa, 𝑝V = 8.12 × 10−4 Pa and 𝑝VI = 0 Pa. The wall temperature of the 

sub-divertor is set to T = 420 K and VHS is the employed binary collision model. 

(a) 

(b) 
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Figure 5.42 (a) Pressure distribution, isobars and pressure gradient direction for the case study 

#1 with 𝑝VI = 1 Pa at the pumping port. (b) Isobars and isopycnals (constant mass density) dis-

tribution. The boundary conditions at positions I-VI read 𝑝I = 8.82 × 10−4 Pa, 𝑝II = 23.6 Pa, 

𝑝III = 7.82 Pa, 𝑝IV = 15  Pa, 𝑝V = 8.12 × 10−4 Pa and 𝑝VI = 1 Pa. The wall temperature of the 

sub-divertor is set to T = 420 K and VHS is the employed binary collision model. 

(a) 

(b) 
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 In this part of the analysis a comparison between the present DSMC modelling and 

ITERVAC calculations is performed considering the study of case #1 with 𝑝VI = 0 Pa at 

the pumping port. ITERVAC modelling considers the divertor cassette as a complex net-

work of interconnected channels with a predefined shape and length. Thus, since the net-

work consists of binding nodes and channels, by placing a gas source or sink (pressure or 

pump boundary) at a node, the mass flow across each channel of the network can be 

calculated and at the same time the node-wise mass balance is considered, i.e. inflow and 

outflow. ITERVAC employs an empirical equation with 4 fitting parameters for the cal-

culation of the dimensionless flow rate F across the channel [96], which is given by: 

 
31

2

4

c Knc
F c

Kn c Kn
= + +

+
, (5.4) 

where Kn is the Knudsen number and the coefficients c1 represents the limiting value of 

the expression in the continuum regime (𝐾𝑛 → 0) whereas the sum c2 + c3 is related to 

the free molecular limit (𝐾𝑛 → ∞). The coefficient c3 indicates the beaming effect of the 

molecular flow across the channel and c4 represents 50% of the beaming effect contribu-

tion of c3 in the continuum limit. The accuracy of the above expression depends on the 

flow regime of interest as well as the ratio length-to-diameter (hydraulic diameter) of the 

channel under consideration. In [96] is mentioned that a 3% of average error is found for 

viscous flows for long and short channels with circular and triangular cross-sections. Rel-

evant to the present ITER gas flow analysis, the transition regime, the authors in [96] 

have reported an accuracy of 5%-20% for circular tubes with various length-to-diameter 

ratios and up to 8%-40% of deviation is reported for thin orifices under different upstream 

pressures. In the transition regime the deviation is calculated by comparing ITERVAC 

results to kinetic theory solutions.  

 In a standard ITERVAC simulations, the ITER calculations are done by considering 

a 3D domain containing the 54 ITER toroidal divertor cassettes. For the present compar-

ison, ITERVAC analyses have been performed considering only one divertor cassette in 

its two-dimensional representation, thus a direct comparison with DSMC can be done. 

Therefore, it is possible to extract the pressure at the inlet and the outlet for every channel 

of the network. By doing this the DSMC values of the local pressure are extracted at the 

positions indicated in Figure 5.43(a), and termed as probe locations. Thus, for consistency 

of the results, the location of the ITERVAC channel outlet coincides with the probe loca-

tion, ensuring that the spatial location is the same for both numerical approaches. 10 probe 

locations are distributed along the sub-divertor domain. A pair of probes is located at each 

divertor leg, one nearby the bottom of each boundary (positions II, IV from Figure 

5.43(b)), a pair below the dome and 2 horizontal co-linear probes towards the pumping 

duct are placed. 
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Figure 5.43 (a) Partial and local pressure of deuterium gas is calculated at probes along the sub-

divertor geometry. (b) The pressure values are sampled by both DSMC and ITERVAC for the 

study case #1 with an isothermal gas flow with wall temperature of T = 420 K. The pressure 

boundary conditions at positions I to VI are: 𝑝I = 8.82 × 10−4 Pa, 𝑝II = 23.6 Pa, 𝑝III = 7.82 Pa, 

𝑝IV = 15  Pa, 𝑝V = 8.12 × 10−4 Pa and 𝑝VI = 0 Pa. 

(a) 

(b) 
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 As seen in Figure 5.43(b), the predictions of the two approaches at the probes 1 and 

6-10 are in good agreement with each other to within statistical error bar of DSMC. At 

probes 2 to 5 the two approaches differ by a factor equal or greater than 2. A closer look 

to the pressure drop between position II and probe 3 at the HFS, lead us to the following 

observations. First of all, from the upstream pressure BC of 𝑝II ~ 23 Pa the gas pressure 

is reduced by a factor of ~ 4 in a rather reduced region as depicted in Figure 5.44(a). The 

gas undergoes an expansion due to a combination of local converging-diverging-converg-

ing-diverging passages, see Figure 5.44(b). Starting at location II with zero velocity 

(bulk), the gas accelerates reaching a value of 50 m/s (first passage). Thereafter, as the 

area increases the gas decelerates reaching the second passage, where the velocity in-

creases as the area of the passage is reduced. At this second passage a maximum velocity 

of ~193 m/s is reached. Finally, the gas exits this region where it decelerates to ~50 m/s 

(position of probe 3) and at this point, the gas starts flowing towards location I.  

 

Figure 5.44 (a) Pressure distribution near the inlet boundary location II (~23 Pa). (b) Velocity 

vector field and velocity distribution of the gas flow. The plots correspond to a high divertor 

pressure case (dome pressure of 9.9 Pa) and for the case study with the pressure at the location 

VI of 0 Pa (case #1). 

 A possible explanation of the differences at probe #3 (factor of aprox. 3) between 

DSMC and ITERVAC can be related to the uncertainty by modelling thin orifices in 
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ITERVAC or the mesh strategy employed in DSMC in this region. By taking the worst 

case reported accuracy of 40% of ITERVAC leads, at probe #3, a value of 12 Pa. This is 

still twice the value obtained with DSMC. If this region is modelled in ITERVAC with a 

serie of multiple orifices, each corresponding accuracy to each modelled part contribution 

will add up to the relative difference. Once the gas travels from location II to the location 

of probe #3, the neutral particles move towards the upper left outlet boundary (position I) 

and also towards the region below the dome (position III), where a pressure inlet bound-

ary condition of 7.8 Pa is imposed. Clearly, the values of the pressure near probe 3 cannot 

exceed this value, making plausible the pressure values at probes 1 and 2 calculated with 

DSMC (less or equal than 7.8 Pa). However, ITERVAC predicts a pressure of ~ 20 Pa at 

probe 2, which would translate in a movement of gas particles from the bottom of the 

sub-divertor towards the dome, i.e a gas flow with a velocity component in the +z-direc-

tion, which is not observed in the DSMC analyses.  

 The collisionality is analyzed in terms of the local Knudsen number 

locKn / nL n n = =   is employed. Here λ is the VHS-mean free path [25] and n the 

deuterium number density. The local Knudsen number is calculated for case #1 (𝑝VI = 0 

Pa) and case #5 (𝑝VI = 1 Pa) and its distribution across the domain is shown in Figure 

5.45. Over a straight line of 2.37-meter length depicted in Figure 5.46(a), the Knudsen 

number is estimated for all the case studies. This path is representative for the flow path 

between the region below the dome and the pumping port in ITER sub-divertor. The pre-

viously discussed explanation based on collisionality effects is supported for the cases 

where the pressure pVI > 0.01 Pa. It is noticed that for the case with pVI = 0.1 Pa the 

increasingly monotonic slope of locKn  is broken at a same point 20 cm before pumping 

port entrance, as seen in Figure 5.46(b). This is an indication that the competition between 

collisions and the magnitude of the local density variation is enhanced by interacting more 

frequently with the D2 particles coming from the pump region and thus of reducing the 

ratio of Knloc. It is interesting to note that the K𝑛𝑙𝑜𝑐 values of the sub-divertor flow are < 

0.03 below the dome and 0.01< K𝑛𝑙𝑜𝑐 < 0.18 in the region near the pumping port for all 

the study cases, except for the cases 0.1 Pa- and 1 Pa. Comparison between the 0.1 Pa- 

and 1 Pa-cases at the port shows a reduction in the K𝑛𝑙𝑜𝑐 of factor 4. The reason is that 

the Knudsen number for each case depends on the combination of the number density and 

its local gradient at that region. 
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Figure 5.45 Local Knudsen number calculated for cases (a) pVI = 0 Pa- and (b) pVI = 1 Pa. The 

boundary conditions at positions I-VI read 𝑝I = 8.82 × 10−4 Pa, 𝑝II = 23.6 Pa, 𝑝III = 7.82 Pa, 

𝑝IV = 15  Pa, 𝑝V = 8.12 × 10−4 Pa and 𝑝VI = 1 Pa. The wall temperature of the sub-divertor is 

set to T = 420 K and VHS is the employed binary collision model. 
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Figure 5.46 (a) Definition of line path across the ITER sub-divertor from point smin to smax. The 

region covered comprises the zone below the dome (location of region III) until the pumping port 

(location of region VI). (b) Evolution of the local Knudsen number along the path for all the study 

cases. 
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 In summary, the DSMC approach is applied to a ITER background plasma calcu-

lated by SOLPS for a high-pressure divertor scenario (total pressure 9.9 Pa, 80 % D2). 

The DSMC simulations indicate a weak influence on the sub-divertor neutral pressure at 

the HFS (position I) for the examined values of pressure range at the pumping port (po-

sition VI). Between the two extreme ITER cases #1 and #5, a reduction of the peak ve-

locity by a factor of 1.5-2 is found near the pumping port.  

 The present analysis also demonstrates that a classification of the findings in two 

groups is possible. The first group involves the conditions with a pressure value up to 10-

1 Pa at the boundary VI, where no dramatic impact is found on the onset of flow separation 

neither in the increase of particle flow at location V. This suggests that the study cases #1 

to #4 are not sensitive to pressure changes at the pumping duct (location VI).  

 The second group focuses on conditions as case #5, where the onset of flow sepa-

ration appear right before the exit of the pumping port and a significant enhancement of 

the particle flows towards location V occurs (factor of ~8 from case #1 to case#5). More-

over, it was found that the particle flux at the location I (divertor leg inner boundary) is 

17 times greater than the flux at the location V (divertor leg outer boundary), but the sum 

of both I and V is 22 times smaller than the particle flux being pumped out towards the 

pumps. Additionally, the sub-divertor exhibits a collisional flow regime, where the local 

Knudsen number varies in the range of 𝐾𝑛𝑙𝑜𝑐 = 10−3 to 𝐾𝑛𝑙𝑜𝑐 = 0.18.  

 With the present results it is reinforced the idea of considering DSMC as a strong 

candidate for describing the particle exhaust in future tokamaks. Before ITER starts op-

erations, it is mandatory for any modelling to predict current observations in present fu-

sion devices. An step forward in this direction has been done for a mid-size tokamak, 

which is the focus of the next section. 
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5.3 Particle exhaust in the ASDEX Upgrade  

 The particle exhaust of the H-mode plasma discharge with full cryopump in 

ASDEX Upgrade (AUG) is modelled. The plasma discharges have been part of an exper-

imental campaign at ASDEX Upgrade with the aim to the study the effect of the neutral 

particle flow during a discharge by operating the machine with full, 1/3 and no cryogenic 

pumping (with only turbomolecular pumps active). As a result, the time traces of the 

neutral particle fluxes with manometers placed at different locations in the vacuum vessel 

are measured. The experimental data include the pressure measurements at the main 

chamber and at the sub-divertor region. The plasma discharge setup, diagnostics and ex-

perimental results taken from the discharges are found in Appendix D.  

 From the modelling perspective, pressure measurements are employed as boundary 

conditions for the DSMC code. The inlet boundary condition is imposed and set to the 

value of the manometer measurement located below the divertor dome. The outlet bound-

ary conditions are imposed at the cryopump surface, where a sticking probability is em-

ployed as done for JT-60SA in section 5.1. The flow field variables are calculated and the 

fluxes estimated for a direct comparison with the experimental values. The analysis of 

particle flows in AUG is organized as follows: 

1. The sub-divertor domain together with the position of relevant AUG diagnostics 

for the DSMC modelling are introduced.  

2. The numerical domain and the description of the models are presented. The mod-

els are described in terms of the effects to be captured.  

3. A summary of results is presented followed by a discussion of the numerical 

analysis.  

5.3.1 Modelling of particle exhaust in ASDEX 

Upgrade 

 

 The details of the sub-divertor structure are particularly important for establishing 

the geometry and mesh of the neutral model since they affect the flow paths and fluxes in 

ASDEX Upgrade. The topology of the AUG divertor and its dimensions are depicted in 

Figure 5.47(a). In the figure two images taken by the AUG team during the installation 

of the divertor III showing the divertor region, divertor dome and targets as well as the 

vessel structures in the sub-divertor region are shown in Figure 5.47(b)-(c). 
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Figure 5.47 (a) ASDEX Upgrade cross-section scheme of the lower-half of the complete vessel. 

The neutral gas enters the sub-divertor at the inlets, the gas manometer positions are shown in red 

symbols, the cryopump in blue is the main outlet for the particles. Other boundaries are indicated 

in red color. In case the AUG sector under consideration is connected to the turbomolecular pump 

(TMP), then a pumping port is included in the model, otherwise the vacuum vessel is taken as 

shown (grey dashed line). (b) and (c) Photographs taken of the lower part of AUG vessel, which 

show the structure below the dome with the different structures along the sub-divertor region. 

Images courtesy of Volker Rohde (IPP Garching). 

 The definition of the flow domain is based on the CAD-geometry of AUG, see 

Figure 5.48(a). The refined geometry in the simulations is obtained after a careful analysis 

of the CAD model, the previous employed numerical geometries in AUG and the real 

geometry (direct inspection of the AUG vessel has been possible in the framework of this 

analysis). The full cryopumping is assumed to be toroidally symmetric and thus a two-

dimensional model of the AUG sub-divertor is here implemented. The two-dimensional 

sub-divertor domain does not include the main chamber (plasma region) and the divertor 

(a) 

(b) (c) 
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tiles facing the plasma as shown in Figure 5.48(b). In Figure 5.48(c) and (d) the two AUG 

sub-divertor domains for the DSMC analysis are presented. Figure 5.48(c) shows the sub-

divertor region of the tokamak, where the pumping occurs solely at the cryopump. The 

second domain of interest is shown in Figure 5.48(d), where the duct leading to the tur-

bomolecular pump (TMP) is included. In the following, the former geometry is referred 

as the AUG closed domain, whereas the latter as the AUG open domain.  

 For both open and closed sub-divertor domains five common boundaries serve as 

inlets and outlets, which are illustrated in Figure 5.48(c) and (d). The inlets at the divertor 

dome, denoted as F03inner and F03outer inject particles to the system. The outlets are located 

at the boundaries F18, F16 and the cryopump pumping surface. Additionally, for the open 

domain an outlet at the end of the pumping duct is defined as TMP.  

 Due to the fact that no plasma edge simulation is available for the present plasma 

discharges, the procedure of elaborating the sub-divertor model with DSMC employs var-

ious particle flux measurements done at the sub-divertor. The manometers readings at 

both HFS and LFS are used in the DSMC model. Here the HFS means high-field side, 

which refers to positions in the sub-divertor with a radial position R < 1.25 m, whereas 

low-field side or LFS means radial positions greater than R = 1.25 m. The particle flux is 

assumed to be split in equal parts at the divertor inlets, i.e. at the positions referred as 

F03inner and F03outer in Figure 5.48(c) and (d). The resulting pressure is then imposed at 

these boundaries in the DSMC model as a gas that enters to the sub-divertor domain with 

a Maxwellian distribution centered at 300 K. In the simulations it is assumed that the 

deuterium gas enters the flow domain in its molecular form where no dissociation or re-

combination processes are considered. Regarding the outlets F18 and F16, the pressure 

values of the manometer readings are imposed at the respective boundary surfaces.  

 The gas-surface interaction is modelled as a diffusive wall (full accommodation), 

in which the deuterium molecules are absorbed and then desorbed from the surface in 

their ground state, with a desorption velocity sampled from a Maxwellian distribution 

centered at 300 K. The absence of the exact information of the gas-wall interaction during 

the experiments in the sub-divertor domain, introduces an uncertainty in the actual mod-

elling of the interaction particle and surfaces.  
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Figure 5.48 (a) AUG divertor CAD-geometry: divertor targets (blue structures), gas valves and 

their routing (red structures). (b) Main chamber region and plasma facing components (PFC) are 

excluded from the sub-divertor domain. (c) Sub-divertor region of a sector of AUG with no port 

leading to the vacuum pump (TMP), here denoted as AUG closed sector. (d) An open sector of 

AUG, which includes the pumping port that leads to the location of the turbomolecular pump. 

 The computational mesh needs to accomplish the DSMC criteria of Δ𝑥 < 𝜆, Δ𝑡 <

𝜏𝑟𝑒𝑠 together with the condition of having at least 20 to 30 DSMC-particles at each cell. 

The unstructured mesh in the simulations consists of ~ 8 000 and ~ 10 000 cells for the 

closed and open AUG sub-divertor domains, respectively. Only 0.4% of the total cells in 

the computational domain, less than 10 particles per cell are found. This translates in good 

statistics for the present DSMC calculations since in average 100 particles per cell are 

found in the present calculations. The real-to-simulated particle ratio NF  of 1012 was 
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employed.  

 The VHS collision model is employed throughout the studies in the framework of 

the NTC collision selection scheme. As before, by using the data of [93] it is obtained the 

viscosity dependence on the temperature (power-law) for deuterium. The resulting value 

of the exponent is applied in the VHS model as the viscosity index  giving a value of 

0.73. As a consequence of the high neutral fluxes at the HFS (F18), the estimated mean 

collision time 
VHScoll mpv =  has a value of 3.98 × 10−6s in that particular region. 

This condition constraints the value of the time step t  to be a fraction of the mean col-

lision time. Hence, Δ𝑡 is set to 1 × 10−7 s.  

Three different models of the AUG divertor are here proposed. Two models address spe-

cific effects of the modelling parameters and a third model resembles the experimental 

conditions in AUG: 

1. Model #1 focuses mainly on the effect of the pumping conditions on the gas dy-

namics by changing the sticking probability at the cryogenic pump surface. Two 

domains of interest where studied, the AUG divertor with pumping port towards 

the turbopump (closed sector) and without port (open sector). Three sticking 

probabilities are applied to the cryopump and also an outlet pressure at the TMP 

is employed. Here the boundary F16 is considered as wall (structure) reflecting 

the particles back to the domain.  

 

2. In contrast to model #1, model #2 includes the contribution of the particle flux 

coming from the boundary surface “F16”, located above the cryopump. In model 

#2 a sticking coefficient of unity is set at the cryopump surface. Model #2 can be 

considered as a model #1 with an additional pressure boundary. 

 

3. Model #3 on the other hand, resembles the experimental conditions of the sub-

divertor for the discharge #31998. The difference between models #2 and #3 is 

the sticking coefficient of the pump, which is set to a value of 0.17. 

A summary of the employed parameters and boundary conditions of the DSMC modelling 

in AUG is found in Table 5.6. 
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Table 5.6 The summary of the modelling parameters of gas flow in AUG divertor  

 

  

 Type / Parameter Value Unit 

Boundary name    

F03 inlet  Pressure type (inlet)    

 Pressure 1.4 Pa 

F18 outlet (model 3) Pressure type (outlet)    

 Pressure 2.0, open Pa 

F16 outlet Pressure type (outlet)   

 Pressure 0.197, closed Pa 

TMP outlet  Pressure type (outlet)   

 Pressure 10-3 Pa 

Wall sub-divertor Wall type   

 Temperature 300 K 

Cryopump shielding Wall type   

 Temperature 80 K 

Cryopump Pump type (outlet)   

 Sticking probability Model #1 =  

0.25, 0.5, 1.0  

Model #2 = 1.0 

Model #3 = 0.17 

- 

 Velocity (reflected) (0, 0, 0) m/s 

 Temperature 300 K 

DSMC properties    

Time step ∆𝑡 1 × 10−7 s 

Conversion factor 𝐹𝑁 1 × 1012 - 

Particle-wall interaction Diffuse reflection  

(full accommodation) 

  

 Temperature 300 K 

Binary collision model Variable Hard Sphere model   

 Reference tempera-

ture 

300 K 

Particle attributes    

Particle name Deuterium (D2)   

mass m 6.69 × 10−27 kg 

diameter d 2.92 × 10−10 m 

rotational DoF Rotational DoF 2 - 

viscosity index  𝜔 0.73 - 
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5.3.2 Summary of results  

 The parametric analysis in model #1 show that the calculated fluxes are barely af-

fected by the modification of the sticking probability 𝜉, independently of the AUG do-

main (with and without TMP). For the AUG studies, the simulations underestimate the 

fluxes by a factor 10 and 8 at the F19 and F20, respectively. Regardless of the BCs at F03 

and F18, in all simulations of model #1 a maximum value of the flux at the entrance of 

the pumping chamber (F05) is obtained, see Figure 5.49.  

 For the models with sticking coefficient of unity and 0.5, the fluxes at F05 are sig-

nifically higher than the experimental value. This can be explained by the fact that higher 

pressure difference exists between inlet region (below the dome) and the cryopump cham-

ber. The results of model #1 suggest that the gas dynamics in the LFS of the sub-divertor 

(F05, F8, F12, F16) are quite sensitive with the selection of the sticking coefficient in 

combination with the assumption at the boundary F16. 

 In model #2 with the combination of 𝜉cryo = 1 at the cryopump and pressure bound-

ary (F16) can reproduce qualitatively the measured particle fluxes across the sub-divertor. 

Overall, the fluxes in model #2 are lower than the experimental data in both the HFS and 

LFS of the sub-divertor. This reflects the fact that the balancing between pumped gas and 

the rest of the gas is not sufficient to build the locally measured flux. The particle fluxes 

calculated below the divertor dome and in the HFS have lower values than their respective 

fluxes in model 1 as a direct consequence of the open boundary at the surface boundary 

“F18” (sink, all particles impinging the surface are absorbed). Lower number densities 

are then expected together with the combination of gas thermalization (lower value of the 

local flow velocity), results in an overall lower neutral flux.  

 Model #3 is defined by reducing the sticking probability 𝜉cryo of model #2 by ~ 80%, 

namely 𝜉cryo = 0.17 instead of unity. This value is set by the relation 

 

16 exp

1
0.17

pump puff

tot F tot

A N

A A


 
= = =   

, (5.5) 

and thus, all the characteristics of the plasma discharge regarding the neutral influx and 

pumping are taken into account in the modelling. The first consequence of the usage of 

the experimental value of 𝜉cryo, is that the neutral flux below the divertor dome in model 

#3 is increased by a factor of 5.5 at F03 and ~ 3.5 at F05 and F08 (compared to corre-

sponding values of model #2). Relative to model #2, the net effect of setting 𝜉cryo to 0.17 

is that a higher neutral pressure below the divertor dome is established. The pressure 

driven flow towards the cryopump occurs as expected, where faster and denser neutrals 

move towards the pumping chamber, as shown by Figure 5.49. At first sight, the modifi-

cation of the sticking probability at the cryopump and addition of a neutral source at the 
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LFS leads to an overall increase of neutral flux at F03 and F05; at these locations the 

DSMC modelling show good agreement with the experimental fluxes and their values lie 

well above the other models. 

 

Figure 5.49 ASDEX Upgrade sub-divertor fluxes for model 1, 2 and 3 evaluated at the gauge 

locations. Experimental data of plasma discharge #31998 is shown in red open circles with a cross 

in the middle. Filled symbols depict DSMC modelling. Model #1 where the F16 boundary is 

closed: black pentagon represents the simulation with sticking probability 𝜉cryo= 1 with no TMP 

and DSMC simulation with 𝜉cryo = 0.25 is depicted square (cyan). Model #2 and #3 includes the 

contribution of neutrals at F16 boundary. Model #2 is represented by faced-down triangles (grey) 

and assumes a sticking probability at the cryopump of unity and no pumping port towards the 

TMP. Model #3 is depicted by green diamonds, the sticking probability in the cryogenic pump 

has been set to the experimental value of 0.17 and no TMP is considered. In model #3, pressure 

boundary conditions at the boundary F18 and F16 are set to the flux measured by the manometers.  

 A number of interesting observations have been generated in the present AUG flow 

studies: 

Model #1 shows that at the pumping region in the LFS, by closing the outlet bound-

ary “F16” and employing a sticking probability less than 0.5 it cannot be effectively 

model the particle flux close to the manometers F12 and F16. A further decrease of 

the sticking probability results on a better agreement with experiments. 

It is recognized in model #2 that by adding the pressure boundary at the “outlet 

F16” and by considering a sticking probability of unity at the cryopump, the values 
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of the fluxes across the sub-divertor are underestimated, worsening the relative dif-

ference between experiments and DSMC simulations. Thus, the effect of pumping 

dominates the effect of placing an extra particle source (pressure boundary) at the 

LFS. 

By employing model #3, the relative difference between experiments and particle 

fluxes of DSMC are minimized for the values of the particle fluxes calculated 

around the divertor dome region (F03) and at the LFS. The results suggest that the 

combination of a pressure boundary and the sticking coefficient has a dramatic ef-

fect on the flowfield near the pumping region. The results of model #3 and model 

#1 with 𝜉cryo= 0.25 demonstrate this, since two completely different setups lead to 

comparable results.  

The numerical results of all three models showed a deficiency on the modelling of 

the flowfield at the HFS region behind the targets. At the gauge locations of F19 

and F20, a factor of 8-10 between experimental values and simulations is found.  

5.3.3 Discussion 

 The primary reason for undertaking the calculations with maximum pumping con-

ditions (sticking probability of unity at cryopump) and inclusion/exclusion of particle 

sources such as the outlet “F16” is to provide a sensitivity of the flow field in AUG sub-

divertor between different flow conditions.  

 In the framework of AUG sub-divertor model #1, the impact of the pumping effi-

ciency on the fluxes is observed in the DSMC simulations at the gauges located near the 

cryogenic pump, i.e. F8, F12 and F16. The experiments exhibit near the cryogenic pump 

a different particle behavior characterized by a local minimum at F12, see relative position 

of red lines in Figure 5.50. The simulations of model #1 are able to reproduce qualitatively 

this observation. However, the results with a sticking coefficient of unity underestimate 

the experimental values.  

 By placing the TMP in model #1, the neutral flow splits in two streams, one flowing 

towards the cryopump and the other one towards the long pumping duct. It is observed 

that in this model, the concentration of neutrals is decreased by a factor 1.7 since 

ΓF12,closedSector ΓF12,openSector⁄ ≈ 1.7. In Figure 5.50 the results obtained with the model 

𝜉 = 0.25 are also shown. As expected for lower sticking probability, an increase of the 

flux value at the location of the gauges near the pump is obtained. Nevertheless, at F08 

and F16 an overestimation of ~30% is calculated, whereas at F12 the simulation yields a 

~13 % higher value than the measurement. 

 In the set of simulations of model #1 (closed and open sector domain) a maximum 
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value of the flux at the entrance of the pumping chamber (F05) is obtained, see Figure 

5.51. For the models with sticking coefficient of unity and 0.5, the fluxes at F05 are sig-

nifically higher than the experimental value. This can be explained by the fact that higher 

pressure difference exists between the region below the dome and the cryopump chamber.  

 The results of model #1 also suggest that the dynamics in the LFS of the sub-di-

vertor (F05, F08, F12, F16) are quite sensitive with the selection of the sticking coeffi-

cient in combination with the assumption at the boundary F16. As mentioned before, at 

the HFS (manometers F19 and F20) the calculated fluxes are barely affected by the mod-

ification of the sticking probability 𝜉 in model #1, independently of the AUG domain 

(with and without TMP), see Figure 5.51. This reminds us to the ITER gas flow analysis, 

where only the particle flow near the pumping duct is strongly affected by the pressure 

conditions at the sink (pumping duct/port). The AUG simulations of model #1 significally 

underestimate the fluxes by a factor 10 and 8 at the probes F19 and F20, respectively. 

Figure 5.50 Comparison between DSMC simulations (bar charts) and experimental data (red line) 

for the AUG sub-divertor model #1: Twall = 300 K, 𝑝𝑖𝑛𝑙𝑒𝑡 = 1.4 Pa, 𝑝𝐹18 = 2.0 Pa. The F16 is 

taken as a closed boundary (wall) and the sticking coefficients at the cryopump are set to the 

following values: 1.0, 0.5 and 0.25. Additionally, for the AUG sub-divertor open domain, at the 

end of the pumping duct a value of 10-3 Pa is assumed. 
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Figure 5.51 AUG sub-divertor fluxes for model #1. Experimental data of plasma discharge 

#31998 is shown in red open circles with a cross in the middle. Filled symbols depict DSMC 

modelling black pentagon represents the simulation with sticking probability 𝜉𝑐𝑟𝑦𝑜 = 1.0 with no 

TMP, blue triangle has a sticking probability of 𝜉𝑐𝑟𝑦𝑜 = 1.0 and includes the TMP pump duct. 

DSMC simulations with 𝜉𝑐𝑟𝑦𝑜 = 0.5 and 𝜉𝑐𝑟𝑦𝑜 = 0.25 are depicted in circle (magenta) and 

square (cyan).  

 In contrast to model #1, both models #2 and #3 include the contribution of particle 

flux coming from the boundary surface “outlet F16”, located above the cryopump at 

aprox. the vertical position Z = -0.6 m. The Figure 5.52 show the flow patterns near the 

position of the F16 manometer for all three models. For model #1 with 𝜉cryo = 0.25 and 

model #3 where despite of the different BCs at the LFS and pumping efficiency the ratios 

of Γ𝑚𝑜𝑑𝑒𝑙#1,𝜉=0.25 Γ𝑒𝑥𝑝⁄ = 0.49 and Γ𝑚𝑜𝑑𝑒𝑙#3,𝜉=0.17 Γ𝑒𝑥𝑝⁄ = 0.41 at location F16 are 

found. Thus, a higher pumping efficiency and closed outlet F16 at the LFS in model 1 

with 𝜉cryo = 0.25, yields to flux values similar to model #3 in this region. The combina-

tion of pumping efficiency and pressure boundary dictates the actual flow pattern near 

the cryopump which differs entirely between models, see Figure 5.52.  

 By closing the outlet F16 as in model #1, the gas impinges the wall, being thermal-

ized by it and as the particles are reflected from the wall, a pressure gradient towards the 

cryopump forces the gas to exit the domain at this surface. For instance, in model #2 the 

flow at the outlet “F16” and near the gauge position is directed towards the cryogenic 

pump, i.e. net flow pointing downwards whereas the pressure difference in model 3 sets 

a flow pattern in the opposite direction. The relation of pumping and sub-divertor con-

ductance provides an idea of the different dynamics that could be found across AUG sub-

divertor as a function of the overall conductance in the LFS of the sub-divertor. The 
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relevance of such flow characteristics has been addressed previously in [97], where a 

coupling of the recycled neutrals with the plasma edge takes place. 

 

Figure 5.52 ASDEX Upgrade sub-divertor flow patterns for different sub-divertor models. From 

left to right: Model #1: with ideal pumping at the cryogenic pump and a closed bypass at the LFS 

(upper surface is a wall). Model #2: the bypass is opened at the LFS and set to the correspondent 

pressure of the particle flux read by manometer F16 and the pumping efficiency is set to unity. 

Model #3: LFS bypass is set to the pressure experimental value of F16 and the pumping efficiency 

is set to 𝜉cryo = 0.17, which is the value obtained by considering the effective pumping speed for 

the experiments. 

 The above-mentioned findings are summarized in Figure 5.53, where the relative 

fluxes 
DSMC exp   are plotted at different discrete locations where the manometers are 

located in AUG. Satisfactory agreement, ratio experimental data to modelling is found 

particularly below the dome and in the pumping chamber (LFS). This is a significant 

result because it indicates that the 2D modelling recovers the observed flux at F05 towards 

the pumping chamber, e.g. relative error of 25% in model 3 found. The agreement be-

tween experiment and model in the pumping chamber also means that the total neutral 

distribution in the present AUG simulations is representative of the experimental condi-

tions behind the outer target and the vicinity of the cryogenic pump. Thus, the main source 

of neutrals contributing to the pumped flux originates directly from the dome region in 

combination with the pressure boundary “F16”.  



Application of the DSMC method to JT-60SA, ITER and ASDEX-Upgrade tokamaks 

152 

 

Figure 5.53 ASDEX Upgrade sub-divertor fluxes relative to experimental data # 31998 at t = 3 

s. for models 1, 2 and 3. Model #1 with 𝜉𝑐𝑟𝑦𝑜 = 1 ideal pumping and TMP pump duct is repre-

sented by blue triangle facing upwards. Model #1 with ideal pumping conditions and without duct 

is represented by the black pentagon. Model #2, which differs from model #1 by including a 

bypass at the LFS, considers ideal pumping conditions and is shown by the grey triangles facing 

downwards. Data regarding model #3 is depicted by green diamonds, here the sticking probability 

in the cryogenic pump has the experimental value of 0.17, no TMP duct is considered and HFS 

as well as LFS bypasses are considered in the simulations. 

 A common deficiency of the three models is the underestimation of the particle 

fluxes at the HFS behind the inner target namely at position of manometers F19 and F20. 

For instance, in model #3, the ratios (Γmodel3 Γexp⁄ )
F19

= 0.14 and (Γmodel3 Γexp⁄ )
F20

=

0.16 are found. The present simulations suggest that: 

1. At the position of manometers F19 and F20 additional sources of neutrals are 

found building up the local density. This working hypothesis can be partly con-

firmed by looking at the experimental results shown in Appendix D (X-point dis-

placement). The time traces of the neutrals show an increase of the F19 signal 

during the time frame where the strike point of the plasma undergoes an offset in 

the z-direction. The offset moves the plasma and its strike point towards the po-

sition where the manometer F19 is located. Previous studies in AUG [98] have 

shown a significant particle flux at the inner target plates at different H-mode 

conditions. The effect is observed as the electron density showed strong correla-

tion with the HFS manometer signals near the inner vertical targets.  
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This reinforces the need of extending the present modelling by including both 

regions: sub-divertor and SOL for a complete picture between the physics occur-

ring in the main chamber and sub-divertor.  

 

2. The present assumption of the particle-wall interaction might not be properly 

modelled at the HFS. A sensitivity study with accommodation coefficients is here 

suggested. The common feature in the models 1, 2 and 3 where a fully packed 

physical domain with structures may affect the flow pattern locally at F19 and 

F20. The use of diffuse-wall reflection with full accommodation model implies 

that the particle at the HFS forgets it previous state as soon as it impinges the 

wall, this could represent a limitation of the model, with which an unknown error 

must be associated. 

In order to characterized the pressure across AUG sub-divertor, sample points or probes 

are placed at different points of the flow domain, as shown in Figure 5.54.  

 

 

 

Figure 5.54 Probe locations across AUG sub-divertor placed in the DSMC model to calculate the 

pressure values.  

 Simulations show two different aspects characterized by a quasi-homogeneous 

value of the pressure behind the inner vertical targets (HFS). In this region, a maximum 

of 10% difference is found between model #1 with 𝜉cryo  = 1 + TMP and all models with 

no pumping port (model #1, #2 and #3). On the basis of Figure 5.55, where the isobars 

and normalized pressure field of model #3 are presented, it can be seen that a pressure 

gradient is established from the HFS to the divertor dome. Therefore, the flow moves 

towards the region below the dome, where the differences between models are enhanced 

as the pumping efficiency varies between models. Due to the development of the flow, 
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high particle flux moves near the structures located below the dome which could explain 

the higher values of the probes 9 and 10 in relation to the probe 8, which is located below 

the divertor dome. The pressure drop towards the cryopump is also appreciated in Figure 

5.55. Here the pressure ratio at “cryo”-to-“dome” ~ 70% in contrast to ~ 94% for model 

#1 and ~ 93% for model #2 (not shown). It should be also noted that a ratio of 4.7 at (R, 

Z) = (1.2, -0.9) is needed in order to capture the particle fluxes measured at the gauge 

F19.  

 

Figure 5.55 Model #3: pressure field and isobars normalized to the value of the pressure at F03 

inlet boundary (1.4 Pa).  

 From the bar plots in Figure 5.56 it is possible to appreciate two main outcomes in 

the DSMC simulations. By looking at the pressure values of the probes 12 to 18 located 

at the LFS of AUG, the first outcome shows that the DSMC models with a pumping 

efficiency different from unity, a pressure difference between probe 11 and 13 between 

the values of 40%-50% is found. As expected, the pressure profile of model #1 with 

𝜉cryo = 0.5 lies between the profiles of model #3 and model #1 with 𝜉cryo = 1.  

 The second outcome focuses on the effect of the sticking coefficient of unity at the 

cryogenic pump. For instance, in model #1 a decrease of ~57 % in the pressure values is 

found between probes 11 and 13. The observation is independent of the employment of a 

sub-divertor domain with or without a pumping port (TMP). This gives an idea that if a 

section is under the influence of a strong sink (cryopump), the dynamics are mainly dom-

inated by this pump and thus a second sink (TMP in this case) does not strongly affect 

the neutral flow at the channel. The introduction of the pressure boundary “F16” in model 

2 results on a pressure difference of 54 % at the aforementioned probes (11, 13). The 
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common BC at this surface between model 2 and 3 is appreciated in the value at probe 

18, which for both models same order of magnitude is found.  

 

Figure 5.56 Pressure values normalized to the pressure inlets (pF03) at the locations shown in 

Figure 5.54 (a) Relative pressure sampled at the probes #1 to #10, covering the HFS until the 

region below the dome. (b) Relative pressure sampled at the probes #11 to #18, spaning the region 

from the dome to the pumping region in the LFS. 

 Besides the pressure distribution and particle fluxes across the sub-divertor, a com-

mon characterization of a flow can be done through dimensionless quantities like Reyn-

olds number or Mach number. The dependence of the Mach number on the pumping con-

ditions in AUG is shown in Figure 5.57 for model #1 and model #3. Simulations show 



Application of the DSMC method to JT-60SA, ITER and ASDEX-Upgrade tokamaks 

156 

that a subsonic flow is found in most regions of the sub-divertor. Only at the vecinity of 

the cryopump surface in model #1 the gas reaches the value of Ma = 1. A further inter-

esting conclusion is that the flow velocity (and thus the Ma number) at the HFS is unaf-

fected by sticking coefficient variation. In the HFS region the models predict Mach num-

bers close to zero, hence the gas is at rest. In general, the open boundaries in the sub-

divertor do affect the overall behavior of the particle exhaust during a discharge since the 

particles exchange between the sub-divertor and the plasma edge in the main chamber 

takes place. Unfortunately, the lack of symmetry at the mid-plane in AUG does not allow 

the usage of a two-dimensional model of the upper part of the tokamak in order to study 

the overall conductance of the machine, which is beyond the scope of the present dissera-

tion. One open question is the establishment of the non-symmetric neutral flux at the mid-

plane in AUG, when the plasma discharge is under the operation of one-third of the nom-

inal pumping speed of the cryogenic pump. 

 Finally, the collisionality of the flow in AUG is calculated in terms of the Knudsen 

number. One option is to defined the Knudsen number as the ratio 𝜆/𝐿 with a global 

characteristic length in the sub-divertor of ASDEX Upgrade. However, one faces the 

problem that every region in the sub-divertor domain has its own fingerprint. For instance, 

the HFS and LFS have their own structures and diagnostics, thus a common characteristic 

length might not properly describe both regions simultaneously. Hence, here the local 

flow properties and gradient-length approach has been used for the definition of the Knud-

sen number. The candidate for the flow property is either the pressure or the particle num-

ber density, since the temperature of the flow is almost constant in the whole domain 

except in the surroundings of the cryopump where the cryoshield is placed. Thus, the 

approach     is adopted here and the Knudsen number is calculated as 

 

Kn p
p


=  , (5.6) 

where 𝜆 is the mean free path (VHS), p pressure value and ‖∇𝑝‖ the magnitude of the 

pressure gradient. 
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Figure 5.57 (a) Mach number across AUG sub-divertor for model #1 with ξ=1.0 at the cryopump. 

(b) Calculated Mach number for model #3 with ξcryo=0.17 at the cryopump. The boundary condi-

tions for both models read pF18 = 2 Pa, whereas pF16 is a closed surface (model #1) and pF16 = 

0.197 Pa (model #3). The temperature at the sub-divertor wall and cryopump shielding is set to 

300 K and 80 K, respectively.  

 For the three models, the Knudsen number is calculated and plotted in Figure 5.58. 

The neutral pressure distribution is quite similar at the HFS in all models and since it has 

been previously shown that the pumping has a negligible effect on the gas flow in this 

region. Similar values are found between models at the inner sub-divertor. Such low 

(a) 

(b) 
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Knudsen numbers behind the inner target, where the manometer F19 and F20 are located, 

and below the structures at the HFS indicates a region of high collisionality. The obser-

vation is supported by the found pressure profile. It is worth noting that two different 

locations within the same region, e.g. Kn < 10−3, can actually differ and to illustrate that 

in model #3, a relative difference of 10% is found between the location of F20 and near 

the location of the virtual probe 3b, which is located at the HFS near the point (R, Z) = 

(1.12, -1.05). At the HFS region, the flow conditions in narrow and long sections, depicted 

in green color in Figure 5.58(a) and (b), yield to a decrease on the Knudsen number by 

one order of magnitude.  

 Below the divertor dome a high collisionality region Kn < 10-3 is found and differs 

to its surroundings, i.e. at the inner divertor slot and at the divertor volume below the 

structures where values of the Knudsen number between 10-3 and 10-2 are found. The 

Knudsen number profile is common in all models at the HFS and below the dome, which 

coincides with the pressure and fluxes values previously reported. However, remarkable 

differences are found as the flow continues its trajectory to the pump chamber in the LFS. 

The first observation is that for all models with sticking probability 1cryo =  the value 

Kn lies slightly below 0.1 at the channel region, just below the outer divertor target leg.  

 The Kn values for model #3 lie below the values of model #1 and #2 in all the 

pumping chamber area. This is a direct consequence of the lower pumping (sticking prob-

ability) in model #3 relative to model #1 and #2 (𝜉Model#3~ 0.2 𝜉Model#1). At the channel 

passage below the LFS divertor target (outer, at ~ R = 1.65 m), a transition in the Knudsen 

number profile from its highest values in both models 1 and 2 to model 3 is found via the 

models 1 with 0.5cryo =  and 0.25cryo =  (not shown). Thereafter the gas flow expands 

into the pump chamber towards the cryopump and thus zones with different Knudsen 

number can be clearly identified.  

 Two extreme situations are depicted in Figure 5.58(a), where different regions are 

shown for models 1 and 3. In model #1, the LFS is characterized by its 3 zones where the 

Knudsen number ranges between the values of 10-2 and 10. These conditions correspond 

to the slip and transitional collisionality regime. The distribution of the Knudsen number 

is dictated by the pressure distribution in these regions subjected to the rather high-value 

of pumping conditions. In the case of model #3, the lower pumping efficiency and the 

increase of neutral flux at the LFS-boundary “F16” define flow conditions favorable to a 

higher collisionality regime, as seen in the green and bright yellow areas, namely 
3 210 Kn 10green

− −   and 2 1

.10 Kn 10br yellow

− −   respectively. Nevertheless, in model #3 

the Knudsen number variation is bounded between 10-2 and 10-1 with a Kn mean value of 

0.03 at the LFS and with a maximum variation between probes of 10 (ratio of probe 17 

to probe 15). The above findings suggest that the overall conditions in the sub-divertor 

for the shot #31998 are more likely to be in a collisional flow regime.  



Application of the DSMC method to JT-60SA, ITER and ASDEX-Upgrade tokamaks 

159 

 

Figure 5.58 (a) Knudsen number Kn for ASDEX Upgrade for the sub-divertor models #1 and #3. 

(b) Following the location of the virtual probes in figure 5.24, the Knudsen number is calculated 

for all the 3 models. Briefly, in model #1 it is considered and sticking coefficient of unity with a 

closed surface at the LFS structure (boundary “F16”). The inclusion of the particle flux at the LFS 

surface “F16” is performed in model #2 and #3. In model #2 the ideal cryopumping is assumed 

in order to assess the effect of the boundary with a defined pressure value in the collisionality 

regime with an overestimation of the pumping. Next, model #3 includes the sticking probability 

  in the actual pumping in ASDEX Upgrade.  

Additionally, it has been observed that in the area below the PSL and nearby the cry-

opump two regions coexist, each with a different collisionality regime (order of magni-

tude) and the observation is independent of the employed sub-divertor model. Thus, the 
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flow pattern is established in a way that the regions between the plasma chamber in the 

sub-divertor and PSL are filled out with particles and those remain in this region. The 

flow that still moves from the divertor dome towards the pump chamber cannot reach this 

region anymore due to the high population of neutrals which increases the particle inter-

action and thus a high-collision region below the PSL is formed. The particles which are 

can cross a certain threshold at ( ) ( ), ,thr thrR Z R Z=  are pumped out with a higher proba-

bility. 
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6 Conclusions  

6.1 Summary 

 To achieve an optimum particle balance and plasma density in tokamaks usually 

one combines fueling and exhaust of particles. During tokamak operation, the particle 

flow in the divertor region influences the divertor dome pressure [12] and the gas through-

put to the torus pumps [11]. This is why predictive modelling of the neutral particle phe-

nomena occurring in the particle exhaust at the divertor is crucial for understanding and 

optimizing the operation of present and future vacuum systems in fusion devices. 

 In the present work, the neutral gas flow of the particle exhaust in different tokamak 

divertors is modelled and simulated by means of the Direct Simulation Monte Carlo 

(DSMC) method. The DSMC method allows to treat the particle transport of mass, mo-

mentum and energy by including neutral–neutral interactions providing an accurate de-

scription of the flow field of the neutral gas. In the context of employing a tool that de-

scribes the neutral gas flow in tokamak sub-divertors, a step-wise approach is 

implemented in this dissertation:  

1. Verification and validation of the DSMC code by applying it to a gas flow in a simple 

geometry. 

2. Benchmark DSMC code against a neutral code for a collisionless flow in JT-60SA 

sub-divertor. 

3. Comparison of collisional and collisionless flow with DSMC: quantification of the 

collisional effects in the macroscopic variables of the gas flow in JT-60SA sub-di-

vertor. 

4. Application of DSMC method to study the gas flow in ITER sub-divertor as a function 

of the backpressure of the pumping duct.  

5. DSMC modelling of gas flow in ASDEX Upgrade: comparison and model validation 

against experimental measurements in the sub-divertor region. 

 In chapter 4 the validation and verification process of the DSMC code have been 

performed by studying rarefied gas flow through a channel of finite length L. The results 

with dsmcFoam have been compared to analytical solutions [88] and to independent 

DSMC results in the literature [24]. Simulations show that the pressure has maximum 

difference between dsmcFoam and theory at the channel entrance. This difference is re-

duced towards the channel outlet. The relative percentage difference lies in the range of 

(0.01, 41) and (0.06, 25) for high- and mid-collisionality regimes, respectively. In all flow 

regimes, the difference between theory and dsmcFoam is less than 10% for positions in 

the channel greater than x = 0.3L. The calculated reduced flow rate for the lowest colli-

sionality regime yields a difference of 10% (coarse mesh) and 2% (fine mesh) between 

the present results and the DSMC calculations in the literature. Thus, the present mesh 
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strategy needs a refinement optimization loop in order to achieve comparable results with 

respect to the simulations obtained with weighted-zone mesh employed in literature [24]. 

Regarding the flow in free-molecular regime it has been observed that the time step var-

iation has the most drastical effect on other macroscopic flow variables. By increasing 

the time step by two orders of magnitude, both the axial velocity and the translational 

temperature show significant deviations from their expected monotonic behavior, which 

is as a direct consequence of violating the condition for decoupling the moving (free-

flight) and collision step in the DSMC method.  

 The dsmcFoam code has been extended to include the sticking coefficient boundary 

condition (BC), which can be applied in pumping surfaces located in the sub-divertor of 

fusion devices. With the new BC and the capability of dsmcFoam to switch on and off its 

collision kernel, new insights of the gas flow in JT-60SA sub-divertor are here reported 

for the first time.  

 In the first part of Chapter 5.1 a detailed comparison of the DSMC simulations with 

the NEUT2D code has been carried out for collisionless flow conditions in JT-60SA sub-

divertor. The velocity profiles of both codes show good agreement (relative difference 

less than 5%) in the region II below the dome and partial agreement near the pumping 

region (difference less than 5% up to 50%). However, at the high-field side (HFS) near 

Gate 2 discrepancies in the temperature are found between codes. NEUT2D calculates a 

colder gas at Gate 2 by a factor of 3 with respect to DSMC, which cannot be justified 

since neutrals enter the domain at Gate 2 with a certain thermal velocity and the pressure 

difference between gates induces a force to the gas, accelerating the gas until Gate 1 is 

reached, where a free-expansion takes place (and thus a cooling process, but in Gate 2). 

The change of velocity and the expected behaviour of a temperature decrease have been 

captured by DSMC. Moreover, DSMC results show a certain degree of non-equilibirum 

of the flow field by looking at the values of the translational and rotational temperatures. 

Although in the expansion region near Gate 1 in the low-field side (LFS), the temperature 

profiles differ in shape, a relative difference of ~1% up to 35% between NEUT2D and 

DSMC is found.  

 The analyses in JT-60SA confirm that the inclusion of collisions plays a significant 

role for the transport mechanism and the flow development in the sub-divertor. First, a 

sensitivity study is performed by only changing the inlet pressure at Gate 2. The main 

goal was to compare the analytical expression of the collisional frequency with the DSMC 

analyses. A relative difference between the analytical expression and DSMC of less than 

1% is found across the domain. The sensitivity analysis closes with the comparison be-

tween binary collision models. A major outcome has to do with the fact that for regions 

in the sub-divertor with values of T/Tref > 1 and T/Tref ≫ 1 the hard sphere modelling 

overestimates the number of collisions relative to the VHS model, whereas the Maxwell 

model understimates the collision frequency relative to VHS. 
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 By means of DSMC simulations, deviations in the pressure of 20% and 40% be-

tween a collisionless and a collisional conditions are obtained for the Scenario #2 [91]. 

Moreover, the temperature flow field also is affected by the inclusion of collisions, par-

ticularly near both inlets of the sub-divertor where a relative difference between 3% and 

~46% is found. In the region near the pumping surface the difference between collisional 

and collisionless DSMC is found to be less than 5%. The results are first-of-its-kind and 

are of great value for further design works and contribute to the understanding of the sub-

divertor particle flow during JT-60SA operation.  

 Chapter 5.2 presents the neutral gas dynamics as a function of the pressure at the 

entrance of the pumping port in the 2009-design ITER divertor cassette. The level of 

detail of the physical domain together with the modelling with neutral-neutral interactions 

represent a novelty in the field. The pressure increase at the pumping port translates in an 

increase of the gas circulation Γ𝑐𝑖𝑟𝑐 flowing from the sub-divertor region to the main 

chamber. The gas moves towards the main chamber through two passages located in the 

sub-divertor behind the divertor targets and ending at the boundaries number I (inner re-

gion, HFS) and V (outer region, LFS). The modelling shows that for pressures below 1 

Pa at the pumping port, the ratio inner-to-outer fluxes between the two outlet boundaries 

behind the divertor targets ranges 9.2 < ΓI ΓV⁄  < 15.6.  

 At a pressure value of 1 Pa at ITER pumping port is observed that an increase of 

particle flux only at the outlet boundary V (LFS) with no significant change at boundary 

I (HFS). As a consequence, the ratio between these fluxes is reduced to 1.95. The increase 

of flux at the LFS boundary V has been also explained in terms of flow separation. For 

all studied cases an adverse pressure exists along of the pumping port near the wall, es-

tablishing a region with flow reversal. The simulations indicate that the localization of 

flow separation setpoint increases radially towards the pumping port as the pressure at 

the pumping port increases.  

 Chapter 5 finalizes with the modelling of experiments of particle exhaust in 

ASDEX Upgrade (AUG). In contrast to JT-60SA and ITER analyses, here experimental 

data has been employed as boundary conditions for the DSMC modelling. The BCs of 

interest are based on the plasma discharge #31998 and its corresponding particle exhaust 

measurements and parameters. Three models have been proposed to describe the gas flow 

in AUG: model #1 and #2 address specific aspects of the modelling parameters whereas 

model #3 resembles the experimental conditions in AUG.  

 For instance, one major outcome of the AUG gas flow modelling concerns the val-

idation of the sticking probability BC developed for dsmcFoam. This BC has been em-

ployed in the DSMC model #3 with astonishing good results by obtaining the mea-sured 

value of the particle flux (manometer) near the cryogenic pump. Moreover, the analysis 

of the flow collisionality shows that the distribution of the Knudsen number at the LFS is 

strongly affected by the different pumping conditions. Model #3 shows that a wide range 
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of collisionality regimes across the pump chamber is found, the Knudsen number at the 

pump chamber has mainly 2 different Kn-regions covering the interval 10-3 to 1, i.e. slip-

flow and transition collisional regimes coexist at the LFS. 

 The addressed sensitivities in model #1 and #2 of AUG have shed light onto de-

pendencies among sub-divertor parameters, which are known to be of relevance in di-

vertor operation control [99]. As second major outcome of the AUG analysis regards the 

modification of the sticking probability value at the cryopump. The sensitivity analysis 

on the sticking probability shows that its value mainly affects the particle fluxes and pres-

sure distribution around the pump chamber (LFS) and it barely influences the flow field 

at the HFS region. This effect has been observed in the ITER analyses as well. Model #1 

shows that the pressure distribution around the cryopump results from a combination of 

sticking probability and gas particles coming from the LFS.  

 A key message of the present dissertation has been to demonstrate the ability of the 

DSMC method to describe neutral gas transport in tokamak sub-divertors. Most of the 

objectives presented in Chapter 1.3 have been addressed with a certain level of success. 

However, there are still discrepancies in the modelling, which suggests that important 

aspects are missing in the current assumptions or refinements of the existing models are 

needed. These open issues and further improvements on the present approach are the sub-

ject of the next section. 

6.2 Outlook 

 Discrepancies in the flow speed and temperature profiles between DSMC and 

NEUT2D in collisionless flow conditions are observed in the present work. To tackle this, 

modification of the cell distribution across the pumping region shall be performed. This 

can be done by employing a mesh strategy that is based on the profile of the velocity flow 

field. The focus should be given at the region where the maximum of the profiles is found. 

The cold region near Gate 2 shall be explained in terms of the verification of the boundary 

conditions. As second option, further simplifications on the model can be done by re-

stricting the degrees of freedom (DoF) to translational modes in DSMC in order to ease 

the comparison. Since the rotational DoF become more relevance for high temperatures 

or expansions at the entrance/outlet regions, as second step, a direct comparison between 

approaches including both translational and rotational modes.  

 Independent of the employed model in ASDEX Upgrade (AUG), the particle fluxes 

at AUG’s HFS calculated with DSMC, namely at F19 and F20, show a clear discrepancy: 

factor of 10 lower than the experimental observations. As possible routes to fix this, the 

following actions are proposed: 

i.  Particle-wall interaction model in AUG. Assuming that the employed pressure 

boundary condition at the HFS holds and no extra particle sources are placed, a 
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first path involves the exploration of the role of the particle temperature after 

reflection.  

• Since the diffuse-reflection depends solely on the wall temperature as pa-

rameter, it is suggested a sensitivity analysis based on the variation of the 

reflected temperature of the neutrals. Typically, the temperature of the 

neutrals is not measured in the sub-divertor during experiments and there-

fore, data is scarce in the literature in order to validate this hypothesis. 

However, a correlation can be developed for the particular experiment of 

interest.  

 

  A second possible path to follow is to select an alternative gas-surface inter-

action to the diffuse reflection with full accommodation employed throughout 

this dissertation. A working hypothesis may also rely on the fact that: 

• The particles are allowed to have two accomodation coefficients after 

reflection, i.e. a normal and a tangential to the wall-surface. In this case, 

the CLL model, introduced in section 3.4 of chapter 3, can be applied. 

From the implementation perspective, dsmcFoam code release, such as 

the one presented in [100], includes already this interaction model. Ad-

justments of the model can be based on experimental observations [74].  

• Alternatively, the particles can be reflected from the walls as function of 

their incident energy before colliding with the wall. This involves previ-

ous knowledge of both the particle incident velocity (via experimental 

data or with an ansatz) and a model involving the gas-surface interaction 

database as a function of such incident energy. Scattering models pre-

sented in [101] are compared to experiments of monoenergetic beams of 

atoms scattering from clean surfaces. The energy accommodation coeffi-

cients boundary condition can be implemented in dsmcFoam as part of 

the gas-surface interactions library based on the relations between se-

lected working gases and surfaces reported in [101] and the references 

therein. 

 

ii.  Interpretation of the fluxes relate to neutrals at SOL and not only the sub-

divertor for AUG. Flow paths between the divertor cassettes and between target 

slits, allow particle flow between main chamber and sub-divertor, resulting in 

additional particle sources in the sub-divertor at that particular point. The exper-

imental observations of a vertical offset of the x-point suggests that particles near 

the strike point in the main chamber interact with the manometers. 

Futher improvements. The following points have not been addressed in the present work 

and are necessary to enrich the physics of the neutral transport modelling in fusion sub-

divertors with DSMC: 
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1. Multi-species analysis with reaction physics. 

2. Coupling with a plasma solver. 

3. Extension to 3D-geometries to address asymmetrical conditions in the sub-divertor. 

 The nature of the divertor dynamics involves not only one type of particle as main 

component of the gas flow, but many. Thus, the inclusion of other species in the simula-

tions will enrich the physics in the modelling. In this context, recent work on describing 

the JET sub-divertor flow by considering a binary mixture has been performed [102]. 

Upon available information of molar concentrations, the use of multi-species in the 

DSMC should be considered as a standard way of modelling sub-divertor flows. 

 On the other hand, interactions such as dissociation and recombination between 

species as well as particle-surface chemistry should be included in the modelling. The 

former is a module in dsmcFoam that has been developed for applications to external and 

hypersonic flows [103]. The module activation is straightforward and only the desired 

interactions should be declared as an input in the DSMC simulation. The module plays a 

key role in the description of the gas in the dome region at the sub-divertor inlets, since 

for high-energetic particles (> 1000 K) one needs to include, additionally to the transla-

tional mode, also the vibrational and rotational modes in the particle collisions.  

 The workflow presented here has served as the foundation for establishing, in a 

self-consistent manner, the simulation of the particle exhaust by manually coupling a 

DSMC solver and the SOLPS plasma edge code [104] until convergence was achieved. 

The self-consistent coupling is of course highly desirable in order to update the sub-di-

vertor input at each time step. Further work regarding automation is needed as well as 

code development focusing on the data transfer between domains DSMC and the plasma 

solver at each time step.  

 

 The extension of the present workflow from a two- to a three-dimensional flow 

domain should be done. This is due to the 3D nature of the particle exhaust in fusion 

devices. To apply the DSMC criteria: Δ𝑥 < 𝜆 and Δ𝑡 < 𝜏coll is not the problem, but to 

define a strategy to wisely choose those parameters. One option is to employ Adaptive 

Mesh Refinement strategies [105]. This allows to optimize the computational grid (ite-

rative process during running time) by finding the max. and min. of the mean-free path 

and adjusting the mesh size accordingly. The use of clusters and super computers could 

overcome the computational efforts, but still the DSMC simulations should be planned 

with double care in order to optimize the simulation time.  

 

 More detailed analysis of the interaction between the sub-divertor flows and the 

SOL should be performed. For instance, this could have a great impact in the understand-

ing of ASDEX Upgrade observations presented in this work. The inter-cassette gaps as 

well as the different inlet and outlet boundaries (HFS, LFS), such as bypasses or slots, 
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seem to play a crucial role in the development of the neutral particle dynamics. Particu-

larly at the HFS, DSMC simulations suggest that the difference between simulations and 

experiment to do with a possible extra source of neutrals in this region (recirculation of 

neutrals through toroidal slits). The complexity of the modelling is of course increased 

since one needs to make use of the 3-dimensional calculation and a coupling with a 2D/3D 

plasma edge code. 
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8 Appendix 

Appendix A Survey of gas kinetic theory 

Consider a system consisting of neutral gas with different species. In the kinetic approach, 

all the necessary information is contained in the so-called distribution function 𝑓𝛼(r, v, 𝑡) 

of neutrals (𝛼 = 1,2, … , 𝑛) where 

 ( ) 3 3, ,r vf t d rd v =
number of particles in 

3 3d rd v  at time t (A.1) 

 The goal of this survey is to find the expression that describes dynamics of the 

particles and the rationale of its construction.  

 First, since the distribution function depends on the spatial coordinates, velocity 

and time, the total change in time of the distribution function of a particle of type 𝛼 reads: 

 d d
 +

1
+ .

v

r v

r v

v F

df f f f

dt t dt dt

f
f f

t m

  
= +

  

 
=  +  

  


   


 



. 

(A.2) 

The change of the vector position r respect to time is the velocity v and the acceleration 

in the third term is replaced by the sum of all forces acting on the particle 𝛼 of interest 

using the equation of motion of Newtons law. The following notation is also employed 

for the spatial derivative 𝜕 𝜕r⁄ ≡ ∇= (𝜕 𝜕𝑥⁄ , 𝜕 𝜕𝑦, 𝜕 𝜕𝑧⁄⁄ ), which acts in the real space 

(x, y, z), whereas the velocity derivate 𝜕 𝜕v⁄ ≡ ∇v= (𝜕 𝜕v𝑥⁄ , 𝜕 𝜕v𝑦⁄ , 𝜕 𝜕v𝑧⁄ ) operates in 

the velocity space (v𝑥, v𝑦, v𝑧). 

 The time evolution of the distribution function of a single particle is also affected 

by the collisions occurring in the volume 𝑑3𝑟  of the particle 𝛼 with other partiles in the 

system and thus Eq. (A.2) reads: 

 1
+

v
v F

coll

f f
f f

t m t

   
 +  =   

   
 

 



. 
(A.3) 

The term on the right-hand side of the equation is called the collision term or operator 

and has two main contributions, the gain term, which corresponds to the particles that 

enter the volume element 𝑑3𝑟  after a collision and the loss term describing the particles 

that are scattered away from the same 3-dimensional volume: 
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coll gain loss

f f f

t t t

       
= −     

       

  
, 

(A.4) 

 Before introducing the gain and loss terms, a few useful results are presented. First, 

the integration of Eq. (A.1) over the velocity leads us to the following result: 

 ( ) ( ) 3, , ,r r v
v

n t f t d v   , 
(A.5) 

which tells us the number of particles of specie 𝛼 per unit volume. 

 By multiplying the distribution function with the velocity v of a particle, one obtains 

the average velocity of particle 𝛼 

 ( ) ( ) 3, , ,V v r v r v
v

t f t d v= =    . 
(A.6) 

Regarding the gain and loss terms: 

• The collision takes place between particle 𝛼 and particle i. 

• Particle 𝛼 changes its velocity after collision from v to v′ 

• Particle i changes its velocity from v𝒊 to v𝒊′ 

• Assume that the initial velocities of both particles are uncorrelated before they en-

counter each other: 

 ( ) ( )3 3, ,  , ,ir v r v if t d v f t d v
. (A.7) 

• The scattering process is described by the product of the cross-section and the cor-

responding change of velocity 𝑑3𝑣: 𝜎′(𝑣, 𝑣𝑖 → 𝑣′, 𝑣𝑖)𝑑3𝑣𝑑3𝑣𝑖′ 

• The total contribution after collision is obtained by looking at the product of the 

above scattering probability with the relative flux of particle 𝛼, i.e. 

|𝑣 − 𝑣𝑖|𝑓(𝑟, 𝑣, 𝑡)𝑑3𝑣 and the particle-i that produce that scattering 

𝑓(𝑟, 𝑣𝑖 , 𝑡)𝑑3𝑟𝑑3𝑣𝑖 

• At the end, one needs to sum over all possible initial velocities 𝑣𝑖 of particle-i which 

particle 𝛼 can collide and also an additional sum over all possible final velocities 

v′ and v𝒊′, which yields to: 
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(A.8) 

• For the loss term, one uses the concept of inverse collisions resulting from the in-

variance of the equation of motion under the transformations 𝑡 → −𝑡 and 𝑟 → −𝑟, 

thus one has: 

o Now the particle 𝛼 is approaching the particle i. 

o The initial and final states are exchanged, which means that the particles 

collide initially with v′ and v𝒊′ and emerge from the collision with veloci-

ties v and v𝒊. 

o Repeat procedure as before with the cross-section and the product with the 

relative flux. 

o After summing over all initial velocities previous to the collision and the 

sum over all possible post-collision velocities 
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

 

(A.9) 

By substracting Eq (A.9) from Eq. (A.8), introducing the inverse collision concept in the 

loss term as 𝜎′(v', v𝒊' → v, v𝒊) = 𝜎′(v, v𝒊 → v', v𝒊' ), defining v𝒓𝒆𝒍 = v − v𝒊 and v𝒓𝒆𝒍' =

v' − v𝒊', it is obtained 

 
  ( ) 3 3 3

' '

' ' ' , ', ' ' ',

i i

i i rel i i i i

coll v v v

f
f f f f d v d v d v

t


  

 
= − → 

 
   v v v v v . 

(A.10) 

where the terms inside the square brackets are defined as 
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(A.11) 

i.e. pre- and post-collision distribution functions of particles of type 𝛼 and type i. 

 The Boltzmann equation can be written as  

 

 
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(A.1) 

Appendix B Maxwellian distribution 

Here the deduction of the mean, most probable and root mean squared (rms) velocity of 

a particle in equilibrium is presented. The mean value of a variable or observable A, reads 

to: 

 

 ( ) ( )

2
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0 0 0

, , , ,
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r  r v

 

 

(B.1) 

Here, feq is the Maxwell-Boltzmann distribution function and C the normalization con-

stant. Also, it has been introduced the variable 𝛽 = 1 𝑘𝐵𝑇⁄ . The mean velocity of a par-

ticle is then obtained by substituting in the above equation the velocity v instead of A, 

yielding: 
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(B.2) 

 By introducing the variable 𝑥 = 𝛽 𝑚𝑣2 2⁄  and its differential 𝑑𝑥 = 𝛽𝑚𝑣 𝑑𝑣, the 

mean velocity is obtained: 
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(B.3) 

 

 The most probable velocity is defined as the maximum of the probability density 

function (Maxwell-Boltzmann): 
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(B.4) 

by rearranging the terms inside the bracket, the expression reads, 
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(B.5) 

 

 The root mean square expression of the velocity is found by calculating: 
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(B.6) 

 The integral can be obtained by recalling that  
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(B.7) 

Therefore, 
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(B.8) 

Appendix C NEUT2D and DSMC node sub-in-

dexing 

 

 This appendix presents additional material regarding the benchmark between 

NEUT2D and dsmcFoam. In chapter 5.1.2 the velocity profiles in region II have been 

presented, where only sampled points of region below the JT-60SA divertor dome (near 

Gate 1 at the low-field side) were shown. In this section, the velocity profiles across the 

domain are reported. At the beginning of chapter 5.1.2 four regions of the sub-divertor 

domain of JT-60SA are defined, where a sub-indexing is established in order to ease the 

comparison between both codes.  

 

The following dummy variables, which are employed during post-processing, are here 

recalled: (i, j) in region I, region II (k, l), region III (q, r) and finally in region IV (k, l). 

Only the regions and their corresponding sub-indexes, which have not been presented in 

chapter 5.1.2, are here shown. Region I is defined along the domain at the high-field side 

of the sub-divertor where Gate 2 is located, see Figure 8.1(a) and (b). In Figure 8.2 the 

node indexing of region II is presented. 
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Figure 8.1 (a) and (b): Region I of the sub-divertor JT-60SA. Here the nodes are given a sub-

indexing (i, j). The sub-index i can take values from 1 to 20, whereas the j-index takes the values 

between 1 and 10. 

 

(b) 

(a) 
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Figure 8.2 Region II of the sub-divertor JT-60SA. Here the nodes are given a sub-indexing (k, l). 

(a) For the first part of the domain, the sub-index k takes the values from 1 to 8, whereas in (b) 

the k takes the values from 9 to 16. In region II the l-index takes the values between 1 and 13. 

  

(a) 

(b) 
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Complementary results of the benchmark between DSMC and NEUT2D  

 The DSMC simulations show that the gas flow speed in region I (for i-index > 9) 

has a maximum close to Z’ = -0.3 m with a parabolic-like narrow shape, see top-right and 

bottom-left plots of Figure 8.3(b). As the gas moves towards region II, the velocity profile 

flattens out and thus widening its parabolic shape as depicted in the bottom-right plot of 

Figure 8.3(b).  

 On the other hand, in region I NEUT2D calculates velocity profiles which are sim-

ilar to DSMC, i.e. monotonic increase of the velocity until a maximum value is reached. 

However, systematically DSMC predicts higher values of the flow speed in most of the 

points in region I. The differences between approaches increases with the i-index until 

the threshold to region II, at this point and across region II both codes predict quantitively 

the same flow speed. The good agreement can be observed in Figure 8.4 and Figure 8.5, 

where the flow speed profile is evaluated at each node (k, l) at constant k-value in region 

II.  
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Figure 8.3 Results of the comparison between flow speeds calculated with NEUT2D and DSMC 

(without collisions). (a) Flow speed profile evaluated at each node (i, j). (b) Region I of the sub-

divertor JT-60SA. Here the nodes are given a sub-indexing (i, j). The sub-index i can take values 

from 9 to 20, whereas the j-index takes the values between 1 and 12. 
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Figure 8.4 Results of the comparison between flow speeds calculated with NEUT2D and DSMC 

(without collisions). (a) Flow speed profile evaluated at each node (k, l) at constant k-value in 

region II. (b) Region II of the sub-divertor JT-60SA. Here the nodes are given a sub-indexing (k, 

l). The sub-index k can take values from 1 to 16, whereas the l-index takes the values between 1 

and 13. 
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Figure 8.5 Results of the comparison between flow speeds calculated with NEUT2D and DSMC 

(without collisions). (a) Flow speed profile evaluated at each node (k, l) at constant k-value in 

region II. (b) Region II of the sub-divertor JT-60SA. Here the nodes are given a sub-indexing (k, 

l). The sub-index k can take values from 1 to 16, whereas the l-index takes the values between 1 

and 13. Here the pairs (k, l) are shown for values of l between 9 and 16. 
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Appendix D ASDEX Upgrade experimental re-

sults: different cryopump operational modes 

 

In Figure 8.6 it is shown a poloidal cross section of an AUG section where the port that 

connects the main vessel with the turbomolecular pumps (TMP) is included. The main 

operational AUG parameters are also given in Figure 8.6. The machine status here re-

ferred is the one of 2015-2016. 

 

Figure 8.6 Poloidal cross section of the ASDEX-Upgrade tokamak as for the experimental cam-

paign 2014-2016. The vacuum vessel is a torus and extends toroidally into and out of the page. A 

Single Null (SN) magnetic configuration (X-point at the lower divertor) is shown. Upper and 

lower passive stability loop (PSL) elements are indicated and serve for MHD control (resistive 

modes stabilization). The full tungsten divertor and the dome are indicated. The area/volume be-

low the divertor structures will be here referred as sub-divertor. The region near the cryogenic 

pump (blue rhomboid) is referred as the pumping chamber. Image adapted from [106] and table 

from [107]. 

 ASDEX Upgrade is a medium size tokamak located at the Max Planck Institute for 
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Plasma Physics (IPP) in Garching near Munich, Germany. AUG plays a crucial role in 

understanding plasma and machine performance towards ITER and DEMO devices since 

AUG has ITER-like machine conditions with a full tungsten wall [108], divertor [109] as 

well as its unique pumping speed control, heating and fueling systems. The exploitation 

of these unique characteristics in AUG allow the investigation of relevant questions for 

future divertor tokamak scenarios with focus in design and optimization [110]. 

 In the following sections an overview is given of the experiments performed in 

ASDEX Upgrade (AUG) in the framework of the experimental campaign coordinated by 

the author in 2015. First a description of the vacuum, fueling and heating systems is pre-

sented. An introduction to the relevant diagnostics employed in the experimental setup as 

well as the experimental setup of the plasma discharges and key results are here presented.  

ASDEX Upgrade fuelling, heating & pumping systems 

 For future long-pulse reactor operation the pumping of neutral gas is an essential 

feature that any fusion device should handle. Additional to the pumping, the fueling and 

heating systems in AUG provide the necessary gas injection and power to sustain and 

control tokamak conditions for standard L-mode operation and to achieve the so-called 

H-mode regime. The latter present better plasma confinement and thus, it is suitable re-

gime for reactor scenarios. Moreover, AUG is equipped with a vast set of diagnostics for 

further research on edge, SOL, core and divertor physics.  

Vacuum and pumping systems. ASDEX Upgrade is equipped with 11 TMPs con-

nected to the divertor chamber nearly equally distributed along the 16 sectors of AUG. 

Each TMP has a nominal pumping speed of 3.5 m3s-1 [111], however due to the length of 

the pumping port the effective pumping speed in the vessel can be reduced to 1 m3s-1. The 

overall deuterium pumping speed of the TMPs is 3 1

TMP 13 m sS −= [107]. In addition to 

this, a toroidally symmetric cryogenic pump with a total deuterium pumping speed of 
3 1

cryo 100 m sS −= is placed in the pump chamber below the outer divertor target (below 

the lower PSL). The functional dependence of the pumping speed of the cryopump and 

TMPs with the pressure has been determined experimentally and a linear and quadratic 

dependences have been found, respectively [108]. The outer area of the cryopump, which 

faces the lower PSL and the ICRH limiter as depicted in Figure 8.6, is cooled with liquid 

nitrogen and is kept to 80 K through the discharges. A chevron baffle is the permeable 

part of the cryogenic pump and serves as shielding of the inner part of the pump from 

high energetic plasma particles. As mentioned before, not only the tokamak pumping re-

fers to a solely technical issue but also links the particle transport in the SOL and divertor 

plasma. In this framework, ASDEX Upgrade offers the possibility to establish plasma 

discharges with cryogenic pump under full pumping capabilities, one third or completely 

switched off cryopump (acting only the 11 TMPs as pumping actuator). For the full and 

one-third of pumping capabilities the 11 TMPs are always working. 
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Fuelling and heating systems. Neutral gas fuelling in ASDEX Upgrade is performed 

via fast-response piezo electric valves. The valves are connected to a gas matrix which 

allows the injection in different toroidal and poloidal locations as shown in Figure 8.7. 

 

 

Figure 8.7 Gas inlet system. Fast response system of piezo electric valves located (a) toroidally 

and (b) poloidally is connected to a gas matrix. Additionally, in (a) the top-down view from AUG 

with the AUG sector numbers is indicated. In this work, mainly the sub-divertor inlets and the 

valves at the A port (mid plane) were employed for the gas injection during the plasma discharges. 

Images adapted from [112]. 

 Different gas circuits in the matrix allow the injection of light and noble gases such 

as H2/D2, He, Ne, N2 and Kr where the mass flow through the valves is controlled via a 

feedback-control loop. Figure 8.7(b) shows the different gas valves distributed poloidally 

in AUG that will be referred later on in this chapter in the experimental setup description. 

The gas flux can either be programmed in a feed-forward mode with a prescribed wave-

form, or can be feedback-controlled on other plasma parameters, i.e. the line averaged 

density or the divertor neutral gas pressure. 

 ASDEX Upgrade heating systems include the ohmic and the external heatings: 

NBI, ICRH and ECRH systems. The ohmic heating is intrinsic in a tokamak due to the 

plasma current whereas the latter systems provide energy power to the plasma externally. 

For instance, a total of eight sources (each with a power of 2.5 MW at 95 kV1) make the 

NBI system. The sources are assembled in two boxes which are located diametrically 

opposite (mid-plane in sectors 7 and 15, see Figure 8.7(a) and Figure 8.8. Furthermore, 

 
1 This number corresponds to the acceleration voltage in the NBI. The voltage can be varied (reduced) in order to 

achieve different power.  
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in order to specifically provide energy to the ions and electrons, ICR and ECR heating 

systems are also available in AUG. The ICRH antennas shown in Figure 8.8 are available 

with a total power up to 6 MW with a wave frequency in the resonant range for 
c,i  = 30–

40 MHz. Last but not least, eight gyrotrons make up the ECRH system in AUG and they 

deposit their power (ca. 500 kW each) to the electrons in the plasma by coupling the 

emitted microwave of the gyrotron with the electrons at a frequency of 140 GHz or 105 

GHz.  

 

Figure 8.8 ASDEX Upgrade external heating systems: Neutral Beam Injection (NBI; NBI-port 

shown in red), ion cyclotron resonant heating (ICRH; antenna is shown in yellow) and electron 

cyclotron resonant heating (ECRH). Additionally, the outer divertor plates (green), upper and 

lower PSL covers (blue & orange) and the A-port are indicated. The importance of the A-port 

relies on the gas injection at the mid-plane during discharges. 

ASDEX Upgrade diagnostics 

 

The precise characterization of the core and boundary plasma in AUG is the result of huge 

experimental efforts throughout the machine operation since the past 25 years. Here for 

modelling purposes, only the most relevant diagnostics employed in the plasma dis-

charges, namely the neutral gas manometer. The divertor spectroscopy diagnostics are 

also described for completness.  

 

Ionization Gauges. Neutral gas measurements are performed in ASDEX Upgrade by 

ionization gauges [113], [114] shown in Figure 8.9. The ionization gauges are distributed 

along the torus in the main chamber, in the sub-divertor region below the dome, upper 

part of the vessel, behind lower and upper PSL, in the pump chamber as well as in the so-

called high field side (HFS) behind the inner divertor plates. Neutral gas flow enters the 

gauges through an entrance slit, then it is ionized by electron impact and the induced ion 

current is then measured [115]. From the signals the neutral gas flux is obtained being a 

measurement absolutely calibrated to atomic deuterium flux.  
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Figure 8.9 Ionization gauges locations in ASDEX Upgrade. (a) Poloidal locations of the gauges 

(red): The pin of the symbols indicates the orientation of the gauge entrance (pinhole) where the 

neutral gas flux  is able to pass in order to perform the measurement. Additionally, the interfer-

ometer chords H-1 and H-5 that measure the integrated line electron density ne are depicted in 

green and blue lines, respectively. (b)-(c) Pump chamber ionization gauges located in two oppo-

site locations in the torus. Image in (b) is adapted from [116]. 

 For thermalized deuterium atoms in the sub-divertor region, equilibrium conditions 

are met and thus equations (3.38) and (3.39) can be utilized in order to relate the particle 

flux   with the neutral density and the average molecular velocity of the gas, i.e. 

2

81
D 4

0.5 Bk T

m
n  = . Here the prefactor 0.5 takes into account the conversion of atomic 

(calibrated measurement) to molecular flux (main component of the sub-divertor gas spe-

cie). Nevertheless, the temperature is not a parameter that is usually known, making a 

bit problematic the conversion into pressure or density from the value of the particle flux. 

The ionization gauges have been tested under strong magnetic fields showing good per-

formance up to values of 6 T and pressures below 15 Pa [113], where saturation is 

reached. In this work, the term manometer, pressure or ionization gauge are used indis-

tinctively, unless otherwise stated. 
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Divertor spectroscopy. As mentioned before coexistence of neutral particles, ions and 

electrons in the plasma periphery in a to-

kamak takes place and via spectroscopic 

methods relevant quantities of interest of 

SOL dynamics can be measured. For in-

stance, the Stark Broadening Diagnostic 

(SBD) can measure the electron density 

in the divertor volume via the Stark 

broadening of the Balmer lines [117].  

 

 In order to see the splitting of the 

atomic spectral lines of an atom, under 

the action of external electric fields, the 

atom should be first polarized. Then, the 

interaction of the resulting dipole mo-

ment with the external electric field will 

split the energy levels, this is known as 

the linear Stark effect. The allowed tran-

sitions of energy levels are described by 

the Balmer line series (mathematical re-

lation between frequencies and main 

quantum numbers resulting from the so-

lution of the Schrödinger equation) 

which constrains the frequencies (wave-

lengths) that can be measured in an spec-

trometer. However, the Stark effect of an emitter (atom) is also influenced by the sur-

rounding particles (atoms, ions, electrons). The structure of the spectral lines is affected 

by collisional effects that changes the life-time of transitions and a broadening occurs by 

the thermal motion of the particles adding a Doppler effect. Thus, the broadening of an 

spectral line is a consequence of different physical mechanisms and the combination of 

both leads to the Stark broadening. This has been taken into account in the spectroscopic 

measurement of the SBD in ASDEX Upgrade. The reader is referred to [118] for a com-

plete description of the diagnostic, theoretical background, development and benchmark 

with other diagnostics, such as the aforementioned ionization gauges. The different line 

of sight (SOL) of the spectroscopic measurements are shown in Figure 8.10. The spectral 

information in the plasma periphery has provided further inside of different plasma states 

in the so-called attach or detach plasma conditions in various tokamaks like AUG and 

JET [116], [119]. 

Experiments on particle exhaust in ASDEX Upgrade 

Figure 8.10 Divertor spectroscopy line of sight 

(LOS) employed in ASDEX Upgrade for the Stark 

Broadening Diagnostic. 
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The following results are part of the experimental campaign performed in ASDEX Up-

grade (AUG), where the author of this dissertation has actively participated as experiment 

coordinator. Regarding the experiments in AUG: 

• The machine operation during the plasma discharges has been performed by Prof. 

Dr. Arne Kallenbach. This includes the L- and H-modes with different pumping 

schemes. 

• The vacuum systems operation and wall conditioning have been performed by Dr. 

Volker Rohde. 

• The manometers and spectroscopic measurements have been performed and post-

processed before storing them in AUG database by Dr. Andreas Scarabosio and 

Dr. Stefen Potzel, respectively.  

The author of this dissertation has participated directly with the AUG team during the 

plasma discharge planning including the definition of the pumping schemes. During the 

experiments and as part of the experiment coordination, the author has accessed the AUG 

experimental data of the manometers in order to extract the corresponding boundary con-

ditions for the DSMC modelling. The time traces of the plasma discharge are also here 

shown, since the particle pumping shall be put in context of the main plasma parameters. 

Discharges setup 

 The strategy on defining the present plasma discharges is based on developing a 

series of simple L- and H-mode scenarios in attached conditions. The parameter in the 

plasma scenarios is defined via the variable pumping capabilities in ASDEX Upgrade, 

namely that the cryogenic pumping of the vessel is run in its full, one-third and zero cry-

ogenic pumping speed.  

 Table 8.1 summarizes the characteristics of the present discharges. All the H-mode 

discharges are characterized by a single null divertor configuration (SN) with a lower 

triangularity of 0.47 = , a plasma current of 0.8pI =  MA and a toroidal magnetic field of 

2.5tB = −  T set a safety factor at the 95% of the flux surfaces of 
95 5.18q = . A rather big 

clearance between the plasma and the upper part of the vessel is needed for a X-point 

displacement. This fact will be used to displace the X-point in order to see an effect on 

the sub-divertor flows. In all the set of discharges the electron density in the core is main-

tained to 19 37 10 men −=   with a total external heating power of 7.6 MW, leading to a 

Greenwald limit of GW/ ~ 0.6n n 2. The deuterium gas puffing is done via the divertor 

 
2 Magnetic confinement experiments cannot operate over an arbitrary range of plasma densities. Together with the 

MHD limitations, by exceeding this limit in tokamaks the discharge can terminate in a disruption. The Greenwald line 

average density reads 
2

GW pn I a=  in units of 1020 m-3, the plasma current Ip in MA and the minor radius a in m.  



Appendix 

195 

valves DuB (see Fig. 8.11) in order to achieve an homogeneous puffing distribution along 

the torus flows.  

Table 8.1 Shot number parameters corresponding to the series of pumping studies. 

Shot # Behavior Plasma Pumping scheme 

31991 

L D 

0 

31993 1/3 

31995 full 

31992 

H D 

0 

31994 1/3 

31998 full 

 

 For steady state conditions, for times t > 2 s, the condition where the gas puffed into 

the chamber equals the pumped-out gas is achieved. In the case of the L-mode series, they 

were performed in lower SN divertor configuration with a lower triangularity of 0.41, a 

plasma current of Ip = 0.8 MA, a toroidal magnetic field of Bt = -2.5 T and a safety factor 

of 
95 4.92q = . The plasma density and total heating power were 19 35.67 10 men −=   and 

0.569 MW, respectively. 

 The time traces of the plasma discharge H-mode with full cryogenic pumping are 

shown in Figure 8.11. The puffing flat top was reached at 1.7 s for the full-cryo case, 

whereas in the 1/3 and 0-cases the flat top is reached at ~ 2.5 s. This is important in order 

to determine the values to be use in the DSMC simulations. 
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Figure 8.11 Predictive particle exhaust experiments in AUG. (a) Superimposed to the CAD model 

of AUG vessel a camera image from the discharge 31998 is shown. (b) The pumping setup for 

the set of H-modes discharges: full-, 1/3- and no-cryopumping is depicted (top-down view). Ad-

ditionally, the corresponding gas puffing to maintain the same density in the plasma for the H-

mode discharges is also presented. (c) Time traces of the H-mode with full cryogenic pumping 

are shown. 

  

 During the flat top phase of the discharges the X-point height was increased by 

Δ𝑧 =  +1 cm for Δ𝑡 =  1 s from 𝑡0 =  4 s to 𝑡𝑓 =  5 s and then brought the X-point again 

to its initial position for the rest of the discharge. The change of the vertical position of 

the X-point can be observed in Figure 8.12. This allowed the measurement of the sub-

divertor flow changes behind the targets in the divertor, pump as well as in the main 

chamber.  



Appendix 

197 

 

Figure 8.12 In this plot the magnetic equilibrium of the plasma discharge #31994 is shown. A 

displacement of +1 cm in the vertical direction is pre-programmed during the discharge at t = 4 s, 

lasting 1 second, before the X-point is brought back to its initial position.  

 

Summary 

Sub-divertor flows have been subject of study in ASDEX Upgrade for a set of L- and H-

mode discharges. For each set of discharges, the pumping scheme has been varied by 

operating the machine with full, 1/3 and no cryogenic pumping (only turbomolecular 

pump active). The experiments for L- and H-mode show: 

• Neutral fluxes in the main chamber and pump chamber are correlated to the local 

pumping. In the framework of the machine operation with 1/3-cryopump the sym-

metry in the main chamber fluxes is broken. As a result, it is observed that in the 

sectors where the cryopump was not active, the fluxes behave as the case of no-

cryopump configuration. On the other hand, in sectors where the 1/3 cryopump 

was active, the time traces of the fluxes in the main chamber near the pump show 

no differences with the fluxes at same location in main chamber with full cry-

opumping. This is an unexpected result. 

 

• The above described is independent of the confinement mode, i.e. the observations 

hold for L and H confinement mode. The asymmetry in the main chamber in non-
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symmetric pumping configurations will lead to different compression ratio 

div main  , thus care must be taken when estimating this figure of merit of any 

tokamak divertor. Symmetrical pumping configurations lead to no substantial var-

iations in the sub-divertor fluxes. 

 

• Assuming steady state conditions, i.e. the puffed gas is pumped out, the particle 

rate at the pump was expressed by an effective pumping area 
pumpA  and thus, the 

actual reduction of pumping speed could be estimated (relative to the full cry-

opump scenario). For the L-mode with 1/ 3-cryo actually a reduction of 50% rel-

ative to the full cryopump scenario was estimated whereas in the H-mode dis-

charges, a ratio of 0.33 is found between the full and 1/3-cryopumping scenarios.  

 

• During the flattop phase of the discharges, the X-point was shifted upwards by + 

1 cm. The effect of X-point displacement is depicted in Figure 8.12 (observation 

holds for the 3 different pumping schemes and confinement mode).  

 

• The neutral particle fluxes in the divertor below the dome remained constant dur-

ing the X-point movement. The local recycling on both targets on the other hand, 

reacts with an increase on the fluxes of a factor of ~ 1.2 and ~ 2.5 on the inner and 

outer targets, respectively. The fluxes in the pump chamber barely react to the X-

point location, thus the dynamics are strongly dominated by the pumping in that 

region. However, the manometers at pointing towards the divertor tiles, F08 (LFS) 

and F10 (HFS) do show a variation of the signal during the X-point displacemtent, 

this can be observed in time traces of neutral fluxes in Figure 8.13. 

 

• The neutral gas flow below the dome in the divertor, main chamber and pumping 

chamber in sectors 13 and 15 shares a common neutral behavior although a dif-

ferent pumping is taking place. This finding gives us an idea on how the sectors 

are interconnected to each other and provides a better idea of the neutral distribu-

tion in the sub-divertor domain and the main chamber.  
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Figure 8.13 Time traces of neutral fluxes in HFS gauges (F18, F19), divertor dome (F03), LFS 

(F08) and pump chamber (F16). The manometer measurements were kindly provided by Dr. An-

dreas Scarabosio. 

 




