KIT | KIT-Bibliothek | Impressum | Datenschutz

Autonomous Visual Detection of Defects from Battery Electrode Manufacturing

Choudhary, Nirmal 1; Clever, Henning; Ludwigs, Robert; Rath, Michael; Gannouni, Aymen; Schmetz, Arno; Hülsmann, Tom; Sawodny, Julia 2; Fischer, Leon 1; Kampker, Achim; Fleischer, Juergen 2; Stein, Helge S. ORCID iD icon 1
1 Institut für Physikalische Chemie (IPC), Karlsruher Institut für Technologie (KIT)
2 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract:

The increasing global demand for high-quality and low-cost battery electrodes poses major challenges for battery cell production. As mechanical defects on the electrode sheets have an impact on the cell performance and their lifetime, inline quality control during electrode production is of high importance. Correlation of detected defects with process parameters provides the basis for optimization of the production process and thus enables long-term reduction of reject rates, shortening of the production ramp-up phase, and maximization of equipment availability. To enable automatic detection of visually detectable defects on electrode sheets passing through the process steps at a speed of 9 m s−1, a You-Only-Look-Once architecture (YOLO architecture) for the identification of visual detectable defects on coated electrode sheets is demonstrated within this work. The ability of the quality assurance (QA) system developed herein to detect mechanical defects in real time is validated by an exemplary integration of the architecture into the electrode manufacturing process chain at the Battery Lab Factory Braunschweig.


Verlagsausgabe §
DOI: 10.5445/IR/1000152261
Veröffentlicht am 04.11.2022
Originalveröffentlichung
DOI: 10.1002/aisy.202200142
Web of Science
Zitationen: 10
Dimensions
Zitationen: 13
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Physikalische Chemie (IPC)
Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2022
Sprache Englisch
Identifikator ISSN: 2640-4567
KITopen-ID: 1000152261
HGF-Programm 37.11.03 (POF IV) Helmholtz Energy Transition Roadmap
Erschienen in Advanced Intelligent Systems
Verlag Wiley-VCH Verlag
Band 4
Heft 12
Seiten Art.-Nr.: 2200142
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 13.10.2022
Nachgewiesen in Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page