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Abstract We present a general method for estimating the
number of particles impinging on a segmented counter or, in
general, on a counter with sub-units. We account for unre-
solved particles, i.e., the effect of two or more particles hit-
ting the same sub-unit almost simultaneously. To achieve full
time resolution we account for the dead time that occurs after
the first time-bin of a particle signal. This general counting
method can be applied to counting muons in existing detec-
tors like the Underground Muon Detector of the Pierre Auger
Observatory. We therefore use the latter as a study case to test
the performance of our method and to compare it to other
methods from literature. Our method proves to perform with
little bias, and also provides an estimate of the number of
particles as a function of time (as seen by the detector) to a
single time-bin resolution. In this context, the new method
can be useful for reconstructing parameters sensitive to cos-
mic ray mass, which are key to unveiling the origin of cosmic
rays.

1 Introduction

In this work we introduce a new strategy to count particles
hitting a counting detector that has counting sub-units. This
general method could be used in existing or new particle or
astroparticle detectors. The proposed statistical model pro-
vides useful count estimates if: (1) the signal processing of
each sub-unit is based on a discrimination threshold (not on
the signal amplitude or charge) and is thus subject to the effect
of unresolved particles, (2) there is a subset (larger than one)
of counting sub-units that expect the same particle rate, and
(3) not all the sub-units of the subset have signal simultane-
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ously. The new strategy is particularly useful for estimating
the particle counts as a function of time, even when single
particles cannot always be time-resolved.

We find a concise application of the counting strategy in
the Underground Muon Detector of the Pierre Auger Obser-
vatory [1,2], which we take as study case. Therefore, in the
following paragraphs we describe the importance of this new
strategy in the context of cosmic ray physics, within which
it was developed. We delay the discussion on other possible
applications of the counting strategy to Sect. 5.

In spite of extensive research, the origin, nature, and accel-
eration mechanisms of ultra-high-energy cosmic rays are still
not fully understood [3]. To unravel these mysteries, cosmic
rays are studied mainly through three observables: the energy
spectrum, the distribution of arrival directions, and the mass
composition as a function of the energy [4].

Low-energy cosmic rays are abundant and can thus be
measured directly. However, the flux drops steeply with the
energy, so cosmic rays with energies above ∼ 1015 eV are
measured only indirectly using ground-based observatories.
The large areas the observatories cover provide enough expo-
sure to detect the extensive air-showers (EASs) [4]. The latter
are conformed by the particles that result from the chains of
interactions and decays initiated by a cosmic ray [5].

The mass composition of cosmic rays is essential to under-
standing their origin, the transition energy between the galac-
tic and extragalactic components, the flux suppression at the
highest energies, and also for improving current high-energy
hadronic interaction models. We know that high-energy cos-
mic rays consist mainly of nuclei ranging from proton (light)
to iron (heavy) [6]. In their journey from their sources to
Earth, these charged nuclei are subject to deflection by mag-
netic fields. Lighter, less charged nuclei are less deflected
than heavy nuclei [7]. Then identifying the mass of cosmic
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rays would allow one to use the high-energy, light compo-
nent to infer what the sources are [1]. Furthermore, a change
in composition as a function of the energy around the tran-
sition from galactic to extragalactic cosmic rays is expected.
The transition energy would be related to the acceleration
limits of galactic sources. The magnetic fields of galactic
sources are capable of accelerating heavy nuclei to higher
energies than light nuclei. The transition would occur pre-
sumably between the highest-energy galactic iron component
to the lowest-energy extragalactic proton component [8]. It
would also be expected that the highest-energy cosmic rays
are mainly extragalactic intermediate mass or even heavy
nuclei [9]. Finally, the primary energies to which cosmic rays
accelerate are inaccessible to human-made accelerators like
the Large Hadron Collider. High-energy hadronic interaction
models can only be tested at the highest energies through
measurements of the ultra-energetic EASs [10]. These mod-
els are typically tested by analyzing the consistency of the
composition implications of different EAS observables [10].
Composition studies help to improve these models, which in
turn improve the precision of the inferred mass composition
[11,12].

There are two EAS observables that are specifically sensi-
tive to the mass composition for a given energy: the depth of
the shower maximum and the number of muons [13]. The first
is measured using fluorescence telescopes. These telescopes
measure the ultra-violet light emitted from the deexcitation of
nitrogen in air, that is excited by charged air-shower particles
[14]. The second is measured using underground or surface
detectors. In surface detectors, the muons impinge on the
detector together with the much more abundant electromag-
netic component of air-showers. Isolating the muonic com-
ponent in this case is typically only possible using inclined
events, in which most of the electromagnetic component is
absorbed by the atmosphere [11]. On the other hand, buried or
shielded detectors are able to detect mainly muons regardless
of the inclination of the event, because the other components
are mostly absorbed in the earth or shielding material above
the detector.

Segmented particle detectors are widely used in parti-
cle and astroparticle physics experiments [15]. They can be
designed to operate as calorimeters or as counters. In the first
case, the integral of the output signal is converted to a total
deposited energy, that is in turn converted to a number of
particles by knowing the energy deposited by a single parti-
cle. This is the case, for example, of the Surface Scintillator
Detector of the Pierre Auger Observatory [1,16,17], or the
surface detectors of Telescope Array [18]. For the second
case, to use the segmented detectors as muon counters, the
output signal of a segment is compared against a threshold
using a discriminator. The resulting binary signal is matched
to a known muon signal. For the Underground Muon Detec-
tor (UMD) of the Pierre Auger Observatory [1,2], the single

muon signal is a pattern of 0s and 1s. The Auger UMD and
the shielded detectors of the AGASA experiment [19] are
examples of segmented detectors used both as counters and
as calorimeters.

For each EAS event, an estimate of the muon density can
be obtained at each module of the detector by dividing the
reconstructed counts by the effective area of the module. The
muon densities as a function of the distance to the shower
axis, measured on the shower plane, constitute a sample of
the so-called muon lateral distribution function. Customarily
the sampled distribution is fitted, and the fitted function is
evaluated at a fixed distance to the shower axis. This provides
an event-wise measure of the size of the muon component
which is then used for further analyses (see for example Refs.
[20–22]).

Estimating the number or density of muons impinging a
segmented detector without bias is not trivial. If two or more
particles hit one scintillator strip almost simultaneously, they
will be read out as only one particle. This effect, referred to
as pile-up, constitutes a source of undercounting [21,23].
There are several existing methods that attempt to provide
pile-up-unbiased estimates of the number of muons. A sim-
ple yet powerful strategy is the one used by the AGASA
collaboration [19]. It is based on counting the number of
occupied channels out of all available ones. The advantage
of this strategy is that it presents little to no bias in the non-
saturation region. The disadvantage is that it does not use
the time information of the signal. Another strategy is the
one used for the photo-multiplier data of the Auger UMD
[22–24]. In this case, the output signals of each channel are
tested for matches to a single-muon pattern. Then the sig-
nal is divided in time windows of a length equal to that of
the single-muon pattern, and for each window the number of
starting pattern matches across all channels is counted. The
final estimate is then the sum over all windows. This strat-
egy trades an increased use of the temporal information of
the signal for increased biases. We analyze a modification of
this strategy based on centering one of the windows around
the peak of the signal. We will show that this modification
reduces biases in some cases. Finally, we present a new strat-
egy that exploits the full time resolution of the detector, that
provides an estimate of the number of muons at each time-
bin, and that has also little bias in the non-saturation region.
The key of this strategy to achieve full time resolution is
considering that a channel becomes inhibited after the first
time-bin of a particle pattern.

In this work we simulate the Auger UMD to use it as a
test scenario and as a point of comparison among the differ-
ent counting strategies. The Auger UMD will consist of an
hexagonal array of 219 modules at 73 locations when its con-
struction is finished. 61 locations will be separated by 750 m,
and 12 separated by 433 m [2]. Each location has a water-
Cherenkov detector (WCD) paired to three 10 m2 modules,
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Fig. 1 Scheme of a water-Cherenkov detector (WCD) of the Pierre
Auger Observatory with its three paired UMD modules. The modules
lie 2.25 m underground and have an area of 10 m2 each. They consist of
64 plastic scintillator strips embedded with wavelength-shifting (WLS)
optical fibers. The SiPMs and the electronics are placed in the middle
of the modules below an access tube. Figure adapted from Ref. [25]

each of which is segmented into 64 plastic scintillator strips
with embedded wavelength-shifting (WLS) optical fibers.
Figure 1 shows a scheme of a WCD with its three paired UMD
modules. A previous implementation of the electronics used
multipixel photo-multipliers, but now almost all modules are
equipped with silicon photo-multipliers (SiPMs). The mod-
ules are buried 2.25 m underground implying a vertical muon
energy threshold of ∼1 GeV. The UMD of Auger is designed
to measure showers with energies between 1016.5 eV and
1019 eV [1,2].

In Sect. 2 we explain the different statistical models or
algorithms that aim to provide unbiased estimates of the
impinging muons. In Sect. 3 we describe how we simulate
the detector and the air-shower library that we generated. In
Sect. 4 we show the comparison of the performance of the
different algorithms. Finally, in Sect. 5, we summarize the
main conclusions and provide an outlook.

2 Counting strategies

The problem of counting particles on a segmented detector
can be compared, on a first approximation, to the problem of
counting “balls in boxes”.1 In this problem, a finite number
of balls (the impinging particles) are randomly uniformly
allocated in a finite number of boxes (the segments of the
detector). After one realization, each box can contain zero

1 This problem is also referred to as “classical occupancy problem” or
“classical shot problem” [26].

(with no pattern match), or one or more balls (with pattern
match or occupied). The occupancy is then defined as the
number of occupied boxes.

Considering a muon counter, the balls represent the num-
ber of impinging muons on the counter Nμ. We assume that
Nμ originates from one realization of a Poisson distribution
[27] with mean μ, the average number of particles expected
on the counter. μ depends on the primary identity, energy,
and zenith angle, and on the distance to the shower axis on
the shower plane. For a flat detector, it can be expressed as
μ = ρμA cos θ , where ρμ is the average muon density of an
EAS on the shower plane, A is the active area of the detec-
tor, and θ is the zenith angle of the shower. It is important
to understand the difference between Nμ and μ: Nμ is the
number of particles actually impinging the detector, a prop-
erty of the event, while μ is the average number, a property
of the EASs. Both Nμ and μ can be used to reconstruct the
muon lateral distribution function [13,21,23].

The aim of the counting strategies is to answer two ques-
tions. The first one is: Knowing the occupancy, what is the
estimated number of impinging particles Nμ? And the sec-
ond one is: Assuming that Nμ is a realization of a Poisson
distribution of mean μ, what is the estimated mean number
of particles μ?

The simplest estimator of both Nμ and μ is the sum of
the number of pattern matches over all the scintillator strips
of one module. Yet it is evident that the obtained estimates
would be biased due to the pile-up effect, since one pattern
match can account for more than one muon. Therefore, the
goal of these counting strategies is to use the information of
the event trace to provide a pile-up-unbiased estimate of Nμ

and μ.
We now introduce the four counting strategies that we

consider in this work.
Infinite window strategy: This is the simplest strategy since
it does not make use of the temporal structure of the event
trace (hence its name). Instead, it only uses the number of
occupied channels k (the occupancy), which is computed as
[13,21,28]

k =
ns∑

i=1

�(mi ), (1)

where ns is the number of active segments of the detector,
� is the Heaviside step function, and mi is the number of
starting pattern matches of the i-th channel. �(mi ) = 0 if
mi = 0 and �(mi ) = 1 otherwise.

The number of impinging muons on a scintillator strip
follows a Poisson distribution of mean μ/ns . It follows that
the probability of an empty channel is q = exp(−μ/ns), and
the probability of an occupied channel is p = 1 − q [21,23].
The probability of having k occupied channels (successes)
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out of ns channels (trials) given μ (which determines the
success probability) follows a binomial distribution [21,23]

B(k| μ) =
(
ns
k

)
pkqns−k =

(
ns
k

)
e−μ(eμ/ns − 1)k . (2)

This is also the expression for the likelihood of μ given k
occupied channels. For k < ns the maximum likelihood esti-
mator of μ is [21,23]

μ̂ = −ns ln

(
1 − k

ns

)
. (3)

Moreover, the probability of having k occupied channels
given Nμ impinging muons and ns scintillation bars is given
by the occupancy distribution [28]

Occ (k| Nμ, ns) =
(
ns
k

)
S(Nμ, k)

n
Nμ
s

∀ k ∈ Z | 1 ≤ k ≤ ns, (4)

where S(Nμ, k) are the Stirling numbers of the second kind
(see also Ref. [26]). As shown in Refs. [13,28], a good
approximation of the maximum likelihood estimator of Nμ

is

N̂μ =
ln

(
1 − k

ns

)

ln

(
1 − 1

ns

) . (5)

The similarity between Eqs. (3) and (5) is evident, and in
fact N̂μ → μ̂ in the limit when ns → ∞.

It is relevant to add that when k = ns we say that the
module is saturated, and both μ̂ and N̂μ tend to infinity.

This strategy was the one employed by the AGASA col-
laboration (see for example Ref. [19]).
N-bin window strategy: In this strategy the event trace is
divided into time windows of N bins, where N is the number
of bins of a single-muon pattern (12 time-bins of 3.125 ns in
the case of SiPMs of the Auger UMD). If the number of bins
of the inhibition window is not an exact divider of the number
of bins of the trace, the last window is actually shorter, yet
still included in the computation. Then, for the j-th window,
the number of occupied channels k j , the estimated number
of muons N̂μ, j , and the estimated average number of muons
μ̂ j are computed using Eqs. (1),(3), and (5) repectively. The
overall N̂μ and μ̂ are estimated from the sum of those of each
window

N̂μ =
nw∑

j=1

N̂μ, j , (6)

μ̂ =
nw∑

j=1

μ̂ j , (7)

where j runs over the nw number of windows of the trace.

This strategy was introduced in Ref. [23] and has been
used for analyses of PMT data of the Auger UMD in Refs.
[22,24].2

N-bin centered window strategy: This strategy originated
as an attempt to solve the biases created in the N-bin window
strategy (A.M. Botti, private communication, 2021), and is
used in this work to enlighten the origin of said biases. It
is very similar to the N-bin strategy, but it determines the
position of the windows such that the center of one of those
coincides with the peak of the signal.

For the purpose of the explanation, let us take the case
of the 12 time-bin windows corresponding to SiPMs of the
Auger UMD. The idea is that there exists at least one 12
time-bin window j∗ where the number of occupied chan-
nels is maximal. If there is more than one, we take the one
that starts earliest. To find it, we slide a 12 time-bin win-
dow over all the trace, computing k j for every j-th possible
window. The “centered” window is the earliest that fulfills
k j∗ = max j (k j ). This window determines the way to com-
plete the partition of the trace into 12 time-bin windows. For
the case of the Auger UMD, since the event signal in the trace
starts typically at around 3300 ns or 3800 ns [25], we discard
the first bins of the trace that do not complete a full win-
dow. The method can be generalized for other time-window
widths, optionally keeping the first bins of the trace.

Having divided the trace into windows, N̂μ and μ̂ are
computed as in Eqs. (6), and (7).

1-binwindow strategy:This is the strategy developed in this
work. Rather than taking the trace as a whole, or in many-
bin windows, this strategy uses the complete time structure
of the signal. The idea is to compute for each j-th time-bin
of the trace, not only the number of occupied channels k j ,
but also the number of inhibited channels ninhib, j . The latter
is the number of channels that have a pattern match which
started at an earlier time-bin. We consider these as inhibited
channels because if a muon fell within the inhibition window
(i.e, the single-muon pattern match) it would not be possible
to measure or resolve it; effectively, inhibited channels are
equivalent to dead channels. In the analogy to balls in boxes,
having inhibited channels is equivalent to having less boxes.
The number of non-inhibited channels is then ns − ninhib, j .

Furthermore, having less available (non-inhibited) chan-
nels reduces the detector area, which leads to a smaller num-
ber of detectable muons. It becomes evident that the detec-
tor area varies bin by bin. To obtain the number of muons
that would be observed for a constant detector area equal
to the active area, we need to multiply by a factor equal to
the number of active segments ns divided by the number of
non-inhibited segments ns − ninhib, j . We therefore compute

2 In Sect. 4 we show that this strategy introduces significant biases.
These biases are compensated in the analyses of Refs. [22,24], at least
to first order, by correcting them against simulations in a later step.
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μ̂ j = −(ns − ninhib, j ) ln

(
1 − k j

ns − ninhib, j

)

× ns
ns − ninhib, j

= −ns ln

(
1 − k j

ns − ninhib, j

)
, (8)

and

N̂μ, j =
ln

(
1 − k j

ns − ninhib, j

)

ln

(
1 − 1

ns − ninhib, j

) × ns
ns − ninhib, j

, (9)

for each bin of the trace. The overall N̂μ and μ̂ are computed
as their sum over all the bins of the trace (this is, as in Eqs.
(6) and (7), with the number of windows nw being equal to
the number of bins in the trace).

Table 1 summarizes the characteristics of the four strate-
gies. In the table, we consider the trace-length (2048 time-
bins) as well as the single-muon pattern length (12 time-bins)
of the Auger SiPM UMD signals to calculate the number of
windows nw of each strategy.

3 Simulations of the response of the underground muon
detector to air-showers

3.1 Simulation of the detector

In our aim to recreate a realistic scenario, we develop an end-
to-end simulation chain for the counter mode of the Auger
UMD. In this section we describe the idea of how the detec-
tor works and how we simulate it, and we leave the complete
technical details for the Appendix A. The model of the detec-
tor follows Refs. [25,29]. Assuming said model, we derive
an analytical solution of the detector response to one or many
muons. For this purpose we neglect noise, which is anyway
intrinsic to the detector and irrelevant for assessing the per-
formance of the counting strategies. It is also relevant to add
that we do not consider muons transversing two scintillator
strips (commonly referred to as corner-clipping muons) as
this effect constitutes an independent source of bias that can
be corrected afterwards [24].

The principle of detection of the UMD of Auger is as
follows. The energy of the muons that transverse the soil
above the detector has to be larger than ∼ 1 GeV/ cos(θμ),
where θμ is the angle between the direction of motion of the
muon and the vertical direction. When such a muon interacts
with the scintillator material, it produces photons that excite
the wave-length shifting optic fiber of a segment, produc-
ing photons inside of it. These photons propagate through
the optic fiber, and some of them reach the SiPM connected

to that segment. The photons produce photo-electrons at the
SiPM (with a certain efficiency) and this current is processed
with the electronics, which outputs a binary signal [25,30].
If the water-Cherenkov station paired to the muon counter
triggered, the digital signals of the 64 binary channels of the
module are stored as part of the Auger UMD event trace. For
SiPMs, the trace is 6.4µs long with bins of 3.125 ns. Typi-
cally one muon creates a binary signal of ∼ 8 consequtive
1s (more precisely 7.8 ± 1.5) [25]. However, to optimize
the signal-to-noise ratio, the matching strategy of the Auger
UMD uses a 12 time-bin inhibition window, and it consists
of identifying patterns of the kind “1111xxxxxxxx”, where
x can be 0 or 1 [25].

The detector simulation takes the number and impinging
times of the muons as input, and outputs the event trace of
the module, i.e., the binary signals of the 64 channels of the
Auger UMD.

A feature of the UMD traces is that the signal does not
always start at the same time-bin. This is related to the fact
that the paired surface detector triggers the data acquisition
in the UMD. Therefore, as a first step we determine the start-
time of the signal in the Auger UMD trace by sampling the
distribution of the time-delays with respect to the trigger in
the paired surface detector. All muon impinging times are
then taken as relative to the signal start-time.

Afterwards, we randomly assign a scintillator strip to each
impinging muon, as well as an impinging position within the
strip (i.e., the distance to the SiPM).

Each muon generates several photons in the optic fiber,
some of which reach the SiPM and generate photo-electrons
with a certain efficiency. The average number of photo-
electrons that are generated in the SiPM 〈NPE〉 can be
expressed as a function of the distance between the imping-
ing position of the muon and the SiPM. We use said function,
and sample the actual number of generated photo-electrons
NPE from a Poisson distribution of mean 〈NPE〉.

For each photo-electron corresponding to a muon, there
is one common time delay that comes from the propagation
through the optic fiber from the impinging point to the SiPM.
But there are also additional time delays due to the scintil-
lator and the optic fibers excitation and de-excitation. We
sample each of these additional delays from exponential dis-
tributions. The resulting time of a photo-electron tPE is the
addition of the signal start-time, the impinging time of the
muon (measured with respect to the signal start time), the
propagation in the optic fiber, and the scintillator and fiber
delays.

At this point, the muon number and impinging times are
“translated” to a photo-electron number and arrival times at
the SiPMs. We then use a model of the pulse generated by
a single photo-electron at the input of the electronics. It is
relevant to add that non-linearities due to pile-up in cells
of the Geiger-avalanche photodiode arrays of the SiPMs are
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Table 1 Summary of the characteristics of the four strategies con-
sidered in this work. nw is the number of windows of each strategy
considering the characteristics of the Auger UMD trace. The column

“Centered” details whether the position of the windows is chosen such
that one of those is centered in the peak of the signal

Strategy μ̂ N̂μ nw Centered

Infinite −ns ln
(

1 − k
ns

) ln
(

1− k
ns

)

ln
(

1− 1
ns

) 1 –

N-bin − ∑nw

j=1 ns ln
(

1 − k j
ns

) ∑nw

j=1

ln
(

1− k j
ns

)

ln
(

1− 1
ns

) 171 No

N-bin centered − ∑ j=nw

1 ns ln
(

1 − k j
ns

) ∑nw

j=1

ln
(

1− k j
ns

)

ln
(

1− 1
ns

) 170-171 Yes

1-bin − ∑nw

j=1 ns ln
(

1 − k j
ns−ninhib, j

) ∑nw

j=1
ns

ns−ninhib, j

ln

(
1− k j

ns−ninhib, j

)

ln

(
1− 1

ns−ninhib, j

) 2048 –

only relevant for high occupancy and are not considered here
[25].

The electronics of an Auger UMD module has four ele-
ments at each of its 64 channels: a pre-amplifier, a fast
shaper, a discriminator, and a Field-Programmable Gate
Array (FPGA). We model the pre-amplifier as a low-pass fil-
ter, and the fast shaper as a practical differentiator. We then
simply add the fast-shaper signal generated by each photo-
electron within a same channel. Having this, we model the
discriminator by simply imposing a threshold on the signal
after the fast shaper, outputting a fixed voltage if the thresh-
old is passed, and zero voltage otherwise. Finally, like the
FPGA, we sample the signal in 3.125 ns time-intervals, with
a total duration of 6.4µs (2048 samples). The binary sig-
nal of each channel is then matched to patterns of the kind
“1111xxxxxxxx”, as explained in Sect. 1. Repeating the pro-
cess for all the channels, we obtain the final event trace for a
module, as well as the pattern matches.

Figure 2 shows the input (at SiPM), pre-amplified, after
fast-shaper, and output (after discriminator and FPGA) sig-
nals as a function of time, for one simulated muon. In the
input signal it is easy to distinguish the single photo-electron
pulses. The pre-amplifier amplifies and inverts the input sig-
nal, which is further amplified and again inverted by the fast-
shaper. Finally, the discriminator and FPGA output a digital
binary signal.

Finally, Fig. 3 shows, in one module-level event, the
impinging muons as a function of time, the binary traces, and
the matched patterns for all active channels. In this example
we can see pile-up in channels 17 and 23, where the signal
of two and three impinging muons respectively is matched
to only one pattern.

A validation test of the complete simulation chain can
be found in Appendix B, where we compare the fraction of
saturated events in simulations against the expected one as
computed from the statistical models in Sect. 2.

Fig. 2 Simulation of the pulse generated by one muon. The input signal
(top) generated at the SiPM goes through a pre-amplifier (second), a
fast shaper (third), and a discriminator and FPGA (bottom). The output
signal is digitized into 3.125 ns-wide time intervals by the FPGA

3.2 Detector effects affecting the counting strategies

The μ̂ and N̂μ estimated as explained in Sect. 2 are subject
to two sources of bias that are not intrinsic to the counting
strategies, and not related to the pile-up either.

In first place, it is possible that one muon does not create
an output signal strong or long enough such that it matches
the pattern “1111xxxxxxxx”. This is an inefficiency of the
detector and of the pattern matching strategy that leads to
undercounting, and affects all strategies to the same extent.
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Fig. 3 Simulation of the signal generated by muons of an air-shower
simulated event on a UMD module. The muons (circles) impinge at a
certain time (x-axis) on the different segments of the detector, which are
coupled to a channel (y-axis), generating a binary signal (lines), which
are then matched to a single-muon pattern (rectangles)

In the second place, as can be seen in Fig. 2, the signal
after the fast-shaper presents an undershoot. It can happen
that a signal of a later muon ends up mounted on the under-
shoot caused by previous muons in a same channel. If the
amplitude of the undershoot is large (very negative) or the
amplitude of the later muon signal too small, a pattern match
can be missed. The infinite window strategy is the only one
insensitive to this effect, because it is enough to match the
early muons in the channel to tag it as occupied during the
whole trace. All other strategies are subject to undercounting
due to undershoot to the same extent. This undercounting
effect is due to the design of the electronics, and its impact
depends also on the time resolution of the detector and on
the length of the single-muon pattern.

To understand the impact of both effects in our test case
(signals of SiPMs of the Auger UMD), we quantify the pat-
tern matches lost due to “small signals” and due to under-
shoot. For this, in each channel we identify whether the muon
signal would be matched to a pattern if it were the only muon
signal in the channel. If not, then the muon is in principle lost
for having a small signal. Approximately 3.6% muons would
be lost in this way, with no dependence on the energy or zenith
angle of the originating cosmic ray. However, if the pattern
match that the muon would have generated3 overlaps that of
other muon of the channel, we consider the muon recovered.
The latter happens more often with higher muon rates, this
is, for more vertical and more energetic air-showers. The net
loss of muons due to small signals can be seen in the upper

3 We take the time where the fast-shaper signal is maximum as the start
time of the pattern that the muon would have generated.

panel of Fig. 4. In the figure shown, we used proton initiated
air-showers with the typical signals in an hexagonal array
(for more details see Sect. 3.4). As expected, the net loss is
smaller for higher-energy and more vertical air-showers. The
net effect is below 4%.

If a single muon signal matches a pattern, as if it were
the only muon signal in the channel, we analyze whether
that pattern match overlaps with the pattern matches of the
total signal of the channel. If this is not the case, the muon is
lost due to undershoot. The results are shown in the middle
panel of Fig. 4. The muons lost because of the undershoot can
amount from 0.1% for low-energetic, inclined air-showers,
to 3.3% for high-energetic, vertical air-showers.

The total detector effects are simply the sum of the two
contributions (i.e. the sum of what is displayed in the upper
and middle panels of Fig. 4), and it is shown in the lower
panel of Fig. 4. We can see that the dominating effect is
the undershoot, thus there are more lost muons for high-
energy, more vertical air-showers. The total lost muons due
to detector effects range from 2.6% to 5.0%, and it can reach
up to 5.3% for iron-initiated air-showers.

3.3 Air-shower simulations

To continue with our aim of simulating a realistic scenario,
we created a library of ∼ 7600 EASs of proton and iron
primaries, using EPOS-LHC [31] and UrQMD [32,33] as
high- and low-energy hadronic interaction models, respec-
tively. The showers were generated using CORSIKA v7.7402
[34]. The logarithm of the primary energy of the showers is
uniformly distributed in 17.2 ≤ log10(E/eV) ≤ 18.4 and the
arrival directions of the showers correspond to an isotropic
distribution with zenith angles in 0◦ ≤ θ ≤ 48◦.

We divide the simulations by primary, in log10(E/eV)-
bins centered at 17.3, 17.5,…, 18.3 with widths of 0.2, and
in sin2 θ -bins centered at 0.05, 0.15,…, 0.45 with widths
of 0.10. For each primary and (log10(E/eV), sin2 θ)-bin, we
compute an average profile of the number of muons as a func-
tion of the (logarithmic) distance to the shower plane and of
the time dμ/dt×�t . In order to achieve this, we first compute
the profile for each shower by retrieving, for each muon that
reaches ground with sufficient energy (≥ 1 GeV/ cos(θμ)

for the Auger UMD), the distance to the shower axis on the
shower plane and the time it reaches the shower plane. Then,
for all showers that fall into the (log10(E/eV), sin2 θ)-bin,
we make a weighted average of the dμ/dt×�t profiles, where
the weight of the i-th shower is its energy Ei times the cos-
mic ray flux at that energy J (Ei ). By weighting the showers
in this way we obtain the average profile corresponding to a
distribution of the shower energies that follows the cosmic
ray flux. We model the flux following Ref. [35].
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Fig. 4 Average percentage of missed muon counts due to signals being
to small or too short (upper panel), due to undershoot (middle panel),
and the sum (lower panel), as a function of the logarithmic energy and
of the sine square of the zenith angle. We use proton initiated air-shower
simulations with the distribution of distances of an hexagonal array

Figure 5 shows an example of the profile dμ/dt×�t for
proton EASs with 18.0 ≤ log10(E/eV) ≤ 18.2 and 27◦ �
θ � 33◦ (0.20 ≤ sin2 θ ≤ 0.30).

3.4 End-to-end simulations

We generate the first detector-simulation set as follows: For
each primary and (log10(E/eV), sin2 θ)-bin, we evaluate
10,000 times the profile dμ/dt×�t at a random logarithmic
distance log10(r

∗/m) which we sample from a uniform con-

Fig. 5 Average number of muons per time-bin as a function of the
logarithm of the distance to the shower axis (measured on the shower
plane) and of the shower plane arrival time. The average corresponds to
proton air-showers with 18.0 ≤ log10(E/eV) ≤ 18.2 and 27◦ � θ �
33◦ (0.20 ≤ sin2 θ ≤ 0.30)

tinuous distribution U{1.0, 3.5}. This determines the input
average number of muons as a function of time dμ/dt ×
�t | r=r∗ , the integral of which is μ = μ (log10(r/m)) | r=r∗ .
We then obtain the number of impinging muons Nμ from
sampling a Poisson distribution of mean μ. Finally, we sam-
ple the times of the Nμ muons from dμ/dt×�t | r=r∗ . This
information is the input of the detector simulation, which
assigns random scintillator strips/channels to the muons, sim-
ulates the response of the electronics, and outputs the binary
signals of the 64 channels, as explained in Sect. 3.1. Then
we match the pattern “1111xxxxxxxx” to the binary signals.
With this information, we reconstruct the estimated μ̂ and
N̂μ with each of the four strategies presented in Sect. 2 (see
Table 1).

We also generate a second detector-simulations set. This
one is identical to the first one, except for the distribution
of distances to the shower axis. We simulate an hexagonal
array of 750 m spacing, as well as random event-core posi-
tions for the different primaries, energies, and zenith angles.
Using the previously parameterized muon profiles integrated
in time, μ(log10(r/m)), we can also estimate the number
of muons at the detector. We then simulate triggering by
requiring that the impinging number of muons is ≥ 3. In this
way, we can obtain the distribution of the distances to the
shower axis, as seen from the shower plane. We observed
that the distributions of distances of a same energy are indis-
tinguishable between different zenith angles. However, the
exact distribution depends on the primary and on the energy.
The latter is explained because more energetic EASs produce
more muons, and therefore there are still some of them with
enough energy at larger distances to the shower axis that can
trigger the detector. Also, heavier primaries produce more
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Fig. 6 Normalized distributions of station distances to the shower axis
in a simulated hexagonal array, for a 50–50% mixture of proton and
iron, for zenith angles below 48◦, and for different log10(E/eV)-bins
of width 0.2

muons than lighter primaries of the same energy and then,
can trigger stations at larger distances to the shower axis.
Figure 6 shows the distribution of station distances for the
log10(E/eV)-bins chosen in this work, for a 50–50% mixture
of proton and iron, for the hexagonal array. It can be seen that
the distribution first rises linearly and then falls softly with
distance, as expected. The peaks of the distance distributions
lie between 500 and 1000 m.

It is relevant to add that we also simulated a square array
of 750 m spacing, obtaining indistinguishable results in the
distribution of distances (cf. Fig. 6) with respect to the hexag-
onal array.

4 Evaluation of the counting strategies

4.1 As a function of the true and estimated number of
muons

For simplicity, we present the results for Nμ only, but the
general behavior extends to μ. The difference is that the res-
olution in the estimation of μ is also subject to the Poissonian
fluctuations in Nμ. These are dominant when Nμ is much
smaller than the number of segments. In contrast, the detec-
tor segmentation is dominant when Nμ is large, meaning that
the resolution in the estimators of Nμ and μ is similar in that
case [21].

We start by defining the relative difference between the
estimated and input (or true) number of muons as

ε = N̂μ − Nμ

Nμ

. (10)

Fig. 7 Relative difference of the muon number estimator to the input
number of muons (cf. Eq. (10)) as a function of the input number of
muons, for the 1-bin (top), the infinite window (second to top), the
N-bin centered (second to bottom), and the N-bin (bottom) strategies.
The profiles were generated from sampling uniformly in log10(r/m) the
average muon profile of proton showers with 17.8 ≤ log10(E/eV) ≤
18.0 and 33◦ � θ � 39◦ (0.30 ≤ sin2 θ ≤ 0.40)

Figure 7 shows ε as a function of the incident number of
muons Nμ, for proton showers with 17.8 ≤ log10(E/eV) ≤
18.0 and 33◦ � θ � 39◦ (0.3 ≤ sin2 θ ≤ 0.4). A small black
line segment marks the mean for each distribution. Modules
with saturation, for which N̂μ tends to infinity, are excluded.
For reference, we expect that 1% of the modules are satu-
rated when the number of incident muons is Nμ = 176 (see
Appendix B). The distributions start to have multiple peaks
and an increasing negative bias when saturation is significant.
Furthermore, it can be seen that the N-bin strategy presents
a larger variance. This is due to the random placement of the
signal in the partition of the trace: a set of otherwise identical
binary signals Vout with different start times will be recon-
structed as different numbers of muons simply because the
signal gets partitioned differently.

Figure 8 summarizes the information of Fig. 7 present-
ing a comparison of the relative bias 〈ε〉 (top panel) and the
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Fig. 8 Relative bias (top) and relative standard deviation (bottom) in
the reconstructed number of muons as a function of the input number
of muons for the four strategies considered. The detector-simulations
set is the same as that of Fig. 7

relative resolution σ(ε) (bottom panel) of each strategy. The
error bars on the mean ε represent the standard deviation
of the mean. For the case of the standard deviation of ε the
error bars were computed using bootstrap. At first glance
it is evident that the N-bin strategy presents a significantly
larger relative bias (to negative values), and also larger stan-
dard deviation than the other strategies. Moreover, the N-bin
centered, the infinite window, and the 1-bin strategies have
an approximately similar performance with respect to the
mean relative bias: they all have a small, mostly negative
bias (within ±10%) dominated by detector effects for an
input of Nμ � 200, presenting an increasingly negative bias
above that when the detector starts to saturate. In particular,
the mean relative bias of the N-bin centered strategy tends to
more negative values, like the N-bin strategy, because of not
considering inhibited channels. The 1-bin strategy behaves
like the infinite window strategy would with a smaller detec-

tor, but tends to slightly more negative values due to the
effect of the undershoot. The infinite window strategy is not
exempt from bias but it has the smallest. When comparing
the standard deviations, we notice that the precision of the
1-bin strategy is approximately equal or greater than that of
the other strategies.

The behavior of the bias as a function of the input number
of muons of each strategy is similar when considering iron
simulations or other (log10(E/eV), sin2 θ)-bins.

It is also useful to understand how the estimated number
of muons is distributed with respect to the input number of
muons. Figure 9 shows density histograms of the estimated
against true number of muons for each of the four strategies.
In general we can see that all strategies but the N-bin one dis-
tribute reasonably well around the identity (solid grey line).
The N-bin strategy clearly deviates from identity. Further-
more, quantization can be noticed at large estimated values
for all strategies. This is expected, and can be most easily
understood taking as example the infinite window strategy:
the largest non-infinite value that N̂μ can take in the infi-
nite window strategy is given just before saturation, when
k = ns−1. From Eq. (5), this value is N̂μ ∼ 264 for ns = 64.
The next highest possible value is given when k = ns − 2, at
which N̂μ ∼ 220. The other possible values are given when
k = ns − 3, k = ns − 4, …, until k = 0. For the other count-
ing strategies, there is still quantization, but the combinations
allow for more possible values of N̂μ.

Since in real experimental data the true input number of
muons is often impossible to know, it is of interest to analyze
how the relative bias and the relative resolution depend on
the estimated number of muons. This is displayed in Fig. 10.
The figure is equivalent to Fig. 8 but plotting against the
estimated number of muons instead of the input ones. Similar
to Fig. 10, all strategies behave similarly except the N-bin
one. The 1-bin, infinite window, and N-bin centered strategies
present a small relative bias (contained within ±10%) and an
increasing relative standard deviation until the point in which
saturation becomes more frequent. The smallest relative bias
is that of the infinite window strategy, but the 1-bin strategy
follows it closely. The N-bin strategy presents a behavior that
is easier to understand from Fig. 9: At N̂μ ∼ 100 most points
satisfy N̂μ < Nμ, causing the large negative average relative
bias observed in Fig. 10. While for larger values of N̂μ the
average relative bias approaches zero, from Fig. 9 or Fig. 8,
we can see that it is not likely that the true Nμ maps to the
estimated N̂μ.

It is relevant to add that, although the mean biases of the 1-
bin, N-bin centered, and infinite window strategies are small,
they could be further reduced using simulations. An empir-
ical fit to the mean value of ε as a function of N̂μ could
be performed, and then the fitted function could be used to
correct the mean bias.
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Fig. 9 Histograms of the estimated number of muons as a function
of the input (true) number of muons for the four counting strategies
considered: the 1-bin (top), the infinite window (second to top), the N-
bin centered (second to bottom), and the N-bin (bottom). A grey solid
line represents the identity. The detector-simulations set is the same as
that of Fig. 7

Fig. 10 Same as Fig. 8 but with the estimated number of muons in the
x-axis

4.2 In realistic air-shower scenarios

The purpose of the analysis described in Sect. 4.1 is to under-
stand the performance of the different strategies as a function
of the input number of muons. However, in realistic data,
larger values of input number of muons Nμ happen with less
frequency and only close to the core.

To understand how the different strategies affect the over-
all bias in the reconstructed number of muons for a given
primary and (log10(E/eV), sin2 θ)-bin, we use the second
detector-simulations set. Figure 11 shows the distribution of
ε for 1000 input proton showers with 17.6 ≤ log10(E/eV) ≤
17.8 and 27◦ � θ � 33◦ (0.20 ≤ sin2 θ ≤ 0.30), for the four
strategies considered, for the hexagonal array. The results
for other energies and angles are similar. We exclude simu-
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Fig. 11 Distributions of ε for the four strategies considered. The
width of the colored vertical line, centered at the mean, corresponds
to the standard deviation of the mean, and the light shaded area is the
standard deviation. A vertical white dashed line marks null bias. We
exclude events that do not pass the distance cut r > rmin (see text
for details). Each count is one reconstructed trace, which was gener-
ated from sampling r from the realistic distribution (c.f. Fig. 6), and
taking as input the average muon profile of proton showers in an hexag-
onal array with 17.6 ≤ log10(E/eV) ≤ 17.8 and 27◦ � θ � 33◦
(0.20 ≤ sin2 θ ≤ 0.30)

lated (module-level) events that would not pass the lower cut
r > rmin, where rmin is the furthest distance to the shower
core where there is saturation for the analyzed strategy. At
these energies the exclusion of these events has a negligible
effect, but at larger energies it makes ε slightly more positive
for all strategies. A white dashed line marks null bias. The
light shaded area presents the standard deviation of ε and
the colored line shows its mean. The standard deviation of
the mean is contained within the colored line marking the
mean. We can see that in this example the mean relative bias
is mostly small, dominated by detector effects, taking a value
of −2.5% for the infinite window strategy, of −2.9% for the
1-bin strategy, of −3.3% for the N-bin centered strategy, and
of −4.2% for the N-bin strategy.

Figure 12 summarizes the mean ε as a function of
log10(E/eV) and sin2 θ for all strategies, considering pro-
ton showers in an hexagonal array and including the distance
cuts. We can see that for the 1-bin strategy the bias is con-
tained within ±4.0%, for the infinite window within ±3.9%,
and for the N-bin centered strategy within ±4.4%. The 1-bin
strategy has a slightly larger bias, which is expected from
having a smaller number of available segments on average.
For the N-bin strategy, the bias is larger (more negative)
reaching −5.1%. In general, the average biases are small
because, as mentioned before, most measurements happen

Fig. 12 Mean ε as a function of the logarithmic energy and the sine
square of the zenith angle, for the 1-bin (top), the infinite window (sec-
ond to top), the N-bin centered (second to bottom), and the N-bin (bot-
tom) strategies. We use proton showers in an hexagonal array with
distance cuts. The distance distribution is that of Fig. 6
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at larger distances to the shower axis, implying a lower num-
ber of input muons for which the biases are small. Most of the
bias is caused by detector effects mentioned in Sect. 3.2. We
remind the reader that the infinite window strategy is insen-
sitive to undershoot (so it is only affected by the efficiency of
the detector and pattern matching strategy), while all other
strategies suffer from both effects. It is the detector effects
that make all biases take negative values.

We can also add that, for iron showers, the biases are in
comparison slightly larger for all strategies. This is shown in
Fig. 17 in the Appendix C. The distance cut in all cases does
not have a significant effect: it can only make the average
bias in a (log10(E/eV), sin2 θ)-bin change at most by 0.2%.

4.3 For large or double-bump-like signals

At first it could be thought that the biases of the N-bin strat-
egy arise from splitting the largest part of the signal into
two windows. The idea behind it is that the beginning of the
matched patterns that fall into one window are mathemati-
cally treated as simultaneous, and those of consecutive win-
dows are treated as independent. When the signal is split into
two windows, the sum of the estimated muons at each win-
dow underestimates the total input number of muons. If this
were indeed the problem, centering the window in the signal
should be the solution. In the tested cases, the performance
of the N-bin centered strategy is quite good. It has a rela-
tively small (negative) bias, and only a larger variance than
the 1-bin strategy at a large number of impinging muons.
However, its relative success is actually explained because
the used input signals are mostly contained within 37.5 ns
(one 12 time-bin window). This makes the N-bin centered
strategy effectively perform as the infinite window strategy,
since almost the complete signal is contained within one win-
dow. Were the window shorter or the signal wider, the N-bin
centered strategy should have larger biases, as the N-bin strat-
egy has. To test this, we design two different input signals as
shown in Fig. 13. The first one (top panel) is a log-normal

dμ(t)

dt
= �((t − t0)/ns)

A

((t − t0)/ns) σ
√

2π

× exp

(
− (ln((t − t0)/ns) − m)2

2σ 2

)
, (11)

with a shape parameter σ ≈ 1, scale parameter m ≈ 3, and
location parameter t0 ≈ 0.6 ns, with an amplitude A equal to
its integral μ ≈ 337. For comparison, the scale parameter is
4 times smaller and the amplitude 25 times larger than that
of an average proton shower of log10(E/eV) = 18.1 and
θ ≈ 30◦ (sin2 θ = 0.25). It is relevant to notice that it would
be equivalent to test a signal of standard width considering
narrower windows (a shorter pattern), which would corre-
spond to another detector with other electronics. The second

Fig. 13 Input signals used to test the strategies. On the top panel,
a “wide” log-normal signal with a shape parameter σ ≈ 1, scale
parameter m ≈ 3, and location parameter t0 ≈ 0.6 ns. On the bot-
tom panel, two log-normals with the shape and scale parameters of
a proton shower of log10(E/eV) = 18.1 and θ ≈ 30◦, and location
parameters t0,1 ≈ 0.6 ns and t0,2 ≈ 2000.6 ns, with the second one
having an amplitude 25% smaller than the first one

input signal (bottom panel) is designed to have a “double
bump”, and it consists of two consecutive log-normals sepa-
rated by a time interval �t (equal to the difference between
the two location parameters t0,2 − t0,1) of our choice. Both
log-normals have the shape and scale parameters of a proton
shower of log10(E/eV) = 18.1 and θ ≈ 30◦ (sin2 θ = 0.25),
however the second one has an amplitude 25% smaller than
the first one. In total it integrates to μ ≈ 300.

We create 1048 events randomly sampling the wide sig-
nal, and 1300 randomly sampling the double-bump one.
For the latter, we fix �t to 2000.000 ns, 2003.125 ns,…,
2037.500 ns, sampling 100 times each. In more detail, we
sample the impinging number of muons Nμ from a Poisson
distribution of mean μ, and then the times of the Nμ muons
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Fig. 14 Distributions of ε for each strategy, for a wide input signal
(top) and a double-bump input signal (bottom). The width of the colored
vertical line, centered at the mean, corresponds to the standard deviation
of the mean, and the light shaded area is the standard deviation. A
vertical black dashed line marks null bias. The percentage of saturated
events for each strategy and input signal is indicated in each panel

from the designed signals dμ(t)/dt . The distribution of ε for
each strategy and for the two kinds of input signals are dis-
played in Fig. 14. In the first case, we can see that the best
performing strategy is the infinite window, despite already
being in the saturation regime, followed closely by the 1-
bin strategy. In the second case, the 1-bin strategy performs
the best. As already mentioned, the infinite window strategy
is subject to the detector inefficiencies, but is unaffected by
undershoot. It is evident that it tends to saturate much more
than the other strategies, which, together with the detector
inefficiency, explains its bias. On the other hand, the 1-bin
strategy is subject to detector inefficiencies and also to under-

shoot effects. The N-bin centered and the N-bin strategies
have larger biases than the 1-bin strategy in both cases, as
expected. This proves that the N-bin centered strategy can-
not be extended to other detectors where the muon pattern is
shorter, and that it underperforms in the Auger UMD when
the signal is long or when there are a significant amount of
late particles.

This analysis proves that the biases of the N-bin strategy
are not completely solved by centering a window at the signal
peak, and that therefore the biases are not explained from the
signal being split into two windows. The actual reason is that
the N-bin strategy does not properly model the detector, as it
does not contemplate inhibited channels. This extends to the
N-bin centered strategy too.

4.4 Reconstruction of the muon signal with time resolution

The counting strategy developed in this work takes advan-
tage of the complete time structure of the measured signal,
allowing to reconstruct the time structure of the signal as seen
by the detector to a single time-bin resolution.

We present in Fig. 15 an example of the input muons as a
function of time, the average input number of muons as seen
by the detector as a function of time, and the estimated aver-
age number of muons as a function of time, the latter using
the 1-bin strategy. The input number of muons as a function
of time are the average muon profile of proton showers with
17.8 ≤ log10(E/eV) ≤ 18.0 and θ � 18◦ (sin2 θ ≤ 0.10)
at 450 m from the core. The time delay between the input
muons and the muons seen by the detector is expected from
the propagation of the photons in the optic fiber, as well as
from the scintillator and optic fiber delays.

The counting strategy developed in this work opens the
door to studies on the temporal structure of the muon signal.
This could be used to estimate the depth-of-the-shower max-
imum of muons [36], which is a great composition-sensitive
parameter. Future work will be centered in deconvolving the
detector effects in the reconstructed average muon signal, to
obtain an estimate of the input muons as a function of time.

5 Summary and outlook

Segmented particle counters, or counters with sub-units in
general, can be used to estimate the number of impinging par-
ticles. In doing so, the effect of pile-up needs to be accounted
for. This effect occurs when two or more particles hit the same
segment (or sub-unit) of the detector within a time interval so
short that they cannot be individually resolved. It constitutes
a source of undercounting.

In this paper we presented and compared four counting
strategies that account for the pile-up effect: the simplest
“infinite window”, the “N-bin” strategy, the “N-bin centered”
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Fig. 15 Input number of muons (solid line), input number of muons as
seen by the detector (dotted line), and reconstructed number of muons
(dashed line) using the 1-bin strategy, as a function of time. The input
number of muons as a function of time are the average muon profile
of proton showers with 17.8 ≤ log10(E/eV) ≤ 18.0 and θ � 18◦
(sin2 θ ≤ 0.10) at 450 m from the core. The average number of muons
as seen by the detector is computed by introducing the time delays
from the detector in the input muons. The shaded areas represent 1 σ

uncertainties

strategy (an improved version of the N-bin strategy), and
the “1-bin” strategy developed in this work. They are all
based in the solution to the classical occupancy problem,
or, as stated in Sect. 2, the “balls in boxes problem” (where
the balls are the particles and the boxes are the segments).
The main difference between the strategies is the duration of
the window in which the muon pattern matches of different
segments are considered simultaneous: the complete trace
for the infinite window strategy, the length of the single-
muon pattern for the N-bin and N-bin centered strategies,
and the time resolution for the 1-bin strategy. The difference
between the N-bin and N-bin centered strategies is that the
position of the windows is optimized for the latter, such that
the center of the output signal coincides with the center of a
certain window. The key difference of the 1-bin strategy with
respect to the rest is the consideration of inhibited segments.

These general counting methods find a concrete applica-
tion in the muon counters of the Underground Muon Detector
of the Pierre Auger Observatory. We thus took the latter as
our study case, to test and compare the different counting
strategies.

We showed that for typical time structures of the muon
signal in a detector like the Auger UMD, all strategies but
the N-bin one perform well. For all strategies but the latter,
the mean bias is contained within ±10% as long as satura-
tion is not significant. At high input number of muons, the
standard deviation of the estimated number of muons of the

1-bin strategy is the smallest and the one of the N-bin strat-
egy the largest. We also observed that the average bias of
each strategy for every (log10(E/eV), sin2 θ)-bin for typical
data are small (within ±6%), but that they are larger (more
negative) for the N-bin strategy. Most of the bias is actually
caused by detector effects, due to the signal undershoot and
the detector and pattern matching strategy efficiencies.

When taking an input signal with a wider time structure or
with a double-bump-like signal, we observed that the 1-bin
and infinite window strategies perform the best. That analysis
proved that the biases found in the N-bin strategy are inherent
to the method, which does not take into account the inhibited
channels as such. The N-bin centered strategy has the same
design problem.

Lastly, we showed that we can reconstruct the time struc-
ture of the muon signal as seen by the detector to a single
time-bin resolution using the 1-bin strategy. No other known
strategy offers such resolution. This opens the door to new
studies of the temporal structure of the muon component.
Such studies can be key for composition analyses.

Our analyses lead to the conclusion that the counting strat-
egy developed in this work is generally as good or better than
the other strategies. It only has a slightly larger bias than the
infinite window one, but unlike the latter, it can be used to
infer the muon time structure as seen by the detector to a
single time-bin resolution.

Finally, the counting strategy developed in this work could
be possibly applied for counting photons produced in liquid
scintillators with photo-multiplier tubes (PMTs), a typical
layout of neutrino experiments. As mentioned in Sect. 1,
the strategy is only useful when the processing of the PMT
signals is performed applying a discrimination threshold
(counter mode), and not by analyzing the amplitude or charge
of the signal (integrator mode). In such context, the estimated
number of scintillation photons produced in a neutrino event
can be used to estimate the energy of the neutrino (see for
example Ref. [37]). More precisely, the counting strategy
could be applied to each set of PMTs lying equidistant to the
interaction vertex, where the expected scintillation photon
rate is the same. In spherical detectors, these set of PMTs lie
in rings that correspond to the intersection of spheres cen-
tered in the vertex with the greater spherical array of PMTs.
This would be the case, for example, of the Sudbury Neutrino
Observatory + (SNO+) [38], and of the Jiangmen Under-
ground Neutrino Observatory (JUNO) [39]. In cylindrical
detectors, the group of PMTs which expect equal rate would
follow more complex curves determined by the intersection
of spheres centered at the vertex with the cylindrical array.
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Appendix A: Detector simulation

We start by determining the start-time of the signal in the
Auger UMD trace. For this we sample the distribution of
the delays between the start-time of the Auger UMD sig-
nal and the trigger in its paired surface detector. The delay
is random because the trigger time in the surface detec-
tor is determined by the timing of both the electromag-
netic and muonic components, while the start-time of the
UMD signal is only associated to the muonic component.
Additionally, both are subject to Poission fluctuations. Fur-
thermore, the delay depends on the type of trigger, which
have different sensitivities to the different air-shower com-
ponents. There are essentially two types of triggers to which
the recorded data belong: threshold triggers and time-over-
threshold triggers. We sample the start time of the signal
at the muon counter from a double Gaussian distribution
0.27 ×N (3337 ns, 91 ns)+ 0.73 ×N (3757 ns, 70 ns) [25].
The first Gaussian corresponds to the normal delay between
the time-over-threshold trigger in the paired surface detector
station and the signal start-time in the Auger UMD trace,
whereas the second corresponds to that of threshold triggers.

For each impinging muon, a scintillator strip and chan-
nel are assigned by sampling a discrete uniform distri-
bution U{1, 64}. An impinging position in the scintillator
strip l is assigned sampling a continuous uniform distribu-
tion U{0 m, 4.01 m}. The average number of photo-electrons
〈NPE〉 at the SiPM generated by the muon at l is computed
from [29]

〈NPE〉 (l) = 17.4 e−l/4.16 m + (1.0 − 17.4) e−l/0.037 m.

(A1)

Then the actual number of photo-electrons at the SiPM gen-
erated by the muon NPE is calculated by sampling a Poisson
distribution of mean 〈NPE〉.

We compute the propagation time from the impinging
position in the optic fiber to the SiPM by dividing the dis-
tance l by the speed of light in the optic fiber 0.60 c. For
each photo-electron, we sample the time delays due to the
scintillator and to the optic fibers from two exponential dis-
tributions of parameters 3.7 ns and 3.5 ns respectively [29].

Moreover, we analytically simulate the electronics response
to each photo-electron pulse. The electronics consist of a
pre-amplifier, a fast shaper, a discriminator, and a Field-
Programmable Gate Array (FPGA). As mentioned in Sect. 3.1,
while the mathematical models for the photo-electron pulse
as well as for each element of the electronics are extracted
from Ref. [25], we present the analytical solution of the
electronics response to a photo-electron signal. For this we
neglect baseline noise.4

The pulse generated by a photo-electron constitutes an
input signal in the electronics VPE(t) modelled as [29]

VPE(t) = 0.29 mV
(

1 − e− t−tPE
3.82 ns

)

×
[
23.22 e− t−tPE

1.187 ns + 1.609 e− t−tPE
23.44 ns

+ e− t−tPE
0.221 ns

]
× �(t − tPE),

=
6∑

i=1

Ai e
− t−tPE

τi �(t − tPE). (A2)

The signal is then processed through a pre-amplifier,
which is modelled as a low-pass filter [25]. To obtain the
amplified signal Vamp(t) we first Fourier transform VPE(t),
multiply by the transfer function of the low-pass filter HI (ω),
and inverse transform

Vamp(t) = √
2π F−1 [F[VPE(t)] × HI (ω)] ,

= √
2π

6∑

i=1

F−1
[

Ai√
2π

e−i tPEω

(1/τi + iω)

× kI√
2π(1 + iωτI )

]
,

4 Accounting for all sources, background noise is estimated to be
responsible for 5.5% of the counts of a module trace [25]. The count
rates from background muons and background noise are inherent to the
environment and to the detector, and affect the optimal pattern-matching
strategy. However, the background is not relevant for assessing the opti-
mal counting strategy, since the latter takes as input the already matched
patterns.
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=
6∑

i=1

kI Aiτi

τi − τI

(
e
− t−tPE

τi − e
− t−tPE

τI

)
�(t − tPE),

=
6∑

i=1

2∑

j=1

Ãi, j e
− t−tPE

τi, j �(t − tPE), (A3)

where kI = −17.5 and τI = 17 ns [29]. We use the fact that
the Fourier transform commutes with the sum. In the last line
we grouped the coefficients such that Ãi,1 = kI Aiτi/(τi −
τI ), Ãi,2 = − Ãi,1, τi,1 = τi , and τi,2 = τI . From the last
expression it is easy to notice that the mathematical form of
Vamp(t) is equivalent to that of VPE(t).

After the pre-amplifier, the signal is processed by a fast-
shaper. This is modelled as a practical differentiator [29]. To
obtain the signal after the fast-shaper Vfs(t) we transform
Laplace Vamp(t), multiply by the transfer function of a prac-
tical differentiator HI I (s), and inverse transform
Vfs(t) = L−1 {L[Vamp(t)] × HI I (s)

}
,

=
6∑

i=1

2∑

j=1

L−1

⎧
⎪⎨

⎪⎩
Ãi, j e

tPE
τi, j

s + 1/τi, j

×
[
�(tPE) e−tPE(s+1/τi, j ) + �(−tPE)

]

× (−s)kI I τI I
(1 + sτI I )2

⎫
⎪⎬

⎪⎭
,

=
6∑

i=1

2∑

j=1

− Ãi, j kI I τi, j
τI I (τi, j − τI I )

2

×
{
e
− t−tPE

τI I

[
(t − tPE)(τi, j − τI I ) + τ2

I I

]

− e
− t−tPE

τi, j τ2
I I

}
�(t − tPE), (A4)

where kI I = 47.1 and τI I = 2.4 ns.
After adding the contribution to Vfs(t) of all photo-

electron pulses of each of the muons falling into the same
scintillator strip, we can finally simulate the response of
the discriminator and FPGA, obtaining the output signal or
binary trace Vout(t) for each channel. The output of the FPGA
is a 1 in the binary trace if Vfs(t) is above the threshold
(77.5 mV) for more than 1.51 ns. The FPGA also samples
the signal in 3.125 ns time intervals. At last, we repeat the
process for all the channels, and obtain the final event trace
for a module.

Appendix B: Analysis of the saturation fraction

In order to validate our simulations, we compare the frac-
tion of saturated events in simulations against its expectation
value.

We predict the expected saturation fraction as a function
of μ an of Nμ for the infinite window strategy just from
the adopted statistical model. For all the other strategies, we
would need to introduce an assumption of how μ depends on
the time t .

The expected saturation fraction as a function of μ fol-
lows a binomial distribution with the number of successes
(k) equals the number of trials (ns)

B(ns | μ) = e−μ(eμ/ns − 1)ns . (B5)

Furthermore, the expected saturation fraction as a function
of Nμ follows the occupancy distribution as described in Ref.
[28] (see Eq. (4)), also evaluated at k = ns

Occ (ns | Nμ, ns) = S(Nμ, ns)

n
Nμ
s

, (B6)

where we remind the reader that S(Nμ, k) are the Stirling
numbers of the second kind.

For this analysis we used the first simulations set (see
Sect. 3) of air-showers with uniform distribution in logarith-
mic distance to the shower axis. Then for all air-showers
of belonging to a same (log10(E/eV), sin2 θ)-bin, we com-
puted the fraction of saturated events as a function of μ and
as a function of Nμ. We remind the reader that the detec-
tor is said to be saturated in an event if, for any window j ,
all channels are occupied (infinite window, N-bin, and N-
bin centered strategies) or all channels are either occupied or
inhibited (1-bin strategy). In this case both μ̂ and N̂μ tend to
infinity.

The expected saturation fraction and the one in simula-
tions for each of the four counting strategies can be seen in
Fig. 16. In the example shown, we used proton air-showers
with 17.8 ≤ log10(E/eV) ≤ 18.0 and 18◦ � θ � 27◦
(0.10 ≤ sin2 θ ≤ 0.20). For other energies and zenith angles,
the general behavior is the same: the models are exactly the
same, but the values that μ or Nμ can reach are different.
We can see that the saturation fraction of the infinite window
strategy follows very well the models, and that even the N-
bin centered and 1-bin strategies follow them approximately
too. The latter is expected for the N-bin centered strategy,
because for the Auger UMD most of the signal is contained
in one window, and therefore the strategy performs effec-
tively as the infinite window. The N-bin strategy saturates
at larger values. However, this is just a consequence of the
design problem of the strategy, which does not account for
inhibited channels.

Appendix C: Average biases for iron air-showers

Figure 17 shows the mean ε as a function of log10(E/eV)

and sin2 θ for all strategies, using iron showers as input, and
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Fig. 16 Saturation fraction as a function of Nμ (upper panel) and as
a function of μ (lower panel), as modeled (dashed and dotted lines)
and from simulations (markers), for the four considered strategies. The
simulations consist of proton air-showers with 17.8 ≤ log10(E/eV) ≤
18.0 and 18◦ � θ � 27◦ (0.10 ≤ sin2 θ ≤ 0.20), with a uniform
distribution in the logarithmic distance to the shower axis

considering distance cuts. When compared to Fig. 12, we
observe that the mean ε generally deviate slightly more from
zero.

Fig. 17 Same as Fig. 12, but considering iron showers
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