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CHAPTER 1

INTRODUCTION

The reduction of global emissions by at least 80% until 2050 requires a large-scale
transformation of current energy systems as generation is shifting from large fossil
power plants to intermittent renewable energy sources (RESs). On the consumer
side, new electric loads such as heat pumps and electric vehicles can help to decar-
bonize the previously fossil-fueled heat and transportation sectors (van Nuffel et al.,
2018). In future sector-coupled energy systems, electricity will therefore be the most
important energy carrier. Therefore, power systems are more and more moving to
the center of attention in low-carbon energy systems. In these energy systems that
mostly rely on renewable power systems, battery energy storage systems (BESSs)
play a vital role to bridge the resulting temporal gap between electricity consumption
and intermittent generation (Weitemeyer et al., 2015).

A power system is a hierarchical system consisting of several aggregation levels as
shown in Figure 1.1. There are two critical aspects for BESSs on these levels: deploy-
ment and operation. When planning the deployment and operation of BESSs, the
different stakeholders and requirements on these levels, regarding, for example, ap-
plication areas or suitable technologies, need to be taken into account. The smallest
unit is a single generator or consumer, e.g., a residential household or a photovoltaic
(PV) panel. On this level, BESSs can store excess generation from local small-scale
RESs or supply consumer loads. On the second level, consumers and generators
are connected within the low and medium voltage distribution grid, e.g., forming
a community, city or industrial zone. Throughout this thesis, I refer to this level
as the connected individual level. Here, BESSs can be deployed to increase local
autarky, to supply loads from RESs cheaper than the wholesale market or to pre-
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vent congestion in sections of the distribution grid. On the high voltage level, power
systems need to ensure the balance of supply and demand and secure grid stability.
On this level, transmission system operators (TSOs) can strategically deploy BESSs
to relieve network sections of congestion or to ensure resource adequacy in times
of unfavourable weather conditions. This may require longer storage durations and
consequently other BESS technologies than short-term storage of RES generation
on the individual level. To increase utilization of these BESSs on all levels, their
capacity can additionally be marketed on wholesale markets.

The differing requirements and operator perspectives on these system levels
need to be taken into account when planning BESS expansion in power systems.
Consequently, in addition to planning the deployment of BESSs, operation strategies
have to be designed for BESSs at all levels of the power grid, according to the
requirements of the respective stakeholders. Depending on the location in the grid
and the role of the storage operator, operational goals may, for example, include the
maximization of revenues, minimization of financial risks, or to ensure grid stability.
Since generation, consumption and price developments are subject to uncertainty
(Hain et al., 2018), storage operators need intelligent, online operation strategies
to achieve these goals. Therefore, well designed strategies and approaches for the
deployment and operation of BESSs on all levels of power systems are crucial for a
successful path towards low-carbon energy systems.

This thesis presents a holistic perspective on BESS deployment on all levels of
(future) low-carbon energy systems. In the first part of the thesis, BESS deployment
is analysed across these different levels and in the second part, corresponding data-
driven operation are designed and evaluated.



Motivation 5

Figure 1.1.: Aggregation levels of power systems

1.1 Motivation
As of 2020, 36.6% or 2.8 TW of globally installed electricity generation capacity

was renewable, consisting of around 46% hydropower, 27% wind power and 25%
solar power (IRENA, 2021). However, only 11.2% of final energy consumption was
covered by renewable generation (REN21, 2021). In the European Union, the “Fit
for 55” plan by the European Commission sets a target of 40% renewable energy
share of gross energy consumption by 2030, almost doubling the current ratio within
8 years (European Commission, 2022). This illustrates the challenge that still lies
ahead regarding the integration of renewable energy generation in currently fossil-
fuel based sectors worldwide. This particularly concerns the electrification of the
heat and transportation sectors, which will result in a steep increase in electricity
demand and will require a large-scale expansion of RESs (van Nuffel et al., 2018). For
Germany, the study “Integrated Energy Transition” by the German Energy Agency
(dena) predicts an annual electricity demand in the range of 837 to 1,156 TWh
in 2050 to reach a 95% reduction in CO2, depending on the degree of electrification
(Bründlinger et al., 2018). This corresponds to an increase in electricity consumption
by 48% to 105% compared to 2021 (Umweltbundesamt, 2022). In this context, the
term “integrated” refers to a holistic consideration of energy systems and the (partial)
integration of the predominantly fossil-fuelled transportation, heat and industrial
sectors into the power system through means of electrification (Bründlinger et al.,
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2018). Therefore, in this thesis, the term integrated energy system refers to a largely
electrified energy system powered by RESs.

The integration of these large amounts of intermittent RES generation will require
substantial flexibility resources, predominantly (battery) energy storage capacity
(Cebulla et al., 2018; Zerrahn and Schill, 2017). Taking the development of rising
electricity demand into account, Ruhnau and Qvist (2021) determine BESS energy
capacity requirements of 59 GWh to achieve a fully renewable power system by
2050 in Germany. In contrast, around 4.5 GWh of BESS capacity were installed in
Germany at the end of 2021, consisting of around 3.2 GWh of residential, 0.2 GWh
of medium-sized and 1.1 GWh of grid-scale BESS capacity (Figure 1.2). These
figures give an idea of the extent of the efforts that still need to be undertaken to
drive the expansion of BESSs to the level needed to support a decarbonized energy
system. The expansion of BESS capacity will be needed on all aggregation levels of
power systems, including small-scale BESSs for households, medium-scale BESSs
for neighborhoods and industry and grid-scale BESSs to support balancing and to
reduce congestion in the distribution grid.

Figure 1.2.: Cumulative installed BESS capacity by storage size and cumulative number
of residential BESS installations in Germany. Own representation based on
data from Tepe et al. (2021), Weniger et al. (2018), Weniger et al. (2021),
Ort et al. (2022), Bundesnetzagentur (2022), ISEA (2019) and EuPD Research
2020 (2020)

Up to date, the expansion of BESSs in Germany has been mainly driven by the
rising number of residential BESS installations on the individual level, as shown
in Figure 1.2. These residential BESSs are usually in the range of 5 to 14 kWh
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of usable energy capacity and connected to the low voltage power grid (Weniger
et al., 2021). Through a regulatory feed-in tariff for PV generation combined with
quickly declining investment costs (Figure 1.3), residential BESSs have become
profitable for homeowners. As a result, at the end of 2021, over 400,000 BESSs
had been installed in German households, constituting over 70% of installed BESS
energy capacity in Germany. Individual, non-expert decision-makers therefore
play a central role in the expansion of BESS capacity, a development that will
likely continue. Weniger et al. (2018) even state that for an “ambitous” climate
protection, 8 million residential PV-coupled BESSs need to be installed by 2050,
which would require every second single family home in Germany to be equipped
with a BESS. This requires policy that engages households and motivates them
to install PV panels and BESS capacity. Energy literacy however, the knowledge
of energy consumption and alternatives, is extremely low amongst residential
households (Brounen et al., 2013). Therefore, tools and methods are needed to
increase awareness of residential decision-makers and facilitate individual household
decision processes.

Figure 1.3.: Cost developments for small-scale BESS by Figgener et al. (2020)

On the level of connected individuals, medium-sized BESSs (i.e., community and
industrial energy storage) can be deployed to integrate decentralized, intermittent
generation to supply decentral energy communities or to shave demand peaks of in-
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dustrial plants. In the research project “Esquire”, for example, two BESSs with 84
and 115 kWh, respectively, have been installed to supply communities with several
multi- and single-family buildings (Knoefel and Herrmann, 2021). On the European
level, the importance of such “citizen energy communities” that engage in energy
generation, distribution, storage or efficiency services has been recognized and em-
phasized in the 2019 Directive on Common Rules for the Internal Market for Elec-
tricity (European Parliament and Council of the European Union, 2019). However,
the very low installed capacity of medium-sized BESSs (see Figure 1.2) demonstrates
that these concepts have not yet emerged beyond pilot project implementations in
Germany. On the same level of the power grid, residential BESSs within a neigh-
borhood that is connected to the distribution grid can be pooled together to form
a (virtual) community BESS. By sharing idle storage capacity within a residential
neighborhood, the utilization of existing residential BESSs can be increased, which
increases the profitability of BESS investments. This approach is however currently
still hindered by regulatory barriers, as increasing self-consumption from PV gen-
eration is only exempt from taxes and levies behind the meter, i.e., within one
household.

On a system level, grid-scale BESSs can be deployed to prevent grid congestion
at strategic locations in the electricity grid. Examples of grid-scale storage projects
in Germany include the “Grid Booster” in Kupferzell, where a lithium-ion-based
BESS with an energy capacity of 250 MWh and a power capacity of 250 MW is
being planned by the regional TSO TransnetBW (Götz, 2021). Similarly, RWE is
planning a 117 MW lithium-ion BESS in Lingen and Werne (RWE, 2020).

Figure 1.4 shows that currently, the vast majority of realized BESS projects relies
on lithium-ion batteries (LiBs). LiBs are characterized by their high energy den-
sity and are currently the most commercially available BESS technology (Sterner
and Stadler, 2017). They are especially suitable for short-term storage durations
up to six hours (Figgener et al., 2020; Nitta et al., 2015). For longer storage dura-
tions, other technologies, such as redox flow batteries (RFBs), are promising alterna-
tives, as they allow for an independent sizing of energy and power capacity (Vanitec,
2022). The world’s largest RFB is being constructed in Dalian, China with a total
nominal power of 200 MW and 800 MWh of energy capacity (U.S. Department of
Energy/National Nuclear Security Administration, 2022). RFBs are not yet cost
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competitive with LiBs and they are not as commercially available. As this is ex-
pected to change (Schmidt et al., 2019), RFBs could become a viable alternative to
LiBs, especially for stationary applications with medium-term storage durations. In
this thesis, therefore, both LiBs and RFBs are considered.

Figure 1.4.: Share of BESS technologies installed in 2019 (Tepe et al., 2021)

As grid-scale projects are increasing in number, they contribute to the BESS
capacity requirements in integrated energy systems. For an ambitious energy tran-
sition, BESSs of all sized and on all levels of the power grid are needed. The exact
requirements in terms of installed energy and power capacity are debated within the
literature, which is described in detail in Section 2.1. A common feature is that stud-
ies assume the role of a central planner, which results in a cost-efficient estimation of
RES and BESS expansion targets. This can lead to an extreme spatial concentration
of capacity within a system, an effect that is often not explicitly addressed. Central
planning ignores the fact that local acceptance can vary significantly between sites
and that even sites with smaller physical potential for RESs can be valuable if local
acceptance is greater (Segreto et al., 2020; Smith and Klick, 2008). Alternative, de-
central planning approaches are therefore needed to determine storage requirements
for integrated energy systems, while considering the lower aggregation levels of these
systems as well.

On all aggregation levels of energy systems, BESSs can be deployed for a number
of applications that help to integrate intermittent renewable generation, to avoid
congestion, to smooth demand peaks or to secure grid stability, just to name a few
examples (Baumgarte et al., 2019). While different services may be needed on dif-
ferent levels of power systems, a BESS can also manage several of these applications
in parallel (Baumgarte et al., 2019; Parra et al., 2016). In the literature, the combi-
nation of several use cases is referred to under varying terms such as multi-tasking,
stacking of services or multi-use. In the remainder of this thesis, I refer to this
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concept as multi-use, as this is the term used in German legislation (BVES, 2021).
In general, application areas can be categorized into “behind-the-meter” (BTM)

and “front-of-the-meter” (FTM) applications (Englberger et al., 2020). Behind the
meter, increasing PV self-consumption through residential BESSs has been heavily
incentivized in Germany by the difference between the regulatory feed-in-tariff for
PV generation and the considerably higher flat electricity tariffs for households
(Figgener et al., 2020). At a larger scale, industrial plant owners can deploy BESSs
to shave demand peaks, as their electricity rate often includes a “peak charge”
for the highest annual load. In front of the meter, BESSs can become active
in wholesale markets. Here, they can exploit temporal price differences in the
day-ahead and intraday spot markets and participate in the auctions for ancillary
services where they are especially well suited for providing frequency regulation.
As wholesale price developments are subject to uncertainties, BESSs participating
in these markets need strategies to handle the associated risks (Hain et al., 2018).
Further uncertainties arise from the intermittent nature of RES generation and the
only somewhat predictable consumption on all levels of power systems. Storage
operators therefore need intelligent operation strategies to maximize their revenues
or minimize their risks. To this end, data-driven methods can be deployed to assess
risks or to design operation strategies based on price, generation or consumption
forecasts (Hong et al., 2020; vom Scheidt et al., 2020). For multi-use BESS
deployment, intelligent operation strategies are even more important in order to
coordinate several tasks and to operate in different markets in parallel, especially
considering the interplay of various uncertainties.

In summary, the deployment and operation of BESSs needs to be holistically
considered on all aggregation levels of integrated energy systems. This thesis
presents, evaluates and discusses solutions to this challenge. The thesis is oriented
along the energy market design and regulatory framework of Germany, but many
findings and especially the developed data-driven operational strategies can be
transferred to energy systems worldwide. The thesis is logically structured into two
main parts.

First, Part II addresses the deployment of BESSs on different aggregation levels of
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integrated energy systems. On an individual level, I evaluate how energy literacy of
home owners or building managers can be increased through an information system
with interactive and vivid features in Chapter 3. Individual decision-making plays
an important part in the decarbonization of buildings, which were responsible for
39% of CO2 emissions worldwide in 2017 (International Energy Agency and the
United Nations Environment Programme, 2018). The low energy literacy amongst
households results in an uninformed and insufficient evaluation of efficiency measures
and investments in energy-related technologies, such as PV-coupled BESSs (Brounen
et al., 2013). In a behavioral experiment, I show that vivid design elements increase
the users’ intention to use an informative website on energy-related technologies and
their willingness to recommend it to others, thus supporting the adoption of BESSs.

On the level of connected individuals, I investigate how a sharing economy can
enhance the utilization of (existing) PV-coupled BESSs in residential neighborhoods
and how the shared goods can be priced to ensure a fair distribution of profits (Chap-
ter 4). In this setting, two shared goods are considered: (i) electricity generation
from PV installations which is directly consumed and (ii) storage capacity needed for
charging and discharging the BESS. A simulation of 520 sharing communities con-
sisting of five households each shows substantial annual cost savings and increases in
BESS utilization. In addition, I use a data-driven classification approach to predict
which household’s load profile properties are especially suitable for participation in
a sharing community.

Moving to the system level, I determine storage requirements for the German
state of Baden-Wuerttemberg (BW) under different planning paradigms. Central
planning, as done in existing literature, for example, by Ruhnau and Qvist (2021),
ensures a cost-efficient expansion and spatial distribution of RES and BESS
capacity. However, potential for RESs may vary both from a physical and a societal
perspective within a larger geographical area. While general acceptance of RESs is
usually high in Germany and Europe, local acceptance issues have often prevented
concrete projects, e.g., in the case of wind park projects or storage facilities (Smith
and Klick, 2008; Segreto et al., 2020). Alternative paths to central planning must
therefore also be identified and assessed in order to incorporate local peculiarities in
the planning process. Furthermore, the differing technology requirements within an
integrated energy system are often disregarded in previous literature. In Chapter



12 Introduction

5, I compare a central, decentral and in-between planning approach in terms of
RES and BESS expansion needs, spatial capacity distribution and overall system
costs. In addition, I differentiate between the requirements of short-term (LiBs) and
medium-term (RFBs) BESSs. The results show that central planning leads to lower
levelized cost of electricity (LCOE) but results in an extreme spatial concentration
of the required RES and BESS capacity. The findings offer important insights
for local and global policy-makers, who need to factor local acceptance into their
decisions and communication strategies for RES and BESS expansion.

Second, in Part III of this thesis, I design, evaluate and discuss data-driven opera-
tion strategies for BTM, FTM and multi-use applications. These strategies enable a
real-time operation of BESSs while considering the different requirements of stake-
holders at different levels of energy systems. In Germany, the Renewable Energy
Act (EEG) has enabled and driven the expansion of RESs through a guaranteed
fixed feed-in remuneration for generation from PV and wind power plant installa-
tions (Bundesnetzagentur, 2020a). In the future, however, the expiration of subsidy
programs and decreasing investment costs will mean that operators will have to mar-
ket their generation directly on wholesale markets. Due to the intermittent nature
of weather and fluctuating wholesale prices, operators will then be subject to con-
siderable quantity and price risks. As a consequence, risk hedging will soon take a
center stage for renewable generation (May et al., 2017). In Chapter 6, I develop
and evaluate a heuristic operation strategy to deploy a BESS to mitigate these risks
by shifting generation to hours with higher prices. Decisions on when to rely on the
BESS are made based on a data-driven classification approach. The results show
that by using this strategy, the conditional value at risk of a renewable generation
capacity operator can be reduced substantially in the considered months of the case
study.

Risk attitude also plays an important role when deploying BESSs for shaving peak
demand in industrial plants. Due to high investment costs and low utilization rates
if solely used for peak-shaving, a combination with Frequency Containment Reserve
(FCR) provision might be beneficial from a technical and economic point of view
(Braeuer et al., 2019). Since bids on FCR auctions have to be made one day in
advance, when demand peaks are not yet known, the plant operator risks not being
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able to shave a peak when bidding too much BESS capacity. In this setting, I intro-
duce the notion of risk-averse operation attitude by planning the BESS’s operation
based on a probabilistic forecast of industrial demand in Chapter 7. Probabilistic
forecasts are a data-driven approach from the domain of machine learning that in
this context enable the incorporation of risk attitude in an operation strategy by
predicting a confidence interval instead of making a point forecast. The results show
that risk-averse planning has little to no negative effects on the profitability of a
BESS investment in the conducted case study. Moderate risk-averse planning atti-
tude may even improve profitability in some cases, as demand peaks can be better
anticipated.

Finally, I investigate the combination of several BTM and FTM applications in
a multi-use “Storage as a Service” (StaaS) model in Chapter 8. StaaS describes
the idea that a (battery) storage is operated as a service provider for various ap-
plications. For multi-use BESS deployment, the vast majority of previous research
relies on deterministic or stochastic optimization approaches which are limited dur-
ing real-time operation. Incorporating uncertainty into optimization requires careful
modeling and complicates the adjustment to a changing underlying environment. In
past years, deep reinforcement learning (DRL) has emerged as alternative to model
sequential decision-making without the necessity to explicitly model uncertainties
(Huang and Wang, 2021). I design and evaluate a DRL-based StaaS agent that han-
dles simultaneous service requests from residential prosumers, an industrial plant
and wholesale markets. The results show that the designed DRL agent can achieve
higher revenues than a comparable rule-based heuristic operation strategy.

In summary, this thesis contributes to the understanding of a more wide-spread
and effective deployment of BESSs at all levels of energy systems, resulting in a
holistic consideration of BESS deployment. A particular focus of the thesis lies
on the utilization of data-driven analyses and the use of state-of-the-art approaches
from machine learning in order to enhance existing operation strategies. The specific
research questions are outlined in the following section.

1.2 Research Questions and Outline
The expansion of residential BESS has been the key driver of storage expansion

in Germany. This could be even further improved. Weniger et al. (2018) argue
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that a total of 8 million PV-coupled residential BESSs are needed in Germany to
ensure an “ambitious climate protection”. This requires the financial engagement of
private households, which are often not well aware of their energy consumption and
alternatives. To support the decarbonization of the building sector, knowledge must
be provided on how BESSs and other energy-related technologies can be optimally
combined in residential and office buildings. The first research question therefore
addresses the design of a user interface on a website that provides this information
in a way that increases energy literacy and leads to further dissemination of the
tool. To evaluate this question, an animated website containing vivid and interactive
design elements is compared to a static website with purely textual information in
an online experiment.

Research Question 1 What are the effects of interactive and vivid features on a
simulative energy information website in the context of increasing citizens’ energy
literacy on sustainable energy-related technologies in buildings?

Energy communities consisting of several connected homes and buildings within a
residential neighborhood are an important component of the energy transition as they
can integrate locally generated electricity from RESs and contribute to more effective
use of residential BESSs. Research question 2 therefore investigates the financial
benefits of a residential community that shares PV-coupled BESS resources. Because
a fair distribution of profits is essential for the participation of local prosumers and
consumers in such a sharing community, research question 3 refers to the pricing
of the shared goods, i.e., the directly consumed PV generation and (dis-)charged
electricity.

Research Question 2 What are the average financial benefits for a residential
sharing community that engages in sharing of local electricity generation and storage
capacity?

Research Question 3 How does the pricing of the shared goods impact the distri-
bution of profit shares within an energy sharing community?

At a larger system scale, the necessary expansion of RESs and BESSs in low-
carbon, integrated energy systems is a frequently investigated topic. However, while
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central planning determines a theoretically cost-efficient solution, the spatial dis-
tribution of capacities and the resulting local acceptance are often disregarded. I
therefore compare a central, a decentral and an in-between planning approach to
determine RES and BESS capacity needs for different decarbonization targets. Re-
search question 4 addresses the resulting trade-offs in terms of costs and expansion
requirements on the example of the German state of BW.

Research Question 4 What are the trade-offs in terms of levelized cost of electric-
ity and storage requirements in an energy system using decentral planning compared
to central planning?

In order to achieve the required installation of BESS capacity to integrate large-
scale generation from RESs, the expansion of BESSs across all levels of energy sys-
tems must be accelerated. BESSs of all sizes and on all aggregation levels of energy
systems must be given access to wholesale markets in addition to be able to provide
other services on lower aggregation levels. Innovative business models and intelligent
operation strategies can then enable profitable BESS investments. This is especially
relevant when dealing with the uncertainties faced by operators of BESSs or renew-
able plants caused by intermittent generation and volatile prices. In this context,
the fifth research question addresses the utilization of a BESS service agent to hedge
the risk of a renewable plant operator who directly sells her electricity generation
on the day-ahead market. The risk is measured with the conditional value at risk, a
frequently used risk indicator.

Research Question 5 How much can the conditional value at risk of a renewable
operator be reduced through the deployment of a battery storage service using a de-
veloped heuristic operation strategy?

In the context of an industrial plant owner, BESSs can be deployed to simulta-
neously provide FCR and shave peak demand. In the past, this combination has
been researched. However, the inherent risk assessment of the industrial operator
has not been considered. The operator has to decide how much capacity to bid on
the FCR auction before knowing the exact industrial load profile of the next day.
I include the notion of risk averse operation attitude by planning the joint usage
of a BESS for FCR provision and peak-shaving based on a probabilistic forecast.
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Research question 6 refers to the effect of this risk-averse planning strategy on the
profitability of an industrial BESS investment.

Research Question 6 What is the financial effect of an industrial consumer’s risk
aversion on the profit of a battery storage system that is deployed for joint peak-
shaving and frequency containment reserve provision?

Given an appropriate regulatory framework, combining multiple BTM and FTM
applications can further increase the profitability of BESS investments. In addi-
tion, it has the potential to ensure the most effective deployment of existing BESS
capacity for the integration of RESs in energy systems. Traditional optimization
approaches have limitations when it comes to dealing with uncertainties in a very
high-dimensional state setting and during real-time operation, as they are engineered
for specific use cases. I therefore investigate DRL as an alternative data-driven ap-
proach to schedule multiple use cases within a StaaS setup. Research question 7
addresses the performance of a DRL-based approach in comparison to an optimal
solution and a rule-based benchmark.

Research Question 7 What is the quantitative performance of a DRL-based algo-
rithm in comparison to theoretically optimal and rule-based operation strategies in
terms of financial revenues?

1.3 Thesis Structure
The structure of this thesis is organized along the research questions and is de-

picted in Figure 1.5. In Chapter 2, following this chapter, I describe the role of
BESSs in the energy system. To provide the necessary background for this thesis, in
Part I of this thesis, previous studies on storage requirements are reviewed, storage
technologies and application areas are described and an overview of the regulatory
framework for BESS deployment is given. Finally, the StaaS concept is outlined
along the Market Engineering framework by Weinhardt and Gimpel (2006).

The introductory chapters are followed by the two main parts of this thesis. Part
II addresses the deployment of BESSs on different aggregation levels of integrated
energy systems. In Chapter 3, I evaluate an information system aimed at increasing
energy literacy in buildings to increase the installation of residential BESSs. The
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concept of a sharing economy for energy communities with PV-coupled BESSs is
introduced and evaluated in Chapter 4. BESS requirements in an integrated energy
system are determined in Chapter 5 through a bottom-up modeling approach that
allows to compare central vs. decentral planning of RES and BESS expansion.

Figure 1.5.: Thesis Structure

In Part III, data-driven operation strategies for BTM, FTM and multi-use ap-
plications of BESSs are presented. First, a heuristic risk hedging strategy based on
decision tree classification is presented for renewable generators in Chapter 6. For in-
dustrial plant owners, I investigate the joint utilization of a BESS for FCR provision
and industrial peak-shaving using a probabilistic forecast to incorporate risk-averse
planning behavior (Chapter 7). The design of a DRL-based multi-use StaaS agent
is presented and evaluated in Chapter 8.

Finally, Part IV summarizes the key findings of this thesis along the proposed
research questions and discusses the implications for stakeholders and policy-makers
(Chapter 9). In Chapter 10, I outline promising future research paths along the
topics discussed in this thesis.

Chapters 3 to 8 are based on published articles or working papers. In all cases,
I disclaim this clearly at the beginning of the respective chapters. Within those
chapters, I consistently refer to the authors as “we”, since I collaborated with fellow
researchers for these articles.





CHAPTER 2

BATTERY STORAGE IN THE ENERGY SYSTEM

On the path to a more sustainable future, efforts are made worldwide to decarbonize
the electricity supply through a transition from large centralized power plants to-
wards many smaller renewable generation units. The German energy transition is an
example for this transformation: In 2021, 41.1% of Germany’s electricity consump-
tion came from renewable sources such as wind and solar generation (Umweltbunde-
samt, 2022). Globally, almost 30% of electricity generation came from RESs in 2021,
of which hydropower accounts for the largest share (IEA, 2022). As hydropower
potentials are limited and wind and PV generation are the fastest growing RESs,
they are expected to account for the largest shares of generation in future integrated
energy systems.

With increasing shares of intermittent RES, large amounts of energy storage will
be needed to bridge the temporal gap between intermittent supply and inflexible
demand. In past years, global energy storage installations have increased rapidly.
While currently, over 97% of installed energy storage capacity are pumped hy-
dropower storage facilities (Stocks et al., 2019), their potential is limited as they
require large areas and suitable landscapes. Due to their size, they are also un-
suitable for deployment within the distribution grid. In Germany, the potential for
pumped hydro storage is almost exhausted (Sterner and Stadler, 2017) and therefore,
BESSs will play a more prominent role in future developments.

Historically the BESS market has been dominated by lead-acid batteries (Pillot,
2018), which are, for example, deployed in conventional vehicles. However, in recent
years, the relevance of LiBs has increased significantly. Due to their deployment in
electric vehicles and stationary storage applications, a further acceleration of this
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development is expected in the coming years. As it is yet unknown what the gen-
eration landscape will look like exactly in the future, storage requirements are a
frequently studied topic in the literature. It is also unclear to what extent other
flexibility options, such as demand side management or vehicle-to-grid approaches,
can be exploited to reduce (battery) storage needs.

In this chapter, I first give an overview on previous analyses of storage requirements
in Europe and Germany. Then, I describe the different technologies for electrical en-
ergy storage with a particular focus on LiBs and RFBs. Both technologies have
been among the fastest growing BESS technologies in terms of worldwide installed
capacity and are therefore the focus of this thesis (Vanitec, 2022; U.S. Department
of Energy/National Nuclear Security Administration, 2022). In the subsequent sec-
tion, economic application areas for BESSs within the current German regulatory
framework are described. This is followed by the descriptive analysis of a literature
review on multi-use BESS deployment and an overview of the regulatory framework
of BESS deployment.

To meet the requirements for BESSs in energy systems with high shares of
RESs, innovative business models which can incentivize future BESS investments
are needed. StaaS refers to the idea that many distributed BESS facilities can be
pooled together to offer their free capacity through a service platform. For small
BESSs owned by residential prosumers, this concept opens up the possibility of
realizing their full potential by providing both (local) flexibility services and by par-
ticipating in wholesale markets. In the final section of this chapter, I describe the
StaaS concept along the Market Engineering framework by Weinhardt and Gimpel
(2006).

2.1 Storage Requirements in Low-Carbon Energy

Systems
Storage requirements until 2050 have been analysed in numerous studies for

energy systems worldwide (e.g., Cebulla et al. (2018); Zerrahn and Schill (2017);
Solomon et al. (2017)). Cebulla et al. (2018) provide a comprehensive overview on
previous studies on storage requirements in the U.S., Europe and Germany with
different levels of RES shares. The results for Germany are shown in Figure 2.1.



Storage Requirements in Low-Carbon Energy Systems 21

The needed storage capacity varies significantly throughout all considered studies.
The authors observe the trend that higher levels of RES shares require linearly more
storage energy capacity and exponentially more storage power capacity. Another
observation is that PV-dominated (as opposed to wind-dominated) systems require
higher levels of storage power and to some extent also more storage energy capacity.
Wind-dominated systems in turn rely more on transmission expansion. Cebulla
et al. (2018) however note that there seems to be a bias towards transmission expan-
sion in previous studies, as the reality of very long planning periods, bureaucratic
hurdles and societal opposition is often not considered in modeling approaches. On
the other hand, neglecting grid constraints (“copper plate” modeling) may lead to
an underestimation of storage requirements.

Figure 2.1.: Requirements in terms of electrical storage power capacity [GW] and energy
capacity [GWh] for the German energy system by Cebulla et al. (2018)

In general, studies differ, for example, with regard to the (mostly exogenously
specified) RES expansion or emission reduction targets (e.g., 80% vs. 95% reduction
of CO2 emissions), the inclusion of grid restrictions, the considered storage tech-
nologies and the underlying assumptions regarding the energy supply in 2050. For
example, most earlier studies for storage requirements in Germany (e.g., Weiss and
Schulz (2013); Schill (2014); Höfling et al. (2014); Agora (2014)) assume that elec-
tricity demand remains the same or even decreases until 2050 compared to 2020 due
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to efficiency improvements. However, recent studies on pathways to decarbonized in-
tegrated energy systems unanimously find that electrifying large parts of the energy
previously provided through fossil fuels in the heat, transport and industrial sectors
is needed to achieve the climate targets in a cost- and energy-efficient manner (van
Nuffel et al., 2018; Bründlinger et al., 2018; Gerbert et al., 2018). Consequently,
the electricity consumption of Germany is assumed to increase by between 48% and
105% until 2050, depending on the degree of electrification (Bründlinger et al., 2018).

More recent studies on storage requirements take the changing structures of elec-
tricity demand into account. For example, EuPD Research (2019) assume an increase
in electricity demand of about 60% and predict a storage expansion of 59 GWh by
2040. Their calculation however refers to the economic potential rather than the
technical demand for storage. Assuming a 100% renewable electricity supply, Child
et al. (2019) calculate Europe-wide grid-scale BESS energy capacity requirements of
1.0 to 1.5 TWh in addition to 1.85 TWh of residential prosumer BESSs. Further-
more, 390 GWh of pumped hydro and around 200 TWh of seasonal gas storage are
needed. For the same RES share, Ruhnau and Qvist (2021) calculate BESS require-
ments of 59 GWh for Germany, in addition to 54.8 TWh hydrogen and 1.3 TWh
pumped hydro storage.

Another important factor that distinguishes modeling approaches is the differen-
tiation of storage technologies that are considered. A common finding of previous
studies is that up until 50% to 70% of RES penetration, little to no energy storage is
needed. For higher RES shares, short- and medium-term storage types (several hours
up to one day) are economically efficient, while long-term storage is only needed for
very high RES shares close to 100% (Zerrahn and Schill, 2017). BESSs are predes-
tined for short- and medium storage durations. By far the most frequently considered
technology are LiBs, which are often the most economically advantageous option (Ce-
bulla et al., 2018; Zerrahn and Schill, 2017). Medium-term duration BESSs, such as
RFBs, have been mostly neglected in previous studies (Cebulla et al., 2018; Zerrahn
and Schill, 2017). The properties of different BESS technologies and their charac-
teristics compared to other energy storage systems are described in the following
section.

All considered studies analyse storage needs in energy systems on a high aggre-
gation level, usually on country level. Regional distribution effects are rarely con-
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sidered. In one earlier study, Beier and Bretschneider (2013) divide Germany into
146 regions to draw conclusions about regional differences in terms of power bal-
ancing requirements. In a system with a 75% renewable electricity supply until
2040, Babrowski et al. (2016) use the PERSEUS-NET-ESS model to determine the
spatial distribution of a total of 3.2 GW of BESS over transmission grid nodes in
Germany. Neither of the two studies considers increasing electricity demand due
to the integration of energy sectors. A holistic analysis of BESS requirements that
considers increasing electricity demand, the spatial distribution of needed BESS ca-
pacity as well as short- and medium-term BESS technologies is currently missing in
the literature.

2.2 Technologies
From a technical perspective, energy storage is a technology which allows three

processes: Charging, storing and discharging of different forms of energy (Sterner
and Stadler, 2017). Storage technology is typically classified based on technical
characteristics, including the power and energy capacity, power and energy density,
efficiency, self-discharge rate and duration of charging and discharging processes.
The latter is often also referred to as C-rate and can be expressed as ratio of energy
capacity to power capacity (Sterner and Stadler, 2017).

Electrical energy storage refers to storage technologies that charge electrical
energy and discharge it at a later point in time. The storage process itself can take
place in a different form of energy, for example in a thermal or chemical energy
carrier. The electrical energy then needs to be converted to a thermal or chemical
form of energy during charging and reconverted during discharging (Sterner and
Stadler, 2017). The different types of electrical energy storage are depicted in
Figure 2.2. BESS technologies belong to the category of electrochemical storage.
From both a technical and economic perspective, they are designated to be used for
short-term storage durations between 30 minutes and several hours, but usually not
for much longer than one day.
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Figure 2.2.: Electrical energy storage technologies by (Shivakumar et al., 2015)

Sterner and Stadler (2017) define technologies with storage durations in between
several seconds and one day as short-term storage and storage durations between
a week and several months as long-term storage technologies. In this classification,
BESS technologies are predominantly among the short-term storage technologies.
As this thesis focuses on BESS technologies, I introduce an additional category and
define storage durations in between 6 and 24 hours as medium-term storage. This
allows a better differentiation between short-term LiBs and medium-term RFBs.

On the one hand, LiBs are well known for their versatility, powering all kinds
of applications, from handheld devices and power tools to electric vehicles and sta-
tionary storage. As a result, their cost has dropped sharply since they first became
commercially viable during the 1980s (Zhang et al., 2020; Nitta et al., 2015). In gen-
eral, the technology has the advantage of high power density as well as higher energy
density compared to other batteries. However, the cycle life of LiBs is limited and
ranges from 3,000 to 10,000 cycles, depending on the application, operational strat-
egy and storage duration (Purvins and Sumner, 2013; PowerTech Systems, 2022). A
wide range of material combinations exists for LiBs, the most common being lithium
nickel manganese cobalt oxide (NMC), lithium ion titanate (LTO) and lithium iron
phosphate (LFP). The latter are predominantly chosen for stationary applications
due to their higher cycle life (U.S. Department of Energy/National Nuclear Security
Administration, 2022; Crawford et al., 2018).

On the other hand, RFBs have been gaining attention during the last years. Un-
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like in conventional rechargeable batteries, power and energy capacity is spatially
separated in RFBs. The energy is stored in a liquid solution often referred to as
“electrolyte (solution)”. The liquid is pumped through a fuel-cell-like battery cell
(stack), which determines the power capacity of the storage plant. This allows
greater flexibility in the BESS’s design, as power and energy storage capacity can
be sized independently. In an RFB, the energy capacity can simply be scaled up
by increasing the amount of storage liquid. In LiBs, one also has to increase the
power capacity when the system is scaled up by increasing the cell count. Typically,
the storage liquid of RFBs is cheap compared to the power unit, i.e., cells (stacks).
That is, the BESS becomes more cost-effective for longer (i.e., medium-term) storage
duration (Noack et al., 2016; Minke et al., 2017). The efficiency is however lower in
RFBs, mostly due to losses from auxiliary consumers, predominantly pumps. Due
to the relatively low power and energy density of flow battery systems, their use
is mostly limited to stationary storage. The cycle life is higher compared to other
batteries as the electrodes are typically not taking part in the charge and discharge
reactions directly and the electrolyte solution is not wearing off either. 10,000 cycles
and more have been demonstrated, while calendaric lifetime is often stated to reach
20 years (Noack et al., 2015; Sánchez-Díez et al., 2021). The system design is more
complex compared to other BESS solutions. Because RFBs require pumps, tanks,
valves and other equipment, the BESS is more like a chemical plant than a battery,
making the technology more costly as of today. Nevertheless, the cost is expected
to drop as more and larger systems are being deployed (Minke et al., 2017; Lüth
et al., 2018). Multiple different material combinations are proposed for RFBs. The
most dominant type until today is the vanadium-based flow battery (VRFB), which
offers additional advantages like simplified maintenance and particularly good sta-
bility, i.e., long cycle life (Doetsch and Burfeind, 2016). In a comparison between
LiBs and VRFBs for residential BESSs, Uhrig et al. (2016) argue that for the cur-
rently assumed specific costs, the scalability advantage in RFBs cannot make up for
the higher power losses. For VRFBs, it is mostly power related cost that must be
reduced to become competitive (Uhrig et al., 2016).
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2.3 Application Areas
From a technical perspective, BESSs can bridge the temporal gap between

consumption and intermittent generation from RESs as well as help in ensuring
grid stability by providing backup power and blackstart capabilities (Baumgarte
et al., 2019). A commercial storage operator is however primarily concerned with
the economics of the BESS. In the current German regulatory framework, there
are several economic areas of application which can be divided into BTM and
FTM use cases as depicted in Figure 2.3. Note that this framework comprises
applications that are possible under the current German regulation and is by no
means exhaustive. In the future, additional applications, such as a remuneration
for avoided grid investments or redispatch costs, are possible.

Figure 2.3.: Behind-the-meter and front-of-the-meter applications of battery storage. Own
representation based on (Englberger et al., 2020)

Increasing self-consumption from PV generation. Under the current
regulation in Germany, a household with a PV-coupled BESS can use its storage
system to increase self-consumption from solar generation without additional
charges. In doing so, the difference between the EEG feed-in-tariff and the retail
household electricity price rate is exploited. It can be seen in Figure 2.4 that this is
an economic option since the break-even point between feed-in-tariff and electricity
retail price has been reached in 2012.
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Figure 2.4.: Development of EEG feed-in-tariff and electricity price in Germany by Figgener
et al. (2020)

Industrial peak-shaving. In Germany and other countries, another BTM ap-
plication for BESS exists in the commercial context, due to a special tariff structure.
In addition to the (flat) energy retail price that is paid for every consumed kWh of
electricity, industrial consumers often pay a capacity-based “peak load price” that
is determined by the maximum load that is drawn from the grid within a year (Shi
et al., 2018). Since the peak load costs can constitute up to 34% of the annual
electricity costs (Shi et al., 2018), industrial consumers have an incentive to reduce
this peak, which can be done using a BESS. This application is referred to as “indus-
trial peak-shaving”. Due to high investment costs of BESS in general and relatively
low utilization rates if solely used for peak-shaving, it is economically reasonable to
combine industrial peak-shaving with one or more other applications.

Spot market trading. On the German electricity spot markets, hourly products
are traded on the day-ahead market and quarter-hourly products on the intraday
market. BESS can participate in these markets and generate revenues through the
exploitation of temporal price differences within one market or price differences across
markets. This business model is often referred to as “arbitrage” in the literature
(Baumgarte et al., 2019). However, since this is not a case of risk-free trading,
and therefore not technically arbitrage, I use the term “(spot market) trading” in
this thesis. In previous years, price spreads on spot markets were not sufficient to
recover BESS cyclic costs, i.e., the costs that are incurred by the degradation of
the BESS when completing one physical charging-discharging cycle (Perez et al.,
2016). As renewable generators have marginal costs of zero, volatile RES generation
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is inversely correlated with the electricity spot price (Hirth, 2012). Higher levels of
intermittent RES generation will therefore lead to larger price spreads on the spot
markets. It must also be noted that due to the energy and gas crisis that emerged
in the spring of 2022, both price level and price spreads for electricity on the spot
markets have reached unprecedented levels (Bundesnetzagentur, 2021). Although an
immediate alleviation of the current energy crisis and high spot market price levels
cannot be expected, it is unclear how this situation will develop in the foreseeable
future. This results in a situation of immense uncertainty for participants on the
spot markets as well as all stakeholders along the value chain of electricity.

To illustrate current developments, mean spot market prices and maximum daily
spreads of the past two years are shown in Figure 2.5. The average daily price
spreads are an indicator of whether the levelized cost of energy storage (LCES),
i.e, the BESS investment costs per kWh divided by the achievable cycles during its
lifetime, can be recovered through spot market trading.

Figure 2.5.: Average price and average daily maximum price spread development on the
German day-ahead market. Own representation based on data by Bundesnet-
zagentur (2021)

Schmidt et al. (2019) report these costs at currently 0.2 to 0.6 $ kWh−1 for LiBs
and expect them to drop to 0.1 $ kWh−1 for both LiBs and RFBs by 2030. According
to the technical parameters provided by household BESS manufacturers, costs as low
as 0.15 e kWh−1 can already be theoretically realized today (Kloth, 2022). Taking
these figures into account, price spreads on the day-ahead market were not sufficiently
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high for BESS spot market trading before the end of 2021. Since then however, an
economic operation is perceivable, as daily spreads have been almost consistently
above 0.15 e kWh−1.

Frequency regulation. As part of the ancillary services, frequency control is
needed to stabilize the grid. In the event of deviations from the grid frequency
of 50 Hertz, FCR is activated within seconds, which is followed by the activation
of automatic Frequency Restoration Reserve after 5 minutes and manual Frequency
Restoration Reserve after 15 minutes. In this thesis, I focus on the provision of FCR.
BESS are especially well suited to provide FCR as they have fast response times and
power is only provided for a short duration (Zhang et al., 2016). In Germany and
most other EU countries, FCR is tendered using an auction mechanism the day
before its delivery, which means that bids have to be placed one day in advance
(Thien et al., 2017; Bundesnetzagentur, 2020b). Between August 2019 and July
2020, FCR was tendered in a daily bidding block, whereas it was tendered in weekly
blocks before (50 Hertz et al., 2022). Since August 2020, each day is divided into six
4-hour bidding blocks and individual prices are determined for each of these blocks
(50 Hertz et al., 2020a). FCR is tendered symmetrically and must then be available
over the entire period of a bidding block. The FCR auction is cleared with a uniform
price.

In order to participate in frequency regulation, operators must fulfill several tech-
nical and bureaucratic requirements listed in the so-called “prequalification criteria”
(50 Hertz et al., 2020b). Among them is a minimum bidding power capacity of 1
MW which is more than a residential or community BESS can provide. However,
several smaller BESS can be connected into a virtual power plant and jointly pro-
vide ancillary services. This concept has already been successfully implemented by
the German BESS manufacturer sonnenGmbH who participates in the FCR auction
with a network of residential BESS (Tietze et al., 2019). In this thesis, I therefore
assume that smaller BESS can participate in the ancillary services auctions under
the current regulatory framework.
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2.4 Multi-Use BESS Deployment
A simultaneous use of BESS capacity for several of the above introduced appli-

cations can be desirable from both a technical and economic perspective (Baum-
garte et al., 2019). Since some applications are more energy-intensive (e.g., self-
consumption and spot market trading) and others are more power-intensive (e.g.,
FCR provision), a combination of applications can effectively utilize both the power
and energy capacity of BESSs, while a single use case may result in an underuti-
lization of existing resources. In the case of residential BESSs, for example, during
a typical sunny day, the storage is charged while the sun is shining and discharged
in the evening. During these times, as well as on cloudy days, idle storage capacity
could be used, for example, to provide ancillary services or trade on the wholesale
markets to increase the BESSs’ utilization and profitability. The combination of
BTM with FTM applications however poses some technical and regulatory hurdles.
For example, spot market trading is theoretically possible (even though not eco-
nomically feasible under current regulation, as taxes and levies have to be paid) for
residential BESSs, but the traded electricity should not be confused with stored PV
generation (Englberger et al., 2020). Since different levies and taxes apply, the energy
quantities of these two applications have to be strictly separated. Another challenge
is the operation of a multi-use BESSs, as each of the introduced applications con-
tains uncertainties. For example, the prices on the spot market, the quantities of
RES generation and household and industrial loads are not precisely known to the
storage operator in advance.

To gain an overview of the existing literature on multi-use BESS deployment as
well as the state-of-the-art regarding operational strategies, I provide a structured
literature review in the following. An initial paper pool of 37 papers is selected by
subject matter experts as a starting point to construct a search string that would
retrieve this paper pool (see Appendix 1.1). Scopus and IEEE Library are selected
as search databases, which in combination contain 32 out of the 37 papers in the
initial pool. In total, 223 papers were found in the databases1. All results were
then manually filtered by reading the abstract to verify that they fit the scope of
the literature review. Only studies handling BESSs are considered (e.g., removing

1The search was conducted in June 2021
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papers that investigate thermal storage). Studies on BESSs from electric vehicles
are removed as well as studies that do not actually consider more than one of the
application areas defined in Figure 2.3. Two tasks within one area (e.g., intraday and
day-ahead trading, which are both classified as trading) are not considered multi-use.
After manual filtering, as well as adding those studies from the initial paper pool
which are not found through the search string, 94 papers remain in the final paper
pool to be analysed.

All remaining papers are categorized along four dimensions: BESS size (i.e., res-
idential, community, industrial or grid-scale), connected RESs (i.e., wind, PV and
hydropower), application area and method. The dimension application area in-
cludes the four categories from Figure 2.3 (increasing self-consumption, industrial
peak-shaving, spot market trading and providing ancillary services) in addition to
“balancing”. This application refers to the balancing of demand and supply within a
network section of the distribution or transmission grid, e.g., through load leveling or
peak-shaving. This application area is often considered in the literature, for example,
when the operation of the BESS is planned from the perspective of a distribution
network operator. There is however no explicit revenue model for this application,
as grid operation is a regulated market area. Therefore, it is not included in the four
application areas for BESS revenue generation under the current German regulation.
The dimension method refers to the type of algorithm that is deployed for the BESS
operation in the case study of the considered papers. It includes “optimization”,
“simulation”, “reinforcement learning”, “game theory” and “conceptual”. The latter is
chosen, for example, when the paper merely describes an auction-mechanism for the
sharing of physical storage rights instead of designing an actual operation strategy.
“Simulation” refers to all algorithms that do not belong in any of the other categories,
e.g., when a rule-based heuristic is proposed. A table containing all analysed papers
and their categorizations can be found in Appendix 1.1.

The results of the categorization are shown in Figure 2.6. Grid-scale BESSs
are amongst the most researched BESS types. More often than not, the BESSs
are connected to an RES, mostly a PV system. Optimization is by far the most
frequently used operation strategy method, followed by (and often in combination
with) other types of simulations. Only one paper designs a reinforcement learning-
based algorithm (Huang and Wang, 2021).
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Figure 2.6.: Literature Review descriptive results showing the number of papers found in
each (sub-)category

The provision of ancillary services, in particular FCR, is the most frequent appli-
cation area, followed by balancing and increasing self-consumption. Since the focus
of the literature review is on multi-use BESS deployment, the combination of appli-
cation areas is of particular interest. Here, each storage size category is considered
individually, as the location within the power system influences the requirements
and goals of BESS deployment. In the category of grid-scale BESSs, the most fre-
quent combination of application areas is spot market trading and ancillary services
(e.g., Bera et al. (2019); Cheng and Powell (2016); Kazemi et al. (2017)). This is
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to be expected since grid-scale BESSs are located in front of the meter and large
enough to fulfill the prequalification criteria of wholesale markets. In most papers,
community BESSs are deployed for self-consumption in combination with balancing
(e.g., A. Zeh et al. (2015); Arghandeh et al. (2014); Homan et al. (2021)). Here, case
studies are often constructed from the point of view of a distribution system operator
who needs to prevent congestion in network sections. BESSs in industrial plants are
most frequently deployed for ancillary services, either in combination with spot mar-
ket trading or industrial peak-shaving (e.g., Braeuer et al. (2019); Shi et al. (2018);
Engels et al. (2020a)). Almost all case studies on residential BESSs include PV as
RES and have the goal of increasing self-consumption of residential prosumers (e.g.,
Hernández et al. (2021); Tant et al. (2013); Engels et al. (2019)). This is frequently
done together with the provision of ancillary services, a combination of application
areas that is already deployed in practice by sonnen GmbH using a virtual power
plant consisting of many residential BESSs (Tietze et al., 2019).

Overall, the literature review reveals the multi-faceted landscape of multi-use
BESS deployment and operation strategies, ranging from very technical consider-
ations with high time resolutions in the range of seconds (e.g., Shi et al. (2018) and
Cheng and Powell (2016)) to rather economic analyses with a time resolution of 15
minutes to 1 hour (e.g., Braeuer et al. (2019) and Engels et al. (2019)). The compa-
rability between studies is generally quite low, as, for example, the reimbursement of
application areas differ depending on a country’s energy market design. Moreover,
operation strategies are often very specifically designed to the needs of a certain use
case, e.g., by considering particular network sections or community configurations in
the distribution grid. It is however fairly clear that optimization is the state-of-the-
art approach to design operation strategies for multi-use BESS deployment. Only one
recent publication proposes DRL for this task (Huang and Wang, 2021). Oftentimes,
dynamic and stochastic optimization approaches are deployed to handle uncertainties
during operation. These approaches are quite time- and resource-intensive, which
poses limitations on real-time operation. Random variables have to be explicitly
modeled, which limits these algorithms to specific use cases and price structures and
prevents a generalization to other use cases. From the literature review, the need for
online operational strategies that can be deployed in real-time applications becomes
evident.
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In practice, for an ideal BESS deployment in energy systems, decentral BESS
resources need to be allocated efficiently and given access to local applications as
well as wholesale markets. Multi-use BESS deployment could therefore be realized
through a StaaS platform, a concept which is explained in Section 2.6.

2.5 Regulation
In Germany, the Energy Industry Act (EnWG) and the EEG are the two fun-

damental bodies of law that are concerned with the deployment of BESSs and all
surrounding activities such as the feed-in of generation from RESs. The EnWG
defines generation, consumption and transport of energy as the three pillars of the
German electricity system (Deutscher Bundestag, 2005). As of June 2022, storage
has been added to the EnWG as an asset where “the final use of electrical energy is
postponed to a later point in time than when it was generated” (Murray, 2022). This
ends the unclear regulatory classification of storage systems, which previously had
been classified as both generators and end-consumers. This newly implemented reg-
ulatory change is expected to provide more clarity and transparency for stakeholders
(Reiner Lemoine Stiftung, 2021).

In practice, regulatory barriers are among the main challenges for the expansion
of (battery) storage, hindering some possible use cases and especially complicating
multi-use deployment. During an expert interview on storage regulation, one expert
calls Germany the “country of bureaucratic hurdles” and laments the (seemingly)
“thousands of different permits” that are needed for the realization of a BESS
project on the scale of the Grid Booster in Kupferzell. This was confirmed by
a survey among experts in the course of the “Battery Storage Forum” by the
German Energy Storage Systems Association (BVES) (Tepe et al., 2021). A total
of 50 experts were asked to distribute 100 percentage points among the regulatory
barriers addressed in Figure 2.7. Specific regulatory disincentives include the double
burdening with levies and charges of some use cases and the loss of subsidies
from the “Renewable Energy Act” (EEG) if business models are combined. The
most prominent issues are however of structural nature due to high bureaucratic
barriers for measurement and billing concepts and the general lack of legal and
investment security. Multi-use applications are further complicated by the tech-
nical challenge to account for FTM and BTM applications separately, as different
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levies and charges may apply to the respective applications (Englberger et al., 2020).

Figure 2.7.: Main regulatory barriers for stationary battery storage in Germany according
to the BVES (Tepe et al., 2021)

Currently, some changes in the regulatory framework are underway. In an amend-
ment to the EEG, the German parliament decided in 2021 that both large-scale
and residential BESSs may pursue several use cases in parallel and may actively
participate in wholesale markets. The suggestions also puts an almost complete end
to the double burdening of storage capacity with levies and charges (BVES, 2021).
Furthermore, in 2021, the newly elected German government included several
planned changes in its coalition agreement for the 2021 to 2025 legislative period.
In an evaluation of the proposed changes by the Reiner Lemoine Institute, the “clear
commitment to the ambitious expansion of various storage technologies” is praised
(Reiner Lemoine Stiftung, 2021, p. 11). However, it is also criticized that solutions
are not yet specific enough and are limited to certain storage technologies. Another
issue that remains is the sheer complexity and intransparency of the regulatory
framework for BESSs, which especially hinders non-commercial BESS owners from
participating in multi-use storage deployment.

In the following, I present the results of nine expert interviews on regulation that
would support storage expansion, which were conducted to identify barriers and
derive suggestions for an improved regulatory framework. All interviews except one
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(Expert 9)2 are structured along a predefined list of questions (see Appendix 1.2
for questionnaire). In order to capture diverse perspectives, a broad spectrum of
stakeholders in the energy industry is covered with the interviews.

• Expert 1: Transmission Network Operator

• Expert 2: Distribution Network Operator

• Expert 3: Federal Agency

• Expert 4: Medium-Sized Utility

• Expert 5: Research Associate in the Field of Energy Economics

• Expert 6: RES Interest Group (Förderverband)

• Expert 7: BESS Interest Group (Förderverband)

• Expert 8: Battery Manufacturer

• Expert 9: Attorney for Energy Law

One expert calls a separate and explicit definition of storage as fourth pillar of
the electricity system the “foundation” on which “an appropriate regulation [can be]
built” since it introduces the element of temporal shifting of power consumption into
regulation. In addition, current regulation does not clearly define the role of storage
operators and aggregators. From an aggregator’s perspective, another expert further
calls for the implementation of the principle of “mutual recognition” (Gegenseitige
Anerkennung). This means that if the BESS deployment is approved by one dis-
tribution system operator, this also automatically applies to all other distribution
system operators in Germany. According to the expert, this would facilitate market
access for BESSs enormously.

Figure 2.8 shows that the costs for electricity generation only constitute about
one quarter of the final electricity price for households in Germany. Another
quarter stems from network charges and the remaining 50% are different taxes,

2For this interview, the available time frame was too short to follow the entire questionnaire. It
was therefore conducted unstructured along the general guideline of interview questions, but
some questions remained unanswered due to the time constraints.
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levies and fees.3. This illustrates the economic limitations for storage operators and
aggregators caused by the (double) burdening with some of these components. The
removal of the double burden of taxes and levies, which 7 out of the 9 interviewed
experts support, is therefore needed to set the groundwork for a leveled economic
playing field for BESS participating in power markets. In addition, 6 out of 9
experts are in favor of a removal of the EEG-levy and network charges for BESSs
that engage in trading on the spot markets.

Figure 2.8.: Electricity price components for household customers in Germany in 2021.
Own representation based on (BDEW, 2021)

Multi-use BESS deployment could be facilitated by transparent and low-threshold
guidelines for the measurement and billing of parallel revenues streams, as previously
highlighted by the other expert panel interviewed by the BVES illustrated in Figure
2.7 (Tepe et al., 2021). In addition, experts 2, 7 and 8 plead for a “guarantee of
origin” for green electricity (generated by a renewable source) so that it does not
become “grey” (i.e., indivisible from conventionally generated electricity) when it
comes into contact with the grid and is then stored in a BESS.

In the future, experts 1 and 6 also see great potential for storage facilities to
become active in the event of network congestion, thus saving redispatch costs.
Here, but also in the case of other applications such as the storage of local PV

3It should be noted that the EEG-levy has been removed as of July 1st, 2022 (Bundesregierung,
2022). At the same time, the costs of electricity generation are expected to increase, which may
overall increase the price paid by households (BDEW, 2022).
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generation, the geographical component plays an important role, i.e., the physical
location of the providing BESS. In this case, the regulatory framework would
have to specify the spatial situation in the electricity grid between BESSs and
RES power plants in order to still be exempt from levies. Currently, increasing
self-consumption is only freed from surcharges as long as the PV-coupled BESS is
deployed behind the meter. As soon as the electricity is fed into the public grid, i.e.,
even in a local energy community or in a multi-apartment building, surcharges apply.

Appendix 1.3 contains a list of concrete recommendations for actions on regulatory
changes to facilitate storage expansion, which was derived from the conducted expert
interviews. Each recommendation is complemented with a legal assessment regarding
(i) the compatibility with higher-ranking law (i.e., European law) and (ii) of the
complexity (in terms of legal barriers) of implementing the recommendation within
the German regulatory framework. An overhaul of regulatory aspects can be the
foundation for innovative storage deployment. Such an innovative concept for the
pooling and allocation of BESS capacity on all levels of energy systems is presented
in the following section.

2.6 Storage as a Service
In order for existing BESS capacity to be used effectively and to stimulate

investment in new capacity, it would be helpful if BESSs of all sizes had access
to different markets and applications. The current regulatory particularities and
prequalification criteria for applications pose a significant barrier especially for
individual BESS owners. The capacities of many small residential and community
BESSs could otherwise be pooled together through a central platform, possibly with
the help of aggregators. In this section, I describe this idea as a hypothetical StaaS
platform that coordinates the provision of BESS capacity as a service product for
various applications. The StaaS concept is illustrated in Figure 2.9. Participants
include (local) residential and industrial consumers who are interested in accessing
stored electricity to supply their loads or to shave their peak loads, for example.
In order to do so, the consumers can submit service requests on the platform.
Other service requests could come from renewable plant operators who want to
store excess electricity or network operators who want to prevent grid congestion.
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Storage operators on the other hand receive these requests through the platform
and can decide to accept or reject them. They can also offer their energy and power
capacity on wholesale markets through the platform. Both consumers and storage
owners can be pooled together by aggregators in order to facilitate the participation
on the platform for all end-users.

Figure 2.9.: StaaS platform concept

Within the StaaS platform, a distinction can be made between direct and indi-
rect markets. Storage operators can indicate available energy and power capacity
in combination with a minimum price for their service provision. On the indirect
markets, customers submit bids for charging or discharging services to the platform.
The storage operator then receives requests for suitable offers (e.g., for storing excess
generation or serving local household load if the offer is above the price minimum)
and can accept or reject the requests. On the direct markets, available storage capac-
ity is automatically pooled together by the platform provider and offered directly on
the spot market and frequency regulation auctions. Therefore, no further action on
the part of the storage operators is necessary on the direct markets. On the indirect
markets, storage operators must actively respond to the service requests, which they
receive.

The task of the storage operator is therefore to coordinate the available power
and energy capacity on direct and indirect markets in parallel. The main challenge
that arises here is the time lag in the decision-making process. For example, the
auction for FCR takes place at 8 am day-ahead and therefore up to 36 hours before
the actual delivery. If the operator wants to offer power capacity on this auction,
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she has to decide how much she wants to withhold for other requests that may
arise during this time. A similar decision has to be made when participating on
the day-ahead auction at 12 pm and the intraday auction at 3 pm. This highlights
the complexity of operating a multi-use storage. Commercial aggregators could
therefore offer their services to handle this task for residential prosumers with
BESSs. Such aggregators can then specialize in the development of accurate
forecasts and intelligent operational algorithms that maximize the obtainable
revenues from multi-use storage deployment. In Chapter 8 of this thesis, I intro-
duce, design and evaluate a DRL-based agent to provide a solution for this challenge.

In the following, I describe the concept of the StaaS platform along the
Market Engineering framework by Weinhardt and Gimpel (2006), consisting of
five main components: The economic and legal environment, transaction ob-
ject, market structure (consisting of the micro structure, IT infrastructure and
business structure), agent behavior and market outcome. The components are il-
lustrated in Figure 2.10 and individually described in detail in the following sections.

Figure 2.10.: House of Market Engineering by Weinhardt and Gimpel (2006)
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2.6.1 Socio-economic and Legal Environment

The socio-economic and legal environment refers to the pre-defined environment
that affects the market outcomes, but cannot be directly influenced by the platform
participants (Weinhardt and Gimpel, 2006). In the case of the StaaS platform, this
particularly concerns the regulation regarding the (multi-use) operation of storage.
Within the current regulatory framework, some economic applications for BESSs
are not profitable due to taxes and levies. In addition, multi-use deployment and
sharing of BESS capacities (e.g., through a platform) are not explicitly supported
or uneconomic due to regulatory restrictions. A number of regulatory adjustments,
as outlined in the previous section on regulation and in Appendix 1.3, are therefore
needed to enable the proposed StaaS platform concept and to facilitate the innovative
and effective deployment of BESS as service providers.

In general, the facilitation of multi-use storage deployment is needed to allow op-
erators to offer idle capacity as service products on a StaaS platform. Furthermore,
the roles of storage operators or aggregators of storage capacity must be clearly de-
fined. New services, e.g., providing local flexibility in the case of network congestion
could also be integrated into a StaaS platform, provided the legal framework allows
it (e.g., by specifying exemptions from taxes and levies depending on the spatial
situation of the BESS within the power grid).

In order for surplus PV generation to be offered via a StaaS platform, regulation
would also have to allow more degrees of freedom in the respect of privileged
self-consumption. For example, it could be specified that within a neighborhood
or network section in the distribution network, no network charges per kWh apply.
This would also facilitate the deployment of BESSs to reduce of local network
congestion. In Chapter 4, I show how the sharing of PV surplus generation and
BESS capacity in a local energy community can contribute to a significantly higher
utilization of storage assets if electricity sharing is exempt from taxes and levies
within a residential community.

In the following, I describe the remaining components of the Market Engineering
framework under the assumption that an appropriate regulatory framework is in
place that enables the described StaaS platform.
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2.6.2 Transaction Object

The transaction object describes the good that is traded on the market. In the case
of the StaaS platform, this can be electricity which is either sold to or bought from
the storage provider as well as storage power capacity (e.g., when submitting bids
on the FCR auction). In general, it should be specified over which time duration
the electricity has to be delivered or stored, i.e., at which power rate. Customers of
storage capacity, e.g., prosumers or industrial plants, therefore have to submit service
requests for charging or discharging services. These requests should be entered in
standardized form, containing the following relevant information, which all belong
to the transaction object:

• charging or discharging request (binary)

• amount to be charged or dicharged in [kWh]

• starting time of charging or discharging process

• storage duration in [h]

• minimum quantity in [kWh]

• use case label (e.g., “peak-shaving” or “self-consumption”)

• geographic information (if applicable)

On the StaaS platform, both customers and suppliers of storage services have to
indicate their service requests or availabilities to participate in the trading of (stored)
electricity or storage power capacity. Storage operators (or aggregators of storage
capacities) should be able to enter available energy and power capacity for any time
slot they wish. Similarly to stock trading, storage operators could indicate threshold
prices, for which they are willing to buy or sell electricity. Once a request is below
this threshold, it could be automatically matched with the available storage capacity.
The platform provider could also act as aggregator and pool remaining energy and
power capacity and place bids on wholesale markets, provided the realized prices are
within the limits of the indicated threshold prices.
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In the case of an industrial consumer who wants to use a BESS’s capacity for
peak-shaving, an exemplary request could therefore be to discharge an amount of
20 kWh starting at 11 am of the following day. Since peak load is measured and
billed in 15 minute intervals, the consumer might request that the total amount of
energy is delivered over the duration of a quarter hour. The consumer might not be
willing to purchase any less than 20 kWh (i.e., minimum quantity = 20 kWh), since
she would then have to pay higher peak charges anyway. The use case label “peak-
shaving” should be included in the request because different levies or technical criteria
might apply to different applications. Lastly, for some use cases, the geographical
location of the consumer is important for regulatory or technical reasons, e.g., if
self-consumption within citizen energy communities is exempt from taxes and levies
or if the use case is congestion management. In Chapter 8, I describe the design and
implementation of a storage service agent that receives service requests for various
BTM and FTM applications, similarly to what is described in this section.

On the StaaS platform, service requests can be matched with suitable capacity
offers. Storage providers who are eligible for certain requests (e.g., in the case of
household load, the storage system might have to be located within the same distri-
bution network section) will then receive a service request which they can accept or
reject.

2.6.3 Micro Structure

The micro structure refers to the market mechanism that is responsible for resource
allocation and pricing in the market. On the indirect markets, different pricing and
coordination mechanisms for the transaction object are conceivable depending on
the application. For example, fixed tariffs could be implemented for the sharing
of locally generated PV generation through a community storage in a residential
neighborhood, as suggested in Chapter 4. In this case, long-term contracts could
be established between household prosumers, consumers and BESS owners, mini-
mizing the associated risk and overhead costs of the involved parties. A fixed tariff
further ensures a transparent allocation of cost savings that is easy to understand
even for non-experts, which can be advantageous due to the generally low energy
literacy amongst residential households. However, if commercial aggregators take
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over the responsibility for bidding, more complex bidding mechanisms are also con-
ceivable. In this case, the service requests described in the last section are submitted
frequently by the storage operators or aggregators and different matching mecha-
nisms are possible. In this regard, the StaaS platform can be seen as an auction
platform without periodic market clearing, where buyers and sellers can be matched
continuously, similarly to the (continuous) Intraday market.

2.6.4 (IT) Infrastructure

Several hardware and software components are needed to enable the described StaaS
platform and the associated business models for BESS operators. First, the platform
itself is a software component that needs to be implemented and managed by a plat-
form provider. Participants need to be able to enter their requests or availabilities,
which then have to be matched by an algorithm so that, for example, a storage ser-
vice provider only receives service requests for applications that are within her price
thresholds or applicable in terms of location in the power grid. Another algorithm is
needed for the pooling of remaining power and energy capacity which can be offered
as aggregated bid on wholesale markets.

BESSs who participate on the platform have to manage several (economic) applica-
tions in parallel. Commercial BESSs are usually equipped with a BESS management
system, which ensures compliance with physical restrictions of the BESS during op-
eration (Sterner and Stadler, 2017). In case of a multi-use deployment, these systems
are particularly challenged to ensure an optimal control and to prevent premature
aging of the battery cells. The BESSs also need to be equipped with infrastructure
that enables the separate measurement of different applications. In particular, a dis-
tinction needs to be made between BTM and FTM applications. Since electricity is a
homogeneous good, the German Storage Association suggests a “2-meter-approach”
that allows the separate measurement and billing of BTM and FTM applications
(BVES, 2021). This would require the installation of two smart meters which poses
a challenge amidst the already slowly advancing smart meter rollout. An alternative
technical solution approach that has been suggested is the accounting of separate
applications through a blockchain, which has the advantage that manipulations are
not possible (Richard et al., 2019). In addition, guarantees of origin for the various
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applications could be issued via tokens. This concept is however not very well tested
and accompanied by significant regulatory requirements to ensure compliant billing
processes. Another drawback that is pointed out by expert 6 in our interviews is the
computational effort required to operate the blockchain.

2.6.5 Business Structure

The business structure refers to the business model of the market operator, which in
the case of the StaaS platform is the platform provider. It includes the pricing model
as well as transaction costs. Several pricing models are conceivable in the case of
the StaaS platform. In the case of flexibility markets in distribution grids, one-time
sale, subscription and shared revenue models have been suggested or implemented
(Dauer et al., 2017). On the StaaS platform, the provider can for example charge a
service fee as a share of the profits or in the form of a fixed service fee per trade or
traded kWh of storage service.

On the other hand, the business model of the platform participants is also relevant
to ensure a high market liquidity. From the storage operator’s or aggregator’s per-
spective, any economic application for BESS has to cover the LCES, i.e., the costs
for storing a kWh of energy which are determined by the investment costs for the
BESS and the total number of cycles per lifetime. Estimates for these cyclic costs
vary substantially in the literature. For lithium-based BESSs, they currently range
between 0.16 and 0.6 $ kWh−1 but are expected to drop to as low as 0.1 $ kWh−1 by
2030 for both LiBs and VRFBs (Schmidt et al., 2019; Kloth, 2022). Storage capac-
ity from residential or community BESS should therefore recover at least these costs
plus a service margin or revenue share when offered through the StaaS platform.
Furthermore, efficiency losses occur during charging and discharging. These losses
must be taken into account in the economic evaluation of the BESS service provider.

2.6.6 Agent Behavior

The agent behavior is a critical component of the market engineering framework,
as it is difficult to predict but significantly affects the final market outcome. The
bidding behavior of participants who submit service requests through the platform,
as well as the behavior of the BESS agents who respond to these requests, i.e., storage
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operators, are of particular interest on the StaaS platform.
Service requests for charging or discharging can come from a number of different

stakeholders as seen in Figure 2.9. Residential prosumers may want to sell their
excess PV generation to a BESS and buy stored electricity to supply their loads.
Industrial consumers could request stored electricity to shave their load peaks. Op-
erators of (larger) renewable plants could also store their generation in the storage,
for example, at times when spot market prices are low, in case they have to directly
market their generation. In the future, (distribution) network operators could also
request storage services in case of network congestion. However, under the current
regulation in Germany there is no suitable reimbursement model for this service.

Storage operators on the StaaS platform will face the challenge to decide whether
to accept service requests without knowledge on future requests that may be more
profitable. Their performance will therefore highly depend on their ability to forecast
demand for storage services and thus on the availability of algorithms that can
process a lot of information and react quickly in real-time. As suggested before,
for small, non-commercial storage owners, such as residential prosumers, it might
make sense to leave the decision-making on the StaaS platform to a commercial
aggregator. One interesting question raised by expert 6 in our interviews is who
could take on the role of these aggregators. He suggests that regional cooperatives
(“Genossenschaften”) should operate community BESS and also serve as aggregators
for distributed BESS within local energy neighborhoods. This would ensure that
the created value remains local and that profits could be invested in additional local
infrastructure.

The potential behavior of both a service request agent as well as a storage oper-
ator are partially investigated in this thesis through case studies. In Chapter 6, I
determine a renewable generator’s bidding strategy who wants to hedge her gener-
ation revenues against price and quantity risks on the spot markets. What remains
unclear is whether there are enough suppliers of BESS capacity on the counter side
to meet these requests. In a first effort to illustrate the possible behavior of BESS
operators, I model a BESS service agent in Chapter 8. Using a DRL algorithm, the
BESS agent’s decisions between several BTM and FTM service requests during real
time operation are demonstrated and evaluated.
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2.6.7 Market Outcome

The market outcome describes the result of the designed market structure, which
operates within a certain socio-economic and legal environment and is influenced by
the behavior of the participating agents. The explicit goal of the market engineer
is to design the market structure in such a way that a desirable market outcome is
achieved (Weinhardt et al., 2003). As the described StaaS platform does not yet
exist, it can be discussed which criteria could be used to measure the quality of
the outcome. In the case of markets in the distribution grid, Dauer et al. (2017)
name market efficiency as well as incentives that prevent a market failure as crucial
outcomes. In addition, consumer data should be protected as the suggested interac-
tions potentially may reveal sensitive data. Market efficiency and competitiveness in
general can be compared using the number of market participants, degree of market
concentration and the rate of transactions. In this regard, the decentralized nature
of renewable generation and BESS might work in favor of a high market efficiency
of the described StaaS platform. As of June 2022, around 2.4 million PV plants
and more than 400,000 BESS have been installed in Germany, the majority of which
belongs to private owners (Bundesnetzagentur, 2022; BMWK, 2021). The 8 million
PV-coupled BESSs that are required according to Weniger et al. (2018) would result
in a large number of potential participants and a low market concentration. This
would further increase the competition and market liquidity of the StaaS platform.
The widespread use of aggregators would weaken these indicators, but a certain com-
petitiveness among aggregators could still be expected. In this regard, the regulatory
framework is important, in which the role and operating environment of aggregators
would need to be defined, as described in section 2.6.1. To further increase market
competitiveness, end-users (e.g., residential BESS owners) should be able to switch
their aggregator without much effort. From an aggregator’s perspective, an impor-
tant market outcome is the efficient control of her pool of small BESSs. Since the
StaaS platform operates within and affects a critical infrastructure, i.e., the electric-
ity grid, incentives on the platform should be in line with the security of supply and
grid stability (Dauer et al., 2017). One main market outcome for both aggregators
and platform provider is therefore the allocation of service requests in such a way
that prevents a market failure.
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In general, it is advisable to test the influence of the market structure on the
outcomes in advance, e.g., through simulations or experiments (Weinhardt et al.,
2003). For the StaaS platform, this could be done through agent-based simulations
supported by various learning algorithms. Individual aspects of agent behavior, e.g.,
bidding behavior, can also be tested and validated in laboratory experiments.

2.7 Summary
In summary, it becomes evident that BESSs are vital for future integrated energy

systems and need to be deployed on all aggregation levels of power systems. On
the lower aggregation levels, individual homeowners have contributed significantly
to BESS expansion in the past and hold the potential to further contribute to clos-
ing the gap between currently installed capacity and the requirements in low-carbon
integrated energy systems. Although many studies have already examined BESS re-
quirements, the impact of increasing electricity demand in integrated power systems
has not always been taken into account. In addition, most studies take the role of
a central planner without considering the lower aggregation levels of a system. This
gap in previous research is addressed in Part II of this thesis, where a holistic view
of BESS deployment across all aggregation levels is presented.

In addition to the planning of optimal BESS deployment, operation strategies must
also be designed so that the installed BESSs can be deployed effectively. Depending
on the level of the power system that the BESS is deployed on, feasible applica-
tion areas and operator goals may differ. Multi-use BESS deployment is promising
since higher profits can be generated for operators and BESSs are deployed more
effectively in power systems by increasing their utilization rate. In this regard, a
StaaS platform could facilitate multi-use deployment of BESS resources for all end-
users. Since multiple uncertainties have to be addressed, storage operators need
online operational strategies that can be deployed in real-time scenarios. This will
be addressed in Part III of this thesis through the implementation and evaluation of
data-driven, online operation strategies for different stakeholders on different levels
of power systems.



Part II.

Deployment in Integrated Energy

Systems





INTRODUCTION TO PART II

As outlined in Part I, when planning the deployment of BESSs in low-carbon
integrated energy systems, all aggregation levels of power systems have to be
considered. On the lowest level, individual decision-makers, such as homeowners
and office managers, are key players in the decarbonization of the building sector
and therefore need to be informed about sustainable technology alternatives and
efficiency measures. On the second level, prosumers and consumers can increase
the utilization and profitability of local RES generation and BESS capacity in
energy communities, a concept which is currently still hindered by regulatory
barriers (Section 2.5). The adjustment of regulatory barriers depends on the
objectives of decision-makers regarding pathways towards low-carbon energy
systems and the corresponding BESS requirements. These requirements are
usually determined on the system level using a central perspective, which disregards
lower aggregation levels of a system and questions of public acceptance (Section 2.1).

In Part II, BESS deployment is analysed across these different levels. In Chap-
ter 3, I evaluate how an informative website with vivid and interactive features can
contribute to increase (non-expert) individuals’ energy literacy. In Chapter 4, I in-
vestigate an energy community that engages in the sharing of local PV generation
and BESS capacity. In Chapter 5, I introduce a bottom-up system modeling method-
ology that allows the comparison of central and decentral planning approaches.
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CHAPTER 3

INCREASING ENERGY LITERACY IN THE
BUILDING SECTOR

On all levels of power systems, the installation of BESSs should not be considered
in isolation, but in conjunction with other technologies, such as decentral RESs or
flexible consumers. On the individual level, low energy literacy prevents homeowners
and office building managers to assess the installation and interplay of sustainable
technology alternatives. In order to make an informed decision, individual decision-
makers therefore need to be provided with transparent information on energy-related
technologies and efficiency measures. In this chapter, an experiment is designed to
evaluate the ability of a website with interactive and vivid features to convey infor-
mation on BESSs and other energy-related technologies in buildings in an engaging
way. The aim of the website is to increase the users’ enjoyment and their intention
to (re-)use and recommend the website and therefore to provide a useful source for
information retrieval and technology evaluation that is actively shared. An experi-
ment with two treatments is conducted, in which the participants interact with an
animated and a static website, respectively. While participants’ self-assessed knowl-
edge improvement is statistically higher in the animated treatment, no difference
is found in tested knowledge assessment or technology-specific knowledge. We find
that the vividness of the website plays an important role for both the utilitarian and
hedonic purpose of the website. However, somewhat contrasting to existing theories,
interactivity does not increase enjoyment or diagnosticity.

This chapter comprises large parts of the published article: S. Henni, P. Franz, P.
Staudt, C. Peukert, C. Weinhardt, Evaluation of an Interactive Visualization Tool
to Increase Energy Literacy in the Building Sector, Energy & Buildings, 2022.
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3.1 Introduction
As highlighted in Chapter 1, the building sector is of particular importance in

achieving the climate targets due to its high emission shares. Residential buildings
can contribute to the decarbonization of the power sector, for example, by installing
a PV system in combination with a BESS and electrified heating or by taking mea-
sures to decrease energy consumption, e.g., through energy efficient equipment and
insulation measures. This requires some degree of knowledge on the part of home-
owners or office managers, regarding the options and consequences of the installation
of energy-related technologies and measures in buildings. Initial investment costs
for sustainable technologies such as BESSs, heat pumps, insulation, or PV panels,
are high and associated with long payback periods. This is particularly important
when considering a BESS installation, whose economic feasibility depends on the
installation of additional technologies, for example, PV systems and heat pumps.
Furthermore, not all buildings are equally suited for all technologies in question. An
essential aspect of the global sustainability movement is thus the involvement and
education of (non-expert) citizens by ensuring a high level of information availability
and transparency as a basis for individual decision-making and attitude formation.
In this study, we concentrate on the design of information distribution tools that
are intended to increase energy literacy on an individual level. A low-threshold
way to provide transparent information to citizens and therefore to increase their
knowledge about possible energy-saving measures are informative websites. The as-
sociated challenge is to present information in an engaging way that facilitates the
dissemination of the website and the absorption of information. In other research
contexts, such as e-commerce, it has already been established that interactive and
vivid design elements on a website contribute to the engagement of users and have
positive effects on both the hedonic and utilitarian purpose of websites (Jiang and
Benbasat, 2007). In the context of the study presented here, the utilitarian purpose
of a comparable website is precisely to increase energy literacy. While (interactive)
visualizations have been frequently deployed in sustainability contexts (see, for ex-
ample, Graf et al. (2020); Shevchuk et al. (2019)), the effects of vivid design features
on the hedonic and utilitarian means of an informative website have not yet been
addressed in the context of the built environment and the related energy literacy
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of users. Moreover, studies on the effects of interactive mechanisms have delivered
inconclusive results (Xexakis and Trutnevyte, 2019; Bishop et al., 2013; Blasch et al.,
2017).

To fill this gap, in this study, we evaluate an energy information website (EIW)
that allows us to evaluate the effects of vivid and interactive features on the
users’ (perceived) increase in energy literacy and their intention to (re-)use and
recommend an informative website in the context of education on energy-efficient
technologies in buildings. The goal of the EIW is not to promote specific technology
decisions or recommend certain energy efficiency measures, but rather to provide
a comprehensive and transparent information platform for sustainable technologies
in the built environment that increases the related energy literacy. To this end,
we want to assess whether the interactive and vivid representation of information
by means of visual demonstration and interactive feedback (i) enhances the users’
enjoyment, (ii) is perceived as useful for retrieving the required information, (iii)
affects the level of acquired information and knowledge (energy literacy), and (iv)
increases the willingness to (re-)use and recommend the system. Together, these
factors can lead to a higher energy literacy in the context of the built environment
(Brounen et al., 2013; Martins et al., 2020; Cotton et al., 2015). The resulting
research question that summarizes these aspects is therefore the following:

Research Question 1: What are the effects of interactive and vivid features on
a simulative energy information website in the context of increasing citizens’ energy
literacy in regards to sustainable energy-related technologies in buildings?

To answer this question, we transfer previous findings from information system
research to the context of the simulation of energy-related technologies in buildings.
Drawing from these previous results, we develop a research model representing the
hedonic and utilitarian purpose of users’ interaction with a website. Overall, the
model consists of nine hypotheses, which will be detailed in Section 3.3. The evalu-
ation of the research model ultimately allows us to answer the overarching research
question on the effects of interactive and vivid design features on users’ interaction
with the website. The contribution of this chapter is therefore the generalizable effect
of animated informative features on the success of information systems intended to
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increase energy literacy of private households in regards to sustainable technologies
in buildings. This includes, among others, the deployment of energy efficiency mea-
sures through refurbishment, the installation of BESSs, PV plants or heat pumps,
and the evaluation of indoor thermal and lighting systems.

The remainder of the chapter is structured as follows: First, we review related
literature on the equipment of buildings with energy-related technologies, the com-
munication of environmental information through visualization and interactive tools
as well as previous research in the field of information systems regarding sustainabil-
ity beliefs and promotion of sustainable behavior. We then introduce the developed
EIW, the research model and associated hypotheses for studying the effects of in-
teractive and vivid features on users in the context of energy-related technologies in
buildings. Afterwards, we present the research model validation through a behavioral
experiment with 107 participants, which is then repeated to ensure reproducibility
using a sample from a different participant pool with 101 participants. Finally,
we derive suggestions for the improvement of information systems and specifically
building simulation tools targeted at increasing citizen involvement and providing
information in sustainability transformations.

3.2 Related Work
Homeowners and building managers can take a more active role in the energy sup-

ply system by installing smart management systems that allow the active control of
flexibilities and the participation in demand response activities (Chen et al., 2018).
The equipment of buildings with energy-related technologies and management sys-
tems is thus studied extensively. For example, Chellaswamy et al. (2021) propose a
smart energy management system to coordinate a PV-coupled BESS in residential
buildings. Jin et al. (2021) develop a data-driven control mechanism of commercial
building lighting to achieve energy savings and increase human comfort in com-
mercial buildings. Ye et al. (2021) evaluate the impact of different energy efficiency
measures in prototype office buildings to provide baselines for decision making. Chen
et al. (2021b) address the issue of lacking skills and knowledge of building opera-
tors in the context of heating and air conditioning devices and control mechanisms
and propose a data-driven approach to identify suitable automated control mecha-
nisms in commercial buildings. While such approaches provide valuable solutions for
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energy efficiency measures, they often apply to certain, specific types of buildings
and technologies or are targeted at expert decision-makers. Studies concerned with
non-experts usually analyse or try to simulate building occupants’ behavior, such as
window opening (Zhong and Ridley, 2020), heat pump usage (Chen et al., 2020),
or appliance use patterns and overall energy demand behavior (Jin et al., 2020;
Flett and Kelly, 2021). In contrast to these streams of literature, we approach the
equipment of buildings in the residential and commercial sector with energy-related
technologies on a more general level. We evaluate an interactive building simulation
tool that provides entry-level information to all interested parties and particularly
non-experts, thus boosting the potential for decarbonization in the building sector
by increasing overall literacy on energy-related technology.

3.2.1 Increasing Resident Involvement through Interactive Information

Visualization

Improving the energy literacy of (non-expert) citizens by providing information is
an important pillar for the transformation towards sustainable societies. For one,
transparent communication of knowledge can increase the acceptance of sustainable
technologies, both individually and collectively (Huijts et al., 2012; Deckert et al.,
2020). Furthermore, individuals often face decisions that can lead to sustainable
transformations, such as the refurbishment and equipment of residential or office
buildings with sustainable technologies. In the context of the German Energy Tran-
sition, visualizations have been frequently used to involve and inform citizens (Billger
et al., 2017; Deckert et al., 2020). Deckert et al. (2020) evaluate the effectiveness of
a “digital twin”, a digital representation of infrastructure projects, to inform and en-
hance understanding amongst citizens in the case of a pumped-storage power plant
and a novel integrated mobility concept. The authors report positive effects of the
entertaining and comprehensible design of the digital twin on the participants’ as-
sessment of the usefulness for local planning and participation processes, therefore
linking the aspects of a stimulating system design and citizen involvement. In a qual-
itative study on the participatory empowerment of simulation tools in the course of
the energy transition, Fiukowski et al. (2017) identify several challenges that need to
be addressed. Among them are the different levels of knowledge across stakeholders,
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missing incentives to use these tools and the risk of misinterpretation of results.
To increase the level of information and to engage users, the knowledge presenta-

tion within the information system plays an important role. McInerny et al. (2014)
emphasize the importance of interactive visualizations to make scientific findings
available to a novice audience and to present unbiased information. They argue that
a visually engaging web interface can contribute immensely to reaching a variety of
users. Moreover, they state that “success in both science and policy are predicated on
reliable unbiased understanding” and suggest making visualization a standard when
communicating knowledge in science-policy processes (McInerny et al., 2014, p.155).
Lorenz et al. (2015) find that the reaction of users to different visual representations
of environmental information, such as histograms, scatter plots, or pictographs, dif-
fers even among homogeneous groups. Visualizations have already been frequently
used in urban planning processes. However, experimental studies beyond usability
evaluations are scarce (Billger et al., 2017). In a survey on different visualizations
for informing and transferring environmental knowledge in the context of land-use
policy by Bishop et al. (2013), participants and especially non-scientific users find
the tools helpful and report higher (self-assessed) knowledge. While many studies
highlight the wide-ranged opportunities of visualizations, problems can arise when
data is misrepresented or misinterpreted. A high level of visual detail representa-
tion in an early planning state can lead to a false impression and create distrust if
elements of environmental projects are designed differently at a later stage (Billger
et al., 2017). In an evaluation of current visualizations of environmental informa-
tion for non-scientific audiences, Grainger et al. (2016) develop a design framework
spanning the preparation, development, visual encoding, and evaluation phase of
visual tools. The authors highlight the necessity of functional visualizations that are
tailored to the needs and preferences of the user group and the intended information
task.

While there are numerous studies and design frameworks on information visualiza-
tions in environmental contexts and many examples of real-life usage of visualization
for concrete infrastructure projects, the effects of interactive design elements are less
frequently studied and applied. Incorporating interactive functionalities can shift
the information process from a passive to an active task, allowing users to specif-
ically explore information of particular relevance to them (Grainger et al., 2016).
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However, the influence of interactive elements on learning and increasing the users’
level of information is disputed. In a recent publication, Xexakis and Trutnevyte
(2019) conduct an experimental study between two groups that are either given an
interactive or a static website to explore four scenarios for the Swiss energy system
in 2035. The authors find that the provision of interactive features alone seems to
have no significant influence on users’ self-reported understanding and engagement
during website use. On the contrary, users of the static website actually achieved
better results in the tested understanding of the presented information. The authors
of the referenced study attribute this to the additional cognitive effort that comes
with the necessity for active information retrieval as well as the many possible tech-
nology combinations that participants need to explore. However, other studies come
to different conclusions. For example, Bishop et al. (2013) find that participants
prefer the interactive tools when being presented with visualizations on land-use
policy. In an experimental study, Blasch et al. (2017) report positive effects of the
usage of an interactive decision-support tool on energy-related investment literacy.
The diverging findings regarding the effects of interactive tools on understanding
and user experience might be the result of task complexity and the amount of time
spent with familiarizing and using the tools (Xexakis and Trutnevyte, 2019).

3.2.2 Information Systems Research on Shaping Sustainability Beliefs

and Behavior

Information systems, which include websites but also, for example, apps, visual-
izations, and other simulation tools, as presented in this study, play an important
role in shaping beliefs, forming attitudes, and increasing the availability of informa-
tion for stakeholders, decision-makers, and citizens in general. A large stream of
literature has demonstrated the great potential of information systems to influence
environmental beliefs and promote sustainable behavior on both individual and or-
ganizational level (Henkel and Kranz, 2018; Shevchuk and Oinas-Kukkonen, 2016;
Paulsson et al., 2019). The studies in this area can be roughly classified according
to whether they investigate the adoption of information systems (i.e., which design
features or personality traits influence the willingness to use a system) or the ability
of a system to fulfill its task (i.e., how can a system promote sustainable behavior or
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shape sustainability beliefs, see Table ??). Normative beliefs and general attitudes
are decisive factors for the adoption of new information systems and technologies
and persuasive design elements are linked to increased acceptance in the context of
user-centric systems (Kranz and Picot, 2011; Brauer et al., 2016). For private house-
holds’ decisions on efficient energy consumption, an intermediate level of information
granularity may yield the same result accuracy as a more detailed information level
(Dalén et al., 2013). The elements of information system adoption and task support
have been combined in a holistic analysis of motivating factors for the adoption of
systems and its effects on environmental orientation in organizations by Jenkin et al.
(2011) and a set of comprehensive design principles for sensemaking in sustainability
contexts by Seidel et al. (2018).

Table 3.1.: Comparison of related studies in information systems literature (non-exhaustive
selection)

Adoption of Information

Systems

Task Support

Based on survey,

literature synthesis, or

evaluation of prototype

Brauer et al. (2016); Kranz

and Picot (2011)

Loock et al. (2013); Dalén

et al. (2013)

Seidel et al. (2018); Jenkin et al.

(2011); Henkel and Kranz (2018)

Evaluation of

ready-to-use system

Shevchuk et al. (2019);

Fiukowski et al. (2017)

Graf et al. (2020);

Diederich et al. (2019);

Loock et al. (2013)

This study

While many of these studies have contributed to the theory on design principles
and effects of information systems on sustainability beliefs and behavior through
surveys and through forming hypotheses, evaluations of ready-to-use systems are
scarce. First insights are provided by Graf et al. (2020), who find that an interactive
visualization tool for wind power plant planning decreases citizens’ preferred share of
renewable energy in a system. This demonstrates the potential risks of visualizations,
especially when it comes to controversial topics. Diederich et al. (2019) find that
the anthropomorphic design of a chatbot positively affects normative and control
beliefs in the context of sustainable mobility. In private households, a goal-setting
functionality can result in higher energy savings if households can set their own
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goals (Loock et al., 2013). Whereas the former studies investigate sustainability
behaviors and beliefs, Shevchuk et al. (2019) conduct an experiment on the intention
to use an app that includes gamified components as persuasive design elements in the
context of sustainable behavior. The authors find that both dialogue and credibility
support positively influence the adoption of a gamified persuasive system, whereas
no significant effects are found for the primary task support and social support.

The information systems that have been evaluated in the context of sustainable
decision-making differ from a transparent, informative website as they aim to pro-
mote a specific sustainable action or behavior, such as recycling, reduction of energy
consumption, or the use of car-sharing. This sets an EIW apart from existing (in-
teractive) visualizations of specific projects in the context of the Energy Transition.
While examples of the use of visualizations are diverse and already frequently de-
ployed when communicating the goals and intentions behind specific projects to
citizens, an informative website is not intended to promote specific projects, tech-
nologies, or attitudes. On the contrary, the aim is to familiarize users with the
technology alternatives that are available for buildings and the potential effects on
energy supply, costs, and emissions, and thus to generally increase the users’ energy
literacy. However, this information is conveyed on an abstract level as buildings
differ significantly in terms of the effects of technology installations. An informative
website thus addresses the previously often overlooked necessity of making citizens
aware of the various technologies available on a high information level. To this end,
the tool needs to be both engaging and informative, which we aim to achieve by
presenting relevant technology-specific information within an interactive and vivid
simulated building. In the following, we first describe the instantiation of an EIW
that allows us to evaluate the effect of interactive and vivid features within a web-
site in the context of energy-related technologies in buildings. We then introduce a
research model for an experimental evaluation of the effects of the animated EIW
on hedonic and utilitarian characteristics. Specifically, we conduct an experiment
that compares the effect of information presentation on energy-related technologies
within a simulated building with and without visual and interactive elements.
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3.3 Research Model and Hypotheses
To investigate the proposed research question on the effects of interactive and

vivid features on the (perceived) knowledge gain (i.e, increase in energy literacy)
and intention to (re-)use and recommend an informative website, an EIW is used
(see Figure 3.1)4. The EIW contains a simulated office building with various
energy-related technologies. The goal is to familiarize citizens with energy-related
technologies in buildings and to provide entry-level information about sustainable
alternatives.

Figure 3.1.: The developed EIW is an interactive simulation tool that allows users to install
various sustainable technology alternatives. Effects of the installations in terms
of cost of energy supply, CO2-emissions, and share of renewables, are shown in
the dashboard on the right side. The neutral name is deliberately chosen to
avoid a bias of the participants in the studies.

On the website, users can interact with several technologies in a virtual office
building by installing heating devices, PV panels, BESSs, refurbish the building’s
insulation and more. Feedback in terms of annual energy costs, consumption, and
carbon emissions is provided on a dashboard and additional information on each
technology is available through textual information and forwarding links. Addition-
ally, the website provides technology-specific information and supplementary links
for users, who are interested in additional information or need decision support

4The Animated EIW is available at https://view-bw-demonstrator.fzi.de:8001/view-bw-
demo/present/
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for the installation of a specific technology. The website is intended to serve two
main purposes: On the one hand, energy literacy should be increased. This means
that information should be conveyed neutrally and transparently, giving interested
parties an understanding of the technologies described and serving as a basis for
individual awareness and sensemaking regarding the equipment of buildings with
sustainable technology alternatives. In addition to this utilitarian purpose, the
website is also intended to fulfill the hedonic function of bringing enjoyment and
of engaging users through interactive, vivid, and visual representations of the
presented information. This is intended to increase the willingness to (re-)use and
recommend the website and to appeal to a broad group of users and to optimally
disperse sustainable building information. In other words, the utilitarian path is
intended to increase the individual user’s energy literacy, while the hedonic path is
intended to ensure an increase in the energy literacy of the broader public. During
the experiment, we referred to both websites as “energy information website”, a
deliberately neutral term in order not to bias participants of either treatment, since
there are no visualizations or animations in the static treatment. Drawing from
existing literature, we construct a research model of rather exploratory nature that
is loosely based on the analysis of the effects of interactive and vivid design elements
on online product demonstration by Jiang and Benbasat (2007), shown in Figure 3.2.

Figure 3.2.: Research model for studying the effects of animated website features on the
hedonic and utilitarian path along nine hypotheses

In the context of this study, we call a system animated if it uses interactive ele-
ments and visual cues that create a lively perception and information visualization.
In the specific context of the experiment, this is realized through a simulated and
visualized building containing a range of energy-related technologies. Interactive
(INT) design elements allow the user of a system to actively and autonomously
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retrieve information instead of being (passively) presented with it (Grainger et al.,
2016; Jiang and Benbasat, 2007). Therefore, we hypothesize that the ability to
install technologies and receive feedback on an EIW should increase the perceived
interactivity.

H1: Using an animated EIW enhances the perceived interactivity of the website.

Animations through visual and interactive design elements are often used in
gamification contexts to stimulate more senses, inspire imagination, and evoke
associations (Liu et al., 2017). For the communication of knowledge, visualization
can simplify pattern recognition, stimulate perceptual inference, and reduce infor-
mation complexity (Card, 2009). In information systems research, the notion of
vividness (VIV) refers to the ability of a system to “hold our attention and to excite
the imagination to the extent that it is (a) emotionally interesting, (b) concrete
and imagery-provoking, and (c) proximate in a sensory, temporal, or spatial way”
(Nisbett and Ross, 1980, p. 45). We therefore stipulate that the embedding of
information in an animated website, e.g., by illustrating energy-related technologies
instead of merely providing textual information, increases the vividness of a system.

H2: Using an animated EIW enhances the perceived vividness of the website.

The ability to interact with objects can enhance the users’ attitude towards a
system (Schlosser, 2003). In the case of visualizations for land-use policy, users
preferred interactive tools over non-interactive ones and showed generally positive
attitudes towards visualized and lively communication of information (Bishop et al.,
2013). Interactive design elements have also been shown to increase energy literacy
(Blasch et al., 2017). In the context of e-commerce shopping experiences, both
vividness and interactivity are linked to increased perceived enjoyment (ENJ) while
navigating through a shopping website as well as increased diagnosticity, i.e., the
ability to evaluate products (Jiang and Benbasat, 2007). In the context of this study,
we refer to diagnosticity (DIAG) as the ability to evaluate energy-related tech-
nologies. In line with previous literature (Jiang and Benbasat, 2007; Bishop et al.,
2013; Schlosser, 2003), we expect a positive influence of an increased interactivity
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on the hedonic path (ENJ) of the research model and derive the following hypothesis:

H3a: A higher interactivity of an EIW leads to a higher perceived enjoyment while
retrieving information about energy-related technologies.

Furthermore, we also expect a positive influence of interactivity on the utilitarian
path (DIAG) as suggested by Blasch et al. (2017).

H3b: A higher interactivity of an EIW leads to a higher diagnosticity.

Likewise, we stipulate that an increased vividness leads to a higher enjoyment in
accordance with Jiang and Benbasat (2007).

H4a: A higher vividness of an EIW leads to a higher perceived enjoyment while
retrieving information about energy-related technologies.

We further expect a positive link between increased vividness and diagnosticity
as reported by Jiang and Benbasat (2007).

H4b: A higher vividness of an EIW leads to a higher diagnosticity.

In literature on technology acceptance, the perceived usefulness (PU) is a
well-established construct for evaluating the utilitarian characteristics of a system
(Davis, 1989; Venkatesh et al., 2003). An information website on energy-related
technologies is useful if citizens are able to retrieve the information they seek. The
notion of PU is therefore closely related to the ability to retrieve information about
the presented energy-related technologies, i.e., the diagnosticity (Peukert et al.,
2019). Since the overall PU of an information website on energy-related technologies
in buildings strongly depends on the ability to evaluate the presented technologies,
we propose the following hypothesis:

H5: Diagnosticity enhances the perceived usefulness of an EIW.
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We expect that whether participants would be willing to use an information
website on energy-related technologies again depends on whether they found it
useful for retrieving information as well as whether they enjoyed their interaction
with it. The relation of PU and ENJ with intention to use (IU) has been shown
in numerous studies based on the “Technology Acceptance Model” and the related
“Unified Theory of Acceptance and Use of Technology” (UTAUT) (Davis, 1989;
Venkatesh et al., 2003, 2012). It has been applied to various contexts and is
well-established for digital and virtual online shopping experiences (Koufaris, 2002;
Jiang and Benbasat, 2007; Peukert et al., 2019). More closely related to the
informative purpose of an EIW is the literature on acceptance of internet-based
learning systems, which confirms the paths of PU and ENJ to the behavioral
IU (Lee et al., 2005; Balog and Pribeanu, 2010). We therefore expect a positive
influence of the perceived enjoyment on the intention to use:

H6: Perceived enjoyment has a positive impact on the intention to use an EIW.

Likewise, we stipulate that a higher perceived usefulness also increases the
intention to use (Lee et al., 2005; Balog and Pribeanu, 2010):

H7: Perceived usefulness has a positive impact on the intention to use an EIW.

The utilization of an EIW for sustainable technologies differs from the traditional
interpretation of the intention to use an information system. Whereas traditional
systems are designed to be used on a frequent basis, systems for information
retrieval in environmental contexts require only sporadic use but are dependent on
their recommendation to others to make use of their full potential. To this end,
Naranjo-Zolotov et al. (2019) extend the UTAUT with the intention to recommend
(IR) a system in the context of citizen empowerment through e-participation and
show that the intention to use significantly affects the intention to recommend. We
formulate the following corresponding hypothesis:

H8: Intention to use increases the intention to recommend an EIW.
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As energy literacy is generally low among non-experts, we assume that even a
short interaction with an informative website can enhance the users’ knowledge
on energy-related technologies (Brounen et al., 2013). We therefore extend the
traditional models on technology acceptance with the construct of (perceived)
knowledge improvement that we retrieve from the gaming context (Fu et al., 2009).
We argue that improved knowledge (i.e., increased perceived energy literacy) is a
result of the utilitarian path in our model and state the following:

H9: A higher perceived usefulness of an EIW leads to a higher perceived knowledge
improvement.

The resulting research model that is tested in the experiment is depicted in Figure
3.2.

3.4 Experimental Study
In order to evaluate our research model, we conducted a between-subjects online

experiment with two treatments, the animated and the static EIW (Figure 3.4).
Further, we demonstrated reproducibility with a second experiment that relied on
participants from a different participant pool. The participants were randomly
assigned to one of the treatments. They were sampled from two participant pools.
The first was the KD2Lab pool, a proprietary pool in a behavioral lab of the
Karlsruhe Institute of Technology that mostly consists of student participants. The
participants were randomly sampled and recruited using HROOT (Bock et al.,
2014). In the invitation it was stated that participation in the experiment required
very good command of the German language. The second sample was recruited via
the online survey service provider Prolific, again randomly sampled from all German-
speaking participants. After the instructions, participants had to answer questions
ensuring that they understood the instructions. We included attention checks that
ensure that participants carefully read the instructions and answered thoroughly.
The time limit was set to 1:15 hours in total and to one hour that could be spent
on a single page of the experiment. Both experiments were conducted as an online
survey within a single day. Participants completed the surveys from remote. The
experiment was implemented using the experimental framework oTree (Chen et al.,
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2016). The participants were payed a fixed amount of 10 e for their participation
in the first experiment and 6.65 e in the second experiment. Both the amount and
the unconditional nature of the payment were communicated before the experiments.

Measures. Research model constructs: We measured the constructs of our re-
search model described in Figure 3.2 by adapting established scales from literature
(see Appendix 3.1). The items were measured on a 7-point Likert scale ranging from
1: “I totally disagree” to 7: “I totally agree.”

General sustainability attitudes: We used two constructs (“Energy Awareness”
and “Acceptance of Renewable Energy”) in order to control for the personal attitude
among the participants, assessing their overall attitude towards sustainability and
energy efficient behavior. Both were measured on a 5-point Likert scale and devel-
oped by Petra Schweizer-Ries et al. (2010). For the purpose of communicating the
results of this study, the items were translated from German to English and can be
found in Appendix 3.1.

Technology-specific knowledge: In addition to the self-assessed knowledge improve-
ment from the research model constructs, we also captured the technology-specific
knowledge before and after the treatments. Before the interaction with the static
or animated EIW (t(0)), we asked the participants to rate their technology-specific
knowledge on energy-related technologies. One question addressed the level of knowl-
edge on energy-related technologies overall and four questions addressed specific tech-
nologies (heat pumps, PV systems, BESSs, and building insulation), on which the
website presents information, e.g., “How well informed are you about heat pumps?”
(Appendix 3.2). These five questions were also asked after the use of the websites
(t(1)). The answers were ranked on a 4-point Likert scale from 1 (“not informed at
all”) to 4 (“very informed”).

Knowledge assessment: We additionally tested the (objective) knowledge gain
(i.e., the increase in energy literacy) by including three multiple-choice questions
about cost, emissions, and energy savings associated with installing energy related
technologies. The questions were asked before (t(0)) and after (t(1)) the interaction
with the static or animated EIW. The participants were asked to assume the role of
a building manager and then select the technology that they think would reduce the
building’s annual (i) energy costs, (ii) CO2 emissions, and (iii) energy consumption,
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the most (see Appendix 3.3). They were given four technologies to select from, of
which one was the correct answer. The possible choices were not the same for t(0) and
t(1), so that participants could not have an advantage at t(1) by specifically searching
for the technologies that have already been an answer possibility at t(0). Immediately
after answering these questions, the participants were asked how confident they felt
about their answers. This “decision confidence” was measured with three items on a
5-point Likert scale adapted from Phillips et al. (2014) and Aldag and Power (1986)
(Appendix 3.2).

Technology-specific attitudes: Another measured dimension was the technology-
specific attitude towards the same technologies that we evaluated for the technology-
specific knowledge, e.g., “using energy related technologies, such as heat pumps is a
good idea.”

Participation ratings: We measured the participants’ attitude towards citizen par-
ticipation in renewable energy projects before and after using the EIW. We therefore
asked for the participants’ participation preferences (i.e., the requirement to be in-
formed about renewable energy projects) as well as the evaluation of the existing
participation (i.e., whether the participants currently feel well informed and have
possibilities to participate). To measure this dimension, we used 5-point Likert
scales developed by Petra Schweizer-Ries et al. (2010) (see Appendix 3.2 for trans-
lated items).

Qualitative feedback: At the end of the experiment, participants were asked to
(voluntarily) comment on (i) the aspects they liked most about the EIW and (ii)
possible improvements. For this they were provided a text field with no character
limits to express their qualitative feedback.

Procedure. The experimental procedure is depicted in Figure 3.3. The experi-
ment consists of five parts, which were completed by the participants in one session
of approximately 30-45 minutes. In Part I, the participants were given information
on the procedure and structure of the experiment. They were unaware of the other
treatment. In Part II, we conducted a pre-experimental survey. We captured the
demographics of the participants and assessed their general attitude towards the
energy transition, sustainable energy technology, and participation possibilities for
citizens (see Appendix 3.2). Additionally, we tested their energy literacy objectively
using multiple-choice questions (see Appendix 3.3). Part II also included a first
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attention check. In Part III, the participants were free to explore the tool and were
instructed to click “Continue” whenever they were done with the exploration. No
specific instructions or tasks were provided. We measured the time spent in Part
III. In Part IV, the participants were guided through the EIW with an exercise
consisting of five multiple choice tasks that needed to be solved (e.g., “Please install
a heat pump and select whether the following statement is true: Both the energy
consumption and the energy costs are reduced.”). They could only proceed with
the experiment once the tasks were correctly solved. If a question was incorrectly
answered, the participants were informed about that fact but they were not told
which question was answered wrong to prevent simple trial and error strategies.
This part ensured that participants experienced all the features the EIW can
offer. In the final Part V, a post-experimental survey was conducted that included
the model constructs (see Appendix 3.1), another assessment of the attitude and
knowledge towards some presented technologies, and the basic attitudes towards
the energy transition and overall participation possibilities. We also reassessed the
objective knowledge of the presented technologies (energy literacy). The latter was
achieved using the same questions as in Part II but with different response options.
Finally, participants were asked to give their qualitative feedback on the presented
EIW.

Figure 3.3.: Chronological procedure of the conducted experiment consisting of five parts
to be completed within one experimental session

Treatments. We used two different treatments, in which participants either used
the animated or the static EIW (Figure 3.4). Other than the presentation of the
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information, the two experimental procedures were the same. The same information
was conveyed and we asked the same questions. Only the formulation during the
guidance in Part IV was treatment-specific, as users could not install or de-install
technologies in the static EIW treatment. The users of the static EIW were equally
able to explore the website freely during Part III, which in their case meant that
they could read the provided information on different residential energy technologies.

Figure 3.4.: Design elements of the animated and static EIW

In Part IV, for the guided tasks and multiple-choice answers, the participants of
the static treatment were able to obtain the same information as in the animated
treatment. For example, in the animated treatment, when participants fulfilled
the task of “installing a heat pump,” they saw the energy cost increase and the
energy consumption decrease on the dashboard on the right-hand side. In the static
treatment, participants were instructed to read the information on heat pumps,
which included the information that installing a heat pump leads to rising energy
costs and reduced energy consumption in the case of the presented building. In
order to ensure replicability, the code for the experiment with the animated EIW is
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published along this article.

3.5 Data Analysis
Descriptive statistics. To obtain the final samples from all participants of an

experimental study, participants who do not meet certain criteria during the survey
have to be filtered out. If participants exceed a time limit of one hour on a single
survey page, we consider them distracted. Likewise, participants were removed if
they failed to answer one of the attention checks correctly. With the remaining data,
descriptive information in terms of mean age, gender, and occupation is generated.
To further characterize participants, the time that is spent during the exploratory
part is monitored and reported in this step.

Pure treatment effect. Before analyzing relationships between the variables, the
pure effect of the treatment on the dependent variables has to be evaluated to explore
the different experiences participants had while using the static and the animated
EIW. To compare the treatments, the internal consistency reliability of the applied
scales has to be confirmed using Cronbach’s alpha, where all values should exceed a
threshold of 0.7 (Hair, 2016). Then, item scores for a construct should be merged by
calculating the mean value. The data is then analysed for normal distribution using
a Shapiro-Wilk test and subsequently compared using an appropriate test for group
comparison.

Measurement model assessment. Partial least squares structural equation
modeling (PLS-SEM) is then used to test the hypotheses. The PLS-SEM approach
focuses on optimizing the predication of endogenous constructs, rather than the
model fit (Hair, 2016). It can also be used for exploratory research objectives (Gefen
et al., 2011) and is therefore suitable for our research objectives. All analyses are
carried out using Smart PLS3 software (Ringle et al., 2015). To obtain valid and
reliable results for the structural model, the measurement model has to be evaluated
first. The composite reliability (CR) should be above a threshold of 0.7 (Hair, 2016).
The average variance extracted (AVE) and the indicator’s outer loading are used
to evaluate the convergent validity and should be above a threshold of 0.5 and 0.7,
respectively (Hair, 2016). Outer loadings between 0.4 and 0.7 should be closely
examined and should only be removed if the removal increases the AVE or CR above
the recommended threshold (Hair, 2016). To assess the discriminant validity, we use
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the Heterotrait-Monotrait Ratio (HTMT). The threshold value (< 0.9) should be
met for all constructs (Hair, 2016). Furthermore, the results of the consideration of
the HTMT confidence interval, obtained through bootstrapping with a resampling
method with 5,000 samples, should be obtained to confirm the discriminant validity
of the measurement model (Hair, 2016).

Structural model and hypotheses testing. After completing the steps above,
the structural model can be evaluated. First, the Inner Variance Inflation factor
values should be examined for all predicting constructs to rule out collinearity issues
in the structural model. All values should be below the established cutoff value of 5
(Hair, 2016). The significance values for the path coefficients are obtained by means
of bootstrapping (5,000 samples).

Further analyses. To compare the treatments, it should further be tested
whether they differ in participants’ sustainability attitudes and the tested objec-
tive knowledge assessment. A Shapiro-Wilk test is thus conducted for the accep-
tance of renewable energy technologies and the energy-awareness of the participants,
and then, depending on the results, the corresponding test for group differences is
performed. Similarly, all further measures that are conducted before and after inter-
action are compared for differences within the treatments (differences between t(0)
and t(1)) and between treatments (differences between static and animated treat-
ments). These measures include technology-specific knowledge, objective knowledge
assessment and decision confidence, technology-specific attitudes and participation
ratings. For all measures, mean value and standard deviation (SD) are calculated
and reported. Finally, the qualitative feedback has to be evaluated manually to
obtain qualitative insights on participant’s experience while using the EIW in both
treatments.

3.6 Results
Descriptive statistics. Overall, 107 participants took part in the first study.

After data cleansing, this number decreased by 12. Eight participants exceeded the
limit of one hour on a single survey page, being considered as distracted during their
participation and therefore not able to provide reliable and valid answers. Four par-
ticipants did not correctly answer the second of two attention checks. The adjusted
sample consists of 49 participants for the animated and 46 participants for the static
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EIW. The average age of participants of the animated treatment was 24.4 (SD =
5.2), the average age of the participants of the static treatment was 22.4 (SD = 7.6).
45% of the participants of the animated treatment were female and 84% were uni-
versity students as compared to 30% and 87% for the static treatment, respectively.
The sample is thus rather young and predominantly consists of university students.
To evaluate for how long participants were exposed to the EIWs to later evaluate
their experience, we monitored the time during exploration and guided exercise. The
participants of the animated treatment spent 6.88 minutes (SD = 4.47) in the ex-
ploration phase on average and 8.95 minutes (SD = 3.55) in the exercise phase. The
participants of the static treatment spent 6.27 minutes (SD = 4.33) on average in
the exploration phase and 9.17 minutes (SD = 6.18) in the exercise phase.

Pure treatment effect. All Cronbach’s alpha values in our experiment are
above the threshold of 0.7 (see Appendix 3.1). Table 3.2 provides an overview of
the obtained results. As the data is not normally distributed in our case, a one-
sided Mann-Whitney U-Test is used to compare the treatment groups. All variables
receive significantly higher mean values for the animated treatment than for the static
treatment (see Table 3.2). This is also depicted in Figure 3.5. Especially interesting
are the significantly higher values for diagnosticity and (self-assessed) knowledge
improvement, as both websites differ only in the information presentation, but not
in the content of the information itself. It seems that an animated EIW enhances its
users’ felt ability to evaluate energy-related technologies and increases their perceived
knowledge improvement. For the adaption of the proposed informative website in
real life, the significantly higher values in the perceived usefulness, enjoyment, and
intention to recommend the animated EIW are of particular interest.
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Table 3.2.: Test for group differences for dependent variables

Static Animated MWU

Construct Mean SD SW Mean SD SW p-value

INT 4.67 1.65 0.03* 6.33 0.84 <.001*** <.001***

VIV 2.17 0.96 <.001*** 4.82 1.09 .164 <.001***

PU 4.49 1.35 .309 5.59 1.00 <.001*** <.001***

ENJ 3.23 1.30 .024* 5.24 1.05 .001*** <.001***

DI 5.09 1.19 .02* 5.59 0.83 .055 .013**

IU 4.26 1.63 .071 5.12 1.38 <.001*** .003**

IR 3.64 1.50 .016* 4.8 1.28 <.001*** <.001***

KI 4.72 0.98 .319 5.45 0.88 .009** <.001***

*p < .05; **p < .01; ***p < .001

SW = p-values from Shapiro-Wilk test, MWU = Mann-Whitney U-Test results

Figure 3.5.: Treatment comparison for dependent variables. Higher ratings can be observed
for all constructs in the animated EIW treatment compared to the static treat-
ment

3.6.1 Results for the Research Model

Measurement model assessment. To obtain valid and reliable results for the
structural model, we first evaluate the measurement model. See Appendix 3.1 for an
overview of the constructs, items, and factor loadings as well as Cronbach’s alpha
values, CR, and AVE. All CR values are above the threshold value of 0.7 and all
AVE values are above the threshold of 0.5 (Hair, 2016). For the outer loadings, one
indicator, K5 (.672), had to be further examined. Since all constructs have already
fulfilled the recommended thresholds, we decided to retain the item. The threshold
value of < 0.9 is met for all constructs for the HTMT. Furthermore, the results of
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the consideration of the HTMT confidence interval, obtained through bootstrapping,
confirm the discriminant validity of our measurement model.

Structural model and hypotheses testing. All Inner Variance Inflation
factor values are below the cutoff value of 5. Regarding H1 and H2, we predict a
positive impact of the usage of an animated EIW on vividness and interactivity.
Both paths are significant at a .001 level. Surprisingly, the paths leading from
interactivity to enjoyment and diagnosticity are not significant. H3a and H3b are
therefore not supported. With all other paths being significant, we find empirical
support for hypotheses H4 to H9. The adjusted R2 values as well as the path
coefficient values can be found in Figure 3.6. The exact p-values are shown in
Appendix 3.4.

Figure 3.6.: Results for the PLS structural model with adjusted R2-values. The numbers
indicate the path coefficients and significance for the hypothesized relation-
ships. Statistical significance is indicated using the depicted p-value scale

3.6.2 Further Results

General sustainability attitudes. The acceptance of renewable energy tech-
nology in general and the energy awareness do not statistically differ between the
treatments. Therefore, both samples have equivalent baseline conditions. Especially
the acceptance of renewable energy is high in both treatments. Table 3.3 shows the
result of the comparison.
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Table 3.3.: Test for group differences for general sustainability attitudes variables

Static Animated

Construct Mean SD Shapiro-

Wilk

Mean SD Shapiro-Wilk p-

value

Acceptance RE 4.69 0.47 <.001*** 4.71 0.43 <.001*** .92b

Energy Awareness 3.24 0.61 .211 3.48 0.6 .699 .592a

*p < .05; **p < .01; ***p < .001
SD = Standard deviation, Shapiro Wilk = p-value from Shapiro Wilk test depending

on whether the data is normally distributed. a. Two-Sided Welch Two Sample T-

test, b. Two-Sided Mann-Whitney U Test

Technology-specific knowledge. A statistically significant increase in the
technology-specific knowledge can be measured both for users of the static (t = -
4.393, p-value = <.001)c, as well as for users of the animated website (V = 141, p-
value = <.001)d. No different level of technology-specific knowledge could be found
between the treatments groups at either t(0) or t(1). Two-sided Mann-Whitney-U-
Tests or t-Tests, depending on the distribution of the data, are executed to compare
data at t(0) and t(1) for both treatments. For the analysed dimensions in this section,
no statistical difference can be found between the treatment groups. All mean and
SD values are reported in Table 3.4.

Knowledge assessment. Table 3.4 provides an overview of the share of correct
answers regarding the tasks measuring energy literacy before and after the inter-
action with the EIW. A significantly higher correct answer share (at .001 level) is
measured for results at t(1) in comparison to t(0) for both treatment groups. Sim-
ilarly, a significantly higher rating for the decision confidence can be observed for
both the static EIW treatment (t = - 8.044, p-value = <.001)a and the animated
EIW treatment (t = - 3.584, p-value = <.001)a. This underlines the higher correct
answer rate both groups achieved after being exposed to the EIW and it shows that
the participants felt confident in applying the newly gained knowledge.



78 Increasing Energy Literacy in the Building Sector

Table 3.4.: Additional measures before (t(0)) and after (t(1)) interaction with the EIW

Technology-

specific

knowledge

Correct answer

share per par-

ticipant (objec-

tive knowledge

assessment)

Decision

confidence

Technology-

specific

attitudes

Partici-

pation

rating

Mean SD Mean SD Mean SD Mean SD Mean SD

Static EIW t(0) 2.36 0.66 0.2 0.22 3.27 1.34 4.4 0.51 2.96 0.6

Static EIW t(1) 2.72 0.55 0.63 0.26 4.69 1.39 4.33 0.37 3.05 0.63

Animated EIW

t(0)

2.42 0.63 0.12 0.16 3.74 1.27 4.38 0.48 3.03 0.56

Animated EIW

t(1)

2.72 0.56 0.57 0.3 4.44 1.05 4.41 0.55 3.5 0.61

SD = Standard deviation. c. Paired, one-sided t-Test, d. Paired, one-sided Wilcoxon

signed ranking test with continuity correction

Technology-specific attitudes. While the knowledge was improved through the
interaction with the EIW, the attitude towards the technologies was not significantly
different between t(0) and t(1) (Table 3.4).

Participation ratings. The results show that while using the animated EIW,
users gave significantly higher ratings for both participation (V = 75.5, p-value =
<.001)d and the evaluation of participation (V = 119, p-value = <.01)d at t(1) in
comparison to t(0) (see Table 3.4). For the static EIW, no such evidence could be
found. These results show that an animated EIW can increase the willingness to be
informed on renewable energy projects and increases the willingness to participate.

Qualitative feedback. The most common positive feedback was the overall de-
sign of the website, either mentioned on its own (eleven participants) or in combina-
tion with the interactivity and playfulness of the animation (seven participants). The
feedback on technology installations as well as the overall information content of the
EIW and, interestingly, the forwarding links to other webpages were each mentioned
eight times. Two participants explicitly mentioned that they found the EIW useful
to get a general overview over the technologies in buildings, and two other partici-
pants praised the understandability of the information for users, who are not familiar
with the technologies. Some usability issues were reported in the suggestions for im-
provement, for example, that clickable objects could be highlighted (seven times)
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or that feedback on technology installation (upward and downward arrows with nu-
meric display of change in target values) vanished too quickly (five times). In terms
of content, more detailed information on technologies was requested (seven times)
as well as information on other types of buildings (five times) and specific decision
support for sustainability measures (two times). In addition, two participants would
have liked video material for a more stimulating experience.

3.6.3 Replicability of Results

In order to show the replicability of the results, the study was repeated using an
online sample of participants from the online platform Prolific. The average payout
on this platform is lower than for the participant pool of the KD2Lab and therefore,
participants were paid 6.65 Euros. The study was conducted in one day and partic-
ipants were randomly assigned to each of the treatments. The study was completed
by 51 participants in the animated EIW treatment and 50 participants in the static
EIW treatment. In both cases, two participants failed the attention checks leading
to 49 usable responses for the animated EIW and 48 for the static EIW. The average
age of all participants was 30 years. The share of female participants was consider-
ably higher than in the first experiment with roughly 58%. The share of students
was lower with only about 45%. A total of 21 participants were homeowners and
seven owned PV panels. We do not repeat the statistical as for the first study, but
all the necessary statistical tests were performed as outlined in the previous sections.
The results are depicted in Figure 3.7. The exact p-values are shown in Appendix 3.4
and values for outer loadings, CR, Cronbach’s alpha and AVE are reported in Ap-
pendix 3.1. Furthermore, the tests for group difference are included in Appendix 3.4
to allow for comparison between both experiments.

The previous model is mostly confirmed with the only notable difference that the
path between interactivity and enjoyment is now significant. The results therefore
confirm and strengthen the results from the first experiment. This is especially
important as the second sample had widely different demographics compared to the
first sample.
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Figure 3.7.: Results for the PLS structural model with adjusted R2-values for the second
experiment tested with a sample recruited via the prolific platform. The num-
bers indicate the path coefficients and significance for the hypothesized rela-
tionships. Statistical significance is indicated using the depicted p-value scale.

3.7 Discussion
The hedonic and utilitarian paths of our research model that are well-established

within research on information systems can be largely confirmed in the context of
an information website intended to increase building related energy literacy. The
results contribute to the understanding of how information should be presented in
order to engage citizens, to provide entry-level information, and, thus, to increase
energy literacy. The results suggest that both the hedonic (ENJ) and utalitarian
(DIAG and PU) paths of the model have a positive effect on the intention to use
the EIW (and therefore, the intention to recommend). In the first experiment, the
vividness of the animated EIW is the driver for these effects while no significant
paths were found in the case of interactivity. This confirms the findings of studies
such as Bishop et al. (2013) and Deckert et al. (2020), which report positive effects of
stimulating and animated design on the usefulness of digital tools in the context of
sustainable, energy-related technologies. The second experiment however suggests
that interactivity might also have a (significant) positive influence.

Interactivity. Unlike previous literature in the e-commerce context, we find no
conclusive results regarding the influence of the interactivity on perceived enjoyment
and diagnosticity. Contrary to these established influences, Xexakis and Trutnevyte
(2019) find that interactivity can be an additional cognitive burden during complex
information retrieval in the context of presenting energy scenarios. The qualitative
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feedback of the users in our first experiment provides some further insights into the
ambivalent effects of interactive elements. Interestingly, 14 out of 34 participants
who comment on positive aspects of the animated EIW explicitly mentioned the
interactivity. However, seven out of these referred to it together with the overall
animation of the EIW, mentioning, for example, the “playful interactivity” or the
“interactivity and (. . . ) design.” This shows that the interactive functionality is
hard to distinguish from the overall animation of the website. Furthermore, three
participants explicitly said that they were annoyed by the interactive functionalities,
stating that the necessity to actively retrieve information is perceived as an obstacle.
Another possible explanation for why interactivity did not significantly influence the
ability to evaluate technologies is the lack of participants’ concrete objectives during
the experimental study. It is conceivable that, for example, a homeowner who is
specifically interested in the effect of a PV system in combination with a heat pump
will find the interactive possibilities with the tool more useful.

Knowledge. We included the construct knowledge improvement by Fu et al.
(2009). The items (see Appendix 3.2) evaluate both how well the website conveys
knowledge as well as how well the users think the EIW is suited to obtain knowledge
(i.e., “The EIW motivates the user to integrate the knowledge taught.”, “The EIW
increases my knowledge.”). We therefore included the technology-specific knowledge
as well as the tested knowledge assessment to control for previous knowledge of the
participants and to obtain an objective measure of the participants’ learning. Both,
participants in the static and animated treatment, achieved significantly better re-
sults regarding their objective knowledge (i.e., an increase in their energy literacy)
after the treatment, which is not surprising as they had to engage with and read
about some of the technologies during the guided exercise. There were no signifi-
cant differences in performance in the multiple-choice test between the two groups,
which somewhat confirms the equivalent information content of the two treatments.
Similarly, participants of both treatments rated their technology-specific knowledge
higher after using the EIW, with no significant difference in the gains of the two
groups. Yet, participants of the animated treatment rated their knowledge im-
provement significantly higher and seemed to find the EIW better suited overall
for knowledge improvement. This is an important finding because it suggests that
even though the static treatment succeeds in conveying the same information as the
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animated version, potential users might still be under the impression that it is less
informative. Hence, they might refrain from using or recommending a less appealing
website at all, which limits the potential societal increase in energy literacy.

Participants. Our first sample consisted largely of university students, who have
very positive attitudes towards renewable energy and high levels of energy awareness
which could limit their potential knowledge gain on an EIW. Since most of them
are not homeowners, one could also debate their relevance for the equipment of
buildings with sustainable technologies. However, we would like to emphasize that
even among an environmentally aware group with a high level of education, an entry-
level informative website on sustainable technologies is perceived as useful and leads
to significant increases in perceived and tested knowledge. What is more, young,
environmentally aware students have been the drivers of sustainability movements
in the last few years, e.g., as seen in the “Fridays for Future” movement (Wahlström
et al., 2019). Since young and technology-savvy users are generally often amongst
the first adopters of digital technologies, their high intention to recommend could
prove a decisive factor for the diffusion of the website amongst citizens in general
because they could recommend the EIW to their parents, relatives, or friends, that
might benefit from the provided information (Czaja et al., 2006).

Replicability and future research. We were able to address some of the limita-
tions mentioned in the previous paragraphs in our second experiment. The findings
from the first experiment could be largely confirmed with a more diverse group of
participants both in terms of age and occupation whose attitudes were not as in
favor of renewable energy technologies in general. The most relevant difference be-
tween the two experiments is the significant path from interactivity to enjoyment
in the second experiment, while all paths from interactivity were insignificant and
even slightly negative in the first experiment. Therefore, we cannot conclusively
determine the actual effect of interactivity on users’ hedonic and utilitarian path.
Notably, in the second experiment, interactivity and the ability to obtain feedback
on installations were explicitly mentioned positively in the qualitative feedback by
22 participants. Some participants lamented an overload of information, but, in con-
trast to the first experiment, none complained about the interactive elements being
distracting or annoying. At this point, we can only speculate about why the percep-
tion of the interactive elements is so different. In addition to demographic differences,
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we notice that participants in the second experiment have a significantly lower gen-
eral acceptance of renewable energy and a slightly lower self-reported knowledge
on energy-related technologies but a slightly higher energy awareness compared to
the participants of the first experiment (see Appendix 3.4). Future research should
therefore further address the needs of different target groups for obtaining informa-
tion on energy-related technologies. Indeed, as suggested by Lorenz et al. (2015),
even amongst homogeneous groups, preferences can differ in regards to visual in-
formation display. From this follows a need to investigate whether it is possible to
design informative websites along the needs of specific target audiences. One relevant
target group are homeowners with specific goals (e.g., energy efficiency measures or
equipment of their home with sustainable technologies). However, the qualitative
feedback in the second experiment revealed that some participants found the tool
useful for general education on sustainable technologies as well (“[One] could also
create a kind of game for children in order to inspire and sensitize younger people
for this important topic at an early stage”). This is in line with the arguments
brought forward by McInerny et al. (2014) who demand that visualization should be
a standard when communicating science-policy processes and unbiased information
to novice audiences. Therefore, future research should not be limited to homeowners
and could address the different needs of different stakeholders.

3.8 Conclusion
In this chapter, we contribute to hands-on solutions to increase energy literacy.

The experimental evaluation of the EIW is unique in research on information systems
as the website provides information on an abstract, non-project- or task-specific level.
This is intended to bridge the gap between uninformed citizens, in particular home-
owners and building managers, and the decarbonization of the (residential) building
sector through awareness-building and increasing energy literacy. For BESSs, this
information provision is of particular relevance, as they are ideally deployed in com-
bination with other energy-related technologies, such as PV systems or heat pumps.
We can thus research question 1 with the following main findings:

First, an animated website has a positive effect on the perceived vividness and
subsequently the hedonic and utilitarian purpose of an EIW. This is demonstrated
with a between-subjects experimental study. The positive effects of vividness are
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of relevance for the practical implementation and design of informative websites.
Interestingly, while the participants’ self-assessed knowledge improvement is signifi-
cantly higher in the animated treatment, no difference can be found in the objective
knowledge improvement or the technology-specific knowledge. This indicates that
participants feel like the animated EIW is better suited for improving knowledge
while the objective information content and retrieval is actually the same for both
the animated and the static website. Second, the results regarding the interactive
mechanisms are inconclusive. This deviates from previous literature but could be
attributed to the different context and purpose of the introduced website than what
is commonly researched. Furthermore, participants’ qualitative feedback shows that
it is difficult to distinguish between the interactive and vivid design elements and
some of the interactive elements may have an impact on perceived vividness as well.
Third, the experiment shows that the animated EIW engages users for the energy
transition. It increased the curiosity regarding the energy transition as well as the
will to engage in participatory processes of the energy transition. Therefore, it might
contribute to an increased acceptance of the process of powering a still fossil fuel-
based economy with renewable energy sources.

We conclude that when designing an informative website on BESSs and other
energy-related technologies in buildings, the focus should be on an appealing and
stimulating design that invites users to explore technologies and sustainability effects
playfully. The higher perceived vividness influences the hedonic and utilitarian path
of users’ enjoyment, diagnosticity and usefulness, their intention to use the website,
and, ultimately, their willingness to recommend it to others. Furthermore, it in-
creases their perceived and objective energy literacy. Interactive elements should be
designed with caution so that they do not get in the way of information gathering.

In this chapter, it is analysed how individual decision-makers in buildings can be
informed about BESSs in combination with other sustainable technology alternatives
with the help of an engaging EIW design. Information provision is the basis for
further BESS expansion on the individual level. Once these systems are installed
in a neighborhood, several individuals in buildings with PV-coupled BESSs can
be connected to deploy their local RES and BESS resources more effectively and
profitably. One example of these connected individuals are so-called (citizen) energy
communities, which will be the focus of the following chapter.



CHAPTER 4

SHARING PV-COUPLED BATTERY STORAGE
IN ENERGY COMMUNITIES

The high expansion potential of PV-coupled BESSs and other energy-related tech-
nologies on the individual level should be further exploited. One way of making these
deployments more attractive is to connect several individual local residents into en-
ergy communities as promoted by the European Union and thus to leverage the po-
tential of peer-to-peer energy sharing. In a setting with privileged self-consumption,
connected individuals within an energy community could economically share local
PV generation and BESS capacity to increase the profitability and utilization of local
resources. In this chapter, a sharing economy model in the context of energy com-
munities is investigated and 520 sharing communities of five households each with
differing load profile configurations are simulated. The communities achieve average
annual savings of 615 e as compared to individual operation without being con-
nected. Using the gathered data on electricity consumption in a sharing community,
a fixed pricing approach is discussed, which allows a fair distribution of the profits
generated through the sharing economy. Furthermore, the impact of prosumers’ and
consumers’ load profile patterns on the profitability of the sharing communities is
investigated. Based on these findings, the potential to match and coordinate suitable
energy communities through a platform-based sharing economy model is explored.

This chapter comprises large parts of the published article: S. Henni, P. Staudt, C.
Weinhardt, A sharing economy for residential communities with PV-coupled battery
storage: Benefits, pricing and participant matching, Applied Energy, 2021.
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4.1 Introduction
In recent years, energy communities have been an integral part in the efforts

to actively involve citizens in the transition towards a low-carbon energy supply
(Weinhardt et al., 2019). The European Union defines the concept of citizen energy
communities as a “cooperation of citizens or local actors” within a residential
neighborhood that participates in the generation, distribution and storage of energy
in order to provide “environmental, economic or social community benefits to its
members” (European Parliament and Council of the European Union, 2019). The
sharing of BESSs on the individual level allows a higher local consumption of
electricity generated by RESs. In addition, BESS investments can become more
economic in a setting of privileged self-consumption that exempts joint utilization of
BESS and RES resources within an energy community from network fees and taxes.
However, it is unclear how different households with different load patterns can
contribute to such an energy sharing community and what benefit can be expected.
This makes it more difficult to establish such communities as both prosumers
with or without BESSs as well as consumers are unaware of the corresponding
opportunities. In this chapter, we expand the extant literature with an in-depth
analysis of the benefits of local energy sharing communities, in particular regard-
ing the potentials for a higher utilization of existing BESSs within these communities.

Due to current regulation, increasing self-consumption is often the only feasible
option for residential users to profit from a BESS. This causes a limited number
of operating hours of PV-coupled BESSs. Losses with regards to utilization arise
when a household’s load during the hours without PV generation is not sufficient
to fully discharge the storage unit until the generation of the PV system starts
again the next day. Similarly, when the electricity generation throughout the
day is not sufficient to charge the BESS to its maximum, its capacity is not fully
utilized. The profitability of a BESS is thus not only dependent on a household’s
overall electricity consumption but also on the distribution of the load throughout
the day. To enhance the utilization rate and to subsequently further incentivize
local investments in BESSs, we propose a sharing economy model that allows
a residential community to share excess PV generation, stored electricity and
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BESS capacity. In this chapter, we furthermore contribute to the understanding
of a sharing economy in energy markets and explain how under-utilization in
residential energy communities can be overcome through a sharing economy model.
Aside from the possible financial savings of the community, this approach also
allows consumers to participate in the sharing of locally generated electricity
without having to invest in the capital-intensive infrastructure themselves. This
development can be desirable from a system’s perspective as well, since increased
local consumption may reduce peak loads and thus relieve the distribution grids
(Müller and Welpe, 2018). Correspondingly, sharing approaches in the electricity
sector have the potential to promote decentralized structures and to subsequently
assist the transition towards a more sustainable energy system (Tietze et al.,
2019). To accelerate this development and to increase utilization of BESSs on
the individual level, we propose a platform-based sharing economy model to
identify and match suitable communities and investigate financial benefits, fair
revenue distribution as well as matching between prosumers and consumers. In
the course of this study, we answer the two research questions proposed in Chapter 1:

Research Question 2: What are the average financial benefits for a residential
sharing community that engages in sharing of local electricity generation and storage
capacity?

Research Question 3: How does the pricing of the shared goods impact the
distribution of profit shares within an energy sharing community?

In addition, within this chapter, a focus lies on matching suitable participants for
such a community based on households’ load properties. We therefore answer the
following additional research question:

How can suitable participants for a sharing economy be described and matched
into a community based on electricity consumption profile characteristics?

To answer these questions, we first transfer the sharing economy theory into the
context of the energy sector regarding the application of sharing solar generation
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and BESS capacity. We investigate the potential profits of a sharing community
depending on load profile patterns of different participants by simulating 520 shar-
ing communities based on empirical demand profiles. Based on the results of the
simulation, we discuss a fair pricing approach for the shared goods and propose a
solution for the coordination of communities. Finally, we analyse how communities
can be set up most profitably.

4.2 Related Work
In this section, we provide an introduction into the literature on the theory of the

sharing economy and its application to the energy sector. In the first section of the
literature review, we elaborate on the relevance of sharing economy approaches in
the energy sector, shedding light on potential business models and current use cases.
In the second part, we review similar previous research and address the current
regulation on sharing electricity and storage in residential neighborhoods. From
this overview, we subsequently derive the research gap that we aim to fill with this
chapter.

4.2.1 The Sharing Economy in the Electricity Sector

Platform-based sharing economy companies such as Airbnb and Uber have gained
significant attention in recent years by challenging traditional business models.
Through these platforms, existing but under-utilized assets are deployed much more
efficiently, while end-users gain direct control of services and products which they
previously had no access to (Crosby, 2014). On the other hand, the unprecedented
changes in the energy sector require ground-breaking innovative business models and
hands-on solutions that further drive the transition from large power plants towards
decentral and renewable generation (Gholami et al., 2016). Whereas traditionally,
consumers would get their electricity from a large supplier, nowadays, an increasing
number generates part of their consumption autonomously through RESs. These
so-called prosumers are able to partially supply themselves with self-generated local
electricity, making them less dependent on large utilities (Butenko, 2016). Com-
bined with an increasing availability of technology such as smart meters, new digital
solutions can emerge in this setting. Thus, platform-based sharing economies are
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expected to have a significant impact on the energy sector by increasing utilization
rates of assets and by enabling peer-to-peer (P2P) access to energy related products
and services (Crosby, 2014).

A sharing economy can be categorized along the four dimensions shared good,
market orientation (e.g., profit or nonprofit, global or local, online or offline), market
structure (e.g., consumer-to-consumer or business-to-consumer) and industry sector
(e.g., mobility, energy supply) (Plewnia, 2019). In the setting of this chapter this
translates to, (1) the shared good is BESS capacity that is shared (2) for profit
(3) between residential neighbors (4) in the energy sector. The emergence of
sharing economy activities in the context of the energy sector has previously been
investigated by Plewnia (2019) who finds that sharing economy business models offer
the opportunity to accelerate the energy transition as they share the key properties
of decentralization, digitalization and increased P2P interaction. The author derives
six key characteristics of a sharing economy and transfers them to the energy
domain. In line with Crosby (2014), the relevance of digital energy platforms to
increase P2P interaction is highlighted. The leverage of digital technologies allows a
more efficient coordination of the increasingly fluctuating and volatile energy supply
through RESs. The aspect of shared values, in particular, is seen as an important
driver for developments in the energy sector that in some cases may even outweigh
cost advantages. Another feature is the better use of under-utilized capacities,
often through granting access to capital-intensive resources that previously had to
be owned in order to be utilized. Plewnia (2019) further points out the similarity
to prominent sharing economy platforms like Uber and Airbnb with high private
capital investment. This aspect is supported by the findings in Tietze et al. (2019),
where the authors apply the characteristics and dimensions provided by Plewnia
(2019) to three case studies and find that one of the main drivers for sharing
economy models in the energy sector is the investment of private capital in other
assets than real estate, especially in RESs and BESSs, combined with the increasing
independence from utilities. One barrier to these developments, which is identified
both by Crosby (2014) and Tietze et al. (2019), is missing financial incentives for
local energy generation, partially caused by regulatory and bureaucratic hurdles for
sharing approaches. One distinctive feature of the sharing economy in the energy
sector is the reversal of the principle Access instead of ownership in the case of RESs
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for the prosumers. Whereas in the past, most households were pure consumers
who obtained their electricity from large central power plants (and thus without
ownership), nowadays many participate in electricity generation themselves through
owning PV generation systems.

In contrast to other sharing economies, sharing in the energy sector poses some
unique challenges. Since electricity is a homogeneous good and its flows cannot
be physically traced from point A to B, electricity sales need to be coordinated
through balancing software that coordinates transfers and hardware that can realize
the related physical flows (Kalathil et al., 2019). This is especially important when
introducing a sharing economy business model between households as granular bal-
ances of generation and load have to be documented and billed. Further, electricity
supply and demand need to be balanced at all times, i.e., any generation at any given
time must be either consumed directly or stored in a BESS. Nevertheless, renewable
electricity generation from RESs is not considered an under-utilized resource since
it can also be fed into the electricity grid in order to be transmitted and consumed
elsewhere (Plewnia, 2019; Tietze et al., 2019).

4.2.2 Residential Sharing of Solar Generation and Battery Storage

With high electricity prices and comparably low feed-in-tariffs, increasing self-
consumption is the most profitable way to benefit from residential solar generation.
As PV system adoption rates rise, the idea of sharing excess electricity generation
with neighbors to increase self-consumption is investigated by a number of authors.
Due to the fluctuating nature of solar generation with large peaks during the day,
storage technologies can help in further aligning the electricity generation with a
household’s load. However, residential BESSs such as lithium-ion batteries are still
costly and therefore only barely profitable for individual usage (Kaschub et al.,
2016). Thus, larger central BESS capacity is seen as an opportunity to supply entire
communities more independently while benefiting from economies of scale (Barbour
et al., 2018; van der Stelt et al., 2018). However, community storage is not yet
widely applied due to a number of regulatory and bureaucratic barriers (Müller and
Welpe, 2018). Meanwhile, about 400,000 PV-coupled BESSs are already installed
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in Germany, with rapidly increasing numbers. We therefore explore the opportunity
of connecting these existing assets by investigating a sharing economy model for
individual residential PV installations and BESSs.

The implementation of a sharing economy model for residential BESSs is
interpreted differently. Lombardi and Schwabe (2017) investigate the utilization
of BESSs for several business models such as peak-shaving of industrial load and
self-consumption for buildings. Thus, sharing in this context means distributing
a BESS’s capacity amongst different purposes, not users. In contrast to that, in
this study, we investigate the P2P sharing of solar generation and BESS capacity
amongst residential households within a neighborhood in spatial proximity as
suggested by Chau et al. (2019). An extensive overview of trends and challenges in
P2P sharing literature is provided in Tushar et al. (2021), identifying the regulatory
framework as key enabler but also barrier of real-world P2P implementations.
The main motivational factors for the participants in a P2P network are cost
savings and emission reductions (Tushar et al., 2019). However, grid operators
may also benefit from such a scheme due to the possibility of balancing electricity
supply and demand, e.g., by reducing peak demand in a grid section and thus
avoiding infrastructure investments (Tushar et al., 2021, 2020b). Network losses
due to flexible power dispatch of prosumers participating in a P2P network can be
neglected (Azim et al., 2020). A number of authors investigate possible operating
models as well as the financial benefits of sharing PV generation, stored electricity
and BESS capacity in a residential neighborhood. Celik et al. (2016) compare four
operation paradigms for a community of five households with a PV installation
and BESS each, ranging from a central coordination through the utility to a
distributed operation by the end-users to a näıve charge-discharge strategy and
selfish control with no coordination between the households. While the centralized
approach yields the best results in terms of financial gains, it is by far the most
computationally expensive. Velik (2013) investigate the maximization of PV
self-consumption in a neighborhood with six households through electricity sharing
with and without a BESS being installed in each household. The simulation is
carried out with demand data from Austrian households over four weeks in winter
and summer each. Biech et al. (2016) introduce a tool for a smart neighborhood
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simulation and illustrate the benefits of BESS sharing in terms of reduced amor-
tization times over the system’s lifetime. Schlund et al. (2018) simulate different
community sizes within a distribution grid area consisting of 500 households using
synthetic load profiles in order to improve grid stability and to investigate the
ideal community size for BESS sharing in terms of additional self-consumption.
What is missing in the existing literature, is an investigation of the impact
of different configurations of household load profiles on the profitability and the
simulation of sharing communities over a longer period of time than just a few weeks.

Another aspect that is insufficiently addressed in the previously presented pub-
lications, is the distribution of the profits that are generated through the sharing
of electricity amongst neighbors. This could be resolved through either a trading
or a cost sharing mechanism (Chau et al., 2019). The former requires participants
to constantly make decisions to adapt to the market conditions. These can also be
determined by an intelligent agent and be based on a participant’s preferences and
forecasts on consumption and generation patterns. In further research, the analysis of
prosumers’ decision making is often approached with game theoretic models (Tushar
et al., 2018). In the context of sharing PV generation and BESSs on a household
level, they have been applied to demonstrate (theoretical) financial and ecological
benefits, to design pricing and profit distribution schemes and to show equilibria of
different trading mechanisms (Tushar et al., 2019, 2020b, 2017, 2020a; Mengelkamp
et al., 2017). There are several pilot projects on local energy markets with P2P
trading in place today (Weinhardt et al., 2019), but they mostly do not include
BESSs. Instead, projects with BESS sharing at community level are often designed
around a large BESS and handle the sharing by assigning fractions of the BESS to
the community members (Müller and Welpe, 2018). However, (game-theoretic) P2P
trading approaches as described by Tushar et al. (2018) and Weinhardt et al. (2019)
have some limitations. They assume that prosumers are willing to participate in
the trading of energy at least to some extent in order to make profits or increase
a community’s independence from the grid. Even if the decisions are made by an
intelligent agent, information about the participants’ preferences and forecasts on
load and generation might be needed. Given that electricity is a low-involvement
product that most people have no or little experience with (compare Chapter 3) and
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given that financial margins for trading electricity are small, this could pose a high
entrance barrier for local energy sharing communities. In fact, studies on end-users’
participation in energy efficiency measures have shown that only for a vanishingly
small proportion of the participants, behavioral efforts could be observed and even
this group is significantly less motivated beyond the initial euphoria of the first weeks
(Metzler and Jacquemart, 2014; Tiefenbeck, 2017). It has also been shown that the
understanding of electricity consumption is very low in residential households in
general (Brounen et al., 2013). It is therefore questionable whether inexperienced
participants would understand the consequences of their participation and their ac-
tions in an energy trading mechanism. At the very least, it has to be assumed that
the participation in a complex trading scheme could pose an entrance barrier for
many residents. Based on these premises, we design a sharing economy model that
requires no active participation in trading. Instead of a trading mechanism, we pro-
pose the deployment of an “agreed cost-sharing mechanism” as previously suggested
by Chau et al. (2019). Profits are generated by maximizing a community’s overall
self-consumption through an automatic energy management system. The prices for
the shared goods are set through a platform so that the mechanism results in a
subjectively fair revenue distribution.

From the findings above, we derive the necessity of a comprehensive analysis of
the theoretical and practical potentials of a sharing economy model for residential
PV generation and BESS capacity. We transfer the existing theory to this use case,
demonstrate the concept and investigate financial benefits through the simulation of
a sharing economy model for 520 different communities, using empirical load profiles
from Chicago households. We then discuss a fair revenue distribution based on
the gathered data and shed light on the contribution of the individual participants
in the sharing economy based on their load profile properties. Previous work has
either only investigated operation modes and financial benefits or trading and sharing
mechanisms, often with little empirical data on residential load profiles and only
over short periods of time. Additionally, we investigate the possibility of matching
and coordinating profitable energy sharing communities based on their load profile
characteristics.
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4.2.3 Regulation of Local Energy Communities

Regarding the use case of sharing local PV generation and BESS capacity, the general
findings on possible barriers in the energy sector are confirmed by an overview on
current pilot projects and the corresponding business models conducted by Müller
and Welpe (2018). The authors find that many pilot projects face regulatory barriers,
especially if they rely on the public grid instead of an isolated microgrid setup.
They conclude that sharing BESSs may remain a niche phenomenon if no regulatory
adjustments are made. As of today, in many countries, the regulation poses great
obstacles for residential PV system and BESS sharing. In Germany, for instance,
self-consumption of PV generation is free of taxes and levies for all PV systems up
to 10 kWp while selling excess generation to a neighbor through the public grid is
fully burdened with fees of around 0.18 e kWh−1 (BDEW, 2021). With the current
electricity price being close to 0.32 e kWh−1 and with a fixed feed-in-tariff for
electricity from PV systems up to 10 kWp of around 0.10 e kWh−1 (Figgener et al.,
2018), this renders electricity sharing amongst neighbors unprofitable. It is possible
to avoid part of the charges by registering a so-called “customer installation”, in
which case fees related to grid usage of up to 0.12 e kWh−1 does not have to be paid
(Sahle, 2019), rendering a profit window for energy sharing of about 0.1 e kWh−1.
It is thus important to carefully choose the regulatory framework when investigating
the potential benefits of a sharing economy model. Kalathil et al. (2019), for example,
employ a time-of-use tariff as it already exists in many areas of the United States.
Some studies are based on the current regulation but allow for somewhat more
freedom when it comes to sharing, assuming free-of-charge self-consumption and
including feed-in-tariffs for excess generation that is fed into the grid (Biech et al.,
2016; Schlund et al., 2018; Velik, 2013). Instead of fixed feed-in-tariffs, some authors
employ real-time pricing schemes that reflect fluctuations in spot market prices (van
der Stelt et al., 2018) or incentive prices to enhance self-consumption during hours of
high generation (Celik et al., 2016). In the following, we present a sharing economy
model for the described setup with preferential treatment of self-consumption within
a community.
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4.3 A Sharing Economy Model for PV-coupled

BESSs in Energy Communities
Applying the principles derived by Plewnia (2019), we specify the unique features

of a sharing economy model for locally generated and stored electricity and
BESS capacity. Figure 4.1 shows an exemplary configuration of a local sharing
community. Participants can be owners of a PV system (prosumers) and a BESS
(battery-prosumers) or merely participate with their electricity load as consumers
who do not own assets but instead participate by buying excess electricity from
the prosumers and battery-prosumers. All participants are connected to each other
through the public grid.

Figure 4.1.: Sharing community setup: Two battery-prosumers (PV + BESS), one pro-
sumer (PV) and two consumers are locally connected through the distribution
grid and jointly connected to the national grid.

In Table 4.1 and 4.2, we transfer the dimensions and characteristics of a sharing
economy as described by Plewnia (2019) to a residential sharing economy for solar
generation and BESS capacity. Two aspects are especially worth noting regarding
the use case at hand. In the context of local electricity generation, access instead
of ownership and under-utilized resources can be interpreted differently, depending
on the value that is ascribed to the (geographical) origin of electricity. If a value is
ascribed to a local origin, then both of the mentioned principles apply to a sharing
economy model in a local community. Local electricity can indeed be under-utilized
and access instead of ownership applies for consumers who can buy locally gener-
ated electricity from a neighbor instead of investing in a PV system of their own. In
research, it is debated whether consumers are willing to pay a surplus on local elec-
tricity (Kaenzig et al., 2013; Löbbe et al., 2020; Mengelkamp et al., 2019). Of course,
in this context, local electricity also contains the notion of renewable generation. It
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can thus be difficult to differentiate whether consumers actually value the geograph-
ical origin of the electricity (and the independence that comes with it) or simply the
underlying generation technology. Therefore, in our model, we do not assume that
participants in a sharing economy are willing to pay more for local electricity than
the current electricity price. In this setting, while access instead of ownership is
reversed in the case of RESs, it applies for BESSs if the regulatory framework allows
it. For consumers, on the other hand, it then applies for both RESs and BESSs.

Table 4.1.: Dimensions of a sharing economy model for local solar generation and BESS
capacity as described by Plewnia (2019)

Shared good Market orientation

(Local) Electricity from solar genera-
tion: A (battery-)prosumer may share
excess PV generation with neighbors
that have excess demand at the same
time. BESS capacity : A BESS can
be shared in two ways: A neighbor can
buy stored electricity from a battery-
prosumer and she can store her own
excess solar generation in a battery-
prosumer’s storage if there is capacity
available.

Profit-oriented : Participants in the
community share electricity at lower
costs than what they would have to pay
for electricity from the grid. We assume
that no fees have to be paid for self-
consumption of locally generated elec-
tricity. The shared electricity has to
be priced so that no participant suffers
economic disadvantages. A small an-
nual fee could be charged by the service
provider.

Market structure Industry sector

Consumer-to-Consumer
Other settings are perceivable, e.g,
Business-to-Consumer if, for example,
the platform provider offers additional
services or owns BESS capacities.

Energy supply
Within the sector of energy supply, the
provision of energy (i.e., electricity) and
capacity (i.e., BESS capacity) has to be
distinguished.

For the deployment of a sharing economy model, we propose a platform solution to
match and coordinate communities in the spirit of Golla et al. (2020). The benefits
of a well-matched community are shown in the results of the case study in Section
4.5. The platform could be operated by producers and distributors of BESSs as an
additional service to their customers who can provide information and the possibility
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Table 4.2.: Transferring the principles of the sharing economy derived by Plewnia (2019)
to the case study of a local energy sharing community

Aspect Application in Case Study
Platform-
based

A platform is needed for the matching and coordination of commu-
nities and for the provision of information. The platform operators
are service providers and do not need to own any assets.

Leverage
of digital
technolo-
gies

Digital coordination mechanisms are key to manage the interaction
of electricity supply and demand as well as storage operation within
a sharing community. Digital technologies such as smart meters
are necessary for the measurement of the electricity flows that are
provided to the coordination algorithm.

C2C/P2P-
interac-
tion

The sharing economy is made possible through P2P interaction. Lo-
cal (battery-) prosumers share their decentral electricity generation
and storage capacities with other (battery-)prosumers or consumers.
Information, energy and money are exchanged through the digital
platform.

Access
instead of
ownership

(Battery-)Prosumers : Ownership (of RESs, BESSs) instead of
access (to electricity supply from central power plants)
Prosumers : Access (to BESS capacity) instead of ownership (of a
BESS) Consumers : Access (to local electricity and BESS capacity)
instead of ownership (of RES, BESS).

Under-
utilized
resources

Shared good electricity : Not applicable for renewable electricity
generation per se. (Locally) Unused electricity is fed into the grid
and utilized elsewhere. Exception: Sharing can prevent losses of
electricity if PV generation would have to be curtailed during peak
hours due to insufficient grid capacities. Shared good local electric-
ity : Principle is applicable when a value is attributed to the use
of local energy, for example to increase independence from utilities.
Shared good BESS capacity : Higher utilization rate if shared in
energy communities.

Shared
values

The energy transition is widely supported in the public (Renn
et al., 2020). “Green” energy supply and self-sufficiency have non-
monetary value (Mengelkamp et al., 2019).

to simulate the sharing mechanism for community members. A comparable approach
can be observed in the business model of the sonnenCommunity implemented by the
German BESS manufacturer SonnenGmbH (Tietze et al., 2019). This community
is a virtual P2P platform, which allows its participants to share excess PV genera-
tion with other members. Through the intelligent connection of RESs and BESSs,
electricity can be exchanged between community members during peak generation
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times. In contrast to the sharing economy model proposed in this chapter, commu-
nity members do not have to live in spatial proximity and can therefore not benefit
from regulatory schemes implemented for local energy communities.

4.4 Simulating a Sharing Economy for an Energy

Community
To demonstrate the theoretical concept explained in the last section, we simulate

a sharing economy model for PV generation and BESS capacity within a residential
community. For the simulation, we choose the setting of five households as shown in
Figure 4.1 consisting of two battery-prosumers, one prosumer and two consumers. A
similar setting is implemented by Celik et al. (2016) to compare operation strategies
and Schlund et al. (2018) show that 98% of the efficiency of a large energy sharing
community is already achieved with five participating households. While previous
studies often perform these simulations on limited empirical data and over short
periods of time, we compare the results of 520 different sharing communities over
one year with a 30-minute time resolution. Since the utilization rate of a BESS largely
depends not only on a household’s overall consumption but also on the load pattern
throughout the day, we use different combinations of household load patterns for each
community. We then simulate the 520 sharing communities twice: During the first
simulation, we keep all other parameters constant to explore the effects of different
load patterns on the utilization rate of a PV-coupled BESS for different household
configurations. We use real load profiles from a Chicago dataset containing 100,000
household load profiles in 30-minute intervals and scale them to the average annual
consumption of a single-family home in Germany, which is 4,000 kWh. The sizes of
the PV modules and BESSs for each household are chosen to correspond to typically
installed systems in German households so that the resulting community represents
today’s reality as closely as possible (Table 4.3). We use PV generation data from a
research campus in southern Germany and scale the data so that it corresponds to the
generation of an 8 kWp solar installation with 950 full load hours, which is a typical
output for a residential PV system in Germany (AEE, 2013). Losses in battery
components are chosen to correspond to the performance of current household BESSs
(Weniger et al., 2020). In the second simulation, we keep the original absolute loads
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of the households in our datasets. Instead, we scale the size of the PV system and
BESS capacity and power so that the ratio of load to capacity and power remains
the same as in the first simulation. So, for example, a household with an annual load
of 5,000 kWh would have a 10 kWp PV system and a 7.5 kWh / 4.375 kW BESS
installed. This approach may result in BESS and PV configurations that are not
realistic (as sizes come in discrete rather than continuous steps), but it allows us
to specifically investigate and compare the effect of the absolute load vs. the load
pattern on the profitability of the energy sharing community.

Table 4.3.: Assumptions for the sharing community with all parameters kept constant

Assumption Corresponds to

Annual household
load

4,000 kWh Single family home with 3-4 residents (BDEW
et al., 2019)

PV generation ca-
pacity

8 kWp Commonly installed residential PV plant in
Germany (Bundesnetzagentur, 2020a)

Usable (not nomi-
nal) BESS capacity

6 kWh Commonly installed size and corresponding to
assumed annual load (Weniger et al., 2020;
Klein et al., 2019)

BESS charging ca-
pacity

3.5 kW Current systems in the market, which predom-
inantly range between 0.4 and 0.6 kW/kWh
(Weniger et al., 2020)

Efficiency 95% Charging/discharging performance of current
systems (Weniger et al., 2020)

The five households for each of the 520 communities are randomly drawn from the
original dataset. We design two operating strategies for each community: One, where
the households operate individually to maximize self-consumption without sharing
electricity or BESS capacity and one coordinated strategy that maximizes the com-
munity’s self-consumption overall. For both strategies, the sum of the households’
resulting electricity bills is calculated and compared to investigate a community’s
combined profit. The distribution of the revenues among the residents is addressed
separately in Section 4.5.1. We choose a regulatory framework similar to the German
regulation as of today, with an electricity price of 0.3 e kWh−1, and a feed-in-tariff
of 0.1 e kWh−1, for solar generation (Figgener et al., 2018). We assume that all
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electricity generated within the community can be shared without additional costs.
This means that every additional self-consumed kWh yields savings of 20 cents. The
simulation is carried out over one year of household consumption and PV generation
data. In the individual operation strategy, each household follows a greedy strategy
as described in Figure 4.2. (Battery-)Prosumers will first directly consume as much
PV generation as possible, then use the BESS (if existent) to store excess electricity
or supply remaining loads and then resort to the public grid as a last option for re-
maining load or excess generation. The annual electricity cost of a household is then
determined according to Equation 4.1 where buyht and sellht is the electricity that a
household h from the set of all households in a community C buys from or sells to the
grid at time step t for the fixed electricity price pel and the fixed feed-in-tariff pfit.
The overall electricity costs of the community Costc are determined by adding the
costs of all households in the community according to Equation 4.1. Note that the
upper limit for annual electricity costs for a single household is 1,200 e if the entire
consumption of 4,000 kWh is supplied by the grid at 0.3 e kWh−1, which applies
to all consumers in the individual operating strategy. For (battery-)prosumers, the
annual costs can be negative if more money is earned through feed-in than spent on
electricity supply from the public grid, i.e., instead of paying a bill they may receive
a payment at the end of the year.

Costc =
∑
h∈C

Costh Costh =
∑
t∈T

buyht ∗ pel −
∑
t∈T

sellht ∗ pfit (4.1)

Figure 4.2.: Principles of community electricity supply during individual operation (no shar-
ing between neighbors) and coordinated operation (sharing of PV system and
BESS with neighbors)
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Figure 4.3.: Sharing algorithm of the coordinated community operation at each time step

The coordinated operation strategy for the sharing community as depicted in Fig-
ure 4.3 schedules all electricity flows so that a maximum overall self-consumption is
ensured. The color scheme illustrates which actions apply to the respective types
of households. Similar algorithms have been previously presented in Velik (2013)
and Biech et al. (2016) with only battery-prosumers as participants. For this control
strategy, no forecast is needed as it is beneficial under a uniform electricity tariff to
immediately maximize self-consumption at any given time step. At each time step,
(battery)-prosumers first supply their own load with as much PV self-generation
as possible. Then, the sharing economy operator (which can be implemented as a
simple information system) compares the community’s overall remaining load and
excess PV generation. At any timestep, each household sends information about
remaining load, excess PV generation and remaining BESS capacity to the operator.
After the operator compares the overall remaining load and solar generation, any
remaining generation is shared with neighbors that have remaining loads. In case
there is more remaining load than PV generation in the community, the PV gener-
ation is distributed proportionally according to the remaining load of the respective
neighbors, and vice versa (this is important with regards to payments in the sharing
economy model). The community charges its BESS capacity only after as much
PV generation as possible is consumed directly. This is advantageous because the
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usage of storage is associated with costs due to cyclic degradation. Thus, it would
be cost-inefficient for the community as a whole to store electricity instead of shar-
ing it with a neighbor that has immediate load to supply. Each battery-prosumer
will first make use of personal BESS capacity before remaining capacity or stored
electricity is offered to neighbors. The community buys from the public electricity
grid in order to supply remaining load or feed in excess PV generation after as much
PV generation as possible has been consumed or stored directly. At any time step,
the algorithm ensures that the utilization of storage is within the restrictions of the
maximum power capacity of the BESS and that no more electricity is charged or
discharged than the current State of Charge (SoC) allows. The resulting electricity
costs are calculated for the community as a whole according to Equation 4.1. The
overall community profit from the sharing mechanism is then determined as the dif-
ference between the community’s electricity costs during individual and coordinated
operation. For the comparison of overall profits from an energy sharing economy
model, the electricity flows between the individual members of the community are
not relevant and therefore handled as a “blackbox” for now. The flows and the re-
sulting consequences for the pricing and payment of the shared goods are addressed
in Section 4.5.1.

4.4.1 Characterising Participants based on Load Profile Properties

In this study, we aim to not only assess the possible profits of a sharing economy
for PV generation and BESSs, but we also determine the impact of the individual
participants of the energy sharing community and their characteristics on said prof-
itability. This has not yet been explored in the literature: On the one hand, there is
a range of literature dealing with the characterization and classification of electricity
load profiles by means of describing parameters (i.e., maximum daily load, summer-
winter ratio), clustering or pattern mining (see for example S. S. Cembranel et al.
(2019); Chicco et al. (2003); Milton et al. (2018); Rajabi et al. (2017); Ramos and
Vale (2008); McLoughlin et al. (2013); Bicego et al. (2018); Luo et al. (2017); A. K.
Tanwar et al. (2015); McLoughlin et al. (2012)). But these findings have not yet
been applied to the literature on the economics of local energy sharing communities
described at the beginning of this chapter. Therefore, in this study, we apply the



Simulating a Sharing Economy for an Energy Community 103

findings of the research on load profile characterization to find out which characteris-
tics of participants’ load profiles are beneficial for the proposed sharing community.
To this end, Table 4.4 shows a collection of describing parameters that we calculate
for each load profile in our simulations where l corresponds to half an hour during
the day (i.e., l=22 refers to 11 am).

Table 4.4.: Parameters for the characterisation of load pattern (S. S. Cembranel et al.
(2019); Chicco et al. (2003); Milton et al. (2018); Rajabi et al. (2017); Ramos
and Vale (2008); McLoughlin et al. (2012); Bicego et al. (2018); Luo et al. (2017);
A. K. Tanwar et al. (2015); McLoughlin et al. (2013) and own extensions)

Parameter Equation Explanation

Night impact P i
night =

1
3 ∗

1
N
∗
∑

n∈N Ei
d,n

1
T
∗
∑

t∈T Ei
d,t

N = {1, ..., 12} ∪ {46, 47}
The share of the consumption during
night hours n in N of the total daily con-
sumption.

Lunch im-
pact

P i
lunch = 1

8 ∗
1
L
∗
∑

l∈L Ei
d,l

1
T
∗
∑

t∈T Ei
d,t

L = {22, ..., 26}
The share of the consumption during
lunch hours l in L of the total daily con-
sumption.

End of work
impact

P i
EoW = 1

6 ∗
1

EoW
∗
∑

e∈EoW Ei
d,e

1
T
∗
∑

t∈T Ei
d,t

EoW = {32, ..., 38}

The share of the consumption during end
of work hours e in EoW of the total daily
consumption.

Daily mini-
mum demand

P i
min = mint∈T Ei

d,t Minimum of the daily load profile.

Summer/
winter ratio

P i
SWR =

∑
s∈SM

∑
t∈T Ei

s,t∑
w∈WM

∑
t∈T Ei

w,t
The ratio of the total demand in summer
months SM to the total demand in win-
ter months WM .

Daily non-
uniformity
coefficient

P i
NUC = (

1
T
∗
∑

t∈T Ei
d,t

maxt∈T Ei
d,t

) Describes the maximal variation in re-
gards to the average load

PV correla-
tion

P i
PV =

cov(Ei
d,PVd)

σ
Ei
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In Section 4.5.2, we derive statements about the suitability of various participants
for a sharing community. Since we keep the overall electricity consumption constant
during the first simulation, the discovered relationships can be fully attributed to
the pattern of the respective household’s load profile. In the second simulation, we
compare the effects of the load patterns to the effect of changes in absolute load.
In total, we identified 15 parameters during our investigations, but for the sake of
comprehensibility, we present only those for which an impact on the community’s
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performance could be found. Each of the parameters in Table 4.4 is calculated for
every day of the load profile. Then, the median of all resulting values is used to
describe a “median” day of the load profile. This approach compresses the annual
load profile to a few values, thus a lot of information is lost in the process. In or-
der to keep some information, we distinguish between six different “median” days:
First, we differentiate between workdays (Mo-Fr) and weekends (Sa,Su). Second, we
account for seasonal effects by distinguishing between summer (June - September),
winter (December - March) and spring/autumn (April, May, October and Novem-
ber). For each household, we thus obtain 90 parameters that are then used to build
a random forest regression to determine the interaction of load profile properties and
community profits. The used method and our results are described in Section 4.5.2.

4.5 Results: Community Profit, Revenue Distribu-

tion and Participant Matching
For 520 communities consisting of five households each, we simulate a sharing

economy model and compare the annual electricity costs with the case of individual
operation of the assets. Figure 4.4 (left) shows the distribution of profits over the
520 simulations. The community that profits least from the sharing of electricity and
BESS capacity has annual savings of 445 e, the most profitable sharing economy
community yields annual savings of 813 e. On average, 615 e are saved through
the sharing of electricity and BESS capacity amongst five households. By keeping
all other system parameters constant, the results show the effect of different load
pattern configurations on the profitability of a sharing community. The results show
the financial potential of a sharing economy model in residential communities. A
further finding is the effect of a sharing mechanism on the utilization rates of the
assets in the community. Figure 4.4 (right) shows the proportional origin of the
annual electricity consumption, averaged over all 520 communities. Since annual
household consumption is scaled to 4,000 kWh each, the communities consisting of
five households have an annual electricity consumption of 20,000 kWh. During indi-
vidual operation, almost two thirds of the electricity are supplied from the grid. On
average, an additional 3,208 kWh are self-consumed in a sharing community. The
largest effect between individual and coordinated operation can be observed in the
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electricity that is directly consumed from solar generation. The sharing of the BESSs
accounts for only 430 kWh out of the additional self-consumption. While this might
not seem much, it can be explained by a number of factors. First, we assume that
the BESSs are dimensioned to match the annual consumption of a single household,
since we want to explore the sharing potential for existing household PV systems and
BESSs. Larger community BESSs might lead to higher savings. Second, as previ-
ously explained, the joint operation of a solar installation and a BESS has an upper
limit of approximately one cycle per day meaning 365 cycles per year. When com-
paring the utilization rates of the BESS in individual and coordinated operation, we
thus have to consider the additional cycles per year that are achieved through means
of the sharing economy model. This number increases from approximately 280 cycles
per year in the individual scheme to around 320 cycles per year in the coordinated
operation for each of the two BESSs employed in the communities. Given that the
solar generation is limited on many days during the year, this number suggests that
in a sharing community as configured in this simulation, a nearly maximal utiliza-
tion rate of BESSs for self-consumption is achieved. The increased rate of utilization
is thus an incentive for storage owners to participate in a sharing scheme as pro-
posed here. Nevertheless, the bulk of the profits is generated through the additional
direct self-consumption, a result that is partly attributable to the addition of the
pure consumers to the sharing community. Although these consumers do not bring
private capital in the form of technology into the community, they are presumably
an important factor in the economics of the sharing economy business model and
should therefore be encouraged to participate through financial incentives. Nonethe-
less, it can be argued that higher initial investments justify higher profit shares for
(battery)-prosumers. In the next section, we examine different price configurations
and discuss how they encourage the respective types of households to participate in
the sharing community.

4.5.1 Distributional Fairness through a Fixed Pricing Approach

During the simulation, all shared electricity flows at each time step are recorded to
track the amount of electricity that is shared between the respective households in
the community. Figure 4.6 (left) shows this for the average community over one
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Figure 4.4.: Community profit distribution for 520 sharing communities (left), sources of
electricity supply in average community (right)

year. There are three flows that have to be reimbursed differently: First, electricity
from a (battery-)prosumer’s solar panels can be directly consumed by a neighbor at
the price pPV . Second, stored electricity from a battery-prosumer’s BESS can be
consumed by another customer (pstorage) and third, electricity from solar generation
can be sold to a battery-prosumer to be stored in her BESS. Note that for the
latter, the BESS owner pays pcharge to the (battery-)prosumer who provides the
electricity. We propose to choose fixed values for each of these prices. This is a
contrasting approach to a trading mechanism, but, as previously argued, it offers
decisive advantages. A fixed pricing mechanism is de facto “business as usual” for
the majority of electricity consumers. However, the fixed prices of the shared goods
have to be chosen carefully and thus we demonstrate the effects of different pricing
configurations in this setting. We argue that some conditions have to be met to
result in a “fair” profit sharing outcome. The concept of fairness is quite ambiguous
in research and for more differentiation on fairness consider (Joshi, 1989). We
stipulate that distributional fairness is achieved if (i) larger investments result in
larger profit shares, (ii) additional consumption of locally generated electricity is
rewarded (i.e., profit share of consumers > 0), and (iii) no household is penalized for
participating in the sharing economy community (i.e., the profit from participating
in the community has to be larger than during individual operation). To ensure
that no household suffers economic disadvantages from participating, certain limits
apply to the three previously described prices (compare Figure 4.5). All have to
be above the feed-in-tariff so that there is no incentive to feed electricity into the
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public grid instead of sharing it. Similarly, consuming local electricity should always
be advantageous and thus pstorage and pPV should be less than the grid electricity
price. The price that is paid for stored electricity pstorage has to be at least as high
as the price that the owner pays for storing electricity (pcharge) plus the (marginal)
costs of storing an extra kWh in the BESS ckWh. The marginal costs ckWh are
difficult to determine. In general, the LCES can be calculated using the overall
system costs and dividing it by the capacity and the achievable cycles during a
lifetime. For lithium-ion batteries, Lai and McCulloch (2017) find this value to be
between 0.36 and 0.69 $ kWh−1. As system costs have decreased significantly in
the last years, one German online information portal claims that the LCES can
be as low as 0.15 e kWh−1 for small-sized BESSs currently in the market, even
without considering subsidies (Kloth, 2022). However, it could also be argued that
in the case of under-utilized BESS capacity, the marginal costs are zero because
without the sharing economy model, the BESS would never reach full cycle life
before reaching its calendaric end of life of up to 20 years (sonnen GmbH, 2020).
Either way, considering the initial investment costs, for the revenue distribution, we
stipulate that a battery-prosumer receives a larger profit share than a prosumer,
and that a prosumer in turn receives a larger share than a consumer. Subsequently,
in the investigated pricing schemes for a sharing economy model, ckWh is set
sufficiently high to ensure these conditions. The configuration of the prices can then
be reduced to two decisions: How much is storage worth (setting ckWh )? and How
much is local consumption being rewarded (setting pPV )?

Figure 4.5.: Upper and lower bounds for fair pricing of PV generation (pPV ), charging
storage (pcharge) and buying electricity from storage (pstorage) when considering
the marginal costs of storage ckWh

The flows from the PV system and BESS owners to the consumers in Figure 4.6
(left) show that consumers are responsible for requesting the majority of shared
direct self-consumption and stored electricity, again underlining the importance of
consumers for the overall profitability. Interestingly, roughly one third of stored
electricity is consumed by the respective BESS owner and two thirds are shared with
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neighbors. This is due to the implementation of the algorithm without forecasts
that enables the provision of stored electricity to supply a neighbor’s load at time
step t without considering whether the storage owner might need it for personal
demand in time step t + x. However, it is also beneficial for the storage owner to
sell this electricity rather than consuming it later.

Figure 4.6.: Electricity flows in the average sharing community (left). Distribution of com-
munity profits amongst household types in percentages considering different
pricing schemes for shared electricity (right)

The four exemplary pricing configurations in Figure 4.6 (right) illustrate the ef-
fects of setting pPV and ckWh. Green borders indicate a fair profit distribution for the
median community, purple borders highlight unfair distributions. When the two pa-
rameters are set to their respective upper limits (bottom right), (battery)-prosumers
receive the maximally possible profits at the expense of the consumers. This scheme
is not feasible under our fairness principles as it provides no incentive for a con-
sumer to participate in the sharing economy model. A contrary effect is created if
the pPV is set significantly lower at 0.20 e kWh−1 (bottom left). In this setting,
a consumer is rewarded more than the prosumer, which contradicts the guideline
that we previously set that higher investments should yield higher profit shares. We
therefore conclude that the price for PV generation has to be somewhere in between
0.2 and 0.3 e kWh−1 in our setup to reward consumption without marginalizing
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initial investments in technology. A possible fair revenue distribution scheme is thus
illustrated in the top left graph where pPV is set at 0.25 e kWh−1. With an average
of around 615 e annual profits for a sharing community, each of the two battery-
prosumers receives around 185 e, the prosumer receives around 120 e and each of
the consumers 60 e. In this initial feasible revenue distribution scheme, we set the
reward for an investment in a BESS as high as possible with ckWh = 0.2 e kWh−1

since we argue that a battery-prosumer should receive a larger share of the profit
than a prosumer. The effect of a slight reduction in ckWh on this ratio is shown
in the graph in the upper right corner. While the profit share of the consumers
does not change substantially, in the average sharing community, the gap between
battery-prosumers and prosumers is gradually closing. This could be justified by the
observation that the majority of profits comes from additional PV self-consumption
rather than stored electricity as seen in Figure 4.4. As shown with the examples
in Figure 4.6 (right), there is more than one set of fixed prices that would ensure
distributional fairness as previously defined. Note that while we always refer to the
outcome of the pricing configurations on the average sharing community, the box-
plots show that the distribution of profits can differ significantly in individual cases.
However, the choice of prices can also serve to incentivize individual participants to
shift their electricity load in benefit of the sharing community. In a platform-based
sharing economy model, the pricing configuration should be considered individually
for each sharing community as it is a crucial design element of the initial setup.
In general, fair pricing and revenue distribution needs to be further investigated,
possibly by undertaking field studies on residential preferences and willingness to
participate in a sharing economy model as proposed here.

4.5.2 Matching Communities: Suitability of Participants based on Load

Profile Properties

In this section, we want to investigate how to predict the profitability of a sharing
community based on the participants’ load profile properties. We find that there
is a dependency between the performance of battery-prosumers during individual
operation and the community profits in a sharing economy (Figure 4.7, left). As
previously mentioned, (battery-)prosumers can have negative electricity costs and
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during our simulation, this was always the case for the battery-prosumers. The
figure shows that when the two battery-prosumers in the community perform poorly
in individual operation, i.e., their positive cashflow is small when they operate by
themselves, the sharing community’s profit tends to be larger. No such relationship
could be found for the one prosumer (without BESS) in the community. It is
an interesting finding that battery-prosumers with poorer individual performance
would have a greater incentive to participate in a sharing economy. Since they
contribute the largest investments to the community, their willingness to participate
is crucial for the formation of sharing communities.

Figure 4.7.: The two battery prosumer’s (average) cashflow during individual operation
compared to the community profit from sharing electricity (coordinated oper-
ation) (left). Relationship of a community’s additional self-consumption from
PV generation and stored electricity (right)

The overall profits of a sharing community can be attributed to the addi-
tional self-consumption from (a) PV generation (direct self-consumption) and
(b) stored energy. We therefore split the overall additional self-consumption of
each sharing community into these two parts. We find that there seems to be no
dependency between additional self-consumption from PV-coupled BESSs (Figure
4.7 right), and we will investigate if we can predict either of these values from
participants’ properties. Therefore, we want to investigate how we can predict the
three target variables (1) additional (direct) PV self-consumption, (2) additional
self-consumption of stored energy and (3) overall community profit in a sharing
economy, using only the attributes of participants’ load patterns. We use the
load profile properties described in Section 4.4.1 and obtained 90 descriptive
parameters for each household. We train a random forest regression using the



Results: Community Profit, Revenue Distribution and Participant Matching 111

RandomForestRegressor method of the Python package sckit-learn. We average each
of the 90 parameters for three sets of participants: (i) the two battery-prosumers,
(ii) the two consumers and (iii) all community participants. We then use them as
input to predict our three target values. In addition, we train one more tree with
the input parameters of battery-prosumers and consumers combined, resulting in
180 input parameters. The maximum depth of the regression tree is set to 12.
To evaluate the overall performance of the regression, we split the 520 households
in a training (n = 450) and test (n = 70) set. We then calculate the mean
squared error (MSE) for the predictions on the test set and compare it to a naive
benchmark (Dekking, 2007). As naive benchmark prediction, we use the average of
the respective target value for each community (e.g., 615e for the community profit).

The resulting improvements of the MSE when compared to our naive benchmark
are shown in Table 4.5. We find that we can improve the MSE for all target values
significantly when using the participants’ load profile pattern parameters as input.
Interestingly, we can improve our prediction of additional self-consumption from
storage by over 40% using the battery-prosumers’ parameters as input, but achieve
virtually no improvement when using the consumers’ parameters. For additional
direct PV self-consumption, it is the other way around: Our prediction improves by
almost 80% with the consumers’ parameters as input and only 9% using the battery-
prosumers’ parameters. The average over all households taken together yields the
worst results which shows that too much information is lost by averaging over all
households. We achieve the best results for additional PV self-generation and com-
munity profit when combining the battery-prosumers’ and consumers’ parameters,
however the improvements are marginal. From the results we derive that one has
to take a closer look at different participants depending on the target of a sharing
economy. If the aim is to increase the utilization of PV-coupled BESSs, then it is
best to include suitable battery-prosumers while the properties of the other partic-
ipants are less important. On the other hand, if the main goal is to increase direct
PV self-consumption and overall profitability, the properties of the consumers that
are added to the sharing economy are decisive. It should be noted that we also per-
formed all of the predictions with the load pattern parameters of the prosumer (both
individually and in combination with the other participants) but no improvements
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could be achieved in any scenario. We conclude that the properties of the single
prosumer are of very little importance compared to the other participants in our
scenario.

Table 4.5.: Improvement in MSE when using participants’ load profile properties to predict
the performance of the sharing community

Target value
Additional (di-
rect) PV self-
consumption

Additional self-
consumption
from storage

Community
profit

Input property

Benchmark (aver-
age)

100%
(MSE=74283)

100%
(MSE=13165)

100%
(MSE=3710)

Battery prosumers 91.1 % 56.9% 98.8%

Consumers 22.9% 98.4% 30.6%

All households 82.9% 86.7% 79.5%

Consumers + Bat-
tery prosumers

22.3% 60.7% 25.5%

Based on our results in Figure 4.7 and Table 4.5, it seems that battery-prosumers
that perform relatively worse on their own, i.e., their load profile leads to a low
BESS utilization, profit from joining or establishing a sharing community. To better
understand the results and the importance of individual features in predicting the
target values, we use the Shapley Additive Explanation (SHAP) introduced by
Lundberg and Lee (2017). The SHAP value is more robust than classic feature
importance measures as it avoids inconsistencies such as giving higher importance
to features that are used earlier in a tree split. For each observation, the SHAP
value calculates the marginal contribution of each feature to the target variable.
This impact can be calculated both globally (i.e., the overall average impact of the
parameter on the model output) and locally (i.e., the impact of the parameter on
the output for each observation in the data set), which increases the transparency
for the interpretation of the features’ impact. Figure 4.8 shows the ten highest
global and local SHAP values in the case of predicting additional self-consumption
from storage with the battery-prosumer’s load profile parameters. We can see
that the daily minimum demand in summer and spring/autumn on weekends has
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a strong negative effect on the target value. This means that battery-prosumers
with high minimum daily demands on weekends perform better on their own. Our
explanation of this observation is as follows: A high daily minimum demand speaks
for a relatively less “peaky” load profile. Households with a more even consumption
spread throughout the day might make better use of the surplus generation that
is stored in the BESS during the day. Notably, both of the two most important
features are on the weekend. We suspect that this is the case because most
households exhibit a “beneficial” pattern for BESS utilization during the workdays
anyway: Standard load profiles typically have high demand in the evening hours.
Therefore, the behavior on weekends makes the difference between overall better or
worse BESS utilization.

Figure 4.8.: Global (left) and local (right) SHAP values of the ten highest battery-prosumer
feature impacts on additional self-consumption from storage in a sharing com-
munity

Interestingly, the PV correlation of battery-prosumers load profile during sum-
mer and on workdays in spring/autumns has a positive effect on additional self-
consumption from storage. This is surprising because higher demand during PV
generation hours should lead to less available surplus generation to be stored in the
BESS. This apparent contradiction can be partially explained by looking at the right
side of the diagram. The local SHAP values on the right show the impact of the in-
put parameters on each observation in the dataset, i.e., the individual communities.
The impact of the PV correlation for example is left-skewed: While low values have
a high (negative) impact on the target value, high values have a less pronounced
positive impact. From this we can deduce that especially low PV correlation leads
to less additional self-consumption from BESSs in a sharing community. This could
be explained by the fact that households that exhibit a contradicting pattern to PV
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generation have high BESS utilization rates anyway, meaning that there is not much
room for improvement by means of a sharing economy.

The participation of consumers in a sharing economy community has not been
the focus in previous research, as they do not own any energy-related technologies
that would justify their participation in the community. Therefore, the contribution
of their electricity demand and load pattern to the profitability of a sharing
community has not yet been extensively analysed. This might immensely influence
the profitability of the sharing economy model and utilization rates of BESSs.
Biech et al. (2016) find that in a community consisting of only battery-prosumers,
internal trading is very low and could be increased by adding consumers. This
relationship is also evident in the flow diagram in Figure 4.6 (left), where it can
be seen that consumers are responsible for most of the energy exchange within the
P2P network. The results of our prediction further emphasise the importance of
consumers in a sharing economy for PV-coupled BESSs. The load profile properties
of the consumers explain the majority of additional self-consumption from PV and
ultimately community profit in our simulation. Figure 4.9 shows the top ten most
important features for the identification of suitable consumers. Unsurprisingly, the
PV correlation in summer on workdays is the most important feature. Yet, the
PV correlation in summer on weekends is not among the top ten parameters. We
suspect that this is the case because it is more unusual for a household to correlate
with PV generation during the week than on the weekend.

Figure 4.9.: Global (left) and local (right) SHAP values of the ten highest consumer feature
impacts on community profit from sharing electricity

On workdays, standard load profiles usually have relatively low demand during the
day. Both PV correlation and the closely related parameter lunch impact appear for
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all seasons on workday in the ten most important parameters. Twice among the top
three is the summer-winter ratio. Here, a high value corresponds to higher additional
PV self-consumption. Since our dataset consists of households from the USA, there
are many load profiles with high demand in summer, indicating an air-conditioning
system which is likely reflected in this parameter.

When adding the parameters of battery-prosumers to the input features, we
achieve a 5% improvement of community profit prediction. However, the ten most
important parameters (compare Figure 4.10) are congruent with Figure 4.9, only
slightly differing in the importance order. Only the sixteenth parameter, end of
work impact in summer on weekends, belongs to the battery-prosumers. A high
value indicates a relatively high demand in the late afternoon and evening hours.
These households might have a better performance on their own due to high BESS
utilization rates and thus profit less from entering a sharing community.

Figure 4.10.: Global (left) and local (right) SHAP values of combined consumer and
battery-prosumer feature impact on community profit from sharing electricity

In summary, we can conclude that the choice of suitable participants impacts
a sharing community’s profit immensely and should therefore be considered when
matching a community. Different properties are relevant for the respective choice of
battery-prosumers and consumers, for them and others to profit most from an energy
sharing economy. Since all other parameters of the community’s configuration are
kept constant in our simulation, a causal relationship between the identified load
profile properties and target values can be concluded. These features can therefore be
utilized to match sharing communities with high profit potentials. The identification
of relevant parameters is of high practical relevance as well: Since the load profile
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pattern parameters that are used in this study can be intuitively explained by certain
behavior known to the household, they can be approximated even without data of
load profile measurements. A promising next research topic would be to link specific
behavior or work patterns to the relevant load profile parameters that are identified
in this study.

4.5.3 Impact of Changes in Absolute Load

During the simulation, we deliberately set all community and household parameters
to the same values to explore causal relationships between the load profile patterns
and the performances of sharing communities. However, in practice, this will likely
not be the case for households that could potentially be connected in a sharing econ-
omy. We thus ran the simulation of the 520 sharing communities a second time, this
time with the original absolute annual loads of the households in the dataset. Our
objective with this is to quantify the impact of absolute loads, compared to the effect
of load patterns, on the target values of the performance of a sharing economy. In
order to retrieve comparable results to our first simulation, we scaled the PV system
and BESS so that the relation between absolute load of a (battery-)prosumer and in-
stalled technology is the same as in the first simulation. This means that for example
a battery-prosumer with an annual load of 6,000 kWh would operate a 9 kWh BESS
and a 12 kWp solar installation. Obviously, there is a dependency between absolute
loads of (battery)-prosumers and resulting community profit and self-consumption
from PV generation and BESS. For this reason, we look at relative instead of ab-
solute changes in community profits during the evaluation. Furthermore, instead of
predicting absolute additional self consumption, we now define our target values as
(1) additional self-consumption from storage per installed kWh and (2) additional
(direct) PV self-consumption per installed kWp. This is plausible because larger PV
systems and BESSs cause larger investments and thus more self-consumption does
not automatically result in a more profitable investment. However, in this simula-
tion, the annual loads of the households relative to each other vary substantially.
Furthermore, the load of the consumers is not considered during the sizing of PV
systems and BESSs and is therefore expected to have a large effect on the simulation
outcomes.
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For the prediction of our three target values, we again use the 90 load pattern
parameters and add the absolute load as additional input parameter. Figure 4.11
shows a selection of SHAP values for the prediction of our target values. We
find that additional self-consumption from storage per kWh can again be best
explained using the battery-prosumers parameters, achieving a 23% improvement
compared to the benchmark MSE. Figure 4.11 (right) shows the corresponding
SHAP values which indicate that the absolute load is not among the parameters
that are decisive for increasing BESS utilization. Similar to the previous results,
the most important parameters are daily minimum demand and PV correlation.
On the other hand, for the prediction of the relative community profit, the
absolute load is by far the household feature with the most impact. Here, we
achieve the best results when using both the consumers’ and battery-prosumers’
parameters as input, resulting in an 84% improvement compared to the bench-
mark prediction. The annual load of the consumers has the largest impact on
the relative gain, closely followed by the annual loads of the battery-prosumers.
Notably, the latter effect is negative, indicating that battery-prosumers with low
annual load profited more from joining a sharing community, possibly because
they are matched with (relatively) larger consumers that increased self-consumption.

Figure 4.11.: Left: Ten highest SHAP values for the prediction of relative community profit
using consumer and battery-prosumer parameters. Right: Ten highest SHAP
values for the prediction of additional self-consumption from storage per kWh
using battery-prosumer parameters.

In summary, we see large effects of absolute changes in annual loads on the prof-
itability of a sharing community. It is worth noting that the households in our dataset
exhibit quite high annual demand in general. Even though we only use single family
households without electric heating, the average annual electricity consumption in
our data subset is around 7,500 kWh, ranging from around 2,000 kWh to more than
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1,2000 kWh. We suspect that this is related to the origin of the data that stems from
American households, which evidently have higher electricity consumption than av-
erage European households possibly caused by an higher market penetration of air
conditioning devices. It is therefore plausible that in many residential neighborhoods
in Europe, the spread in annual electricity consumption is not as pronounced and
therefore effects of load pattern changes have arelatively greater impact.

4.6 Discussion
For the first simulation, we set all technological parameters as well as overall

consumption to fixed values in order to explore the effects of differing load patterns.
The storage units are sized to resemble a BESS that is commonly installed in
a residential household as of today. It is however also conceivable that with
the appropriate regulatory framework, a sharing economy model as proposed
incentivizes the installation of larger community storage units. To get a first idea
of the impact of larger BESSs, we repeat the first simulation with larger storage
units with a capacity of 8 kWh and a power output capacity of 4.6 kW each while
all other parameters and load profiles remain the same as before. Figure 4.12 shows
the origin of annual community electricity consumption in a direct comparison of
the two BESS sizes and averaged over all 520 communities.

Figure 4.12.: Left: Comparison of sources of community electricity supply in average com-
munity for 6kWh and 8 kWh BESSs. Right: Ten highest SHAP values for the
prediction of additional self-consumption from storage with battery-prosumers
parameters.

The direct PV self-consumption remains the same in both cases as no adjust-
ments are made to the size of the PV installations. During the individual opera-
tion, the share of the consumption of stored electricity is slightly larger than with
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smaller BESSs. A more significant difference can be observed in the additional self-
consumption from BESSs in the coordinated sharing community where 22% instead
of 17% of stored electricity are now consumed. However, the utilization rate of the
larger BESSs in the coordinated operation decreases from 320 to 307 annual cycles.
This could still be sufficient to justify the installation of the larger BESSs as it might
benefit from smaller specific system costs (Luo et al., 2015). To find out which of the
load profile properties affect BESS utilization with a larger storage, we repeat the
prediction of the additional self-consumption from storage. We again achieve the best
results when using only the battery-prosumers’ load pattern parameters, improving
the naive benchmark by 54% (compared to only a 43% improvement with smaller
BESSs). The most important features for determining battery-prosumers that profit
from entering a sharing community (shown in Figure 4.12, right) are similar as with
the smaller BESSs (compare with Figure 4.8), except that for larger BESSs, the
summer-winter ratio appears among the most important features. As we argued be-
fore, a high summer-winter ratio might indicate the presence of an air-conditioning
system. The impact of this attribute is right-skewed and has a negative impact on
the target value, indicating that the absence of an air-conditioning system leads to
higher additional self-consumption from storage in a sharing community, but not
the other way around. This observation could be easily used in practice to identify
suitable candidates for a sharing community.

We assume a fixed electricity price and feed-in tariff as is they are common in many
countries today. However, as we argued before, from a system’s view, BESSs are a
flexibility measure that could complement grid capacities, and other tariffs might
incentivize consumption at certain times. Investigating other regulatory frameworks
such as time-of-use tariffs or real-time-pricing of electricity could thus yield interest-
ing additional insights.

4.7 Conclusion
In this chapter, we provide a comprehensive examination of the theoretical and

practical potentials of a sharing economy business model for a residential energy
community that engages in the sharing of solar generation and BESS capacity.
First, the theory on sharing economy is addressed, highlighting the potential that is
attributed to its application in the energy sector. The simulation of 520 communities
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shows that a sharing energy community with five households as configured in the
case study yields average annual profits of 615 e that vary individually with the
load patterns of the participating households. A fixed pricing approach is suggested,
which considers fairness aspects to distribute the generated revenues amongst the
participants within the sharing economy. Finally, it is demonstrated that the
selection of suitable participants, based on load profile properties, can enhance the
potential revenues and also incentivize the participation in sharing local RES and
BESS resources.

This chapter shows the potential of connecting several individuals in the residen-
tial sector through a platform-based sharing economy model. The resulting energy
communities can help to ensure that BESSs on the connected individual level are
effectively deployed by integrating generation from RESs locally and thus increasing
the utilization of existing BESS resources. In this chapter, we make several assump-
tions regarding regulatory adjustments that allow energy communities to profitably
share their resources and creates additional investment incentives for individuals to
install BESSs. Whether these regulatory barriers actually are removed, however,
depends on the objectives of policy-makers at the higher system level. This level is
the focus of the next chapter.



CHAPTER 5

BOTTOM-UP SYSTEM MODELING OF BAT-
TERY STORAGE REQUIREMENTS

From a system planner’s perspective who aims at reducing emissions, it is impor-
tant to analyse pathways towards low-carbon, integrated energy systems in order to
determine the corresponding requirements in terms of RES and BESS capacities. In
this regard, the literature overview in Chapter 2 revealed that the central planning
of storage requirements on the system level often neglects the underlying decentral
structures, such as changing local consumption and the distribution network, as well
as the resulting spatial distribution of generation capacities and BESS technolo-
gies. Central planning further disregards regions with lower generation potentials
and thus ignores large parts of the immense potential of distributed RES and BESS
installations on the lower aggregation levels of a system, which was investigated in
the two previous chapters. To provide alternative perspectives, in this chapter, a
bottom-up modeling framework is introduced for the decentral and central planning
of an integrated energy system with high shares of RES generation. Both the distri-
bution network structure and changing local consumption due to electrification are
incorporated in the modeling approach. The framework allows the analysis of path-
ways in between a cost-optimal system design and an equitable spatial distribution
of RES and BESS capacity within a supply system. In addition, the optimal com-
bination of short- and medium-term storage technologies, namely LiBs and RFBs,
is investigated. The results for the case of the German state BW show that a cen-
tral planning of renewable generation and storage capacity requirements results in a
significant lower LCOE than a decentral design. However, pathways in between the
two alternatives can lead to a more equitable inclusion of communities in the energy
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transition at reasonable cost increases and thus leverage the potential of the lower
aggregation levels of an integrated energy system.

This chapter comprises large parts of the unpublished article under review: S.
Henni, M. Schäffer, P. Staudt, C. Weinhardt, P. Fischer, Bottom-up System Modeling
of Battery Storage Requirements for Integrated Renewable Energy Systems, Working
Paper, 2022.

5.1 Introduction
As outlined in Chapter 2.1, one key insight of previous studies on BESS require-

ments has been that short- and medium-term BESSs (up to 24 hours of storage
duration) suffice for the integration of large RES shares up to close to 100% (Zer-
rahn and Schill, 2017). Studies often model these requirements with generic storage
models or limit themselves to one technology, such as LiBs, while disregarding other
technology options. Moreover, the focus of previous studies has been to model cen-
trally planned, theoretically cost-optimal energy systems. These central approaches
may not reflect actual total costs, as local acceptance issues can lead to delays and
thus, cost increases. The question of RES and BESS capacity distribution is there-
fore essential for policy-makers and local stakeholders and needs to be addressed.
Furthermore, as the expansion of renewable generation occurs decentrally and in-
volves many local actors and decision-makers, it is necessary to not only consider
system-wide requirements but to also take local and regional structures of an inte-
grated energy system into account. An (extreme) alternative approach to a central,
cost-optimal design of an integrated energy system is a decentralized organisation
with a focus on local power supply and demand. This would result in a more even dis-
tribution of RES and BESS capacity expansion and the inclusion of more geographic
regions in the design of the energy supply system. Moreover, through opportunities
for citizen-financed community RESs, broad sections of the population can be in-
volved, which on the one hand provides financial leverage for the energy transition
and on the other hand has been proven to increase acceptance among the population
(Pons-Seres de Brauwer and Cohen, 2020). Modeling a decentrally organised system
requires the incorporation of local electricity consumption structures and the distri-
bution network topology. In previous literature on system-wide BESS requirements,
distribution network structures have been mostly neglected, even though they are
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becoming increasingly important with the mass installation of RESs at lower voltage
levels. Moreover, to address the challenges of an integrated energy system, future
developments regarding the electrification of demand for heat and transportation,
also referred to as sector coupling, need to be included and assumptions about local
energy supply need to be made to model and analyse regional differences.

Contrary to existing literature, we therefore propose a bottom-up approach that
allows both the decentral and central planning of an integrated system, taking into
account future increased local consumption in an integrated energy system as well
as the (simplified) consideration of distribution grid structures. First, we divide the
considered system into smaller, self-contained regions based on power substations
in the distribution grid. In a second step, we group the isolated regions into larger
distribution network groups, again based on the grid topology. Lastly, we model an
integrated energy system, in which the distribution network groups can exchange
electricity with each other through the existing and planned transmission network
infrastructure. In order to be able to take local consumption structures into account,
we propose a novel method for the regionalisation of national development paths
regarding electricity consumption until 2050. Generation is modeled endogenously
using weather data and information on available areas for RESs.

We demonstrate our approach using the case of the south-western German state
of BW. We model the requirements in terms of generation and BESS capacity
expansion to achieve at least 90% renewable electricity supply in the three scenarios
described above. The results of this study are of interest for policy-makers and local
stakeholders, as they must address the conflicts that arise on a local level when
expansion targets are planned centrally. We therefore answer the following central
research question:

Research Question 4: What are the trade-offs in terms of levelized cost of
electricity and storage requirements in an energy system using decentral planning
compared to central planning?

A particular focus of this chapter lies on the explicit consideration and modelling
of short- and medium-term BESS technologies, i.e., LiBs and RFBs (see Section
2.2 for a detailed assessment of the two technologies). In addition to answering the
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central research question, we thus also address the following research question in
the course of this chapter:

What is the optimal combination of short- and medium-term storage technologies
in an integrated energy system considering the electrification of heat and transporta-
tion demand?

The remainder of this chapter is structured as follows: First, we address related
work on acceptance issues in the context of RES expansion, which motivates the
identification of alternative pathways to central planning. Then, we introduce a
methodology to model local energy consumption and generation until 2050. Based
on this, RES and short- and medium-term BESS requirements can be determined for
any level of spatial aggregation. Finally, we determine the renewable generation and
BESS requirements until 2050 for south-west Germany in a case study and quantify
the trade-offs in terms of needed BESS and RES capacity and LCOE when planning
renewable expansion decentrally or centrally.

5.2 Related Work
The overview on storage requirements in Section 2.1 reveals that most previous

studies rely on central planning. This approach disregards local structures of inte-
grated energy systems and the distributional realities of cost-efficient RES and BESS
expansion. As the urgency of the climate crisis is increasingly being recognized by
the public, general acceptance and support of the public for the expansion of RESs
is high (Segreto et al., 2020). In a recent survey in Germany, 83% of all respondents
were in (strong) support of RES expansion (AEE, 2021). However, there remains
a large gap between general acceptance and ongoing support when a local commu-
nity is directly impacted by a specific project involving RESs (Segreto et al., 2020).
Particularly, in connection with wind turbines, but also transmission lines and other
large projects, the so-called NIMBY-phenomenon (Not-In-My-Backyard) can often
be observed: While there is a consensus among the population that measures must
be taken somewhere, projects in the immediate vicinity are sometimes strongly op-
posed by the local population (Smith and Klick, 2008; Segreto et al., 2020). Some
of these concerns can be addressed through targeted and well-designed measures.
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According to Emmerich et al. (2020), local acceptance of BESSs can be solely ex-
plained by the trust placed in the responsible local actors from municipalities or
industry. In the case of wind power projects, the local integration of the developers,
the creation of a local network of supporters for the project and the possibility for
citizens to participate financially in the installations are decisive for a realisation
without resistance (Jobert et al., 2007). A positive correlation has also been found
between self-managed wind turbines in a community and local acceptance (Musall
and Kuik, 2011).

By the nature of renewable generation technologies, there are usually geograph-
ically limited regions within an energy supply system that are particularly well
suited for the expansion of RESs (e.g., rural regions with high wind speeds and
large non-residential geographic areas available). It can therefore be assumed that
a cost-optimal solution for designing a low-carbon energy system, as presented in
previous studies, would result in the over-proportional expansion of RESs in certain
areas. This approach fails to consider varying local acceptance and thus may be
undesirable in two respects. On the one hand, the disproportionate use of land in
communities with high potential can lead to resentment and a lack of acceptance in
these regions. On the other hand, communities that have lower potentials but could
make an important contribution due to committed local stakeholders are ignored. In
consequence, potentials to actively involve the population in the energy transition,
including substantial financial potential, are neglected (Pons-Seres de Brauwer and
Cohen, 2020). The path towards a low-carbon, integrated energy system therefore
requires the assessment of alternatives to a central planning transition path that
lead to more equitable capacity distribution and inclusion of communities.

5.3 Methodology: Modeling Battery Storage Re-

quirements
Our method to model an integrated energy system consists of several steps

as shown in Figure 5.1. Prior to determining RES and BESS expansion needs
on different levels of spatial resolution, we need to make assumptions on the
regional structure and magnitude of electricity demand and generation. For an



126 Bottom-up System Modeling of Battery Storage Requirements

integrated energy system, it is important to consider structural changes, such as
the electrification of individual transport and heat demand. For the consumption
input data, we therefore rely on elaborate studies on pathways to decarbonizing
energy systems that consider these developments. These studies have proposed
values for nation-wide energy consumption until 2050, provided that a certain
level of decarbonization (usually a CO2 reduction of 80-95%) is achieved. Since
these analyses usually only exist for large energy systems, i.e., on a national
level, values for electricity demand must be spatially and temporally resolved
to model local consumption within these energy systems. Subsequently, the
resolved energy consumption values serve as input to model local and regional
RES expansion and BESS requirements in three scenarios overall while considering
the structure of the distribution network. First, municipalities that are connected
to the same substations in the distribution grid are grouped together. Second,
larger (distribution) network groups are determined, i.e., geographic regions beyond
whose borders electricity is only exchanged via the transmission grid. In both
described scenarios, the respective regions are modeled as self-contained energy
systems without electricity exchange across borders. This ensures a local or
regional supply from RES. Finally, in the third scenario, the existing and planned
transmission grid is included to allow power exchange between distribution network
groups. In the following, we describe the steps displayed in Figure 5.1 in more detail.

Figure 5.1.: Methodological Framework
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5.3.1 Modelling Local Energy Consumption in 2050

Based on two studies on decarbonization pathways for Germany, namely the “Inte-
grated Energy Transition” (dena, Bründlinger et al. (2018)) and “Climate Pathways
for Germany” (BDI, Gerbert et al. (2018)), we identify three main (future) con-
sumption sectors for electricity: Buildings, Industry, and Transportation. Buildings
include both electricity needed for household appliances as well as the increasing de-
mand for electrified heating in buildings through heat pumps. Industry contains the
manufacturing sector as well as demand in the trading, commerce and services sec-
tors. In the Transportation sector, rising numbers of electric vehicles are responsible
for a sharp increase in demand for electricity.

In order to enable a comparison of different studies and scenarios, we design a
generalizable modeling method for determining local consumption values based on
the national values for electricity consumption in 2050 that are reported in various
studies. We apply a three-stage top-down methodology using socio-economic param-
eters to regionalize the national consumption values to the municipality level, the
smallest political unit for which socio-economic data is available in Germany. This
has to be adapted for other countries. The indirect route via state and district level
is chosen because of the decreasing data quality and increasing heterogeneity of elec-
tricity demand at more granular levels. Table 5.1 shows the selected socio-economic
data for each consumption sector and aggregation level.

Table 5.1.: Socio-economic parameters for the top-down distribution of national consump-
tion values for 2050

Spatial Level Buildings Industry and commerce Transportation

State (Future) Popula-
tion

(Future) Population
and rate of employment

(Future) Population, rate of
registered vehicles and e-
mobility penetration

District Appliances: Popu-
lation
Heat: Population
and living space

Industry: Energy con-
sumption
Commerce: Electricity
consumption

Number of registered vehicles
weighted with structural re-
gion type

Municipality Appliances: Popu-
lation
Heat: Population
and living space

Number of employees Number of registered vehicles
weighted with structural re-
gion type
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At the state level, local differences in the magnitude of electricity consumption
still largely balance each other out. This can be seen, for example, in the fact that
the share of current household electricity consumption roughly corresponds to the
share of the population for the state of BW as described in Section 5.4.1. Popula-
tion is therefore a good estimator at this level which can be further specified through
slightly higher or lower rates of employment or registered vehicles in the case of the
Industry and Transportation sectors. In addition, on state level, estimations on the
population development until 2050 might be available, which allows to take future
developments into account. In the Buildings sector, the population is used as pa-
rameter to regionalize electricity demand for household appliances onto lower spatial
levels. In the case of (electrified) heat demand of buildings, we multiply the pop-
ulation by the respective average per capita living space to account for structural
differences, e.g., between rural and urban areas. Since there are considerable differ-
ences between districts when it comes to industrial activity, we select the district’s
overall energy consumption as factor to dissolve the future electricity demand of the
(manufacturing) industry. In the case of the commerce sector, we use the district’s
electricity consumption. This selection is based on the assumption that businesses in
trading and commerce already rely more on electrical energy and also impact overall
energy consumption less than the manufacturing industry as of today (Umweltbun-
desamt, 2021). When no data on energy consumption is available, as is the case
for municipalities in Germany, the number of employees is selected as parameter to
further resolve electricity consumption in the Industry sector. In the Transportation
sector, electricity demand will largely come from electric vehicles. The number of
registered vehicles is therefore a good estimator to spatially resolve demand to dis-
trict and municipality level. Since driving behavior may differ, data on the average
mileage in the respective “structural region type” (e.g., urban or rural) is used to
further specify the weighting of this factor.

For the temporal resolution of the obtained spatially distributed values, represen-
tative load profiles are needed for each consumption sector. In most cases, historic
data can be used, as for example in the case of standard load profiles to depict
household consumption. In other cases, synthetic load profiles have to be generated
when no representative historic data is available, as in the case of charging behavior
of electric vehicles.
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Selection criteria for the socio-economic parameters as well as the modeling of load
profiles is described in more detail in Section 5.4.1 for the case of BW, a state in
south-west Germany. The methodology can be transferred to any other geographic
region but might require adaptions to the chosen socio-economic parameters based
on data availability and representativity. The obtained data serves as input for the
modeling of an integrated energy system as described in the next section.

5.3.2 Determination of Battery Storage Requirements in an Integrated

Energy System

One aim of this study is to demonstrate the differences between the centralized and
decentralized planning of an integrated energy system and the implications thereof.
RES and BESS requirements are therefore determined for three scenarios that con-
sider both distribution and transmission network structures:

1. Power substations (SUB): Each municipality is assigned to a power sub-
station in the distribution grid. Each region is modeled as a self-contained grid
without exchange between regions. This scenario depicts a decentral planning
approach that leads to an equitable participation of all regions in the energy
transition relative to their consumption.

2. Network groups (NG): Each municipality is assigned to a distribution net-
work area (“network group”) based on the distribution grid infrastructure: Net-
work groups are regions with no connections to other regions on the distribu-
tion grid level. In this scenario, each region is modeled as a self-contained grid
without exchange between regions to illustrate a midway between central and
decentral planning.

3. Integrated energy system (IES): Municipalities are aggregated like in NG,
but energy exchange between NGs and neighboring states is allowed over the
transmission grid, limited by the respective transmission capacities. This sce-
nario represents a physically realistic, central system planning.

In each scenario, the investigated network consists of n regions (nodes) in total,
of which nin are internal nodes, i.e., nodes for which production capacity and
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storage are optimized. External nodes are those that represent other external
states or regions and are not optimized as part of the model. In scenarios 1 and 2,
only one internal node (i.e., substations or network groups) and one external node
(i.e., the public grid) are considered. In scenario 3, to accurately model a holistic
system including all existing transmission capacity, electricity can be procured
(i.e., imported) from several external nodes (i.e., through all existing transmission
lines from network groups to outside regions). Each internal node or region i (i.e.,
a substation or network group) consists of a set of municipalities denoted by j.
For each region, load data in hourly resolution of the associated municipalities is
aggregated and serves as input for the determination of optimal RES and BESS
expansion as described in the next paragraphs.

Modeling renewable generation

In our model, optimal electricity generation, consisting of PV, wind, and CHP
generation with renewable gas, is determined endogenously. The expansion of RESs
in a municipality is limited by its respective maximum potential.

The maximum potential of solar power capacity P̂
(S)
j,t in kW in a municipality j at

time step t is calculated as follows (5.1).

P̂
(S)
j,t = APV,j · aPV · ηPV ·Gj,t (5.1)

where APV,j is the total available area for PV installations in m2, aPV a PV area
utilization factor, ηPV the panel efficiency and Gj,t the solar irradiance at time step
t in kW per m2. Peak rated capacity is used for the cost calculation. It is estimated
using a peak power factor sPV in m2 kW−1 (5.2).

P̂PV,j =
APV,j

sPV
(5.2)

Likewise, wind potential P̂ (W)
j,t in kW is estimated using the region’s maximum

number of wind turbines NWT,j and the wind turbine power PWT(vt) in kW, which is
dependent on the wind speed vt (5.3). The wind turbine power is determined from
a lookup table, i.e., the wind turbines’ model-specific power curves (e.g., Table 5.2).
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Table 5.2.: Assumed power curve for simulation of wind turbine power generation. Values
in-between the given steps are linearly interpolated.

Wind speed (m/s) ≤ 3 4 5 6 7 8 9 10 11 12 13 14 15...25 ≥ 25
Power (kW) 0 3 25 82 174 321 532 815 1180 1580 1810 1980 2050 0

Power values in-between the given values are linearly interpolated.

P̂
(W)
j,t = NWT,j · PWT,t(vt) (5.3)

Peak wind power for a region is calculated with the wind turbine’s rated power
PWT,rated (5.4).

P̂WT,j = NWT,j · PWT,rated (5.4)

Wind speed is adjusted for height using the log wind profile equation (5.5) where
vref is the wind speed at reference height zr (=10 m) and z0 the surface roughness.

vt(z) = vref ·
log( z

z0
)

log( zr
z0

)
(5.5)

Bio-gas potential P̂ (G)
i,t of each investigated region i in kW is estimated using a fixed

area power factor sBG in m2 kW−1 (5.6) based on estimations provided by Hartmann
(2008). For the cost calculation, the rated power P̂BG,j of the CHP in kW is needed.
It is equal to the potential power in every time step.

P̂
(G)
i,t =

fAgri · AAgri,i

sBG

= P̂BG,i (5.6)

where AAgri,i refers to the total available arable land in m2 and its share fAgri, which
is usable for bio-gas crop. Unlike PV generation and wind turbines, bio-gas CHPs
are modeled as dispatchable generators, i.e., their capacity is available at all times.

The batteries are modeled analogously to the simplified empirical model described
by Moncecchi et al. (2018). Charge and discharge efficiencies are assumed to be
constant at each time step. Energy charged into and discharged from a BESS in
region i at any given time step in kWh, Ec/d,i,t, can therefore be described as follows
(5.7, 5.8).

Ec,i,t = ηCh · P (B)
i,t ·∆t (5.7)
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Ed,i,t =
P

(B)
i,t

ηDis

(5.8)

where P
(B)
i,t refers to the BESS’s charge or discharge power in kW, ∆t denotes the

duration of a time step in h and ηCh and ηDis denote the charge and discharge
efficiency, respectively. It is derived from the round-trip efficiency ηBat as follows
(5.9):

ηCh = ηDis =
√
ηBat (5.9)

Charging or discharging above the rated power capacity is not allowed. Any other
losses are neglected. Degradation is only represented in the cost.

Modeling load and the transmission grid

For each level of spatial resolution, load data is aggregated from municipality
load data to estimate a load profile for the respective regions. We assume that a
share of the load profile can be considered “flexible”, i.e., that share can be used for
demand side management (DSM). A flexible load curve is determined by assuming
a “flexibility factor” for every load component (households, industrial, commerce,
transport and heat). Total available flexible load P flex,i,t is described in Equation
5.10, where fflex,x are flexibility factors between 0 and 1.

P
(L)

flex,i,t = fflex,houseP
(L)

house,i,t + fflex,indP
(L)

ind,i,t + fflex,com

P
(L)

com,i,t + fflex,transP
(L)

trans,i,t + fflex,heatP
(L)

heat,i,t (5.10)

Assuming a lossless DC model for the nodes n and power lines l, the Nl×1 vector
of power flows z can be calculated using Equation 5.11 (Staudt and Oren, 2021):

z = H · y (5.11)

where y refers to the (Nn− 1)× 1 vector of power injection (generation or consump-
tion) at each region (node), except a slack node. H is the Nl × (Nn − 1) matrix of
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power distribution factors according to Equation 5.12.

H = ΩB(BTΩB)−1 (5.12)

where B is the Nl × (Nn − 1) incidence matrix of the network (reduced by
the slack node) and Ω a Nl × Nl diagonal matrix of line impedance. For simplic-
ity, it is assumed that impedance is equal across all lines, i.e., Ω is an identity matrix.

Optimal generation and storage infrastructure

To determine the cost-optimized configuration of RES and BESS expansion for
any single region in scenarios 1 and 2 and an integrated energy-system in scenario
3, a linear programming (LP) problem is formulated. The goal is to optimize for a
minimum required share of renewable energy (80% and above), which represents the
main constraint to the LP model. The set of equations is presented in the following.

Equation 5.13 describes the objective function, that is the cost function to be
minimized. αi/j are decision variables. They describe expansion rates or “utiliza-
tion factors” of RESs and BESSs, expressed as a share of the maximum production
capacity within the modeled region or municipality. ĉX,i/j = P̂X,i,j · cX/ LX are the
discounted costs of the maximum capacities of RESs or BESSs, where cX and LX are
specific cost and lifetimes of system (X) respectively. Due to local climatic differ-
ences, the capacities of solar (S) and wind (W) generation are of interest in a spatial
resolution down to the municipality level. For renewable gas (G) and BESSs, it is
assumed that they are spatially evenly distributed within the region. RFB cost is
separated in cost per unit of power (RP) and cost per unit of energy (RE). Storage
duration (i.e., the storage’s energy to power ratio) for LiB is assumed to be constant,
therefore only cost per energy capacity (LE) is considered. The third term models
the cost of renewable gas. The product of fuel cost cfuel and corresponding electricity
generation is summed up over every time step t. Likewise, the last sum describes
the cost of imported energy with c

(I)
t as its cost.

Unless otherwise specified, the following applies for the objective function and
constraints: i ∈ nin, j ∈ m, t ∈ T . For the SUB and NG scenarios, each region is
modeled as self-contained unit, i.e., n = 2 and nin = 1 (one internal and one external
node).
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min C =
m∑
j

(
α
(S)
j ĉPV,j + α

(W)
j ĉWT,j

)
+

nin∑
i

(
α
(G)
i ĉBG,i + α

(RP)
i ĉRFB,P,i + α

(RE)
i ĉRFB,E,i + α

(LE)
i ĉLiB,i

)
+

nin∑
i

∑
t

cfuelP
(G)
i,t ∆t +

n∑
i=nin

∑
t

c
(I)
t (−P (D)

i,t )∆t

(5.13)

The cost function is subject to the following constraints. Renewable production
Pi,t is variable for every step and every generator but is limited to the maximum
generation in every time step (5.14-5.16). The maximum solar P̂ (S)

i,t and wind power
P̂

(W)
i,t for every region and time step are calculated from the sum of the maximum

generation P̂j,t in the respective municipalities j, where mi is the number of munic-
ipalities of region i.

P
(S)
i,t ≤

mi∑
j

α
(S)
j P̂

(S)
j,t (5.14)

P
(W)
i,t ≤

mi∑
j

α
(W)
j P̂

(W)
j,t (5.15)

P
(G)
i,t ≤ α

(G)
i P̂

(G)
i (5.16)

Battery constraints in equations 5.17-5.22 apply for both, RFB and LiB. However,
in the case of LiB, the maximum power capacity is fixed to a fraction of maximum
energy capacity: α

(BP)
i = 1 and P̂

(BP)
i = α

(BE)
i Ê

(BE)
i /dLiB, with the storage duration

dLiB. In both cases, battery power P̂
(B)
i,t is defined as the sum of charging power

P
(B)
c,i,t and discharging power P

(B)
d,i,t (5.17), where charging power must be positive

and discharging power negative. Their absolute values must be smaller than the
maximum power capacity (5.18, 5.19)

P
(B)
i,t = P

(B)
c,i,t + P

(B)
d,i,t (5.17)

0 ≤ P
(B)
c,i,t ≤ α

(BP)
i P̂

(B)
i (5.18)

−α(BP)
i P̂

(B)
i ≤ P

(B)
d,i,t ≤ 0 (5.19)
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In every time step the SoC E
(B)
i,t is updated with the sum of the SoC in the previous

time step and the charged or discharged energy (5.21).

E
(B)
i,t = E

(B)
i,t−1 + ηcP

(B)
c,i,t∆t +

1

ηd
P

(B)
d,i,t∆t (5.20)

The BESS cannot discharge below an SoC of 0 and is limited by the maximum energy
capacity Ê

(B)
i (5.21). The SoC at t = 0 is set to 50% (5.22).

0 ≤ E
(B)
i,t ≤ α

(BE)
i Ê

(B)
i (5.21)

E
(B)
i,t=0 =

α
(BE)
i Ê

(B)
i

2
(5.22)

The net power injection (D) on every internal node is defined by the difference
between the load (L) and the renewable power generation (5.23).

P
(D)
i,t = P

(L)
i,t − (P

(S)
i,t + P

(W)
i,t + P

(G)
i,t − P
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The power demand at all internal nodes must cover the imported power (i.e., “neg-
ative demand” at external nodes) in every time step (5.24). Furthermore, export is
not considered, i.e., net injection on external nodes must always be negative (5.25).
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P
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Equation 5.26 describes the constraint that ensures that a certain share of renewable
generation fRen (e.g., 90%) is satisfied for the energy supply throughout the entire
considered period. The numerator of the fraction contains the total non-renewable
energy (related to imports, i.e., negative demand on external nodes), where f

(I)
Ren,t

is the renewable share of imported energy for every time step. The denominator
contains the total load.
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Equations 5.27 and 5.28 describe the deployment of DSM. The load in every time
step consists of a fixed amount P fix,i,t and a (variable) flexible amount Pflex,i,t. The
sum over the flexible energy must be equal to the sum of theoretically available
flexible energy

∑
P flex over every time window of length 2τ . It must be noted that

this neglects the time windows smaller than τ at the very beginning and the end
of the time series, otherwise Pflex,i,t would be fully defined for every time step. The
deviation caused by this effect is neglected.

P
(L)
i,t = P

(L)

fix,i,t + P
(L)
flex,i,t (5.27)
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flex,i,t ∀ t ∈ [τ..(T − τ)] (5.28)

Lastly, only for scenario 3 (IES), the transmission system constraints apply: Power
distributed between nodes is limited by the respective transmission capacities ac-
cording to Equation 5.11. The P̂ (T) vectors contain transmission capacities of all
lines up to line l. H is the distribution matrix (5.29).
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5.4 Case Study: Battery Storage Requirements in

Baden-Wuerttemberg until 2050
We demonstrate the described methodology on the case of BW, a state in south-

west Germany. First, we model local consumption in 2050 for two different devel-
opment paths towards a low-carbon energy system. The spatially and temporally
resolved values serve as input for the determination of optimal RES and BSS expan-
sion in three scenarios of varying degrees of decentral and central planning.

A common feature of recent studies on pathways to low-carbon energy systems
is the increased demand for electricity, especially due to the electrification of parts
of the transportation and heating energy demand. The reported consumption
values still vary significantly depending on the chosen degree of electrification in
the scenarios. As input for our analysis, we therefore choose two scenarios from
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the dena study “integrated energy transition” (Bründlinger et al., 2018), namely
“electrification” (EL) and “technology mix” (TM) with an 80% CO2 reduction target,
depicted in Figure 5.2 (right). Note that Bründlinger et al. (2018) also depict
scenarios for higher renewable shares (i.e., TM and EL scenarios for 95% emission
reductions). However, the differences are not apparent in electricity consumption,
but rather the structure and sources of energy supply and generation.

Figure 5.2.: Map of “network groups” (NG, IES scenario) with assumed network structure
of transmission grid (left). Electricity consumption 2050 in Germany in the
scenarios “technology mix” and “electrification” with a CO2 emission reduction
target of 80% based on Bründlinger et al. (2018) (right)

Overall electricity consumption ranges between 700 and 1,100 TWh, a steep in-
crease of 40 - 120% compared to the baseline in 2018. The national electricity
consumption values in the sectors Buildings, Industry and Transportation serve as
input for the spatial and temporal resolution described in the following section. We
refrain from explicitly modelling the accruing generation for Power-to-X (PtX) ap-
plications, as BW is not expected to play a significant role due to its low potentials
for RESs compared to the rest of Germany (vom Scheidt et al., 2021). In Section
5.5, we do however address the resulting amounts of surplus electricity generation in
our models, which could be used for PtX applications.
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5.4.1 Modeling Local Electricity Consumption in 2050

As outlined in Section 5.3.2, national consumption values need to be spatially
resolved using representative socio-economic parameters before load profiles can be
generated for each consumption sector. We describe the obtained data used for
consumption modeling in the following.

Spatial resolution

Buildings. In 2018, BW’s share of household electricity consumption approxi-
mately corresponded to its population share within Germany of roughly 13% (Statis-
tische Ämter des Bundes und der Länder; Bundesinstitut für Bevölkerungsforschung,
2018; Statistisches Landesamt Baden-Württemberg, Ministerium für Umwelt, Klima
und Energiewirtschaft Baden-Württemberg, 2019; Umweltbundesamt, 2018). Ac-
cording to forecasts by the Federal Statistical Offices and the Federal Institute for
Population Research, BW’s population share will grow to 14.04% by 2050 (Statistis-
che Ämter des Bundes und der Länder; Bundesinstitut für Bevölkerungsforschung,
2018). We choose the expected population share of BW in 2050 as parameter to
determine the electricity consumption of the household sector in 2050. For the sub-
sequent distribution of electricity demand onto district and municipality-level, we
use the respective regions’ current population (Statistische Ämter des Bundes und
der Länder, 2018a). For the distribution of heat demand, the population is weighted
with the average per capita living space in the region obtained from (Statistische
Ämter des Bundes und der Länder, 2018a,b). As a result, rural regions, for example,
are ascribed a higher per capita heat consumption than urban regions.

Industry and commerce. In 2018, BW’s share of all employees in Germany
was 14.13%, which is slightly higher than its share of the total German popula-
tion (13.3%) (Ministerium für Umwelt, Klima und Energiewirtschaft des Landes
Baden-Württemberg, 2014; Umweltbundesamt, 2018). Electricity consumption in
the commerce sector was relatively high (14.9%) while the industrial sector con-
sumed relatively little (12.65%) in reference to the share of employees. Assuming
these relations will persist, we multiply the increased population share of 14.04%
until 2050 with the higher electricity consumption per employee in the commerce,
and the lower electricity consumption per employee in the industrial sector, respec-



Case Study: Battery Storage Requirements in Baden-Wuerttemberg until 2050 139

tively. BW’s derived shares of electricity consumed in Germany by the industry and
commerce sectors are thus 13.58% and 16.00%, respectively. On district level, we
use each district’s current share of BW’s total energy and electricity consumption,
respectively (Statistische Ämter des Bundes und der Länder, 2021). On municipality
level, the number of employees is used as parameter for both industry and commerce,
as no other related data is available (Statistische Ämter des Bundes und der Länder,
2018a).

Transportation. In recent years, BW’s share of registered vehicles (passenger
cars, light- and heavy-duty-vehicles) has been 5% higher than its population
share, at 13.93% (Statistisches Landesamt Baden-Württemberg, 2020; Kraftfahrt-
Bundesamt, 2020). In addition, the share of electric vehicles was about 33% higher
than in the nationwide comparison (Landesagentur für neue Mobilitätslösungen
und Automotive Baden-Württemberg, 2019). We assume that the higher rate of
registered vehicles will persist until 2050, but that the higher penetration of electric
vehicles will decrease significantly. Current registration numbers show that today’s
electric vehicle users are among the early adopters according to the innovation
cycle by Rogers (2003) (Kraftfahrt-Bundesamt, 2022). With a 70-85% registration
rate (Gerbert et al., 2018) expected by 2050, electric cars will by then have been
adopted by the large majority of users. Therefore, it cannot be assumed that the
large differences in e-mobility utilization between states will persist. In summary,
we multiply the expected population share in 2050 with a 5% higher registration
rate and a diminished 3% higher electric vehicle penetration. BW is thus attributed
15.22% of the national electricity consumption in the transportation sector. To
further distribute consumption onto district and municipality level, we use the
number of registered vehicles, weighted with the average mileage per vehicle in
the respective structural region type (Kraftfahrt-Bundesamt, 2020; Statistisches
Landesamt Baden-Württemberg, 2020). To obtain the mileage (i.e., driven km per
vehicle), we rely on the “German Mobility Panel” (MOP) (Bundesministerium für
Digitales und Verkehr, 2018), a regularly conducted assessment of driving behaviour,
classified by type of settlement structure according to the Federal Institute for
Research on Building, Urban Affairs and Spatial Development (i.e., urban, rural
etc.) (Bundesamt für Bau-, Stadt- und Raumforschung, 2022). Each municipality
in BW is assigned to a structural type and weighted with the average mileage of
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vehicles in the respective type as reported in the MOP. For each structural region
type, the 20% longest rides are omitted and not included in the average mileage.
This is justified because in the scenarios TM and EL, only 66% to 85% of passenger
vehicles are electrified, and we assume that the longest rides are least suitable for
electrification (Bründlinger et al., 2018).

Temporal resolution

In addition to the spatial resolution of electricity consumption, we need load pro-
files in sufficient temporal resolution that are representative of each consumption
sector and thus allow us to adequately determine BESS requirements. We derive
profiles in an hourly resolution for each sector.

Buildings. In the Buildings sector, we distinguish between electricity consump-
tion for household appliances, which is modeled using a standard load profile ob-
tained from Energienetz Mitte GmbH (2018), and consumption of heat pumps, for
which we use a synthetic heat pump profile, averaged from three different sources
(bonn-Netz GmbH, 2018; ED Netze GmbH, 2017; Stadtwerke Gustrow GmbH, 2017).

Industry and commerce. Load profiles for both the (manufacturing) industry
and commerce are obtained from Beier and Bretschneider (2013). In the case of
(manufacturing) industries, we further distinguish between load profiles for workdays
only and continuous production. We derive an average load profile for industrial
electricity consumption for each district in BW based on information from Beier
and Bretschneider (2013) and Statistisches Landesamt Baden-Württemberg (2019)
on industry branches with operation only on workdays or a continuous operation
combined with numbers on employees in the respective branches from Statistisches
Landesamt Baden-Württemberg (2019).

Transportation. Due to the current low penetration of electric vehicles, empirical
data for load profiles is not available, especially for the large-scale use of electric
vehicles in municipalities or districts. We therefore rely again on the MOP to create
synthetic charging profiles for the structural region types “metropolitan”,“urban”,
“suburban” and “rural” based on the measured driving behaviour in these regions. To
simulate a somewhat “smooth” charging behavior, we assume that whenever a vehicle
returns home from a trip, the driven mileage is charged evenly in the hours until the
subsequent trip. We assume a maximum charging power of 11 kW, corresponding to
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a typical wallbox installed in private homes and a baseline electricity consumption of
16 kWh per 100km (Agora Verkehrswende, 2019). We further incorporate additional
consumption of vehicles caused by low temperatures as specified by Forschungsstelle
für Energiewirtschaft e.V. (2016) based on monthly average temperatures. As a
result, in January, for example, electricity consumption is 1.4 times higher per 100
km than in June.

5.4.2 Modeling Cost and Renewable Share of Imported Electricity

In all scenarios, regions are allowed to import electricity from the public grid to
simulate a realistic system. To incorporate imports, we need to make assumptions
regarding the cost as well as the associated renewable share of the imported elec-
tricity at each time step. BW has connections to the remainder of Germany as well
as the neighboring countries Switzerland and France. For simplicity, we assume the
structure of the anticipated German electricity mix in 2050 for all imported electric-
ity through the public grid. We derive the electricity mix for Germany as follows:
To get an estimation of overall RES generation, we use the estimated RES capacity
expansion in the dena TM scenario for PV, wind on- and offshore, biomass and hy-
dropower (Bründlinger et al., 2018). For PV and wind, we scale up the respective
national generation profiles in 2020 obtained by Bundesnetzagentur (2021) with the
capacity values for 2050 to simulate a renewable power curve for the entire year of
2050 in 1-hour resolution. In the case of biomass and hydropower, flat generation
curves are assumed. Similarly, we scale up the German demand curve in 2020 us-
ing the total German consumption in 2050 in the TM scenario. By dividing the
aggregated generation curve by the demand curve, we obtain an estimate for the
renewable share for imported electricity in each time step.

To obtain an estimation of the cost of imported electricity, we train a linear re-
gression model that takes the current hour’s renewable generation from wind on- and
offshore and PV as well as the system load, CO2 price, weekday and month as input
to predict the hourly price on the day ahead market. Data from January 2019 to
May 2021 from Bundesnetzagentur (2021) is used to train the model. The synthetic
renewable generation and system load data for 2050 is then used as input to predict
hourly costs in 2050. The assumed CO2 price plays a decisive role for the overall
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resulting price level (not the price spreads) of the cost estimations. We assume a
CO2 price of 199e per ton as suggested by Pittel and Cordt (2020). The effects of
a lower CO2 price are included in the sensitivity analysis. This is obviously a proxy
that does not represent the actual prices in 2050 since these are impossible to predict
as the current energy crisis shows. However, they are best guess estimations that
are necessary to model an approximation of the future energy system.

5.4.3 Results: Renewable Capacity and Battery Storage Expansion Re-

quirements Across Scenarios

BESS requirements are determined for BW based on the three scenarios SUB, NG
and IES as detailed in section 5.3.2. In the SUB scenario, each of the 1103 munic-
ipalities in BW is assigned to the respective closest substation in the distribution
network, resulting in 283 substation regions overall. For the investigation of the
NG scenario, BW is subdivided into 11 regions according to information from BW’s
largest distribution network operator (Netze BW, 2020). To estimate transmission
capacities between the network groups for the IES scenario, line capacities for each
connection are aggregated based on the grid data provided by vom Scheidt et al.
(2020). This data set includes not only today’s existing transmission capacity, but
also planned grid reinforcement measures according to the grid development plan
of the four German transmission system operators. Figure 5.2 (left) shows the net-
work group setup and the resulting transmission network along with the connections
between the regions. Black nodes (1..11) represent network groups, white nodes
represent external connections to other German states (12..16), France (17, 18),
Switzerland (19) and Austria (20).

Climate data is retrieved from the database of the German Meteorological Service
(Deutscher Wetterdienst, 2020) for 2020 in hourly resolution. Wind speed and solar
irradiance profiles are determined for every municipality in hourly resolution by
determining the weighted average from the three closest weather stations. Using
this assumption, we are of course ignoring changes in weather patterns caused by
climate change. But similarly to the argument for prices, we need to make a best
guess that allows us to model an approximation of the future system. It would be
interesting future work regarding all types of future energy system modeling to work
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with meteorologists to include the estimated effect of climate change for 2050 in a
wind and solar dominated system.

The parameters used for the calculation of RES maximum capacities and the LP
model are shown in Table 5.3. Different flexibility factors are assumed for the five
sectoral components of the load curve (i.e., households, heat demand in buildings,
(manufacturing) industry, commerce and transportation). Heat pumps are assumed
to be the most flexible resource in 2050. Indeed, Elsland et al. (2017) assume that all
heat pumps can be flexibly controlled until 2050. We therefore assume that 50% of
heat demand can be shifted within one day. In the case of households, industry and
commerce, 10% of the load are assumed to be subject to flexible dispatch following
estimations by Bründlinger et al. (2018). It is unclear how much flexibility electric
vehicles will provide. Estimations range between 50% and 100% of vehicles being
able to charge intelligently. We therefore assume that 30% of the demand in the
transportation sector is flexible. For all flexible demand components, we assume
that load can only be shifted within the window of one day, i.e., τ = 12 hours.

The data for renewable potential, i.e., suitable PV and wind areas is retrieved from
the open data source “Energieatlas Baden-Württemberg” (LUBW, 2022). Since wind
potential is given as mean annual energy yield in kWh, the maximum number of wind
turbines per region is estimated by dividing energy generation by the mean full load
hours for wind turbines in BW (1,208 hours) and rated wind turbine power. The
calculations are based on the Qreon Q-82 wind turbine that has a rated power of
2.05 MW. The corresponding power curve is presented in Table 5.2. The LCOE is
calculated by dividing the annual cost by total annually served load. It is assumed
that only 40% of roof area and 60% of available area for open-field PV installations
can realistically be used for installations. However, since wind potential is already
low in BW, all designated areas are considered. Respective data is again retrieved
from LUBW (2022). For the renewable gas potential, it is assumed that arable
land is split equally between biomass from silage corn and pasture which results in
sBG ≈ 0.75 ha kW−1. It is further assumed that 20% of available arable land is used
for renewable gas crop as this leads to total bio-gas CHP capacity that approximately
corresponds to current values.
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Table 5.3.: Input parameters for case study
Symbol Parameter Value Symbol Parameter Value
aPV PV area utilization

factor
0.5 LBG Bio-CHP lifetime (a) 15

fAgri Bio fuel share of arable
land

0.2 LLiB LiB lifetime (a) 10

fflex,com DSM flexibility factor
households

0.05 LPV PV lifetime (a) 25

fflex,ind DSM flexibility factor
industry

0.1 LRFB RFB lifetime (a) 20

fflex,heat DSM flexibility factor
heat

0.5 LWT Wind turbine lifetime
(a)

25

fflex,house DSM flexibility factor
trade & commerce

0.1 PWT,rated Wind turbine rated
power (MW)

2.05

fflex,trans DSM flexibility factor
transport

0.3 sBG Bio-gas power factor
(ha kW−1)

0.75

cBG Bio-CHP specific cost
(e kW−1) (Kost et al.,
2018)

2,000 sPV PV power factor
(m2 kW−1)

0.2

cfuel Bio-gas fuel cost
(e kWh−1)

0.05 z Wind turbine hub
height (m)

100

cLiB LiB specific cost
(e kWh−1) (Baxter,
2018)

400 z0 Surface roughness
(“Forest”) (m)

0.8

cPV PV specific cost
(e kW−1) (Kost
et al., 2018)

600 zr Reference height (m) 10

cRFB,P RFB specific power
cost (e kW−1) (Minke
et al., 2017)

1,080 ηLiB LiB round trip effi-
ciency

0.85

cRFB,E RFB specific energy
cost (e kWh−1)
(Minke et al., 2017)

385 ηPV PV panel efficiency 0.2

cWT Wind turbine specific
cost (e kW−1) (Stehly
et al., 2017)

1,200 ηRFB RFB round trip effi-
ciency

0.7

dLiB LiB storage duration
(h)

2 τ Flexibility time inter-
val (h)

12

5.4.4 Simulation Results

Required RES and BESS capacities for RFBs and LiBs are determined for different
levels of required renewable generation shares, i.e., 90%, 95%, 98% and 100%. While
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Figure 5.3.: Optimal placement of PV and wind capacity generation and BESSs for the
three spatial resolutions (SUB, NG, IES) and a minimum renewable share of
95%, TM consumption scenario. Grey: no placement. Battery capacity ratio
refers to RFB capacity ratio: ratio = ÊRFB/Êtotal
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the 90% and 95% objectives are calculated for all three scenarios SUB, NG and
IES, only the IES scenario is considered for shares of 98% RESs and above. This
is necessary because Stuttgart, the capital of BW, is modeled as a self-contained
region in scenarios SUB and NG (region 11 in Figure 5.2, left). However, Stuttgart
does not have sufficient RES potentials to achieve the corresponding shares of RESs.
We further differentiate between the two consumption scenarios TM and EL. The
Gurobi solver is used to solve the LP model.

Figure 5.3 shows the resulting distribution of PV installations and wind turbines
and RFB and LiB storage on the map of BW in the case of a required renewable
share of 95%. As expected, the highest production capacities are required for the
SUB resolution where approx. 49 GW of PV and 16 GW of wind capacity are needed
for the TM scenario. Additionally, 128 GWh of storage capacity and 19 GW of stor-
age power are required (Figure 5.4). Due to the geographically confined regions,
densely populated areas have the most difficulty to reach the emission targets. It is
those areas (in the center and the north-west), where almost all renewable potential
is exhausted. Additionally, the mostly urban regions need longer storage durations
to fill the generation gaps due to lower renewable potential. In the SUB scenario, for
the majority of BW, RFB storage accounts for a larger share of storage. Only in the
south-west (“Black Forest”), LiB seems preferable due to high wind potential and low
power demand, which results in shorter renewable gaps. However, due to the con-
straints in the scenario, those regions cannot share the wind energy with surrounding
areas. Therefore, designated wind areas are only sparsely utilized. Consequently, the
LCOE for this scenario is relatively high with approximately 94 eMWh−1. However,
a relatively equitable inclusion of regions in the energy supply of BW is ensured.

In the NG scenario, self-contained regions are much larger than in the SUB res-
olution, and thus optimal placement of PV and wind power plants accumulates in
favourable areas. For PV capacity, that is in the west (“Rhine valley”) and the south-
east with longer hours of sunshine. PV potential is comparatively low in the center
of BW. However, high demand in the urban regions especially in network groups
5, 6, 7 and 11 (see Figure 5.2, left) requires a large expansion of PV capacity. In
contrast to the SUB scenario, a large share of wind turbines is concentrated in the
high potential Black Forest area in the south-west of BW. In total, the required ca-
pacities are considerably lower compared to the SUB resolution with 37 GW of PV



Case Study: Battery Storage Requirements in Baden-Wuerttemberg until 2050 147

and 20.6 GW of wind power. The necessary storage capacity is more than halved.
Only 8.3 GW of power and 52 GWh of energy capacity are required to fill the gaps
to reach a renewable share of 95%. Mean storage duration is also lower for the NG
resolution. Therefore, a slightly larger share is attributed to LiB compared to RFB.
Again, the south-west region is more suitable for LiB storage due to high renewable
potential and low demand. Due to the much lower investments required, the LCOE
is also expected to be much lower with approximately 64 e MWh−1.

In the IES scenario, power can flow between network groups. Therefore, renewable
capacity placement is even more concentrated in high potential areas, with almost
all wind production being located in the south-west. The total PV capacity is almost
halved compared to the NG resolution. This also implies that under central planning,
rural areas in the south-west of the state would have to provide the majority of BW’s
total electricity supply. In these regions, the existing wind potential would be fully
utilized. Given past issues with local acceptance, the question arises as to whether
the significant impacts on the region’s land use can be communicated to and would
be accepted by the local population. Overall, wind capacity remains almost the same
with 20.6 GW of nominal power. Required BESS capacity is drastically reduced. For
the IES resolution, 1.7 GW of storage power and 6.8 GWh of energy capacity are
sufficient for a renewable share of 95%. These values are in the range of the storage
needs reported in previous studies, assuming that BW’s share of Germany’s BESS
requirements lies in between 10 to 20%. Again, mean storage duration is slightly
reduced compared to the NG scenario. Since network groups can now share power,
not all regions require BESSs. In the center and the south-west, LiB storage is
preferred, in the east RFB accounts for the majority of BESSs. The LCOE is lowest
for this scenario with expected 42 e MWh−1. It must be noted that for the two
IES scenarios where a minimum renewable share of 90% is required (IES90), the
resulting optimal renewable share (i.e., renewable share at optimized cost) is above
93% for both the TM and EL consumption scenario, showing that a small BESS
expansion could be a cost-effective solution at the assumed price for emissions even
if no minimum renewable share constraints are imposed.

For all scenarios, renewable gas capacity is fully or almost fully utilized even
though full load hours of renewable gas fueled CHP goes down when increasing the
renewable share. This highlights the importance of dispatchable generation in an
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otherwise volatile power grid.
When comparing different RES share and consumption scenarios, it can be

seen that storage demand increases sharply with the required renewable share
(Figure 5.4). To reach a renewable share of 90%, only about 1.4 GWh of storage
energy capacity is needed. However, beyond these values, storage demand increases
exponentially, again confirming previous findings. To fill the last 2 percentage
points between the IES98 and IES100 scenario, required storage capacity increases
from 44 GWh to 296 GWh in the TM scenario. Mean storage duration then reaches
over 17 hours and the batteries only perform roughly half as many cycles per year
compared to the IES98 scenario. Consequently, the LCOE is highest for the 100%
scenario with 132 e MWh−1 in the IES scenario. We conclude that in a future
grid at least some dispatchable power capacity should be provided in order not to
oversize the BESSs and waste resources in the process.

Figure 5.4.: Simulation results for the three spatial resolutions (SUB, NG, IES) and both
consumption scenarios (TM, EL) for different shares of renewable energy (90,
95, 98, 100%). Left: Requirements for RFB (green) and LiB (purple). Right:
LCOE

For the EL scenario, the load is higher in general. Therefore, needed storage
capacity and power are also higher. This effect is especially pronounced for the SUB
resolution, where regions are most confined. However, cost only increases slightly
compared to the TM scenario since storage is not expanded at the same rate as
consumption. This indicates that generated energy can be utilized more effectively
(e.g., heat generation, which accounts for a larger share in the EL scenario mostly
occurs during the day where renewable energy is more abundant and is somewhat
flexible.)
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5.4.5 Sensitivity Analyses

Our analysis features several assumptions regarding RES and BESS cost develop-
ments, DSM potential, and more. We therefore conduct a sensitivity analysis for
the IES95 TM scenario. Figure 5.5 shows the impact of various key parameters on
RFB and LiB capacities and costs.

Figure 5.5.: Deviation of RFB (green)
and LiB capacity (purple)
and cost (blue) from IES95
TM scenario for variation of
different parameters

Figure 5.6.: Excess (curtailed) renewable
energy per region (network
group) for IES95 TM sce-
nario

To simulate DSM potentials, a simple LP constraint is implemented. However,
for many sectors it is still largely unclear to what degree load will be flexible. The
assumed flexibility factors lead to approximately 15 to 20% of flexibility potential
depending on the region. This is in the range of what is stated in literature. It
can be shown that if DSM is not performed, the required storage capacity almost
doubles. RFB is preferable in this case, as the production gaps can be expected to
grow larger and persist for longer periods. However, the impact on cost is relatively
low since storage capacity is not very high in the base case scenario. It must be
noted that DSM is not assigned with any cost in the model. It could therefore be
suggested that to achieve the renewable share of 95%, DSM must not cost more than
50 Me per year. Otherwise BESS expansion might be preferable.

We can show that a lower CO2 price and therefore lower import power costs heavily
favor LiBs over RFBs. Furthermore, RESs are slightly lower sized, indicating that
the lower power cost could make charging the BESS from the grid more viable,
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specifically when the renewable share in the grid is high. LiB could be better suited
for this application if price peaks are short enough.

Altering BESS costs or efficiency mostly impacts the proportion between RFBs
and LiBs while the LCOE stays almost the same. According to price projections,
LiB storage cost is expected to drop by 25% between 2020 and 2030 (Baxter, 2018).
Assuming this cost reduction while maintaining RFB cost, the scenario leads to
higher installation of LiBs relative to RFBs. For RFBs, even higher cost reduction
can be assumed as the technology is still in an earlier stage of commercialization,
likewise resulting in a shift towards RFB storage for the IES95 scenario. It is expected
that both prices go down in the future. Depending on the application and—as shown
in the results of this study—on the location, we expect both storage technologies to
become more important for power grids with high renewable shares. Similarly, an
increase of 5 percentage points in round-trip efficiency for either storage technology
shifts the RFB to LiB ratio towards the respective BESS. However, the impact is
not as severe as with costs. It is thus expected that both technologies will remain
relevant even if RFB performance might have more potential for improvement.

Reducing transmission capacity requires an increase of both storage capacities by
approximately 25%, while cost is increased by roughly 6.4%, indicating that the
transmission lines are a limiting factor for the investigated scenario. However, this
effect becomes less severe when the renewable share is increased, as RESs have to be
expanded more widespread through the regions moving towards a more decentralized
energy system. By comparing the IES scenario with the benchmark of the “copper
plate”, we further find that the cost is only slightly higher for the transmission
constrained scenario, indicating that the transmission grid in BW in its current
and planned state should be sufficient for an expansion of RES. Expansion rates
of RESs and BESSs are very similar in both scenarios as well. Nevertheless, the
grid constrained model provides valuable insights into the optimal placement of
generators and storage systems. For the copper plate scenario, PV capacity and
wind turbines are placed in regions with the most suitable climatic conditions which
would require the expansion of transmission capacities. This could be included as
endogenous parameter, which however disregards the reality of long planning periods
for transmission lines.
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5.5 Discussion
PtX applications and most notably hydrogen electrolysis are not explicitly modeled

in our scenarios for the integrated energy system of BW. However, the cost-optimal
solution yields significant amounts of excess generation that could be used for the
production of synthetic fuels or hydrogen as shown in the case of the IES95 scenario in
Figure 5.6. For example, districts 3 and 9 alone (regions with significant wind and PV
expansion) generate more than 10 TWh of excess renewable electricity each, which
is more than 10% of needed electricity for PtX applications in Germany according to
Bründlinger et al. (2018). Of course, in addition to the overall values, the temporal
distribution of the surplus generation is important, as some electrolyzers need to
achieve a certain amount of full load hours to be economical. In district 3 for example,
1 GW excess capacity is available for more than 4000 hours, therefore maximally 4
TWh of the overall excess generation of 12 TWh could be used for electrolyzer
capacity. The numbers thus suggest that to a certain degree, PtX applications are
feasible in BW in this scenario, a finding consistent with Henni et al. (2021).

To analyse varying degrees of electrification, we consider the consumption sce-
narios TM and EL. Unsurprisingly, the higher electricity consumption in the EL
scenario leads to a higher LCOE for electricity. It must be noted that in both sce-
narios, other energy sources are needed in addition to electricity, such as hydrogen
or synthetic fuels. In addition to domestic production, imports are necessary, for
which costs are incurred. Consequently, lower electricity costs in the TM scenario
do not necessarily imply lower overall system costs. In their analysis for Germany,
Bründlinger et al. (2018) report that the TM scenario leads to lower overall costs
than the EL alternative.

It must be noted that in our model, BESS degradation is only represented in
terms of cost. However, specifically LiBs have limited cycle life. From the simulation
results, we find that LiBs would often perform close to 1,000 cycles during one year.
This frequent utilization could be enabled by coupling the LiB with an RFB, which
allows to cover longer gaps and thus allows the LiB to be sized optimally. Assuming a
cycle life of 10,000 cycles, the assumed lifetime of 10 years for LiBs should be a good
assumption. However, constant operation also slowly reduces energy capacity over
time, which is not being represented in the model. The assumptions should produce
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less errors for RFBs, which are reported to be less prone to cycle degradation.

5.6 Conclusion
In this study, we develop and demonstrate a bottom-up modeling approach to

evaluate central and decentral designs for a low-carbon integrated energy system in-
cluding two different BESS technologies. We can thus answer the research questions
as follows.

For a renewable share of power generation of 95% including electrical energy
needed for heat and transportation purposes, BESSs with at least 6.8 GWh of energy
and 1.7 GW of power capacity are required for the state of BW, resulting in an LCOE
of 42 e MWh−1. Of the total BESS capacity, RFB accounts for 0.8 GW/5.0 GWh
and LiB for 0.9 GW/1.8 GWh of power and energy, respectively. The values in-
crease drastically when moving the system to 100% of renewable power supply, with
storage power capacity of 17 GW and energy capacity of 296 GWh and an LCOE
of 132 e MWh−1. When comparing the different BESS technologies, we find that
for the assumed cost and performance parameters, both LiBs and RFBs can provide
viable solutions depending on the location. While LiBs are preferable in regions
with high renewable potential (especially wind) and low consumption, RFBs can be
particularly advantageous in regions with higher solar and low wind potential, as
they are subject to potentially longer generation gaps. A combination of both can
help to utilize the batteries more effectively. However, pricing of storage systems has
a major impact on the optimal choice of BESS technology.

In a system subject to central planning, RESs are concentrated in high potential
areas as shown in Figure 5.3, leading to a maximum utilization of available areas
for wind generation in rural areas in the south-west of BW in our case study. PV
generation capacity is concentrated in high potential, mainly urban regions. Under
this paradigm, large areas in mid-south and north-east BW would not contribute to
the supply of renewable electricity.

Depending on the degree of (de-)central planning and electrification, in the case of
a 95% RES share, the LCOE ranges in between 42 and 109 eMWh−1. Overall BESS
requirements range in between 1.4 and 186 GWh. This shows the cost-disadvantages
that would come from decentral planning approaches with more even distribution
of capacity expansion. However, there are paths in between a completely central
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and decentral design: The NG scenario illustrates one possible solution where more
regions are included in the expansion of RES, while keeping the LCOE relatively low
at approximately 60 e MWh−1 and BESS requirements between 52 and 67 GWh.

The results of this study are of significance for policy-makers at national and
regional level, system planners as well as local stakeholders. Considering local ac-
ceptance of pathways towards low-carbon energy systems and weighting them against
cost considerations will pave the way for targeted measures to increase citizen in-
volvement and accelerate the energy transition to a renewable integrated energy
system.

This chapter concludes Part II of this thesis, in which the deployment of BESSs
across all different aggregation levels of energy systems has been analysed. Home-
owners and office managers need to be provided with transparent and engaging infor-
mation in order to leverage the potential of BESS deployment on the individual level.
This can be achieved through an engaging user interface design, which contains vivid
and carefully designed interactive features as shown in Chapter 3. By connecting
and matching suitable individual RESs and BESSs within an energy community, the
profitability of individual BESS investments can be increased and existing resources
can be deployed more effectively (Chapter 4). These distributed BESSs can build
the foundation for the required system-level capacity if appropriate regulatory mea-
sures are taken by policy-makers. On the system level, BESS requirements need to
be analysed to showcase alternative pathways towards low-carbon energy systems to
policy-makers. The introduced bottom-up modeling method of BESS requirements
in Chapter 5 demonstrates the trade-offs in terms of spatial RES and BESS capacity
distribution and LCOE that policy-makers need to consider.

While the considerations in Part II show the potentials of optimal BESS deploy-
ment in integrated energy systems, during real-time operation, uncertainties regard-
ing generation, consumption and price developments complicate a profitable and
effective deployment of BESSs. In practice, BESSs therefore need to be equipped
with online operation strategies in order to deal with uncertainty and to handle si-
multaneous applications. In this regard, the needs and goals of storage operators and
other stakeholders differ depending on the system level a BESS operates on. In the
following Part III, these different perspectives and operational goals are addressed
through the development of data-driven operation strategies.





Part III.

Data-driven Operation Strategies





INTRODUCTION TO PART III

Once BESSs are deployed, they should be operated optimally considering the needs
of the corresponding stakeholders on that system level. Storage operators need to
handle different uncertainties during real-time operation, e.g., regarding renewable
generation, consumption and price developments on wholesale markets (Chapter 2).
Multi-use BESS deployment in particular must deal with several of these uncer-
tainties when coordinating multiple applications in parallel (Section 2.3). In this
context, online operation strategies have not been well researched, as optimization
is the state-of-the-art method for case studies on BESS operation (Section 2.4).

In Part III, I design and evaluate data-driven online operation strategies to handle
these uncertainties for various stakeholders on different levels of energy systems. In
front of the meter, renewable operators who are subject to direct marketing of their
generation could deploy grid-scale BESSs to hedge again price and quantity risks
on the spot markets. For such a renewable plant operator, I design and evaluate a
rule-based heuristic strategy to deploy a grid-scale BESS for risk hedging in Chapter
6. Behind the meter, BESSs deployed for peak-shaving in industrial zones can be
operated more profitably by simultaneously providing frequency regulation services.
In Chapter 7, I therefore investigate the case of a BESS deployed in an industrial
plant for the joint participation in industrial peak-shaving and frequency regulation
provision and introduce a risk-averse operation strategy based on a probabilistic
forecast. Combining BTM and FTM use cases, BESSs can be deployed more prof-
itably if several of these application areas are combined. In Chapter 8, I design a
DRL-based BESS service agent that coordinates several BTM and FTM applica-
tions during real-time operation and compare the results with rule-based operation
strategies and the theoretical optimum.
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CHAPTER 6

RISK HEDGING FOR INTERMITTENT RENEW-
ABLE GENERATION

In the future, operators of renewable plants on all levels of power grids may face
the challenge of directly marketing their generation on electricity wholesale markets.
In the low voltage grid, the EEG subsidies for residential PV systems expire after
20 years of operation. At a higher level, large solar parks in Germany have already
been realized without subsidies (Erneuerbare Energien, 2021). Their operators face
significant price and quantity risks due to the volatile spot market prices, which are
inversely correlated with high generation from RESs. They therefore need strategies
to hedge against these risks (Hain et al., 2018; May et al., 2017), for example, through
the deployment of a BESS, which can shift the generated electricity to times of
higher spot market prices. In this chapter, first steps are taken in modelling BESS
options, i.e., a service product similar to financial options that is provided by BESS
operators to renewable generation operators. First, a theoretical model is introduced
and corresponding hedging strategies are developed. The model is then applied to
a fictional solar PV plant. The results show that BESS options can reduce the
conditional value at risk for intermittent renewable generators by on average 38% in
the considered month of the case study.

This chapter comprises large parts of the published article: S. Henni, P. Staudt,
P. Jaquart, C. Weinhardt, Towards Financial Risk Management for Intermittent
Renewable Generation with Battery Storage, 54th Hawaii International Conference
on System Sciences, 2021.
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6.1 Introduction
Renewable generators face two types of risk: Quantity and price risk. A similar

perspective on price and quantity risk is described in Oum et al. (2006) for load serv-
ing entities. The authors also describe some correlation between the two risks. A
higher demand in terms of quantity is positively correlated with high prices and vice
versa. This is similarly true for renewable generation but with inverse correlation.
Higher renewable generation from intermittent resources leads to lower electricity
prices as their marginal cost of production is zero. Therefore, higher generation is
inversely correlated with the market price. This is a dilemma for renewable gener-
ators even though it allows for some natural hedging because lower quantities are
supported by higher prices and lower prices are associated with higher generation.
However, as the relationship is not strictly linear, renewable generators face consid-
erable market risks, since their generation is not dispatchable Hain et al. (2018).

The intermittency of renewable generation can be complemented with BESS
capacity to increase the controllability in regards to the system but also the profit
of renewable generators. A BESS can be used to shift the income of excessive
generation to times with lower cheap renewable generation and consequently higher
prices. This way, renewable generators are less vulnerable to temporarily low market
prices. However, BESS capacity is expensive and it is not profitable to keep a BESS
charged over several days only to discharge in times of low generation. This way
the BESS’s capacity is idle for a substantial time and can therefore not turn any
profit. Consequently, renewable generators need BESS service providers that agree
to charge their batteries at certain times and discharge them for the renewable
generator when needed, while simultaneously optimizing their own profits in
between. The BESS operators are thus providing a service for renewable generators
that needs to be fairly priced. In this chapter, we model this situation and the
fair pricing of such an instrument. We then introduce several heuristic strategies
for renewable generators which intend to reduce their price and quantity risk. We
assess the effect and the pricing for these strategies in a case study. We also discuss
whether this service is financially viable given the price of BESS or other storage
capacity. We thus provide three contributions with this chapter: We model the use
of a BESS for renewable risk hedging as a form of option and provide a fair pricing
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mechanism. We develop heuristic strategies for renewable generator risk hedging
through the use of a BESS and finally we assess the use of these strategies in a
case study and determine a fair market price. This results in the following research
question:

Research Question 5: How much can the conditional value at risk of a
renewable operator be reduced through the deployment of a battery storage service
using a developed heuristic operation strategy?

The remainder of this chapter is structured as follows: First, we review related
literature on risk hedging in energy market research and the joint operation of a
BESS with renewable power plants. Then, we introduce a theoretical model for
BESS service options that can be contracted by renewable operators to hedge against
price and quantity risks. We then demonstrate this concept on the case of a large
PV plant, and evaluate both the perspective of the plant operator and the BESS
operator. Finally, we discuss promising future research and conclude with the results
of this chapter.

6.2 Related Work
Risk hedging strategies have a long tradition in energy market research (e.g., Deng

and Oren (2006); Harvey and Hogan (2000); Bessembinder and Lemmon (2002)).
Options as a specific hedging instrument and their effects are described in Willems
and Morbee (2010), for example. One of the first considerations of combined price
and quantity risk is presented in Oum et al. (2006) for load serving entities that
need to supply varying demand from a wholesale market with varying prices at fixed
retail rates. Pircalabu et al. (2017) use a copula approach to assess joint genera-
tion and price risk for a wind turbine in Denmark. They find that an independent
consideration of the two risks leads to an underestimation of the total risk for the
wind turbine. The case risk hedging for renewable generators has recently attracted
more attention. Hain et al. (2018) find that the intermittent generation by growing
renewable generation capacities further increases the price and quantity related risks
of operators. They conclude that unhedged renewable portfolios carry a significant
amount of risk and that plain vanilla forwards provide poor hedging opportunities.
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However, they are the only liquid market alternative for risk hedging on the electric-
ity market. Oum et al. (2006) develop a hedging strategy but state themselves that
the results are purely hypothetical as options are not actively traded on electricity
markets. Gersema and Wozabal (2018) describe a risk reduction strategy for renew-
able generators through the diversification over different technologies and locations
to reduce the dependence on local weather phenomena. Staudt et al. (2019) describe
the interplay between forward and spot trading and the effects of different trading
strategies for renewable generators.

Another approach is the short-term risk hedging through multi-period trading on
the day-ahead and intraday market which has been considered by La Sánchez de
Nieta et al. (2020) for solar and by Morales et al. (2010) for wind park operators.
Both studies include imbalance prices to model penalties for deviations from produc-
tion forecasts and thus consider a short-term hedging problem for daily deviations.
Pinson et al. (2009) consider the dynamic sizing of storage capacities in order to
compensate for wind production forecast deviations, again focusing on short-term
deviations from production forecasts in order to avoid imbalance penalties. Radchik
et al. (2013) link a solar plant and a natural gas generation unit that do not have to
be located in physical proximity into a virtual generator that is able to provide stable
electricity generation. Solar and gas swaps are introduced as financial instruments
to mitigate the price and quantity related risk of both operating entities.

The joint operation of a renewable power plant and a connected BESS has been
addressed in numerous publications, however, often not in regards to risk reduction.
For example, Ratnam et al. (2015) investigate the optimal operation of a co-located
PV and storage system in order to maintain an energy systems voltage limits.
Núñez-Reyes et al. (2017) develop a strategy for a PV system with an integrated
storage system to optimally participate in the electricity market. Control strategies
to enhance grid integration and to smoothen short-time production deviations
from large solar plants using BESSs have been designed by Yang et al. (2018).
Kroniger and Madlener (2014) assess hydrogen production as storage option for
renewable generation but find that it is not economical to re-convert the hydrogen
to power. One closely related study is Hedman and Sheblé (2006). The authors are
evaluating the use of options as hedging instruments for renewable generation and
compare it to the use of a pumped hydro power plant. However, the authors hedge
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the deviation from a forecasted generation instead of a deviation from long-term
financial expectations of generation. They are also assuming known electricity
prices and formulate the use of a forecast as possible future work. We address both
limitations in this study.

As shown, previous studies usually focus on an integrated renewable energy and
storage system that is jointly installed and operated. This approach significantly
increases the investment costs that an operator faces in advance. For the case of risk
hedging with a BESS, Pinson et al. (2009) find that the best results can be achieved
through dynamic sizing of the storage unit, i.e., the utilization of different storage
capacities each day. The authors suggest that the storage should operate “as an
independent market entity, where each producer may rent the necessary daily storage
capacity for hedging the risk”. Following these results, we consider the utilization of a
BESS unit as a service provider. We investigate the potential of a solar plant operator
to protect herself against quantity and price risk through a service agreement with a
storage provider that allows the charging of the BESS at one point in time and the
discharging at another freely chosen point in time within the agreed duration period
of the contract. In the course of this chapter, we describe the general features of
risk hedging strategies for the solar plant operator and demonstrate an exemplary
strategy on the example of a simulated solar plant. Besides the description of the
storage strategy, the main contribution is the evaluation of the possibility of using
BESS capacity as a service for risk hedging purposes for renewable generators in the
form of BESS options.

6.3 Theoretical Considerations
In this section, we begin by describing the problem analytically. We model the

risk of renewable generators and introduce the use of a BESS for risk management.
Assume that qt is the actual generation of a renewable generator at time t and Qt

is the random variable of the generation at time t. Furthermore, assume that Q̃t is
the distribution of that generation. We use the same nomenclature for the price at
any given time with pt as the actual market price, Pt is the random variable of the
price and P̃t is the corresponding distribution. The random profit Π of a renewable
generator with marginal generation cost of zero is then given as Πt = Qt · Pt.
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From this, we can calculate the expected profit for any given time. This leads to
the equation of expected profit as E(Πt) = E(Qt) · E(Pt) + Cov(Qt, Pt). As
higher renewable infeed leads to lower wholesale electricity prices, the covariance
in this equation serves as a natural hedging as it is negative between prices and
renewable quantities. However, while this association is true on a global level, it is
not necessarily true for individual renewable power plants. To assess the associated
risk, we need to consider the variance of the profit. It is described in the following
formula.

V ar(Πt) = V ar(Qt · Pt) = Cov(Q2
t , P

2
t )+

(V ar(Qt) · E2(Qt)) · (V ar(Pt) · E2(Pt))−

(Cov(Qt, Pt) + E(Qt)E(Pt))
2

(6.1)

The joint variance increases with the individual variances and the expected values.
It can be reduced through a negative covariance between the prices and generation
quantities but it depends on the individual mechanics.
A renewable generator that wants to reduce the uncertainties of her profits is not
necessarily interested in reducing the risk of individual time steps but would rather
try to guarantee a stable stream of profits over periods of time, such as days or
weeks. Therefore, in this chapter, we consider the differences in profit relative to an
average day in the respective month. As renewable generation varies greatly over the
seasons, it is reasonable to assume that a renewable generator would have different
profit expectations for a day in July and December. However, even in December, a
renewable generator might achieve an average, above average or below average day.
Being able to hedge against below average days is an argument towards investors for
lower interest rate payments and thus an important tool for renewable generators.
It is important to define the risk measure that renewable generators are trying to
minimize. One obvious choice is the reduction of the variance. A renewable generator
has the following objective in regards to the reduction of the variance with m being
a particular month, n being the number of considered days for that month and dm
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being a particular day in that month.

min(π̄m − πdm)2 = min(
1

n

n∑
j=1

24∑
t=1

πm
t −

24∑
t=1

πdm
t )2 (6.2)

Other measures that we consider in this study are the Value at Risk (VaR) and
the Conditional Value at Risk (CVaR) (R. Tyrrell Rockafellar, Stanislav Uryasev,
2000). The VaR for a certain confidence level α is the α-quantile of the distribution
function of the loss function X for a certain portfolio. The CVaR is the integral over
the interval [0,α] of the inverse distribution function of losses. Assume that the losses
of a renewable generator for a day in a specific month are distributed according to
F (πm). Then the VaR to the level of α is defined as V aRm(X) = min(x|FX(x) ≥ α)

and the CVaR is defined as CV aRm = 1
α
·
∫ α

0
V aRm(X) . The VaR for α = 0.05 thus

corresponds to the lowest of the 5% largest losses. The CVaR is the average of the
5% largest losses and is therefore always higher than the VaR, but is a more robust
measure of risk. The VaR and the CVaR are better measures to model the risk of
a renewable generator than the variance as they describe negative deviations from
the mean rather than also punishing positive deviations. Consequently, they have
been used as risk measures by the authors of the studies presented in La Sánchez de
Nieta et al. (2020) and Morales et al. (2010).
We now introduce the BESS as a risk hedging instrument. The action of charging
and discharging a BESS can only be described over a time horizon. Therefore,
we propose a time period T that is associated to each BESS option equivalent to
the life of a regular financial option. The renewable generator has to choose this
period when charging the BESS, which influences the option pricing. We can then
differentiate between BESS options that can be exercised at any time during the
period (American BESS options) or which can only be exercised at the end of the
period (European BESS options). We will describe the impact on the option price
later in this section. In the case of American BESS options, the renewable generator
also needs to decide on when to exercise the option. She can develop a strategy with
a specific time to exercise or try to optimize the time to exercise over the lifetime of
the BESS option. It is of course important to discuss when such decisions need to
be communicated to the storage operator so that she can optimize her load schedule
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around these decisions of the renewable generator. This detailed definition of the
financial product is subject to future work. The profit of the renewable generator
with a BESS πbst over a time horizon T with the charging decisions st is then given
by the following equation.

πbst
T =

T∑
t=1

(qt − st) · pt (6.3)

Therefore, a risk neutral renewable generator is willing to pay the difference between
the profit with and without the use of a BESS (πbst

T − πT ). However, risk averse
renewable generators can use this strategy to reduce their VaR and CVaR and might
therefore be willing to pay a premium.
To price the service from a storage operator’s perspective, we ignore the cycling costs
for the moment and focus on the opportunity costs of the BESS. The renewable
generator charges the BESS for free but then reserves the right to sell the charged
energy at any moment within the BESS option period (American) or at the end of
the period (European). To price the American form of the option, we first define
p̂T,t0 = maxt∈T (pt) as the maximum price within the option period T that starts at
t0. This price can also be expressed as a random variable P̂T that has a distribution
˜̂
Pt0,T depending on the time period T and the starting time t0. This is easier for the
European BESS option because we only need to consider the distribution of the price
at the end of the option period at t1 for which we have already defined a probability
distribution as P̃t1 . The pricing of the according options then depends on the risk
propensity of the BESS. Assuming a risk neutral storage operator and ignoring cyclic
aging and fixed costs, then a fair price po for the American BESS option is calculated
as po = (E(P̂T ) − pt0) · st0 . It is the difference between the expected maximal price
over the option period and the current price multiplied with the charged quantity.
The calculation for the European BESS option is equivalent. If a storage operator
is more or less risk averse then the pricing changes. However, for a storage operator,
providing such a service also reduces risks. By receiving a fixed premium she is
less dependent on price volatility and has a secure income. Therefore, the pricing
of such BESS options also depends on the preferences of the involved parties. In
the following, we describe these theoretical considerations along a case study for a
fictional solar PV power plant.
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6.4 Data Analysis
In order to investigate the presented theory of risk hedging of the revenues of an

operator of a renewable energy generation plant, we implement and evaluate the
concept by means of a case study. We select the case of a solar PV plant operator,
mainly for one apparent reason: Since the price risk is increased by the feed-in
from renewable energy, in the case of a wind park it might be necessary to bridge
long periods of time to avoid the price risk, since periods of high wind feed-in can
continue over several days or weeks. A negative influence on electricity prices can
also be observed during periods of high feed-in from solar generation, but naturally
only for a few hours each day. This means that a solar PV plant operator can avoid
her price risk by a short-term shift of generation from the midday hours into the
evening. In the case of a solar PV plant operator, the results for a delimited period
of time are more robust and can be interpreted more generally. For our analysis,
we use the German price, load and generation data for the years from 2015 to 2019
which is publicly available (Bundesnetzagentur, 2020a). We use the years 2015 to
2018 as training data to create a risk hedging storage strategy for a solar PV plant
operator and subsequently test it for the months from May to September of 2019.
We deliberately only take the summer months into account, as this is when the
price effects from feed-in of solar PV generation are most pronounced and the most
significant results can therefore be expected.

The analysis of the training data set shows the effects of quantity- and price-
related risks. Daily revenues of a solar PV plant operator who directly markets her
generation on the day-ahead-market fluctuate significantly. This is illustrated for
the period of one month in Figure 6.1 using the example of a fictional 1 MW solar
plant. Revenues are calculated using πdm =

∑
t∈ dm

max(0, pt) · qt, where for each
hour t in a day, the respective solar generation qt and price on the day-ahead-market
pt are multiplied and then added. We assume that in hours with negative prices,
generation is curtailed instead of sold, thus the revenue in hours with negative
prices is zero. To investigate the influence of prices and daily generation on the
daily revenues, we plot these dependencies in in Figure 6.2. The daily generation is
calculated as qdm =

∑
t in dm

qt and the realized average price for the solar generation
as P solar = πdm/Qdm . It can be seen that both the daily production quantity and
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the price that is realized per MWh have a positive effect on the daily income. The
graphs show this dependency for all days in the months May to September of the
training data set (2015 - 2018).

Figure 6.1.: Daily revenues of a 1 MW solar plant

Figure 6.2.: Influence of generation quantity and realized price on daily income

In order to hedge the price and quantity risk of a solar PV plant operator, we
therefore create BESS utilization strategies that are specifically targeted to coun-
teract the respective cause of losses in revenues. We assess the risk of the solar
PV plant operator using the risk measure CVaR described in the previous section.
This measure penalises downward deviations in revenues, i.e., losses compared to the
expected daily revenue, while above-average revenues are not considered.The strate-
gies developed, which are presented in the following section, are therefore aimed at
specifically preventing downward deviations in profits caused by quantity or price
fluctuations.
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6.5 Operation Strategies to Mitigate Price and

Quantity Risk
On a given day, the storage operator faces the decision of how much of the electric-

ity forecast for the next day to sell directly on the day-ahead-market and how much
to charge or discharge at a given time during the next day. We stipulate that the
operator must inform the BESS service provider about these charging and discharg-
ing decisions in advance, so that the storage operator has enough time to plan her
operation schedule accordingly. To address the revenue fluctuations associated with
price and quantity uncertainties of a solar PV plant operator, we employ strategies
for the BESS service utilization specifically targeted at counteracting each of the two
risks of negative deviations of next day’s prices and production quantities. For the
determination of benchmarks and decision rules, we analyse generation, load and
price data from the years 2015 - 2018 and apply the derived rules to the months of
May to September 2019 to test and evaluate the storage strategies. As the quan-
tity and price risks differ with regard to the time horizon concerned, we develop
two strategies to address each of the risks separately first and then later examine
the effects of the individual and combined strategies. Whereas losses due to price
drops can be mitigated by shifting generation within one day from low price hours
to later occurring high price hours, quantity-related losses can only be compensated
by shifting generation from days with above average generation to days with low
generation.

6.5.1 Price Risk Strategy

The main risk of price-related losses consists of periods of high feed-in from renewable
energy sources, as these have marginal production costs of zero and thus negatively
affect prices on the day-ahead market. This is particularly noticeable at times of high
wind feed-in, but also during the summer, when solar feed-in is at its peak, prices
are systematically lower around midday than in the morning or evening hours. If
additional influences, such as a high wind speeds occur simultaneously, periods with
negative prices can occur.

A solar PV plant operator can circumvent the price risk through a short-term
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utilization of the BESS service. If significantly lower prices are expected on the
following day, solar generation can be shifted from the hours of high generation
into the evening hours, thus avoiding significant price drops even with little and
short-term BESS usage. The price risk storage strategy for a solar plant operator is
intended to reduce downward deviations from the expected revenue that are caused
by price drops. It consists of shifting generation from the midday hours, which
are high in solar generation, to the evening hours during which higher prices occur
due to declining feed-in from solar PV. To this end, we train a decision tree on the
data for the years 2015 to 2018, which takes the respective national load as well as
wind and solar generation forecasts for the following day as input, as well as the
respective month and day of the week. On this basis, the decision tree predicts
whether the prices in the five hours of the following day with the highest generation
fall below the 25% quantile of a month’s historic electricity prices during 2015 to
2018. If the algorithm predicts such a price drop for the next day, the price hedging
strategy is triggered. For each of the hours t in the charging period CP , a share
a ϵ [0, 1] of the generation forecast is stored using charget = a · qt ∀ t ∈ CP . The
entire stored electricity of the midday hours is then discharged in equal parts in the
hours of the discharging period DP in the evening using discharget =

∑
t∈CP a·qt
NDP

,
where NDP is the number of hours in the discharging period. The price risk strategy
does not postpone the sales of the generator beyond one day.

Figure 6.3.: Implementation of decision tree to trigger the price risk strategy

6.5.2 Quantity Risk Strategy

The short-term quantity-related risk is expressed by the fact that the total generation
on some days falls short of the average for a month, usually due to weather influences
that are only predictable in the short-term future. Shifting production within one
day is therefore not sufficient to protect the solar PV plant operator against these
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quantity associated deviations from the expected revenues. Instead, in order to
counteract the quantity risk, the operator can request discharging of stored electricity
from the BESS service provider on days of low generation. In order to do so, she
must preventively store surplus generation on days with above-average generation in
order to build up credit with the BESS service provider. The quantity risk strategy
thus includes decision rules for such charging and discharging events. Based on the
generation data from 2015 to 2018, the average daily generation is calculated for each
month. This serves as a benchmark for the expected generation E(Qdm) on a typical
day d in a given month m. Based on her risk aversion, the storage operator then
chooses a factor l ϵ [0, 1] that triggers a discharging event. If the generation forecast
for the next day Qd+1 falls below this threshold (e.g., 0.8 · E(Qdm)), a discharging
event is requested in the amount of the forecast deficit, if the operator has enough
credit with the BESS service provider. Credit can be built up by charging electricity
to the BESS and is treated as described in the previous section in the same way as
an American option. When a charging event is commissioned, the solar PV plant
operator determines a time horizon T for the option, within which she can retrieve,
i.e., discharge, the credit at any time. However, as with all charging and discharging
events, she must announce the discharging of electricity in advance. In order to
make sure that sufficient credit is available with the BESS service provider to cover
a discharge event when it occurs, the solar PV plant operator has to built up credit in
advance on days with excess generation. For the quantity risk strategy, the operator
may decide on a planning horizon T , i.e., how long in advance a shortfall should be
planned for. The longer this period is chosen, the more likely it is that all discharge
events can be covered but this security may come with a higher price for the BESS
service as the BESS service provider faces larger uncertainties. The charging events
of the quantity risk strategy are triggered as follows: For each month, we calculate
the expected generation deficit that is faced by the operator for a given threshold l

and a planning horizon T , based on the years 2015 to 2018. On each day, the solar
PV plant operator decides whether electricity should be charged to the BESS the
next day based on two conditions. (1) A charging event is only requested when the
generation forecast for the next day is above a month’s expected daily generation and
only this excess will be stored and (2) a charging event is only requested if the existing
credit with the BESS service provider is below the expected quantity deficits over
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the planning period T . When electricity is stored, the solar PV plant operator has
the option of discharging this credit at any given time within the planning horizon.
Note that credit with the BESS service provider may expire if the requested number
of days of the option elapses without a discharging event. In that case, the solar
PV plant operator will request a discharging event on the last day of validity of
the option in any case. In case of a discharging event, the credit with a shorter
remaining option lifetime is always requested first. Figure 6.4 shows an exemplary
set of consecutive days and the respective daily generation (blue lines) to illustrate
the benchmarks for charging and discharging events. The corresponding algorithms
that determine the amount of generation to be charged or discharged in each hour
t when an event is triggered are displayed in Figure 6.5. For both the price and
quantity risk, the strategy s is then defined as st = charget − discharget.

When combining the two strategies, it can make a difference in which order they
are employed. If, for example, the price risk strategy is commissioned first, it is
possible that generation has already been stored, which is then no longer available
to use for the quantity risk strategy. We therefore deploy and investigate four
different storage strategies for the solar PV plant operator: price risk only, quantity
risk only, price risk first, then quantity and quantity risk first, then price.

Figure 6.4.: Schematic illustration of a charging and a discharging event in the quantity
risk strategy
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Figure 6.5.: Algorithms for charging and discharging events

6.6 Evaluation
We apply the strategies presented in the previous section to the price, load and

renewable generation data in Germany during the months May to September 2019.
For the design and evaluation of a storage strategy for a fictional solar PV plant
operator, we scale the generation to 1 MW of installed capacity. Based on the
historical training data from 2015 to 2018, we train the decision tree that decides
when the price strategy is applied and determine the parameters that are required
for each strategy. For the price risk strategy, we set the charging period CP to
the fixed hours between 11 a.m. and 4 p.m. and the discharging period DP to be
between 6 p.m. and 11 p.m. for each day when the price risk strategy is triggered.
We set the share a that is to be charged during each hour in the charging period to
be 1, thus all generation is charged and then later discharged. For the quantity risk
strategy, we set the parameter l to 0.8, thus a discharging event is commissioned
whenever the generation forecast for the next day is below 0.8 · E(Qdm). The
planning horizon T and accordingly the time period for the BESS option that is
chosen when charging the BESS is set to four days. For the price risk strategy,
the BESS option is analogous to a European option since the time of discharging is
specified to be at the end of a one day period.

Fig. 6.6 shows a section of the resulting storage strategies based on the selected
parameters, where positive values are charging events and negative values indicate
discharging events. In this section, it can be seen that the two strategies do not
overlap and can therefore easily be combined. In general, only very few overlaps
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Figure 6.6.: Extract of the resulting storage strategies

occurred throughout the testing period, so that the strategies quantity risk first,
price second and price risk first, quantity second only differ slightly. This indicates
that the solar PV plant operator can address both the quantity and price risk through
the utilization of a BESS service without the two strategies getting in each others
way. In the next paragraphs, we analyse the implications of the resulting strategies
for the solar PV plant operator as well as the BESS service provider in terms of
revenues and risk hedging.

6.6.1 Solar Photovoltaic Plant Operator

The CVaR serves as risk measure for the revenues of the solar PV plant operator.
This measure penalises “losses” in terms of negative deviations from the average
daily revenue. In order to obtain comparable values, we use the average revenues
without BESS utilization to measure the downward deviations and to determine
the CVaR. Our results in Fig. 6.7 show that the CVaR can be reduced substantially
through the utilization of the BESS service. The results range within a 28% CVaR
reduction in September and a 58% CVaR reduction in May when using the combined
strategy. On average, the CVaR can be reduced by 38% in the five months that
are considered. In particular, the strategies that involve the price risk strategy
improve the CVaR in all months under consideration. In fact, only the quantity
risk strategy by itself is not suitable to reduce the CVaR in all but one month. The
combination of the two strategies yields the best CVaR in three out of five months
and ties with the price risk strategy in the other two months. A closer look at the
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amount of electricity stored in Fig. 6.8 in the respective strategies could provide an
explanation for the findings. The quantity risk strategy uses the BESS service for
a comparatively small quantity of stored electricity. This could indicate that the
parameters for the quantity risk strategy have been chosen too conservatively. For
example, the threshold l for a discharging event could have been set higher.

Figure 6.7.: Negative deviations from average daily revenue

Figure 6.8.: Quantity of stored electricity

However, Fig. 6.9 also suggests that the quantity may not have the same
importance as the price for the largest deviations from the average revenues. In
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May, the three largest deviations (on days 12, 26 and 30) can be reduced with
the price risk strategy, which is expressed in the positive effect on the CVaR. The
quantity risk strategy only affects the fifth largest deviation (day 16), which is not
reflected in the CVaR with α = 0.05. In summary, we find that the CVaR can be
improved substantially with the proposed strategies based on decision heuristics
from the four years prior to the testing period. This is a promising finding for future
work considering the utilization of a BESS as a service to hedge price and quantity
related risks of renewable generation operators. We expect that with more data and
a more granular strategy design, even better results can be achieved.

Figure 6.9.: Impact of storage strategies on revenues

6.6.2 Battery Storage Service Provider

In this subsection, we evaluate the necessary payments to the storage operator for
him to accept providing the BESS options for the above described strategies. To
do so, we are optimizing the storage operation assuming perfect foresight of the
price development with and without the storage hedging strategy of the PV solar
plant operator interfering with the storage strategy. The difference between the
results gives us the opportunity costs for the operator. The BESS operator solves
the following optimization problem.
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max
T∑
t=1

−st · pt (6.4)

s.t. St = St−1 + st−1 + ssolart−1 ∀t ∈ T\{0} (6.5)

|st| ≤ s (6.6)

0 ≤ St ≤ S (6.7)

S0 = 0 (6.8)

S Storage capacity
St State of charge at time t
s Storage charging power
st Charging decision of storage at time t
ssolart Charging decision of solar PV at time t
pt Price at time t

During the considered period and with a parametrization of s = 2MW and
S = 4MWh the BESS can achieve a profit of 22,618 e without interference of a
strategy. Including the price risk strategy, the BESS’s profit decreases to 20,486e.
For the quantity risk strategy, the profit decreases slightly to 22,304 e. Finally,
for the combined strategy the profit is 20,270 e. Another important consideration
is the throughput. An increasing throughput can lead to more cyclic aging which
would lead to more costs for the BESS. The throughput without the provision of
BESS options is 1,436 MWh, with the price risk strategy it is only 1,429 MWh,
with the quantity risk strategy it is 1,434 MWh and with the combined strategy
it is 1,429 MWh. Therefore, the impact of cyclic aging in regards to BESS option
provision is negligible. Finally, to give an indication of the cost per MWh of the
BESS option we can divide the lost profit for the BESS by the throughput caused
by the renewable generator. Thus, the cost is 25.7 e MWh−1 for the price risk
strategy, 15.2 e MWh−1 for the quantity risk strategy and 23.2 e MWh−1 for the
combined strategy. It is therefore potentially in the range of BESS costs but further
cost decreases for BESSs or increasing price volatility are necessary to make it
profitable.
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Figure 6.10.: Revenues from storage utilization

6.7 Discussion
In the presented case study, we show that both the solar PV plant operator and

the BESS operator can benefit from the proposed constellation. Future BESS costs
are difficult to estimate due to the large number of technologies and dynamic price
developments. However, the assessment of the opportunity costs of the BESS service
provider showed that the optimal strategy of the service provider actually yields less
cycles when including the strategy of the solar PV plant operator and therefore
marginal cyclic costs of zero could be assumed. Fig. 6.10 shows the revenues that
the solar PV plant operator realizes through the utilization of the BESS service. The
values are in the range of the compensation that the BESS service provider needs
to request for her service as determined in the previous section. As we argued in
Section 6.3, the solar PV plant operator might even be willing to pay a premium
for the ability to decrease her risks in revenue streams in order to provide a stable
investment plan. Likewise, the BESS service provider may have incentives to adjust
the demanded compensation according to her risk aversion and operational goals.
Future research should further look into the extent to which the revenues of the
solar PV plant operator justify the reimbursements for the BESS service provision
and the cyclic costs of BESS utilization as well as the pricing of the service provided
by the storage operator. However, it should be noted that electricity price spreads
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are likely to increase in the future as installed renewable capacities increase, thereby
increasing the potential revenues from BESS usage as well.

In our model, we assume that a BESS is accessible as a service on demand. This is
not a feasible use case for a BESS under current regulation in many countries, mainly
because of the fees charged for the charging and discharging processes. However,
we assume that, in a system increasingly based on renewable energy sources, more
flexibility solutions will be necessary and thus the usage of BESSs will be promoted
more strongly in the course of this development. In particular, the deployment of
BESSs to balance intermittent generation, as presented in this study, can make a
significant contribution to integrating the increasing feed-in from renewable energy
into the energy system and is thus an important contribution to the stability of the
energy supply.

6.8 Conclusion
In this chapter, we make several contributions towards the financial risk man-

agement for intermittent renewable energy generation through the utilization of a
BESS service. We provide a theoretical model for the risk assessment of a renewable
plant operator and the pricing of the BESS service. We then develop heuristic
storage strategies for a solar PV plant operator to mitigate price and quantity
related negative deviations in profits. In a case study, we can show first promising
results, and answer the research question with an average CVaR reduction of 38%
in the five months that are considered. These results indicate that the use of BESSs
similarly to an option as a financial instrument can provide a feasible contribution
to the risk hedging objectives of the solar PV plant operator. We furthermore
determine the pricing of the BESS service and conclude that the proposed con-
stellation can be beneficial for both the solar operator and the BESS service provider.

In this chapter, we analyse the case of a large renewable generator relying on
a grid-scale BESS to manage and hedge the risk of her intermittent generation.
However, the discontinuation of the EEG-subsidy after 20 years could make this
strategy interesting for renewable generators at lower aggregation levels as well, e.g.,
in the case of a residential prosumer. This chapter further motivates research on
the perspective of the BESS service provider, i.e., the storage operator who would
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receive requests for multiple applications. This perspective is addressed in Chapter
8.

While the focus of this chapter was the perspective of a large renewable operator
who deploys a grid-scale BESS in front of the meter to hedge against risks, behind the
meter, risk attitude also plays an important role for operators of industrial BESSs.
These BESSs can be operated more profitably by providing FCR as second use
case. This however comes with a higher risk of missing crucial peaks, which requires
operational strategies that incorporate the inherent risk assessment.



CHAPTER 7

INDUSTRIAL PEAK-SHAVING USING A PROB-
ABILISTIC APPROACH

Behind the meter, industrial peak shaving is a broadly discussed application for
BESSs in the medium voltage level of the power grid. In previous research, this use
case is often combined with FCR provision, which can increase a BESS’s utilization
and profits, but also adds planning uncertainty to the corresponding operation strat-
egy. An industrial consumer has an incentive to plan conservatively when reserving
a BESS’s capacities for peak-shaving, as a single missed peak can drive up annual
electricity costs steeply in the presence of peak-load charges. In this chapter, the no-
tion of risk attitude is introduced in the context of joint industrial peak-shaving and
FCR provision by combining a probabilistic quantile forecast with a rolling-horizon
BESS control mechanism. Probabilistic load forecasts incorporate prediction uncer-
tainty by generating a distribution of future load and therefore allow the conservative
scheduling of the BESS’s capacity. In a novel approach, we therefore combine a prob-
abilistic forecast with the joint scheduling of peak-shaving and FCR provision in the
case of an industrial consumer to evaluate the economic effects of risk averse plan-
ning. The results of this chapter show that extremely risk averse planning behavior
can lead to a decrease of up to 10% in monetary performance of a BESS investment
compared to risk neutral planning. This loss might be tolerated in exchange for
the significantly reduced risk of missing a critical peak. Moreover, moderate risk
averse planning behavior does not lead to financial losses in most cases and can
even improve monetary performance by up to 3% in the considered case study. This
chapter comprises large parts of the unpublished article under review: S. Henni, J.
Becker, P. Staudt, C. Weinhardt, Industrial Peak-Shaving with Battery Storage us-
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ing a Probabilistic Approach: Monetary Evaluation of Risk Attitude, Working Paper,
2022.

However, this limits the use of BESS energy and power capacity for other finan-
cially attractive applications.

7.1 Introduction
Since the peak load costs can constitute up to 34% of the annual electricity costs

according to (Shi et al., 2018), industrial consumers have an incentive to reduce this
peak, which can be done with a BESS. To increase the utilization of the deployed
BESS, the combination of peak-shaving and FCR is a promising approach both
technologically and economically, while trading is not yet economically feasible and
also increases the risk of premature degradation of the BESS (Braeuer et al., 2019;
Perez et al., 2016). This however leads to a situation of uncertainty regarding the
scheduling of the parallel applications.

Unlike in many other applications, for an industrial consumer who engages in
peak-shaving, risk attitude plays an important role in the simultaneous scheduling
of peak-shaving and FCR activities, as a single missed load peak can drive up
the annual electricity bill. Therefore, it seems sensible for the operator to plan
conservatively, i.e., to reserve more capacity for peak-shaving than likely needed.
Traditional point forecasts (i.e., predicting one expected value for the load in every
given time step) as used by previous studies (see, for example, Oudalov et al. (2007),
Lucas and Chondrogiannis (2016) and Shi et al. (2018)) do not capture this notion
of risk averse planning. Such planning would require adjustments for an operations
strategy based on point forecasts, for example, with the help of heuristics. However,
probabilistic forecasting already inherently incorporates a risk assessment in terms of
prediction uncertainty. Instead of only predicting a quantity as in the case of a point
forecast, a probabilistic forecast generates a predicted distribution of the future
load (vom Scheidt et al., 2021). This makes it possible to reflect the uncertainty
of a prediction, which can be crucial for risk aware decision-making (Gneiting and
Katzfuss, 2014). In the case of quantile forecasts, a sub-category of probabilistic
forecasts, a confidence interval is predicted for a percentile (for example, 90%), i.e.,
in 90% of the cases the true value is below the predicted value (Hong et al., 2013;
Hong and Fan, 2016). In this sense, a point forecast can be thought of as a quantile
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forecast for the median. Using a percentile lower or higher than the median for
the scheduling of BESS capacities thus makes it possible to incorporate the risk
affinity or aversion of an operator. In the case of an industrial consumer engaging
in simultaneous peak-shaving and FCR provision, the risk aversion can be modeled
by planning the BESS’s dispatch based on a quantile forecast. However, if more
capacity is held back for peak-shaving due to the presence of risk aversion, this can
lead to lower revenues on the FCR market. This inherent trade-off between reducing
the risk for missed peaks in peak-shaving and (potential) losses in FCR revenues
raises the question of the magnitude of monetary losses due to risk averse planning.
In this chapter, we therefore compare risk neutral and risk averse planning using a
probabilistic forecast for the operation of an industrial BESS for joint peak-shaving
and FCR provision. We thus answer the following research question:

Research Question 6: What is the financial effect of an industrial consumer’s
risk aversion on the profit of a battery storage system that is deployed for joint
peak-shaving and frequency containment reserve provision?

The remainder of this chapter is structured as follows: We first introduce related
research on the combined deployment of BESS for peak-shaving and FCR provision
as well as previous work on probabilistic forecasting in the context of energy systems.
We then introduce the methodology, consisting of two parts. First, we describe
the design of a probabilistic load forecast that is implemented with the help of a
quantile long short-term memory (Q-LSTM) network. Then, we introduce a rolling-
horizon control algorithm for a BESS operated by an industrial consumer. Finally,
we demonstrate the application of the methodology on the case of five empirical
industrial load profiles and evaluate the monetary implications of risk attitude during
the scheduling of BESS capacities.

7.2 Related Work
In this section, we present literature that deals with the simultaneous BESS de-

ployment for peak-shaving and FCR provision, with a focus on the modelling of
uncertainty. We then turn to related work on probabilistic load forecasts using neu-
ral networks.
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7.2.1 Simultaneous Peak-Shaving and Frequency Containment Reserve

Provision

Lucas and Chondrogiannis (2016) develop a smart grid energy storage controller for
frequency regulation and peak-shaving, using a VRFB. The study focuses on the
technical features of BESS control, i.e., it considers resistance, discharging current
and response time. The simulation results, for which perfect foresight is assumed,
show that the BESS can regulate frequency effectively due to its fast response time,
while still performing peak-shaving services. Engels et al. (2020b) present an ap-
proach that divides the BESS into two virtual batteries, which are deployed for peak-
shaving and FCR, respectively. Uncertainty is modelled by deploying a stochastic
consumption profile and using the inherently stochastic frequency deviation profile.
By using a sample average approximation, the model relies on the expected value,
indicating risk neutrality. Through the joint deployment of the BESS for both ser-
vices, net profits are increased by 100% compared to peak-shaving alone and by 10%
compared to solely providing FCR.

Superlinear gains are also found for the joint use of a BESS for industrial peak-
shaving and frequency control by Shi et al. (2018). The authors use load data from
a Microsoft data center and a university building and obtain frequency regulation
signals from the PJM fast frequency regulation market. A joint optimization is used
to determine day-ahead decisions on capacity bidding and the peak threshold. A
multiple linear regression is deployed as a point forecast to predict the load for the
next day and the BESS movements are scheduled using a real-time control.

Braeuer et al. (2019) approach the topic from an economic perspective, relying on
an hourly resolution of data from 50 small and medium-sized businesses in Germany.
In addition to peak-shaving and frequency control, they include trading on the intra-
day and day-ahead markets as a third application. To ensure the ability to provide
FCR, a part of the BESS’s capacity is reserved in every time step. Uncertainty
is again included by means of a multiple linear regression. In the case-study, the
combination of peak-shaving and FCR proved (highly) economically advantageous
for about half of the industrial load profiles. Adding trading as a third use case
could further enhance profitability by a small margin, but only for a few industrial
consumers.



Related Work 185

Although these studies provide valuable insights, they do not address the risk
attitude of an operator in a scheduling strategy. This can be achieved by using a
probabilistic forecast for the joint scheduling of a BESS for peak-shaving and FCR.

7.2.2 Probabilistic Load Forecasting

Instead of only predicting one single value for a future load, a probabilistic forecast
generates a distribution over the possible values of the future load (vom Scheidt et al.,
2021). This makes it possible to reflect on the uncertainty of a prediction, which can
be crucial for decision-making (Gneiting and Katzfuss, 2014). Hong and Fan (2016)
suggest that probabilistic load forecasts can be executed as quantile forecasts, interval
forecasting and density forecasting. In this chapter, we focus on quantile forecasts,
i.e., probabilistic forecasts that generate the estimate of percentiles as output. The
estimation ŷq of a percentile q is the value, for which q% of all values are expected to
be smaller or equal to ŷq, according to the generated distribution. To describe the
meaning more illustratively, if we predict a load of 5 kW for the 90th percentile, this
means that we expect the load to be smaller than or equal to 5 kW in 90% of cases.
Of course, the larger we choose the percentile, the more certain we can be that our
real value will indeed not be larger than the predicted value. At the same time, a
larger percentile also makes our prediction interval larger, meaning that we might
severely overestimate the actual load.

Probabilistic forecasting was first introduced to the field of residential load fore-
casting by Gan et al. (2017). Their forecasting method is a Q-LSTM, which uses
the average quantile score (AQS) as scoring rule. The AQS penalizes the prediction
error based on the percentile value itself. For instance, the 80th percentile is penal-
ized less than the 90th, if the prediction is too low in both cases. The AQS then is
the average of all percentile errors. The authors work with nine percentiles from 0.1
to 0.9 and a half-hourly resolution, i.e., 48 data points per day. The forecast time
horizon turned out to pose a limitation at the time: Only one time step at a time
could be predicted by the Q-LSTM. However, it outperformed a fully convolutional
neural network and a holistically-nested edge detection.

The finding that LSTM-networks are the superior method for probabilistic load
forecasting is underlined by Wang et al. (2019). For residential load forecasting, a
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Q-LSTM network with the pinball loss as scoring rule is deployed. The pinball loss
is based on the same idea as the AQS, but without computing the average over all
observed percentiles. It is explained in more detail in Section 7.3.1. Contrary to
the approach of Gan et al. (2017), Wang et al. (2019) deploy multiple and longer
prediction horizons. For all quantiles, 0.5 hour, 1 hour, 2 hour and 4 hour intervals
are predicted, respectively. For these prediction horizons, the Q-LSTM outperforms
the quantile recurrent neural network and quantile gradient boosting regression tree
benchmarks. vom Scheidt et al. (2021) present three probabilistic load forecast-
ing methods, namely a quantile gated recurrent unit (Q-GRU), a Q-LSTM and a
quantile regression neural network (Q-REGNN). As empirical load data, they use
half-hourly data points recorded by residential smart meters. In addition, solar data,
weather data and calendar data is acquired. The authors use 0.1, 0.25, 0.5, 0.75 and
0.90 as percentiles. The forecasting methods predict the next hour based on the last
336 hours (i.e., two weeks). For the Q-GRU and Q-LSTM, 20% and 15% lower test
losses are observed compared to the Q-REGNN when considering non-solar house-
holds. Remarkably, the Q-LSTM further reduces the loss by 26% for the customer
group without weather data. Again, the Q-LSTM emerges as the superior method,
especially when no weather data is available.

A quantile probabilistic forecast generates the estimation ŷq for different per-
centiles q. The estimate ŷqh of a high percentile qh is naturally higher than that
of a lower percentile ql. The true value y is therefore more likely to be smaller than
ŷqh than ŷql . Therefore, with the estimate ŷqh , peak-shaving is more reliably possi-
ble. However, in most cases ŷqh will also be further from the true value y than ŷql .
When combining peak-shaving with FCR, this means that using a lower percentile,
and thus the estimate ŷql to reserve BESS capacity for peak-shaving, leaves more
capacity to provide FCR. This results in a trade-off between (un)certainty for peak-
shaving activity and profits on the FCR market. This trade-off has not been taken
into account in previous studies on combined peak-shaving and FCR. In the two
studies by Shi et al. (2018) and Braeuer et al. (2019), a point estimator is employed,
which does not incorporate risk attitude of operators. Engels et al. (2020b) model
the uncertainty of the load as a stochastic consumption profile. But it is then used in
a stochastic optimization, to find the expected value, which again implies risk neutral
behavior. Therefore, with this chapter, we provide first insights into the monetary



Methodological Framework 187

effects of non-risk neutral risk attitude in the context of industrial peak-shaving and
FCR provision.

7.3 Methodological Framework
The method described in this chapter is then demonstrated on two years of load

data in the presented case study, as depicted in Figure 7.1. First, we develop and
train a probabilistic forecast model using a Q-LSTM. Then, we determine the
optimal size in terms of power and energy of a BESS that is used for simultaneous
peak-shaving and FCR provision based on the historic load profile of an industrial
consumer. Based on these results, we simulate a rolling-horizon BESS control,
consisting of day-ahead and real-time decisions regarding the dispatch of BESS
capacities.

Figure 7.1.: Flow chart of the methodology, carried out on two years of load profile data in
the case study

On the day before operation, it is decided how much of the BESS’s capacity is
offered in the FCR auction and how much is reserved for peak-shaving. During
this planning step, we differentiate along the risk attitude of the operator, i.e., the
percentile of the probabilistic forecast that is used for reserving capacity for peak-
shaving. During real-time operation, the BESS dispatch for peak-shaving has to
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be adjusted to the actual load using the real-time BESS control. Finally, after
simulating a one year operational period on the second year of data, the monetary
evaluation is performed and compared for different levels of risk attitudes. In the
following, every box in the flow chart in Figure 7.1 is explained in a separate section.

7.3.1 Probabilistic Load Forecasting via Quantile Long Short-Term

Memory Networks

As described in the previous chapter, Q-LSTMs have been shown to be particularly
well suited for a probabilistic load forecast. The structure of an LSTM is depicted
in Figure 7.2. LSTMs are based on recurrent neural networks, which belong to the
category of sequence models. In contrast to traditional neural networks, sequence
models are able to learn sequential data and are thus especially well suited for
time series applications. LSTM networks in particular are able to detect long-term
dependencies in sequence data (Gers et al., 2000). This is because each cell in
an LSTM network has a cell state Ct that is passed on to the next cell. A forget
gate ft decides how much of the preceding cell state Ct−1 is forgotten, while the
input gate it decides how much of the input is used for the calculation of Ct. This
input consists of the empirical input data of t, but also of the output data of the
previous layer. The latter is stored by each cell in a hidden state ht. Finally,
the output gate ot determines how much of the input is used for the calculation of ht.

Figure 7.2.: Left: LSTM unit structure. Right: Q-LSTM network structure
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Network structure. The network structure in this chapter follows a 3-phase
approach as suggested by Wang et al. (2019) and vom Scheidt et al. (2021). A
graphical representation of the approach is shown in Figure 7.2. Each input for the
LSTM consists of a vector of 105 entries composed of the load (96 observations per
day), the company ID and the one-hot-encoded calendaric data. In the first phase,
the normalized historical load data is taken as input. Here, t denotes the single
time step to be predicted and no is the number of output steps, i.e., the prediction
horizon, which specifies how many time steps are to be predicted simultaneously.
The network uses the last ni input steps for one prediction. The load data first
passes through two LSTM layers with sigmoid activation functions and then a dense
layer with a relu activation function, which passes on the hidden state ht. In the
second phase, the nominal calendaric data, consisting of the day of the week and
the time of day is converted by a one-hot encoder into a format that can be used
by the LSTM. In the third phase, the hidden state ht and the associated calendaric
data are concatenated. They are then run through two fully-connected dense layers
with relu activation functions to generate five quantile forecasts.

Loss function and hyperparameter tuning. As evaluation metric, we choose
the pinball loss (7.1). It is a loss function that is used frequently for the evaluation
of quantile forecasts and is also used by Wang et al. (2019), vom Scheidt et al. (2021)
and Elvers et al. (2019), among others.

Lsq,t(yt,ŷqt ) =

{
(1− q)(ŷqt − yt), ŷqt ≥ yt

q(yt − ŷqt ), ŷqt < yt
(7.1)

yt: real observation at time step t

ŷqt : the qth quantile forecast at time step t

The pinball loss evaluates the predicted value based on its distance from the
actual value, but also in relation to the prediction quantile. For an example, looking
at the 90th percentile: If the prediction ŷ90t is greater than the actual value y, the
pinball loss is 10% of ŷ90t − yt. But if ŷ90t , underestimates y, the penalty is nine times
higher (90% of ŷ90t − yt). Thus, an underestimation of a quantile is more severely
punished as this is to be avoided. This principle is illustrated in Figure 7.3.
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Figure 7.3.: Pinball loss illustration

In this chapter, we use the Q-LSTM to generate predictions for the percentiles
q ∈ [25%, 50%, 75%, 90%, 95%]. During the training process, the hyperparameter
setting with the smallest average pinball loss over all quantiles is chosen as shown in
Equation 7.2.

minLs =
∑
q

T∑
t=1

Lsq,t, q ∈ [25%, 50%, 75%, 90%, 95%] (7.2)

Similar to vom Scheidt et al. (2021), we choose the learning rate, the number of
units in the Q-LSTM-layers and the number of units in the dense layers as hyperpa-
rameters to tune. The tuning takes place on 50% of the data. Therefore, to predict
one year, the resulting train, validation and test split is set to 25%, 25% and 50% of
the data, respectively. During the hyperparameter tuning, each possible combination
of the hyperparameters reported in Table 7.1 is tested, and then, the combination
of hyperparameters that performs best on the validation set is selected.

Table 7.1.: During hyperparameter tuning, each possible combination of hyperparameters
listed here is tested

Hyperparameter Value
Learning rate 0.001, 0.01, 0.1
Number of units in Q-LSTM-
layers

4, 8, 12

Number of units in dense layers 10, 30, 50

The resulting probabilistic quantile forecast then serves as the basis for the
decision-making in the rolling-horizon BESS control strategy. Based on the cho-
sen percentile, which reflects differing risk attitudes, the industrial consumer decides
at the time of the FCR auction how much of the BESS’s capacity has to be reserved
for peak-shaving for the next day, and as a result, how much remaining capacity can
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be tendered on the FCR auction. However, before simulating the BESS dispatch,
the optimal size of the deployed BESS must be determined.

7.3.2 Determination of the Battery Storage Size and the Initial Grid

Capacity Level

An industrial consumer, who wants to engage in peak-shaving, initially has to make
a decision regarding the BESS investment, i.e., how large the BESS’s capacity needs
to be. This might be computed based on past load data. We therefore develop
an optimization to determine both the optimal BESS size and grid capacity level,
i.e., the level of load that under optimal operational circumstances is the resulting
maximum annual peak load after peak-shaving measures (Equation 7.3). Note that
while the investment size cannot be changed later (once the operator invested in the
BESS, its size is fixed) an operator can adjust the grid capacity level during the
lifetime of the BESS, e.g., in response to changing load patterns.

min

(
λelec

T∑
t=1

l(t)∆t

)
+ λpeakU

∗ + (cPP
max + cEE) (7.3a)

s.t. l(t) = L(t)− bdc(t) + bch(t) ∀ t ∈ [1, ..., T ] (7.3b)

l(t) ≤ U∗ ∀ t ∈ [1, ..., T ] (7.3c)

SoC(t + 1) = SoC(t)−
(
bdc(t)

µ
+ bch(t)µ

)
∆t ∀ t ∈ [1, ..., T ] (7.3d)

SoCmin ≤ SoC(t) ≤ SoCmax ∀ t ∈ [1, ..., T ] (7.3e)

SoC(0) =
SoCmax − SoCmin

2
(7.3f)

0 ≤ bdc(t) ≤ Pmax ∀ t ∈ [1, ..., T ] (7.3g)

0 ≤ bch(t) ≤ Pmax ∀ t ∈ [1, ..., T ] (7.3h)

The decision variables of the resulting optimization are the optimal BESS power
and energy capacity Pmax and E and the discharging and charging behavior in time
step t, bdc(t) and bch(t) which result in the optimal peak load (after shaving measures)
U∗. The objective function (Equation 7.3a) consists of three different cost compo-
nents. The first cost component are the annual electricity costs λelec

∑T
t=1 l(t)∆t,
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consisting of the electricity price λelec in e kWh−1 multiplied with the consumed
load l(t) in each time period t. To convert the load into energy, we multiply it with
the factor ∆t, which refers to the time resolution in hours. The second part of the
objective function are the peak load costs λpeakU

∗, where U∗ is the highest load of
the observed year in kW and λpeak denotes the peak demand charge in e kW−1

p . The
third component are the investment costs cPPmax + cEE for the BESS’s power Pmax

in kW and energy capacity E in kWh. The parameters cP , cE denote the annuitized
costs in e a−1 and are a result of the investment costs pP in e kW−1 and pE in
e kWh−1, multiplied with the annuity factor as detailed in Equations 7.4 and 7.5.
Here, i denotes the discount rate and n the number of annuities, i.e., the lifetime of
the BESS in years.

cP = pP
(1 + i)ni

(1 + i)n − 1
(7.4)

cE = pE
(1 + i)ni

(1 + i)n − 1
(7.5)

Constraint (7.3b) models the load l(t) after shaving, which is a result of the original
load L(t) and discharging bdc(t) and charging values bch(t) in kW. Constraint (7.3c)
ensures that the maximum value of l(t) for t ∈ [1, ..., T ] determines the magnitude of
the peak load U∗. The SoC update is defined in Constraint (7.3d), where SoC(t) is
the SoC in each time period t in kWh. The SoC for the next period t+ 1 depends on
the current SoC(t) and the BESS charging and discharging behavior while consid-
ering the BESS’s efficiency µ. Constraint 7.3e ensures that the SoC does not violate
the lower and upper bounds of the BESS. Similarly, the power limits are enforced
by Constraints (7.3g) and (7.3h).

The optimization yields the optimal BESS parameters Pmax and E based on the
empirical load data. The optimal peak-grid capacity level U∗ can serve as a first
indicator for a feasible peak-shaving level in the following years. It could however
also be adapted flexibly to changing load patterns. Hence, for the rolling-horizon
BESS control in real-time, we use the peak-shaving level U∗ that is derived from
historic data as a first proxy for a feasible peak-shaving level. We do however also
assess alternative scenarios with other peak-shaving levels to evaluate the sensitivity
of the model.
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7.3.3 Rolling Horizon Battery Control

As previously described, the rolling-horizon BESS control includes two main
components: (i) The day-ahead decision during which the operator must decide how
much of the BESS’s capacity has to be reserved for peak-shaving, and as a result,
how much is left to tender on the day-ahead FCR auction, and (ii) the real-time
control that manages the BESS’s operation once the actual load is known and the
BESS charging and discharging behavior has to be adjusted accordingly. Figure
7.4 depicts the rolling-horizon BESS control from Figure 7.1 in more detail. We
describe this sequential decision-making and its interdependencies in the following
paragraphs.

Figure 7.4.: Rolling horizon BESS control. Based on a quantile forecast, the day-ahead
decision is made to determine the optimal bid on the FCR auction. Then, the
BESS is controlled in real-time to adjust to the actual load.

Day-ahead decision

In Germany, each day of FCR provision is divided into 6 blocks of 4 hours duration
each that are tendered separately (Bundesnetzagentur, 2020b). We therefore divide
the day into W bidding windows. Every day, the operator must make a capacity bid
Capbid,w for each bidding window w ∈ [1, ...,W ] on the FCR auction for the following
day, which we assume is accepted. For each of these windows, Capbid can differ, but
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all W bids must be placed at once during the day-ahead FCR auction. At this point,
we consider the risk attitude: Since we do not know our actual load on the following
day, the bid is made based on a forecast. If we rely on a risk neutral, i.e., point
forecast, we do not take into account that the monetary penalty for missing one single
peak might be much higher than losses that occur because of conservative bidding
behavior on the FCR market. We therefore plan our bids based on a probabilistic
quantile forecast that reflects a risk averse attitude if choosing a percentile higher
than 50%. Based on a given quantile load forecast Lq, we therefore solve the following
optimization to determine the optimal bid Capbid,w for each bidding window during
the day-ahead decision (7.6).

min

(
λelec

D∑
t=1

l(t)∆t

)
+ λpeakŨ −

(
λc

D∑
t=1

Capbid(t)∆t

)
(7.6a)

s.t. l(t) = Lq(t)− bdc(t) + bch(t), ∀ t ∈ [1, ..., D] (7.6b)

l(t) ≤ Ũ ′ ∀ t ∈ [1, ..., D]) (7.6c)

Ũ = max (Ũ ′ − U∗, 0) (7.6d)

Capbid(t) = Capbid,w ∀ t ∈ [1, ..., D], t ∈ w

(7.6e)

Capres(t) = Capbid(t) · r ∀ t ∈ [1, ..., D]) (7.6f)

Eres(t) = Capbid(t) ·
1

4
hours ∀ t ∈ [1, ..., D] (7.6g)

SoCmin + Eres(t) ≤ SoC(t) ≤ SoCmax − Eres(t) ∀ t ∈ [1, ..., D] (7.6h)

SoC(t + 1) = SoC(t)−
(
bdc(t)

µ
− bch(t)µ

)
∆t ∀ t ∈ [1, ..., D] (7.6i)

SoC(1) = SoCrt (7.6j)

SoC(D) =
SoCmax − SoCmin

2
(7.6k)

0 ≤ bdc(t), bch(t) ≤ Pmax − Capres(t), ∀ t ∈ [1, ..., D] (7.6l)

0 ≤ Capbid,w ≤ Pmax ∀ w ∈ [1, ...,W ] (7.6m)

In the objective function (7.6a) we minimize the cost for the next day where D

denotes the number of time intervals per day, i.e., 96 in the case of a 15-minute
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resolution. The first cost component is the daily electricity cost λelec in e kWh−1

multiplied with the sum of the resulting daily load
∑D

t=1 l(t)∆t in kWh. In each
time step, the (shaved) daily load l is a result of the original (forecasted) load Lq

and the discharging and charging behavior bdc and bch in kW (7.6b). The second cost
component are the additional peak costs λpeakŨ in e kW−1, which may arise if on
the next day, a peak occurs that is larger than any previously occurring peaks. Ũ

represents the positive difference between the maximum load of the day Ũ ′ and the
current grid capacity level U∗ as specified by Constraints (7.6c) and (7.6d). Ũ is to be
interpreted in such a way that only an increase of the global peak U∗ leads to further
peak costs, but if the maximum load of the day remains below U∗, no costs occur.
The last component of the objective function are the FCR market revenues that
consist of the compensation λc in e kW−1 that the operator receives per capacity
bid Capbid(t) per time step t in bidding window w (7.6e).

To incorporate the FCR market bid into our operational strategy, we expand on
the idea of Braeuer et al. (2019), where a portion of the BESS’s capacity is reserved
corresponding to the bid on the FCR auction. Participants on the FCR market must
be able to provide the maximum of Capbid symmetrically for at least 15 minutes,
meaning the BESS must be able to charge or discharge at full bid capacity during
that time (Thien et al., 2017; Bundesnetzagentur, 2020b). Therefore, we must reserve
a certain amount of energy capacity Eres(t) in kWh at each time step t to allow for
both eventualities (7.6g). Constraint (7.6h) ensures that the SoC cannot exceed the
lower and upper BESS energy limits while taking into account the ability to fulfill the
requirements for the FCR provision. To be able to provide positive control energy
at maximum bid capacity for at least 15 minutes, the SoC at time step t cannot
be lower than Eres(t). Similarly, the same amount of energy capacity must still be
unoccupied to allow for negative control energy.

Braeuer et al. (2019) neglect the actual power signal for FCR provision. In reality,
the frequency regulation signal r(t) ∈ [−1, 1] determines the share of Capbid that
must actually be delivered every 2 to 4 seconds. Over a period of 15 minutes, the
frequency signals would balance out to a mean of zero, as positive and negative FCR
is considered to be roughly symmetric (Xu et al., 2016). To be able to estimate
the share r of the capacity bid Capbid that we need to reserve, we thus look at
frequency signal data from 2019 to 2021 in 1 second resolution by Mumm (2021)
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and model the FCR provision per tendered MW of FCR. We then only look at
one side of the symmetric provision (i.e., only positive FCR provision) and retrieve
the 90th percentile, which is r = +0.135. This means that from 2019 until 2021,
a (hypothetical) participant on the FCR market who would have made a constant
bid (that was accepted) of 1 MW on the FCR auction, would have had to actually
provide a power (either positive or negative) of 0.135 · 1 MW = 135 kW or less
during 90% of time. We therefore block a portion of the BESS’s power capacity
Capres(t) = Capbid(t) · r, with r = 0.135 so that the expected signal r can be
adequately fulfilled at all times (7.6f). This estimate further ensures that the BESS
operation meets the prequalification criteria of the German FCR market, which
require that at least 80% of the total signals can be responded to (Thien et al., 2017;
Bundesnetzagentur, 2020b).

The correct updating of the SoC is ensured in Constraint (7.6i), analogously to
Equation 7.3d in Section 7.3.2. Constraints (7.6j) and (7.6k) determine the initial
and the final SoC value for the day. The initial value SoCrt represents the last SoC
level of the previous day, which is transferred from the real-time BESS control of the
previous day. Since we work with a rolling horizon approach, the operator cannot
know the optimal SoC for the end of the day one day in advance. We therefore set
this constraint for the last period of the day, effectively leaving the BESS half full.
This is necessary since we always need to be able to provide FCR symmetrically,
i.e., both charging and discharging must be possible. If we allow the BESS to run
empty at the end of the day, this would interfere with our ability to provide FCR on
the next day. The BESS actions (bdc(t), bch(t)) for peak-shaving can only access the
non-blocked power portion Pmax − Capres(t) (Constraint (7.6l)). Constraint (7.6m)
ensures that Capbid,w does not exceed the power of the BESS, so that the bid can
always be fulfilled technically.

Real-time control

After the assumed optimal FCR auction bids Capbid,w are determined, and subse-
quently Eres(t) and Capres(t) are derived, the industrial operator needs to schedule
the BESS’s capacity to perform peak-shaving in real-time, depending on the true
load l(t) that is revealed, i.e., known with certainty at time step t. We therefore
adapt and extend a real-time control algorithm proposed by Shi et al. (2018) and
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Engels et al. (2020b) (Algorithm (1)).
For the real-time control, we need the actual load l(t), the initial grid capacity

level U∗
0 and the BESS power and energy capacity sizes Pmax and E as input. Note

that at the beginning of the simulation, i.e., on the first day of any year, an initial
grid capacity level has to be chosen. This grid capacity level can be derived based
on historic data as described in Section 7.3.2, but can also be set arbitrarily by the
operator. During real-time operation, the BESS will try to shave any load above
the (initial) grid capacity level. If this is not achieved on a certain day, i.e., a load
l(t) ≥ U∗

0 occurs that cannot be shaved, then l(t) will be set to be the new grid
capacity level U∗. Since the peak charges will then have to be paid for the (new)
maximum load U∗ anyway.

Here, T denotes the total number of time periods t, ∆t denotes the length of
one time period t in hours and D denotes how many time periods t add up to one
day. Lines (1-4) set initial values. The values RFCR, Celec and Cpeak are annual
revenues on the FCR market, electricity costs and peak costs that are needed for
the monetary evaluation in the following section. Line (5) begins to iterate through
all time steps t ∈ [1, ..., T ]. When a new day is started, line (6) becomes true
and Capbid(t), Eres(t), Capres(t) are set for the next day according to the day-ahead
decision (Optimization (6)). Line (9) calculates b(t) as the difference between the
present load l(t) and the current grid capacity level U∗. If this value is positive (line
10), it means the current load at t is larger than the set grid capacity level, and
we therefore have to start to discharge the BESS for peak-shaving. In the following
lines (11-13), the discharging magnitude is determined. While the ultimate goal is
to shave all of b(t), the BESS’s limits such as (remaining) power and SoC have to
be taken into account (lines 11 and 12). If b(t) is negative, the BESS is not needed
for peak-shaving at this time. This gives the operator time to charge the BESS
in preparation for future peaks, which is done in lines (15-16). The BESS control
decisions in lines (10-16) are based on Shi et al. (2018) and Engels et al. (2020b) and
have been proven to be close to (economically) optimal and computationally efficient.
We expand on the approaches of Shi et al. (2018) and Engels et al. (2020b), because
we are taking bidding windows into account. Therefore, we add a constraint that
also takes Eres(t + 1) into account (lines 11-12 and 15). This makes sure that no
inconsistencies in the transition between bidding windows occur. Note that Eres(t)
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Algorithm 1: Real-time control
input : l(t), U∗

0 , Pmax, E
1 D ← 24

∆t

2 t← 1

3 SoC(1)← E
2

4 RFCR, Celec, Cpeak ← 0

5 for t = 1→ T do
6 if t == new day then
7 for t = t→ (t + D) do
8 Eres(t), C(t), Capbid(t)← Optimization(6)

9 b(t) = l(t)− U∗

10 if b(t) ≥ 0 then
11 b(t)← min{b(t), Pmax−Capres(t), µ(SoC(t)− (SoCmin +Eres(t))∆t,

12 µ(SoC(t)− (SoCmin + Eres(t + 1))∆t}
13 bdc(t)← b(t), bch(t)← 0

14 else
15 b(t)← max{b(t), Capres(t)−

Pmax, (SoC(t)−(SoCmax−Eres(t))
µ

∆t, (SoC(t)−(SoCmax−Eres(t+1))
µ

∆t}
16 bdc(t)← 0, bch(t)← |b(t)|
17 if t == last hour of day then
18 if SoC(t) > SoCmax−SoCmin

2
then

19 b(t)← min
{
Pmax − Capres(t), SoC(t)− µ(SoCmax−SoCmin)

2
∆t
}

20 bdc(t)← b(t), bch(t)← 0

21 else

22 b(t)← max
{
Capres(t)− Pmax, SoC(t)− SoCmax−SoCmin

2µ
∆t
}

23 bdc(t)← 0, bch(t)← |b(t)|
24 SoC(t + 1)← SoC(t)−

(
bdc(t)
µ
− bch(t)µ

)
∆t

25 S(t)← l(t)− b(t)
26 if S(t) ≥ U∗ then
27 U∗ ← S(t)
28 RFCR ← RFCR + λcCapbid(t)∆t
29 Celec ← Celec + λelecS(t)∆t

30 Cpeak ← λpeakU
∗

and Capres(t) are virtually shrinking the BESS so that only the remaining energy
and power capacities can be used for peak-shaving. To synchronize with the day-
ahead optimization, we reset the SoC to SoCmax−SoCmin

2
in the last period of the day
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(lines 17-23), given the BESS’s physical restrictions. This final SoC is then updated
(line 24) and taken as initial value for the next day-ahead optimization as can be
seen in Constraint (7.6j). In line (25), S(t) is defined as the result of the load l(t)

and BESS activity b(t), i.e., the power that is drawn from the grid. If S(t) is larger
than the current grid capacity level U∗, the latter will be updated to S(t) in lines
(26-27). Finally, lines (28-30) update the FCR market revenues and electricity costs
based on the bid on the FCR auction Capbid(t) from the day-ahead decision and the
electricity consumption S(t). At the end of one year, the resulting annual peak costs
are calculated based on the final grid capacity level (i.e., maximum load) U∗. The
monetary evaluation is described in more detail in the following section.

Note that since this strategy does not include degradation, while it has been
proven to be close to (economically) optimal, it may not be ideal from a technical
perspective. Moreover, since at times that require no peak-shaving activity, the BESS
may still be charged in preparation for future peaks, unnecessary cycling might occur
that would lead to premature degradation. We neglect this issue for now, since we
are mainly interested in the economic effects that risk averse planning has on the
trade-off between peak-shaving and FCR provision. This is further justified by the
low time resolution of 15 minutes that we choose in this chapter, which does not
allow for a detailed investigation of degradation and other technical parameters. In
practice, a BESS management system would be needed to ensure adequate FCR
provision in real-time as well as to prevent unnecessary cycling during peak-shaving
activities.

7.3.4 Monetary Evaluation

The final part of the methodology as depicted in Figure 7.1 is the monetary evalu-
ation of the BESS’s deployment for simultaneous peak-shaving and FCR provision.
For every considered forecast quantile q ∈ [25%, 50%, 75%, 90%, 95%], the electricity
costs Celec,q, peak costs Cpeak,q and FCR market revenues RFCR,q are calculated with
the corresponding values from the real-time control (Equations 7.7 - 7.9).

Celec,q = λelec

T∑
t=1

Sq(t)∆t (7.7)
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Cpeak,q = λpeakU
∗,q (7.8)

RFCR,q = λc

T∑
t=1

Cbid,q(t)∆t (7.9)

The resulting annual electricity costs Cq of the industrial operator using the qth
percentile for the load forecast during operation are then calculated as the sum of
the three components in (Equation 7.10).

Cq = Celec,q + Cpeak,q −RFCR,q (7.10)

In addition to the variable costs, the (fixed) investment costs that incur for the ac-
quisition of the BESS have to be taken into account. I denotes the initial investment
costs, depending on the energy capacity E and power capacity Pmax of the BESS
that are determined based on the approach presented in Section 7.3.2 multiplied
with the prices for energy and power capacity pE and pP (Equation 7.11).

I = pE · E + pP · Pmax (7.11)

The net present value (NPV) of an investment determines its profitability while
considering that the cash flow CF is spread over time (Fisher and Barber, 1907).

NPV (i, N) = −I +
N∑

n=1

CF

(1 + i)n
(7.12)

The initial investment costs I are set against the interest-bearing cash flow CF

which we assume is constant for all n. We consider the cash flows of the BESS
investment to be the cost savings each year compared to not installing a BESS. We
therefore first have to calculate the electricity costs that the industrial consumer has
to pay if no BESS is installed. In this case, the costs Cnb consist of the load l(t)

multiplied with the electricity costs per kWh λelec, as well as the peak costs λpeak

multiplied with the maximum annual load (Equation 7.13). The cashflow from the
BESS investment CFq, depending on the used quantile forecast during operation,
then is the difference between costs without and with BESS investment (Equation
7.14).
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Cnb = λelec

T∑
t=1

l(t)∆t + λpeak max (l(t), t ∈ [1, ..., T ]) (7.13)

CFq = Cnb − Cq (7.14)

An NPV greater than zero indicates that an investment I is profitable while an
NPV smaller than zero is an unprofitable investment. However, comparability of
different NPVs is limited because the indicator depends on the size of the initial
investment. To compare the profitability of a BESS investment across different
scenarios and companies, we therefore use the profitability index (PI) that calculates
the NPV per invested Euro (Braeuer et al. (2019); Brealey et al. (2011), Equation
7.15).

PI =
NPV (i, N)

I
(7.15)

In the next step, we apply our introduced methodology to a case study to demon-
strate the effects of risk attitudes on the profitability of a BESS investment for
simultaneous peak-shaving and FCR provision.

7.4 Case Study
The case study is conducted using two years of empirical power consumption data

of five German industrial companies, which operate in the fields of metal processing,
wood industry and manufacturing published by Huber et al. (2019). The first year
of the empirical data of each company is used to implement (i.e., train and validate)
the probabilistic forecast as well as to determine the optimal BESS size and initial
optimal grid capacity level individually. The rolling horizon BESS control and mon-
etary evaluation is then performed on the second year of data. We assume that in
reality, an industrial consumer would equally decide on a BESS investment based on
historical data.

For the Q-LSTM network, the output step size is set to no = 96 while the input step
size is set to ni = 1344 for each prediction. Practically, this means that one day is
forecasted on the basis of the last two weeks, which is the conventional cut-off horizon
for short-term load forecasting (Hong and Fan, 2016; vom Scheidt et al., 2021). The
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model is implemented in Python using Keras. The code is published by vom Scheidt
et al. (2021) and is publicly available5. The results of the hyperparameter tuning
and the total pinball loss Ls of the optimal hyperparameter combination is presented
in Table 7.2. An exemplary excerpt of the forecast is shown in Figure 7.5.

Table 7.2.: Optimal hyperparameter values for probabilistic forecast of load data of com-
panies 1 - 5

ID Learning rate # Units in
LSTM layers

# Units in
dense layers

Pinball loss

1 0.01 4 10 0.006
2 0.1 12 30 0.123
3 0.1 4 10 0.031
4 0.1 4 10 0.048
5 0.1 4 30 0.015

Figure 7.5.: Forecast of Company No. 2 of Nov 15th - 18th

The obtained percentiles of the probabilistic quantile forecast then serve as input
for the case study on the monetary effects of risk attitude in the deployment of a
BESS for simultaneous peak-shaving and FCR provision. The temporal parameters
for the case study are reported in Table 7.3. We simulate one year of operation
in a 15-minutes resolution. The number of bidding windows is chosen based on the
bidding blocks on the German FCR auction (Bundesnetzagentur, 2020b). We need to
make further assumptions regarding BESS investment costs (differentiated by power
and energy capacity), lifetime and other technical parameters. All assumptions and
corresponding sources are reported in Table 7.4. In line with other publications, we
assume the BESS to be lithium-ion batteries (Shi et al., 2018; Braeuer et al., 2019;
Simpkins and O’Donnell, 2017).

5https://github.com/FVS-energy/prob_forecasting
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Table 7.3.: Time-based parameter values for the case study

Parameter Value

Total simulation length 363 days
Length of one period ∆t 1

4
h

Total number of periods T 34, 848

Number of periods per day D 96

Number of bidding windows per day W 6

Table 7.4.: Technical and economical assumptions for the case study

Assumption Unit Value Source

BESS price, energy

capacity portion pE

e kWh−1 162 Simpkins and O’Donnell (2017)

BESS price, power

capacity portion pP

e kW−1 440 Simpkins and O’Donnell (2017)

Discount rate i % 2 Braeuer et al. (2019)

BESS lifetime N a 11 Braeuer et al. (2019)

BESS efficiency µ % 95 Xu et al. (2018b)

Upper limit SoCmax kWh 0.95 · E Xu et al. (2018b)

Lower limit SoCmin kWh 0.1 · E Xu et al. (2018b)

Electricity price λelec e kWh−1 0.175 Bundesnetzagentur and

Bundeskartellamt (2021),

NEW NETZ (2021)Peak price λpeak e kW−1
p 86.06 NEW NETZ (2021), Braeuer et al. (2019)

FCR market price λc e MW−1 h−1 12 Engels et al.

(2020b),Bundesnetzagentur (2021)

For the industrial consumers’ electricity costs, we assume a per-kWh price of
λelec = 0.175 e kWh−1. This consists of the German electricity price of 0.17 e kWh−1

for industrial consumers from 2021 (Bundesnetzagentur and Bundeskartellamt,
2021), plus a per-kWh price component of 0.0056 e kWh−1 charged by the grid
operator (NEW NETZ, 2021). We assume an exemplary current peak load price of
λpeak = 86.08 e kW−1

p based on (NEW NETZ, 2021). For the FCR market price,
similar to Shi et al. (2018) and Engels et al. (2020b), we assume a fixed price, because
the fluctuations of the market price have no direct impact on our model. Moreover,
depending on the (random) timing of the industrial load profiles’ annual peaks, the
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results could be less generalizable if by chance the FCR prices work to the (dis-
)advantage of a specific industrial load profile. To estimate a fixed FCR revenue, we
examine the FCR market prices from July 2019 to December 2021 obtained from
(Bundesnetzagentur, 2021). Note that before July 30th 2020, prices were formed
based on one daily bidding block. From then on, prices are differentiated into six
daily 4-hour bidding blocks. Taking this feature into account, we calculate the av-
erage price of around λelec = 12 e MW−1 per hour, which is in line with the price
assumed by Engels et al. (2020b). The BESS efficiency is set to µ = 95%. To model
sustainable BESS usage, we set lower and upper limits for the SoC. These make sure
that the SoC cannot go below 10% or exceed 95% of the total energy capacity E,
which is advisable to avoid premature aging (Xu et al., 2018b). Bids on the German
FCR market must be at least 1 MW, which is more than the BESS’s power capacity
for all industrial customers in our case study. We therefore assume that the BESSs
are part of a virtual power plant that meets this requirement, similar to the model
employed by the BESS provider sonnenGmbH with residential BESSs (Tietze et al.,
2019). The simulation is implemented in Python. For the optimizations we use the
Gurobi solver with an academic license. The simulation is run on a 3.1 GHz Intel
Core i5 HP Pavilion with 8 GB memory.

In the following, we present the findings of the effect of risk attitudes on the
profitability of BESS deployment for simultaneous peak-shaving and FCR provision.

7.4.1 Simulation Results

For each of the five companies in our data set, we evaluate the monetary potential
of the BESS investment, which was made on the basis of the first year of empirical
load data. We use the PI that expresses the profit per invested Euro to achieve com-
parability across all companies and scenarios. We differentiate between five different
quantile forecasts as inputs during the rolling-horizon scheduling of BESS capaci-
ties in order to incorporate the industrial consumer’s risk attitude. The percentiles
represent risk neutral (50th) and risk averse attitudes (75th, 90th and 95th). We also
include the 25th percentile as comparison for a risk seeking strategy. In addition,
we evaluate the scenario “foresight” as an upper benchmark, in which the true load
of the next day is known during the day-ahead scheduling of the BESS’s capacity.
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Note that this does not necessarily depict a global optimum, since the foresight is
only for one day at a time.

Table 7.5 shows the resulting BESS power and energy capacity parameters for
the five companies, along with information on their annual load and maximum peak
load. The companies differ significantly in terms of overall electricity consumption.
Consequently, the BESS sizes also differ, ranging from small to medium-sized stor-
age systems. The power to energy capacity ratio (also referred to as c-rate) varies
between 0.7 and 1.6, as we allow for a flexible dimensioning of power and energy
capacities.

Table 7.5.: Annual load and maximum peak of companies 1 - 5 along with the resulting
optimal BESS power and energy capacities

ID BESS capacity BESS power Total yearly load Yearly peak load
E [kWh] Pmax [kW]

∑
t L(t) [MWh] maxL(t) [kW]

1 2 2 26 19
2 68 109 4,002 1109
3 111 75 629 315
4 46 58 1,629 575
5 15 12 169 117

Figure 7.6 shows the achieved PI for the BESS operation under different risk
preferences and daily perfect foresight. The comprehensive numeric results of all
simulations are reported in Appendix 7.1. In line with Shi et al. (2018), Engels
et al. (2020b) and Brealey et al. (2011), we find that the simultaneous application
of peak-shaving and FCR is economically advantageous compared to only one
application for all companies. In the base case scenario shown in Figure 7.6 and
Appendix 7.1, the initial grid capacity level is chosen based on the optimal grid
capacity level for the first year of data. Unsurprisingly, the perfect foresight
performs a least as well as the operation based on quantile forecasts. One key
insight that can be taken from the cases of all companies is that risk averse planning
does generally not have a (large) negative effect on the monetary performance of the
BESS investment. In the case of company 5, we observe a 10% lower PI compared
to the 50th percentile (i.e., the point forecast equivalent) for the 95th percentile.
For company 1, utilizing the 75th and 95th percentile results in a slightly decreased



206 Industrial Peak-Shaving Using A Probabilistic Approach

PI by 2% compared to the 50th percentile. It might seem counter-intuitive that
the 90th percentile performs better than both the 75th and 95th percentile. This is
the result of a rare effect that can take place because we determine BESS size and
grid capacity level based on historic data that results in the BESS being not large
enough to shave a certain peak in the following year. Depending on the percentile
that is used for planning, and the respective reserved capacity for peak-shaving, the
operator still tries to shave the original peak as long as possible, until the BESS is
empty and has to set a new grid capacity level. In rare cases, this might then occur
inconveniently timed and lead to the observed results.

Figure 7.6.: PIs across all percentiles and foresight

In some cases, we can even see positive monetary effects when planning peak-
shaving capacity risk aversely. In the case of company 2, planning based on both
the 75th and 90th percentile yields a 3 % better monetary performance than planning
with the point forecast. When planning extremely risk averse by utilizing the 95th

percentile, the PI declines but is still 1% above the point forecast. We further observe
that there is no difference in monetary performance between any of the quantile
forecasts in the cases of companies 3 and 4, again underlining the finding that risk
averse planning has little to no negative effects on the monetary performance of the
BESS. Overall, this is an encouraging finding, as it implies that a risk averse attitude,
which reduces the risk of missing a high peak load event, is not very costly for an
industrial consumer even in the worst case scenario.

Since our results depend on many assumptions, we perform extensive sensitivity
analyses to evaluate the effects of changing costs, prices, and technical parameters.
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7.4.2 Sensitivity Analyses

We perform sensitivity analyses for the parameters peak price, FCR market price,
initial grid capacity level, BESS investment costs and BESS size. The most important
findings are described in the following.

The initial grid capacity level is determined based on the first year of data, along
with the optimal BESS power and energy capacity. This means that in the second
year of data, which we use for our simulation and monetary evaluation, the chosen
grid capacity level is not necessarily optimal anymore. Since the grid capacity level
can be adjusted flexibly by the industrial consumer during operation (in contrast
to the BESS investment which is fixed once the BESS is acquired), it is plausible
to test variations of initial grid capacity levels during the simulation. The effect of
decreasing the peak-grid capacity level (i.e., trying to shave to a lower load level
than in the base case scenario) is illustrated in Figure 7.7 for all companies and
forecast scenarios.

Figure 7.7.: Effects of a reduced initial peak-grid capacity level compared to the initial level
that is derived from the optimization on the first year of data

We observe that for companies 1 and 4, a lower initial grid capacity level does
not change the monetary performance of the BESS deployment. The most plausible
explanation is that when the peak-grid capacity level is set (too) low in the beginning,
the BESS fails to shave to this level on some days and therefore readjusts (i.e.,
increases) the grid capacity level during the course of the year which then yields
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similar results to the base case scenario. In the case of companies 2, 3 and 5, however,
we observe a different (desirable) effect: A lower initial grid capacity level leads to
a better monetary performance across all forecast scenarios, most likely because the
level that is determined on the previous year did not fully take advantage of the
BESS’s peak-shaving potential. Overall, this sensitivity analysis reveals a valuable
finding: A reduction of the initial grid capacity level might be preferential as the level
can simply be reset during operation if it cannot be held. However, as previously
discussed, this might not always be beneficial.

We further test the effects of a higher or lower peak load price. The peak price
that an industrial consumer has to pay in Germany varies depending on the region
and respective grid operators. We use an exemplary peak price that is representative
of these charges in general in the base case scenario and test the effects of a 20%
increase or decrease in peak prices for all companies and forecasts as sensitivity
(Figure 7.8).

Figure 7.8.: Effects of a higher and lower peak load price on the monetary performance of
the BESS investment

For companies 2 - 5, we observe that while the level of the PI changes between the
scenarios, the relative performance for the different percentiles remains the same.
Generally, higher peak prices lead to a better monetary performance of the BESS as
there are more potential savings of shaving peak loads. One exception is company
3, where we observe a different effect. Whereas a reduced peak price also leads to a
lower PI, a 20% increase in the peak price suddenly further reduces the PI across all
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percentiles. Note that in the case of a changed peak load price, the optimal BESS size
is also adjusted to the new prices during the optimization, which might explain this
unusual effect. Company 1 poses an exception in terms of the relative performance
of the quantile forecasts. While the performance is similar among all percentiles in
the base case and +20% scenarios, the 25th, 50th and 75th percentile perform notably
worse when peak prices are reduced by 20%. This might be caused by a smaller
optimal BESS size (and a change in power to energy ratio) in the presence of low
peak charges, which makes it more difficult to adequately react to unforeseen peaks.
We can thus observe that in this constellation, the improved anticipation of costly
peaks through highly risk averse planning increases the monetary performance of the
BESS by more than 15%.

Further results of the sensitivity analysis are shown in Figure 7.9. On the left side,
we compare the effects of higher or lower FCR price levels and peak prices, averaged
over all companies and quantile forecasts. These two parameters illustrate the mone-
tary trade-off between the two considered BESS applications. We find that generally,
higher FCR price levels lead to better monetary performance, while the effect of the
peak price is not quite as pronounced and straightforward, as also seen in Figure 7.8.

Figure 7.9.: Left: Joint effect of peak load price and FCR price variations. Right: Joint
effect of BESS size and investment variations. Both figures depict the average
over all quantile forecasts (without foresight scenario).

On the right-hand side, BESS size and investment costs are compared, again
averaged over all companies and forecast quantiles. Unsurprisingly, lower investment
costs lead to higher PIs. BESS size on the other hand leads to only small effects,
but we see a slight increase in monetary performance if the BESS size is reduced by
10% in comparison to the size that was optimal on the first year of data. Due to the
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limited number of use cases, it is unclear if this finding can be generalized to other
industrial consumers.

7.5 Discussion
It should be noted, that the training-validation-test split of 25-25-50 is not ideal for

training a Q-LSTM. However, this split is necessary because of the problem context
of annual peak load pricing and the two-year data availability. Future research
should try to acquire longer time series to improve the model training. Moreover,
testing the introduced methodology on more industrial load profiles could reveal
more generalizable results.

The BESS sizing and the initial grid capacity level is optimized for peak-shaving
only and depends on load data of a single year. Therefore, the optimization problem
in Section 7.3.2 may lead to results that are not optimal for the following year. It
should be emphasised that this is a deliberate modelling decision. It is realistic
that business operators cannot provide optimal BESS sizes and initial grid capacity
levels for the next year. Nevertheless, it could have been better to perform the
optimization on more than one previous year, since the load profiles of the two years
differ considerably in certain cases. Again, longer time series should be acquired for
future research in this area.

Furthermore, we want to address the chosen rolling horizon approach presented in
Figure 7.4. The focus of this chapter is to enable a synchronised interaction between
day-ahead optimization and subsequent real-time BESS control. The latter charges
the BESS to grid capacity level whenever possible. Non-optimal BESS movements
may occur in our real-time control, which we accept for the purpose of the economic
evaluation of this study. In reality, however, a more intelligent real-time control,
as presented by Lucas and Chondrogiannis (2016) and Koller et al. (2015) would
be advantageous. This would also enable an accurate representation of the BESS’s
degradation, which depends on charging cycles and is not considered in this study.
Lunz et al. (2012) investigate the effects of uncontrolled charging and find that it
can reduce the lifetime of a BESS by up to 42%. This would render the investments
in our case study unprofitable, but would not change the relative performance of
the quantile forecasts, as shown in the sensitivity analysis with reduced investment
costs.
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In Section 7.3.4, we argue why we assume a fixed average price λc for the FCR
market. Since the FCR market is a pay-as-bid market (Braeuer et al., 2019), we
can assume that the company operator bids for the fixed price λc over the course of
the whole year. Nevertheless, the prices could be modelled more precisely by taking
varying λc into account. We investigate the combination of peak-shaving and FCR
provision, as previous research suggests that these applications are both economically
and technically well compatible. It should be noted, however, that the demand of
the FCR market is limited, and a rising numbers of participating BESSs could lead
to decreasing prices. Moreover, with the recent rise in spot market electricity prices
and expected increase in price spreads due to the expansion of renewable energy
sources, including trading as a third application could be subject of future research.
A further use case extension could be self-consumption from company-owned, on-
site renewable generation from solar or wind power plants. The monetary effects
of risk averse planning are quite low in the case of joint peak-shaving and FCR
provision, as these applications are complimentary from a technological perspective
since peak-shaving is an energy intensive application and FCR provision a more
power intensive application. Both of the latter mentioned additional applications
could severely change the effects of risk averse planning on financial trade-offs, as
they are energy-intensive and thus less complimentary to peak-shaving.

7.6 Conclusion
In this chapter, we evaluate the effects of risk aversion during the joint scheduling

and operation of BESS capacities for industrial peak-shaving and FCR provision.
To this end, we introduce a probabilistic quantile forecast as means to model risk
attitude and describe a rolling horizon BESS control strategy for the (uncertain)
scheduling of BESS capacities for the two considered applications. We demonstrate
the proposed methodology on the case of five industrial consumers and can thus
answer our research question as follows: In most cases, moderate risk averse planning
does not affect the monetary potential of a BESS negatively and can even increase the
monetary performance in the case of some companies. Highly risk averse planning
behavior can lead to a decrease in performance in some cases. While this may not
be a desirable effect, the results show that even extreme risk averse attitude leads to
relatively low penalties compared to the significantly reduced risk of missing a high
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peak load event. These results provide valuable insights for operators of BESSs in
industrial companies and encourage further investigation of probabilistic forecasting
in operational strategies of power technologies.

This chapter presents an online operation strategy for joint peak-shaving and FCR
provision,i.e., one BTM and one FTM application, in the context of a BESS deployed
by an industrial consumer. Combining a data-driven forecast with a rolling-horizon
optimization approach allows us to address and handle the present uncertainties in
this case. However, with more use cases, the operational problem becomes more
complex due to several uncertainties and technical requirements that need to be
considered. In the case of a multi-use BESS serving several BTM and FTM appli-
cations, alternative approaches, which do not rely on optimization, are needed for
an online operation strategy. In the following chapter, a DRL based approach is
investigated to address this problem.



CHAPTER 8

MULTI-USE BATTERY OPERATION WITH
DEEP REINFORCEMENT LEARNING

The combination of several BTM and FTM applications is a growing area of research,
as multi-use BESS deployment potentially enables a more effective and profitable
operation of BESSs on all levels of power systems. However, several uncertainties
regarding generation, consumption, price developments and the trade-off between
use-cases have to be addressed during real-time multi-use operation. The need for
online operation strategies becomes evident from the previous chapters and the lit-
erature review in Section 2.4. In this regard, DRL is a promising approach for BESS
operators in times of fast changing market conditions due to its ability to adapt to
changing conditions. In this chapter, a DRL controlled BESS service agent is there-
fore designed that handles multiple BTM and FTM use cases in parallel. The results
show that the data-driven approach outperforms a rule-based benchmark strategy
during real-time operation. Through its ability to coordinate several use cases, the
DRL-based approach increases annual profits by up to 28%.

This chapter comprises large parts of the unpublished article: S. Henni, M.
Rominger, P. Staudt, A Deep Reinforcement Learning-Based Storage Service Agent
for Coordinating Multiple Use Cases, Working Paper, 2022.

8.1 Introduction
Conventional approaches for multi-use operational strategies include, for example,

stochastic programming (He et al., 2016), robust optimization (Wang et al., 2018)
or model predictive control (Kumar et al., 2018). These optimization approaches
are limited during real-time operation, as they require either a perfect forecast of
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uncertain generation, consumption and price developments or strict assumptions
regarding random variables. This limits such methods to specific case studies and
prevents a flexible adaption to changing conditions of the environment. To enable
multi-use BESS deployment in practice, a method is required that makes decisions
during real-time operation without explicitly modeling underlying uncertainties.
In recent years, DRL, a data-driven method from the area of machine learning,
has emerged as alternative method to address this issue for sequential decision
making problems (Huang and Wang, 2021; Cao et al., 2020). In principle, DRL
algorithms learn through a trial-and-error strategy and do not require an explicit
model of their environment, e.g., the random variables that affect its performance.
In addition, online DRL algorithms are able to continuously adapt to changing
conditions of the environment they operate in (Lapan, 2020). Applications of DRL
are however poorly researched in the context of multi-use BESS deployment, with
only one publication appearing in the literature review in Section 2.4. Moreover, to
the best of our knowledge, no other publication has yet approached the modelling
of a multi-use BESS service agent, which receives real-time service requests for
multiple use cases. To close this gap, in this chapter, we design, evaluate and discuss
a BESS service agent, which answers service requests from multiple applications
and markets using an online DRL algorithm. To analyse the algorithm’s ability
to coordinate multiple use cases under uncertainty, we benchmark it against a
rule-based online operation strategy and the theoretically optimal solution. We thus
answer the following research question:

Research Question 7: What is the quantitative performance of a DRL-based
algorithm in comparison to theoretically optimal and rule-based operation strategies
in terms of financial revenues?

The remainder of this chapter is structured as follows: First, we introduce re-
lated literature on DRL-based operation strategies for single- and multi-use BESS
deployment. Then, we describe the theoretical foundations of DRL before applying
it to the StaaS concept explained in Section 2.6. In a case study, we demonstrate
and evaluate the designed DRL model on a community BESS that operates within
a residential neighborhood. Finally, we discuss the limitations and describe possible
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future steps for the improvement of the introduced DRL model before summarizing
the results of this study in the conclusion.

8.2 Related Work
The stacking of services to enhance the profitability of BESSs has been investigated

in various settings, as becomes evident from Section 2.4. A common finding is
that the provision of ancillary services is a lot more profitable than trading on the
spot markets (e.g., Braeuer et al. (2019); Moreno et al. (2015)) but that in general,
stacking services is beneficial due to higher utilization rates of the storage capacity.
There are downsides as well, mainly the increase in cyclic degradation that depends
on factors such as depth of discharge, overall throughput, and temperature (Sterner
and Stadler, 2017). Consequently, the additional cyclic degradation differs for certain
tasks. The authors of (Perez et al., 2016), for example, find that trading affects
cyclic degradation more than the provision of ancillary services due to very high
and frequent depths of discharge. Engels et al. (2020a) investigate parallel revenue
streams in industrial applications and find that combining peak-shaving and FCR
leads to larger profits than either individual task. Again, in an industrial setting,
Braeuer et al. (2019) extend these two tasks to include trading on the day-ahead
and intraday spot markets and find that some companies may realize a positive
net present value by combining all three tasks, although arbitrage trading is found
to only add very little to the outcome. Lombardi and Schwabe (2017) compare
several technologies for the combined application of peak-shaving, self-consumption,
and trading on the day-ahead market in order to adhere to the previously sold
energy profile of a wind turbine. They find that the prioritization of some use cases,
such as peak-shaving of an industrial user, can lead to additional benefits when
sharing the BESS’s capacity amongst several users. The combination of increasing
self-consumption and providing ancillary services has also been addressed in various
residential settings. Litjens et al. (2018) combine self-consumption and the provision
of FRR in a residential community in the Netherlands. Engels et al. (2019) analyse
the trade-off between the provision of FCR and self-consumption and show that
revenues can be increased by 25% in comparison to the most profitable single use
case.

In general, optimization approaches account for the majority of methods when
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designing multi-use operational strategies (Section 2.4). In recent years, however,
DRL-based approaches have emerged as alternative solution to model BESS op-
eration. For example, Cao et al. (2020) use a NoisyNet Double Deep Q-Network
(NN-DDQN) to implement a storage agent that engages in spot market trading.
The actions of the agent are discretized and the model is combined with a convolu-
tional neural network and an LSTM that provides the BESS agent with the necessary
price forecasts as input data. A similar task is undertaken by Xu et al. (2018a), who
compare a simple Q-learning strategy (without the usage of neural networks) with
a proximal policy optimization (PPO) DRL approach. In contrast to DDQN, PPO
allows continuous action states and is therefore better suited to model the physical
reality of storage operation. Both Cao et al. (2020) and Xu et al. (2018a) com-
pare the performance of their algorithms to other, simpler DRL models, which are
(unsurprisingly) outperformed by the more complex models. Similarly to these con-
tributions, Lehna et al. (2022) and Yang et al. (2020) also design DRL-based spot
market trading strategies. However, they take on the perspective of a wind park
operator who wants to sell her generation at times of high prices using a BESS,
similar to the approach presented in Chapter 6. This increases the level of uncer-
tainty involved in the use case, as not only spot market prices are unknown but also
the exact renewable generation quantity. To tackle this problem, Yang et al. (2020)
develop a multi-layer architecture, extending a DDQN algorithm with a prioritized
replay buffer, a dueling network, and a dropout layer. The authors report better
performance than with comparable stochastic optimizations. Lehna et al. (2022) on
the other hand rely on a PPO algorithm for the same task and demonstrate a 45%
improvement in revenues compared to baseline approaches. Miao et al. (2021) and
Huang and Wang (2021) introduce DRL-based multi-use BESS operation strategies.
Miao et al. (2021) combine spot market trading with frequency regulation provision,
but reduce the decision of the DRL agent to one charging or discharging action.
They demonstrate that a triplet deep deterministic policy gradient (DDPG) with
exploration noise decay approach outperforms a comparable deep Q-learning algo-
rithm. Huang and Wang (2021) combine spot market trading with two other use
cases, namely increasing PV self-consumption and providing frequency regulation.
The authors show that the agent is capable of handling these multiple applications
simultaneously. In a comparison of a PPO algorithm with DDQN, DDPG and an



Methodology 217

actor-critic (A2C) approach, they demonstrate the superiority of PPO. Notably, both
previous studies on multi-use BESS deployment only consider other DRL algorithms
as benchmarks. Furthermore, both models are relatively simple. Huang and Wang
(2021) model one action for each of the three use cases at each time step. In reality,
this decision process might not be realistic. In Germany, for example, the tender-
ing of frequency regulation and the day-ahead spot market take place through an
auction ahead of the actual realization. This means, that for some applications, all
actions for the next day have to be chosen at one time step (i.e., at the time of the
auction), while other applications might require continuous decisions, closer to the
actual real-time execution (e.g., charging excess PV generation or intraday trading).

We conclude that there is a research gap to design and evaluate a multi-use DRL
agent that handles several applications in their consecutive order. To provide a
solution to this task, we implement a BESS service agent that receives service re-
quests from both an auction, which requires several actions at once, as well as from
continuous use cases.

8.3 Methodology
In this section, we first describe the theoretical foundations of DRL and introduce

PPO, a state-of-the-art DRL algorithm that allows continuous action spaces (in
contrast to discrete actions) and has been shown to outperform other DRL algorithms
in the case of multi-use BESS deployment (Huang and Wang, 2021). Then, we apply
the concept of a multi-use BESS service agent to a Markov Decision Process (MDP),
which allows it to be solved by a DRL algorithm.

8.3.1 (Deep) Reinforcement Learning

Along with supervised and unsupervised learning, reinforcement learning (RL)
is one of the three fundamental pillars of machine learning (Sutton and Barto,
2018). The central component of the RL is an agent who interacts with its
environment in several consecutive time steps (Figure 8.1). In each time step t,
the agent receives an observation St from the environment and then chooses an
action At. It communicates this action to the environment, which then calculates
and return a reward Rt to the agent. Through many such interactions, the agent
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eventually learns by trial-and-error, which actions, given certain observations, lead
to good results, i.e., high rewards. The goal of the agent is to learn a policy, i.e., a
strategy, which maximizes the cumulative rewards (Sutton and Barto, 2018). This
agent-environment interaction can be modelled as MDP, a discrete time stochastic
control process. The most important property of the MDP, the so-called Markov
property, is that a future state depends only on the current state, regardless of how
it was reached (i.e., regardless of past states). When modeling the environment
of an RL algorithm, it is important to maintain this criterion. In practice, this
means that the current observation, which the agents receives, contains all relevant
information for future decisions.

Figure 8.1.: Interaction between agent and the environment in the markov decision process
(Sutton and Barto, 2018)

In general, an MDP can be described with a tuple (S,A, Pa, Ra) where S is the set
of states (i.e., observations), A the set of actions, Ps,a the state transition function
and Rs,a the set of rewards. The transition probability Ps,a,s′ = {st+1 = s′ | st =

s, at = a} thereby represents the probability that the agent, which is in state s at
time t, will be transferred to state s′ at the next time step t+1 after choosing action
a. The transition probability is often unknown and is approximated by the agent
through repeated simulation runs from random initial states (Sutton and Barto,
2018; Lapan, 2020).

The RL agent pursues the goal to learn a policy π that maximizes the expected
cumulative rewards

∑∞
t=0Rt it receives through the interaction with the environment.

Usually, a discount rate γ ∈ [0, 1] is introduced to give higher weighting to immediate
rewards. Thus, the agent can arrive at a solution even with infinite time horizons.
To achieve this goal of reward maximization, the RL agent relies on the so-called
q-function, which describes the expected reward for performing an action a while in
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a state s, given a policy π.

Qπ(s, a) = Eπ[
∞∑
k=0

γkRt+k+1 | St = s, At = a], ∀s ∈ S (8.1)

Another important notation in RL is the value Vπ(s, a) of a state s, which describes
the expected reward if the agent follows the strategy π at every time step t.

Vπ(s, a) = Eπ[
∞∑
k=0

γkRt+k+1 | St = s], ∀s ∈ S (8.2)

In the so-called tabular q-learning, the agent tries to maximize the q-function by
explicitly iterating over all state-action pairs. However, for complex problems, this
RL approach soon becomes infeasible in acceptable computational times. Therefore,
DRL uses one or more neural networks consisting of several layers to approximate
Q and V or to directly learn an optimal policy π. DRL algorithms can be further
categorized into policy-based and value-based approaches. Value-based algorithms
try to maximize the q-function in order to find the best policy, whereas policy-based
algorithms try to find the best policy πη(a|s) directly, without explicitly calculating
Q and V .

For continuous action spaces, the policy πθ parameterized by θ represents the
probability distribution of actions given a certain state. Policy-based methods rely
on a policy gradient ∇J , which is used to update the policy of the agent without
explicitly calculating Q and V .

∇J = E[Q(s, a)∇logπ(a|s)] (8.3)

The policy gradient indicates the direction, in which the network parameters have
to be changed in order to improve the policy. The goal is to increase the probability
of actions that yield large rewards and vice versa (Lapan, 2020).

8.3.2 Proximal Policy Optimization

Lately, one of the most prominently deployed DRL algorithms in literature has been
PPO, a policy-based algorithm first introduced by Schulman et al. (2017), which al-
lows continuous actions spaces and has been shown to outperform similar algorithms,
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such as DDPG or A2C (Huang and Wang, 2021; Schulman et al., 2017). PPO is an
extension of the A2C. An important notion of the actor-critic concept is that the
reward Q can be represented as the value V of a state plus the advantage Adv of an
action, i.e., Q(s, a) = V (s) + Adv(s, a). Actor-critic methods deploy two separate
neural networks, an actor, which learns the policy π and a critic, which learns the
value V (s), which is used to stabilize the policy updates of the actor network (Lapan,
2020). PPO relies on a clipped policy gradient function (8.4). To prevent unstable
updates of the policy, the policy ratio is limited by the clipping parameter ϵ, which
ensures that the update is within the interval [1− ϵ, 1 + ϵ].

J clip
θ = Et[rat(θ) · Advt, clip(rat(θ), 1− ϵ, 1 + ϵ) · Advt] (8.4)

Here, ra is the ratio between the new and old policy.

rat(θ) =
πθ(at|st)
πθold(at|st)

(8.5)

The advantage function is calculated as follows:

Advt = σt + (γ · λ) · σt+1 + (γ · λ)2 · σt+2 + ... + (γ · λ) < T − t + 1 · σt−1 (8.6)

where λ is a factor ∈ [0, 1] and σ is defined as follows:

σt = rat + γ · V (st+1)− V (st)) (8.7)

The introduced clipping parameter ϵ, discount rate γ and λ are s that can be
adjusted individually and can significantly influence the performance of the DRL
algorithm’s learning process. Additional hyperparameters include the learning rate
α and the entropy loss β. For a detailed description of the PPO algorithm and its
implementation using OpenAI Gym see (Schulman et al., 2017) and (Lapan, 2020).
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8.3.3 Modeling a Deep Reinforcement Learning-Based Storage Service

Agent

In order to be able to solve the real-time operational problem of a BESS service agent
with DRL, the problem has to be modelled as an MDP. The BESS service agent is
based on the StaaS concept described in Section 2.6. Figure 8.2 shows the MDP
principle of agent-environment interaction applied to the concept of a BESS service
agent. In each time step, the BESS receives service requests for several differing use
cases, e.g, storing excess PV generation (i.e., charging), supplying household loads
(i.e., discharging) or trading on the spot markets (either charging or discharging).
These service requests need to contain all relevant information that allow the iden-
tification of the use case, the required energy and power capacity and the offered or
requested price of the service. Another important information to include in the state
space is the battery status, i.e., the already planned occupation of energy and power
capacity in the form of SoC and power vector P . Any additional helpful information
can also be passed to the agent in the state space, in particular forecasts of future
generation, loads or (wholesale) prices. In the DRL-based BESS service model,
the actions then refer to the acceptance or rejection of the submitted service requests.

Figure 8.2.: Storage as a Service concept embedded in a Markov Decision Process

A continuous action space allows arbitrary partial acceptance of service requests.
In our model, this can be prevented by the submitter of a request by specifying a
minimum purchase quantity, which then poses a constraint on the agent’s action.
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The chosen actions are then processed by the environment that the agent interacts
with. Here, a safety control algorithm (SCA), inspired by Huang and Wang (2021),
comes into play. The SCA ensures the feasibility of actions with physical constraints
of the BESS as well as with the predefined requirements of the service requests.
That is, for example, in case a minimum purchase quantity of 100% was indicated
and the agent chooses a lower value as action, the action is adjusted to zero by the
SCA. Likewise, if the agent tries to charge or discharge more than the current SoC
allows, the SCA adjusts the action so that it complies with the constraints. Once
all actions have been adjusted to feasible values, the control signal is given to the
BESS and the environment updates the SoC and calculates rewards according to
the adjusted actions. In our model, a natural reward for the BESS operator is the
monetary revenue thath she receives based on accepting service requests. However,
other, non-monetary reward components that incentivize specific behavior could
also be included. The reward is then returned to the agent, whereas the updated
battery status is included in the state space of the subsequent time step. All above
mentioned components of the DRL-based BESS service agent are described formally
in the following.

Service requests. Each service request needs to be submitted in the form of a
standardized vector, which contains the information seen in Figure 8.2 and described
in the transaction object of the StaaS concept in Section 2.6. A service request is
thus denoted as follows:

requestn = [storageT imen, powern, durationn, pricen,

minimumQuantityn, labeln, weekdayn, timen,Monthn] (8.8)

Here, we stipulate that the agent receives up to N service requests per time
step t. The storage time refers to the starting time of the service requests
∈ [0, TH] where 0 is a request for the current time step and TH refers to the
planning time horizon, i.e., the maximum number of time steps that the agent
plans ahead. The price is indicated in e kWh−1. It can be negative if the
BESS operator is charged for the service request (e.g., when buying and storing
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excess PV generation). From the required duration in hours and power in kW,
the BESS operator can derive the volume (in kWh) of the service request as
volumen = durationn · powern for all use cases except FCR povision. The minimum
purchase quantity is indicated as a factor ∈ [0, 1]. The label refers to the use case
and has to be decoded in numerical form (e.g., 1 = storing excess PV generation,
2 = industrial peak-shaving etc.). Weekday, time and month of the service request
are modelled as cyclical features through a sin and cos transformation as demon-
strated by Haben and Giasemidis (2016). At each time step t, the agent receives the
request vector Requestt = [requestt,1, ..., requestt,N ] as part of the observation space.

State space. In each time step, the state space is the information, which the DRL
agent observes and on which it bases its decisions on. It therefore needs to contain
all relevant information for the decision making. The service requests therefore need
to be part of the state space. In addition, the agent needs to know about the current
and future status of the BESS, i.e., the BESS’s energy and power capacity that has
already been scheduled for other services. This information can be conveyed through
an SoC and a power vector, respectively.

SOCt = [soct, soct+1, ..., soct+TH ] (8.9)

Pt = [P ch
t , P dc

t , ..., P ch
t+TH , P

dc
t+TH ] (8.10)

The SoC vector contains the planned SoC occupation soc for each time step be-
tween the current time period t and the end of planning time horizon TH. We
divide the power vector Pt into discharging power P dc and charging power P ch for
a better differentiation between discharging and charging use cases in the following
paragraphs.

The SoC information can further be divided into BTM, FTM and FCR shares
for regulatory and technical reasons. We assume that BTM (i.e., storing local
RES generation, supplying local households or industrial loads) and FTM (i.e.,
trading on wholesale markets) use cases have to be accounted for separately for
regulatory purposes. This means, for example, that electricity bought on the spot
market cannot be used to supply household loads, because then charges and levies
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would apply. For FCR, no actual electricity is charged or discharged, but rather
a certain share of the BESS’s energy capacity is reserved so in case of a steep
frequency deviation, the power that was bid on the FCR auction can be fully
activated. This is a requirement of the prequalification criteria for participating in
frequency regulation. In order to comply with negative and positive FCR, we reserve
both discharged and charged shares of the BESS’s capacity for FCR provision,
as illustrated in Figure 8.3. We differentiate between SOCBTM

t , SOCFTM
t and

SOCFCR
t , which refer to the amount of energy capacity occupied by the respective

use case. Furthermore, SOCBTM,res
t and SOCFTM,res

t refer to the electricity that
is temporarily reserved for the FCR use case but can be later used again for the
respective use case. Each SoC information is thereby passed as a vector of length TH.

Figure 8.3.: SoC of the BESS divided into shares for BTM, FTM and FCR use cases

In addition to the battery status, forecast vectors of length TH are included in
the additional information of the state space:

Forecastt = [forecastt, forecastt+1, ..., forecastt+TH ] (8.11)

The additional information S ′ therefore consists of the battery status (SoC and
power) as well as forecast information:

S
′

t = [SOCBTM
t , SOCFTM

t , SOCBTM,res
t , SOCFTM,res

t , SOCFCR
t ,

Pt, Forecastt,1, ..., Forecastt,FC ] (8.12)

where FC describes the set of variables for which a forecast is included, which
may include, e.g., relevant generation, consumption and price forecast data.

Finally, the state space in time step t consists of the set of service requests and
the additional information S

′
t:
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St = [Requestt, S
′

t] (8.13)

Action space. As illustrated in Figure 8.2, the actions of the DRL agent refer to
the acceptance or rejection of service requests. The action space is therefore a vector
of length N, where at,1 refers to service request 1 at time t, at,2 to service request
2, and so on. Each action at,request ∈ [0, 1] refers to the share of the volume of the
service request that is accepted by the agent.

At = [at,1, ..., at,N ] (8.14)

Environment. In the environment, the SCA ensures the physical feasibility of
the actions, calculates the resulting rewards and updates the SoC status. Before
introducing the SCA, we begin by defining all relevant mathematical operations.
The BESS is restricted by its upper and lower SoC limits, socmax and socmin. In
each time step t, the SoC of the BESS is determined by the energy capacity that is
occupied by BTM, FTM and FCR use cases:

soct = socBTM
t + socFTM

t + socFCR
t + socBTM,res

t + socFTM,res
t (8.15)

Since the BESS needs to be able to discharge at maximum FCR bid power capac-
ity for at least 15 minutes, a certain level of SoC always needs to be ensured at times
when FCR is provided. This electricity can come from a BTM or FTM use case,
will remain reserved for the duration of the FCR provision and is available for usage
after the FCR provision period. See Figure 8.3 for a schematic illustration of the SoC
and reserved capacity of the BESS. The purple colored SoC share for positive FCR
provision is energy that belongs to an FTM or BTM use case, but is temporarily re-
served for FCR provision. Therefore, FCR provision limits the available unoccupied
capacity of the BESS.

The remaining available upward energy capacity socupt as well as the down-ward
available capacity socdown

t , which is available for discharging for BTM or FTM use
cases, can then be calculated as follows:

socupt = socmax − soct (8.16)
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socdown,BTM
t = socBTM

t − socmin (8.17)

socdown,FTM
t = socFTM

t − socmin (8.18)

Similarly, the maximum charging and discharging power Pmax,ch and Pmax,dc pose
limits on the available charging and discharging power P ch and P dc. We assume
that the minimum charging and discharging power is zero. At each time step, the
remaining available charging and discharging power can be calculated as:

P ch,rem
t = Pmax,ch − P ch

t (8.19)

P dc,rem
t = Pmax,dc − P dc

t (8.20)

Once the agent communicates the action vector At to the environment, the SCA’s
task is to ensure that the agent’s chosen actions are compatible with the physical
restrictions of the BESS at the time of the service provision. The starting time of
the service provision st can be determined by the current time step t and the service
request information storageT ime, which indicates how many time steps in the future
the service request starts:

st = t + storageT ime (8.21)

Likewise, the end time of the service provision is determined by the duration of
the storage requests:

et = st + duration−∆t (8.22)

where ∆t is the time resolution in hours, e.g., ∆t = 1h in the case of an hourly
resolution and ∆t = 1

4
h in the case of a 15 minute resolution. Given an hourly

resolution, a duration of one hour will thus result in st = et. From here on, we
denote the entire service period of one service request as SP = [st, et].

If an action is not compatible with the physical restrictions, it is adjusted by
the SCA. For the adjustment of actions, discharging and FCR use cases need to be
differentiated due to the different technical requirements, which will be described in
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the following.
Charging use cases. Let N ch ⊂ N be the set of service requests that require

charging of the BESS. For every service request requestn, n ∈ N ch, the maximum
feasible action amax can be calculated as:

amax
t,n = min(1,

mins∈[st,t+TH](soc
up
s )

powert,n ·∆t · η
,
mins∈SPt,n(P ch,rem

s )

powert,n
) (8.23)

where η is the efficiency of the BESS and ∆t the time resolution in hours. The
minimum value of socup for the remainder of the planning time horizon poses an
upper limit on the available feasible action. Likewise, the minimum available charg-
ing power P ch,rem during the service period SP n

t of requestnt is considered in order
to ensure that the service can be fulfilled for the entire service period. To comply
with the technical restriction of the BESS, the chosen action an of the agent is then
clipped to a feasible action an,adj according to (8.24).

aadjt,n = min(at,n, a
max
t,n ) (8.24)

Furthermore, the minimum purchase quantity indicated in the service request
needs to be considered. That is, if the resulting adjusted action is smaller than the
minimum purchase quantity, the request is rejected alltogether:

if aadjt,n < minimumQuantityt,n then aadjt,n = 0 (8.25)

For any time step s during the service period SP , the resulting bought energy
from service request n can then be calculated as:

eins,n = aadjt,n · powert,n ·∆t ∀s ∈ SPt,n (8.26)

The resulting revenue of the BESS for accepting the service request is then:

rt,n =
∑

s∈SPt,n

(eins,n · pricet,n) (8.27)

Note that for charging use cases, the price is usually negative because the BESS
operator buys the electricity from a RES generator or the spot market.

Now let N ch,BTM ⊂ N ch be the set of charging service requests for BTM use cases.
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For all n ∈ N ch,BTM , the SoC of BTM use cases can then be updated as:

socBTM
s = socBTM

s + eins,n · η ∀s ∈ [st, t + TH] (8.28)

Analogously, let N ch,FTM ⊂ N ch be the set of charging service requests for FTM
use cases. For all n ∈ N ch,FTM , the SoC of FTM use cases is updated as follows:

socFTM
s = socFTM

s + eins,n · η ∀s ∈ [st, t + TH] (8.29)

For all n ∈ N ch , the charging power P ch is updated as follows:

P ch
s = P ch

s + aadjt,n · powert,n ∀s ∈ SPt,n (8.30)

Discharging use cases. Let Ndc ⊂ N be the set of service requests that require
discharging of the BESS. Let further Ndc,BTM ⊂ Ndc and Ndc,FTM ⊂ Ndc be the set
of discharging service requests from BTM and FTM use cases, respectively. For all
service requests n ∈ Ndc,BTM , the adjusted action is calculated using Equation 8.31
and the clipping function 8.24.

amax
t,n = min(1,

mins∈[st,t+TH](soc
down,BTM
t )

powert,n ·∆t · 1
η

,
mins∈SPt,n(P dc,rem

s )

powert,n
) (8.31)

Analogously, for all service requests n ∈ Ndc,FTM , the adjusted action is calculated
using Equations 8.32 and 8.24.

amax
t,n = min(1,

mins∈[st,t+TH](soc
down,FTM
t )

powert,n ·∆t · 1
η

,
mins∈SPt,n(P dc,rem

s )

powert,n
) (8.32)

The available downward SoC of BTM and FTM use cases poses an upper limit on
the electricity that is available for discharging. Furthermore, the action is restricted
by the remaining available discharging power. For all n ∈ Ndc, the resulting sold
energy and revenues can then be calculated as follows:

eouts,n = aadjt,n · powert,n ·∆t (8.33)

rs,n =
∑

s∈SPt,n

eouts,n · pricet,n (8.34)
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The available remaining discharging power can then be updated as follows:

P dc,rem
s = P dc,rem

s + aadjt,n · powernt ∀s ∈ SP n
t (8.35)

Then, we can update the SoC of all BTM use cases where n ∈ Ndc,BTM :

socBTM
s = socBTM

s − eouts,n ·
1

η
∀s ∈ [st, t + TH] (8.36)

Analogously, the SoC for FTM use cases, where n ∈ Ndc,FTM , is updated as:

socFTM
s = socFTM

s − eouts,n ·
1

η
∀s ∈ [st, t + TH] (8.37)

Note that the power vector is only updated for the duration of the service period
whereas the SoC needs to be updated until the end of the planning horizon.

FCR use case. The use case FCR, and frequency regulation in general, has to
be considered separately due to its differing nature from charging or discharging use
cases. Here, we only consider FCR for simplicity, as it is currently the most profitable
frequency regulation service for BESSs operating in Germany. Modeling FCR slightly
differs from, for example, aFRR, as it has to be provided symmetrically, whereas
positive and negative aFRR is tendered separately. In contrast to other use cases,
FCR provision does not require explicit charging or discharging of predefined volumes
of electricity. Instead, on the FCR auction, BESS power capacity is tendered, which
has to be (partially) provided according to frequency deviations in the network. As
described in Chapter 7, during 90% of times, for 1MW that is tendered on the FCR
auction, less than 0.135 MW have to be actually provided. Furthermore, positive and
negative signals balance each other out over longer time periods. For modeling low
time resolutions, such as ∆t = 1h, the power provision can therefore be neglected for
the sake of simplicity (Braeuer et al., 2019). However, the prequalification criteria of
the FCR auction require a provider of FCR to be able to deliver the maximum power
capacity at any time for the duration of 15 minutes in case of a severe frequency
deviation. We therefore need to reserve a portion of the BESS’s SoC for FCR
provision. For positive FCR provision, a certain level of energy has to be present
in the BESS in order to be able to discharge for 15 minutes. For negative FCR
provision, there needs to be enough socup available to charge the BESS for 15 minutes
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(see Figure 8.3). In the SCA, we do however not immediately reserve these portions
of the SoC, since at the time of the FCR auction, the actual provision is at least 16
hours into the future and this would block the BESS’s SoC for other use cases before
that time. At the time of the auction, we therefore only note the offered FCR bid
power powerFCR,bis in a virtual placeholder SoC vector socplaceholder as follows:

socplaceholders = 0.25h · powert,n · at,n · η (8.38)

for all s in SP n
t , for all n in the set of FCR service requests NFCR ⊂ N at time

step t. The revenue of the FCR use case is then calculated as follows:

rt,n = at,n · powert,n · pricet,n (8.39)

Note that the FCR provision is payed ine kW−1, whereas charging and discharging
service requests are offered in e kWh−1. FCR actions are not clipped, since the
occupation of the BESS’s SoC is not known at the time of the auction. Instead,
we deploy a separate Balancing Algorithm (BA) shortly before the start of FCR
provision, which reserves the required capacity. If the SoC is too high or too low for
FCR provision, the agent can buy or sell electricity on the intraday market.

Finally, the entire procedure undertaken by the environment at each time step
t is shown in Algorithm 2. The environment receives the service requests vector
Requestt, the action vector At and the last SoC and power window SOCt−1 and
Pt−1. In the first step, the SOC and power vectors are updated to show the current
time window by removing the first value t − 1. For the SoC, the last value of the
previous vector SOCt−1 is copied and appended at the end. The power values of
time step t+TH are set to zero. In the second step, the BA is activated if FCR has
to be provided in the following hour. Finally, in the third step, the SCA is deployed,
which iterates over all chosen actions in At to ensure the feasibility with physical
constraints and to subsequently update the resulting changes in the BESS’s SoC and
to calculate the resulting revenues. The BA (Algorithm 3) and the SCA (Algorithm
4) are desrcibed in detail in the following.
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Algorithm 2: Environment: steps performed by the environment in each
time step t

Input : Requestt, At, SOCt−1, Pt−1

Output: SOCt, revenue

1 STEP 1: Update SoC and power vector

2 SOCt = SOCt−1

3 Pt = Pt−1

4 Remove first value of SOCt and Pt

5 Copy and append last value of SoC: soct+TH = soc(t+TH−1)

6 P ch
t+TH = 0

7 P dc
t+TH = 0

8 STEP 2: Reserve SoC for FCR blocks

9 if FCR is provided in t+ 1
∆t then

10 Perform Balancing Algorithm

11 STEP 3: Ensure physical feasibility of actions

12 Perform Safety Control Algorithm
13 STEP 4: Calculate overall revenues

14 Rt = RID +
∑

n∈N rt,n

Balancing Algorithm. The purpose of the BA is to ensure the ability of the
BESS to provide positive FCR in case it has been accepted through a service request.
As the auction for FCR provision is held at 8 a.m. on the previous day, the service
requests for this use case arrive at least 16 hours before the actual provision is due.
Therefore, it would not be feasible to reserve the corresponding capacity at the
time of the service request, because other use cases might not have been scheduled
yet, and therefore, the SoC at 16 or more hours into the future will be subject to
changes. We therefore deploy the BA one hour before FCR needs to be provided,
i.e., when socFCR

t+ 1
∆t

> 0. The BA then makes sure the BESS can provide positive and
negative FCR for the duration of one hour at a time. In the first step, the BA checks
whether enough capacity is free for negative FCR provision (line 7). If this is the
case, the corresponding (empty) capacity is reserved (line 8). Then electricity has
to be reserved for positive FCR provision. First, the BA reserves as much electricity
from FTM use cases as possible (line 10). If this is not sufficient, electricity from
BTM use cases is reserved (line 11). If this is still not sufficient, i.e., if the SoC
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of the BESS is not high enough for positive FCR provision, the remaining needed
electricity is bought on the intraday market (line 13).

Algorithm 3: Balancing Algorithm that ensures the reservation of ade-
quate amounts of energy for FCR provision

Input : Intraday prices pID, SOCBTM
t , SOCBTM,res

t ,SOCFTM
t , SOCFTM,res

t , Pt

Output: SOCBTM
t , SOCBTM,res

t ,SOCFTM
t , SOCFTM,res

t , Pt, rID

1 start = t+ 1
∆t

2 end = t+ 2
∆t − 1

3 erequired,poss = socplaceholder,FCR
s ∀s ∈ [start, end]

4 erequired,negs = powerplaceholder,FCR
s · η ∀s ∈ [start, end]

5 for s ∈ [start, end] do
6 Determine socups according to (8.16)
7 if erequired,negs < socups then
8 Reserve empty storage space socFCR

s = erequired,negs

9 Reserve min(socFTM
s , erequired,poss ), update erequired,poss

10 if erequired,poss > 0 then
11 Reserve min(socBTM

s , erequired,poss ), update erequired,poss

12 if erequired,poss > 0 then
13 buy remaining erequired,poss on intraday market

14 if erequired,negs > socups then
15 sell min(socFTM

s , erequired,negs − socups ) on intraday market if still not enough
socups then

16 Feed PV generation in the amount of erequired,negs − socups into the grid
17 Reserve empty storage space socFCR

s = erequired,negs

18 Execute lines (9-11) to reserve SoC for positive FCR provision

In the second case, if the SoC is too high for negative FCR provision, some elec-
tricity needs to be discharged. The BA first tries to sell the excess electricity on the
intraday market (line 15), and then discharges further excess electricity from BTM
use cases (line 16). The free capacity is then reserved for FCR. For positive FCR
provision, the same steps as in lines 9-11 are undertaken, first reserving electricity
from FTM use cases and then from BTM use cases. We assume that electricity can
be bought or sold on the intraday market for the current intraday price pID while
electricity from BTM use cases (i.e., generation from RESs) can be fed into the grid
for the current feed-in tariff.
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Safety Control Algorithm. The SCA (Algorithm 4) is responsible for ensuring
the compatibility of the actions with the physical constraints of the BESS, e.g.,
preventing overcharging. Furthermore, it keeps track of the SoCs of FTM and BTM
use cases and makes sure the two application areas are accounted for separately and
are not mixed with each other. As input information, the SCA requires the vector
of service requests, Requestt, the action vector At, the current state of charge vector
SOCt and the power vector Pt that contain all already scheduled services from time
step t until the end of the observed time horizon t + TH.

Algorithm 4: Safety Control Algorithm that is deployed by the envi-
ronment to ensure the feasibility of actions with physical constraints

Input : Requestt, At, SOCt, Pt

Output: SOCt, A
adj
t ,Rn∀n ∈ N,Pt

1 for at,n ∈ at do
2 SPt,n = [st, et] according to (8.21) and (8.22)
3 if n ∈ N ch,BTM then
4 Adjust at,n according to (8.23), (8.24) and (8.25), obtain aadjt,n

5 Determine en,ins using (8.26), update P ch
s using (8.30) ∀s ∈ [SPt,n]

6 Update socBTM
s using (8.28) ∀s ∈ [st, t+ TH]

7 Calculate Rn using (8.27

8 if n ∈ Ndc,BTM then
9 adjust at,n according to (8.31), (8.24) and (8.25), obtain aadjt,n .

10 Determine eouts,n using (8.33), update P dc
s using (8.35) ∀s ∈ [SPt,n]

11 Update socBTM
s using (8.36) ∀s ∈ [st, t+ TH]

12 Calculate Rn using (8.34)

13 if n ∈ N ch,FTM then
14 Adjust at,n according to (8.23), (8.24) and (8.25), obtain aadjt,n .
15 Determine eins,n using (8.26), update P ch

s using (8.30) ∀s ∈ [SPt,n]

16 Update socFTM
s using (8.29) ∀s ∈ [st, t+ TH]

17 Calculate Rn using (8.27)

18 if n ∈ Ndc,FTM then
19 adjust at,n according to (8.32), (8.24) and (8.25), obtain aadjt,n

20 Determine eouts,n using (8.33), update P dc
s using (8.35) ∀s ∈ [SPt,n]

21 Update socFTM
s using (8.37) ∀s ∈ [st, t+ TH]

22 Calculate Rn using (8.34)

23 if n ∈ NFCR then
24 Update socplaceholders using (8.38) ∀s ∈ [st, t+ 4 · 1

∆t ]
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The SCA then iterates over all actions at,n in the action vector (line 1). From
the available information on requested power and duration, the service period
SPt,n = [st, et] is determined in line 2. The SCA then differentiates between
charging, discharging, BTM and FTM use cases to process the following in lines 3 to
22. Each action is first adjusted to a value that does not violate any constraints of
the BESS or the minimum purchase quantity of the service request. Then, for each
time step s ∈ SPt,n, the in-flowing energy eins,n is determined and the charging power
P ch
s is updated. Finally, the respective SoC is updated and the resulting revenue of

the service request is calculated. For the use case FCR, the action is adjusted in line
24. The reserved FCR capacity socFCR

s is then updated for each time step s within
the FCR bidding block [st, t + 4

∆t
] in line 24. Subsequently, the empty capacity

needed for negative FCR provision is reserved. The SCA outputs the updated SoC
vector, the adjusted action vector Aadj

t , the service request revenues Rn and the
updated power vector Pt.

Reward. The reward is a crucial component of a DRL model, as it is the signal
that allows the agent to learn by rewarding good decisions and punishing bad ones.
In the case of a multi-use BESS with the goal of maximizing profits, the obvious
choice for a reward is the profits that are generated through the acceptance of service
requests. The reward signal in time step t is therefore the sum of revenues rnt that
result from service requests n ∈ N at time step t.

rewardt = (
∑
n∈N

rnt ) (8.40)

One difficulty that the agent faces is that negative reward signals can occur and
are often desirable, because only by buying electricity can the BESS operator gener-
ate profits from selling said electricity at a later point in time. While this can make
it more difficult to learn, DRL algorithms inherently addresses this issue by aiming
at a maximization of cumulative profits as shown in (8.1), and by taking the value
of the next state into account, which is higher when the BESS is charged. Addi-
tional reward components could be included to incentivize specific behavior, i.e., by
penalizing unwanted actions or rewarding prioritized services. This type of reward
engineering is however difficult to calibrate and we therefore refrain from including
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further components into the reward.
In the following, we demonstrate the functionality and evaluate the performance

of the above introduced theoretical model in a case study. The proposed scheme of
a BESS agent that coordinates multiple applications using a DRL algorithm is im-
plemented in python 3.7 using the packages Gym by OpenAI (Gym documentation,
2022) and tensorflow 2.0 (Abadi et al., 2015). To solve the problem, the state-of-the-
art PPO2 algorithm developed by stable baselines (Stable baselines documentation,
2022) is integrated into the implemented environment via a Gym-interface.

8.4 Case Study
To demonstrate the designed and implemented DRL-based BESS service agent,

we conduct a case study of a hypothetical community BESS that receives service
requests from all four application areas depicted in Figure 2.3. We assume that
the BESS is located within a neighborhood and receives requests for storing
excess PV generation and supplying household loads from prosumers within the
neighborhood as BTM application. We furthermore assume that peak-shaving
requests are submitted by a small industrial facility within the network section as
second BTM application. Both BTM use cases are assumed to be exempt from
taxes and levies when supplied by previously stored exceeds PV generation. The
BESS further receives requests to participate in the FCR auction and trade in the
intraday spot market. Intraday trading is also assumed to not be burdened with
taxes or levies and BTM and FTM electricity quantities are strictly separated. The
setup of the case study is shown in Figure 8.4 and described in detail in the following.

Figure 8.4.: Case study setup
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Service requests. The chosen use cases result in up to ten service requests per
time period. At 8 a.m., the agent receives six service requests for the FCR auction,
one for each 4-hour FCR bidding block of the following day. The service request
is always for the maximum possible amount. The FCR prequalification criteria
requires a 25% buffer, therefore, in the case of a BESS with 15 kW power capacity,
the maximum power bid is 12 kW. For all other use cases, the agent receives up to
four service requests at every time step, i.e., one for storing excess PV generation,
one for supplying household loads, one for peak-shaving and one for trading on the
intraday market. The use cases are thereby aggregated, so that, for example, the
household demand of several residents in the neighborhood is submitted as one single
service request. Note that only three of these four requests can occur simultaneously,
as there is either excess PV generation available or surplus household load, but never
both at the same time. This is the case because we assume PV generation is first
consumed directly, if possible (compare Chapter 4). For intraday trading, the BESS
service agent receives the current intraday price and its maximum available power
as service request at each time step. The agent can then choose an action between
-1 and 1, where negative values refer to discharging (i.e., selling) and positive values
to charging the BESS (i.e., buying electricity). For all other use cases, the agent can
choose a continuous action between 0 and 1. We choose an hourly resolution and
set the time horizon TH to 40, that is, the agent plans up to 40 hours ahead. This
value is chosen because at 8 a.m., the time of the FCR auction, the end of the last
FCR bidding block of the following day is exactly 40 hours away.

The duration of all service requests is one hour except in the case of FCR provision,
where one block, if accepted, lasts 4 hours. For peak-shaving, we set the minimum
purchase quantity to 1, i.e., the service requests can only be fully accepted. All other
service requests can be partially accepted as well.

State space. As described in Section 8.3.3, the state space consists of the service
request vector Requestt, the power vector Pt, the SoC vectors for BTM, FTM and
FCR use cases as well as the forecast vectors. In the case study, we include a forecast
each for the household load (ForecastH), excess PV generation (ForecastPV ) and
intraday prices (ForecastID) in the state space. To reduce the dimension of the state
space and thus the complexity of the task that the DRL agent needs to solve, we
condense the forecast vectors of household load and PV generation by calculating



Case Study 237

the mean value of 4 hour time windows. We align these windows with the time slots
of the FCR bidding blocks. The vector of a forecast fc ∈ [PV,H] is therefore defined
as follows:

Forecastfct = [
1

4

t+4∑
s=t

forecastfcs ,
1

4

t+8∑
s=t+4

forecastfcs ...,

1

4

t+TH−1∑
s=t+TH−5

forecastfcs ]

(8.41)

The intraday forecast is not condensed and included as a vector of length TH. In
the following, we describe the case study parameters and the data sources that were
used for modeling the service requests.

8.4.1 Parameters and Data Sources

The parameters of the case study are shown in Figure 8.1. The hyperparameters
used for the training of the PPO2 algorithm are shown in Figure 8.2. The BESS size
is set to 30 kWh energy capacity and 15 kW power capacity and the efficiency for
charging and discharging is set to η = 0.95, i.e., the round-trip efficiency is 0.952.
We assume that the neighborhood consists of ten households and features 40 kW of
installed PV power capacity, which corresponds to around five typical residential PV
systems.

Table 8.1.: Parameters of the case study

Parameter Assumption Parameter Assumption

BESS capacity 30 kWh Households price 0.32 e kWh−1

BESS power 15 kW Peak Shaving price 1 e kWh−1

BESS efficiency 95 % FCR prices scaled market data
PV capacity 40 kW Intraday prices scaled EPEX Spot ID3
PV price 0.8 e kWh−1
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Table 8.2.: Hyperparameters

Hyperparameter Value Hyperparameter Value

cliprange ϵ 0.2 learning rate α 2.50E-05
entropy coefficient β 0.01 # of steps 168
disocunt rate γ 1 # of minibatches 4
λ 0.95 # of epochs 48

The generation data for the PV generation is retrieved from Renewables.ninja
(Pfenninger and Staffell, 2016, 2021; Staffell and Pfenninger, 2016), where we simu-
late the generation of a 40 kW solar PV power plant located in Karlsruhe, Germany.
We assume a fixed price of 0.8 e kWh−1 for buying excess electricity from PV gener-
ation, which reflects the opportunity costs of current EEG feed-in-tariffs. The load
data for the simulated household demand is retrieved from the dataset Representa-
tive electrical load profiles of residential buildings in Germany (Tjaden et al., 2021).
From this data set, ten households are randomly sampled and aggregated to form
the household demand of the community. We assume that PV generation will first
be used directly by the households if possible, and therefore obtain the excess PV
generation by subtracting the load from the PV generation profile. We assume a
fixed remuneration of 0.32 e kWh−1 for supplying household load, which is based
on the electricity price for German households in 2022 (see Chapter 1). For peak-
shaving requests, we use an industrial load profile published by Huber et al. (2019).
We assume a fixed price of 1 e kWh−1 for the peak-shaving service. This value is
deliberately set very high, as the peak shaving requests occur infrequent and follow
no obvious pattern. These requests are therefore the hardest to predict for the BESS
service agent, so we want to set a high incentive for accepting them. The prices of
the FCR auction are retrieved from the publicly available data of the German TSOs
on Regelleistung.net (50 Hertz et al., 2022). For the intraday prices, we use data
from EPEX SPOT (EPEX SPOT, 2021). For simplification, we choose the ID3 to
be the available price for intraday action, which is the weighted average price of the
intraday transactions of the last three hours prior to delivery.

We sample all the available data into a resolution of one hour. We assume that the
actions of the BESS do not influence market prices, i.e., this is a price taker model.
As the FCR auction scheme was changed from weekly bidding blocks to daily bidding
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blocks in July 2019, we only use the market data from July 2019 onward. As we
want to include an entire year in our test data, we test on the data from 2021 and
train the model on the data from July 2019 until December 2020.

During the training period, the price level and spreads on the day-ahead and
intraday markets are quite low, making it difficult for a BESS to generate any profits
through trading. We therefore alter the available market data and increase the
spreads of the intraday prices by 225 % for the training data and 125% for the test
data. The lower value for the test data is chosen because of the unusually high
market prices starting in mid 2021 to better align train and test data.

In addition, we scale the FCR prices by multiplying with 0.25 to create more
situations in which FCR and PV use cases compete with each other. Especially
during the test period, FCR prices had reached levels at which it was optimal to
continuously provide full FCR bidding capacity. The near-optimal strategy could
thus be easily implemented through a rule-based approach. The assumption of lower
FCR prices is further motivated by the limited demand of the FCR auctions of around
600 MW. An analysis by Schäfer, C. (2021) shows that in 2021, already more than
half of this demand was supplied by BESSs. We therefore assume that prices will fall
as the number of participating BESSs increases and the market becomes saturated.

Forecasts. For the PV generation and household load forecasts that the agent
observes during real-time observation, we multiply the true values with a random
noise sampled from a normal distribution with a mean error of 0 and a standard
deviation of 0.3 (i.e., 30% forecast error). In the case of PV generation and household
load, multiplying the noise value with the actual generation value ensures that the
forecast will not predict generation during the night. Furthermore, small absolute
true values result in smaller forecast errors. In the case of intraday prices however,
negative or zero values may occur and smaller values, i.e., prices close to zero, would
not necessarily result in smaller forecast errors than higher values. Therefore, to
create synthetic forecasts for the intraday prices, we add a random error onto the
true values instead of multiplying it. The random error is randomly sampled from a
normal distribution with mean zero and standard deviation 1.



240 Multi-Use Battery Operation with Deep Reinforcement Learning

8.4.2 Benchmarks

To compare the performance of the developed DRL-based BESS service agent, we
consider three benchmarks: a theoretical optimum and two rule-based benchmarks.
The theoretical optimum is determined through an optimization of the entire testing
period with perfect foresight of all generation, consumption and price data using
the Gurobi solver. The optimization solves the optimization problem displayed in
(8.42). The decision variables are denoted with x for continuous variables and a for
binary variables. Each decision variable is determined for every time step, i.e., every
hour h on day d where D is the number of days in the considered time period. The
algorithm decides how much electricity to buy (xID,buy) or to sell (xID,sell) on the
intraday market, to charge from PV generation (xPV ) and to discharge for household
consumption (xSC) or peak-shaving (xPeak). Further, the amount of bid capacity for
FCR, xFCR, is determined. In the first time step, the SoCs of FTM and BTM use
cases, socFTM and socBTM , are set to zero (8.42a and b). The reserved capacity for
FCR socFCR amounts to 15 minutes multiplied with the FCR bid capacity (8.42c).
Furthermore, a constraint is added which ensures that socFCR is always smaller
than the sum of socFTM and socBTM to ensure the ability to provide positive FCR
(8.42d). Within each day d, the SoCs for BTM and FTM use cases are updated in
(8.42e) and (8.42g), considering the charge and discharge efficiency η. The SoC at
the beginning of a day is updated in lines (8.42f) and (8.42h). It is further ensured
that the sum of the SoCs is not greater than the BESS’s capacity Cap (8.42i), and
that the sum of in- and out-flowing electricity is within the power limits (8.42j and
k). The electricity charged from PV generation is limited by the available excess
PV generation pv in that time step (8.42l). Similarly, the served household and
peak load is limited by the household and peak load demand loadH (8.42m) and
loadPeak (8.42n), respectively. We introduce the binary variable aPeak to ensure
that peak load can be either served entirely or not at all, in accordance with the
minimum purchase quantity of 100% for peak-shaving use cases in the case study.
In (8.42o), we ensure that FCR is only provided in blocks. That is, for every hour
b ∈ [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21, 22], the FCR capacity bid must
be equal to the successive hour. The binary variables aID,sell and aID,buy are needed
to ensure that electricity is not simultaneously bought and sold on the intraday
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market in (8.42p) and (8.42q).

max (
∑D

d=1

∑23
h=0 x

FCR
d,h · pFCR

d,h + xSC
d,h · pSC + xPeak

d,h · pPeak − xPV
d,h · pPV

+(aID,sell
d,h · xID,sell

d,h − aID,buy
d,h · xID,buy

d,h ) · pIDd,h)

s.t. socFTM
1,0 = 0 (8.42a)

socBTM
1,0 = 0 (8.42b)

socFCR
d,h = xFCR

d,h · 0.25h ∀d ∈ D, ∀h ∈ [0, .., 23] (8.42c)

socFCR
d,h ≤ socFTM

d,h + socBTM
d,h ∀d ∈ D, ∀h ∈ [0, .., 23] (8.42d)

socFTM
d,h+1 = socFTM

d,h + η · xID,buy
d,h − 1

η
· xID,sell

d,h ∀d ∈ D, ∀h ∈ [0, .., 22] (8.42e)

socFTM
d+1,0 = socFTM

d,23 + η · xID,buy
d,23 − 1

η
· xID,sell

d,23 ∀d ∈ [1, .., nD − 1] (8.42f)

socBTM
d,h+1 = socBTM

d,h + η · xPV
d,h

− 1
η
· (xSC

d,h + xPeak
d,h ) ∀d ∈ D, ∀h ∈ [0, .., 22] (8.42g)

socBTM
d+1,0 = socBTM

d,23 + η · xPV
d,23

− 1
η
· (xSC

d,23 + xPeak
d,23 ) ∀d ∈ [1, .., nD − 1] (8.42h)

Cap ≥ socFTM
d,h + socBTM

d,h + socFCR
d,h ∀d ∈ D, ∀h ∈ [0, .., 23] (8.42i)

−power ≤ xID,buy
d,h − xID,sell

d,h + xPV
d,h

−xSC
d,h − xPeak

d,h ∀d ∈ D, ∀h ∈ [0, .., 23] (8.42j)

power ≥ xID,buy
d,h − xID,sell

d,h + xPV
d,h

−xSC
d,h − xPeak

d,h ∀d ∈ D, ∀h ∈ [0, .., 23] (8.42k)

xPV
d,h ≤ pvd,h ∀d ∈ D, ∀h ∈ [0, .., 23] (8.42l)

xSC
d,h ≤ loadHd,h ∀d ∈ D, ∀h ∈ [0, .., 23] (8.42m)

xPeak
d,h = aPeak

d,h · loadPeak
d,h ∀d ∈ D, ∀h ∈ [0, .., 23] (8.42n)

xFCR
d,b = xFCR

d,b+1 ∀d ∈ D, ∀b ∈ B (8.42o)

1 ≥ aID,sell
d,h + aID,buy

d,h ∀d ∈ D, ∀h ∈ [0, .., 23] (8.42p)

xID,sell
d,h + xID,buy

d,h = aID,sell
d,h · xID,sell

d,h + aID,buy
d,h · xbuy

d,h ∀d ∈ D, ∀h ∈ [0, .., 23] (8.42q)

0 ≤ xFCR
d,h , xSC

d,h , x
Peak
d,h , xPV

d,h ,

xID,sell
d,h , xID,buy

d,h ∀d ∈ D, ∀h ∈ [0, .., 23] (8.42r)

power ≥ xSC
d,h , x

Peak
d,h , xPV

d,h , x
ID,sell
d,h , xID,buy

d,h ∀d ∈ D, ∀h ∈ [0, .., 23] (8.42s)

xFCR
d,h ≥ power · 1

1.25
∀d ∈ D, ∀h ∈ [0, .., 23] (8.42t)

aID,sell
d,h , aID,buy

d,h , aPeak
d,h ∈ [0, 1] ∀d ∈ D, ∀h ∈ [0, .., 23] (8.42u)

(8.42)
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Finally, the limits of the decision variables are set. All continuous variables must
be greater than 0 (8.42r) and smaller than the power limit (8.42s), with the exception
of FCR that requires a safety buffer of 25% and therefore cannot be greater than 12
kW (8.42t).

The two rule-based benchmarks are either (i) the continuous provision of FCR
during the entire test period or (ii) the provision of no FCR at all. All requests from
PV, household load and peak-shaving services are accepted in the order in which
they arrive by both rule-based benchmarks. For the benchmarks, the agent does
not trade on the intraday market, as no simple rule-based strategy can be deployed
for the uncertain price trajectory while considering the trade-off with the other use
cases. Note that the continuous maximum FCR provision does not severely restrict
the acceptance of other use cases. As the maximum bid on the auction is 12 kW,
only a total of 2 · 0.25h · 12kW = 6kWh of energy capacity is unavailable for other
use cases, leaving the majority of the BESS’s energy capacity of 30 kWh available
for other use cases.

8.4.3 Results

We train the developed DRL-based BESS agent for 5 million steps. After around 3
million steps, the reward converges. We then test the trained model on one year
of data. Figure 8.5 shows the performance of the DRL-based model in comparison
with the rule-based benchmarks and the theoretical optimum. The detailed revenue
streams of all five types of service requests are listed in Table 8.3. The DRL-based
agent achieves annual profits of 2,184 e, which is 28% better than the benchmark
with constant FCR provision and 10% above the benchmark without FCR provision.
The DRL-based model further achieves 61% of the theoretical optimum, which is
a good performance, considering that the optimum is only theoretical as it is able
to exploit every single spread on the intraday market with perfect foresight and to
optimally balance all use cases. This also becomes evident in the high profit share
of trading revenues in the theoreical optimum. In the optimum, the joint revenues
of BTM and FCR use cases is lower than in the case of the DRL agent and the
benchmark without FCR provision. It needs to be noted that degradation is not
considered and therefore the intraday profits might be overestimated, since it has
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been suggested that trading leads to overproportional cyclical degradation (Perez
et al., 2016).

Figure 8.5.: Comparison of the annual profits achieved by the DRL agent, theoretical opti-
mum and rule-based benchmark strategies

The use case peak shaving occurs relatively rarely during the testing period, with
a total service request volume of 92 kWh during the entire year. Both rule-based
benchmarks and the DRL agent manage to accept roughly half of these requests
whereas the theoretical optimum serves around 70 kWh of peak load.

Table 8.3.: Revenues streams of DRL-based BESS agent and benchmarks
Revenues in e Households PV Peak-Shaving FCR Trading Total

Benchmark “constant FCR” 1,669 -466 41 459 0 1,703
Benchmark “no FCR” 2,696 -750 41 0 0 1,987
DRL 2,038 -582 41 394 293 2,184
Optimization 2,532 -707 70 304 1,374 3,574

A closer look at an exemplary week of the SoC occupation of the optimization
reveals that at some times, the ideal strategy is to accept FCR requests almost
continuously, with the exception of time windows in which the BESS can be fully
charged with excess PV generation (compare July 2021 in Figure 8.7). If however
intraday price spreads are large enough to generate more profits, significantly less
FCR is provided, as seen in the SoC of February 2021 (Figure 8.6).

The DRL agent seems to learn an FCR provision pattern similar to the optimum
in July for the entire test year. This seems logical, as “optimal” intraday trading
is much harder for the agent to learn and it therefore relies on the “safe” earnings
from steady FCR provision. The agent leaves out an FCR bid block in the morning,
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which allows to utilize more of its energy capacity for BTM use cases, i.e., charging
excess PV generation.

Figure 8.6.: Comparison between the SoC occupation of the DRL-based operation and the
theoretical optimum in February

Figure 8.7.: Comparison between the SoC occupation of the DRL-based operation and the
theoretical optimum in July

In general, the DRL agent seems to learn various kind of patterns. For example,
a similar occupation of FTM use cases can be observed in the first week of July
2021 displayed in Figure 8.7, where the DRL agent uses the times in the morning
before PV generation starts to generate profits on the intraday market. This strategy
further allows the agent to reserve electricity from FTM use cases instead of BTM
use cases, as can be seen by the reserved blocks.
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In summary, we show that the DRL outperforms both benchmarks in our case
study and is able to handle the complex interplay of several use cases and uncertain-
ties. This is a novel finding as our model is more complex than previous DRL-based
multi-use BESS operation strategies and, to the best of our knowledge, we are the
first ones to benchmark the performance of the DRL agent against comparable rule-
based strategies. In the following, we discuss some limitations of the presented case
study.

8.5 Discussion
This chapter shows promising results for the deployment of a DRL algorithm

to solve the online operation problem of a multi-use BESS. Moreover, the agent
has to handle the use cases as they would appear in reality, i.e., both in the form
of continuous requests and auctions that require several actions at one time step.
The proposed model could therefore be deployed in practice as well. We further
demonstrate a novel modeling approach for BESS operators by modeling use cases
as service requests, which are part of the agent’s observations. There are however
several limitations to this work, which motivate future research in this area.

One drawback of DRL in general is the difficult interpretation of the agent’s ac-
tions. From Figure 8.7, it seems that the DRL agent learns cyclical patterns at
least to some extent. There are however deviations, as can be seen in the SoC of
FTM use cases. It is unclear what steers the agent’s actions in this regard and, for
example, to what extent it relies on the forecasts for its decisions. In the specific
case of our multi-use DRL model, the interpretability becomes additionally difficult
through the (necessary) deployment of the SCA and BA. Since the agent’s actions
are altered without the explicit knowledge of the agent, the agent might have dif-
ficulties in understanding the consequences of actions in general. This problem is
an ongoing topic of research in the DRL discipline. In the context of energy sys-
tems, Chen et al. (2021a) propose a first solution to facilitate the learning of DRL
agents that need to learn boundaries of physical systems. In the study, a feasibility
layer is introduced, which projects a set of chosen actions to the nearest feasible set
of actions (constrained by the physical system) through an optimization approach.
Since this layer is incorporated into the neural network, in contrast to the clipping
approach, the agent can observe the alterations of the actions. Future research could
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apply this principle to the problem at hand. The introduced case study however uses
a quite simple model, and it is subject to future research whether the principle can
be applied to more complex models like the one introduced in this chapter.

In our case study, service requests for BTM use cases as well as intraday trading are
all handled in real-time, i.e., the service needs to be provided immediately. Other
configurations are thinkable here as well, for example, that peak-shaving requests
arrive earlier (compare Chapter 7). Furthermore, the submitters of service requests
could anticipate other participant’s behavior and try to gain advantages through
strategic behavior. This interaction of several agents is disregarded in this chapter
and could be incorporated through an agent-based simulation in future research.

8.6 Conclusion
In this chapter, we introduce and evaluate the implementation of a StaaS inspired

BESS service agent with a DRL-based approach. We demonstrate that the data-
driven agent can handle multiple use cases, both from an auction and continuous
markets and therefore extend previous research by a more complex model that can
be deployed during real-time. Our results show that the DRL agent outperforms
comparable rule-based benchmarks by 10 to 28% and achieves 67% of the theoretical
optimum in the considered test year.

This chapter concludes Part III of this thesis on data-driven operation strate-
gies for BESSs. On all levels of energy systems, data-driven methods are demon-
strated to handle uncertainties during real-time operation. In front of the meter, a
classification-based strategy for a renwable operator is designed in Chapter 6 and
shown to reduce the operator’s financial risk. Behind the meter, risk averse planning
behavior based on a probabilistic forecast has relatively low, if any, negative effects
on the profitability of an industrial BESS deployed for joint peak-shaving and FCR
provision (Chapter 7). Finally, a DRL-based multi-use BESS operation strategy is
shown to outperform comparable rule-based operation strategies in Chapter 8.

In the following, a summary of the results and implications of the thesis is given in
Chapter 9 and an outlook on promising future research paths is provided in Chapter
10.



Part IV.

Finale





CHAPTER 9

CONTRIBUTION AND IMPLICATIONS

Future low-carbon, largely electrified energy systems will need substantial BESS
capacity to integrate large shares of intermittent RESs (Bründlinger et al., 2018;
Weitemeyer et al., 2015). The expansion of small-, medium- and grid-scale BESSs
must therefore be accelerated while considering the differing goals and requirements
of BESS deployment on different levels in the power grid. To this end, this disserta-
tion contributes to a holistic understanding of BESS deployment and operation on
all levels of integrated energy systems.

On the individual level, I investigate the promotion of BESS deployment and
analyse how existing resources can be deployed more effectively by connecting
several individuals in an energy community. I analyse BESS requirements on
the system level, which can guide policy-makers in the design of an appropriate
regulatory framework that further incentivizes investments on the lower aggregation
levels. Furthermore, I design and investigate data-driven operational strategies that
facilitate a real-time operation of BESSs at these various levels of energy systems
for FTM, BTM and combined applications. In this chapter, the findings of this
dissertation are summarized along the seven research questions proposed in Chapter
1.

In Part II of this thesis, BESS deployment across all aggregation levels is anal-
ysed. Residential decision-makers who contribute to the expansion of BESSs on an
individual level are in the focus of Chapter 3. I find that an informative website on
energy-related technologies in buildings significantly increases the intention to use
and to recommend the website if it contains vivid and interactive features (as op-
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posed to a static website with purely textual information). Likewise, the perceived
knowledge of users is higher when using the animated website, although this does not
apply to the measured objective knowledge. This validates the identical information
content of the two tested treatments and gives clues about the importance of the
subjective user experience. While the observed effects can directly be attributed to
the vivid design elements, the effects of interactive features are inconclusive, as they
may pose an additional cognitive burden to users. The results provide important in-
sights for the design of information material to promote residential BESS installation
and to increase energy literacy among non-experts. Interactive features should be
designed carefully and future research could investigate target-group specific effects
and requirements.

On a higher aggregation level, individuals can be connected to form an energy
community and to increase the utilization and profitability of PV-coupled BESSs.
In Chapter 4, I show that on average, 615 e of annual profits can be realized in a
community of five households with annual electricity consumption magnitudes that
are typical for German households. Accordingly, the utilization of BESSs within the
community can be increased from an average of 280 to 320 annual cycles. However,
the profits of the community vary significantly and participants of such a sharing
community should be carefully selected depending on load patterns and properties.
In addition, I show that a set of fixed prices for the shared goods can ensure a
fair distribution of profit shares among participants in most cases. In the study, I
assume that the neighborhood is allowed to operate in a setting of privileged self-
consumption. The regulation therefore would have to be adapted in the case of
energy communities to facilitate the demonstrated local integration of RESs and a
higher utilization of idle storage capacities, which is envisioned by the European
Union under the term of Citizen Energy Communities.

In order to design the correct incentive schemes, it is important to know how much
BESS capacity is necessary on a system level. On this level, I design a bottom-up
methodology to determine BESS requirements in integrated energy systems that
allows to consider particularities on lower aggregation levels. In a case study for
the state of BW, I show that in a scenario with a 95% share of RES generation,
6.8 GWh of BESS energy capacity are required under central planning while 128
GWh are needed under decentral planning. The LCOE more than double from
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42 e MW−1 to 94 e MW−1 under central vs. decentral planning. Realizing the low
costs of central planning would however require an extreme concentration of RESs
within few selected regions within BW, some of which are already known to be in
opposition to certain power installations. An in-between planning approach leads to
storage requirements of 52 GWh and LCOE of 64 e MW−1. These results motivate
future research on the acceptance of transition paths towards decarbonized energy
systems, and the quantification of the benefit of increased acceptance in terms of
acceptable additional costs.

In summary, Part II of this thesis contributes to a holistic understanding of BESS
deployment on different aggregation levels of integrated energy systems. In this
regard, three key contributions can be derived from these analyses: First, since indi-
vidual decision-makers take a center stage in the expansion of BESS, they need to be
provided with transparent information to increase energy literacy and subsequently
evaluate investment decisions on energy-related technologies, including PV-coupled
BESSs. This information can be conveyed through an informative website in an
engaging manner, using vivid visualization elements and (carefully designed) in-
teractive features. Second, once individuals have invested in storage capacity its
utilization should be maximized. In order to increase BESS utilization and subse-
quently to realize more profitable investments, consumers and prosumers within a
residential neighborhood could engage in a sharing economy for decentral RES and
BESS resources. The suitability of participants and agreements for profit-sharing
mechanisms need to be carefully evaluated and chosen in these settings. This way,
(citizen) energy communities can contribute optimally to the BESS requirements of
an integrated energy system. These requirements have to be analysed on a system
level to guide policy-makers in the design of regulatory measures. Therefore, third,
when planning pathways towards low-carbon integrated energy systems, the view of
a central planner should be expanded by decental perspectives in order to discuss
and factor in cost trade-offs and acceptance issues regarding the spatial distribution
of RES and BESS capacities at an early stage.

These findings therefore have important implications for policy-makers as well.
Transparent information needs to be available and accessible for individuals to
facilitate decision processes. An exemplary tool in this regard is the “Energy Atlas
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Baden-Württemberg” provided by the government of BW (LUBW, 2022). These
kind of tools and websites need to be designed according to the needs of potential
users to facilitate a dissemination of the available information. Furthermore,
individuals should be able to connect decentrally and to engage in a joint utilization
of available generation, consumption and BESS resources. On this level, regulation
could further provide incentives that ensure a grid-friendly operation of decentral
resources. Finally, policy-makers need to take local and regional acceptance into
account when designing pathways towards decarbonized energy systems. The view
of a central planner disregards potentials in areas with greater acceptance and
may lead to an extreme spatial concentration of RES and BESS capacities within
a system and a corresponding high burden for the affected communities. These
factors need to be taken into account at an early stage by policy-makers.

BESS deployment needs to be planned and promoted on all aggregation levels
of integrated energy systems. For an effective utilization of these BESS resources,
online operational strategies are needed to address uncertainties that lead to inef-
ficiencies during real-time operation. Therefore, in Part III of this thesis, I design,
evaluate and discuss data-driven operation strategies for the real-time operation of
BESSs, thereby considering the differing requirements of stakeholders on different
aggregation levels participating in various BTM and FTM use cases. In Chapter
6, I take the perspective of a large renewable operator in front of the meter who
uses a grid-scale BESS to reduce the risks of directly marketing her generation on
the day-ahead spot market. The results show that a classification-based heuristic
operation strategy can reduce the CVaR between 28% and 57% and on average by
38.5% in the five (summer) months that were considered in the case study. In this
study, I assume that the BESS can be accessed as service provider, which motivates
research on the perspective of such a BESS service agent and which is addressed in
Chapter 8.

Behind the meter, an industrial plant operator can increase the utilization of a
BESS deployed for industrial peak-shaving utilization by simultaneously participat-
ing in the FCR auction. In Chapter 7, I show that risk-averse planning behavior,
realized through a probabilistic forecast, has no or only small negative effects on
the annual revenue streams in the analysed case studies of four companies. Only
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in the case of one company, planning on the 95th forecast percentile results in 10%
lower profits, whereas the risk of missing a critical peak is substantially reduced. In
one case, moderate risk-averse planning behavior (i.e., planning on the 75th or 90th

forecast percentile) even slightly increases the annual profits by 3% because times of
peak demand could be better anticipated than in the case of risk-neutral planning.
Overall, the results indicate that risk-averse planning can be a reasonable operational
strategy for industrial BESS operators for peak-shaving. Future research could take
other application areas, e.g., spot market trading into account to further increase the
BESS’s utilization and profitability. This will however likely lead to larger monetary
trade-offs when relying on risk-averse vs. risk-neutral planning strategies, as more
uncertainties come into play.

Combining several BTM and FTM applications, several small- and medium-scale
BESSs could be pooled together by means of a StaaS platform that allocates service
requests. In Chapter 8, I design and evaluate an environment for a DRL-algorithm
that handles these service requests during real-time operation. Combining all four
application areas introduced in Figure 2.3, the results show that through its ability
to better coordinate between applications, the DRL algorithm achieves 10 to 28%
higher annual profits than a comparable rule based benchmark strategy.

The research in Part III of this thesis contributes to the development of online
operation strategies for BESSs that can be deployed during real-time operation
through the utilization of data-driven approaches. For a large renewable operator,
a rule-based strategy based on a classification approach can substantially reduce
the risk associated with the direct marketing of generation from RESs. In the
case of an industrial plant, planning based on a probabilistic forecast reduces
the risk of missing critical peaks while still allowing the generation of substantial
revenues through FCR provision. Finally, I show the potentials of DRL, a promising
data-driven approach for sequential decision-making that can be applied to the
case of a multi-use BESS and deployed during real-time. These findings show
the potential of data-driven approaches to facilitate BESS operation across all
aggregation levels of power systems and to address various stakeholder needs in
the process. In this respect, policy-makers are challenged to create the necessary
regulatory framework to allow a versatile deployment of BESSs, e.g., by ensuring
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that all BESSs are given (unbureaucratic) access to local applications as well as to
wholesale markets. Only in this way can idle capacities be avoided and BESSs be
deployed as effectively as possible in integrated energy systems. Innovative business
models, such as a StaaS platform as proposed in Section 2.6, are also needed to pool
and efficiently allocate decentral resources.

In conclusion, this thesis analyses and recommends measures for the promotion
and facilitation of BESS deployment in energy systems with intermittent renewable
generation. The results support policy-makers in designing corresponding regula-
tion, aggregators and storage operators in their operation strategies and researchers
in investigating future low-carbon energy system scenarios. Thereby, this thesis
contributes to the promotion and efficient utilization of BESS resources and it thus
supports the integration of high shares of sustainable power generation in low-carbon
energy systems.



CHAPTER 10

OUTLOOK

The results of this thesis point to promising avenues for future research.
First, when planning BESS deployment in integrated energy systems, all aggrega-

tion levels must be considered. This particularly includes the lower aggregation levels
and individual, non-expert decision-makers. German households have driven the ex-
pansion of PV and BESS in past years and hold the potential to further accelerate
this movement (Weitemeyer et al., 2015). The research in Chapter 4 of this thesis pro-
vides first insights into the design of engaging informative websites to increase energy
literacy of individual, residential decision-makers. However, as the energy transition
progresses, a diverse spectrum of individuals has to be reached and accordingly, the
needs of various target groups have to be addressed. According to the diffusion of
innovation process by Rogers (2003), the adapters of innovative technologies such
as PV and BESSs can be divided in the sub-groups “Innovators”, “Early Adopters”,
“Early Majority”, “Late Majority” and “Laggards”. In past research, these stages of
adoption could be linked to media coverage and other communication channels in
the case of PV installations (Dehler et al., 2019). Future research should establish
an understanding of current and future adopter characteristics in the case of residen-
tial BESSs and subsequently derive requirements to reach and engage these target
groups. To include diverse perspectives and backgrounds throughout this process,
Citizen Science is a promising research approach to engage relevant target groups
and to design measures according to their needs.

Second, in this thesis, a centralized planning approach of RES and BESS ex-
pansion requirements is critically examined and contrasted with a decentralized ap-
proach. Many questions in the field of local acceptance research follow from these
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observations. In particular, a quantification of the negative or positive effects of ab-
sent or existing acceptance is missing. In purely techno-economic planning models,
decentralized planning approaches inevitably lead to higher costs than centralized
approaches. However, the centralized approaches do not consider the price of social
opposition low public acceptance in the process of RES or BESS expansion. This
can lead to significant delays in the realization of RES and BESS projects and thus
also cause significant costs and negative climate effects. It is therefore questionable,
whether a central planning approach is indeed the most cost-efficient option. While
a decentral planning approach does not necessarily lead to more acceptance, it is
a first step towards a more equal inclusion of different regions into the transition
towards a decarbonized energy supply. Future research should develop cost mecha-
nisms addressing the acceptance and categorize regions according to their acceptance
potential, similar to what is already being done with physical potential in the case of
RESs, e.g., through the “Energy Atlas Baden-Württemberg” (LUBW, 2022). Like-
wise, targeted measures to increase general acceptance or reduce opposition need
to be developed and implemented to facilitate the transition towards decarbonized
integrated energy systems.

Third, this thesis proposes several data-driven strategies to facilitate real-time
BESS operation and to achieve the goals of various stakeholders. In a smart, inte-
grated energy system, decentral resources could be pooled together through a StaaS
platform. First insights into potential agent behavior on this platform are presented
in this thesis. It is worthwhile to also model and analyse the interactions of different
agents on such a platform. This could be implemented and investigated through
an agent-based model of the StaaS platform. In particular, the bidding behavior of
the participants, the coordination and allocation algorithms of the platform, and the
pricing model of the platform operator are aspects that should be further considered.
Additionally, the potential of aggregators and automated bidding agents should also
further be investigated.

From a regulatory perspective, policy-makers face several challenges but also op-
portunities to accelerate BESS deployment across all levels of power systems and to
facilitate an effective utilization of existing resources. On an individual level, besides
transparent and engaging information, concrete financial programs can leverage the
expansion of decentral technologies, similar to feed-in tariffs for renewable genera-
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tion. Furthermore, the regulatory framework for the deployment of BESSs needs
a holistic revision and adjustments in several aspects. Based on the synthesis of
the expert interviews on innovative storage regulation, a list of recommendations for
regulatory adaptions is derived (see Appendix 1.3), supported by a legal assessment
regarding the implementability of the suggestions in German law. These suggestions
are a starting point for a discussion on regulatory changes that allow easy access to
markets and multi-use deployment for BESSs on all levels of energy systems. Lastly,
local and global decision-makers are challenged to facilitate a widespread deployment
of RESs and BESSs, not only through regulatory changes, but also by transparently
communicating goals and necessary actions to achieve those goals. This is the foun-
dation for creating the necessary acceptance and for involving all citizens in the
design of a low-carbon energy system.
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APPENDIX 1.1: LITERATURE REVIEW SEARCH
STRING AND TABLE

Search string for the structured literature review on multi-use BESS de-

ployment.
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APPENDIX 1.2: EXPERT INTERVIEW QUESTION-
NAIRE

All questions are translated from original German.

1. General BESS deployment and in the context of the expert’s organisation

a) In which concrete projects or applications is the deployment of BESSs
realized or researched by [organisation name]?

b) How do you assess the future potential for the deployment of BESSs?

c) Which stakeholders do you see in the role of the storage operator?

d) In your opinion, what is the approximate share of the following battery
storage applications for achieving the climate targets (80 to 95% RESs)?
Residential BESSs, Community BESSs, Grid-scale BESSs

e) Which application area of stationary BESSs do you think has the greatest
potential for growth in terms of capacity in Germany by 2025?

f) In your opinion, what are the greatest regulatory challenges for an eco-
nomic storage operation in Germany?

2. Assessment of the current regulation

a) Which regulatory barriers does your organisation currently face regarding
BESS deployment?

b) What will the amendment to the EnWG and EEG 2021 change for you
in this regard?

i. Does this open up new application areas and economic potentials for
your organisation?

ii. How do you assess the dynamization and a reform of the network
charge system?
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c) How do you assess the current regulation for BESS deployment regard-
ing other stakeholders (e.g., residential and community BESSs and their
operators)?

d) Which other bureaucratic hurdles do BESS projects face (e.g., citizens’
initiatives)?

3. Requirements for future regulation

a) If you could completely“rethink” regulation for (battery) storage, how do
you envision innovative regulation that would make it possible to meet
the requirements for (battery) storage in future, decarbonized energy sys-
tems?

b) What would be the most important aspects for you that this regulation
would have to include (3-5 points)?

c) Let’s go back to the current regulation. Which regulatory changes are still
necessary for the meaningful deployment of BESSs by [your organisation]
and other stakeholders?

i. How should surcharges and network fees be dealt with during spot
market trading?

ii. What will change as a result of the fact that, according to the coalition
agreement, energy storage systems will be anchored as fourth pillar
in the energy law?

iii. Which bureaucratic hurdles can be removed?

iv. Which regulatory changes are needed to enable multi-use deployment
of BESSs (e.g., for self-consumption, electricity trading, and flexibility
services) beyond the current possibilities?

d) How can multi-use BESS deployment be realized without balance sheet
manipulation?

e) How can regulation incentivize grid-friendly BESS deployment, e.g., as
flexibility service provider?

f) Are government or private subsidy projects needed to stimulate more
BESS expansion?



265

g) Should the heterogeneous regulatory environment within the EU be har-
monized?

4. Realization of innovative Regulation

a) What possibilities exist at the state level (especially Baden-Württemberg)
to implement these regulatory changes?

b) How can a constant development of the regulation be ensured (e.g., via an
expert council à la California)? How can it be ensured that the regulation
remains up to date?

c) Do you have any further remarks that you would like to share?





APPENDIX 1.3: RECOMMENDATIONS FOR ACTIONS
ON REGULATORY CHANGES TO SUPPORT STORAGE
EXPANSION

This list of recommendations for regulatory changes towards regulation that facil-
itates storage expansion was derived from eight expert interviews along the ques-
tionnaire from Appendix 1.2. Note that not all recommendations are supported by
all experts, and that some experts even were explicitly against some of the gathered
recommendations. The recommendations are specifically targeted at supporting a
wide-spread storage expansion. It is then up to the regulator and policy-makers to
decide how much storage expansion is wanted and which measures are desireable to
achieve this expansion.

The recommendations were legally assessed by a law firm in the field of energy
regulation regarding their implementability. Two categories were assessed: (i) Com-
patibility with higher-ranking law and (ii) system conformity/complexity. The rating
is displayed below with the help of a traffic light categorization. The colors have the
following meanings:

• Green: (i) There are no concerns with regard to compatibility with higher-
ranking or (ii) the recommendation for action fits into the existing regulatory
system or the implementation is rather less complex.

• Yellow:(i) There are some concerns with regard to compatibility with higher-
ranking or (ii) the recommendation for action does not necessarily fit into the
existing regulatory system or the implementation is rather complex.

• Red: (i) There are strong concerns with regard to compatibility with higher-
ranking or (ii) the recommendation for action does not fit into the existing
regulatory system or the implementation is almost impossible.
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1. There should be an independent, technology-neutral storage definition in the
German energy law. [Compatibility, Complexity]

2. The EnWG must be amended to include the definition of temporal displace-
ment. This should be oriented along the model of the Directive (EU) 2019/944
for the Internal Electricity Market. [Compatibility, Complexity]

3. The provision of storage power capacity or the procurement of corresponding
services via third parties should be included in the network development plan.
[Compatibility, Complexity]

4. The verification obligation (Nachweisverpflichtung) of peak capping must al-
ready take effect at 1%, instead of at 3%. [Compatibility, Complexity]

5. The 25% rule from the EEG 2004, regarding the connection of generation
plants to the grid, has to be be adapted to the current investment costs of
PV plants or the grid expansion must be extended by a flexibility mechanism.
[Compatibility, Complexity]

6. The still existing double burdens for battery storage should be removed. [Com-
patibility, Complexity]

7. BESSs are to be completely exempted from surcharges and grid fees when
engaging in spot market trading. [Compatibility, Complexity]

8. The grid charges need to include a power price component with a charge per
kW. [Compatibility, Complexity]

9. A storage market should be implemented analogously to the market for reserve
energy (§ 13e EnWG). (was not subject to legal assessment)

10. When a BESS is installed in combination with a PV system, a bonus cent
should be awarded on top of the feed-in tariff. [Compatibility, Complexity]

11. For BESSs that are subsidized by the “PV + storage” program, the inverter
can currently be curtailed to 50% of its output instead of the usual 70%. This
should be abolished, as it is an incentive not to acquire a BESS. [Compatibility,
Complexity]
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12. A principle of “mutual recognition” should be implemented regarding distribu-
tion system operators (DSO) in order to reduce bureaucratic hurdles. In this
way, the inspection and approval of a BESS’s operation by one DSO would suf-
fice (in contrast to, in the worst case, the approval of all 900 German DSOs).

13. In order to secure customer rights and to set clear deadlines to the DSOs, the
systematics of the “supplier change” (Lieferantenwechsel) should be transferred
to the following processes: Direct marketing of PV electricity and access to
flexibility markets for BESSs. [Compatibility, Complexity]

14. Multi-use BESS operation should be possible when applications are separately
acocunted for. This can be realized through the 2-meter approach of the BVES.

15. It must be possible to account for green electricity in the BESS in order to solve
the solve the problem of the “exclusivity principle” Ausschließlichkeitsprinzip
([Compatibility). Complexity]

16. Regulation for energy communities, especially with regard to community
BESSs, must be simplified and formulated in a way that is understandable
for non-experts, so that no external, legal companies need to be consulted.
(was not subject to legal assessment)

17. Federal states should be able to set deadlines for the federal government re-
garding the realization of BESS projects. [Compatibility, Complexity]





APPENDIX 3.1: ADAPTED ITEMS, VALIDITY AND RE-
LIABILITY INDICATORS

Results for second experiment (replicability study with prolific participant tool) are
reported in brackets: (value)
Constructs Items (adapted) Outer

Loadings
α CR AVE

Interactivity*
INT1 I am able to interact with the energy

information website.
.899
(.907)

.828 .919 .850

INT2 The presented information can respond
to my input on this website.

.945
(.931)

(.817) (.916) (.845)

Vividness*

VIV1 The presentation of energy related tech-
nologies on the EIW is animated.

.837
(.885)

.881 .918 .737

VIV2 The presentation of energy related tech-
nologies on the EIW is lively.

.930
(.953)

(.906) (.934) (.780)

VIV3 I can acquire information on the EIW
from different sensory channels.

.820
(.805)

VIV4 The EIW contains information about
energy related technologies exciting to
senses.

.843
(.884)

Perceived use-
fulness**

PU1 Using the EIW improved my informed-
ness towards energy related technolo-
gies.

.930
(.972)

.915 .940 .798

PU2 The presentation of energy related tech-
nologies on the EIW is lively.

.932
(.979)

(.975) (.983) (.952)

PU3 Using the EIW make it easier to be in-
formed about energy related technolo-
gies.

.900
(.976)

PU4 I find the EIW to be useful in being in-
formed about energy related technolo-
gies.

.806
(rem.)
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Intention
to use***

IU1 Assuming I have access to the EIW, I
intend to use it next time I want to in-
form myself about energy related tech-
nologies.

.978
(.982)

.979 .985 .957

IU2 Assuming I have access to the EIW, I
predict I would use it next time I want
to inform myself about energy related
technologies.

.983
(.978)

(.975) (.983) (.952)

IU3 Assuming I have access to the EIW, I
plan to use it next time I want to in-
form myself about energy related tech-
nologies.

.974
(.967)

Intention
to
recommend+

IR1 I will recommend to my friends to visit
the EIW.

.947
(.958)

.941 .962 .895

IR2 Because I had a good experience with
it I will recommend my friends to visit
the energy information website.

.969
(.964)

(.934) (.958) (.884)

IR3 I would recommend the energy informa-
tion website to someone who seeks my
advice.

.921
(.896)

Knowledge
improvement++

K1 The EIW increases my knowledge .729
(.821)

.816 .871 .575

K2 I catch the basic ideas of the knowledge
taught.

.719
(.802)

(.796) (.867) (.621)

K3 I try to apply the gained knowledge di-
rectly in the EIW.

.807
(.715)

K4 The EIW motivates the user to inte-
grate the knowledge taught.

.852
(rem.)

K5 I want to know more about the knowl-
edge taught.

.672
(.809)
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Enjoyment+++

ENJ1 The use of the EIW is a fun activity. .923
(.953)

.908 .871 .693

ENJ2 The user interface of the EIW is enjoy-
able.

.802
(.836)

(.925) (.947) (.817)

ENJ3 The use of the EIW arouses my curios-
ity.

.930
(.928)

ENJ4 The use of the EIW stimulates my imag-
ination.

.885
(.895)

Perceived diag-
nosticity*

DIAG1 The EIW is helpful for me to evaluate
energy related technologies.

.823
(.887)

.778 .871 .693

DIAG2 The EIW is helpful in familiarizing me
with energy related technologies.

.863
(.873)

(.810) (.888) (.726)

DIAG3 The EIW is helpful for me to under-
stand the performance of energy related
technologies.

.809
(.794)

CR = Composite Reliability, α = Cronbach’s alpha, AVE = Average

Variance Extracted, rem. = item removed to establish discriminant

validity

*: Jiang and Benbasat (2007)
**: Venkatesh and Davis (2000)
***: Venkatesh et al. (2003)
+: Naranjo-Zolotov et al. (2019)
++: Fu et al. (2009)
+++: Mart́inez-Torres et al. (2008)
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APPENDIX 3.2: ADDITIONAL SCALES (TRANSLATED
FROM ORIGINAL GERMAN)

Constructs Items (adapted)

Acceptance of re-
newable energies in
general*

In principle, I am a person in favor of renewable energies.
In principle, I am opposed to renewable energy.
In all, I am in favor of renewable energy plants in my immediate area.
In principle, I am opposed to renewable energy systems in my city/town.

Energy awareness*

For shorter trips (up to 2km), I leave the car behind whenever possible and ride
my bike or walk.
When buying new household electrical appliances, I pay attention to low power
consumption.
I mainly use energy-saving appliances.
In winter, I only use forced ventilation (short, intensive airing).
When shopping, I make sure to buy regional products as much as possible.
When I do not need devices (e.g. TV, PC), I switch them off completely (no
stand-by mode).
I adapt my energy consumption behavior to the overall demand (e.g. do not
run the washing machine at peak times).

Participation infor-
mation*

When planning a renewable energy plant, it is important to me to be informed
regularly.
It is important to me to be informed about planned renewable energy plants at
an early stage.
When implementing renewable energy plants, transparency of the planning pro-
cesses is very important.

Participation evalu-
ation*

Sufficient information materials on renewable energy plants are available.
The opinion of the population on renewable energy plants is obtained.
Decisions in the realization of renewable energy plants are made together with
the population.

Decision confidence
(adapted, original
English)**

I am confident in my answer.
I am confident that I gave the correct answer.
I feel confident with my answer.

Perceived
technology-specific
knowledge

How informed are you with regards to energy-related technologies, such as [pho-
tovoltaic/battery storage/heat pumps/insulation]?



277

*: Petra Schweizer-Ries et al. (2010)
**: Phillips et al. (2014); Aldag and Power (1986)





APPENDIX 3.3: OBJECTIVE KNOWLEDGE ASSESS-
MENT

Introductory Description (translated from German):

Please imagine you are the manager of a typical office building in Germany. You
have received a limited budget to conduct energy-related renovation measures and
now have to decide to implement one of the following measures. Please choose the
measure that you think will be the best if your primary goal is to. . .

Knowledge assessment before usage of EIW:
Questions Multiple choice answer possibilities
Q1: . . . reduce the annual variable energy
costs of the building.
Q2:. . . reduce the annual CO2 emissions
Q3:. . . reduce the annual energy
consumption of the building

Install a small photovoltaic plant (8,3 watt peak-
power/m2).
Install a combined heat and power plant.
Retrofit with modern LED lighting.
Install a heat pump.

Knowledge assessment after usage of EIW:
Questions Multiple choice answer possibilities
Q1: . . . reduce the annual variable energy
costs of the building.

Q2:. . . reduce the annual CO2 emissions

Q3:. . . reduce the annual energy
consumption of the building

Install a large photovoltaic plant (25 watt peak-
power/m2).
Carry out building insulation with high quality insula-
tion material.
Utilise waste heat
Change to an electricity tariff with electricity from re-
newable energies.
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APPENDIX 3.4: EXPERIMENTAL RESULTS

Exact p-values of experiments:
Hypothesis p-values experiment KIT p-values experiment prolific

H1 0.000 0.000

H2 0.000 0.000

H3a 0.849 0.037

H3b 0.510 0.078

H4a 0.000 0.000

H4b 0.000 0.008

H5 0.000 0.000

H6 0.001 0.001

H7 0.000 0.045

H8 0.000 0.000

H9 0.000 0.000

Complete Results of Replicability Experiment:

Test for group differences for dependent variables:
Static Animated MWU

Construct Mean SD SW Mean SD SW p-value
INT 4.69 1.46 0.009** 6.1 0.73 <.001*** <.001***
VIV 2.45 1.29 <.001*** 4.91 1.01 .26 <.001***
PU 4.21 1.29 .75 5.78 0.91 <.005** <.001***
ENJ 3.34 1.46 .069* 5.21 1.06 .027** <.001***
DI 5.41 0.85 .04* 5.9 0.83 .009* .007**
IU 4.63 1.54 .002** 5.47 1.35 <.001*** .004**
IR 3.9 1.59 .073* 5.06 1.18 .047* <.001***
KI 4.69 1.11 .04* 5.34 0.89 .12 .005**

*p < .05; **p < .01; ***p < .001;

SW = p-values from Shapiro-Wilk test, MWU = Mann-Whitney U-test
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Test for group differences for general sustainability attitudes variables:
Static Animated

Construct Mean SD Shapiro-
Wilk

Mean SD Shapiro-
Wilk

p-value

Acceptance RE 2.92 0.18 <.001*** 2.94 0.22 <.001*** .951b

Energy Awareness 3.55 0.74 .348 3.41 0.67 .692 .353a

*p > .05; **p > .01; ***p > .001;
SD = Standard Deviation, Shapiro Wilk = p-value from Shapiro Wilk test depending on
whether the data is normally distributed: a. Two-Sided Welch Two Sample T-test, b. Two-
Sided Mann-Whitney U Test.

Additional measures before (t(0)) and after (t(1)) interaction with the EIW:

Technology-
specific
knowledge

Correct answer
share per partic-
ipant (objective
knowledge assess-
ment)

Decision
confidence

Technology-
specific
attitudes

Partici-
pation rating

Mean SD Mean SD Mean SD Mean SD Mean SD
Static EIW t(0) 2.21 0.82 0.11 0.17 3.65 1.52 4.23 0.56 3.08 0.67
Static EIW t(1) 2.59 0.69 0.52 0.28 4.41 1.25 4.61 0.49 3.13 0.75

Animated EIW t(0) 2.11 0.6. 0.12 0.17 3.22 4.76 4.21 0.68 2.99 0.73

Animated EIW t(1) 2.6 0.5 0.51 0.32 1.32 0.97 4.31 0.51 3.18 0.74



APPENDIX 7.1: NUMERICAL RESULTS OF CASE
STUDY IN CHAPTER 7

Simulation results of Company 1 in base case scenario:
C1 PI peak costs [e] FCR revenue [e] PI (size x0.9) PI (size x1.1)
1 foresight 2.13 1403 240 2.14 2.12
25th 1.94 1430 240 1.95 1.94
50th 1.94 1430 240 1.95 1.94
75th 1.91 1434 240 1.95 1.77
90th 2.00 1403 222 2.01 1.99
95th 1.92 1403 211 1.93 1.90
ps only 0.43 1403 0 0.44 0.43
fcr only 0.76 1601 240 0.77 0.76
no BESS 0.00 1601 0 0.00 0.00

Simulation results of Company 2 in base case scenario:
C2 PI peak costs [e] FCR revenue [e] PI (size x0.9) PI (size x1.1)
1 foresight 1.66 91,150 11,037 1.75 1.58
25th 1.53 91,933 11,041 1.60 1.46
50th 1.53 91,933 11,041 1.60 1.46
75th 1.58 91,150 10,619 1.67 1.51
90th 1.58 91,150 10,601 1.67 1.51
95th 1.55 91,150 10,456 1.64 1.47
ps only -0.22 91,150 0 -0.13 -0.29
fcr only 1.01 95,476 11,405 1.01 1.00
no BESS 0.00 95,476 0 0.00 0.00
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Simulation results of Company 3 in base case scenario:
C3 PI peak costs [e] FCR revenue [e] PI (size x0.9) PI (size x1.1)
1 foresight 1.68 21,145 7,856 1.78 1.70
25th 1.35 22,936 7,878 1.44 1.27
50th 1.35 22,936 7,878 1.44 1.27
75th 1.35 22,936 7,878 1.44 1.27
90th 1.35 22,936 7,878 1.44 1.27
95th 1.34 22,936 7,852 1.44 1.27
ps only 0.25 20,668 0 0.25 0.17
fcr only 0.56 27,155 7,878 0.57 0.56
no BESS 0.00 27,155 0 0.00 0.00

Simulation results of Company 4 in base case scenario:
C4 PI peak costs [e] FCR revenue [e] PI (size x0.9) PI (size x1.1)
1 foresight 2.29 45,145 6,092 2.45 2.15
25th 1.58 47,496 6,101 1.67 1.52
50th 1.58 47,496 6,101 1.67 1.52
75th 1.58 47,496 6,101 1.67 1.52
90th 1.58 47,496 6,101 1.67 1.52
95th 1.58 47,496 6,094 1.66 1.51
ps only 0.45 45,145 0 0.61 0.31
fcr only 1.01 49,461 6,101 1.03 1.00
no BESS 0.00 49,461 0 0.00 0.00

Simulation results of Company 5 in base case scenario:
C5 PI peak costs [e] FCR revenue [e] PI (size x0.9) PI (size x1.1)
1 foresight 1.10 9,700 1,266 1.16 1.05
25th 1.10 9,700 1,266 1.16 1.05
50th 1.10 9,700 1,266 1.16 1.05
75th 1.10 9,700 1,266 1.16 1.05
90th 1.10 9,700 1,266 1.16 1.05
95th 1.00 9,700 1,186 1.03 0.97
ps only -0.52 9,700 0 -0.47 -0.57
fcr only 0.63 10,089 1,266 0.63 0.63
no BESS 0.00 10,089 0 0.00 0.00
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storage: A smart choice for the smart grid? Applied Energy, 212:489–497.

Baumgarte, F., Glenk, G., and Rieger, A. (2019). Business Models and Profitability
of Energy Storage. SSRN Electronic Journal.

Baxter, R. (2018). 2018 Energy Storage Pricing Survey. Sandia National Laborato-
ries.

BDEW (2021). Strompreiszusammensetzung 2021. https://strom-report.de/

medien/strompreiszusammensetzung-2021.jpg.

https://strom-report.de/medien/strompreiszusammensetzung-2021.jpg
https://strom-report.de/medien/strompreiszusammensetzung-2021.jpg


Bibliography 287

BDEW (2022). Strompreis. https://www.bdew.de/presse/pressemappen/

strompreis/.

BDEW, co2online, dena, DMB, EnergieagenturNRW, EA, HEA, Institut für
sozialökologische Forschung e.V., VKU, and Verbraucherzentrale (2019). Strom-
spiegel für Deutschland 2019. www.stromspiegel.de.

Beier, C. and Bretschneider, P. (2013). Modellbasierte, regionale Auflösung des
Bedarfs an netzgekoppelten elektrischen Energiespeichern zum Ausgleich fluk-
tuierender Energien. Oberhausen/ Ilmenau: Fraunhofer UMSICHT, Fraunhofer
IOSB/AST.

Bera, A., Mitra, J., and Nguyen, N. (2019). Lifetime Revenue from Energy Storage
considering Battery Degradation. In 51st North American Power Symposium,
pages 1–6, Piscataway, NJ. IEEE.

Bessembinder, H. and Lemmon, M. L. (2002). Equilibrium pricing and optimal
hedging in electricity forward markets. the Journal of Finance, 57(3):1347–1382.

Bicego, M., Farinelli, A., Grosso, E., Paolini, D., and Ramchurn, S. D. (2018). On
the distinctiveness of the electricity load profile. Pattern Recognition, 74:317–325.

Biech, M., Bigdon, T., Dielitz, C., Fromme, G., and Remke, A. (2016). A Smart
Neighbourhood Simulation Tool for Shared Energy Storage and Exchange. In
Wittevrongel, S. and Phung-Duc, T., editors, Analytical and Stochastic Modelling
Techniques and Applications, volume 9845 of LNCS sublibrary. SL 2, Programming
and software engineering, pages 76–91. Springer-Verlag New York Inc, Cham.
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Dalén, A., Krämer, J., and Weinhardt, C. (2013). Determining the optimal level of
information granularity for efficient energy consumption decisions: Experimental
evidence. ECIS 2013 Research in Progress.

Dauer, D., vom Scheidt, F., and Weinhardt, C. (2017). Towards smart distribu-
tion grids: A structured market engineering review. In Proceedings of the Second
KSS Research Workshop : Karlsruhe, Germany, February 2016. Ed.: P. Hottum,
volume 69 of KIT Scientific Working Papers, pages 47–58. KIT, Karlsruhe.



292 Bibliography

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance
of information technology. MIS Quarterly, 13(3):319.

Deckert, A., Dembski, F., Ulmer, F., Ruddat, M., and Wössner, U. (2020). Digital
tools in stakeholder participation for the German Energy Transition. Can digital
tools improve participation and its outcome? In Renn, O., Ulmer, F., and Deckert,
A., editors, The role of public participation in energy transitions, pages 161–177.
London.

Dehler, J., Henni, S., Keles, D., and Fichtner, W. (2019). The EEG-attention cycle
and the diffusion of solar energy technologies. In Proceedings of the KSS Research
Workshop: a Selection of Talks and Presentations on Designing the Digital Trans-
formation. Ed.: S. Morana, page 1.

Dekking, M. (2007). A modern introduction to probability and statistics: Under-
standing why and how. Springer Texts in Statistics, Springer.

Deng, S.-J. and Oren, S. S. (2006). Electricity derivatives and risk management.
Energy, 31(6-7):940–953.

Deutscher Bundestag (2005). Gesetz über die Elektrizitäts- und Gasversorgung:
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Neue Zürcher Zeitung.

Miao, Y., Chen, T., Bu, S., and Liang, H. (2021). Co-Optimizing Battery Storage
for Energy Arbitrage and Frequency Regulation in Real-Time Markets Using Deep
Reinforcement Learning. Energies, 14(24):8365.



Bibliography 303

Milton, M.-A., Pedro, C.-O., Xavier, S.-G., and Guillermo, E.-E. (2018). Character-
ization and classification of daily electricity consumption profiles: Shape factors
and k-means clustering technique. E3S Web of Conferences, 64(11):08004.

Ministerium für Umwelt, Klima und Energiewirtschaft des Landes Baden-
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