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Abstract: Synthesis of thiazolidinone based on quinolone moiety was established starting from
4-hydroxyquinol-2-ones. The strategy started with the reaction of ethyl bromoacetate with 4-
hydroxyquinoline to give the corresponding ethyl oxoquinolinyl acetates, which reacted with hy-
drazine hydrate to afford the hydrazide derivatives. Subsequently, hydrazides reacted with isoth-
iocyanate derivatives to give the corresponding N,N-disubstituted thioureas. Finally, on subjecting
the N,N-disubstituted thioureas with dialkyl acetylenedicarboxylates, cyclization occurred, and
thiazolidinone derivatives were obtained in good yields. The two series based on quinolone moiety,
one containing N,N-disubstituted thioureas and the other containing thiazolidinone functionalities,
were screened for their in vitro urease inhibition properties using thiourea and acetohydroxamic
acid as standard inhibitors. The inhibition values of the synthesized thioureas and thiazolidinones
exhibited moderate to good inhibitory effects. The structure−activity relationship revealed that
N-methyl quinolonyl moiety exhibited a superior effect, since it was proved to be the most potent
inhibitor in the present series achieving (IC50 = 1.83 ± 0.79 µM). The previous compound exhibited
relatively much greater activity, being approximately 12-fold more potent than thiourea and acetohy-
droxamic acid as references. Molecular docking analysis showed a good protein−ligand interaction
profile against the urease target (PDBID: 4UBP), emphasizing the electronic and geometric effect of
N,N-disubstituted thiourea.

Keywords: N,N-disubstituted thioureas; dialkyl acetylenedicarboxylates; thiazolidinones; in vitro
urease inhibition properties; molecular docking

1. Introduction

Urease is a well-recognized enzyme that hydrolyzes urea to ammonia and carbon
dioxide in living organisms. It is found in fungi, bacteria, plants, and vertebrates [1]. The
amount of ammonia generated during hydrolysis tends to raise the pH, and an increase
in medium pH is linked to the development of a variety of health problems in people
who depend on colonization sites by urease-producing microorganisms [2,3]. It is known
that the ureolytic activity of several microorganisms, e.g., Proteus mirabilis, is related to the
formation of urinary tract stones, which can lead to chronic kidney and pelvic inflammation.
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In addition, urinary catheter obstruction in patients results in the colonization of urease-
producing microorganisms, primarily P. mirabilis. Infectious bacteria that produce too much
ammonia can cause ammonia encephalopathy or hepatic coma [4,5]. Another mechanism
by which urease participates in pathogenic bacteria infection is the establishment of a
microenvironment favorable to pathogen survival [6].

Due to the role of urease in such clinically significant complications, urease activity
must be regulated using inhibitors [1,7]. Several classes of compounds have been identified
as urease inhibitors [8]. Because of the association of ureases with several pathological
conditions [9], the discovery of effective and safe urease inhibitors has been an important
area of pharmaceutical research.

Thiosemicarbazide derivatives have been prominent precursors for synthesizing ni-
trogen and sulfur-containing heterocyclic compounds in recent decades due to their abun-
dance of reactive centers [10]. In addition, thiosemicarbazones have also been evaluated
as ribonucleotide reductase inhibitors and exhibit potential as anticancer drugs similar
to methisazone and triapine [11–15]. These sulfur and nitrogen donor ligands and their
coordination complexes have attracted significant attention due to their activity against the
smallpox virus and protozoa influenza [16]. Many studies have recently been published
on the efficacy of thiosemicarbazides and their hybrid derivatives in suppressing urease
enzyme activity [17,18].

The current study is a part of our ongoing research into the synthesis of bioac-
tive hybrid molecules, and a continuation of our previous work on the design of an-
tibacterial urease inhibitors [19]. That previous work was involved the synthesis of 3-
thiosemicarbazides derived by quinolin-2-one derivatives. The synthesized compounds
were tested and screened in vitro against the urease-producing R. mucilaginosa and Pro-
teus mirabilis strains. The results revealed that most of the tested compounds showed
moderate-to-good activity [19]. Meanwhile, here we aim to synthesize another new se-
ries of quinolone-based 4-O-substituted-thiosemicarbazones and their 4-thiazolidinone
derivatives, and explore them as antimicrobial and/or urease inhibitors (Figure 1).

The intention to include quinolonyl moiety in our strategy was owing to its di-
verse range of biological properties, which include acetylcholinesterase inhibitor [20],
antiallergenic [21], antimalarial [22], calcium-signaling inhibition [23] and antifungal [24]
activities. Furthermore, quinolone hybrids have also been reported as potential candidates
for antibacterial [25] and anticancer functions [26,27]. On the other hand, thiazolidinone
ring has been linked to a variety of biological activities, including antibacterial [28], an-
titumor [29], antituberculous [30], and anti-inflammatory activities [31], and as potent
urease inhibitors [32,33]. Furthermore, thiazolidinones are unique inhibitors of the bacterial
enzyme MurB, a precursor involved in the biosynthesis of peptidoglycan as an essential
component of both Gram-positive and Gram-negative bacterial cell wall [34–36].
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2. Results and Discussion
2.1. Chemistry

The reaction sequences for synthesizing 4-thiazolidinones-quinolone hybrids 7a–l
starting from 4-hydroxyquinoline are outlined in Scheme 1. The synthesis of ethyl 2-((2-
oxo-1,2-dihydroquinolin-4-yl)oxy)acetate derivatives 3a–c were obtained by refluxing ethyl
bromoacetate (2) with 4-hydroxyquinoline 1a–c in dry acetone in the presence of anhydrous
potassium carbonate. For the synthesis of new 4-oxothiazolidin-quinolone hybrids 7a–l,
we planned to prepare the N,N-disubstituted thiourea derivatives 5a–g as precursors for
functionalized 4-oxothiazolidine derivatives. To approach these targets, the reaction of
compounds 4a–c and isothiocyanate derivatives in refluxing ethanol yielded the reported
N,N-disubstituted thiourea derivatives 5a,b,d–f [37]. All the newly synthesized compounds
gave satisfactory analyses for the proposed structures, which were confirmed based on
their IR, NMR, mass spectra, and elemental analyses.

On the other hand, the structure of the newly prepared derivatives 5c and 5g were
examined by elemental analyses, IR, and NMR in addition to mass spectra. For example,
the 1H NMR spectrum of 5g showed a singlet at δN = 177.9 ppm assigned for N-4f. N-4f
gives HMBC correlation with a singlet at δH 5.29 and 5.36 ppm, assigned as H-4c and
benzylic H-4i, respectively. Additionally, distinctive are the benzylic (2C-m), (2C-o), and
(C-4i) at δC = 128.48, 126.65, and 46.25 ppm, respectively. The distinctive carbons of 5g are
shown in Figure 2; for full correlations, please see Figures S1–S19.
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Scheme 1. Synthesis of 4-oxothiazolidinquinolone 7a–l. Reagents and Conditions: (a) ethyl bromoac-
etate (2), anhydrous K2CO3, dry acetone, reflux 7–9 h; (b) hydrazine hydrate, EtOH, reflux 12–14 h;
(c) isothiocyanate derivatives, EtOH, reflux, 4–6 h.
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Figure 2. Structure of compound 5g.

Interestingly, heterocyclization of 4-oxothiazolidine derivatives 7a–l was carried out
when hydrazinecarbothioamides 5a–g were treated with dimethyl but-2-ynedioate (6a)
and diethyl but-2-ynedioate (6b) in refluxing absolute ethanol for 6–8 h. The spectral
and elemental data showed that series 7a–l underwent the reaction smoothly to give the
respective 4-oxothiazolidin-quinolone hybrid structure. The 1H NMR spectra revealed
the disappearance of two NH signals. Additionally, the appearance of a new signal at
~160–163 ppm in 13C NMR spectra for new carbonyl thiazolidine moiety augments the
formation of the thiazolidinone hybrid. As a representative example, the 1H NMR spectrum
of compound 7b (Table 1) showed quartet and triplet signals at δH = 4.27, 1.28 ppm for ethyl
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protons, as well as a singlet signal at δH = 6.91 ppm for (H-5a′); the benzylic protons (H-3a′)
appeared as a singlet signal at δH = 4.69 ppm. Moreover, the 13C NMR spectrum (Table 1)
showed signals at δC = 160.94 ppm representing additional carbonyl group C-4′, and
another signal of thiazolidin-4-one at δC = 137.42 ppm is assigned as C-5′, which showed
HMBC with δH = 6.91 and 4.69 ppm, assigned as H-5a′ and H-3a′, respectively. Further
structural confirmation was also provided by analysis of the 1H-15N HSQC spectrum of 7b
(Table 1 and Figures S20–S40), which showed a broad singlet at δH = 11.29 ppm, assigned
as NH-4d, correlated with attached nitrogen, which appears at δN = 127.20 ppm.

Table 1. NMR spectroscopic assignments of compound 7b.

1H NMR COSY Assignment

11.29 (s; 1H) NH-4d
8.10 (dd, J = 8.0, 1.0; 1H) 7.68, 7.30 H-5
7.68 (ddd, J = 7.2, 7.2, 1.1; 1H) 8.10, 7.53, 7.30 H-7
7.53 (d, J = 8.5; 1H) 7.68, 7.30 H-8
7.30 (m; 6H) 8.10, 7.68, 7.53 H-o, m, p, 6
6.91 (s; 1H) H-5a′

6.12 (s; 1H) H-3
5.03 (s; 2H) H-4b
4.69 (s; 2H) H-3a′

4.27 (q, J = 7.1; 2H) 1.28 H-5c′

3.57 (s; 3H) H-1a
1.28 (t, J = 7.1; 3H) 4.27 H-5d′
13C NMR HSQC HMBC Assignment
165.01 4.27 C-5b′

162.00 3.57 C-2
160.94 6.91 C-4′

160.00 8.10, 6.12, 5.03 C-4
145.89 4.69 C-2′

139.42 8.10, 7.68, 3.57 C-8a
138.26 7.30 C-i
137.42 6.91, 4.69 C-5′

131.57 7.68 8.10, 7.68, 7.53 C-7
128.30 7.30 7.30, 7.30 C-m
127.40 7.30 7.30, 7.30, 4.69 C-o
126.91 7.30 7.30 C-p
123.24 8.10 7.68, 5.03 C-5
121.43 7.30 7.53, 6.12 C-6
116.97 6.91 6.91 C-5a
115.15 7.53 C-4a
114.58 7.53 7.53, 7.30, 6.12, 3.57 C-8
97.92 6.12 C-3
66.06 5.03 1.28 C-4b
61.63 4.27 7.30 C-5c′

54.76 4.69 6.12 C-3a′

28.67 3.57 3.57 C-1a
13.94 1.28 4.27, 1.28 C-5d′
15N-NMR HSQC HMBC Assignment
137.9 7.53, 6.12, 3.57 N-1
127.2 11.29 N-4d

2.2. Bioactivities
2.2.1. Antibacterial Screening

The Proteus mirabilis (P. mirabilis) strain was isolated from the urine of patients suffering
from urinary tract infections. The strain was negative for hemolysis and motile and was
urease positive. The test was performed using the cup-plate diffusion method [38] (Table 2).
The results indicated that most tested compounds are weak or moderately active against
P. mirabilis.
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2.2.2. Urease Inhibition Activity

Two series of quinolone derivatives containing thiosemicarbazone and thiazole func-
tionalities 5a–g and 7a–l were synthesized and then screened for their in vitro urease
inhibition properties using thiourea and acetohydroxamic acid as standard inhibitors [39].
The inhibition values of the synthesized compounds 5a–g and 7a–l exhibited moderate
to good inhibitory effects when compared to clinically used enzyme inhibitors, thiourea
and acetohydroxamic acid (Table 2 and Figure 3). It is worth mentioning that quinolone-
thiosemicarbazone hybrids 5a–g are effective molecules for urease inhibition ranking
(IC50 = 1.83–11.21 µM) (Table 2 and Figure 3). Among the 5a–g series, compounds 5a–c,
bearing a methyl group at position-1 on the quinolone skeleton, are the most active for ure-
ase inhibition (IC50 = 1.83–2.48 µM) when compared with the standard inhibitors thiourea
and acetohydroxamic acid, which have IC50 values of 22.8 ± 1.31 and 21.03 ± 0.94 µM,
respectively. Next, compounds 5d and 5e with p-methylquinolone moiety achieving
IC50 = 5.29 ± 0.36 and 5.60 ± 0.84 µM were found to have superior activity compared
to the standard inhibitors, thiourea and acetohydroxamic acid.

Meanwhile, 5f and 5g, with no substituents on quinolone moiety, showed the lowest
activity (IC50 = 9.45 ± 0.08 and 11.21 ± 0.27 µM, respectively) compared to other members
of the series, but were still more active than the standard inhibitors. It is clear that incor-
porating a methyl group at position-1 of the quinolone moiety enhances urease inhibitory
activity. Overall, compound 5c bearing a methyl group at position-1 and thiosemicarbazide
phenyl terminal was proved to be the most potent inhibitor in the present series, achieving
(IC50 = 1.83± 0.79 uM), as it exhibited relatively much greater activity, being approximately
12-fold more potent than thiourea and acetohydroxamic acid as references. On the other
hand, the quinolone-thiazole hybrids 7a–l were also screened in vitro for their human
urease inhibitory potential. The results showed that most tested derivatives exhibited week
to moderate urease inhibitory activities (IC50 = 18.80–45.43 µM).

Among the 7a–l series, compound 7c exhibited good activity compared with the
standard inhibitors, thiourea, and acetohydroxamic acid, achieving IC50 = 18.80 ± 1.72 µM
(Table 2). From the above discussion, it can be concluded that the positions of substituents at
the quinolone moiety and the thiosemicarbazone chain play vital roles in urease inhibitory
activity. However, in silico docking was performed, and is discussed in the following
paragraphs to verify these interpretations.

Table 2. Urease inhibition IC50 (µM), anti-P. mirabilis, expressed as inhibition zone in mm and MICs
(in µg/mL, given in brackets) of compounds 5a–g and 7a–l.

Compd. IC50 (µM) Urease MIC (µM) P. mirabilis

5a 2.48 ± 0.18 22 (100)
5b 2.58 ± 0.10 20 (100)
5c 1.83 ± 0.79 27 (100)
5d 5.29 ± 0.36 15 (100)
5e 5.60 ± 0.84 9 (100)
5f 9.45 ± 0.08 12 (100)
5g 11.21 ± 0.27 10 (100)
7a 36.28 ± 0.10 9 (200)
7b 23.98 ± 0.88 9 (200)
7c 18.80 ± 1.72 8 (200)
7d 26.8 ± 1.11 6 (200)
7e 29.8 ± 1.31 11 (200)
7f 31.58 ± 0.15 10 (200)
7g 45.43 ± 0.19 7 (200)
7h 31.29 ± 0.36 9 (200)
7i 42.8 ± 1.51 11 (200)
7j 51.4 ± 0.91 6 (200)
7k 49.45 ± 0.09 8 (200)
7l 37.21 ± 0.28 9 (200)

lead I [21] 6.02 ± 0.27
Thiourea 22.8 ± 1.31

Acetohydroxamic acid 21.03 ± 0.94
Ciprofloxacin 8 (1.26)
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2.3. Molecular Docking

A molecular docking study was performed to elucidate the in vitro activities of all
synthesized compounds and to understand their binding with the protein and subsequently
figure out the most important pharmacophoric features in this scaffold. The docking
protocol was performed by the Openeye scientific program against bacillus pasteurii urease
(PDB: ID: 4ubp) [40–42].

The compounds’ interaction and their binding mode and pose are illustrated in Table 3.
By analyzing the compound pose, the methylation of NH of quinolinyl moiety was very im-
portant because it hindered the quinolonyl part from forming HB with the amino acid clefts.
Compound 5c (N-phenylthiourea derivative) was the only compound whose thiourea func-
tionality formed two HBs with the receptor in a chelation fashion (Figure 4a). To discover
the great difference in activity between compounds 5a and 5d, overlay docking between
these two ligands inside the receptor was performed. From Figure 4b, the quinolone ring
in compound 5f formed extra HB with Asp: 224A and one HB with Ala: 366A. Comparing
compound 5c with compound 5b (benzylthiourea), it is clear that both compounds adopted
different poses and modes with the receptor. However, compounds 5a and 5b illustrated
similar poses (Figure 4c). These results indicate the electronic and geometric effect of the
N-substituted thiourea part.
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Table 3. Docking mode and consensus scores for compound 5a–g.

Compound Structure Consensus Score Binding Mode

5a
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2.4. Structure–Activity Relationship (SAR)

Based on the compound activity and binding with the selected receptor, the series
substituted thiourea has better activity than series b (thiazolidindione core). HB formation
of the quinolonyl system is undesirable. Substitution on the phenyl of quinolone ring is
ineffective. N-Phenylthiourea is the best derivative, and terminal substitution by alley
or benzyl is very similar in terms of both activity and binding mode. These results open
the gate for designing new derivatives bearing a substituted phenyl moiety. The latter is
shown as in the case of compound 5c, since the incorporation of a methyl group at position-
1 of the quinolone moiety and thiosemicarbazide phenyl terminal enhances the urease
inhibitory activity. Thus, compound 5c exhibited relatively much greater activity, being
approximately 12-fold more potent than thiourea and acetohydroxamic acid, as references.
The same trend occurred in the case of thiazolidinone derivatives 7a–l, as the electronic
effect of the methyl groups in the quinolinone molecule, together with the presence of
phenyl group (N-phenylthiazolidine) in compound 7c (1,6-disubstituted-quinolinone-N-
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phenylthiazolidine), led the molecule to exhibit good activity compared with the standard
inhibitors, thiourea, and acetohydroxamic acid.

3. Experimental Section
3.1. General Information

All reagents were purchased from Merck (St. Louis, MO, USA). The progress of all
reactions was monitored with thin-layer chromatography (TLC) on Merck alumina-backed
TLC plates and visualized under UV light. Spectra were measured in DMSO-d6 on a Bruker
AV-400 spectrometer (400 MHz for 1H, 100 MHz for 13C, and 40.54 MHz for 15N, in the
Chemistry Department, Florida Institute of Technology, 150 W University Blvd, Melbourne,
FL 32901, USA. Chemical shifts are expressed in δ (ppm) versus internal tetramethylsilane
(TMS) = 0 ppm for 1H and 13C, and external liquid ammonia = 0 ppm for 15N. Coupling
constants are stated in Hz. Correlations were established using 1H-1H COSY, and 1H-13C
and 1H-15N HSQC and HMBC experiments. All 15N signals were observed indirectly via
HSQC or HMBC experiments. Chemical shifts (δ) are reported in parts per million (ppm)
relative to tetramethylsilane (TMS) as the internal standard, and the coupling constants (J)
are reported in Hertz (Hz). Splitting patterns are denoted as follows: singlet (s), doublet
(d), multiplet (m), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt),
triplet of doublets (td), and doublet of quartet (dq). Melting points (mp’s) were determined
with a Stuart melting point instrument in the Chemistry Department, Florida Institute of
Technology, 150 W University Blvd, Melbourne, FL, USA, and are expressed in ◦C. Mass
spectra were recorded on a Finnigan Fab 70 eV at Al-Azhar University, Egypt. Elemental
analyses were carried out on a Perkin Elmer device at the Microanalytical Institute of
Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany.

3.2. Starting Materials

4-Hydroxyquinoline derivatives 1a–c were prepared according to the literature [19,20].
Ethyl bromoacetate (2), isothiocyanate derivatives, dimethyl but-2-ynedioate (6a) and
diethyl but-2-ynedioate (6b) were bought from Aldrich and used as received.

General method for the synthesis of compounds 3a–c [37]
General method for the synthesis of compounds 4a–c [37]
General method for the synthesis of compounds 5a–e
To a suspension of hydrazide derivatives 4a–c (1 mmol) in absolute ethanol (30 mL),

the appropriate isothiocyanate derivatives (1 mmol) were added, and the mixture was
heated at reflux on a boiling water bath for 4–6 h. The mixture was then left to cool, and the
precipitate so formed was collected by filtration, washed with methanol, and recrystallized
from ethanol to give the target compounds 5a–e.

N-Allyl-2-(2-((1-methyl-2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)hydrazinecarbo-
thioamide (5a) [37]

Yield: 0.270 g (78%), m.p. 177–179 ◦C. IR (KBr) υmax/cm−1 3255, 3100.
N-Benzyl-2-(2-((1-methyl-2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)hydrazinecar

bothioamide (5b) [37]
Yield: 0.281 g (71%), m.p. 190–192 ◦C. IR (KBr) υmax/cm−1 3249, 3150.
2-(2-((1-Methyl-2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)-N-phenylhydrazinecar

bothioamide (5c)
Yield: 0.275 g (72%), m.p. 161–163 ◦C. IR (KBr) υmax/cm−1 3214, 3110. 1H NMR: 10.40

(bs, 1H; H-4e), 9.50 (bs, 1H; H-4f), 8.65 (b, 1H; H-4h), 8.11 (d, J = 7.9, 1H; H-5), 7.68 (dd,
J = 7.7, 7.7, 1H; H-7), 7.53 (d, J = 8.5, 1H; H-8), 7.45 (dd, J = 8.0, 7.6, 2H; H-m), 7.30 (dd,
J = 7.4, 7.4, 1H; H-6)), 7.25 (t, J = 7.4, 1H; H-p), 7.00 (dd, J = 8.5, 1.2, 2H; H-o), 6.04 (s, 1H;
H-3), 4.86 (s, 2H; H-4c), 3.57 (s, 3H; H-1a). 13C NMR: 165.41 (C-4d), 162.05 (C-2), 160.29
(C-4), 147.67 (C-i), 139.41 (C-8), 138.60 (C-8a), 131.55 (C-7), 129.57 (2C-m), 125.41 (C-p),
123.30 (C-5), 121.45 (C-6), 120.74 (2C-o), 115.24 (C-8), 114.56 (C-4a), 97.54 (C-3), 66.20 (C-4c),
28.66 (C-1a). 15N NMR: 140.4 (N-1), 133.2 (N-4e/4f), 128.0 (N-4f/4e), 115.7 (N-4h). MS m/z
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(%): 382 (M+, 8), 257 (17), 132 (15), 65 (100). Anal. Calcd. for C19H18N4O3S (382.44): C,
59.67; H, 4.74; N, 14.65. Found: C, 59.82; H, 4.85; N, 14.83.

N-Allyl-2-(2-((6-methyl-2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)hydrazine-1-car
bothioamide (5d) [37]

Yield: 0.290 g (80%), m.p. 174–176 ◦C. IR (KBr) υmax/cm−1 3289, 3165.
N-Benzyl-2-(2-((6-methyl-2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)hydrazinecarb

othioamide (5e) [37]
Yield: 0.297 g (75%), m.p. 183–185 ◦C. IR (KBr) υmax/cm−1 3266, 3199.
N-Allyl-2-(2-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)hydrazinecarbothioamide

(5f) [37]
Yield: 0.245 g (74%), m.p. 169–171 ◦C. IR (KBr) υmax/cm−1 3234, 3120.
N-Benzyl-2-(2-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)hydrazinecarbothioami

de (5g)
Yield: 0.271 g (71%), m.p. 199–201 ◦C. IR (KBr) υmax/cm−1 3225, 3129. 1H NMR: 14.16

(s, 1H; H-4e/4f/4h), 11.39 (bs, 1H; H-1), 7.44 (dd, J = 7.6, 7.6, 1H; H-7), 7.22 (m, 4H; H-m, p,
8), 7.18 (d, J = 7.7, 2H; H- o), 6.96 (d, J = 7.9, 1H; H-5), 6.91 (dd, J = 7.5, 7.5, 1H; H-6), 6.03
(s, 1H; H-3), 5.36 (s, 2H; H-4i), 5.29 (s, 2H; H-4c). 13C NMR: 168.56 (C-4d), 162.83 (C-2),
161.00 (C-4), 147.36 (C-4g), 138.38 (C-8a), 135.50 (C-i), 130.90 (C-7), 128.48 (2C-m), 127.46
(C-p), 126.65 (2C-o), 122.21 (C-5), 121.16 (C-6), 114.87 (C-8), 113.84 (C-4a), 97.97 (C-3), 60.26
(C-4c), 46.25 (C-4i). 15N NMR: 282.4 (N-4e), 177.9 (N-4f), 144.2 (N-1). MS m/z (%): 382 (M+,
28), 280 (100), 188 (34), 47 (33). Anal. Calcd. for C19H18N4O3S (382.44): C, 59.67; H, 4.74; N,
14.65. Found: C, 59.85; H, 4.97; N, 14.83

General method for the synthesis of compounds 7a–l
To a solution of thiosemicarbazide 5a–g (1 mmol) in abs. ethanol (25 mL), DMAD (6a),

and DEAD (6b) (0.17 gm, 1 mmol) were added, and the mixture was heated under reflux for
8–10 h. The mixture was then left to cool. The formed precipitate was filtered off, washed
with hot ethanol, and recrystallized from methanol to give the target compounds 7a–l.

(2E)-Methyl 2-(3-allyl-2-(2-(2-((1-methyl-2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)-
hydrazono)-4-oxothiazolidin-5-ylidene)acetate (7a)

Yield: 0.342 g (75%), m.p. 233–235 ◦C. IR (KBr) υmax/cm−1 1735, 1630, 1051. 1H NMR:
7.81 (d, J = 7.8, 1H; H-5), 7.66 (dd, J = 8.2, 7.4, 1H; H-7), 7.53 (d, J = 8.5, 1H; H-8), 7.26 (dd,
J = 7.5, 7.5, 1H; H-6), 6.77 (s, 1H; H-5a′), 6.31 (s, 1H; H-3), 5.99 (ddt, Jd = 17.0, 10.2, Jt = 5.2,
1H; H-3b′), 5.52 (s, 2H; H-4b), 5.18 (d, J = 10.3, 1H; H-3c′), 5.00 (d, J = 17.4, 1H; H-3c′), 4.86
(d, J = 4.2, 2H; H-3a′), 3.78 (s, 3H; H-5c′), 3.57 (s, 3H; H-1a), 3.48 (s; NH-1). 13C NMR: 164.84
(C-5b′), 163.11 (C-4′), 162.00 (C-2), 159.84 (C-4), 151.49 (C-4c), 148.25 (C-5a′), 139.42 (C-8a),
132.11 (C-3b′), 131.57 (C-7), 122.78 (C-5a′), 122.56 (C-5), 121.60 (C-6), 117.80 (C-3c′), 115.10
(C-8), 114.74 (C-4a), 97.95 (C-3), 60.52 (C-4b), 52.37 (C-5c′), 46.69 (C-3a′), 28.67 (C-1a). 15N
NMR: 329.1 (N-4e), 177.1 (N-4d), 137.6 (N-1). N-3′ n/o. MS m/z (%): 456 (M+, 38), 392 (62),
148 (38), 44 (100). Anal. Calcd. for C21H20N4O6S (456.47): C, 55.26; H, 4.42; N, 12.27. Found
C, 55.47; H, 4.59; N, 12.58.

(2E)-Methyl 2-(3-allyl-2-(2-(2-((1-methyl-2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)-
hydrazono)-4-oxothiazolidin-5-ylidene)acetate (7b)

Yield: 0.405 g (77%), m.p. 243–245 ◦C. IR (KBr) υmax/cm−1 1738, 1640, 1054. 1H NMR:
11.29 (s, 1H; NH-4d), 8.10 (dd, J = 8.0, 1.0, 1H; H-5), 7.68 (ddd, J = 7.2, 7.2, 1.1, 1H; H-7), 7.53
(d, J = 8.5, 1H; H-8), 7.30 (m, 6H; H-o, m, p, 6), 6.91 (s, 1H; H-5a′), 6.12 (s, 1H; H-3), 5.03 (s,
2H; H-4b), 4.69 (s, 2H; H-3a′), 4.27 (q, J = 7.1, 2H; H-5c′), 3.57 (s, 3H; H-1a), 1.28 (t, J = 7.1,
3H; H-5d′). 13C NMR: 165.61 (C-4c), 165.01 (C-5b′), 162.00 (C-2), 160.94 (C-4′), 160.00 (C-4),
145.89 (C-2′), 139.42 (C-8a), 138.26 (C-i), 137.42 (C-5′), 131.57 (C-7), 128.30 (2C-m), 127.40
(2C-o), 126.91 (C-p), 123.24 (C-5), 121.43 (C-6), 116.97 (C-5a′), 115.15 (C-4a), 114.58 (C-8),
97.92 (C-3), 66.06 (C-4b), 61.63 (C-5c′), 54.76 (C-3a′), 28.67 (C-1a), 13.94 (C-5d′). 15N NMR:
137.9 (N-1), 127.2 (N-4d). N-3′, 4e n/o. MS m/z (%): 520 (M+, 77), 236 (93), 200 (100), 40
(71). Anal. Calcd. for C26H24N4O6S (520.56): C, 59.99; H, 4.65; N, 10.76. Found C, 60.12; H,
4.82; N, 10.89.
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(2E)-Methyl 2-(2-(2-(2-((1-methyl-2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)-hydrazono)-
4-oxo-3-phenylthiazolidin-5-ylidene)acetate (7c)

Yield: 0.400 g (81%), m.p. 229–231 ◦C. IR (KBr) υmax/cm−1 1740, 1634, 1060. 1H NMR:
11.47 (b, 1H; NH-4d), 8.15 (d, J = 8.0, 1H; H-5), 7.69 (ddd, J = 8.5, 7.1, 1.4, 1H; H-7), 7.54
(d, J = 8.4, 1H; H-8), 7.45 (dd, J = 8.0, 7.6, 2H; H-m), 7.31 (dd, J = 7.8, 7.3, 1H; H-6), 7.25
(t, J = 7.4, 1H; H-p), 7.00 (dd, J = 8.3, 0.9, 2H; H-o), 6.97 (s, 1H; H-5a′), 6.11 (s, 1H; H-3),
5.09 (s, 2H; H-4b), 3.77 (s, 3H; H-5c′), 3.57 (s, 3H; H-1a). 13C NMR: 165.60 (C-4c), 165.06
(C-5b′), 162.00 (C-2), 160.92 (C-4′), 160.03 (C-4), 147.57 (C-i), 146.44 (C-2′), 139.43 (C-8a),
137.56 (C-5′), 131.60 (C-7), 129.58 (2C-m), 125.43 (C-p), 123.28 (C-5), 121.48 (C-6), 120.73
(2C-o), 117.65 (C-5a′), 115.15 (C-8), 114.61 (C-4a), 97.93 (C-3), 66.06 (C-4b), 52.71 (C-5c′),
28.68 (C-1a). 15N NMR: 137.7 (N-1). MS m/z (%): 492 (M+, 29), 204 (100), 145 (49), 40 (22).
Anal. Calcd. for C24H20N4O6S (492.50): C, 58.53; H, 4.09; N, 11.38. Found C, 58.67; H, 4.27;
N, 11.56.

(2E)-Ethyl 2-(2-(2-(2-((1-methyl-2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)-hydrazono)-
4-oxo-3-phenylthiazolidin-5-ylidene)acetate (7d)

Yield: 0.399 g (78%), m.p. 223–225 ◦C. IR (KBr) υmax/cm−1 1736, 1639, 1077. 1H NMR:
11.47 (bs, 1H; NH-4d), 8.15 (dd, J = 8.0, 1.3, 1H; H-5), 7.68 (ddd, J = 8.5, 7.2, 1.4, 1H; H-7),
7.53 (d, J = 8.5, 1H; H-8), 7.45 (dd, J = 8.0, 7.6, 2H; H-m), 7.31 (ddd, J = 7.9, 7.3, 0.6, 1H; H-6),
7.25 (t, J = 7.4, 1H; H-p), 7.00 (dd, J = 8.5, 1.2, 2H; H-o), 6.94 (s, 1H; H-5a′), 6.11 (s, 1H; H-3),
5.09 (s, 2H; H-4b), 4.22 (q, J = 7.1, 2H; H-5c′), 3.57 (s, 3H; H-1a), 1.24 (t, J = 7.1, 3H; H-5d′).
13C NMR: 165.60 (C-4c), 165.06 (C-5b′), 162.00 (C-2), 160.92 (C-4′), 160.03 (C-4), 147.67 (C-i),
146.45 (C-2′), 139.42 (C-8a), 137.53 (C-5′), 131.60 (C-7), 129.57 (2C-m), 125.41 (C-p), 123.28
(C-5), 121.48 (C-6), 120.74 (2C-o), 117.65 (C-5a′), 115.15 (C-8), 114.60 (C-4a), 97.92 (C-3), 66.06
(C-4b), 61.71 (C-5c′), 28.68 (C-1a), 13.87 (C-5d′). 15N NMR: 265.2 (N-3′), 137.7 (N-1), 127.4
(N-4d). N-4e n/o. MS m/z (%): 506 (M+, 54), 316 (58), 181 (100), 45 (26). Anal. Calcd. for
C25H22N4O6S (506.53): C, 59.28; H, 4.38; N, 11.06. Found C, 59.39; H, 4.62; N, 11.31.

(E)-Ethyl 2-((Z)-3-allyl-2-(2-(2-((6-methyl-2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)-
hydrazono)-4-oxothiazolidin-5-ylidene)acetate (7e)

Yield: 0.375 g (79%), m.p. 239–241 ◦C. IR (KBr) υmax/cm−1 1744, 1640, 1074.1H NMR:
11.35 (b, 1H; NH-1), 11.13 (bs, 1H; NH-4d), 7.71 (s, 1H; H-5), 7.37 (d, J = 8.3, 1H; H-7), 7.20
(d, J = 8.4, 1H; H-8), 6.81 (s, 1H; H-5a′), 5.89 (ddt, Jd = 17.2, 9.9, Jt = 5.2, 1H; H-3b′), 5.83 (s,
1H; H-3), 5.19 (d, J = 10.4, 1H; H-3c′), 5.15 (d, J = 17.4, 1H; H-3c′), 4.88 (s, 2H; H-4b), 4.43
(m, 2H; H-3a′), 4.27 (q, J = 7.1, 2H; H-5c′), 2.37 (s, 3H; H-6a), 1.27 (t, J = 6.7, 3H; H-5d′). 13C
NMR: 165.32 (C-5b′), 163.27 (C-4c, 4′), 162.86 (C-2), 161.62 (C-4), 151.5 (C-2′), 140.17 (C-5′),
136.66 (C-8a), 132.24 (C-7), 130.73 (C-3b′), 130.37 (C-6), 122.07 (C-5), 117.64 (C-3c′), 115.58
(C-5a′), 115.10 (C-8), 114.24 (C-4a), 97.56 (C-3), 66.15 (C-4b), 61.57 (C-5c′), 44.60 (C-3a′),
20.48 (C-6a), 13.96 (C-5d′). 15N NMR: 157.0 (N-4d), 143.8 (N-1). MS m/z (%): 470 (M+, 18),
338 (53), 106 (100), 40 (16). Anal. Calcd. for C22H22N4O6S (470.50): C, 56.16; H, 4.71; N,
11.91. Found C, 56.37; H, 4.89; N, 12.07.

(E)-Methyl 2-((Z)-3-allyl-2-(2-(2-((6-methyl-2-oxo-1,2-dihydroquinolin-4-yl)oxy)-acetyl)
hydrazono)-4-oxothiazolidin-5-ylidene)acetate (7f)

Yield: 0.342 g (75%), m.p. 232–233 ◦C. IR (KBr) υmax/cm−1 1780, 1666, 1090. 1H NMR:
11.35 (s, 1H; NH-1), 11.15 (bs, 1H; NH-4d), 7.71 (s, 1H; H-5), 7.37 (d, J = 8.2, 1H; H-7), 7.20
(d, J = 8.3, 1H; H-8), 6.83 (s, 1H; H-5a′), 5.89 (ddt, Jd = 17.1, 10.2, Jt = 5.0, 1H; H-3b′), 5.83 (s,
1H; H-3), 5.19 (d, J = 11.2, 1H; H-3c′), 5.15 (d, J = 17.1, 1H; H-3c′), 4.88 (s, 2H; H-4b), 4.43 (m,
2H; H-3a′), 3.81 (s,3H; H-5c′), 2.37 (s, 3H; H-6a). 13C NMR: 165.78 (C-5b′), 163.28 (C-4c),
163.08 (C-4′), 162.86 (C-2), 161.62 (C-4), 151.28 (C-2′), 140.22 (C-5′), 136.66 (C-8a), 132.25
(C-7), 130.73 (C-3b′), 130.37 (C-6), 122.05 (C-5), 117.66 ( C-3c′), 115.32 (C-8), 115.10 (C-5a′),
114.22 (C-4a), 97.56 (C-3), 66.13 (C-4b), 52.63 (C-5c′), 44.64 (C-3a′), 20.48 (C-6a). 15N NMR:
157.0 (N-4d), 143.4 (N-1); N-4e, 3′ n/o. MS m/z (%): 456 (M+, 22), 360 (46), 216 (100), 43
(45). Anal. Calcd. for C21H20N4O6S (456.47): C, 55.26; H, 4.42; N, 12.27. Found C, 55.49; H,
4.60; N, 12.53.
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(2E)-Methyl 2-(3-benzyl-2-(2-(2-((6-methyl-2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)-
hydrazono)-4-oxothiazolidin-5-ylidene)acetate (7g)

Yield: 0.355 g (70%), m.p. 241–243 ◦C. IR (KBr) υmax/cm−1 1799, 1694, 1041. 1H NMR:
11.36 (s, 1H; NH-1), 11.25 (s, 1H; NH-4d), 7.77 (s, 1H; H-5), 7.31 (m, 6H; H-7, o, m, p), 7.23
(d, J = 8.3, 1H; H-8), 6.86 (s, 1H; H-5a′), 5.81 (s, 1H; H-3), 5.90 (s, 2H; H-3a′), 4.99 (s, 2H;
H-4b), 3.81 (s, 3H; H-5c′), 2.34 (s, 3H; H-6a). 13C NMR: 165.6 (C-5b′), 165.4 (C-4c), 162.7
(C-4′) 161.1 (C-2), 160.9 (C-4), 145.8 (C-2′), 138.2 (C-5′), 137.5 (C-i), 136.6 (C-8a), 132.2 (C-7),
130.2 (C-6), 128.3 (5C-o, m, p), 126.9 (C-5), 122.0 (C-5a′), 116.7 (C-8), 114.1 (C-4a), 98.2 (C-3),
66.0 (C-4b), 54.7 (C-5c′), 52.6 (C-3a′), 20.47 (C-6a). MS m/z (%): 506 (M+, 22), 377 (33), 283
(100), 57 (20). Anal. Calcd. for C25H22N4O6S (506.53): C, 59.28; H, 4.38; N, 11.06. Found C,
59.64; H, 4.51; N, 11.34.

(E)-Ethyl 2-((Z)-3-benzyl-2-(2-(2-((6-methyl-2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)
-hydrazono)-4-oxothiazolidin-5-ylidene)acetate (7h)

Yield: 0.390 g (75%), m.p. 233–235 ◦C. IR (KBr) υmax/cm−1 1756, 1660, 1083. 1H NMR:
11.35 (s, 1H; NH-1), 11.17 (s, 1H; NH-4d), 7.71 (s, 1H; H-5), 7.3 (m, 6H; H-7, o, m, p), 7.20 (d,
J = 8.3, 1H; H-8), 6.83 (s, 1H; H-5a′), 5.83 (s, 1H; H-3), 5.01 (s, 2H; H-3a′), 4.88 (s, 2H; H-4b),
4.27 (q, J = 6.9, 2H; H-5c′), 2.37 (s, 3H; H-6a), 1.27 (t, J = 7.1, 3H; H-5d′). 13C NMR: 165.6
(C-5b′), 163.7 (C-4c), 163.3 (C-4′), 162.5 (C-2), 162.4 (C-4), 151.6 (C-2′), 137.7 (C-i), 137.41
(C-5′), 136.8 (C-8a), 132.7 (C-7), 130.7 (C-6), 128.6 (5C-o, m, p), 122.4 (C-5), 116.0 (C-5a′),
115.4 (C-8), 114.9 (C-4a), 98.0 (C-3), 66.4 (C-4b), 62.0 (C-5c′), 46.1 (C-3a′), 20.9 (C-6a), 14.4
(C-5d′). MS m/z (%): 520 (M+, 17), 428 (14), 91 (100), 40 (39). Anal. Calcd. for C26H24N4O6S
(520.56): C, 59.99; H, 4.65; N, 10.76. Found C, 60.13; H, 4.81; N, 10.98.

(2E)-Ethyl 2-(3-allyl-4-oxo-2-(2-(2-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)hydra-
zono)thiazolidin-5-ylidene)acetate (7i)

Yield: 0.360 g (78%), m..p. 210–212 ◦C. IR (KBr) υmax/cm−1 1741, 1639, 1041. 1H NMR:
11.44 (b, 1H), 11.15 (b, 1H; NH-1, 4d), 7.92 (d, J = 7.9, 1H; H-5), 7.54 (dd, J = 7.8, 7.5, 1H;
H-7), 7.30 (d, J = 8.2, 1H; H-8), 7.20 (dd, J = 7.6, 7.5, 1H; H-6), 6.80 (s, 1H; H-5a′), 5.88 (ddt,
Jd = 17.3, 10.3, Jt = 5.2, 1H; H-3b′), 5.85 (s, 1H; H-c), 5.28 (d, J = 17.2, 1H; H-3c′), 5.20 (m,
1H; H-3c′), 4.90 (s, 2H; H-4b), 4.43 (m, 2H; H-3a′), 4.27 (q, J = 7.1, 2H; H-5c′), 1.27 (t, J = 6.9,
3H; H-5d′). 13C NMR: 165.32 (C-5b′), 163.25 (C-4′), 163.08 (C-2′), 162.97 (C-2), 161.77 (C-4),
151.54 (C-4c), 140.12 (C-5′), 138.64 (C-8a), 131.09 (C-7), 130.72 (C-3b′), 122.63 (C-5), 121.34
(C-6), 117.63 (C-3c′), 115.57 (C-5a′), 115.14 (C-8), 114.34 (C-4a), 97.61 (C-3), 66.19 (C-4b),
61.57 (C-5c′), 44.61 (C-3a′), 13.97 (C-5d′). 15N NMR: 156.8, (N-1) 144.2 (N4d). N-3′, 4e n/o.
MS m/z (%): 456 (M+, 19), 320 (30), 129 (100), 40 (13). Anal. Calcd. for C21H20N4O6S
(456.47): C, 55.26; H, 4.42; N, 12.27. Found C, 55.43; H, 4.57; N, 12.45.

(2E)-Methyl 2-(3-allyl-4-oxo-2-(2-(2-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)-
hydrazono)thiazolidin-5-ylidene)acetate (7j)

Yield: 0.330 g (73%), m.p. 244–246 ◦C. IR (KBr) υmax/cm−1 1794, 1680, 1084. 1H NMR:
11.43 (bs, 1H; NH-1), 11.21 (b, 1H; NH-4d), 7.92 (d, J = 7.9, 1H; H-5), 7.54 (dd, J = 7.7, 7.6,
1H; H-7), 7.30 (d, J = 8.2, 1H; H-8), 7.20 (dd, J = 7.6, 7.4, 1H; H-6), 6.83 (s, 1H; H-5a′), 5.90
(ddt, Jd = 16.7, 10.9, Jt = 5.4, 1H; H-3b′), 5.85 (s, 1H; H-3), 5.19 (d, J = 11.4, 1H; H-3c′), 5.17
(d, J = 16.7, 1H; H-3c′), 4.90 (s, 2H; H-4b), 4.44 (m, 2H; H-3a′), 3.81 (s, 3H; H-5c′). 13C NMR:
165.78 (C-5b′), 163.28 (C-2′, 4′), 162.98 (C-2), 161.78 (C-4), 151.34 (C-4c), 140.27 (C-5′), 138.64
(C-8a), 131.27 (C-7), 131.09 (C-3b′), 122.62 (C-5), 121.34 (C-6), 117.65 (C-3c′), 115.30 (C-8),
115.14 (C-5a′), 114.35 (C-4a), 97.61 (C-3), 66.23 (C-4b), 52.63 (C-5c′), 44.65 (C-3a′). 15N NMR:
144.2 (N-1); N-3′, N-4d, N-4e n/o. MS m/z (%): 442 (M+, 33), 360 (63), 283 (100), 41 (13).
Anal. Calcd. for C20H18N4O6S (442.45): C, 54.29; H, 4.10; N, 12.66. Found C, 54.51; H, 4.28;
N, 12.92

(2E)-Methyl 2-(3-benzyl-4-oxo-2-(2-(2-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)-
hydrazono)thiazolidin-5-ylidene)acetate (7k)

Yield: 0.375 g (76%), m.p. 251–253 ◦C. IR (KBr) υmax/cm−1 1781, 1683, 1092. 1H NMR:
11.42 (bs, 1H; NH-1), 11.19 (b, 1H; NH-4d), 7.91 (d, J = 7.9, 1H; H-5), 7.44 (dd, J = 7.6, 7.5,
1H; H-7), 7.32 (m, 4H; H-o, m), 7.32 (m, 1H; H-p), 7.29 (d, J = 8.5, 1H; H-8), 7.20 (dd, J = 7.4,
6.8, 1H; H-6), 6.80 (s, 1H; H-5a′), 5.83 (s, 1H; H-3), 5.11 (s, 2H; H-4b), 4.95 (s, 2H; H-3a′), 4.30
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(s, 3H; H-5c′). 13C NMR: 165.77 (C-5b′), 163.38 (C-4c), 162.98 (C-2), 161.45 (2C-4, 4′), 151.48
(C-2′), 138.64 (2C-8a, i), 135.35 (C-5′), 131.08 (C-7), 128.50 (C-p), 128.33 (2C-o)„ 127.98 (2C-m),
127.73 (C-5), 127.42 (C-6), 121.34 (C-5a′), 115.14 (2C-8, 4a), 97.64 (C-3), 66.16 (C-3a′), 61.59
(C-5c′), 52.61 (C-4b). MS m/z (%): 492 (M+, 25), 375 (20), 343 (100), 147 (38). Anal. Calcd.
for C24H20N4O6S (492.51): C, 58.53; H, 4.09; N, 11.38. Found C, 58.64; H, 4.28; N, 11.56.

(E)-Ethyl 2-((Z)-3-benzyl-4-oxo-2-(2-(2-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)acetyl)-
hydrazono)thiazolidin-5-ylidene)acetate (7l)

Yield: 0.370 g (72%), m.p. 249–251 ◦C. IR (KBr) υmax/cm−1 1790, 1689, 1088. 1H NMR:
11.44 (bs, 1H; NH-1), 11.22 (b, 1H; NH-4d), 7.92 (d, J = 7.9, 1H; H-5), 7.54 (dd, J = 7.6, 7.5,
1H; H-7), 7.39 (m, 4H; H-o, m), 7.34 (m, 1H; H-p), 7.30 (d, J = 8.5, 1H; H-8), 7.20 (dd, J = 7.4,
6.8, 1H; H-6), 6.82 (s, 1H; H-5a′), 5.86 (s, 1H; H-3), 5.01 (s, 2H; H-4b), 4.90 (s, 2H; H-3a′),
4.27 (q, J = 7.0, 2H; H-5c′), 1.27 (t, J = 7.0, 3H; H-5d′). 13C NMR: 165.31 (C-5b′), 163.38
(C-4c), 162.99 (C-2), 161.75 (2C-4, 4′), 151.48 (C-2′), 138.64 (2C-8a, i), 135.35 (C-5′), 131.09
(C-7), 128.49 (C-p), 127.96 (2C-o), 127.73 (2C-m), 122.64 (C-5), 121.34 (C-6), 115.82 (C-5a′),
115.14 (2C-8, 4a), 97.62 (C-3), 66.16 (C-3a′), 61.59 (C-5c′), 45.83 (C-4b), 13.96 (C-5d′). 15N
NMR: 144.2 (N-1). MS m/z (%): 506 (M+, 57), 372 (37), 232 (45), 113 (100). Anal. Calcd. for
C25H22N4O6S (506.53): C, 59.28; H, 4.38; N, 11.06. Found C, 59.45; H, 4.57; N, 11.32.

3.3. Biology
Urease Inhibitory Activity

In vitro screening and inhibitory studies on urease (Jack bean urease) were determined
using the colored Berthelot phenols method, which measures the liberation of ammonia
from the reaction [43]. Briefly, the assay mixture containing 1 unit of the enzyme was added
to 650 µL of buffer solution (50 mmol phosphate buffer Ph 6.7, 400 mmol sodium salicylate,
10 mmol sodium nitroprusside, and 2 mmol EDTA/L) and mixed with 10 µL of different
concentration 0.1–100 Mm of the tested compounds in DMF as a solvent. DMF was tested
alone and showed no inhibitory effect on the enzyme. After 15 min incubation at room
temperature, 10 µL of 50 mg/L urea solution was added. The mixture was incubated for
0.5 h in a water bath at 37 ◦C to allow the hydrolysis process.

After complete urea hydrolysis and ammonia liberation, the reaction was stopped by
adding 200 µL of the hypochlorite reagent (150 mmol/L sodium hydroxide, 140 mm/L
sodium hypochlorite). The liberated ammonia was allowed to complex with the hypochlo-
rite and salicylate for 25 min at 30 ◦C. The absorbance was measured at 578 nm using a
UV/VIS Spectrophotometer (Optizen POP, 5U4608, Daejeon, Korea), and experiments were
performed in triplicate in a final volume of 1 mL. All results were compared with thiourea,
a standard inhibitor of urease. The percentage inhibition was calculated as the difference of
absorbance values with and without the test compounds. The concentration that provokes
an inhibition halfway between the minimum and maximum response of each compound
(relative IC50) was determined by monitoring the inhibition effect of various concentrations
of compounds in the assay.

4. Molecular Docking Study

A docking study was performed for the target compounds using the Openeye scientific
program (academic license 2021). The coordinate for the protein structure was obtained
from the Protein Data Bank (PDB ID: 4ubp). The compound conformers were energy
minimized using the Omega application. The docking step was operated by the Fred
application, and the results were visualized by the Vida command.

5. Conclusions

Thiazolidinone derivatives were achieved starting from 4-hydroxyquinolin-2-ones,
which were subjected to ethyl bromoacetate to afford the corresponding ethyl oxoquinolinyl
acetates. The latter species reacted with hydrazine hydrate to afford the hydrazide deriva-
tives. Then, the hydrazide derivatives reacted with isothiocyanate derivatives to give the
corresponding N,N-disubstituted thioureas. On subjecting the N,N-disubstituted thioureas
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with dialkyl acetylenedicarboxylates, the thiazolidinone derivatives was obtained in good
yields. The two series based on quinolone ring, one bearing N,N-substituted thiourea, and
the other bear thiazolidinone ring were designed with different substituents at different
positions. The N,N-disubstituted thiourea scaffold with N-methyl quinolone system ex-
hibited the most potent urease inhibitor activity. Besides the study of the previous results
dealing with the results of urease inhibition activity of 4-O-substituted-thiosemicarbazones
and derived by quinolin-2-ones, it can be concluded that the quinolinone moiety plays an
important role in the mechanism of urease inhibition process.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/molecules27207126/s1, they are as: NMR spectra of compound 5g (Figures S1–S19), compound 7b
(Figures S20–S39), compound 7a (Figures S40–S57), compound 7c (Figures S58–S75), compound 7d
(Figures S76–S92), compound 7e (Figures S93–S116), compound 7f (Figures S117–S139), compound 7g
(Figures S140–S159), compound 7h (Figures S160–S171), compound 7j (Figures S172–S189), compound 7k
(Figures S190–S205) and compound 7l (Figures S206–S228).
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