KIT | KIT-Bibliothek | Impressum | Datenschutz

An active learning approach for the prediction of hydrodynamic roughness properties

Yang, Jiasheng ORCID iD icon 1; Stroh, Alexander 1; Friederich, Pascal ORCID iD icon 2; Frohnapfel, Bettina ORCID iD icon 1; Forooghi, Pourya
1 Institut für Strömungsmechanik (ISTM), Karlsruher Institut für Technologie (KIT)
2 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Realistic surfaces of flow-related equipment are often hydraulically rough due to wear or fouling. Predicting the skin friction exerted by such rough surfaces is a challenging task since the topography of these surfaces is inherently irregular and complex. Recent developments in data-driven methods and increasing affordability of high-fidelity direct numerical simulations (DNS) have created new possibilities for estimation of drag on irregular rough surfaces. In the present work we aim to demonstrate a viable approach to efficiently train a predictive model for the estimation of drag for irregular roughness based on its height probability density function (PDF) and the surface height power spectrum (PS). An active learning (AL) framework is employed to efficiently navigate the construction of a training database. Training data is generated by conducting direct numerical simulations of a flow over artificially generated rough surfaces in minimal channels in order to minimize the computational effort. An ensemble neural network (ENN) model is trained based on the database. The ENN model shows promising potential in predicting the skin friction as well as estimating the epistemic (model) uncertainty. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000152238
Veröffentlicht am 25.11.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Strömungsmechanik (ISTM)
Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 07.2022
Sprache Englisch
Identifikator KITopen-ID: 1000152238
Erschienen in 12th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2022, Osaka, Japan, 19 - 22 Juli 2022
Veranstaltung 12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP 2022), Ōsaka, Japan, 19.07.2022 – 22.07.2022
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page